PostgreSQL 11

Administration
Cookbook

Simon Riggs, Gianni Ciolli
and Sudheer Kumar Meesala

PostgreSQL 11 Administration
Cookbook

Over 175 recipes for database administrators to manage
enterprise databases

Simon Riggs
Gianni Ciolli
Sudheer Kumar Meesala

BIRMINGHAM - MUMBAI

PostgreSQL 11 Administration Cookbook

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Ali Abidi

Content Development Editor: Karan Thakkar
Technical Editor: Sagar Sawant

Copy Editor: Safis Editing

Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Jisha Chirayil

Production Coordinator: Shraddha Falebhai

First published: May 2019
Production reference: 1020519
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-758-1

www . packtpub.com

http://www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Simon Riggs is the CTO of 2ndQuadrant, having contributed to PostgreSQL as a

major developer and committer for 14 years. He has written and designed features for
replication, performance, B, management, and security. Under his guidance, 2ndQuadrant
is now a leading developer of open source PostgreSQL, serving hundreds of clients in
USA, Europe, and worldwide. Simon is a frequent speaker at many conferences on
PostgreSQL Futures. He has worked as a database architect for 30 years.

Gianni Ciolli is the head of professional services at 2ndQuadrant and has been a
PostgreSQL consultant, trainer, and speaker at many PostgreSQL conferences in Europe
and abroad over the last 10 years. He has a PhD in Mathematics from the University of
Florence. He has worked with free and open source software since the 1990s and is active in
the community (the Prato Linux User Group and the Italian PostgreSQL Users Group). He
lives in London with his son. His other interests include music, drama, poetry, and
athletics.

Sudheer Kumar Meesala is a lead architect at Endurance International Group and has
spent the last few years designing and building scalable and secure web applications within
finance and internet industries. A large part of his job has included decomposing
monolithic legacy applications into microservices. This has required a deep understanding
of PostgreSQL, Cassandra, and other NoSQL databases. Other key areas of interest are
container orchestration, DevOps, and more. He is also an accomplished speaker and
trainer. He lives in Bangalore, India, and spends far too much time in traffic jams.

My contributions to this book would not have been possible without the support and
understanding of my wife, Sarika, and my mother, Rama. My colleagues at Endurance
International Group have inspired, challenged, and driven my technical growth.

About the reviewers

Sheldon Strauch is a twenty-year veteran of software consulting at companies such as IBM,
Sears, Ernst & Young, and Kraft Foods. He has a Bachelor's degree in Business
Administration and leverages his technical skills to improve businesses self-awareness. His
interests include data gathering, management, and mining; maps and mapping; business
intelligence; and the application of data analysis for continuous improvement. He is
currently focused on the development of end-to-end data management and mining at
Enova International, a financial services company located in Chicago. In his spare time, he
enjoys the performing arts, particularly music, and traveling with his wife Marilyn.

Birju Shabh is the principal architect for Endurance International Group and he is the co-
author of Advanced MySql 8. He has the experience and expertise to build scalable products
for hosting domains. He is passionate about the latest architectural patterns, tools, and
technologies. He also helps organizations to follow best practices. He is passionate about
technical training and technical sessions.

I would like to thank my family and my colleagues for their help and continuous support.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: First Steps 8
Introducing PostgreSQL 11 9
What makes PostgreSQL different? 9
Robustness 1
Security 11

Ease of use 12
Extensibility 12
Performance and concurrency 13
Scalability 13

SQL and NoSQL data models 13
Popularity 14
Commercial support 14
Research and development funding 15
Getting PostgreSQL 15
How to do it... 15
How it works... 16
There's more... 16
Connecting to the PostgreSQL server 17
Getting ready 17
How to do it... 17
How it works... 19
There's more... 20
See also 20
Enabling access for network/remote users 20
How to do it... 21
How it works... 21
There's more... 23
See also 23
Using graphical administration tools 23
How to do it... 23
How it works... 27
OmniDB 28
How to do it... 28
See also 33
Using the psql query and scripting tool 33
Getting ready 34
How to do it... 34
How it works... 36

There's more... 37

Table of Contents

See also
Changing your password securely
How to do it...
How it works...
Avoiding hardcoding your password
Getting ready
How to do it...
How it works...
There's more...
Using a connection service file
How to do it...
How it works...
Troubleshooting a failed connection
How to do it...
There's more...

Chapter 2: Exploring the Database
What type of server is this?
How to do it...
There's more...
What version is the server?
How to do it...
How it works...
There's more...
What is the server uptime?
How to do it...
How it works...
See also
Locating the database server files
Getting ready
How to do it...
How it works...
There's more...
Locating the database server's message log
Getting ready
How to do it...
How it works...
There's more...
See also
Locating the database's system identifier
Getting ready
How to do it...
How it works...
Listing databases on the database server
How to do it...

37
38
38
38
39
39
39
40
41
41
41
42
42
42
44

45
46
46
47
47
47
48
48
49
49
50
50
50
50
51
52
53
54
54
55
55
56
56
57
57
57
58
58
59

[ii]

Table of Contents

How it works...
There's more...
How many tables are there in a database?
How to do it...
How it works...
There's more...
How much disk space does a database use?
How to do it...
How it works...
How much disk space does a table use?
How to do it...
How it works...
There's more...
Which are my biggest tables?
How to do it...
How it works...
How many rows are there in a table?
How to do it...
How it works...

Quickly estimating the number of rows in a table

How to do it...
How it works...
There's more...
Listing extensions in this database
How to do it...
How it works...
There's more...
See also
Understanding object dependencies
Getting ready
How to do it...
How it works...
There's more...

Chapter 3: Configuration

Reading the fine manual
How to do it...
How it works...
There's more...
Planning a new database
Getting ready
How to do it...
How it works...
There's more...
Changing parameters in your programs

59
60
62
62
63
64
64
65
65
65
66
66
67
67
67
68
68
68
69
70
70
71
72
75
75
76
76
77
77
77
78
78
78

80
81
81
82
82
82
82
83
83
84
84

[iii]

Table of Contents

How to do it... 84
How it works... 85
There's more... 85
Finding the current configuration settings 86
How to do it... 86
How it works... 88
Which parameters are at non-default settings? 88
How to do it... 89
How it works... 90
There's more... 90
Updating the parameter file 90
Getting ready 91
How to do it... 91
How it works... 92
There's more... 92
Setting parameters for particular groups of users 93
How to do it... 93
How it works... 94
The basic server configuration checklist 94
Getting ready 94
How to do it... 95
There's more... 95
Adding an external module to PostgreSQL 96
Getting ready 97
How to do it... 98
Installing modules using a software installer 98
Installing modules from PGXN 99
Installing modules from source code 100

How it works... 101
Using an installed module 101
Getting ready 102
How to do it... 102
How it works... 102
Managing installed extensions 102
How to do it... 102
How it works... 105
There's more... 105
Chapter 4: Server Control 107
Introduction 107
Starting the database server manually 108
Getting ready 109
How to do it... 109
How it works... 111
Stopping the server safely and quickly 112

[iv]

Table of Contents

How to do it...
How it works...
See also
Stopping the server in an emergency
How to do it...
How it works...
Reloading the server configuration files
How to do it...
How it works...
There's more...
Restarting the server quickly
How to do it...
There's more...
Preventing new connections
How to do it...
How it works...
Restricting users to only one session each
How to do it...
How it works...
Pushing users off the system
How to do it...
How it works...
Deciding on a design for multitenancy
How to do it...
How it works...
Using multiple schemas
Getting ready
How to do it...
How it works...
Giving users their own private database
Getting ready
How to do it...
How it works...
There's more...
See also
Running multiple servers on one system
Getting ready
How to do it...
How it works...
Setting up a connection pool
Getting ready
How to do it...
How it works...
There's more...
Accessing multiple servers using the same host and port

112
113
113
114
114
114
115
115
116
117
117
117
119
119
119
121
121
121
122
122
123
124
125
125
126
126
126
127
128
129
129
129
130
131
131
131
131
131
133
133
133
134
135
136
138

[v]

Table of Contents

Getting ready 138
How to do it... 138
There's more... 139
Chapter 5: Tables and Data 141
Choosing good names for database objects 141
Getting ready 142
How to do it... 142
There's more... 143
Handling objects with quoted names 144
Getting ready 144
How to do it... 145
How it works... 145
There's more... 146
Enforcing the same name and definition for columns 146
Getting ready 147
How to do it... 147
How it works... 149
There's more... 149
Identifying and removing duplicates 150
Getting ready 150
How to do it... 151
How it works... 153
There's more... 155
Preventing duplicate rows 155
Getting ready 155
How to do it... 156
How it works... 158
There's more... 159
Duplicate indexes 159
Uniqueness without indexes 159
Real-world example — IP address range allocation 160
Real-world example — range of time 161
Real-world example — prefix ranges 161
Finding a unique key for a set of data 162
Getting ready 162
How to do it... 162
How it works... 164
Generating test data 164
How to do it... 164
How it works... 167
There's more... 168
See also 168
Randomly sampling data 168
How to do it... 169
How it works... 170

[vil

Table of Contents

Loading data from a spreadsheet
Getting ready
How to do it...
How it works...
There's more...
Loading data from flat files
Getting ready
How to do it...
How it works...
There's more...
Making bulk data changes using server-side procedures with
transactions
How to do it...
There's more...

Chapter 6: Security
Introduction
Typical user role
The PostgreSQL superuser
How to do it...
How it works...
There's more...
Other superuser-like attributes
Attributes are never inherited
See also
Revoking user access to a table
Getting ready
How to do it...
How it works...
There's more...
Database creation scripts
Default search path
Securing views
Granting user access to a table
Getting ready
How to do it...
How it works...
There's more...
Granting user access to specific columns
Getting ready
How to do it...
How it works...
There's more...
Granting user access to specific rows
Getting ready
How to do it...

172
172
173
174
175
175
175
175
177
178

179
180
181

184
185
185
186
186
186
187
187
187
187
187
187
188
189
190
190
190
191
192
192
192
193
193
193
193
194
194
195
195
196
196

[vii]

Table of Contents

How it works... 198
There's more... 198
Creating a new user 198
Getting ready 198
How to do it... 199
How it works... 199
There's more... 199
Temporarily preventing a user from connecting 200
Getting ready 200
How to do it... 200
How it works... 201
There's more... 201
Limiting the number of concurrent connections by a user 201

Forcing NOLOGIN users to disconnect 201
Removing a user without dropping their data 202
Getting ready 202
How to do it... 202
How it works... 203
Checking whether all users have a secure password 203
How to do it... 204
How it works... 204
Giving limited superuser powers to specific users 204
Getting ready 205
How to do it... 205
How it works... 207
There's more... 207
Writing a debugging_info function for developers 207
Auditing database access 208
Getting ready 208
Auditing SQL 209
Auditing table access 210
Managing the audit log 211
Auditing data changes 212
Always knowing which user is logged in 214
Getting ready 214
How to do it... 215
How it works... 216
There's more... 216
Not inheriting user attributes 216
Integrating with LDAP 216
Getting ready 217
How to do it... 217
How it works... 217
There's more... 217
Setting up the client to use LDAP 217
Replacement for the User Name Map feature 218

[viii]

Table of Contents

See also
Connecting using SSL
Getting ready
How to do it...
How it works...
There's more...
Getting the SSL key and certificate
Setting up a client to use SSL
Checking server authenticity
Using SSL certificates to authenticate
Getting ready
How to do it...
How it works...
There's more...
Avoiding duplicate SSL connection attempts
Using multiple client certificates
Using the client certificate to select the database user
See also
Mapping external usernames to database roles
Getting ready
How to do it...
How it works...
There's more...
Encrypting sensitive data
Getting ready
How to do it...
How it works...
There's more...
For really sensitive data
For really, really, really sensitive data
See also

Chapter 7: Database Administration

Writing a script that either succeeds entirely or fails entirely
How to do it...
How it works...
There's more...

Writing a psql script that exits on the first error
Getting ready
How to do it...
How it works...
There's more...

Using psql variables
Getting ready
How to do it...
How it works...

218
218
218
219
219
219
220
220
221
221
221
222
222
223
223
223
224
224
225
225
225
226
226
226
227
228
230
230
230
231
231

232
233
234
234
236
238
238
238
239
239
240
240
240
240

[ix]

Table of Contents

There's more... 241
Placing query output into psql variables 241
Getting ready 241
How to do it... 242
How it works... 242
There's more... 243
Writing a conditional psql script 243
Getting ready 243
How to do it... 243
How it works... 244
There's more... 244
Investigating a psql error 244
Getting ready 245
How to do it... 246
There's more... 246
Using pgAdmin for DBA tasks 246
Getting ready 246
How to do it... 247
How it works... 251
There's more 251
Using OmniDB for DBA tasks 251
Getting ready 252
How to do it... 252
How it works 255
There's more... 256
Performing actions on many tables 256
Getting ready 257
How to do it... 257
How it works... 259
There's more... 261
Adding/removing columns on a table 263
How to do it... 263
How it works... 264
There's more... 265
Changing the data type of a column 266
Getting ready 266
How to do it... 267
How it works... 268
There's more... 268
Changing the definition of a data type 270
Getting ready 270
How to do it... 270
How it works... 271
There's more... 273
Adding/removing schemas 273

[x]

Table of Contents

How to do it... 274
There's more... 275
Using schema-level privileges 275
Moving objects between schemas 276
How to do it... 276
How it works... 276
There's more... 277
Adding/removing tablespaces 277
Getting ready 277
How to do it... 278
How it works... 280
There's more... 280
Putting pg_wal on a separate device 281
Tablespace-level tuning 281
Moving objects between tablespaces 282
Getting ready 282
How to do it... 282
How it works... 283
There's more... 284
Accessing objects in other PostgreSQL databases 285
Getting ready 285
How to do it... 286
How it works... 291
There's more... 292
Accessing objects in other foreign databases 295
Getting ready 296
How to do it... 296
How it works... 297
There's more... 298
Updatable views 298
Getting ready 298
How to do it... 300
How it works... 304
There's more... 305
Using materialized views 306
Getting ready 307
How to do it... 307
How it works... 308
There's more... 308
Chapter 8: Monitoring and Diagnosis 310
Introduction 310
Providing PostgreSQL information to monitoring tools 312
Finding more information about generic monitoring tools 313
Real-time viewing using pgAdmin or OmniDB 314

[xil

Table of Contents

Getting ready
How to do it...
Using pgAdmin
Using OmniDB
Checking whether a user is connected
Getting ready
How to do it...
How it works...
There's more...
Checking whether a computer is connected
How to do it...
There's more...
Repeatedly executing a query in psql
How to do it...
There's more...
Checking which queries are running
Getting ready
How to do it...
How it works...
There's more...
Catching queries that only run for a few milliseconds
Watching the longest queries
Watching queries from ps
See also
Checking which queries are active or blocked
Getting ready
How to do it...
How it works...
There's more...
Knowing who is blocking a query
Getting ready
How to do it...
How it works...
Killing a specific session
How to do it...
How it works...
There's more...
Try to cancel the query first
What if the backend won't terminate?
Using statement_timeout to clean up queries that take too long to run
Killing idle in-transaction queries
Killing the backend from the command line
Detecting an in-doubt prepared transaction
How to do it...
Knowing whether anybody is using a specific table
Getting ready

314
314
314
315
316
317
317
317
317
317
318
318
318
318
319
319
319
319
320
320
320
321
321
322
322
322
322
323
323
324
324
324
325
325
325
325
326
326
326
327
327
328
328
328
329
329

[xii]

Table of Contents

How to do it...
How it works...
There's more...
The quick-and-dirty way
Collecting daily usage statistics
Knowing when a table was last used
Getting ready
How to do it...
How it works...
There's more...
Usage of disk space by temporary data
Getting ready
How to do it...
How it works...
There's more...
Finding out whether a temporary file is in use anymore
Logging temporary file usage
Understanding why queries slow down
Getting ready
How to do it...
How it works...
There's more...

Do queries return significantly more data than they did earlier?

Do queries also run slowly when they run alone?
Is the second run of the same query also slow?
Table and index bloat
See also
Investigating and reporting a bug
Getting ready
How to do it...
How it works...
Producing a daily summary of log file errors
Getting ready
How to do it...
How it works...
There's more...
Analyzing the real-time performance of your queries
Getting ready
How to do it...
How it works...
There's more...

Chapter 9: Regular Maintenance
Controlling automatic database maintenance
Getting ready
How to do it...

329
330
330
330
330
331
331
331
333
333
333
333
334
336
336
336
336
336
337
337
338
338
338
339
339
339
340
340
341
341
342
342
342
344
345
345
346
346
346
347
347

349
350
350
351

[xiii]

Table of Contents

How it works... 352
There's more... 355
See also 356
Avoiding auto-freezing and page corruptions 356
How to do it... 357
Removing issues that cause bloat 358
Getting ready 358
How to do it... 359
How it works... 359
There's more... 360
Removing old prepared transactions 360
Getting ready 360
How to do it... 361
How it works... 361
There's more... 362
Actions for heavy users of temporary tables 363
How to do it... 363
How it works... 364
Identifying and fixing bloated tables and indexes 365
Getting ready 365
How to do it... 366
How it works... 368
There's more... 370
Monitoring and tuning a vacuum 370
Getting ready 370
How to do it... 371
How it works... 371
There's more... 373
Maintaining indexes 373
Getting ready 374
How to do it... 375
How it works... 376
There's more... 376
Adding a constraint without checking existing rows 377
Getting ready 377
How to do it... 378
How it works... 379
Finding unused indexes 379
How to do it... 380
How it works... 380
Carefully removing unwanted indexes 381
Getting ready 381
How to do it... 382
How it works... 383
Planning maintenance 383

[xiv]

Table of Contents

How to do it...
How it works. ..
There's more...

Chapter 10: Performance and Concurrency
Finding slow SQL statements
Getting ready
How to do it...
How it works...
There's more...
Finding out what makes SQL slow
Getting ready
How to do it...
There's more...
Not enough CPU power or disk 1/0 capacity for the current load
Locking problems
EXPLAIN options
See also
Collect regular statistics from pg_stat* views
Getting ready
How to do it...
How it works...
There's more...
Another statistics collection package
Reducing the number of rows returned
How to do it...
There's more...
Simplifying complex SQL queries
Getting ready
How to do it...
There's more...
Using materialized views (long-living temporary tables)
Using set-returning functions for some parts of queries
Speeding up queries without rewriting them
How to do it...
Increasing work_mem
More ideas with indexes
There's more...
Time series partitioning
Using a TABLESAMPLE view
In case of many updates, set fillfactor on the table
Rewriting the schema — a more radical approach
Discovering why a query is not using an index
Getting ready
How to do it...
How it works...
There's more...

383
384
385

386
387
387
388
389
389
389
389
390
392
393
393
393
394
394
394
395
395
395
396
396
396
397
399
399
400
404
405
406
407
407
407
407
409
409
409
410
410
410
411
411
412
412

[xv]

Table of Contents

Forcing a query to use an index
Getting ready
How to do it...
There's more...
There's more
Using parallel query
How to do it...
How it works...
There's more...
Creating time series tables
How to do it...
How it works...
There's more...
Using optimistic locking
How to do it...
How it works...
There's more...
Reporting performance problems
How to do it...
There's more...

Chapter 11: Backup and Recovery

Understanding and controlling crash recovery

How to do it...
How it works...
There's more...
Planning backups
How to do it...
Hot logical backups of one database
How to do it...
How it works...
There's more...
See also
Hot logical backups of all databases
How to do it...
How it works...
See also
Backups of database object definitions
How to do it...
There's more...

Standalone hot physical database backup

Getting ready
How to do it...
How it works. ..
There's more...

412
413
413
415
415
415
416
416
418
418
418
420
420
421
421
421
422
423
423
424

425
426
427
428
429
429
430
431
432
432
434
434
435
435
435
436
436
436
437
437
438
438
441
442

[xvi]

Table of Contents

See also 443
Hot physical backup and continuous archiving 443
Getting ready 444
How to do it... 444
How it works... 446
Recovery of all databases 447
Getting ready 447
How to do it... 447
Logical — from custom dump taken with pg_dump -F ¢ 447

Logical — from the script dump created by pg_dump -F p 448

Logical — from the script dump created by pg_dumpall 448
Physical 448

How it works... 450
There's more... 451
See also 451
Recovery to a point in time 451
Getting ready 452
How to do it... 452
How it works... 452
There's more... 454
See also 454
Recovery of a dropped/damaged table 455
How to do it... 455
Logical — from custom dump taken with pg_dump -F ¢ 455

Logical — from the script dump 457
Physical 457

How it works... 458
See also 458
Recovery of a dropped/damaged database 458
How to do it... 459
Logical — from the custom dump -F ¢ 459

Logical — from the script dump created by pg_dump 459

Logical — from the script dump created by pg_dumpall 459
Physical 460
Improving performance of backup/recovery 460
Getting ready 460
How to do it... 461
How it works... 462
There's more... 463
See also 463
Incremental/differential backup and restore 463
How to do it... 464
How it works... 464
There's more... 465
Hot physical backups with Barman 466
Getting ready 467

[xvii]

Table of Contents

How to do it...
How it works...
There's more...
Recovery with Barman
Getting ready
How to do it...
How it works...
There's more...
Validating backups
Getting ready
How to do it...
How it works...
There's more...

Chapter 12: Replication and Upgrades
Replication concepts
Topics
Basic concepts
History and scope
Practical aspects
Data loss
Single-master replication
Multinode architectures
Clustered or massively parallel databases
Multimaster replication
Scalability tools
Other approaches to replication
Replication best practices
Getting ready
How to do it...
There's more...
Setting up file-based replication — deprecated
Getting ready
How to do it...
How it works...
There's more...
See also
Setting up streaming replication
Getting ready
How to do it...
How it works...
There's more...
Setting up streaming replication security
Getting ready
How to do it...

468
472
473
475
476
477
478
479
481
481
482
483
483

485
486
487
487
488
489
490
491
491
492
492
493
494
494
494
494
496
496
497
497
498
500
500
500
501
501
504
505
506
507
507

[xviii]

Table of Contents

How it works... 508
There's more... 508
Hot standby and read scalability 509
Getting ready 509
How to do it... 510
How it works... 513
Managing streaming replication 513
Getting ready 514
How to do it... 514
There's more... 515
See also 516
Using repmgr 516
Getting ready 517
How to do it... 517
How it works... 519
There's more... 519
Using replication slots 519
Getting ready 520
How to do it... 520
There's more... 521
See also 521
Monitoring replication 522
Getting ready 522
How to do it... 523
There's more... 525
Performance and synchronous replication 526
Getting ready 526
How to do it... 527
How it works... 529
There's more... 529
Delaying, pausing, and synchronizing replication 530
Getting ready 530
How to do it... 530
There's more... 531
See also 532
Logical replication 532
Getting ready 534
How to do it... 536
How it works... 537
There's more... 538
See also 538
Bidirectional replication 539
Getting ready 540
How to do it... 541
How it works... 541

[xix]

Table of Contents

There's more... 542
Archiving transaction log data 542
Getting ready 543

How to do it... 543
There's more... 544

See also 544
Upgrading minor releases 545
Getting ready 545

How to do it... 545

How it works... 546
There's more... 546
Major upgrades in-place 547
Getting ready 547

How to do it... 547

How it works... 548

Major upgrades online 549
How to do it... 549

How it works... 550

Other Books You May Enjoy 551
Index 554

[xx]

Preface

PostgreSQL is an advanced SQL database server; it is available on a wide range of
platforms and is fast becoming one of the world's most popular server databases with an
enviable reputation for performance, stability, and an enormous range of advanced
features. PostgreSQL is one of the oldest open source projects; it is completely free to use
and was developed by a diverse worldwide community. Most of all, it just works!

One of the clearest benefits of PostgreSQL is that it is open source, meaning that you have a
permissive license to install, use, and distribute PostgreSQL without paying anyone any
fees or royalties. Additionally, PostgreSQL is well known as a database that stays up for
long periods, and requires little or no maintenance. Overall, PostgreSQL provides a very
low total cost of ownership.

PostgreSQL 11 Administration Cookbook offers the information you need to manage your live
production databases on PostgreSQL. The book contains direct insights into PostgreSQL
replication and recovery features from the main author and the 2ndQuadrant team. This
hands-on guide will assist developers who are working on live databases, and who are
supporting web or enterprise software applications using Java, Python, Ruby, and .NET
from any development framework. It's easy to manage your database when you've got
PostgreSQL 11 Administration Cookbook at hand.

This practical guide gives you quick answers to common questions and problems, and
builds on the author's experience as a trainer, user, and core developer of the PostgreSQL
database server.

Each technical aspect is broken down into short recipes that demonstrate solutions with
working code, and then explain how and why that works. The book is intended to be a
desk reference for both new users and technical experts.

The book covers all the latest features available in PostgreSQL 11. Soon you will be running
a smooth database with ease!

Preface

Who this book is for

This book is for system administrators, database administrators, architects, developers, and
anyone with an interest in planning or running a live production database. This book is
most suited to those who have some technical experience.

What this book covers

Chapter 1, First Steps, introduces you PostgreSQL 11; it explains how to download and
install PostgreSQL 11, connect to a PostgreSQL server, enable server access to the network
or remote users, use graphical administration tools, use PSQL query and scripting tools,
change your password securely, avoid hardcoding your password, use a connection service
file, and troubleshoot a failed connection.

Chapter 2, Exploring the Database, demonstrates how to identify the version of the database
server you are using, as well as the server uptime. It helps you locate the database server
files, the database server message log, and the database's system identifier. It explains how
to list a database on the database server, and it contains recipes that let you know the
number of tables in your database, how much disk space is used by the database and tables,
what the the biggest tables are, how many rows a table has, how to estimate rows in a table,
and how to understand object dependencies.

Chapter 3, Configuration, explains topics such as Reading the Fine Manual (RTFM), how
to plan a new database, how to change the parameters in your programs, the current
configuration settings, the parameters that are at non-default settings, how to update the
parameter file, how to set parameters for particular groups of users, the basic server
configuration checklist, how to add an external module into the PostgreSQL server, and
how to run the server in power-saving mode.

Chapter 4, Server Control, provides information about starting the database server
manually, stopping the server quickly and safely, stopping the server in an emergency,
reloading the server configuration files, restarting the server quickly, preventing new
connections, restricting users to just one session each, and pushing users off the system. It
contains recipes that help you choose a design for multi-tenancy, as well as recipes that
explain how to use multiple schemas, give users their own private database, run multiple
database servers on one system, and set up a connection pool.

[2]

Preface

Chapter 5, Tables and Data, guides you through the process of choosing good names for
database objects. Additionally, it explains how to handle objects with quoted names,
enforce the same name, maintain the same definition for columns, identify and remove
duplicate rows, prevent duplicate rows, find a unique key for a set of data, generate test
data, randomly sample data, load data from a spreadsheet, and load data from flat files.

Chapter 6, Security, provides recipes on revoking user access to a table, granting user
access to a table, creating a new user, temporarily preventing a user from connecting,
removing a user without dropping their data, checking whether all users have a secure
password, giving limited superuser powers to specific users, auditing DDL changes,
auditing data changes, integrating with LDAP, connecting using SSL, and encrypting
sensitive data.

Chapter 7, Database Administration, provides recipes on useful topics such as writing a
script where all either succeed or fail, writing a PSQL script that exits on the first error,
performing actions on many tables, adding and removing columns in tables, changing the
data type of a column, adding and removing schemas, moving objects between schemas,
adding and removing tablespaces, moving objects between tablespaces, accessing objects in
other PostgreSQL databases, and enabling views to be updated.

Chapter 8, Monitoring and Diagnosis, provides recipes that answer questions such as
whether the user is connected, what they are running, whether they are active or blocked,
who they are being blocked by, whether anybody is using a specific table, when the table it
was last used, how much disk space is being used by temporary data, and why your
queries could be slowing down. It also demonstrates how to investigate and report a bug,
produce a daily summary report of log file errors, kill a specific session, and resolve an in-
doubt prepared transaction.

Chapter 9, Regular Maintenance, provides useful recipes on how to control automatic
database maintenance, avoid auto-freezing and page corruptions, avoid transaction
wraparound, remove old prepared transactions, offer solutions for heavy users of
temporary tables, identify and fix bloated tables and indexes, maintain indexes, find
unused indexes, carefully remove unwanted indexes, and plan maintenance.

Chapter 10, Performance and Concurrency, covers topics such as how to find slow SQL
statements, collect regular statistics from pg_stat * views, discover what makes SQL slow,
reduce the number of rows returned, simplify complex SQL, speed up queries without
rewriting them, understand why some queries are not using an index, force a query to use
an index, use optimistic locking, and report performance problems. And, of course, you'll
learn about the new parallel query features.

[3]

Preface

Chapter 11, Backup and Recovery, explains that backups are essential, although this topic is
only covered very briefly. So, this chapter provides useful information about the backup
and recovery of your PostgreSQL database through recipes on how to understand and
control crash recovery and how to plan backups. Additionally, you will learn about the hot
logical backup of one database, the hot logical backup of all databases, the hot logical
backup of all tables in a tablespace, the backup of database object definitions, the
standalone hot physical database backup, the hot physical backup, and continuous
archiving. It also includes topics such as the recovery of all databases, recovery to a point in
time, the recovery of a dropped or damaged table, the recovery of a dropped or damaged
database, the recovery of a dropped or damaged tablespace, how to improve the
performance of backup/recovery, and incremental/differential backup and restore.

Chapter 12, Replication and Upgrades, explains that replication isn't magic, although it can
be pretty cool. It's even cooler when it works, and that's what this chapter is all about. This
chapter covers replication concepts, replication best practices, how to set up file-based log
shipping replication, how to set up streaming log replication, how to manage log shipping
replication, how to manage hot standby, synchronous replication, how to upgrade to a new
minor release, in-place major upgrades, major upgrades online, and logical replication and
Postgres-BDR.

To get the most out of this book

In order for this book to be useful, you need access to a PostgreSQL client that is allowed to
execute queries on a server. Ideally, you'll also be the server administrator. Full client and
server packages for PostgreSQL are available for most popular operating systems at http:/
/www.postgresql.org/download/. All the examples here are executed at the Command
Prompt, usually running the PSQL program. This makes them applicable to most
platforms. It's straightforward to do most of these operations by using a GUI tool for
PostgreSQL, such as pgAdmin or OmniDB:

e pgAdmin: https://www.pgadmin.org/download/
e OmniDB: https://omnidb.org/en/downloads-en

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http: //www.packtpub.com/sites/default/files/
downloads/9781789537581_ColorImages.pdf.

[4]

http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Copy the data files (excluding the pg_wal directory)."

A block of code is set as follows:

CREATE USER repuser
SUPERUSER
LOGIN
CONNECTION LIMIT 1
ENCRYPTED PASSWORD 'changeme';

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

SELECT *FROM mytable

WHERE (coll, col2, ... ,colN) IN
(SELECT coll, col2, ... ,colN
FROM mytable
GROUP BY coll, col2, ... ,colN

HAVING count (*) > 1);

Any command-line input or output is written as follows:

$ postgres --single -D /full/path/to/datadir postgres

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[5]

Preface

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

[6]

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[7]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

First Steps

PostgreSQL is a feature-rich, general-purpose, database-management system. It's a complex
piece of software, but every journey begins with the first step.

We'll start with your first connection. Many people fall at the first hurdle, so we'll try not to
skip that too swiftly. We'll quickly move on to enabling remote users, and from there we
will move on to getting access through GUI administration tools.

We will also introduce the psql query tool, which is the tool used to load our sample
database, as well as many other examples in the book.

For additional help, we've included a few useful recipes that you may need for reference.
In this chapter, we will cover the following recipes:

¢ Getting PostgreSQL

e Connecting to the PostgreSQL server

¢ Enabling access for network/remote users
¢ Using graphical administration tools

¢ Using the psql query and scripting tool

¢ Changing your password securely

¢ Avoiding hardcoding your password

¢ Using a connection service file

¢ Troubleshooting a failed connection

First Steps Chapter 1

Introducing PostgreSQL 11

PostgreSQL is an advanced SQL database server, available on a wide range of platforms.
One of the clearest benefits of PostgreSQL is that it is open source, meaning that you have a
very permissive license to install, use, and distribute PostgreSQL, without paying anyone
any fees or royalties. On top of that, PostgreSQL is known as a database that stays up for
long periods and requires little or no maintenance, in most cases. Overall, PostgreSQL
provides a very low total cost of ownership.

PostgreSQL is also known for its huge range of advanced features, developed over the
course of more than 30 years of continuous development and enhancement. Originally
developed by the Database Research Group at the University of California, Berkeley,
PostgreSQL is now developed and maintained by a huge army of developers and
contributors. Many of these contributors have full-time jobs related to PostgreSQL, working
as designers, developers, database administrators, and trainers. Some, but not many, of
these contributors work for companies that specialize in support for PostgreSQL. No single
company owns PostgreSQL, nor are you required (or even encouraged) to register your
usage.

PostgreSQL has the following main features:

e Excellent SQL standards compliance, up to SQL: 2016
e Client-server architecture

e It has a highly concurrent design, where readers and writers don't block each
other

e It is highly configurable and extensible for many types of applications
e It has excellent scalability and performance, with extensive tuning features

e It offers support for many kinds of data models, such as relational, post-
relational (arrays, nested relations via record types), document (JSON and XML),
and key/value

What makes PostgreSQL different?

The PostgreSQL project focuses on the following objectives:

¢ Robust, high-quality software with maintainable, well-commented code
¢ Low-maintenance administration for both embedded and enterprise use
e Standards-compliant SQL, interoperability, and compatibility

e Performance, security, and high availability

[9]

First Steps Chapter 1

What surprises many people is that PostgreSQL's feature set is more similar to Oracle or
SQL Server than it is to MySQL. The only connection between MySQL and PostgreSQL is
that these two projects are open source; apart from that, the features and philosophies are
almost totally different.

One of the key features of Oracle, since Oracle 7, has been snapshot isolation, where readers
don't block writers and writers don't block readers. You may be surprised to learn that
PostgreSQL was the first database to be designed with this feature, and it offers a complete
implementation. In PostgreSQL, this feature is called Multiversion Concurrency Control
(MVCCQ), and we will discuss this in more detail later in the book.

PostgreSQL is a general-purpose database management system. You define the database
that you would like to manage with it. PostgreSQL offers you many ways in which to work.
You can either use a normalized database model, augmented with features such as arrays
and record subtypes, or use a fully dynamic schema with the help of JSONB and an
extension named hstore. PostgreSQL also allows you to create your own server-side
functions in any of a dozen different languages.

PostgreSQL is highly extensible, so you can add your own data types, operators, index
types, and functional languages. You can even override different parts of the system, using
plugins to alter the execution of commands, or add a new query optimizer.

All of these features offer a huge range of implementation options to software architects.
There are many ways out of trouble when building applications and maintaining them over
long periods of time. Regrettably, we simply don't have space in this book for all the cool
features for developers; this book is about administration, maintenance, and backup.

In the early days, when PostgreSQL was still a research database, the focus was solely on
the cool new features. Over the last 20 years, enormous amounts of code have been
rewritten and improved, giving us one of the largest and most stable software servers
available for operational use.

Who is using PostgreSQL? Prominent users include Apple, BASF, Genentech, Heroku,
IMDB, Skype, McAfee, NTT, the UK Met Office, and the US National Weather Service.
Early in 2010, PostgreSQL received well in excess of 1,000,000 downloads per year,
according to data submitted to the European Commission, which concluded

that PostgreSQL is considered by many database users to be a credible alternative.

We need to mention one last thing: when PostgreSQL was first developed, it was named
Postgres, and therefore, many aspects of the project still refer to the word Postgres; for
example, the default database is named postgres, and the software is frequently installed
using the Postgres user ID. As a result, people shorten the name PostgreSQL to simply
Postgres, and, in many cases, use the two names interchangeably.

[10]

First Steps Chapter 1

PostgreSQL is pronounced as post-grez-g-1. Postgres is pronounced as post-grez.

Some people get confused and refer to it as Postgre, which is hard to say and likely to
confuse people. Two names are enough, so don't use a third name!

The following sections explain the key areas in more detail.

Robustness

PostgreSQL is robust, high-quality software, supported by testing for both features and
concurrency. By default, the database provides strong disk-write guarantees, and
developers take the risk of data loss very seriously in everything they do. Options to trade
robustness for performance exist, though they are not enabled by default.

All actions on the database are performed within transactions, protected by a transaction
log that will perform automatic crash recovery in case of software failure.

Databases may optionally be created with data block checksums to help diagnose hardware
faults. Multiple backup mechanisms exist, with full and detailed Point-in-time recovery
(PITR), in case you need a detailed recovery. A variety of diagnostic tools are available as
well.

Database replication is supported natively. Synchronous replication can provide greater
than 5 nines (99.999%) availability and data protection, if properly configured and
managed, or even higher with appropriate redundancy.

Security

Access to PostgreSQL is controllable via host-based access rules. Authentication is flexible
and pluggable, allowing for easy integration with any external security architecture. The
latest Salted Challenge Response Authentication Mechanism (SCRAM) provides full 256-
bit protection.

Full SSL-encrypted access is supported natively for both user access and replication. A full-
featured cryptographic function library is available for database users.

PostgreSQL provides role-based access privileges to access data, by command type.
PostgreSQL also provides Row-Level Security for privacy, medical, and military-grade
security.

[11]

First Steps Chapter 1

Functions may execute with the permissions of the definer, while views may be defined
with security barriers to ensure that security is enforced ahead of other processing.

All aspects of PostgreSQL are assessed by an active security team, while known exploits are
Categorized and reported at http://www.postgresql.org/support/security/.

Ease of use

Clear, full, and accurate documentation exists as a result of a development process where
documentation changes are required. Hundreds of small changes occur with each release,
which smooth off any rough edges of usage, supplied directly by knowledgeable users.

PostgreSQL works on small and large systems in the same way, and across operating
systems.

Client access and drivers exist for every language and environment, so there is no
restriction on what type of development environment is chosen now, or in the future.

The SQL standard is followed very closely; there is no weird behavior, such as silent
truncation of data.

Text data is supported via a single data type that allows the storage of anything from 1 byte
to 1 gigabyte. This storage is optimized in multiple ways, so 1 byte is stored efficiently, and
much larger values are automatically managed and compressed.

PostgreSQL has the clear policy of minimizing the number of configuration parameters,
and with each release, we work out ways to auto-tune the settings.

Extensibility

PostgreSQL is designed to be highly extensible. Database extensions can be easily loaded
by using CREATE EXTENSION, which automates version checks, dependencies, and other
aspects of configuration.

PostgreSQL supports user-defined data types, operators, indexes, functions, and languages.

Many extensions are available for PostgreSQL, including the PostGIS extension, which
provides world-class Geographical Information System (GIS) features.

[12]

http://www.postgresql.org/support/security/

First Steps Chapter 1

Performance and concurrency

PostgreSQL 11 can achieve significantly more than 1,000,000 reads per second on a 4-socket
server, and it benchmarks at more than 30,000 write transactions per second with full
durability, depending upon your hardware. With advanced hardware, even higher levels of
performance are possible.

PostgreSQL has an advanced optimizer that considers a variety of join types, utilizing user
data statistics to guide its choices. PostgreSQL provides the widest range of index types of
any commonly available database server, fully supporting all data types.

PostgreSQL provides MVCC, which enables readers and writers to avoid blocking each
other.

Taken together, the performance features of PostgreSQL allow a mixed workload of
transactional systems and complex search and analytical tasks. This is important because it
means we don't always need to unload our data from production systems and reload it into
analytical data stores just to execute a few ad hoc queries. PostgreSQL's capabilities make it
the database of choice for new systems, as well as the correct long-term choice in almost
every case.

Scalability

PostgreSQL 11 scales well on a single node up to four CPU sockets. PostgreSQL
efficiently runs up to hundreds of active sessions, and up to thousands of connected
sessions when using a session pool. Further scalability is achieved in each annual release.

PostgreSQL provides multi-node read scalability using the Hot Standby feature. Multi-
node write scalability is under active development. The starting point for this is Bi-
Directional Replication (discussed in chapter 12, Replication and Upgrades).

SQL and NoSQL data models

PostgreSQL follows the SQL standard very closely. SQL itself does not force any particular
type of model to be used, so PostgreSQL can easily be used for many types of models at the
same time, in the same database.

With PostgreSQL acting as a relational database, we can utilize any level of
denormalization, from the full third normal form (3NF), to the more normalized star
schema models. PostgreSQL extends the relational model to provide arrays, row types, and
range types.

[13]

First Steps Chapter 1

A document-centric database is also possible using PostgreSQL's text, XML, and binary
JSON (JSONB) data types, supported by indexes optimized for documents and by full text
search capabilities.

Key/value stores are supported using the hstore extension.

Popularity

When MySQL was taken over by a commercial database vendor some years back, it was
agreed in the EU monopoly investigation that followed that PostgreSQL was a viable
competitor. That's certainly been true, with the PostgreSQL user base expanding
consistently for more than a decade.

Various polls have indicated that PostgreSQL is the favorite database for building new,
enterprise-class applications. The PostgreSQL feature set attracts serious users who have
serious applications. Financial services companies may be PostgreSQL's largest user group,
though governments, telecommunication companies, and many other segments are strong
users as well. This popularity extends across the world; Japan, Ecuador, Argentina, and
Russia have very large user groups, as do the US, Europe, and Australasia.

Amazon Web Services' chief technology officer, Dr. Werner Vogels, described PostgreSQL
as An amazing database, going on to say that PostgreSQL has become the preferred open source
relational database for many enterprise developers and start-ups, powering leading geospatial and
mobile applications. AWS have more recently revealed that PostgreSQL is their

fastest growing service.

Commercial support

Many people have commented that strong commercial support is what enterprises need
before they can invest in open source technology. Strong support is available worldwide
from a number of companies.

The authors (Gianni and Simon) work for 2nd quadrant, which provides commercial
support for open source PostgreSQL, offering 24/7 support in English and Spanish with
bug-fix resolution times.

Many other companies provide strong and knowledgeable support to specific geographic
regions, vertical markets, and specialized technology stacks.

PostgreSQL is also available as a hosted or cloud solution from a variety of companies,
since it runs very well in cloud environments.

[14]

First Steps Chapter 1

A full list of companies is kept up to date at
http://www.postgresqgl.org/support/professional_support/.

Research and development funding

PostgreSQL was originally developed as a research project at the University of California,
Berkeley, in the late 1980s and early 1990s. Further work was carried out by volunteers until
the late 1990s. Then, the first professional developer became involved. Over time, more and
more companies and research groups became involved, supporting many professional
contributors. Further funding for research and development was provided by the NSF. The
project also received funding from the EU FP7 Programme, in the form of the 4CaaST
project for cloud computing, and the AXLE project for scalable data analytics. AXLE
deserves a special mention because it was a three-year project aimed at enhancing
PostgreSQL's business-intelligence capabilities, specifically for very large databases. The
project covered security, privacy, integration with data mining, and visualization tools and
interfaces for new hardware.

Further details about the AXLE project are available at http://www.axleproject.eu. Other
funding for PostgreSQL development comes from users who directly sponsor features and
companies that sell products and services based around PostgreSQL.

Getting PostgreSQL

PostgreSQL is 100% open source software and is freely available to use, alter, or
redistribute in any way you choose. Its license is an approved open source license, very
similar to the Berkeley Software Distribution (BSD) license, though only just different
enough that it is now known as The PostgreSQL License (TPL).

How to do it...

PostgreSQL is already being used by many different application packages, so you may find
it already installed on your servers. Many Linux distributions include PostgreSQL as part
of the basic installation, or include it with the installation disk.

One thing to be wary of is that the included version of PostgreSQL may not be the latest
release. It would typically be the latest major release that was available when that operating
system release was published. There is usually no good reason to stick to that level — there
is no increased stability implied there—and later production versions are just as well
supported by the various Linux distributions as the earlier versions.

[15]

http://www.postgresql.org/support/professional_support/
http://www.axleproject.eu/

First Steps Chapter 1

If you don't have a copy yet, or you don't have the latest version, you can download the
source code or binary packages for a wide variety of operating systems from
http://www.postgresql.org/download/.

Installation details vary significantly from platform to platform, and there aren't any special
tricks or recipes to mention. Just follow the installation guide, and away you go! We've
consciously avoided describing the installation processes here to make sure we don't garble
or override the information published to assist you.

If you would like to receive email updates of the latest news, you can subscribe to the
PostgreSQL announce mailing list, which contains updates from all the vendors that
support PostgreSQL. You'll get a few emails each month about new releases of core
PostgreSQL, related software, conferences, and user group information. It's worth keeping
in touch with these developments.

For more information about the PostgreSQL announcement mailing list,
Visit http://archives.postgresql.org/pgsql-announce/.

How it works...

Many people ask questions such as, How can this be free?, Are you sure I don’t have to pay
someone? or, Who gives this stuff away for nothing?

Open source applications such as PostgreSQL work on a community basis, where many
contributors perform tasks that make the whole process work. For many of these people,
their involvement is professional, rather a hobby, and they can do this because there is
generally great value for both the contributors and their employers alike.

You might not believe it. You don't have to, because it just works!

There's more...

Remember that PostgreSQL is more than just the core software. There is a huge range of
websites that offer add-ons, extensions, and tools for PostgreSQL. You'll also find an army
of bloggers who describe useful tricks and discoveries that will help you in your work.

Besides these, a range of professional companies can offer you help when you need it.

[16]

http://www.postgresql.org/download/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/

First Steps Chapter 1

Connecting to the PostgreSQL server

How do we access PostgreSQL?

Connecting to the database is the first experience of PostgreSQL for most people, so we
want to make it a good one. Let's do it now, and fix any problems we have along the way.
Remember that a connection needs to be made secure, so there may be some hoops for us to
jump through to ensure that the data we wish to access is secure.

Before we can execute commands against the database, we need to connect to the database
server, to give us a session.

Sessions are designed to be long-lived, so you connect once, perform many requests, and
eventually disconnect. There is a small overhead during connection. It may become
noticeable if you connect and disconnect repeatedly, so you may wish to investigate the use
of connection pools. Connection pools allow pre-connected sessions to be quickly served to
you when you wish to reconnect.

Getting ready

First, cache your database. If you don't know where it is, you'll probably have difficulty
accessing it. There may be more than one database, and you'll need to know the right one to
access, and also have the authority to connect to it.

How to do it...

You need to specify the following parameters to connect to PostgreSQL.:

Host or host address
Port
Database name

e User
Password (or other means of authentication, if any)

[17]

First Steps Chapter 1

To connect, there must be a PostgreSQL server running on host, listening to port number
port. On that server, a database named dbname and a user named user must also exist.
The host must explicitly allow connections from your client (explained in the Enabling access
for network/remote users recipe), and you must also pass authentication using the method the
server specifies; for example, specifying a password won't work if the server has requested
a different form of authentication.

Almost all PostgreSQL interfaces use the 1ibpg interface library. When using 1ibpg, most
of the connection parameter handling is identical, so we can discuss that just once.

If you don't specify the preceding parameters, PostgreSQL looks for values set through
environment variables, which are as follows:

® PGHOST or PGHOSTADDR

e PGPORT (set this to 5432 if it is not set already)

e PGDATABASE

e PGUSER

e PGPASSWORD (this is definitely not recommended)

If you somehow specify the first four parameters, but not the password, PostgreSQL looks
for a password file, discussed in the Avoiding hardcoding your password recipe.

Some PostgreSQL interfaces use the client-server protocol directly, so the ways in which the
defaults are handled may differ. The information we need to supply won't vary
significantly, so check the exact syntax for that interface.

Connection details can also be specified using a Uniform Resource Identifier (URI) format,
as follows:

psql postgresql://myuser:mypasswd@myhost:5432/mydb

This specifies that we will connect the psql client application to the PostgreSQL server at
the myhost host, on the 5432 port, with the mydb database name, myuser user, and
mypasswd password.

If you do not set mypasswd in the preceding URI, you will be prompted to
enter the password.

[18]

First Steps Chapter 1

How it works...

PostgreSQL is a client-server database. The system it runs on is known as the host. We can
access the PostgreSQL server remotely, through the network. However, we must

specify host, which is a hostname, or hostaddr, which is an IP address. We can specify a
host as 1ocalhost if we wish to make a TCP/IP connection to the same system. It is often
better to use a Unix socket connection, which is attempted if the host begins with a slash (/)
and the name is presumed to be a directory name (the default is /tmp).

On any system, there can be more than one database server. Each database server listens to
exactly one well-known network port, which cannot be shared between servers on the same
system. The default port number for PostgreSQL is 5432, which has been registered with
the Internet Assigned Numbers Authority (IANA) and is uniquely assigned to
PostgreSQL (you can see it used in the /etc/services file on most *nix servers). The
port number can be used to uniquely identify a specific database server, if many exist.
IANA (http://www.iana.org) is the organization that coordinates the allocation of
available numbers for various internet protocols.

A database server is also sometimes known as a database cluster, because the PostgreSQL
server allows you to define one or more databases on each server. Each connection request
must identify exactly one database, identified by its dbname. When you connect, you will
only be able to see only the database objects created within that database.

A database user is used to identify the connection. By default, there is no limit on the
number of connections for a particular user. In the Enabling access for network/remote users
recipe, we will cover how to restrict that. In the more recent versions of PostgreSQL, users
are referred to as login roles, though many clues remind us of the earlier nomenclature, and
that still makes sense in many ways. A login role is a role that has been assigned the
CONNECT privilege.

Each connection will typically be authenticated in some way. This is defined at the server
level: client authentication will not be optional at connection time if the administrator has
configured the server to require it.

Once you've connected, each connection can have one active transaction at a time and one
fully active statement at any time.

The server will have a defined limit on the number of connections it can serve, so a
connection request can be refused if the server is oversubscribed.

[19]

http://www.iana.org/

First Steps Chapter 1

There's more...

If you are already connected to a database server with psql and you want to confirm that
you've connected to the right place and in the right way, you can execute some, or all, of the
following commands. Here is the command that shows the current_database:

SELECT current_database();
The following command shows the current_user ID:
SELECT current_user;

The next command shows the IP address and port of the current connection, unless you are
using Unix sockets, in which case both values are NULL:

SELECT inet_server_addr (), inet_server_port();
A user's password is not accessible using general SQL, for obvious reasons.

You may also need the following:

SELECT version();

From PostgreSQL version 9. 1 onward, you can also use the new psql meta-command,
\conninfo. This displays most of the preceding information in a single line:

postgres=# \conninfo
You are connected to database postgres, as user postgres, via socket in
/var/run/postgresql, at port 5432.

See also

There are many other snippets of information required to understand connections. Some of
them are mentioned in this chapter, and others are discussed in chapter ¢, Security. For
further details, refer to the PostgreSQL server documentation.

Enabling access for network/remote users

PostgreSQL comes in a variety of distributions. In many of these, you will note that remote
access is initially disabled as a security measure.

[20]

First Steps Chapter 1

How to do it...

By default, PostgreSQL gives access to clients who connect using Unix sockets, provided
that the database user is the same as the system's username. Here, we'll show you how to
enable other connections.

In this recipe, we mention configuration files, which can be located as
shown in the Finding the current configuration settings recipe in Chapter 3,
Configuration.

The steps are as follows:
1. Add or edit this line in your postgresqgl. conf file:
listen_addresses = '*'

2. Add the following line as the first line of pg_hba. conf to allow access to all
databases for all users with an encrypted password:

TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 0.0.0.0/0 md5

3. After changing 1isten_addresses, we restart the PostgreSQL server, as
explained in the Updating the parameter file recipe in Chapter 3, Configuration

This recipe assumes that postgresqgl.conf does not include any other
configuration files, which is the case in a default installation. If changing
listen_addresses in postgresqgl.conf does not seem to work,
perhaps that setting is overridden by another configuration file. Check out
the Updating the parameter file recipe in Chapter 3, Configuration, for more
details.

How it works...

The listen_addresses parameter specifies which IP addresses to listen to. This allows
you to flexibly enable and disable listening on interfaces of multiple network cards (NICs)
or virtual networks on the same system. In most cases, we want to accept connections on all
NICs, so we use *, meaning all IP addresses.

[21]

First Steps Chapter 1

The pg_hba. conf file contains a set of host-based authentication rules. Each rule is
considered in sequence, until one rule fires or the attempt is specifically rejected with a
reject method.

The preceding rule means that a remote connection that specifies any user or database on
any IP address will be asked to authenticate using an MD5-encrypted password. The
following are the parameters required for MD5-encrypted passwords:

e Type: For this, host means a remote connection.

¢ Database: For this, al11 means for all databases. Other names match exactly,
except when prefixed with a plus (+) symbol, in which case we mean a group
role rather than a single user. You can also specify a comma-separated list of
users, or use the @ symbol to include a file with a list of users. You can even
specify sameuser, so that the rule matches when you specify the same name for
the user and database.

e User: For this, al1 means for all users. Other names match exactly, except when
prefixed with a plus (+) symbol, in which case we mean a group role rather than
a single user. You can also specify a comma-separated list of users, or use the @
symbol to include a file with a list of users.

e CIDR-ADDRESS: This consists of two parts: an IP address and a subnet mask.
The subnet mask is specified as the number of leading bits of the IP address that
make up the mask. Thus, /0 means 0 bits of the IP address, so that all IP
addresses will be matched. For example, 192.168.0.0/24 would mean
matching of the first 24 bits, so any IP address of the form 192.168.0.x would
match. You can also use samenet or samehost.

e Method: For this, md5 means that PostgreSQL will ask the client to provide a
password encrypted with MD5. Another common setting is t rust, which
effectively means no authentication. Other authentication methods include
GSSAPI, SSPI, LDAP, RADIUS, and PAM. PostgreSQL connections can also be
made using SSL, in which case client SSL certificates provide authentication. See
the Using SSL certificates to authenticate the client recipe in Chapter 6, Security, for
more details.

Don't use the password setting, as this sends the password in plain text. This is not a real
security issue if your connection is encrypted with SSL, and there are normally no
downsides with MD5 anyway, and you have extra security for non-SSL connections.

[22]

First Steps Chapter 1

There's more...

In earlier versions of PostgreSQL, access through the network was enabled by adding the -
i command-line switch when you started the server. This is still a valid option, but now it
means the following;:

listen_addresses = '*'

So, if you're reading some notes about how to set things up and this is mentioned, be
warned that those notes are probably long out of date. They are not necessarily wrong, but
it's worth looking further to see whether anything else has changed.

See also

Look at installer and/or operating system-specific documentation to find the standard
location of the files.

Using graphical administration tools

Graphical administration tools are often requested by system administrators. PostgreSQL
has a range of tool options. In this book, we'll cover pgAdmin4 and OmniDB, which offers
access to PostgreSQL and other databases.

Both of these tools are client applications that send and receive SQL to PostgreSQL,
displaying the results for you. The admin client can access many databases servers,
allowing you to manage a fleet of servers. Both tools work in standalone app mode and
within web browsers.

How to do it...

pgAdmin 4 is usually named just pgAdmin. The 4 at the end has a long history, but isn't
that important. It is not the release level; pgAdmin 4 replaces the earlier pgAdmin 3.

[23]

First Steps Chapter 1

When you start pgAdmin, you will be prompted to register a new server.

Give your server a name on the General tab, and then click Connection and fill in the five
basic connection parameters, as well as the other information. You should uncheck the Save
password? box:

General Connection

Host

name/address

Port 5432
Maintenance postgres
database

User name postgres
Password

Save password?

Role

SSL mode Prefer

If you have many database servers, you can group them together. I suggest keeping any
replicated servers together in the same server group. Give each server a sensible name.

Once you've added a server, you can connect to it and display information about it.

The default screen is the Dashboard, which presents a few interesting graphs based on the
data it polls from the server. That's not very useful, so click on the Statistics tab.

[24]

First Steps

Chapter 1

You will then get access to the main browser screen, with the object tree view on the left

and statistics on the right, as shown in the following screenshot:

i) Browser

File ~ Object ~

= I} Servers (5)
- W articmonkeys
- : Databases (1)

_| postgres
+ 2 casts
+ &Catalogs
+ % Event Triggers
+ “% Extensions
+ F’& Foreign Data Wrappers
+ Languages
= @ Schemas (2)
+ @example
= <‘> public
+ %2 Collations
+ IIF-{‘ Foreign Tables
+ © Functions
+ # Materialized Views
+ w Sequences
=) Tables (4)
+ D customer
+ D foo
+ D foo2

Tools ~

@ Dashboard #§ Properties

Backends

Xact committed
Xact rolled back
Blocks read

Blocks hit

Tuples returned
Tuples fetched
Tuples inserted
Tuples updated
Tuples deleted
Last statistics reset
Tablespace conflicts
Lock conflicts
Snapshot conflicts
Bufferpin conflicts
Deadlock conflicts

Temporary files

Help ~

A SAL | Statistics

5
10382
18

452
46632
246096
24778
310

6

172
2017-01-17 12:35:41.5

o © O ©o o o©

pgAdmin easily displays much of the data that is available from PostgreSQL. The

information is context-sensitive, allowing you to navigate and see everything quickly and
easily. The information is not dynamically updated; this will occur only when you click to
refresh, so bear this in mind when using the application.

[25]

First Steps Chapter 1

pgAdmin also provides Grant Wizard. This is useful for DBAs for review and immediate
maintenance:

pgAdmin 4 Filev Objectv Toolsv Helpwv
Grant Wizard - Object Selection (step 1 of 3)
Please select the objects to grant privileges to from the list Q Search
below.
[Object Type Schema Name
[[FJTable public classoutput
¥/ [Table public orderlines
¥ FJTable public orders
? % Cancel 4« Back Next p»

The pgAdmin query tool allows you to have multiple active sessions. The query tool has a
good-looking visual Explain feature, which displays the EXPLAIN plan for your query:

1 SELECT count(*)
2 FROM demo d1 JOIN demo d2 ON dl.coll = d2.coll
3 WHERE dl.coll = 'DEMO';

Data Output Explain Messages History

e ea] =
| 2
demo Nested Loop Inner Aggregate
Join
!
demo Materialize

[26]

First Steps Chapter 1

How it works...

pgAdmin provides a wide range of features, many of which are provided by other tools as
well. This gives us the opportunity to choose which of those tools we want. For many
reasons, it is best to use the right tool for the right job, and that is always a matter of
expertise, experience, and personal taste.

pgAdmin submits SQL to the PostgreSQL server, and displays the results quickly and
easily. As a browser, it is fantastic. For performing small DBA tasks, it is ideal. As you
might've guessed from these comments, I don't recommend pgAdmin for every task.

Scripting is an important technique for DBAs. You keep a copy of the task executed, and
you can edit and resubmit if problems occur. It's also easy to put all the tasks in a script into
a single transaction, which isn't possible using the current GUI tools. pgAdmin provides
pgScript, which only works with pgAdmin, so it is more difficult to port. For scripting, I
strongly recommend the psql utility, which has many additional features that you'll
increasingly appreciate over time.

Although I recommend psql as a scripting tool, many people find it convenient as a query
tool. Some people may find this strange, and assume it is a choice for experts only. Two
great features of psql are the online help for SQL and the tab completion feature, which
allows you to build up SQL quickly without having to remember the syntax. See the Using
the psql query and scripting tool recipe for more information.

pgAdmin also provides pgAgent, which is a task scheduler. Again, more portable
schedulers are available, and you may wish to use those instead. Schedulers aren't covered
in this book.

A quick warning! When you create an object in pgAdmin, the object will be created with a
mixed case name if you use capitals anywhere in the object name. If I ask for a table named
MyTable, the only way to access that table is by referring to it in double quotes as
MyTable. See the Handling objects with quoted names recipe in Chapter 5, Tables and Data:

ERlEs] Tabies (5) |

[MYTABLE
3 My Table
(5 MyTable
[my table
[mytable

+

o e Ry R

[27]

First Steps Chapter 1

OmniDB

OmniDB is designed to access PostgreSQL, MySQL, MariaDB, and Oracle in one interface,
though it makes sure it provides full features for the PostgreSQL database.

OmniDB is developing quickly, with monthly feature releases, so I recommend that you
check out the latest information at https://omnidb.org/.

OmniDB provides a very responsive interface and is designed with full security in mind. It
can be used as a desktop application and it can also be served using a web server, to be
accessed by the web browser of your choice.

How to do it...

OmniDB has the standard tree-view browsing interface, with multi-tab access for each
database server you access. It's easy to be connected to multiple PostgreSQL, MySQL,
and Oracle database servers at the same time:

=
(‘.!_!'/

I @Snbpetsl B Test 2

Q (Test) omnidb@testdb -
127.0.0.1:5432

oMNIDS Connections

B]! PostgreSQL 9.6.6
B [testdn

B 27 Schemas (3)

= =2 public

EH T2 2 perresn
E| Seq

EI g vie
EI g e Doc: Basics

E‘ @ Fur Doc: Constraints

B @Trie @ Doc: Modifying ®
B+ 2 pg_catalog
B 2% information_schema I Data I Messages I Bl -
E3- @ Extensions
D 8 Databases

E Tablespaces
E‘ 0 Roles

=8 +L% Replication Siots

[B Create Table

|Y|

- &

[28]

https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/

First Steps Chapter 1

OmniDB has a SQL editor that has code completion and debugging. The EXPLAIN
ANALYZE output is colored to highlight the areas of the plan that take the most time:

from
(select cust.cust_name,

2

3

4

5 (select count(*)

6 from address addr

7 where addr.cust_id = cust.cust_id) as num_addresses
a8 from customer cust) subguery

9 where subquery.cust_name = 'Rafasl’

® = ©) Start time: 12/05/2017 10:03:26 Duration: 15.073 ms

F T
E* 3
QUERY PLAN

1 | Seq Scan on customer cust (cost=0.80..38.27 rows=2 width=226) (actual time=0.0829..0.829 rows=1 loops=1)
2 Filter: { {cust_name)::text = 'Rafael’'::text)

3 Rows Removed by Filter: 8

4 SubPlan 1

5 © Apgregate (cost=12.13..12.14 rows=1 width=8) (actual time=8.017..0.817 rows=1 loops=1)

[© Seq Scan on address addr (cost=0.80..12.12 rows=1 width=08) (actual time=0.013..8.814 rows=1 loops=1)
7 Filter: {cust_id = cust.cust_id)
8 Rows Removed by Filter: 8

9 Planning time: ©8.323 ms

10 Execution time: 6.097 ms

[29]

First Steps Chapter 1

Or, if you prefer the command-line feel, try the Console tab:

Console X

>> Console tab. Type the commands in the editor below this box. \? to view command list.

>> \dt
SELECT @
=>> \d+ categories
o R o o Hommm e Hommmmm e Hommmmmmm e
| Column | Type | Modifiers | Storage | Stats target | Description
B e e R Fomm e e
| category | integer | not null default nextval('categories_category_seq'::) | plain | None | None
| categoryname | character varying(5¢) | not null | extended | None | None
Hommm e o D R Hommm oo Hmmmmmm e Hommmmmmm e
Indexes:

"categories_pkey" PRIMARY KEY, btree (category)
Has 0IDs: no N
>> \timing

Timing is on.
>> select *
from categories

oo mmmm e tommmm e +
| category | categoryname |
Fommm o oo +
1	Action
2	Animation
3	Children
4	Classics
5 I .	
1‘ : L4
P E o = Aumcomm\t © dle Starttime: 11/08/2018 07:54:44 Duration: 8.663 ms
1

[30]

First Steps Chapter 1

You can also visualize the query plan:

Query x +

43 ANDU LUL.TELRLITU = T
144 GROUP BY 1,2,3,4,5

145) AS foo

146) AS rs

147 ON cc.relname = rs.relname

148 AND nn.nspname = rs.nspname

149 LEFT JOIN pg_index i

150 ON indrelid = cc.oid

151 LEFT JOIN pg_class c2

152 ON ¢2.o0id = i.indexrelid

153) AS sml;
> = Qo Autocommit @ Idle Starttime: 11/01/2018 15:05:00 Duration: 261.192 ms

Messages | Explain

© Index Scan using pg_namespace_nspname_index on pg_namespace nn

& © Seq Scan on pg class c2
Nested Loop

fig it Jom~—o © SeqScan onpg_indexi
Hash
Ma(erla\ﬂnsh Rbgm Join
o © SeqScan an pg_class cc
Hash
o @ Result
InitPlan 1 (retuns $0)
Merge Left Join () © Seg Scan on pg_attribute att
o o beEh Jain o © SeqScan on pg_class tbl
Sort Hash Join Hash
G © Seq Scan on pg_namespace ns
Hash
© SeqScan on pg_atiribute a
o o ettt Joiq o
MateSabipiery ScaBrongagaregate Haeh Join © Seq Scan on pg statistic 5.1
o o
o o o = Hash Hash Join o © SegScanonpg classc
SoBubqueryliesm dhaop Left Join Hash
© Index Scan using pg_namespace_cid_index on pg_namespace n
@ Index Scan using pg_class_relname_nsp_index on pg_class c_1
Npsfed Lonp o @ Bitmap Index Scan on pg_statistic_relid_att_inh_index
Bitmap Feap-Scan on pg_statistic s_2

2d Lad,
2 © Index Scan using pg_attribute_relid_attnum_index on pg_attribute a_1

SubPlan 2 Aggregattiested Loop
© Seq Scan on pg_namespace n_1

Administrators in OmniDB can manage users graphically. The interface gives you the
ability to add, edit, and remove users, along with the ability to make someone a superuser.
These users can then create connections to PostgreSQL, MySQL, MariaDB, and Oracle—all
managed through a unified web page. Connections can also be made via SSH tunnels:

postgresql 127.001 5432 testdb testuser PostgreSQL Xy &
] oracle 127.0.01 1521 XE SYSTEM Oracle (0] 22 X9 @
(] mysql 127.0.0.1 3306 employees | root MysaL (] 22 x9 @
] postgresql 127.0.0.1 5432 remotedb | remoteuser Remote PostgreSQL (¢ example.org | 22 admin S X9 O

[31]

First Steps

Chapter 1

In order to ease the process of developing code in PL/pgSQL, OmniDB provides a
powerful, full-featured debugger. The debugger works as an inner tab of the SQL Editor
and provides insights into parameters, variables, result, messages, and statistics in five tabs:

Query
8

9

18
11
12
13
14
15
16
17
18
19
428
21
22

>

b4 I Create Function *® I Query » I I* Debugger: fnc_count_vowels x I 1 I

LI CeAL,

BEGIN
str
ret :
i:=
len :

B
=

END IF;
1:=1+1;
END LOOF;
RETURN ret;
END;

» ELGEIN Ready

upper(p_input);

length(p_input);
WHILE i <= len LOOP
IF substr(str,
SELECT pg_sleep(1) INTO tmp;
ret := ret + 1;

i, 1) in ('A*, 'E', 'I', '0', 'U") THEN

~ e tn | x| | R -

— T T T T
I

found bool
str text
ret int4
i int4
len int4
tmp text

The quick brown fox jumps o...
t

THE QUICK BROWN FOX JU._..
11

45

44

[32]

First Steps Chapter 1

Another useful feature in OmniDB is the monitoring dashboard. The dashboard gives you
real-time statistics of important metrics you might want to monitor, such as system
Memory Usage, CPU Usage, and Locks:

all admin & @ @ @ Sign out

MNIDE Connections.

@ oeistore- sz x
DellStore) post i
B & Nanitaring X
e | vargeons |
&6 PostgresaL 069
B S Databases (2) Memory Usage < © | 10 seconds x Locks & O |15 seconds x
B8 postgres
B 2 System Memory Usage (Total: 7675MB) Locks
8 2 Schemas
Memory ExclusiveLock AccessShareLock
@ & Extensions o o6
o
& Foreign Data Wrappers 0 -
& [Tablespaces - g 7
B ;83 Roles Ed
- a0
B 2, Repiication Siots
2
o
09:44:23 09:44:35 09:44:45 09.44:33
Time Time
CPUUsage & O |10 seconds x Backends C O |15 seconds x
CPU Usage Backends (max_connections: 100)
all o N 1 2 3 posigres ds2
0
80
g 60
g
)
20

OmniDB has been designed to be a flexible and an extensible tool. Though it comes with
several default charts, you can use Python and JSON to write new ones or use the existing
ones as templates to enhance and expand. OmniDB provides a plugin API, allowing users
to write and distribute their own plugins for expanded capabilities.

See also

You may also be interested in commercial tools of various kinds for PostgreSQL. A full
listing is given in the PostgreSQL software catalog at http://www.postgresql.org/

download/products/1.

Using the psql query and scripting tool
psql is the query tool supplied as a part of the core distribution of PostgreSQL, so it is

available in all environments, and works similarly in all of them. This makes it an ideal
choice for developing portable applications and techniques.

psql provides features for use as both an interactive query tool and as a scripting tool.

[33]

http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1

First Steps Chapter 1

Getting ready

From here on, we will assume that the psql command is enough to allow you access to the
PostgreSQL server. This assumes that all your connection parameters are defaults, which
may not be true.

Written in full, the connection parameters would be either of these options:

psql -h myhost -p 5432 -d mydb -U myuser
psql postgresql://myuser@myhost:5432/mydb

The default value for the port (-p) is 5432. By default, mydb and myuser are both identical
to the operating system's username. The default myhost on Windows is localhost, while on
Unix, we use the default directory for Unix socket connections. The location of such
directories varies across distributions and is set at compile time. However, note that you
don't actually need to know its value, because on local connections, both the server and the
client are normally compiled together, so they use the same default.

How to do it...

The command that executes a single SQL command and prints the output is the easiest, as
shown here:

$ psql —-c "SELECT current_time"
timetz

18:48:32.484+01
(1 row)

The -c command is non-interactive. If we want to execute multiple commands, we can
write those commands in a text file and then execute them using the —f option. This
command loads a very small and simple set of examples:

$ psql -f examples.sql
It produces the following output when successful:

SET
SET
SET
SET
SET
SET
DROP SCHEMA

[34]

First Steps Chapter 1

CREATE SCHEMA
SET

SET

SET

CREATE TABLE
CREATE TABLE
COPY 5

COPY 3

The examples. sql script is very similar to a dump file produced by PostgreSQL backup
tools, so this type of file and the output it produces are very common. When a command is
executed successfully, PostgreSQL outputs a command tag equal to the name of that
command; this is how the preceding output was produced.

The psql tool can also be used with both the —c and -f modes together; each one can be
used multiple times. In this case, it will execute all the commands consecutively:

$ psql —-c "SELECT current_time" -f examples.sql —-c "SELECT current_time"
timetz

18:52:15.287+01
(1 row)
...output removed for clarity...
timetz

18:58:23.554+01
(1 row)

The psql tool can also be used in interactive mode, which is the default, so it requires no
option:

$ psql
postgres=#

The first interactive command you'll need is the following:
postgres=# help

You can then enter SQL or other commands. The following is the last interactive command
you'll need:

postgres=# \quit

Unfortunately, you cannot type quit on its own, nor can you type \exit, or other options.
Sorry, just \quit, or \g for short!

[35]

First Steps Chapter 1

How it works...

In psql, you can enter the following two types of commands:

¢ psql meta-commands
e SQL

A meta-command is a command for the psql client, whereas SQL is sent to the database
server. An example of a meta-command is \ g, which tells the client to disconnect. All lines
that begin with \ (backslash) as the first nonblank character are presumed to be meta-
commands of some kind.

If it isn't a meta-command, it's SQL. We keep reading SQL until we find a semicolon, so we
can spread SQL across many lines and format it any way we find convenient.

The help command is the only exception. We provide this for people who are completely
lost, which is a good thought; so let's start from there ourselves.

There are two types of help commands, which are as follows:

e \?: This provides help on psql meta-commands
¢ \h: This provides help on specific SQL commands

Consider the following snippet as an example:

postgres=# \h DELETE
Command: DELETE
Description: delete rows of a table
Syntax:
[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table [[AS] alias]
[USING usinglist]
[WHERE condition | WHERE CURRENT OF cursor_name]
[RETURNING * | output_expression [AS output_name] [,]]

I find this a great way to discover and remember options and syntax. You'll also appreciate
having the ability to scroll back through the previous command history.

You'll get a lot of benefits from tab completion, which will fill in the next part of the syntax
when you press the Tab key. This also works for object names, so you can type in just the
first few letters and then press Tab; all the options will be displayed. Thus, you can type in
just enough letters to make the object name unique, and then hit Tab to get the rest of the
name.

[36]

First Steps Chapter 1

One-line comments begin with two dashes, as follows:

—— This is a single-line comment

Multiline comments are similar to those in C and Java:

/*
* Multiline comment

*/

You'll probably agree that psql looks a little daunting at first, with strange backslash
commands. I do hope you'll take a few moments to understand the interface and keep
digging for more information. The psql tool is one of the most surprising parts of
PostgreSQL, and it is incredibly useful for database administration tasks when used
alongside other tools.

There's more...

psqgl works across releases and works well with older versions. It may not work at all with
newer server versions, so use the latest client level of server you are accessing.

See also

Check out some other useful features of psql, which are as follows:

¢ Information functions

e Output formatting

¢ Execution timing using the \t iming command
¢ Input/output and editing commands

e Automatic startup files, such as .psglrc

e Substitutable parameters (variables)

e Access to the OS command line

o Crosstab views

¢ Conditional execution

[371]

First Steps Chapter 1

Changing your password securely

If you are using password authentication, then you may wish to change your password
from time to time.

How to do it...

The most basic method is to use the psql tool. The \password command will prompt you
once for a new password and again to confirm. Connect to the psql tool and type the
following;:

SET password_encryption = 'scram-sha-256"';
\password

Enter a new password. This causes psql to send a SQL statement to the PostgreSQL server,
which contains an already encrypted password string. An example of the SQL statement
sent is as follows:

ALTER USER postgres PASSWORD 'SCRAM-
SHA-256$4096:H45+UIZiJUCEXrB9SHI1v5Q==5$I0mc87Uot srnezRKvIIjqgn/zjWMGPVdylzHPA
RAGfVs=:nSjwTILGDmAsMo+GgbmC2X/9LMgowTQBIUQs145gZzA=";

Make sure you use SCRAM-SHA-256 encryption, not the older and easily compromised
md>5 encryption. Whatever you do, don't use postgres as your password. This will make
you vulnerable to idle hackers, so make it a little more difficult than that!

Make sure you don't forget your password either. It may prove difficult to maintain your
database if you can't access it.

How it works...

As changing the password is just a SQL statement, any interface can do this. Other tools
also allow this, such as the following:

e pgAdmin4
e phpPgAdmin

[38]

First Steps Chapter 1

If you don't use one of the main routes to change the password, you can still do it yourself,
using SQL from any interface. Note that you need to encrypt your password, because if you
do submit a password in plain text, such as the following, it will be shipped to the server in
plain text:

ALTER USER myuser PASSWORD 'secret'

Luckily, the password in this case will still be stored in an encrypted form. But it will also
be recorded in plain text in psql's history file, as well as in any server and application logs,
depending on the actual log-level settings.

PostgreSQL doesn't enforce a password change cycle, so you may wish to use more
advanced authentication mechanisms, such as GSSAPI, SSPI, LDAP, or RADIUS.

Avoiding hardcoding your password

We can all agree that hardcoding your password is a bad idea. This recipe shows you how
to keep your password in a secure password file.

Getting ready

Not all database users need passwords; some databases use other means of authentication.
Don't perform this step unless you know you will be using password authentication, and
you know your password.

First, remove the hardcoded password from where you set it previously. Completely
remove the password = xxxx text from the connection string in a program. Otherwise,
when you test the password file, the hardcoded setting will override the details you are
about to place in the file. Keeping the password hardcoded and in the password file is not
any better. Using PGPASSWORD is not recommended either, so remove that also.

If you think someone may have seen the password, change your password before placing it
in the secure password file.

How to do it...

A password file contains the usual five fields that we require when connecting, as shown
here:

host :port :dbname:user:password

[39]

First Steps Chapter 1

Change this to the following;:

myhost :5432:postgres:sriggs:moresecure

The password file is located using an environment variable named PGPASSFILE. If
PGPASSFILE is not set, a default filename and location must be searched for, as follows:

¢ On *nix systems, look for ~/ . pgpass

¢ On Windows systems, look for $APPDATA%\postgresql\pgpass.conf, where
$APPDATAS% is the application data subdirectory in the path (for me, that would
be C:\)

Don't forget to set the file permissions on the file, so that security is
maintained. File permissions are not enforced on Windows, though the
default location is secure. On *nix systems, you must issue the following
command: chmod 0600 ~/.pgpass.

If you forget to do this, the PostgreSQL client will ignore the . pgpass file.
While the psql tool will issue a clear warning, many other clients will just
fail silently, so don't forget!

How it works...

Many people name the password file . pgpass, whether or not they are on Windows, so
don't get confused if they do this.

The password file can contain multiple lines. Each line is matched against the requested
host :port :dbname:user combination until we find a line that matches. Then, we use that
password.

Each item can be a literal value or *, a wildcard that matches anything. There is no support
for partial matching. With appropriate permissions, a user can potentially connect to any
database. Using the wildcard in the doname and port fields makes sense, but it is less
useful in other fields. The following are a few examples of wildcards:

e myhost:5432:*:sriggs:moresecurepw
e myhost:5432:perf:hannu:okpw

e myhost:*:perf:gianni:sicurissimo

[40]

First Steps Chapter 1

There's more...

This looks like a good improvement if you have a few database servers. If you have many
different database servers, you may want to think about using a connection service file
instead (see the Using a connection service file recipe), or perhaps even storing details on a
Lightweight Directory Access Protocol (LDAP) server.

Using a connection service file

As the number of connection options grows, you may want to consider using a connection
service file.

The connection service file allows you to give a single name to a set of connection
parameters. This can be accessed centrally, to avoid the need for individual users to know
the host and port of the database, and it is more resistant to future change.

You can set up a system-wide file as well as individual per-user files. The default file paths
for these files are /etc/pg_service.conf and ~/.pg_service.conf, respectively.

A system-wide connection file controls service names for all users from a single place,
while a per-user file applies only to that particular user. Keep in mind that the per-user file
overrides the system-wide file—if a service is defined in both the files, then the definition in
the per-user file will prevail.

How to do it...

First, create a file named pg_service.conf with the following content:

[dbservicel]
host=postgresl
port=5432
dbname=postgres

You can then copy it to either /etc/pg_service.conf or another agreed upon central
location. You can then set the PGSYSCONFDIR environment variable to that directory
location.

[41]

First Steps Chapter 1

Alternatively, you can copy it to ~/.pg_service.conf. If you want to use a different
name, set PGSERVICEFILE. Either way, you can then specify a connection string, such as
the following:

service=dbservicel user=sriggs

The service can also be set using an environment variable named PGSERVICE.

How it works...

This feature applies to 1ibpg connections only, so it does not apply to JDBC.

The connection service file can also be used to specify the user, though that would mean
that the username would be shared.

The pg_service.conf and .pgpass files can work together, or you can use just one of the
two. Note that the pg_service.conf file is shared, so it is not a suitable place for
passwords. The per-user connection service file is not shared, but in any case, it seems best
to keep things separate and confine passwords to . pgpass.

Troubleshooting a failed connection

This recipe is all about what you should do when things go wrong.

Bear in mind that 90% of problems are just misunderstandings, and you'll quickly be on
track again.

How to do it...

Here, we've made a checklist to be followed if a connection attempt fails:

e Check whether the database name and the username are accurate. You may be
requesting a service on one system when the database you require is on another
system. Recheck your credentials; ensure that you haven't mixed things up and
that you are not using the database name as the username, or vice versa. If you
receive too many connections, then you may need to disconnect another session
before you can connect, or wait for the administrator to re-enable the
connections.

[42]

First Steps Chapter 1

e Check for explicit rejections. If you receive the pg_hba.conf rejects
connection for host... error message, it means your connection attempt
has been explicitly rejected by the database administrator for that server. You
will not be able to connect from the current client system using those credentials.
There is little point in attempting to contact the administrator, as you are
violating an explicit security policy with what you are attempting to do.

e Check for implicit rejections. If the error message you receive is no
pg_hba.conf entry for...,it means there is no explicit rule that matches
your credentials. This is likely an oversight on the part of the administrator and
is common in very complex networks. Contact the administrator and request a
ruling on whether your connection should be allowed (hopefully) or explicitly
rejected in the future.

¢ Check whether the connection works with psql. If you're trying to connect to
PostgreSQL from anything other than the psql command-line utility, switch to
that now. If you can make psql connect successfully, but cannot make your main
connection work correctly, the problem may be in the local interface you are
using.

¢ PostgreSQL 9.3 and later versions ship the pg_isready utility, which checks the
status of a database server, either local or remote, by establishing a minimal
connection. Only the hostname and port are mandatory, which is great if you
don't know the database name, username, or password. The following outcomes
are possible:

¢ The server is running and accepting connections.
¢ The server is running but not accepting connections (because it is
starting up, shutting down, or in recovery).

¢ A connection attempt was made, but it failed.

¢ No connection attempt was made because of a client problem
(invalid parameters, out of memory).

e Check whether the server is up. If a server is shut down, you
cannot connect. The typical problem here is simply mixing up the
server to which you are connecting. You need to specify the
hostname and port, so it's possible that you are mixing up those
details.

e Check whether the server is up and accepting new connections. A
server that is shutting down will not accept new connections, apart
from superusers. Also, a standby server may not have the
hot_standby parameter enabled, preventing you from
connecting.

[43]

First Steps Chapter 1

o Check whether the server is listening correctly, and check the port
to which the server is actually listening. Confirm that the incoming
request is arriving on the interface listed in the
listen_addresses parameter. Check whether it is set to * for
remote connections and localhost for local connections.

¢ Check whether the database name and username exist. It's possible
that the database or user no longer exists.

¢ Check the connection request; that is, check whether the
connection request was successful and was somehow dropped
following the connection. You can confirm this by looking at the
server log when the following parameters are enabled:

log_connections = on
log_disconnections = on

e Check for other reasons for disconnection. If you are connecting to
a standby server, it is possible that you have been disconnected
because of Hot Standby conflicts. See chapter 12, Replication and
Upgrades, for more information.

There's more...

Client authentication and security are the rapidly changing areas in subsequent major
PostgreSQL releases. You will also find differences between maintenance release levels. The
PostgreSQL documents on this topic can be viewed at
http://www.postgresqgl.org/docs/current/interactive/client-authentication.html.

Always check which release level you are using before consulting the manual or asking for
support. Many problems are caused simply by confusing the capabilities between release
levels.

[44]

http://www.postgresql.org/docs/current/interactive/client-authentication.html

Exploring the Database

To understand PostgreSQL, you need to see it in use. An empty database is like a ghost
town without houses.

For now, we will assume that you already have a database. There are over a thousand
books on how to design your own database from nothing. So, here, we aim to help
people who are still learning to use the PostgreSQL database management system with
handy routines to explore the database.

The best way to start is by asking some simple questions to orient yourself and begin the
process of understanding. Incidentally, these are also questions you'll need to answer if you
ask someone else for help.

In this chapter, we'll cover the following recipes:

e What type of server is this?

e What version is the server?

e What is the server uptime?

e Locating the database server files

¢ Locating the database server's message log
e Locating the database's system identifier

e Listing databases on the database server

e How many tables are there in a database?

e How much disk space does a database use?
¢ How much disk space does a table use?

e Which are my biggest tables?

e How many rows are there in a table?

¢ Quickly estimating the number of rows in a table
e Listing extensions in this database

¢ Understanding object dependencies

Exploring the Database Chapter 2

What type of server is this?

PostgreSQL is an open source object-relational database management system
(ORDBMS) distributed under a very permissive license, and developed by an active
community.

There are a number of PostgreSQL-related services and software (https://wiki.
postgresql.org/wiki/PostgreSQL_derived_databases), either open source or not, that are
provided by other software companies. Here, we discuss how to recognize which one you
are using.

It is not so easy to detect the variant of PostgreSQL from the name; many of the products
and services involving PostgreSQL include the word Postgres or PostgreSQL.

However, if you need to check the documentation, or to buy services such as support and
consulting, you need to find out exactly what type your server is, as the available options
will vary.

If you are paying a license fee or a cloud service subscription, you will already know the
name of the company you are paying, and of the specific variant of PostgreSQL you are
subscribed to. But, it’s not rare to have multiple servers of different types, so it is still useful
to be able to tell them apart.

How to do it...

Unfortunately, there isn't a single function or parameter that works on each variant of
PostgreSQL and at the same time is able to answer that question. The closest you can get is
the version () function that is used in the next recipe, What version is the server?, which
returns a textual description of the version you are running, including (but not limited to)
the version number.

In some cases, this is enough, but otherwise, you have to determine the specific version
from other clues, such as the following:

¢ The version number for stable releases of community PostgreSQL is either X.Y
(with X=10 or above) or X.Y.Z (up to X=9). An extra number usually indicates
that you are running a variant of PostgreSQL.

e The presence of certain objects that are available only on a specific variant, for
instance an extension. More details on how to work with extensions can be found
in the Listing extensions in this database recipe in this chapter.

[46]

https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases

Exploring the Database Chapter 2

There's more...

Some of the PostgreSQL-based services on the cloud will return the same value of

version () as community PostgreSQL does. While this is correct, in the sense that they are

indeed running that version of PostgreSQL, it doesn’t mean that you have the same level of

control. For instance, you might not be given a superuser account, and you will probably be
unable to install extensions freely.

What version is the server?

PostgreSQL has internal version numbers for the data file format, database catalog layout,
and crash recovery format. Each of these is checked as the server runs to ensure that the
data doesn't become corrupt. PostgreSQL doesn't change these internal formats for a single
release; they only change across releases.

From a user's perspective, each release differs in terms of the way the server behaves. If you
know your application well, then it should be possible to assess the differences simply by
reading the release notes for each version. In many cases, a retest of the application is the
safest thing to do.

If you experience any general problems related to setup and configuration with your
database, then you'll need to double-check which version of the server you have. This will
help you to report a fault or to consult the correct version of the manual.

How to do it...

We will find out the version by directly querying the database server:
1. Connect to the database and issue the following command:
postgres # SELECT version();
2. You'll get a response that looks something like this:

PostgreSQL 11.2 on x86_64—-apple—-darwinl6.7.0,
compiled by Apple LLVM version 9.0.0 (clang-900.0.39.2), 64-bit

That's probably too much information all at once!

[47]

Exploring the Database Chapter 2

Some other ways of checking the version number are as follows:

bash # psql —--version
psqgl (PostgreSQL) 11.2

However, be wary that this shows the client software version number, which may differ
from the server software version number. You should check the server version directly by
using the following command:

bash # cat $PGDATA/PG_VERSION

Here, you must set PGDATA to the actual data directory. Refer to the Locating the database
server files recipe for more information.

Notice that the preceding command does not show the maintenance release number.

How it works...

The current PostgreSQL server version format is composed of two numbers; the first
number indicates the major release, and the second one denotes subsequent maintenance
releases for that major release. It is common to mention just the major release when
discussing what features are supported, as they are unchanged on a maintenance release.

11.0 is the first release of PostgreSQL 11, and subsequent maintenance releases will be 11.1,
11.2, 11.3, and so on. In the preceding example, we see that 11.2 is the version of that
PostgreSQL server.

For each major release, there is a separate version of the manual, since the feature set is not
the same. If something doesn't work exactly the way you think it should, make sure you are
consulting the correct version of the manual.

There's more...

Prior to release 10, PostgreSQL used a three-part numbering series, meaning that the
feature set and compatibility related to the first two numbers, while maintenance releases
were denoted by the third number. For instance, version 9.4 contains more additional
features and compatibility changes when compared to version 9.3; version 9.4.0 was the
initial release of 9.4, and version 9.4.1 was a later maintenance release.

[48]

Exploring the Database Chapter 2

The release support policy for PostgreSQL is available at http: //www.postgresql.org/
support/versioning/. This article explains that each release will be supported for a period
of five years. Since we release one major version per year, this means five major releases.

Support for all releases up to and including 9.3, ended in September 2018. So, by the time
you're reading this book, only PostgreSQL 9.4 and higher versions will be supported. The
earlier versions are still robust, though many performance and enterprise features are
missing from those releases. The future end-of-support dates are as follows:

Version Last supported date
PostgreSQL 9.4 December 2019
PostgreSQL 9.5 January 2021
PostgreSQL 9.6 September 2021
PostgreSQL 10 September 2022
PostgreSQL 11 October 2023

What is the server uptime?

You may wonder, how long has it been since the server started?

For instance, you might want to verify that there was no server crash if your server is not
monitored; or to see when the server was last restarted, for instance, to change the
configuration. We will find this out by asking the database server.

How to do it...
Issue the following SQL from any interface:

postgres=# SELECT date_trunc('second', current_timestamp -
pPg_postmaster_start_time()) as uptime;

You should get the output as follows:

uptime

2 days 02:48:04

[49]

http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/

Exploring the Database Chapter 2

How it works...

Postgres stores the server start time, so we can access it directly, as follows:

postgres=# SELECT pg_postmaster_start_time();
Pg_postmaster_start_time

2018-01-01 19:37:41.389134+00

Then, we can write a SQL query to get the uptime, like this:

postgres=# SELECT current_timestamp - pg_postmaster_start_time();

?column?

2 days 02:50:02.23939

Finally, we can apply some formatting:

postgres=# SELECT date_trunc('second', current_timestamp -
pPg_postmaster_start_time()) as uptime;
uptime

2 days 02:51:18

See also

This is simple stuff. Further monitoring and statistics are covered in chapter 8, Monitoring
and Diagnosis.

Locating the database server files

Database server files are initially stored in a location referred to as the data directory.
Additional data files may also be stored in tablespaces, if any exist.

In this recipe, you will learn how to find the location of these directories on a given
database server.

Getting ready

You'll need to get operating system access to the database system, which is what we call the
platform on which the database runs.

[50]

Exploring the Database Chapter 2

How to do it...

The following are the system default data directory locations:

¢ Debian or Ubuntu systems: /var/lib/postgresql/MAJOR_RELEASE/main
e Red Hat RHEL, CentOS, and Fedora: /var/lib/pgsqgl/data/
e Windows: C:\Program Files\PostgreSQL\MAJOR_RELEASE\data

MAJOR_RELEASE is composed of just one number (for release 10 and above) or by two (for
releases up to 9.6).

On Debian or Ubuntu systems, the configuration files are located in
/etc/postgresql/MAJOR_RELEASE/main/, where main is just the name of a database
server. Other names are also possible. For the sake of simplicity, we assume that you only
have a single installation, although the point of including the release number and database
server name as components of the directory path is to allow multiple database servers to
coexist on the same host.

The pg_lsclusters utility is specific to Debian/Ubuntu, and displays a
list of all the available database servers, including information, such as the
following, for each server:

* Major release number
e Port
Status (for example, online and down)

Data directory
Log file

The pg_lsclusters utility is part of the postgresgl-common
Debian/Ubuntu package, which provides a structure under which
multiple versions of PostgreSQL can be installed, and multiple clusters
can be maintained, at one time.

In the packages distributed with Red Hat RHEL, CentOS, and Fedora, the default data
directory location also contains the configuration files (* . conf) by default. However, note
that the packages distributed by the PostgreSQL community use a different default location
/var/lib/pgsql /MAJOR_RELEASE/data/.

Again, that is just the default location. You can create additional data directories using the
initdb utility.

[51]

Exploring the Database Chapter 2

The initdb utility populates the given data directory with the initial content. The directory
will be created for convenience if it is missing, but for safety, the utility will stop if the data
directory is not empty. The initdb utility will read the data directory name from the
PGDATA environment variable unless the -d command-line option is used.

How it works...

Even though the Debian/Ubuntu and Red Hat file layouts are different, they both follow
the Linux Filesystem Hierarchy Standard (FHS), so neither layout is wrong.

The Red Hat layout is simpler and easier to understand. The Debian/Ubuntu layout is more
complex, but it has different and more adventurous goals. The Debian/Ubuntu layout is
similar to the Optimal Flexible Architecture (OFA) of other database systems. As pointed
out earlier, the goals are to provide a file layout that will allow you to have multiple
PostgreSQL database servers on one system and to allow many versions of the software to
exist in the filesystem at once.

Again, the layouts for the Windows and OS X installers are different. Multiple database
clusters are possible, but they are also more complex than on Debian/Ubuntu.

I recommend that you follow the Debian/Ubuntu layout on whichever platform you are
using. It doesn't really have a name, so I call it the PostgreSQL Flexible Architecture (PFA).
Clearly, if you are using Debian or Ubuntu, then the Debian/Ubuntu layout is already being
used. If you do this on other platforms, you'll need to lay things out yourself, but it does
pay off in the long run. To implement PFA, you can set the following environment
variables to name parts of the file layout:

export PGROOT=/var/lib/pgsql/

export PGRELEASE=10

export PGSERVERNAME=mamba

export PGDATA=$PGROOT/$PGRELEASE/$PGSERVERNAME

In this example, PGDATA is /var/1lib/pgsql/10/mamba.

Finally, you must run initdb to actually initialize the data directory, as noted earlier, and
custom administration scripts should be prepared to automate actions, such as starting or
stopping the database server, when the system undergoes similar procedures.

[52]

Exploring the Database

Chapter 2

Note that server applications such as initdb can only work with one major PostgreSQL
version. On distributions that allow several major versions, such as Debian or Ubuntu,
these applications are placed in dedicated directories, which are not put in the default

command path.

This means that if you just type initdb, the system will not find the

executable, and you will get an error message.

This may look like a bug, but in fact it is the desired behavior. Instead of directly accessing
initdb, you are supposed to use the pg_createcluster utility from postgresql-
common, which will select the right initdb utility depending on the major version you

specify.
If

you plan to run more than one database server on the same host, you

must set the preceding variables differently for each server, as they
determine the name of the data directory. For instance, you can set them
in the script that you use to start or stop the database server, which would
be enough, because PGDATA is mostly used only by the database server
process.

There's more...

Once you've located the data directory, you can look for the files that comprise the
PostgreSQL database server. The layout is as follows:

Subdirectory Purpose

base This is the main table storage. Beneath this directory, each database has its own
directory, within which are the files for each database table or index.

global Here are the tables that are shared across all databases, including the list of databases.

pg_commit_ts

Here we store transaction commit timestamp data (from 9.5 onward).

pg_dynshmem

This includes dynamic shared memory information (from 9.4 onward).

pg_logical

This includes logical decoding status data.

pg_multixact

This includes files used for shared row-level locks.

pg_notify

This includes the LISTEN/NOTIF'Y status files.

pg_replslot

This includes information about replication slots (from 9.4 onward).

pPg_serial

This includes information on committed serializable transactions.

pg_snapshots

This includes exported snapshot files.

pg_stat

This includes permanent statistics data.

pg_stat_tmp

This includes transient statistics data.

pg_subtrans

This includes subtransaction status data.

prg_tblspc

This includes symbolic links to tablespace directories.

[53]

Exploring the Database Chapter 2

pg_twophase [This includes state files for prepared transactions.
pg_wal This includes the transaction log or Write-Ahead Log (WAL) (formerly pg_x1og).

pg_xact This includes the transaction status files (formerly pg_clog).

None of the aforementioned directories contain user-modifiable files, nor should any of the
files be manually deleted in order to save space, or for any other reason. Don't touch it,
because you'll break it, and you may not be able to fix it! It's not even sensible to copy files in
these directories without carefully following the procedures described in chapter 11,
Backup and Recovery. Keep off the grass!

We'll talk about tablespaces later in the book. We'll also discuss a performance
enhancement that involves putting the transaction log on its own set of disk drives in
Chapter 10, Performance and Concurrency.

The only things you are allowed to touch are configuration files, which are all *. conf files,
and server message log files. Server message log files may or may not be in the data
directory. For more details on this, refer to the next recipe, Locating the database server’s
message log.

Locating the database server's message log

The database server's message log is a record of all messages recorded by the database
server. This is the first place to look if you have server problems, and a good place to check
regularly.

This log will include messages that look something like the following:

2016-09-01 19:37:41 GMT [2507-1] LOG: database system was shut down at
2016-09-01 19:37:38 GMT

2016-09-01 19:37:41 GMT [2506-1] LOG: database system is ready to accept
connections

We'll explain some more about these logs once we've located the files.

Getting ready

You'll need to get operating system access to the database system, which is what we call the
platform on which the database runs.

[54]

Exploring the Database Chapter 2

The server log can be in a few different places, so let's list all of them first so that we can
locate the log or decide where we want it to be placed:

The server log may be in a directory beneath the data directory.

It may be in a directory elsewhere on the filesystem.

It may be redirected to syslog.

There may be no server log at all. In this case, it's time to add a log soon.

If not redirected to syslog, the server log consists of one or more files. You can change the
names of these files, so it may not always be the same on every system.

How to do it...

The following are the default server log locations:

e Debian or Ubuntu systems: /var/log/postgresqgl
¢ Red Hat, RHEL, CentOS, and Fedora: /var/lib/pgsqgl/data/pg_log
e Windows systems: The messages are sent to the Windows Event Log

The current server log file is named postgresql-MAJOR_RELEASE-SERVER. log, where
SERVER is the name of the server (by default, main), and MAJOR_RELEASE represents the
major release of the server, for example, 9.6 or 11 (as we mentioned in a prior recipe, from
release 10 onward the major release is composed by just one number). An example is
postgresgl-11-main.log, while older log files are numbered as postgresgl-11-
main.log. 1. The higher the final number, the older the file, since they are being rotated by
the logrotate utility.

How it works...

The server log is just a file that records messages from the server. Each message has a
severity level, the most typical of them being LOG, though there are others, as shown in the
following table:

PostgreSQL severity |Meaning Syslog severity|Windows Event Log
DEBUG 1 to DEBUG

5 This comprises the internal diagnostics. DEBUG INFORMATION
INFO This is the command output for the user. INFO INFORMATION
NOTICE This is helpful information. NOTICE INFORMATION
WARNING This warns of likely problems. NOTICE WARNING

[551]

Exploring the Database Chapter 2

ERROR This is the current command that is aborted. [WARNING ERROR
LOG This is useful for sysadmins. INFO INFORMATION
FATAL This is the event that disconnects one session ERR ERROR
only.
PANIC This is the event that crashes the server. CRIT ERROR

Watch out for FATAL and PANIC. This shouldn't happen in most cases during normal server
operation, apart from certain cases related to replication, so you should also check out
Chapter 12, Replication and Upgrades.

You can adjust the number of messages that appear in the log by changing the
log_min_messages server parameter. You can also change the amount of information that
is displayed for each event by changing the 1og_error_verbosity parameter. If the
messages are sent to a standard log file, then each line in the log will have a prefix of useful
information that can also be controlled by the system administrator, with a parameter
named log_line_prefix.

You can also alter the what and the how much that goes into the logs by changing other
settings such as 1log_statements, log_checkpoints,
log_connections/log_disconnections, log_verbosity, and log_lock_waits.

There's more...

The log_destination parameter controls where the log messages are stored. The valid
values are stderr, csvlog, syslog, and eventlog (the latter is only on Windows).

The logging collector is a background process that writes to a log file everything that the
PostgreSQL server outputs to stderr. This is probably the most reliable way to log
messages in case of problems, since it depends on fewer services.

Log rotation can be controlled with settings such as 1og_rotation_age and
log_rotation_size if you are using the logging collector. Alternatively, it is possible to
configure the logrotate utility to perform log rotation, which is the default on Debian and

Ubuntu systems.

See also

In general, monitoring activities are covered in chapter 8, Monitoring and Diagnosis, and
examining the message log is just one part of it. Refer to the Producing a daily summary of log
file errors recipe in Chapter 8, Monitoring and Diagnosis, for more details.

[561]

Exploring the Database Chapter 2

Locating the database's system identifier

Each database server has a system identifier assigned when the database is initialized
(created). The server identifier remains the same if the server is backed up, cloned, and so
on.

Many actions on the server are keyed to the system identifier, and you may be asked to
provide this information when you report a fault.

In this recipe, you will learn how to display the system identifier.

Getting ready

You need to connect as the Postgres OS user, or another user with execute privileges on the
server software.

How to do it...

In order to display the system identifier, we just need to launch the following command:

pPg_controldata <data-directory> | grep "system identifier"
Database system identifier: 5558338346489861223

Note that the preceding syntax will not work on Debian or Ubuntu systems, for the same
reasons explained for initdb in the Locating the database server files recipe. However, in this
case, there is no postgresqgl-common alternative, so if you must run pg_controldata,
you need to specify the full path to the executable, as in this example:

/usr/lib/postgresql/11/bin/pg_controldata $PGDATA

Don't use -D in front of the data directory name. This is the only
PostgreSQL server application where you don't need to do that.

[571

Exploring the Database Chapter 2

How it works...

The pg_controldata utility is a PostgreSQL server application that shows the content of a
server's control file. The control file is located within the data directory of a server, and it is
created at database initialization time. Some of the information within it is updated
regularly, and some is only updated when certain major events occur.

The full output of pg_controldata looks like the following (some values may change over
time as the server runs):

pg_control version number: 1100

Catalog version number: 201809051

Database system identifier: 6678846522653464085
Database cluster state: in production

pg_control last modified: Sun Apr 14 22:37:42 2019
Latest checkpoint location: 0/B29DDF8

.. (not shown in full)

Never edit the PostgreSQL control file. If you do, the server probably
won't start correctly, or you may mask other errors. And if you do that,
people will be able to tell, so fess up as soon as possible!

Listing databases on the database server

When we connect to PostgreSQL, we always connect to just one specific database on any
database server. If there are many databases on a single server, it can get confusing, so
sometimes you may just want to find out which databases are parts of the database server.

This is also confusing because we can use the word database in two different, but related,
contexts. Initially, we start off by thinking that PostgreSQL is a database in which we put
data, referring to the whole database server by just the word database. In PostgreSQL, a
database server (also known as cluster) is potentially split into multiple, individual
databases, so, as you get more used to working with PostgreSQL, you'll start to separate the
two concepts.

[581]

Exploring the Database Chapter 2

How to do it...

If you have access to psql, you can type the following command:

bash $ psql -1
List of databases

Name | Owner | Encoding | Collate | Ctype | Access
privileges
postgres | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
template0 | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/sriggs

+

I I I I I
sriggs=CTc/sriggs
templatel | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/sriggs
+

| I | | |
sriggs=CTc/sriggs
(3 rows)

You can also get the same information while running psql by simply typing \1.

The information that we just looked at is stored in a PostgreSQL catalog table named
pg_database. We can issue a SQL query directly against that table from any connection to
get a simpler result, as follows:

postgres=# select datname from pg_database;
datname

templatel
templateO
postgres
(3 rows)

How it works...

PostgreSQL starts with three databases: template0, templatel, and postgres. The main
user database is postgres.

You can create your own databases as well, like this:

CREATE DATABASE my_database;

[591]

Exploring the Database Chapter 2

You can do the same from the command line, using the following expression:

bash $§ createdb my_database

After you've created your databases, be sure to secure them properly, as discussed in
Chapter 6, Security.

When you create another database, it actually takes a copy of an existing database. Once it
is created, there is no further link between the two databases.

The template0 and templatel databases are known as template databases. The
templatel database can be changed to allow you to create a localized template for any
new databases that you create. The template(database exists so that, when you alter
templatel, you still have a pristine copy on which to fall back on. In other words, if you
break templatel, then you can drop it and recreate it from templateO.

You can drop the database named postgres. But don't, okay? Similarly, don't try to touch
template0, because you won't be allowed to do anything with it, except use it as a
template. On the other hand, the templatel database exists to be modified, so feel free to
change it.

There's more...

The information that we just saw is stored in a PostgreSQL catalog table named
pg_database. We can look at this directly to get some more information. In some ways,
the output is less useful as well, as we need to look up some of the code in other tables:

postgres=# \x
postgres=# select * from pg_database;
—[RECORD 1]-+

datname | templatel
datdba | 10

encoding | 6
datcollate | en_GB.UTF-8
datctype | en_GB.UTF-8
datistemplate | t
datallowconn | t
datconnlimit | -1
datlastsysoid | 11620
datfrozenxid | 644
dattablespace | 1663

datacl | {=c/sriggs,sriggs=CTc/sriggs}
—[RECORD 2]-+

datname | templateO

[60]

Exploring the Database Chapter 2
datdba | 10
encoding | 6
datcollate | en_GB.UTF-8
datctype | en_GB.UTF-8
datistemplate | t
datallowconn | £
datconnlimit | -1
datlastsysoid | 11620
datfrozenxid | 644
dattablespace | 1663
datacl | {=c/sriggs, sriggs=CTc/sriggs}
-[RECORD 3]-+
datname | postgres
datdba | 10
encoding | 6
datcollate | en_GB.UTF-8
datctype | en_GB.UTF-8
datistemplate | £
datallowconn | t
datconnlimit | -1
datlastsysoid | 11620
datfrozenxid | 644
dattablespace | 1663
datacl |

First of all, look at the use of the \x command. It makes the output in psql appear as one
column per line, rather than one row per line.

We've already discussed templates. The other interesting things are that we can turn
connections on and off for a database, and we can set connection limits for them, as well.

Also, you can see that each database has a default tablespace. Therefore, data tables get
created inside one specific database, and the data files for that table get placed in one
tablespace.

You can also see that each database has a collation sequence, which is the way that various
language features are defined. We'll cover more on that in the Choosing good names for
database objects recipe in Chapter 5, Tables and Data.

[61]

Exploring the Database Chapter 2

How many tables are there in a database?

The number of tables in a relational database is a good measure of the complexity of a
database, so it is a simple way to get to know any database. But the complexity of what?
Well, a complex database may have been designed to be deliberately flexible in order to
cover a variety of business situations, or a complex business process may have a limited
portion of its details covered in the database. So, a large number of tables might likely
reveal a complex business process, or just a complex piece of software.

In this recipe, we will show you how to compute the number of tables.

How to do it...

From any interface, type the following SQL command:

SELECT count (*) FROM information_schema.tables
WHERE table_schema NOT IN ('information_schema', 'pg_catalog');

You can also look at the list of tables directly, and judge whether the list is a small or large
number.

In psgl, you can see your own tables by using the following command:

$ PSql -c vv\dn
List of relations

Schema | Name | Type | Owner
public | accounts | table | postgres
public | branches | table | postgres

[62]

Exploring the Database Chapter 2

In pgAdmin 4, you can see the tables in the tree view on the left-hand side, as shown in the
following screenshot:

pgAdmin 4 Filev Objectv Toolsv Helpv
Browser ¥ |EB Y Dashboard Properties SQL Statistics Dependencies Dep
v = servers (2) i
> =11/main
v {11 /test
- v General
v = Databases (3)
¥ = cookbook MName pgt

> |59 casts

> éé}[:a‘[ak}gs 0D 16399

» [T Event Triggers -

> 5 Extensions Owner & giann

> = Foreign Data W

= roreign bata Tirappers Tablespace pg_default
v Languages (1)
plpgsal Partitioned Table?
v % schemas (1)
v ¢ public Comment

> 4l collations
» i Domains

w

[E FTS Configurations

[}, FTS Dictionaries

* AaFTS Parsers

> FTS Templates

> [Foreign Tables

> {(Z}Functions v Advanced

w

System table?

> Materialized Views

. Inherited from table(s)
> () Procedures (1)

? b3Sequences Inherited tables count 0
v [FiTables (4)
> [=pgbench_accounts Of type

> [pgbench_branches

- !

5 Has 0I1Ds?

How it works...

PostgreSQL stores information about the database in catalog tables. They describe every
aspect of the way the database has been defined. There is a main set of catalog tables stored
in a schema, called pg_catalog. There is a second set of catalog objects called the
information schema, which is the SQL standard way of accessing information in a
relational database.

[63]

Exploring the Database Chapter 2

We want to exclude both of these schemas from our query. Otherwise, we'll get too much
information. We excluded them in the preceding query using the NOT IN phrase in the
WHERE clause.

Note that this query shows only the number of tables in one of the
databases on the PostgreSQL server. You can only see the tables in the
database to which you are currently connected, so you'll need to run the
same query on each database in turn.

There's more...

The highest number of distinct, major tables I've ever seen in a database is 20,000, without
counting partitions, views, and work tables. That clearly rates as a very complex system:

Number of

distinct tables Complexity rating

(entities)

20,000 This is incredibly complex. You're either counting wrong or you have a big team to
i manage this.

2,000 This is a complex business database. Usually, not many of these are seen.

200 This is a typical modern business database.

20 This is a simple business database.

2 This is a database with a single, clear purpose, strictly designed for performance or

some other goal.
0 This tells you that you haven't loaded any data yet!

Of course, you can't always easily tell which tables are entities, so we just need to count the
tables. Some databases use a lot of partitions or similar tables, so the numbers can grow
dramatically. I've seen databases with up to 200,000 tables (of any kind). That's not
recommended, however, as the database catalog tables then begin to become awfully large.

How much disk space does a database use?

It is very important to allocate sufficient disk space for your database. If the disk gets full, it
will not corrupt the data, but it might lead to database server panic and then consequent
shutdown.

For planning or space monitoring, we often need to know how big the database is.

[64]

Exploring the Database Chapter 2

How to do it...

We can do this in the following ways:

e Look at the size of the files that make up the database server.
e Run a SQL request to confirm the database size.

If you look at the size of the actual files, you'll need to make sure that you include the data
directory and all subdirectories, as well as all other directories that contain tablespaces. This
can be tricky, and it is also difficult to break out all the different pieces.

The easiest way is to ask the database a simple query, like this:

SELECT pg_database_size (current_database());

However, this is limited to only the current database. If you want to know the size of all the
databases together, then you'll need a query such as the following:

SELECT sum(pg_database_size (datname)) from pg_database;

How it works...

The database server knows which tables it has loaded. It also knows how to calculate the
size of each table, so the pg_database_size () function just looks at the file sizes.

How much disk space does a table use?

The maximum supported table size is 32 TB and it does not require large file support from
the operating system. The file system size limits do not impact the large tables, as they are
stored in multiple 1 GB files.

Large tables can suffer performance issues. Indexes can take much longer to update and
query performance can degrade. In this recipe, we will see how to measure the size of a
table.

[65]

Exploring the Database Chapter 2

How to do it...
We can see the size of a table by using this command:

postgres=# select pg_relation_size ('pgbench_accounts');

The output of this command is as follows:

pg_relation_size

13582336
(1 row)

We can also see the total size of a table, including indexes and other related spaces, as

follows:

postgres=# select pg_total_relation_size ('pgbench_accounts');

The output is as follows:

pg_total_relation_size

15425536
(1 row)

We can also use a psql command, like this:

postgres=# \dt+ pgbench_accounts
List of relations

Schema | Name | Type | Owner | Size | Description
gianni | pgbench_accounts | table | gianni | 13 MB |
(1 row)

How it works...

In PostgreSQL, a table is made up of many relations. The main relation is the data table. In
addition, there are a variety of additional data files. Each index created on a table is also a
relation. Long data values are placed in a secondary table named TOAST, so, in most cases,

each table also has a TOAST table and a TOAST index.

[66]

Exploring the Database Chapter 2

Each relation consists of multiple data files. The main data files are broken into 1 GB pieces.
The first file has no suffix; others have a numbered suffix (such as . 2). There are also files
marked _vm and _f sm, which represent the visibility map and free space map, respectively.
They are used as part of maintenance operations. They stay fairly small, even for very large
tables.

There's more...

The preceding functions, which measure the size of a relation, output the number of bytes,
which is normally too large to be immediately clear. You can apply the

pg_size_pretty () function to format that number nicely, as shown in the following
example:

SELECT pg_size_pretty(pg_relation_size ('pgbench_accounts'));
This yields the following output:

Pg_size_pretty

13 MB
(1 row)

TOAST stands for The Oversized-Attribute Storage Technique. As the name implies, this
is a mechanism used to store long column values. PostgreSQL allows many data types to
store values up to 1 GB in size. It transparently stores large data items in many smaller
pieces, so the same data type can be used for data ranging from 1 byte to 1 GB. When
appropriate, values are automatically compressed and decompressed before they are split
and stored, so the actual limit will vary, depending on compressibility.

You may also see files ending in _init; they are used by unlogged tables and their indexes,
for restoring them after a crash. Unlogged objects are called this way because they do not
produce WAL. So, they support faster writes, but in the event of a crash they must be
truncated, that is, restored to an empty state.

Which are my biggest tables?

We've looked at getting the size of a specific table, so now it's time to widen the problem to
related areas. Rather than having an absolute value for a specific table, let's look at the
relative sizes.

[671]

Exploring the Database Chapter 2

How to do it...
The following basic query will tell us the 10 biggest tables:

SELECT table_name, pg_relation_size(table_schema || '.' || table_name) as
size

FROM information_schema.tables

WHERE table_schema NOT IN ('information_schema', 'pg_catalog')

ORDER BY size DESC

LIMIT 10;

The tables are shown in descending order of size, with at the most 10 rows displayed. In
this case, we look at all the tables in all the schemas, apart from the tables in
information_schema or pg_catalog, like we did in the How many tables are in the
database? recipe.

How it works...

PostgreSQL provides a dedicated function, pg_relation_size, to compute the actual disk
space used by a specific table or index. We just need to provide the table name. In addition
to the main data files, there are other files (called forks) that can be measured by specifying
an optional second argument. These include the Visibility Map (VM), the Free Space Map
(FSM), and the initialization fork for unlogged objects.

How many rows are there in a table?

There is no limit on the number of rows in a table but it is limited to available disk space
and memory/swap space. If you are storing rows that exceed 2 KB aggregated data size,
then the maximum number of rows may be limited to 4 billion or less.

Counting is one of the easiest SQL statements, so it is also many people's first experience of
a PostgreSQL query.

How to do it...
From any interface, the SQL command used to count rows is as follows:

SELECT count (*) FROM table;

[68]

Exploring the Database Chapter 2

This will return a single integer value as the result.
In psql, the command looks like the following:

postgres=# select count (*) from orders;
count

How it works...

PostgreSQL can choose between two techniques available to compute the SQL count (*)
function. Both are available in all the currently supported versions:

e The first is called sequential scan. We access every data block in the table one
after the other, reading the number of rows in each block. If the table is on the
disk, it will cause a beneficial disk access pattern, and the statement will be fairly
fast.

¢ The other technique is known as index-only scan. It requires an index on the
table, and it covers a more general case than optimizing SQL queries with
count (*), so we will cover it in more detail in chapter 10, Performance and
Concurrency.

Some people think that the count SQL statement is a good test of the performance of a
DBMS. Some DBMS have specific tuning features for the count SQL statement, and
Postgres optimizes this using index-only scans. The PostgreSQL project has talked about
this many times, but few people thought we should try to optimize this. Yes, the count
function is frequently used within applications, but without any WHERE clause, it is not that
useful. Therefore, the index-only scans feature has been implemented, which applies to
more real-world situations, as well as this recipe.

We scan every block of the table because of a major feature of Postgres,

named Multiversion Concurrency Control (MVCC). MVCC allows us to run the count
SQL statement at the same time that we are inserting, updating, or deleting data from the
table. That's a very cool feature, and we went to a lot of trouble in Postgres to provide it for
you.

[69]

Exploring the Database Chapter 2

MVCC requires us to record information on each row of a table, stating when that change
was made. If the changes were made after the SQL statement began to execute, then we just
ignore those changes. This means that we need to carry out visibility checks on each row in
the table to allow us to work out the results of the count SQL statement. The optimization
provided by index-only scans is the ability to skip such checks on the table blocks that are
already known to be visible to all current sessions. Rows in these blocks can be counted
directly on the index, which is normally smaller than the table, and is, therefore, faster.

If you think a little deeper about this, you'll see that the result of the count SQL statement is
just the value at a moment in time. Depending on what happens to the table, that value
could change a little or a lot while the count SQL statement is executing. So, once you've
executed this, all you really know is that, at a particular point in the past, there were exactly
x rows in the table.

Quickly estimating the number of rows in a
table

We don't always need an accurate count of rows, especially on a large table that may take a
long time to execute. Administrators often need to estimate how big a table is so that they
can estimate how long other operations may take.

How to do it...

We can get a quick estimate of the number of rows in a table using roughly the same
calculation that Postgres optimizer uses:

SELECT (CASE WHEN reltuples > 0 THEN
pg_relation_size (oid) *reltuples/ (8192*relpages)
ELSE O

END) : :bigint AS estimated_row_count

FROM pg_class

WHERE oid = 'mytable'::regclass;

This gives us the following output:

estimated_count

293
(1 row)

[70]

Exploring the Database Chapter 2

It returns a row count very quickly, no matter how large the table that we are examining
is. You may want to create a SQL function for the preceding calculation, so you won't need
to retype the SQL code every now and then.

The following function estimates the total number of rows using a mathematical procedure
called extrapolation. In other words, we take the average number of bytes per row
resulting from the last statistics collection, and we apply it to the current table size:

CREATE OR REPLACE FUNCTION estimated_row_count (text)

RETURNS bigint

LANGUAGE sql

As $$

SELECT (CASE WHEN reltuples > 0 THEN
pg_relation_size ($1) *reltuples/ (8192*relpages)
ELSE 0
END) : :bigint

FROM pg_class

WHERE oid = $1::regclass;

$$;

How it works...

We saw the pg_relation_size () function earlier, so we know that it brings back an
accurate value for the current size of the table.

When we vacuum a table in Postgres, we record two pieces of information in the pg_class
catalog entry for the table. These two items are the number of data blocks in the table
(relpages) and the number of rows in the table (reltuples). Some people think they can
use the value of reltuples in pg_class as an estimate, but it could be severely out of
date. You will also be fooled if you use information in another table named
pg_stat_user_tables, which is discussed in more detail in chapter 10, Performance and
Concurrency.

The Postgres optimizer uses the relpages and reltuples values to calculate the average
rows per block, which is also known as the average tuple density.

If we assume that the average tuple density remains constant over time, then we can
calculate the number of rows using this formula: Row estimate = number of data blocks * rows
per block.

We include some code to handle cases where the reltuples or relpages fields are zero.
The Postgres optimizer actually works a little harder than we do in that case, so our
estimate isn't very good.

[71]

Exploring the Database Chapter 2

The WHERE oid = 'mytable'::regclass; syntax introduces the concept of object
identifier types. They just use a shorthand trick to convert the name of an object to the
object identifier number for that object. The best way to understand this is to think of that
syntax as meaning the same as a function named relname2relid().

There's more...

The good thing about the aforementioned recipe is that it returns a value in about the same
time, no matter how big the table is. The bad thing about it is that pg_relation_size ()
requests a lock on the table, so if any other user has an AccessExclusiveLock lock on the
table, then the table size estimate will wait for the lock to be released before returning a
value.

Err... so what is an AccessExclusiveLock lock? While performing a SQL maintenance
action, such as changing the data type of a column, PostgreSQL will lock out all other
actions on that table, including pg_relation_size, which takes a lock in the
AccessShareLock mode. For me, a typical case is when I issue some form of SQL
maintenance action, such as ALTER TABLE, and the statement takes much longer than I
thought it would. At that point, I think, Oh, was that table bigger than I thought? How long will
I be waiting? Yes, it's better to calculate that beforehand, but hindsight doesn't get you out of
the hole you are in right now. So, we need a way to calculate the size of a table without
needing the lock.

My solution is to look at the operating system files that Postgres uses to store data, and
figure out how large they are.

Now, this can get somewhat difficult. If the table is locked, PostgreSQL is probably doing
something to the table, so trying to look at the files might well be fruitless or give wrong
answers. The following are the steps we need to perform:

1. First, get some details on the table from pg_class:

SELECT reltablespace, relfilenode FROM pg_class
WHERE oid = 'mytable'::regclass;

2. Then, confirm the databaseid in which the table resides:

SELECT oid as databaseid FROM pg_database
WHERE datname = current_database();

Together, reltablespace, databaseid, and relfilenode are the three things we need
to locate the underlying data files within the data directory.

[72]

Exploring the Database Chapter 2

If reltablespace is zero, then the files will be at the following location:

$SPGDATADIR/base/{databaseid}/{relfilenode}*

The bigger the table, the more files you see. If reltablespace is not zero, then the files
will be at the following location:

SPGDATADIR/pg_tblspc/{reltablespace}/{databaseid}/{relfilenode}*
Every file should be 1 GB in size, apart from the last file.
The preceding discussion glossed over a few other points, as follows:

¢ Postgres uses the terms data blocks and pages to refer to the same concept.
Postgres also does that with the terms tuple and row.

¢ A data block is 8,192 bytes in size, by default. You can change that if you
recompile the server yourself, and create a new database.

Here is a function that does what pg_relation_size does, more or less, without taking
any locks. Because of this, it is always fast, but it may give an incorrect result if the table is
being heavily altered at the same time:

CREATE OR REPLACE FUNCTION pg_relation_size_nolock (tablename regclass)
RETURNS BIGINT
LANGUAGE plpgsql

AS 3

DECLARE
classoutput RECORD;
tsid INTEGER;
rid INTEGER;
dbid INTEGER;
filepath TEXT;
filename TEXT;
datadir TEXT;
i INTEGER := O;
tablesize BIGINT,;

BEGIN

—-— Get data directory

EXECUTE 'SHOW data_directory' INTO datadir;

—— Get relfilenode and reltablespace

SELECT

reltablespace as tsid, relfilenode as rid
INTO classoutput

[73]

Exploring the Database Chapter 2

FROM pg_class
WHERE oid = tablename
AND relkind = 'r‘';

—— Throw an error if we can't find the tablename specified

IF NOT FOUND THEN
RAISE EXCEPTION 'tablename % not found', tablename;

END IF;
tsid := classoutput.tsid;
rid := classoutput.rid;

—-— Get the database object identifier (oid)

SELECT oid INTO dbid
FROM pg_database
WHERE datname = current_database();

—— Use some internals knowledge to set the filepath

IF tsid = 0 THEN

filepath := datadir || '/base/' || dbid || '/' || rid;
ELSE
filepath := datadir || '/pg_tblspec/' || tsid || '/’
[l dbid || '/' || rid;
END IF;

i

—— Look for the first file. Report if missing
SELECT (pg_stat_file(filepath)) .size
INTO tablesize;

—— Sum the sizes of additional files, if any

WHILE FOUND LOOP
=i+ 1;

filename := filepath || '.' || 1i;

-— pg_stat_file returns ERROR if it cannot see file
—— so we must trap the error and exit loop

BEGIN

SELECT tablesize + (pg_stat_file(filename)) .size
INTO tablesize;

EXCEPTION
WHEN OTHERS THEN
EXIT;

END;

[74]

Exploring the Database Chapter 2

END LOOP;

RETURN tablesize;
END;
$8;

This function can also work on Windows with a few minor changes, which are left as an
exercise for you.

Listing extensions in this database

Every PostgreSQL database contains some objects that are automatically brought in when
the database is created. Every user will find a pg_database system catalog that lists
databases, as shown in the Listing databases on this database server recipe. There is little point
in checking whether these objects exist, because even superusers are not allowed to drop
them.

On the other hand, PostgreSQL comes with tens of collections of optional objects, called
modules, or equivalently extensions. The database administrator can install or uninstall
these objects, depending on the requirements. They are not automatically included in a
newly created database, because they might not be required by every use case. Users will
install only the extensions they actually need, when they need them; an extension can be
installed while a database is up and running.

In this recipe, we will explain how to list extensions that have been installed on the current
database. This is important to get to know the database better, and also because certain
extensions affect the behavior of the database.

How to do it...

In PostgreSQL, there is a catalog table recording the list of installed extensions, so this
recipe is quite simple. Issue the following command:

cookbook=> SELECT * FROM pg_extension;

[75]

Exploring the Database Chapter 2

This results in the following output:

Note that the format is expanded, as if the \x meta command has been
previously issued.

~[RECORD 1]-—t——m—m—m—m—m—m

extname | plpgsql
extowner | 10
extnamespace | 11
extrelocatable | £
extversion | 1.0
extconfig |
extcondition |

To get the same list with fewer technical details, you can use the \dx meta command, as
when listing databases.

How it works...

A PostgreSQL extension is represented by a control file, <extension name>.control,
located in the SHAREDIR/extension directory, plus one or more files containing the actual
extension objects. The control file specifies the extension name, version, and other
information that is useful for the extension infrastructure. Each time an extension is
installed, uninstalled, or upgraded to a new version, the corresponding row in the
pg_extension catalog table is inserted, deleted, or updated, respectively.

There's more...

In this recipe, we only mentioned extensions distributed with PostgreSQL, and solely for
the purpose of listing which ones are being used in the current database. The infrastructure
for extensions will be described in greater detail in chapter 3, Configuration. We will talk
about the version number of an extension, and we will show you how to install, uninstall,
and upgrade extensions, including those distributed independently of PostgreSQL.

[76]

Exploring the Database Chapter 2

See also

To get an idea of which extensions are available, you can browse the list of additional
modules shipped together with PostgreSQL, which are almost all extensions,
at https://www.postgresqgl.org/docs/current/static/contrib.html.

Understanding object dependencies

In most databases, there will be dependencies between objects in the database. Sometimes,
we need to understand these dependencies to figure out how to perform certain actions,
such as modifying or deleting existing objects. Let's look at this in detail.

Getting ready

We'll use the following simple database to understand and investigate them:

1. Create two tables as follows:

CREATE TABLE orders (

orderid integer PRIMARY KEY

)i

CREATE TABLE orderlines (
orderid integer

,lineid smallint

,PRIMARY KEY (orderid, 1lineid)
)i

2. Now, we add a link between them to enforce what is known as referential
integrity, as follows:

ALTER TABLE orderlines ADD FOREIGN KEY (orderid)
REFERENCES orders (orderid);

3. If we try to drop the referenced table, we get the following message:

DROP TABLE orders;

ERROR: cannot drop table orders because other objects depend on it
DETAIL: constraint orderlines_orderid_fkey on table orderlines
depends on table orders

HINT: Use DROP ... CASCADE to drop the dependent objects too.

[77]

https://www.postgresql.org/docs/current/static/contrib.html

Exploring the Database Chapter 2

Be very careful! If you follow the hint, you may accidentally remove all the objects that
have any dependency on the orders table. You might think that this would be a great idea,
but it is not the right thing to do. It might work, but we need to ensure that it will work.

Therefore, you need to know what dependencies are present on the orders table, and then
review them. Then, you can decide whether it is okay to issue the CASCADE version of the
command, or whether you should reconcile the situation manually.

How to do it...

You can use the following command from psqgl to display full information about a table,
the constraints that are defined upon it, and the constraints that reference it:

\d+ orders

You can also get specific details of the constraints by using the following query:

SELECT * FROM pg_constraint
WHERE confrelid = 'orders'::regclass;

The aforementioned queries only covered constraints between tables. This is not the end of
the story, so read the There’s more... section.

How it works...

When we create a foreign key, we add a constraint to the catalog table, known as
pg_constraint. Therefore, the query shows us how to find all the constraints that depend
upon the orders table.

There's more...

With Postgres, there's always a little more when you look beneath the surface. In this case,
there's a lot more, and it's important.

We didn't discuss dependencies with other kinds of objects. Two important types of object
that might have dependencies on tables are views and functions.

[78]

Exploring the Database Chapter 2

Consider the following command:

DROP TABLE orders;

If you issue this, the dependency on any of the views will prevent the table from being
dropped. So, you need to remove those views and then drop the table.

The story with function dependencies is not as useful. Relationships between functions and
tables are not recorded in the catalog, nor is the dependency information between
functions. This is partly due to the fact that most PostgreSQL procedural languages allow
dynamic query execution, so you wouldn't be able to tell which tables or functions a
function would access until it executes. That's only partly the reason, because most
functions clearly reference other tables and functions, so it should be possible to identify
and store those dependencies. However, right now, we don't do that. So, make a note that
you need to record the dependency information for your functions manually, so that you'll
know if and when it's okay to remove or alter a table or other objects that the functions
depend on.

[79]

Configuration

I get asked many questions about parameter settings in PostgreSQL. Everybody's busy, and
most people want a five-minute tour of how things work. That's exactly what a cookbook
does, so we'll do our best.

Some people believe that there are some magical parameter settings that will improve their
performance, and spend hours combing the pages of books to glean insights. Others feel
comfortable because they have found a website somewhere that explains everything, and
they know they have their database configured OK.

For the most part, the settings are easy to understand. Finding the best setting can be
difficult, and the optimal setting may change over time. This chapter is mostly about
knowing how, when, and where to change parameter settings.

In this chapter, we will cover the following recipes:

¢ Reading the fine manual

¢ Planning a new database

e Changing parameters in your programs

e Finding the current configuration settings

e Which parameters are at non-default settings?
e Updating the parameter file

e Setting parameters for particular groups of users
e The basic server configuration checklist

¢ Adding an external module to PostgreSQL

¢ Using an installed module

¢ Managing installed extensions

Configuration Chapter 3

Reading the fine manual

Reading the fine manual (RTFM) is often (rudely) used to mean don 't bother me; I'm

busy, or it is used as a stronger form of abuse. The strange thing is that asking you to read a
manual is most often very good advice. Don't force the advisor—instead, take the advice!
The most important point to remember is that you should refer to a manual whose release
version matches that of the server on which you are operating.

The PostgreSQL manual is very well-written and comprehensive in its coverage of specific
topics. However, one of its main failings is that the documents aren't organized in a way
that helps somebody who is trying to learn PostgreSQL. They are organized from the
perspective of people checking specific technical points so that they can decide whether
their difficulty is a user error. It sometimes answers what? But it seldom answers why? And
it seldom answers how?

I've helped write sections of the PostgreSQL documents, so I'm not embarrassed to steer
you toward reading them. There are, nonetheless, many things to read here that are useful.

How to do it...

The main documents for each PostgreSQL release are available at
http://www.postgresgl.org/docs/manuals/.

The most frequently accessed parts of the documents are as follows:
e The SQL command reference, as well as client and server tools reference:

http://www.postgresgl.org/docs/current/interactive/reference.html

¢ Configuration:
http://www.postgresqgl.org/docs/current/interactive/runtime-config.html

¢ Functions:
http://www.postgresgl.org/docs/current/interactive/functions.html

You can also grab yourself a PDF version of the manual, which can allow for easier
searching in some cases. Don't print it! The documents are more than 2,000 pages of A4-
sized sheets.

[81]

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/current/interactive/reference.html
http://www.postgresql.org/docs/current/interactive/runtime-config.html
http://www.postgresql.org/docs/current/interactive/functions.html

Configuration Chapter 3

How it works...

The PostgreSQL documents are written in Standard Generalized Markup Language
(SGML), which is similar to, but not the same as, XML. These files are then processed to
generate HTML files, PDFs, and so on. This ensures that all the formats have exactly the
same content. Then, you can choose the format you prefer, and you can even compile it in
other formats, such as EPUB, INFO, and so on.

Moreover, the PostgreSQL manual is actually a subset of the PostgreSQL source code, so it
evolves together with the software. It is written by the same people who make PostgreSQL,
which gives you even more reasons to read it!

There's more...

More information is also available at http://wiki.postgresql.org.

Many distributions offer packages that install static versions of the HTML documentation.
For example, on Debian and Ubuntu, the docs for the most recent stable PostgreSQL
version is named postregsqgl—-doc—11.

Planning a new database

Planning a new database can be a daunting task. It's easy to get overwhelmed by it, so here
we will present some planning ideas. It's also easy to charge headlong at the task, thinking
that whatever you know is all you'll ever need to consider.

Getting ready

You are ready. Don't wait to be told what to do. If you haven't been told what the
requirements are, then write down what you think they are, clearly labeling them as
assumptions rather than requirements; you must not confuse the two.

Iterate until you get some agreement, and then build a prototype.

[82]

http://wiki.postgresql.org/

Configuration Chapter 3

How to do it...

Write a document that covers the following items:

Database design—plan your database design.

Calculate the initial database sizing.

Transaction analysis—how will we access the database?

Look at the most frequent access paths (for example, queries).

What are the requirements for the response times?

Hardware configuration.

Initial performance thoughts—will all of the data fit into the available RAM?
Choose the operating system and filesystem types.

How do we partition the disk?

Localization plan.

Decide the server encoding, locale, and the time zone.

Access and security plan.

Identify client systems and specify the required drivers.

Create roles according to a plan for access control.

Specify pg_hba. conf.

Monitoring—are there PostgreSQL plugins for the monitoring solution you are

already using (usually yes)? What are the business-specific metrics we need to
monitor?

Maintenance plan—who will keep it working? How?

Availability plan—consider the availability requirements.

checkpoint_timeout (for more details on this parameter, see the Understanding
and controlling crash recovery recipe in Chapter 11, Backup and Recovery).

Plan your backup mechanism and test it.

High-availability plan.

Decide which form of replication you'll need, if any.

How it works...

One of the most important reasons for planning your database ahead of time is that
retrofitting some things is difficult. This is especially true of server encoding and locale,
which can cause much downtime and exertion if we need to change them later. Security is
also much more difficult to set up after the system is live.

[83]

Configuration Chapter 3

There's more...

Planning always helps. You may know what you're doing, but others may not. Tell
everybody what you're going to do before you do it to avoid wasting time. If you're not
sure yet, then build a prototype to help you decide. Approach the administration
framework as if it were a development task. Make a list of things you don't know yet, and
work through them one by one.

This is deliberately a very short recipe. Everybody has their own way of doing things, and
it's very important not to be too prescriptive about how to do things. If you already have a
plan, great! If you don't, think about what you need to do, make a checklist, and then do it.

Changing parameters in your programs

PostgreSQL allows you to set some parameter settings for each session or transaction.

How to do it...

Execute the following steps to set custom parameters settings:
1. You can change the value of a setting during your session, like this:
SET work_mem = 'l6MB';

2. This value will then be used for every future transaction. You can also change it
only for the duration of the current transaction:

SET LOCAL work_mem = 'l6MB';

3. The setting will last until you issue this command:
RESET work_mem;

4. Alternatively, you can issue the following command:

RESET ALL;

[84]

Configuration Chapter 3

The SET and RESET commands are SQL commands that can be issued from any interface.
They apply only to PostgreSQL server parameters, but this does not mean that they affect
the entire server. In fact, the parameters you can change with SET and RESET apply only to
the current session. Also, note that there may be other parameters, such as JDBC driver
parameters, that cannot be set in this way. Refer to the Connecting to the PostgreSQL server
recipe in Chapter 1, First Steps, for help with those parameters.

How it works...

Suppose you change the value of a setting during your session, for example, by issuing this
command:

SET work_mem = 'l6MB';
Then, the following will show up in the pg_settings catalog view:

postgres=# SELECT name, setting, reset_val, source FROM pg_settings WHERE

source = 'session';
name | setting | reset_val | source
+ + +
work_mem | 16384 | 4096 | session

This will show until you issue this command:

RESET work_mem;

After issuing it, the setting returns to reset_val and the source returns to the default:

name | setting | reset_wval | source

work_mem | 4096 | 4096 | default

There's more...

You can change the value of a setting during your transaction as well, like this:
SET LOCAL work_mem = '16MB';

This results in the following output:

WARNING: SET LOCAL can only be used in transaction blocks
SET

[85]

Configuration Chapter 3

In order to understand what the warning means, we can look that setting up in the
pg_settings catalog view:

postgres=# SELECT name, setting, reset_val, source FROM pg_settings WHERE

source = 'session';
name | setting | reset_val | source
+ + +
work_mem | 4096 | 4096 | session

Huh? What happened to your parameter setting? The SET LOCAL command takes effect
only for the transaction in which it was executed, which was just the SET LOCAL command
in our case. We need to execute it inside a transaction block to be able to see the setting take
hold, as follows:

BEGIN;
SET LOCAL work_mem = 'l6MB';

Here is what shows up in the pg_settings catalog view:

postgres=# SELECT name, setting, reset_val, source
FROM pg_settings WHERE source = 'session';

name setting | reset_val | source

I + +
T T T

work_mem | 16384 | 4096 | session

You should also note that the value of source is session rather than transaction, as
you might have been expecting.

Finding the current configuration settings

At some point, it will occur to you to ask, What are the current configuration settings?

Most settings can be changed in more than one way, and some ways do not affect all users
or all sessions, so it is quite possible to get confused.

How to do it...

Your first thought is probably to look in postgresql . conf, which is the configuration file,
and is described in detail in the Updating the parameter file recipe. That works, but only as
long as there is only one parameter file. If there are two, then maybe you're reading the
wrong file! How would you know? So, the cautious and accurate way is to not trust a text
file, but to trust the server itself.

[86]

Configuration Chapter 3

Moreover, you learned in the previous recipe, Changing parameters in your programs, that
each parameter has a scope that determines when it can be set. Some parameters can be set
through postgresql.conf, but others can be changed afterwards. So, the current values
of the configuration settings may have been subsequently changed.

We can use the SHOW command like this:
postgres=# SHOW work_mem;

Its output is as follows:
work_mem

4MB
(1 row)

However, remember that it reports the current setting at the time it is run, and that can be
changed in many places.

Another way of finding the current settings is to access a PostgreSQL catalog view named
Pg_settings:

postgres=# \x
Expanded display is on.

short_desc Sets the maximum memory to be used for query workspaces.
extra_desc This much memory can be used by each internal sort operation
and hash table before switching to temporary disk files.

postgres=# SELECT * FROM pg_settings WHERE name = 'work_mem';
[RECORD 1]
name | work_mem
setting | 4096
unit | kB
category | Resource Usage / Memory
I
I

context | user
vartype | integer
source | default
min_val | 64

max_val | 2147483647
enumvals |

boot_val | 4096
reset_val | 4096
sourcefile |

sourceline |

Thus, you can use the SHOW command to retrieve the value for a setting, or you can access
the full details using the catalog table.

[871]

Configuration Chapter 3

The actual location of each configuration file can be asked directly to the PostgreSQL
server, as shown in this example:

postgres=# SHOW config_file;

This returns the following output:

config_file

/etc/postgresql/11/main/postgresql.conf
(1 row)

The other configuration files can be located by querying similar variables, that is, hba_file
and ident_file.

How it works...

Each parameter setting is cached within each session so that we can get quick access to the
parameter settings. This allows us to access the parameter settings with ease.

Remember that the values displayed are not necessarily settings for the server as a whole.
Many of those parameters will be specific to the current session. That's different than what
you experience with many other types of database software, and it is also very useful.

Which parameters are at non-default
settings?

Often, we need to check which parameters have been changed, or whether our changes
have taken effect correctly.

In the previous two recipes, we have seen that parameters can be changed in several ways,
and with different scopes. You learned how to inspect the value of one parameter or get the
full list of parameters.

In this recipe, we will show you how to use SQL capabilities to list only those parameters
whose value in the current session differs from the system-wide default value.

[881]

Configuration Chapter 3

This list is valuable for several reasons. First, it includes only a few of the 200+ available
parameters, so it is more immediate. Also, it is difficult to remember all our past actions,
especially in the middle of a long or complicated session.

PostgreSQL also supports the ALTER SYSTEM syntax, which we will describe in the next
recipe, Updating the parameter file. From the viewpoint of this recipe, the behavior of this
syntax is quite different compared to the other setting-related commands: you run it from
within your session, and it changes the default value, but not the value in your session.

How to do it...

We write an SQL query that lists all parameter values, excluding those whose current value
is either the default or set from a configuration file:

postgres=# SELECT name, source, setting
FROM pg_settings
WHERE source != 'default'
AND source != 'override'
ORDER by 2, 1;

The output is as follows:

name | source | setting

client

client
configuration file
configuration file
configuration file posix
configuration file en_GB.UTF-8

application_name |
|
|
|
|
|

configuration file | en_GB.UTF-8
|
|
|
|
|
|
|
|

client_encoding

DateStyle
default_text_search_config
dynamic_shared_memory_type
lc_messages

lc_monetary

lc_numeric

lc_time

psql

UTF8

ISO, DMY
pg_catalog.english

configuration file en_GB.UTF-8
configuration file en_GB.UTF-8

— e - —— - — - —— —— = —

log_timezone configuration file Europe/Rome
max_connections configuration file 100

port configuration file 5460
shared_buffers configuration file 16384
TimeZone configuration file Europe/Rome
max_stack_depth environment variable 2048

[891]

Configuration Chapter 3

How it works...

From pg_settings, you can see which parameters have non-default values, and what the
source of the current value is. The SHOW command doesn't tell you whether a parameter is
set at a non-default value. It just tells you the value, which isn't of much help if you're
trying to understand what is set and why. If the source is a configuration file, then the
sourcefile and sourceline columns are also set. These can be useful in understanding
where the configuration came from.

There's more...

The setting column of pg_settings shows the current value, but you can also look at
the boot_val and reset_val parameters. The boot_val parameter shows the value that
was assigned when the PostgreSQL database cluster was initialized (initdb), while
reset_val shows the value that the parameter will return to if you issue the RESET
command.

The max_stack_depth parameter is an exception, because pg_settings says it is set by
the environment variable, though it is actually set by ulimit -s on Linux and Unix
systems. The max_stack_depth parameter just needs to be set directly on Windows.

The timezone settings are also picked up from the OS environment, so you shouldn't need
to set those directly. They are written to postgresqgl.conf when the data directory is
initialized, so they show up as configuration files.

Updating the parameter file

The parameter file is the main location that's used for defining parameter values for the
PostgreSQL server. All the parameters can be set in the parameter file, which is known as
postgresqgl.conf. There are also two other parameter files: pg_hba.conf and
pg_ident.conf. Both of these relate to connections and security, so we'll cover them in the
appropriate chapters that follow.

[90]

Configuration Chapter 3

Getting ready

Before we start this recipe, we need to locate postgresql.conf, as described in Finding the
current configuration settings recipe.

How to do it...

Some of the parameters take effect only when the server is first started. A typical example
might be shared_buffers, which defines the size of the shared memory cache. Many of
the parameters can be changed while the server is still running.

After changing the required parameters, we issue a reload command to the server, forcing
PostgreSQL to re-read the postgresqgl.conf file (and all other configuration files). There
are a number of ways to do that, depending on your distribution and OS. The most
common is to issue the following command, with the same OS user that runs the
PostgreSQL server process:

pg_ctl reload

This assumes the default data directory; otherwise, you have to specify the correct data
directory with the -D option.

As we previously noted, Debian and Ubuntu have a different multiversion architecture, so
you should issue the following command instead:

pg_ctlcluster 11 main reload
On modern distributions, you should use systemd, as follows:
sudo systemctl reload postgresqgl@ll-main

See the Starting the database server manually recipe in Chapter 4, Server
Control, for more details on how to manage PostgreSQL via systemd; the
Reloading the server configuration files recipe, also in Chapter 4, Server
Control, shows more ways to reload configuration files.

Some other parameters require a restart of the server for changes to take effect—for
instance, max_connections, listen_addresses, and so on. The syntax is very similar to
a reload operation, as shown here:

pg_ctl restart

[91]

Configuration Chapter 3

For Debian and Ubuntu, use this command:

Pg_ctlcluster 11 main restart

With system, use this command:

sudo systemctl restart postgresql@ll-main

Of course, a restart also has some impact on existing connections. See the Restarting the
server quickly recipe in Chapter 4, Server Control, for further details.

The postgresqgl.conf file is a normal text file that can be simply edited. Most of the
parameters are listed in the file, so you can just search for them and then insert the desired
value in the right place.

How it works...

If you set the same parameter twice in different parts of the file, the last setting is what
applies. This can cause lots of confusion if you add settings to the bottom of the file, so you
are advised against doing it.

A longstanding and good practice is to version-control configuration files by using Git
alongside any other code or configuration changes. An even better alternative is to use
configuration management software such as Ansible, Chef, or Puppet, rather than editing
configuration files directly.

There's more...

The postgresql. conf file also supports an include directive. This allows the
postgresql.conf file to reference other files, which can then reference other files, and so
on. That may help you organize your parameter settings better, if you don't make it too
complicated.

For more on reloading, see the Reloading the server configuration files recipe in Chapter 4,
Server Control.

Furthermore, you can change the values stored in the parameter files directly from your
session, with syntax such as the following:

ALTER SYSTEM SET shared_buffers = 'lGB';

[92]

Configuration Chapter 3

This command will not actually edit postgresqgl.cont. Instead, it writes the new setting
to another file named postgresql.auto.conf. The effect is equivalent, albeit in a safer
way. The original configuration is never written, so it cannot be damaged in the event of a
crash. If you mess up with too many ALTER SYSTEM commands, you can always delete
postgresqgl.auto.conf manually and reload the configuration or restart PostgreSQL,
depending on what parameters you changed.

PostgreSQL 11 now supports up to 7 TB of cache, if you have that much
memory.

Setting parameters for particular groups of
users

PostgreSQL supports a variety of ways of defining parameter settings for various user
groups. This is very convenient, especially for managing user groups that have different
requirements.

How to do it...

Follow these steps to set parameters at various levels as per the requirements:
1. For all users in the saas database, use the following commands:

ALTER DATABASE saas
SET configuration_parameter = valuel;

2. For a user named simon connected to any database, use the following
commands:

ALTER ROLE simon
SET configuration_parameter = value2;

3. Alternatively, you can set a parameter for a user only when they're connected to
a specific database, as follows:

ALTER ROLE simon
IN DATABASE saas
SET configuration_parameter = value3;

[93]

Configuration Chapter 3

The user won't know that these have been executed specifically for them. These are default
settings, and in most cases they can be overridden if the user requires non-default values.

How it works...

You can set parameters for each of the following:

e Database
e User (also called role by postgresQL)
e Database and user combination

Each of the parameter defaults is overridden by the one following it.
In the preceding three SQL statements, the following apply:

e If gianni connects to the saas database, then valuel will apply
e If simon connects to a database other than saas, then value2 will apply
e If simon connects to the saas database, then value3 will apply

PostgreSQL implements this in exactly the same way as if the user had manually issued the
equivalent SET statements immediately after connecting.

The basic server configuration checklist

PostgreSQL arrives configured for use on a shared system, though many people want to
run dedicated database systems. The PostgreSQL project wishes to ensure that PostgreSQL
will play nicely with other server software, and will not assume that it has access to the full
server resources. If you, as the system administrator, know that there is no other important
server software running on the system, then you can crank the values up much higher.

Getting ready

Before we start, we need to know two sets of information:

¢ The size of the physical RAM that will be dedicated to PostgreSQL
e The types of applications for which we will use PostgreSQL

[94]

Configuration Chapter 3

How to do it...

If your database is larger than 32 MB, then you'll probably benefit from increasing
shared_buffers. You can increase this to a much larger value, but remember that running

out of memory induces many problems.

For instance, PostgreSQL is able to store information on disk when the available memory is
too small, and it employs sophisticated algorithms to treat each case differently and to place
each piece of data on the disk or in memory, depending on each use case.

On the other hand, overstating the amount of available memory confuses such abilities and
results in suboptimal behavior. For instance, if the memory is swapped to disk, then
PostgreSQL will inefficiently treat all data as if it were the RAM. Another unfortunate
circumstance is when the Linux Out-Of-Memory (OOM) killer terminates one of the
various processes spawned by the PostgreSQL server. So, it's better to be conservative. It is
good practice to set a low value in your postgresqgl.conf and increment slowly to ensure
that you get the benefits from each change.

If you increase shared_buffers and you're running on a non-Windows server, you will
almost certainly need to increase the value of the sHMMAX OS parameter (and on some
platforms, other parameters as well).

On Linux, macOS, and FreeBSD, you will need to either edit the /etc/sysctl.conf file or
use sysctl —w with the following values:

e For Linux, use kernel.shmmax=value
e For macOS, use kern.sysv.shmmax=value

e For FreeBSD, use kern.ipc.shmmax=value

There's more...

For more information, you can refer to
http://www.postgresqgl.org/docs/11/static/kernel-resources.html#SYSVIPC

For example, on Linux, add the following line to /etc/sysctl.conf:
kernel . shmmax=value

Don't worry about setting effective_cache_size. It is much less important a parameter
than you might think. There is no need for too much fuss when selecting the value.

[95]

http://www.postgresql.org/docs/11/static/kernel-resources.html#SYSVIPC
http://www.postgresql.org/docs/11/static/kernel-resources.html#SYSVIPC

Configuration Chapter 3

If there is heavy write activity, you may want to set wal_buffers to a much higher value
than the default. In fact, wal_buffers is automatically set from the value of
shared_buffers, following a rule that fits most cases. However, it is always possible to
specify an explicit value that overrides the computation for the very few cases where the
rule is not good enough.

If you're doing heavy write activity and/or large data loads, you may want to
setmax_wal_size and min_wal_size higher than the default to avoid wasting I/O in
excessively frequent checkpoints. You may also wish to set checkpoint_timeout and
checkpoint_completion_target.

PostgreSQL tries its best to decouple query latency from storage performance: synchronous
writes are limited to the WAL directory, and most calculations are carried out in memory
buffers. However, there are cases where a query will need to use the disk before returning
(for example, for reading data that was not already cached), meaning that fewer
checkpoints will actually improve query latency.

If your database has many large queries, you may wish to set work_mem to a value higher
than the default. However, remember that such a limit applies to each node separately in
the query plan, so there is a real risk of over-allocating memory, with all the problems we
discussed earlier.

Ensure that aut ovacuum is turned on, unless you have a very good reason to turn it off;
most people don't. See later chapters for more information on autovacuum; in particular,
see Chapter 9, Regular Maintenance.

Leave the settings as they are for now. Don't fuss too much about getting the settings right.
You can change most of them later, so you can take an iterative approach to improving
things.

And, remember, don't touch the £sync parameter. It's keeping you safe.

Adding an external module to PostgreSQL

Another strength of PostgreSQL is its extensibility. Extensibility was one of the original
design goals, going back to the late 1980s. Now, in PostgreSQL 11, there are many
additional modules that plug into the core PostgreSQL server.

[961]

Configuration Chapter 3

There are many kinds of additional module offerings, such as the following:

¢ Additional functions
¢ Additional data types
¢ Additional operators
¢ Additional index types

Note that many tools and client interfaces work with PostgreSQL without
any special installation. Here, we are discussing modules that extend and
alter the behavior of the server beyond its normal range of SQL standard
syntax, functions, and behavior.

The procedure that makes a module usable is actually a two-step process.
First, you install the module's files on your system so that they become
available to the database server. Next, you connect to the database (or
databases) where you want to use the module, and create the required
objects. The first step is discussed in this recipe. For the second step, refer
to the next recipe, Using an installed module.

In this book, we will use the words extension and module as synonyms, as
we did in the PostgreSQL documentation. Note, however, that the SQL
commands that manage extensions, which we'll describe in the next
recipe, are as follows:

e CREATE EXTENSION myext;
e ALTER EXTENSION myext UPDATE;

In particular, commands such as CREATE MODULE won't work at all!

Getting ready

First, you'll need to select an appropriate module to install.

[97]

Configuration Chapter 3

The journey toward a complete, automated package management system for PostgreSQL is
not over yet, so you need to look in more than one place for the available modules, such as
the following:

Contrib: The PostgreSQL core includes many functions. There is also an official
section for add-in modules, known as contrib modules. They are always
available for your database server, but are not automatically enabled in every
database, because not all users might need them. In PostgreSQL Version 11, we
have 45 such modules. These are documented at
http://www.postgresqgl.org/docs/11/static/contrib.html.

PGXN: This is the PostgreSQL Extension Network, a central distribution system
dedicated to sharing PostgreSQL extensions. The website started in 2010 as a
repository dedicated to the sharing of extension files. As of November 2018, there
were 279 extensions from 317 different authors. You can learn more about it at
http://pgxn.org/.

Separate projects: These are large external projects, such as PostGIS, offering
extensive and complex PostgreSQL modules. For more information, take a look
at http://www.postgis.org/.

How to do it...

There are several ways to make additional modules available for your database server, as

follows:

Using a software installer

Installing from PGXN

Installing from a manually downloaded package
Installing from source code

Often, a particular module will be available in more than one way, and users are free to
choose their favorite, exactly like PostgreSQL itself, which can be downloaded and installed
through many different procedures.

Installing modules using a software installer

Certain modules are available exactly like any other software packages that you may want
to install in your server. All main Linux distributions provide packages for the most
popular modules, such as PostGIS, SkyTools, procedural languages other than those
distributed with the core, and so on.

[981]

http://www.postgresql.org/docs/11/static/contrib.html
http://pgxn.org/
http://www.postgis.org/

Configuration Chapter 3

Modules can sometimes be added during installation if you're using a standalone installer
application, for example, the OneClick installer, or tools such as rpm, apt-get, and YaST
on Linux distributions. The same procedure can also be followed after the PostgreSQL
installation, when the need for a certain module arrives. We will actually describe this case,
which is very common.

For example, let's say that you need to manage a collection of Debian package files and that
one of your tasks is to be able to pick the latest version of one of them. You start by building
a database that records all package files. Clearly, you need to store the version number of
each package. However, Debian version numbers are much more complex than what we
usually call numbers. For instance, on my Debian laptop, I currently have

the 11.1-1.pgdg90+1 version of the PostgreSQL client package. Despite being
complicated, that string follows a clearly defined specification, which includes many bits of
information, including how to compare two versions to establish which of them is older.

Since this recipe discusses extending PostgreSQL with custom data types and operators,
you might have already guessed that I will now consider a custom data type for Debian
version numbers that is capable of tasks such as understanding the Debian version number
format, sorting version numbers, choosing the latest version number in a given group, and
so on. It turns out that somebody else already did the work of creating the required
PostgreSQL data type, endowed with all the useful accessories: comparison operators,
input/output functions, support for indexes, and maximum/minimum aggregates. All of
this has been packaged as a PostgreSQL extension, as well as a Debian package (not a big
surprise), so it is just a matter of installing the postgresql-11-debversion package with
a Debian tool such as apt-get, aptitude, or synaptic. On my laptop, that boils down to
the following command:

apt—-get install postgresql-ll-debversion

This will download the required package and unpack all the files in the right locations,
making them available to my PostgreSQL server.

Installing modules from PGXN

The PostgreSQL Extension Network, PGXN for short, is a website (http://pgxn.org) that
was launched in late 2010 with the purpose of providing a central distribution system for
open source PostgreSQL extension libraries. Anybody can register and upload their own
module, packaged as an extension archive. The website allows you to browse the available
extensions and their versions, either via a search interface or from a directory of packages
and usernames.

[991]

http://pgxn.org/

Configuration Chapter 3

The simple way is to use a command-line utility called pgxnclient. It can be easily
installed in most systems; see the PGXN website for how to do this. Its purpose is to
interact with PGXN and take care of administrative tasks, such as browsing available
extensions, downloading the package, compiling the source code, installing files in the
proper places, and removing installed package files. Alternatively, you can download the
extension files from the website and place them in the right place by following the
installation instructions.

PGXN is different compared to the official repositories because it serves another purpose.
Official repositories usually contain only seasoned extensions, because they accept new
software only after a certain amount of evaluation and testing. On the other hand, anybody
can ask for a PGXN account and upload their own extensions, so there is no filter except
requiring that the extension has an open source license and a few files that any extension
must have.

Installing modules from source code

In many cases, useful modules may not have full packaging. In these cases, you may need
to install the module manually. This isn't very hard, and it's a useful exercise that will help
you understand what happens.

Each module will have different installation requirements. There are generally two aspects
of installing a module. They are as follows:

e Building the libraries (only for modules that have libraries)
¢ Installing the module files in the appropriate locations

You need to follow the instructions for the specific module in order to build the libraries, if
any are required. Installation will then be straightforward, and usually there will be a
suitably prepared configuration file for the make utility, so you just need to type the
following command:

make install

Each file will be copied to the right directory. Remember that you normally need to be a
system superuser in order to install files on the system's directories.

Once a library file is in the directory expected by the PostgreSQL server, it will be loaded
automatically as soon as requested by a function. Modules such as auto_explain do not
provide any additional user-defined functions, so they won't be auto-loaded; that needs to
be done manually by a superuser with a LOAD statement.

[100]

Configuration Chapter 3

How it works...

PostgreSQL can dynamically load libraries in the following ways:

¢ Using the explicit LOAD command in a session

e Using the shared_preload_libraries parameter in postgresql.conf at the
server start

o At the session start, using the local_preload_libraries parameter for a
specific user, as set using ALTER ROLE

PostgreSQL functions and objects can reference code in these libraries, allowing extensions
to be bound tightly to the running server process. The tight binding makes this method
suitable for use in even very high-performance applications, and there's no significant
difference between additionally supplied features and native features.

Using an installed module

In this recipe, we will explain how to enable an installed module so that it can be used in a
particular database. The additional types, functions, and so on will exist only in those
databases where we have carried out this step.

Although most modules require this procedure, there are actually a
couple of notable exceptions. For instance, the auto_explain module we
mentioned earlier, which is shipped together with PostgreSQL, does not
create any function, type, or operator. To use it, you must load its object
file using the LOAD command. From that moment, all statements longer
than a configurable threshold will be logged together with their execution
plan. In the rest of this recipe, we will cover all the other modules. They
do not require a LOAD statement, because PostgreSQL can automatically
load the relevant libraries when they are required.

As we mentioned in the previous recipe, Adding an external module to PostgreSQL, specially
packaged modules are called extensions in PostgreSQL. They can be managed with
dedicated SQL commands.

[101]

Configuration Chapter 3

Getting ready

Suppose that you have chosen to install a certain module among those available for your
system (see the previous recipe, Adding an external module to PostgreSQL); all you need to
know is the extension name.

How to do it...

Each extension has a unique name, so it is just a matter of issuing the following command:

CREATE EXTENSION myextname;
This will automatically create all the required objects inside the current database.

For security reasons, you need to do so as a database superuser. For instance, if you want to
install the db1ink extension, type this:

CREATE EXTENSION dblink;

How it works...

When you issue a CREATE EXTENSION command, the database server looks for a file
named EXTNAME. control in the SHAREDIR/extension directory. That file tells
PostgreSQL some properties of the extension, including a description, some installation
information, and the default version number of the extension (which is unrelated to the
PostgreSQL version number). Then, a creation script is executed in a single transaction;
thus, if it fails, the database is unchanged. The database server also notes down the
extension name and all the objects that belong to it in a catalog table.

Managing installed extensions

In the last two recipes, we showed you how to install external modules in PostgreSQL to
augment its capabilities.

In this recipe, we will show you some more capabilities that are offered by the extension
infrastructure.

[102]

Configuration Chapter 3

How to do it...

The following are the steps to manage the extensions:

1. First, we list all the available extensions:

postgres=# \x on

Expanded display is on.

postgres=# SELECT *

postgres—# FROM pg_available_extensions
postgres—# ORDER BY name;

—[RECORD 1] +

name
default_version

| adminpack

I
installed_version |

I

2.0

comment
—[RECORD 2]

administrative functions for PostgreSQL

name
default_version
installed_version
comment

statements execute

(...)

pPg_stat statements
1.6

track execution statistics of all SQL

Q.____

In particular, if the db1ink extension is installed, then we see a record such as

this:
—[RECORD 10] t
name | dblink
default_version | 1.2
installed_version | 1.2
I

comment
within a database

connect to other PostgreSQL databases from

2. Now, we can list all the objects in the db1link extension, as follows:

postgres=# \x off
Expanded display is off.
postgres=# \dx+ dblink
Objects in extension "dblink"
Object Description

function dblink_build_sql_delete (text, int2vector, integer,text[])
function

[103]

Configuration Chapter 3

dblink_build_sql_insert (text, int2vector, integer,text[], text[])
function
dblink_build_sql_update (text, int2vector, integer,text[],text[])
function dblink_cancel_gquery (text)
function dblink_close (text)
function dblink_close (text,boolean)
function dblink_close (text, text)

(...)

3. Objects created as parts of extensions are not special in any way, except that you
can't drop them individually. This is done to protect you from mistakes:

postgres=# DROP FUNCTION dblink_close (text);

ERROR: cannot drop function dblink_close (text) because extension
dblink requires it

HINT: You can drop extension dblink instead.

4. Extensions might have dependencies, too. The cube and earthdistance
contrib extensions are a good example, since the latter depends on the former:

postgres=# CREATE EXTENSION earthdistance;

ERROR: required extension "cube" is not installed

HINT: Use CREATE EXTENSION ... CASCADE to install required
extensions too.

postgres=# CREATE EXTENSION earthdistance CASCADE;

NOTICE: installing required extension "cube"

CREATE EXTENSION

Note how the CASCADE keyword was used to automatically create all the other
extensions that the extension being created depends on, as clearly reminded by
the HINT message.

5. As you can reasonably expect, dependencies are taken into account when
dropping objects, just like for other objects:

postgres=# DROP EXTENSION cube;
ERROR: cannot drop extension cube because other objects depend on

it
DETAIL: extension earthdistance depends on extension cube
HINT: Use DROP ... CASCADE to drop the dependent objects too.

postgres=# DROP EXTENSION cube CASCADE;
NOTICE: drop cascades to extension earthdistance
DROP EXTENSION

[104]

Configuration Chapter 3

How it works...

The pg_available_extensions system view shows one row for each extension control
file in the SHAREDIR/extension directory (see the Using an installed module recipe). The
pg_extension catalog table records only the extensions that have actually been created.

The psql command-line utility provides the \dx meta-command to examine the
extensions. It supports an optional plus sign (+) to control verbosity, and an optional
pattern for the extension name to restrict its range. Consider the following command:

\dx+ db*
This will list all extensions whose names start with db, together with all their objects.

The CREATE EXTENSION command creates all objects belonging to a given extension and
then records the dependency of each object on the extension in pg_depend. That's how
PostgreSQL can ensure that you cannot drop one such object without dropping its
extension.

The extension control file admits an optional line, requires, that names one or more
extensions on which the current one depends. The implementation of dependencies is still
quite simple; for instance, there is no way to specify a dependency on a specific version
number of other extensions.

As a general PostgreSQL rule, the CASCADE keyword tells the DROP command to delete all
objects that depend on cube, which is the earthdistance extension in this example.

There's more...

Another system view, pg_available_extension_versions, shows all the versions that
are available for each extension. It can be valuable when there are multiple versions of the
same extension available at the same time—for example, when making preparations for an
extension upgrade.

When a more recent version of an already installed extension becomes available to the
database server, for instance, because of a distribution upgrade that installs updated
package files, the superuser can perform an upgrade by issuing the following command:

ALTER EXTENSION mytext UPDATE TO 'l.1';

[105]

Configuration Chapter 3

This assumes that the author of the extension taught it how to perform the upgrade.

Extensions interact nicely with logical backup and restore nicely, a topic that will be fully
discussed in chapter 11, Backup and Recovery. As an example, if your database contains the
cube extension, then you will surely want a single line (CREATE EXTENSION cube) in the
dump file instead of lots of lines recreating each object individually, which is inefficient and
also dangerous.

The use of CASCADE in a CREATE statement only applies to extensions, because for other
object types, the dependency is not predefined in the object metadata, and only exists after
creating a specific object (for example, a foreign key).

Remember that CREATE EXTENSION ... CASCADE will only work if all the extensions it
tries to install have already been placed in the appropriate location.

[106]

Server Control

In this chapter, we will cover the following recipes:

e Starting the database server manually

¢ Stopping the server safely and quickly

e Stopping the server in an emergency

¢ Reloading the server configuration files

¢ Restarting the server quickly

¢ Preventing new connections

e Restricting users to only one session each
¢ Pushing users off the system

¢ Deciding on a design for multitenancy

¢ Using multiple schemas

¢ Giving users their own private database
e Running multiple servers on one system
e Setting up a connection pool

o Accessing multiple servers using the same host and port

Introduction

PostgreSQL consists of a set of server processes, the group leader of which is named the
postmaster. Starting the server is the act of creating these processes, and stopping the
server is the act of terminating those processes.

Each postmaster listens for client connection requests on a defined port number. Multiple
concurrently running postmasters cannot share that port number. The port number is often
used to uniquely identify a particular postmaster and hence also the database server that it
leads.

Server Control Chapter 4

When we start a database server, we refer to a data directory, which contains the heart and
soul—or at least the data—of our database. Subsidiary tablespaces may contain some data
outside the main data directory, so the data directory is just the main central location, and
not the only place where data for that database server is held. Each running server has at
minimum of one data directory, and one data directory can have, at the most, one running
server (or instance).

To perform any action for a database server, we must know the data directory for that
server. The basic actions we can perform on the database server are starting and stopping.
We can also perform a restart, though that is just a stop followed by a start. In addition, we
can reload the server, which means that we can reread the server's configuration files.

We should also mention a few other points.

The default port number for PostgreSQL is 5432. That has been registered with the Internet
Assigned Numbers Authority (IANA), and so it should already be reserved for
PostgreSQL's use in most places. Because each PostgreSQL server requires a distinct port
number, the normal convention is to use subsequent numbers for any additional
server—for example, 5433, 5434, and so on. Subsequent port numbers might not be as
easily recognized by the network infrastructure, which might, in some cases, make life
more difficult for you in large enterprises, especially in more security-conscious ones.

Port number 6432 has been registered with IANA for PgBouncer, the connection pooler
that we will describe in the Setting up a connection pool recipe. This happened only recently,
and many installations are using non-standard port numbers such as 6543 only because
they were deployed earlier.

A database server is also sometimes referred to as a database cluster. I don't recommend
this term for normal usage because it makes people think about multiple nodes and not one
database server on one system.

Starting the database server manually

Typically, the PostgreSQL server will start automatically when the system boots. You may
have opted to stop and start the server manually, or you may need to start it up or shut it
down for various operational reasons.

[108]

Server Control Chapter 4

Getting ready

First, you need to understand the difference between the service and the server. The word
server refers to the database server and its processes. The word service refers to the operating
system wrapper by which the server gets called. The server works in essentially the same
way on every platform, whereas each operating system and distribution has its own
concept of a service.

Moreover, the way services are managed has changed recently: for instance, at the time of
publication, most Linux distributions have adopted the systemd service manager. This
means that you need to know which distribution and release you are using to find the correct
variant of this recipe.

With systemd, a PostgreSQL server process is represented by a service unit, which is
managed via the systemct1 command. The systemd command syntax is the same on all
distributions, but the name of the service unit unfortunately isn't; for example, it will have
to be adjusted depending on your distribution.

In other cases, you need to type the actual data directory path as part of the command line
to start the server. More information on how to find out the data directory path is available
in the Locating the database server files recipe in chapter 2, Exploring the Database.

How to do it...

On each platform, there is a specific command to start the server.

If you are using a modern Linux distribution, you are probably using systemd. In this case,
PostgreSQL can be started with the following command:

sudo systemctl start SERVICEUNIT

This must be issued with OS superuser privileges, after replacing SERVICEUNIT with the
appropriate systemd service unit name.

The systemct1l command must always be issued with operating system
superuser privileges. Remember that, throughout this book, we will
always prepend systemct1 invocations with sudo.

[109]

Server Control Chapter 4

There are a couple of things to keep in mind:

e This will work only if the user executing the command has been previously
granted appropriate sudo privileges by the system administrator.

e If the command is executed from a superuser account, then the sudo keyword is
unnecessary, although not harmful.

As we mentioned previously, the service-unit name depends on what distribution you are
using, as follows:

¢ On Ubuntu and Debian, there is a service unit called this:
postgresql@RELEASE-CLUSTERNAME

e For each database server instance, there is another service unit called
just postgresqgl, and that can be used to manage all the database servers at
once. Therefore, you can issue the following command:

sudo systemctl start postgresql

¢ To start all the available instances, and to start only the default version 11
instance, use the following:

sudo systemctl start postgresql@ll-main

¢ Default Red Hat/Fedora packages call the service unit simply postgresqgl, so
the syntax is as follows:

sudo systemctl start postgresql

¢ Red Hat/Fedora packages from the PostgreSQL Yum repository create a service
unit called postgresqgql--RELEASE, so we can start version 11 as follows:

sudo systemctl start postgresql-11

As we noted previously, systemctl is part of systemd, which is only available
on Linux and is normally used by most of the recent distributions.

The following commands can be used where systemd is not available.

¢ On Debian and Ubuntu releases, you must invoke the PostgreSQL-specific utility
pg_ctlcluster, as follows:

pg_ctlcluster 11 main start

[110]

Server Control Chapter 4

This command will also work when systemd is available; it will just
redirect the start request to systemct1 and print a message on the screen
so that the next time you will remember to use systemct1 directly.

For Red Hat/Fedora, you can use this command:

service postgresql start

For Windows, the command is as follows:

net start postgres

For Red Hat/Fedora, you can also use the following command:

pg_ctl -D $PGDATA start
Here PGDATA is set to the data directory path.

In fact, this command works on most distributions, including macOS, Solaris, and
FreeBSD, although bear in mind the following points:

e It is recommended to use, whenever possible, the distribution-specific syntax we
described previously.

¢ You may have to specify the full path to the pg_ct1 executable if it's not in your
path already. This is normally the case with multi-version directory schemes
such as Debian/Ubuntu, where distribution-specific scripts pick the appropriate
executable for your version.

How it works...

On Ubuntu/Debian, the pg_ctlcluster wrapper is a convenient utility that allows
multiple servers to coexist more easily, which is especially good when you have servers
with different versions. This capability is very useful and is transposed on systemd, as
shown in the examples using @ in the name of the service unit, where @ denotes the usage
of a service file template.

Another interesting systemd feature is the capability to enable/ disable a service unit to
specify whether it will be started automatically on the next boot, with a syntax such as the
following;:

sudo systemctl enable postgresqgl@ll-main

[111]

Server Control Chapter 4

This can be very useful to set the appropriate behavior based on the purpose of each
instance.

A similar feature is implemented on Ubuntu and Debian by the start . conf file, located
next to the other configuration files (that is, in the same directory). Apart from the
informational comments, it contains only a single word, with the following meaning;:

¢ auto: The server will be started automatically on boot. This is the default when
creating a new server. It is suitable for frequently used servers, such as those
powering live services or those being used for everyday development activities.

e manual: The server will not be started automatically on boot, but it can be started
with pg_ctlcluster. This is suitable for custom servers that are seldom used.

e disabled: The server is not supposed to be started. This setting is only a
protection from starting the server accidentally. The pg_ctlcluster wrapper
won't let you start it, but a skilled user can easily bypass the protection.

If you need to reserve a port for a server not managed by
pg_ctlcluster, for example, when compiling directly from the source
code, then you can create a cluster with start.conf set to disabled and
then use its port. Any new servers will be allocated different ports.

Stopping the server safely and quickly

There are several modes to stop the server, depending on the level of urgency. We'll do a
comparison in view of the effects in each mode.

How to do it...

We provide two variants: with and without systemd. This is similar to the previous recipe,
Starting the database server manually, which we'll refer to for further information. For
example, what is the exact name of the systemd service unit for a given database server on
a given GNU/Linux distribution?

When using systemd, you can stop PostgreSQL using the fast mode by issuing the
following after having replaced SERVICEUNIT with the appropriate systemd service unit
name:

sudo systemctl stop SERVICEUNIT

[112]

Server Control Chapter 4

If systemd is not available, and you are using Debian or Ubuntu, the command is as in the
following example, which applies to the default version 11 instance:

pg_ctlcluster 11 main stop -m fast

The fast mode is the default since PostgreSQL 9.5; the previous default was to use the
smart mode, meaning wait for all users to finish before we exit. This can take a very long time,
and all the while new connections are refused.

On other Linux/Unix distributions, you can issue a database server st op command using
the fast mode, as follows:

pg_ctl -D datadir -m fast stop

How it works...

When you do a fast stop, all users have their transactions aborted and all connections
are disconnected. This is not very polite to users, but it still treats the server and its data
with care, which is good.

PostgreSQL is similar to other database systems in that it does do a shutdown checkpoint
before it closes. This means that the startup that follows will be quick and clean. The more
work the checkpoint has to do, the longer it will take to shut down.

One difference between PostgreSQL and some other RDBMSes such as Oracle, DB2, or SQL
Server is that the transaction rollback is very quick. On those other systems, if you shut
down the server in a mode that rolls back transactions, it can cause the shutdown to take a
while, possibly a very long time. This difference is for internal reasons, and isn't in any way
unsafe. Debian and Ubuntu's pg_ctlcluster supports the -——force option, which is
rather nice because it first attempts a fast shutdown, and if that fails, it performs an
immediate shutdown. After that, it kills the postmaster.

See also

The technology that provides immediate rollback for PostgreSQL is called Multiversion
Concurrency Control (MVCC). More information on this is provided in the Identifying and
fixing bloated tables and indexes recipe in Chapter 9, Regular Maintenance.

[113]

Server Control Chapter 4

Stopping the server in an emergency

If nothing else is working, we may need to stop the server quickly, without caring about
disconnecting the clients gently.

Break the glass in case of emergency!

How to do it...

1. The basic command to perform an emergency stop on the server is the following;:

pg_ctl -D datadir stop -m immediate

2. On Debian/Ubuntu, you can also use the following;:

pg_ctlcluster 11 main stop —m immediate

As we mentioned in the previous recipe, this is just a wrapper around pg_ct1. From this
example, we can see that it can pass through the -m immediate option.

In the previous recipe, we have seen examples where the systemct1
command was used to stop a server safely; however, that command
cannot be used to perform an emergency stop.

How it works...

When you do an immediate stop, all users have their transactions aborted and all

connections are disconnected. There is no clean shutdown, nor is there politeness of any
kind.

An immediate mode stop is similar to a database crash. Some cached files will need to be
rebuilt, and the database itself needs to undergo crash recovery when it comes back up.

Note that for DBAs with Oracle experience, the immediate mode is the same thing as a
shutdown abort. The PostgreSQL immediate mode stop is not the same thing as shutdown
immediate on Oracle.

[114]

Server Control Chapter 4

Reloading the server configuration files

Some PostgreSQL configuration parameters can be changed only by reloading the entire
configuration files.

How to do it...

There are two variants of this recipe, depending on whether you are using systemd. This is
similar to the previous recipes in this chapter, and especially the Starting the database server
manually recipe. More details are explained there, such as the exact names of systemd
service units depending on which database server you want to reload, and which
GNU/Linux distribution you are working on.

With systemd, configuration files can be reloaded with the following syntax:
sudo systemctl reload SERVICEUNIT

Here, SERVICEUNIT must be replaced with the exact name of the systemd service unit for
the server(s) that you want to reload.

Otherwise, on each platform, there is a specific command to reload the server without using
systemd. All of these are listed as follows:

¢ On Ubuntu and Debian, you can issue the following:
pg_ctlcluster 11 main reload

e On older Red Hat/Fedora, the command is as follows:
service postgresql reload

* You can also use the following command:
pg_ctl -D /var/lib/pgsqgl/data reload

This also works on macOS, Solaris, and FreeBSD, where you
replace /var/1lib/pgsql/data with your actual data directory if it's different.

On all platforms, you can also reload the configuration files while still connected to
PostgreSQL. If you are a superuser, this can be done from the following command line:

postgres=# select pg_reload_conf();

[115]

Server Control Chapter 4

The output is rather short:

pg_reload_conf

t
This function is also often executed from an admin tool, such as OmniDB.

If you do this, you should realize that it's possible to implement a new authentication rule
that is violated by the current session. It won't force you to disconnect, but when you do
disconnect, you may not be able to reconnect.

Any error in a configuration file will be reported in the message log, so we
recommend that you look there immediately after reloading. You will
quickly notice (and fix!) syntax errors in the parameter file, because they
prevent any login even before reloading. Other errors, such as typos in
parameter names, or wrong units, will only be reported in the log;
moreover, only some non-syntax errors will prevent reloading the whole
file, so it's best to always check the log.

How it works...

To reload the configuration files, we send the SIGHUP signal to the postmaster, which then
passes that to all connected backends. That's why some people call reloading the server
sigh-up-ing.

If you look at the pg_settings catalog table, you'll see that there is a column named
context. Each setting has a time and a place where it can be changed. Some parameters
can only be reset by a server reload, and so the value of context for those parameters will
be a sighup. Here are a few of the parameters you'll want to change sometimes during
server operation (there are others, however):

postgres=# SELECT name, setting, unit

, (source = 'default') as is_default

FROM pg_settings

WHERE context = 'sighup'

AND (name like '%delay' or name like 'S%timeout')

AND setting != '0';

name | setting | unit | is_default
authentication_timeout | 60 | s | t
autovacuum_vacuum_cost_delay | 20 | ms | t
bgwriter_delay | 200 | ms | £
checkpoint_timeout | 300 | s | £

[116]

Server Control Chapter 4

max_standby_ archive_delay | 30000 | ms | t
max_standby_ streaming_delay | 30000 | ms | t
wal_receiver_timeout | 60000 | ms | t
wal_sender_timeout | 60000 | ms | t
wal_writer_delay | 200 | ms | t

(9 rows)

There's more...

Since reloading the configuration file is achieved by sending the SIGHUP signal, we can
reload the configuration file only for a single backend using the ki11 command. As you
might expect, you may get some strange results from doing this, so don't try it at home.

First, find the PID of the backend using pg_stat_activity. Then, from the OS prompt,
issue the following:

kill -SIGHUP pid
Alternatively, we can do both at once, as shown in this command:

kill -SIGHUP \
&& psql -t -c "select pid from pg_stat_activity limit 1";

This is only useful with a sensible WHERE clause.

Restarting the server quickly

Some of the database server parameters require you to stop and start the server again fully.
Doing this as quickly as possible can be very important in some cases. The best time to do
this is usually a quiet time, with lots of planning, testing, and forethought. Sometimes, not
everything goes according to plan.

How to do it...

It's now become a habit in many recipes in this chapter that they be presented in two forms:
one with systemd and one without. This may look repetitive or boring, but it's unavoidable
because the introduction of a new system does not automatically eliminate all existing
alternatives, or migrate old installations to new ones.

[117]

Server Control Chapter 4

Like before, the you can find further systemd details, including details on service unit
names, in the previous recipe, Starting the database server manually, of this chapter.

A PostgreSQL server managed by systemd can be restarted in fast mode by issuing the
following command:

sudo systemctl restart SERVICEUNIT

As before, change SERVICEUNIT to the appropriate service unit name—for example,
postgresgl@ll-main for a PostgreSQL 10 cluster running in Debian or Ubuntu.

If systemd is not available, then you can use the following syntax:

pg_ctlcluster 11 main restart -m fast

The basic command to restart the server is the following one:

pg_ctl -D datadir restart -m fast

A restart is just a stop that's going to be followed by a start, so it sounds very simple. In
many cases, it will be simple, but there are times when you'll need to restart the server
while it is fairly busy. That's when we need to start performing some tricks to make that
restart happen quicker.

First, the stop performed needs to be a fast stop. If we do a default or a smart stop, then
the server will just wait for everyone to finish. If we do an immediate stop, then the server
will crash, and we will need to crash-recover the data, which will be slower overall.

The running database server has a cache full of data blocks, many of which are dirty.
PostgreSQL is similar to other database systems in that it does a shutdown checkpoint
before it closes. This means that the startup that follows will be quick and clean. The more
work the checkpoint has to do, the longer it will take to shut down.

The actual shutdown will happen much quicker if we issue a normal checkpoint first, as the
shutdown checkpoint will have much less work to do. So, flush all the dirty shared buffers
to disk with the following command, issued by a database superuser:

psql —c "CHECKPOINT"

The next consideration is that once we restart, the database cache will be empty again and
will need to refresh itself. The larger the database cache, the longer it takes for the cache to
get warm again, and 30 to 60 minutes is not uncommon before returning to full speed. So,
what was a simple restart can actually have a large business impact if handled badly.

[118]

Server Control Chapter 4

There's more...

There is an extension called pgfincore that implements a set of functions to manage
PostgreSQL data pages in the operating system's file cache. One possible use is to preload
some tables so that PostgreSQL will load them quicker when requested. The general idea is
that you can provide more detailed information for the operating system cache, which can
therefore behave more efficiently.

The pgfincore extension is a stable project that was started in 2009. More details about it
are available at https://github.com/klando/pgfincore, including the source code.
However, it should be noted that most distributions include a prebuilt pgfincore package,
which makes installation easier.

There is also a contrib module called pg_prewarm, which addresses a similar problem.
While there is some overlap with pgfincore, the feature sets are not the same; for instance,
pgfincore can operate on files that aren't in the shared buffer cache, and it can also
preload full relations with only a few system calls, taking into account the existing cache;
on the other hand, pg_prewarm can operate on the PostgreSQL shared buffer cache, and it
also works on Windows.

Preventing new connections

In certain emergencies, you may need to lock down the server completely, or just prevent
specific users from accessing the database. It's hard to foresee all the situations in which
you might need to do this, so we will present a range of options.

How to do it...

Connections can be prevented in a number of ways, as follows:

¢ Pause and resume the session pool. See the Setting up a connection pool recipe later
in this chapter on controlling connection pools.

e Stop the server! See the Stopping the server safely and quickly and the Stopping the
server in an emergency recipes, but this is not recommended.

e Restrict the connections for a specific database to zero, by setting the connection
limit to zero:

ALTER DATABASE foo_db CONNECTION LIMIT O;

[119]

https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore

Server Control Chapter 4

e This will limit normal users from connecting to that database, though it will still
allow superuser connections.

¢ Restrict the connections for a specific user to zero by setting the connection limit
to zero (see the Restricting users to only one session each recipe):

ALTER USER foo CONNECTION LIMIT O;

e This will limit normal users from connecting to that database, but it will still
allow connections if the user is a superuser, so luckily you cannot shut yourself
out accidentally.

¢ Change the Host-Based Authentication (HBA) file to refuse all incoming
connections and then reload the server:

e Create a new file named pg_hba_lockdown.conf, and add the
following two lines to the file. This puts in place rules that will
completely lock down the server, including superusers. You
should have no doubt that this is a serious and drastic action:

TYPE DATABASE USER ADDRESS METHOD
local all all reject
host all all 0.0.0.0/0 reject

If you still want superuser access, then try something such as the

following;:

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
local all all reject
host all all 0.0.0.0/0 reject

This will prevent connections to the database by any user except the
postgres operating system user ID, which connects locally to any
database. Be careful not to confuse the second and third columns—the
second column is the database and the third column is the username. It's
worth keeping the header line just for that reason. The peer method
should be replaced by other authentication methods if a more complex
configuration is in use.

e Copy the existing pg_hba. conf file to pg_hba_access.conf so that it can be
replaced later, if required.

L Copy pg_hba_lockdown.conf to pg_hba.conf.
¢ Reload the server by following the recipe earlier in this chapter.

[120]

Server Control Chapter 4

How it works...

The pg_hba. conf file is where we specify the host-based authentication rules. We do not
specify the authentications themselves; just specify which authentication mechanisms will
be used. This is the top-level set of rules for PostgreSQL authentication. The rules are
specified in a file and applied by the postmaster process when connections are attempted.
To prevent denial-of-service attacks, the HBA rules never involve database access, so we do
not know whether a user is a superuser. As a result, you can lock out all users, but note that
you can always re-enable access by editing the file and reloading.

Restricting users to only one session each

If resources need to be closely controlled, you may wish to restrict users so that they can
only connect to the server once, at most. The same technique can be used to prevent
connections entirely for that user.

How to do it...

We can restrict users to only one connection using the following command:

postgres=# ALTER ROLE fred CONNECTION LIMIT 1;
ALTER ROLE

This will then cause any additional connections to receive the following error message:
FATAL: too many connections for role "fred".
You can eliminate this restriction by setting the value to -1.

It's possible to set the limit to zero or any positive integer. You can set this to a number
other than max_connections, though it is up to you to make sense of that if you do.

Setting the value to zero will completely restrict normal connections. Note that even if you
set the connection limit to zero for superusers, they will still be able to connect.

[121]

Server Control Chapter 4

How it works...

The connection limit is applied during the session connection. Raising this limit will never
affect any connected users. Lowering the limit doesn't have any effect either, unless they try

to disconnect and reconnect.

So, if you lower the limit, you should immediately check to see whether there are more
sessions connected than the new limit you just set. Otherwise, there may be some surprises

if there is a crash:

postgres=> SELECT rolconnlimit
FROM pg_roles
WHERE rolname = 'fred';
rolconnlimit

1

(1 row)

postgres=> SELECT count (*)
FROM pg_stat_activity
WHERE usename = 'fred';

If you have more connected sessions than the new limit, you can ask users politely to
disconnect, or you can apply the next recipe, Pushing users off the system.

Users can't raise or lower their own connection limit, just in case you are worried that they
might be able to override this somehow.

Pushing users off the system

Sometimes, we may need to remove groups of users from the database server for various
operational reasons. Here's how to do it.

[122]

Server Control Chapter 4

How to do it...

You can terminate a user's session with the pg_terminate_backend () function included
with PostgreSQL. This function takes the PID, or the process ID, of the user's session on the
server. This process is known as the backend, and it is a different system process from the
program that runs the client.

To find the PID of a user, we can look at the pg_stat_activity view. We can use itin a
query, like this:

SELECT pg_terminate_backend (pid)
FROM pg_stat_activity
WHERE ...

There are a couple of things to note if you run this query. If the WHERE clause doesn't match
any sessions, then you won't get any output from the query. Similarly, if it matches
multiple rows, you will get a fairly useless result, that is, a list of Boolean t rue values.
Unless you are careful enough to exclude your own session from the query, you will
disconnect yourself! What's even funnier is that you'll disconnect yourself halfway through
disconnecting the other users, as the query will run pg_terminate_backend () in the
order in which sessions are returned from the outer query.

Therefore, I suggest a safer and more useful query that gives a useful response in all cases,
which is as follows:

postgres=# SELECT count (pg_terminate_backend (pid))
FROM pg_stat_activity
WHERE usename NOT IN
(SELECT usename
FROM pg_user
WHERE usesuper);
count

This is assuming that superusers are performing administrative tasks.

Other good filters might be the following:

WHERE application_name = 'myappname'

WHERE wait_event_type IS NOT NULL AND wait_event_type != 'Activity'
WHERE state = 'idle in transaction'

WHERE state = 'idle'

[123]

Server Control Chapter 4

How it works...

The pg_terminate_backend () function sends a signal directly to the operating system
process for that session.

It's possible that the session may have closed by the time pg_terminate_backend () is
named. As PID numbers are assigned by the operating system, it could even happen that
you try to terminate a given session (let's call it session A), but you actually terminate
another session (let's call it session B).

Here is how it could happen. Suppose you take note of the PID of session A and decide to
disconnect it. Before you actually issue pg_terminate_backend (), session A disconnects,
and right after, a new session, session B, is given exactly the same PID. So, when you
terminate that PID, you hit session B instead.

On the one hand, you need to be careful. On the other hand, this case is really unlikely, and
is only mentioned for completeness. For it to happen, all the following events must happen
as well:

¢ One of the sessions you are trying to close must terminate independently in the
very short interval between the moment pg_stat_activity is read and the
moment pg_terminate_backend () is executed.

¢ Another session on the same database server must be started in the even-shorter
interval between the old session closing and the execution of
pg_terminate_backend().

¢ The new session must get exactly the same PID value as the old session, which is
less than one chance in 32,000 on a 32-bit Linux machine.

Nonetheless, probability theory is tricky, even for experts. Therefore, it's better to be aware
that there is a tiny risk, especially if you use the query many times per day over a long
period of time, in which case the probability of getting caught at least once builds up.

It's also possible that new sessions could start after we get the list of active sessions. There's
no way to prevent this other than by following the Preventing new connections recipe.

Finally, remember that superusers can terminate any session, while a non-superuser can
only terminate a session that belongs to the same user.

[124]

Server Control Chapter 4

Deciding on a design for multitenancy

There are many reasons why we might want to split groups of tables or applications:
security, resource control, convenience, and so on. Whatever the reason, we often need to
separate groups of tables (I avoid saying the word database, just to avoid various kinds of
confusion).

This topic is frequently referred to as multitenancy, though this is not a fully accepted term
yet.

The purpose of this recipe is to discuss the options and lead to other, more detailed recipes.

How to do it...

If you want to run multiple physical databases on one server, then you have four main
options, which are as follows:

¢ Option 1: Run multiple sets of tables in different schemas in one database of a
PostgreSQL instance (covered in the Using multiple schemas recipe)

¢ Option 2: Run multiple databases in the same PostgreSQL instance (covered in
the Giving users their own private database recipe)

e Option 3: Run multiple PostgreSQL instances on the same virtual/physical
system (covered in the Running multiple servers on one system recipe)

e Option 4: Run separate PostgreSQL instances in separate virtual machines on the
same physical server

Which is best? Well, that's certainly a question many people ask, and something on which
many views exist. The answer lies in looking at the specific requirements, which are as
follows:

e If our goal is the separation of physical resources, then option 3 or option 4
works best. Separate database servers can be easily assigned different disks,
individual memory allocations can be assigned, and we can take the servers up
or down without impacting the others.

e If our goal is security, then option 2 is sufficient.

e If our goal is merely the separation of tables for administrative clarity, then
option 1 or option 2 can be useful.

[125]

Server Control Chapter 4

Option 2 allows complete separation for security purposes. This does, however, prevent
someone with privileges on both groups of tables from performing a join between those
tables. So, if there is a possibility of future cross-analytics, it might be worth considering
option 1. However, it might also be argued that such analytics should be carried out on a
separate data warehouse, not by co-locating production systems.

Option 3 has a difficulty in many of the PostgreSQL distributions: the default installation
uses a single location for the database, making it a little harder to configure that option.
Ubuntu/Debian handles that aspect particularly well, making it more attractive in that
environment.

Option 4 can be applied using virtualization technology, but that is outside the scope of this
book.

How it works...

I've seen people who use PostgreSQL with thousands of databases, but it is my opinion that
the majority of people use only one database, such as postgres (or at least, only a few
databases). I've also seen people with a great many schemas.

One thing you will find is that almost all admin GUI tools become significantly less useful if
there are hundreds or thousands of items to display. In most cases, administration tools use
a tree view, which doesn't cope gracefully with a large number of items.

Using multiple schemas

We can separate groups of tables into their own namespaces, referred to as schemas by
PostgreSQL. In many ways, they can be thought of as being similar to directories, though
that is not a precise description.

Getting ready

Make sure you've read the Deciding on a design for multitenancy recipe so that you're certain
that this is the route you wish to take. Other options exist, and they may be preferable in
some cases.

[126]

Server Control Chapter 4

How to do it...

1. Schemas can be easily created using the following commands:

CREATE SCHEMA finance;
CREATE SCHEMA sales;

2. We can then create objects directly within those schemas using fully
qualified names, like this:

CREATE TABLE finance.month_end_snapshot (.....)

The default schema in which an object is created is known as
current_schema. We can find out which is our current schema by using the
following query:

postgres=# select current_schema;
This returns an output like the following;:

current_schema

public
(1 row)

3. When we access database objects, we use the user-settable search_path
parameter to identify the schemas to search for. The current_schema is the first
schema in the search_path parameter. There is no separate parameter for the
current_schema.

So, if we want to let only a specific user look at certain sets of tables, we can
modify their search_path parameter. This parameter can be set for each user so
that the value will be set when they connect. The SQL queries for this would be
something like the following:

ALTER ROLE fiona SET search_path
ALTER ROLE sally SET search_path

'finance';
'sales’';

The public schema is not mentioned on search_path, so it will
not be searched. All tables created by fiona will go into the
finance schema by default, whereas all tables created by sally
will go into the sales schema by default.

[127]

Server Control Chapter 4

4. The users for finance and sales will be able to see that the other schema exists
and change search_path to use it, but we will be able to GRANT or REVOKE
privileges so that they can neither create objects nor read data in other people's
schemas:

REVOKE ALL ON SCHEMA finance FROM public;
GRANT ALL ON SCHEMA finance TO fiona;
REVOKE ALL ON SCHEMA sales FROM public;
GRANT ALL ON SCHEMA sales TO sally;

An alternate technique is to grant user create privileges on only one schema, but
grant usage rights on all other schemas. We can set up that arrangement like this:

REVOKE ALL ON SCHEMA finance FROM public;
GRANT USAGE ON SCHEMA finance TO fiona;
GRANT CREATE ON SCHEMA finance TO fiona;
REVOKE ALL ON SCHEMA sales FROM public;
GRANT USAGE ON SCHEMA sales TO sally;
GRANT CREATE ON SCHEMA sales TO sally;
GRANT USAGE ON SCHEMA sales TO fiona;
GRANT USAGE ON SCHEMA finance TO sally

5. Note that you need to grant the privileges for usage on the schema, as well as
specific rights on the objects in the schema. So, you will also need to issue specific
grants for objects, as shown here:

GRANT SELECT ON month_end_snapshot TO public;

You can also set default privileges so that they are picked up when objects are
created by using the following command:

ALTER DEFAULT PRIVILEGES FOR USER fiona IN SCHEMA finance
GRANT SELECT ON TABLES TO PUBLIC;

How it works...

Earlier, I said that schemas work like directories, or at least a little.

The PostgreSQL concept of search_path is similar to the concept of a PATH environment
variable.

[128]

Server Control Chapter 4

The PostgreSQL concept of the current schema is similar to the concept of the current
working directory. There is no cd command to change the directory. The current working
directory is changed by altering search_path.

A few other differences exist; for example, PostgreSQL schemas are not arranged in a
hierarchy like filesystem directories.

Many people create a user of the same name as the schema to make this work in a way
similar to other RDBMSes, such as Oracle.

Both the finance and sales schemas exist within the same PostgreSQL
database, and they run on the same database server. They use a common
buffer pool, and there are many global settings that tie the two schemas
fairly close together.

Giving users their own private database

Separating data and users is a key part of administration. There will always be a need to
give users a private, secure, or simply risk-free area (sandbox) to use the database. Here's
how.

Getting ready

Again, make sure you've read the Deciding on a design for multitenancy recipe so that you're
certain this is the route you wish to take. Other options exist, and they may be preferable in
some cases.

How to do it...

Follow these steps to create a database with restricted access to a specific user:

1. We can create a database for a specific user with some ease. From the command
line, as a superuser, these actions would be as follows:

postgres=# create user fred;

CREATE ROLE

postgres=# create database fred owner fred;
CREATE DATABASE

[129]

Server Control Chapter 4

2. As the database owners, users have login privileges, so they can connect to any
database by default. There is a command named ALTER DEFAULT
PRIVILEGES; however, this does not currently apply to databases, tablespaces, or
languages. The ALTER DEFAULT PRIVILEGES command also currently applies
only to roles (that is, users) that already exist.

So, we need to revoke the privilege to connect to our new database from
everybody except the designated user. There isn't a REVOKE ... FROM PUBLIC
EXCEPT command. Therefore, we need to revoke everything and then just re-
grant everything we need, all in one transaction, such as in the following code:

postgres=# BEGIN;

BEGIN

postgres=# REVOKE connect ON DATABASE fred FROM public;
REVOKE

postgres=# GRANT connect ON DATABASE fred TO fred;
GRANT

postgres=# COMMIT,;

COMMIT

postgres=# create user bob;

CREATE ROLE

3. Then, try to connect as bob to the fred database:

os $ psql -U bob fred
psqgl: FATAL: permission denied for database "fred"
DETAIL: User does not have CONNECT privilege.

This is exactly what we wanted.

How it works...

If you didn't catch it before, PostgreSQL allows transactional DDL in most places, so either
both of the REVOKE and GRANT commands in the preceding section work or neither works.
This means that the £red user never loses the ability to connect to the database. Note that
CREATE DATABASE cannot be performed as part of a transaction, though nothing serious
happens as a result.

[130]

Server Control Chapter 4

There's more...

Superusers can still connect to the new database, and there is no way to prevent them from
doing so. No other users can see the tables that were created in the new database, nor can
they know the names of any of the objects. The new database can be seen to exist by other
users, and they can also see the name of the user who owns the database.

See also

See chapter 6, Security, for more details on these issues.

Running multiple servers on one system

Running multiple PostgreSQL servers on one physical system is possible if it is convenient
for your needs.

Getting ready

Once again, make that sure you've read the Deciding on a design for multitenancy recipe so
that you're certain this is the route you wish to take. Other options exist, and they may be
preferable in some cases.

How to do it...

Core PostgreSQL easily allows multiple servers to run on the same system, but there are a
few wrinkles to be aware of.

Some installer versions create a PostgreSQL data directory named data. It then gets a little
difficult to have more than one data directory without using different directory structures
and names.

Debian/Ubuntu packagers chose a layout specifically designed to allow multiple servers
potentially running with different software release levels. You might remember this from
the Locating the database server files recipe in Chapter 2, Exploring the Database.

[131]

Server Control Chapter 4

Starting from /var/lib/postgresql, which is the home directory of the postgres user,
there is a subdirectory for each major version, for example, 10 or 9. 3, inside which the
individual data directories are placed. When installing PostgreSQL server packages, a data
directory is created with the default name of main. Configuration files are separately placed
in /etc/postgresql/<version>/<name>, and log files are created in
/var/log/postgresgl/postgresgl-<version>—-<name>.log.

Thus, not all files will be found in the data directory. As an example, let's create an
additional data directory:

1. We start by running this command:

sudo —-u postgres pg_createcluster 11 main2

2. The new database server can then be started using the following command:

sudo -u postgres pg_ctlcluster 11 main2 start

This is sufficient to create and start an additional database cluster in version 11, named
main2. The data and configuration files are stored inside the
/var/lib/postgresqgl/11/main2/ and /etc/postgresql/11/main2/ directories,
respectively, giving the new database the next unused port number, for example, 5433 if
this is the second PostgreSQL server on that machine.

Local access to multiple PostgreSQL servers has been simplified as well. PostgreSQL client
programs, such as psql, are wrapped by a special script that takes the cluster name as an
additional parameter and automatically uses the corresponding port number. Hence, you
don't really need the following command:

psql —--port 5433 -h /var/run/postgresql ...
Instead, you can refer to the database server by name, as shown here:
psgl —--cluster 11/main2

This has its advantages, especially if you wish (or need) to change the port in the future. I
find this extremely convenient, and it works with other utilities such as pg_dump,
pg_restore, and so on.

With Red Hat systems, you will need to run initdb directly, selecting your directories
carefully:

1. First, initialize your data directory with something such as the following:

sudo -u postgres initdb -D /var/lib/pgsql/datadir2

[132]

Server Control Chapter 4

2. Then, modify the port parameter in the postgresql.conf file and start using
the following command:

sudo —-u postgres pg_ctl -D /var/lib/pgsql/datadir2 start

This will create an additional database server at the default server version, with
files stored in /var/lib/pgsql/datadir2.

You can also set up the server with the chkconfig utility to ensure it starts on boot, if your
distribution supports it.

How it works...

PostgreSQL servers are controlled using pg_ct1. Everything else is a wrapper of some kind
around this utility. The only constraints on running multiple versions of PostgreSQL come
from file locations and naming conventions, assuming (of course) that you have enough
resources, such as disk space, memory, and so on. Everything else is straightforward.
Having said that, the Debian/Ubuntu design is currently the only design that makes it
actually easy to run multiple servers.

Setting up a connection pool

A connection pool is a term that's used for a collection of already-connected sessions that
can be used to reduce the overhead of connection and reconnection.

There are various ways by which connection pools can be provided, depending on the
software stack in use. The best option is to look at the server-side connection pool software
because that works for all connection types, not just within a single software stack.

Here, we're going to look at PgBouncer, which is designed as a very lightweight connection
pool. The name comes from the idea that the pool can be paused and resumed to allow the
server to be restarted, or bounced.

Getting ready

First of all, decide where you're going to store the PgBouncer parameter files, log files, and
PID files. PgBouncer can manage more than one database server's connections at the same
time, though that probably isn't wise for simple architectures. If you keep PgBouncer files

associated with the database server, then it should be easy to manage.

[133]

Server Control Chapter 4

How to do it...

Carry out the following steps to configure PgBouncer:
1. Create a pgbouncer. ini file, as follows:

; pgbouncer configuration example

’

[databases]

postgres = port=5432 dbname=postgres
[pgbouncer]

listen_addr = 127.0.0.1

listen_port = 6432

admin_users = postgres

;stats_users = monitoring userid
auth_type = any

; put these files somewhere sensible:
auth_file = users.txt

logfile = pgbouncer.log

pidfile = pgbouncer.pid

server_reset_query = DISCARD ALL;
; default wvalues

pool_mode = session
default_pool_size = 20
log_pooler_errors 0

2. Create a users.txt file. This must contain the minimum users mentioned in
admin_users and stats_users. Its format is very simple: a collection of lines
with a username and a password. Consider the following as an example:

"postgres " nn

3. PgBouncer also supports MD5 authentication. To use that effectively, you need to
copy the MD5 encrypted passwords from the database server into the
users.txt file.

Note that, at the time of publication, pgBouncer doesn't support scram-
sha-256 encryption.

[134]

Server Control Chapter 4

4. You may wish to create the users. txt file by directly copying the details from
the server. This can be done by using the following psql script:

postgres=> \o users.txt

postgres=> \t

postgres=> SELECT '"'||rolname||'" "'||rolpassword||'"'
postgres—> FROM pg_authid;

postgres=> \q

5. Launch pgbouncer:
pgbouncer -d pgbouncer.ini
6. Test the connection; it should respond to reload:
psql -p 6432 -h 127.0.0.1 -U postgres pgbouncer -c "reload"

7. Finally, verify that PgBouncer's max_client_conn parameter does not exceed
the max_connections parameter on PostgreSQL.

How it works...

PgBouncer is a great piece of software. Its feature set is very carefully defined to ensure that
it is simple, robust, and very quick. PgBouncer is not multithreaded, so it runs in a single
process, and, thus, on a single CPU. It is very efficient, but very large data transfers will
take more time and reduce concurrency, so create those data dumps using a direct
connection.

PgBouncer provides connection pooling. If you set pool_mode = transaction, then
PgBouncer will also provide connection concentration. This allows hundreds or even
thousands of incoming connections to be managed, while only a few server connections are
made.

As new connections, transactions, or statements arrive, the pool will increase in size up to
the user-defined maximum values. Those connections will stay around until the
server_idle_timeout value before the pool releases them.

PgBouncer also releases sessions every server_1lifetime. This allows the server to free
backends in rotation in order to avoid issues with very long-lived session connections.

[135]

Server Control Chapter 4

The earlier query that creates users. txt only includes database users that have a
password. All other users will have a null rolpassword field, so the whole string evaluates
to NULL, and the line is omitted from the password file. This is intentional; users without a
password represent a security risk, unless they are closely guarded. An example of this is
the postgres system user connecting from the same machine, which bypasses PgBouncer,
and is used only for maintenance by responsible and trusted people.

It is possible to use an HBA file with the same syntax as pg_hba. conf. This allows for
more flexibility when enabling TLS encryption (which includes SSL) only for connections to
remote servers, while using the more efficient peer authentication for local servers.

There's more...

Instead of retrieving passwords from the userlist.txt file, PgBouncer can retrieve them
directly from PostgreSQL, using the optional auth_user and auth_query parameters. If
auth_user is set, PgBouncer will connect to the database using that user and run
auth_query every time it needs to retrieve the password of some user trying to log in. The
default value of auth_query is as follows:

SELECT usename, passwd FROM pg_shadow WHERE usename=$1

This default is just a minimal functioning example, which illustrates the idea of
auth_query; however, it requires giving PgBouncer superuser access to PostgreSQL.
Hence, it is good practice to use the more sophisticated approach of creating a SECURITY
DEF INER function that can retrieve the username and password, possibly making some
checks on the username to allow only applicative connections. This is a good restriction
because database administration connections should not go through a connection pooler.

It's also possible to connect to PgBouncer itself to issue commands. This can be done
interactively, as if you were entering psql, or it can be done using single commands or
scripts.

To shut down PgBouncer, we can just type SHUTDOWN or enter a single command, as
follows:

pPsql -p 6432 pgbouncer -c "SHUTDOWN"

[136]

Server Control Chapter 4

You can also use the RELOAD command to make PgBouncer reload (which means reread)
the parameter files, as we did to test that everything is working.

If you are doing a switchover, you can use the WAIT_CLOSE command, followed by RELOAD
or RECONNECT, to wait until the respective configuration change has been fully activated.

If you are using pool_mode = transaction Oor pool_mode = statement, then you can
use the PAUSE command. This waits for the current transaction to complete before holding
further work on that session. Thus, it allows you to perform DDL more easily or restart the
server.

PgBouncer also allows you to use the SUSPEND mode, which waits for all server-side
buffers to flush.

The PAUSE or SUSPEND modes should eventually be followed by RESUME when the work is
done.

In addition to the PgBouncer control commands, there are many varieties of SHOW
commands, as listed here:

SHOW command Result set.

Traffic stats, total and average requests, query duration, bytes sent/received, and so

SHOW STATS on. Also, take alook at SHOW STATS_TOTALS and SHOW STATS_AVERAGES.

SHOW SERVERS |One row per connection to the database server.

SHOW CLIENTS One row per connection from the client.

SHOW POOLS One row per pool of users.
SHOW LISTS Gives a good summary of resource totals.
SHOW USERS Lists users in users.txt.

SHOW DATABASES|Lists databases in pgbouncer.ini.

SHOW CONFIG Lists configuration parameters.
SHOW FDS Shows file descriptors.

SHOW SOCKETS |Shows file sockets.

SHOW VERSION |Shows the PgBouncer version.

[137]

Server Control Chapter 4

Accessing multiple servers using the same
host and port

We will now show you one simple, yet important, application of the previous recipe,
Setting up a connection pool. In that recipe, you saw how to reuse connections with
PgBouncer, and thus reduce the cost of disconnecting and reconnecting.

Here, we will demonstrate another way to use PgBouncer—one instance can connect to
databases hosted by different database servers at the same time. These databases can be on
separate hosts, and can even have different major versions of PostgreSQL!

Getting ready

Suppose we have three database servers, each one hosting one database. All you need to
know beforehand is the connection string for each database server.

More complex arrangements are possible, but those are left to you as an exercise.

Before you try this recipe, you should have already gone through the previous recipe.
These two recipes have many steps in common, but we've kept them separate because they
have clearly different goals.

How to do it...

Each database is completely identified by its connection string. PgBouncer will read this
information from its configuration file. Just follow these steps:

1. All you need to do is to set up PgBouncer like you did in the previous recipe, by
replacing the databases section of pgbouncer. ini with the following:

[databases]

myfirstdb = port=5432 host=localhost
anotherdb = port=5437 host=localhost
sparedb = port=5435 host=localhost

2. Once you have started PgBouncer, you can connect to the first database:

$ psql -p 6432 -h 127.0.0.1 -U postgres myfirstdb
psql (11.1)
Type "help" for help.

[138]

Server Control Chapter 4

myfirstdb=# show port;
port

myfirstdb=# show server_version;
server_version

11.1
(1 row)

3. Now, you can connect to the anotherdb database as if it were on the same
server:

myfirstdb=# \c anotherdb
psql (11.1, server 9.5.15)
You are now connected to database "anotherdb" as user "postgres".

4. The server's greeting message suggests that we have landed on a different server,
so we check the port and the version:

anotherdb=# show port;
port

anotherdb=# show server_version;
server_version

9.5.15
(1 row)

There's more...

The Listing databases on this database server recipe in Chapter 2, Exploring the Database, shows
you how to list the available databases on the current database server, using either the \1
meta-command or a couple of equivalent variations. Unfortunately, that doesn't work when
using PgBouncer, for the very good reason that the current database server cannot know
the answer.

[139]

Server Control

Chapter 4

We need to ask PgBouncer instead, and we do so by using the SHOW command when
connected to the pgbouncer special administrative database:

myfirstdb=# \c pgbouncer

psql (10.1,

server 1.8.1/bouncer)
You are now connected to database "pgbouncer" as user "postgres".
pgbouncer=# show databases;

name | host | port | database | force_user | pool_size |
reserve_pool
anotherdb | localhost | 5437 | anotherdb | | 20 |
0
myfirstdb | localhost | 5432 | myfirstdb | | 20 |
0
pgbouncer | | 6432 | pgbouncer | pgbouncer | 2 |
0
sparedb | localhost | 5435 | sparedb | | 20 |
0
(4 rows)

[140]

Tables and Data

This chapter covers a range of general recipes for your tables and for working with the data
they contain. Many of the recipes contain general advice, though with specific PostgreSQL
examples.

Some system administrators I've met work only on the external aspects of the database
server. What's actually in the database is someone else's problem.

Look after your data, and your database will look after you. Keep your data clean, and your
queries will run faster and cause fewer application errors. You'll also gain many friends in
the business. Getting called in the middle of the night to fix data problems just isn't cool.

In this chapter, we will cover the following recipes:

e Choosing good names for database objects

e Handling objects with quoted names

¢ Enforcing the same name and definition for columns
e Identifying and removing duplicates

¢ Preventing duplicate rows

e Finding a unique key for a set of data

¢ Generating test data

¢ Randomly sampling data

¢ Loading data from a spreadsheet

¢ Loading data from flat files

¢ Making bulk data changes using server-side procedures with transactions

Choosing good names for database objects

The easiest way to help other people understand a database is to ensure that all the objects
have a meaningful name.

Tables and Data Chapter 5

What makes a name meaningful?

Getting ready

Take some time to reflect on your database to make sure you have a clear view of its
purpose and main use cases. This is because all the items in this recipe describe certain
naming choices that you need to consider carefully in view of your specific circumstances.

How to do it...

Here are the points you should consider when naming your database objects:

The name follows the existing standards and practices in place. Inventing new
standards isn't helpful; enforcing existing standards is.

The name clearly describes the role or table contents.
For major tables, use short, powerful names.

Name lookup tables after the table to which they are linked, such as
account_status.

For associative or linked tables, use all the names of the major tables to which
they relate, such as customer_account.

Make sure that the name is clearly distinct from other similar names.

Use consistent abbreviations.

Use underscores. Casing is not preserved by default, so using camel case names,
such as customerAccount, as used in Java, will just leave them unreadable. See
the Handling objects with quoted names recipe.

Use consistent plurals, or don't use them at all.

Use suffixes to identify the content type or domain of an object. PostgreSQL
already uses suffixes for automatically generated objects.

Think ahead. Don't pick names that refer to the current role or location of an
object. So don't name a table London, because it exists on a server in London.
That server might get moved to Los Angeles.

[142]

Tables and Data Chapter 5

12. Think ahead. Don't pick names that imply that an entity is the only one of its
kind, such as a table named TEST, or a table named BACKUP_DATA. On the other
hand, such information can be put in the database name, which is not normally
used from within the database.

13. Avoid using acronyms in place of long table names. For example,
money_allocation_decision is much better than MAD. This is especially
important when PostgreSQL translates the names into lowercase, so the fact that
it is an acronym may not be clear.

14. The table name is commonly used as the root for other objects that are created, so
don't add the table suffix or similar ideas.

There's more...
The standard names for indexes in PostgreSQL are as follows:

{tablename}_{columnname (s) }_{suffix}
Here, the suffix is one of the following:

e pkey: This is used for a primary key constraint
e key: This is used for a unique constraint

e excl: This is used for an exclusion constraint

e idx: This is used for any other kind of index

The standard suffix for all sequences is seq.

Tables can have multiple triggers fired on each event. Triggers are executed in alphabetical
order, so trigger names should have some kind of action name to differentiate them and to
allow the order to be specified. It might seem a good idea to put INSERT, UPDATE, or
DELETE in the trigger name, but that can get confusing if you have triggers that work on
both UPDATE and DELETE, and all of this may end up as a mess.

[143]

Tables and Data Chapter 5

The alphabetical order for trigger names always follows the C locale,
regardless of your actual locale settings. If your trigger names use non-
ASCII characters, then the actual ordering might not be what you expect.

The following example shows how the ¢ and é characters are ordered in
the C locale. You can change the locale and/or the list of strings to explore
how different locales affect ordering:

WITH a(x) AS (
VALUES ('¢"), ('é")

) SELECT *

FROM a

ORDER BY x

COLLATE "C";

A useful naming convention for triggers is as follows:

{tablename}_{actionname}_{after|before}_trig

If you do find yourself with strange or irregular object names, it will be a good idea to use
the RENAME subcommands to get things tidy again. Here is an example of this:

ALTER INDEX badly_ named_index RENAME TO tablename_status_idx;

Handling objects with quoted names

PostgreSQL object names can contain spaces and mixed-case characters if we enclose the
table names in double quotes. This can cause some difficulties, so this recipe is designed to
help you if you get stuck with this kind of problem.

Case sensitivity issues can often be a problem for people more used to working with other
database systems, such as MySQL, or for people who are facing the challenge of migrating
code away from MySQL.

Getting ready

First, let's create a table that uses a quoted name with mixed cases, such as the following;:

CREATE TABLE "MyCust"
AS
SELECT * FROM cust;

[144]

Tables and Data Chapter 5

How to do it...

If we try to access these tables without the proper case, we get this error:

postgres=# SELECT count (*) FROM mycust;
ERROR: relation "mycust" does not exist LINE 1l: SELECT * FROM mycust;

So, we write it in the correct case:

postgres=# SELECT count (*) FROM MyCust;
ERROR: relation "mycust" does not exist
LINE 1: SELECT * FROM mycust;

This still fails, and in fact gives the same error.

If you want to access a table that was created with quoted names, then you must use
quoted names, such as the following:

postgres=# SELECT count (*) FROM "MyCust";

The output is as follows:

The usage rule is that, if you create your tables using quoted names, then you need to write
your SQL using quoted names. Alternatively, if your SQL uses quoted names, then you will
probably have to create the tables using quoted names as well.

How it works...

PostgreSQL folds all names to lowercase when used within an SQL statement. Consider
this command:

SELECT * FROM mycust;

This is exactly the same as the following command:
SELECT * FROM MYCUST;

It is also exactly the same as this command:

SELECT * FROM MyCust;

[145]

Tables and Data Chapter 5

However, it is not the same thing as the following command:

SELECT * FROM "MyCust";

There's more...

If you are extracting values from a table that is being used to create object names, then you
may need to use a handy function named quote_ident (). This function puts double
quotes around a value if PostgreSQL requires that for an object name, as shown here:

postgres=# SELECT quote_ident ('MyCust');
quote_ident

"MyCust"

(1 row)

postgres=# SELECT quote_ident ('mycust');
quote_ident

mycust
(1 row)

The quote_ident () function may be especially useful if you are creating a table based on
a variable name in a PL/pgSQL function, as follows:

EXECUTE 'CREATE TEMP TABLE ' || quote_ident (tablename) ||
'(coll INTEGER) ;'

Enforcing the same name and definition for
columns

Sensibly designed databases have smooth, easy-to-understand definitions. This allows all
users to understand the meaning of data in each table. It is an important way of removing
data quality issues.

[146]

Tables and Data Chapter 5

Getting ready

If you want to run the queries in this recipe as a test, then use the following examples.
Alternatively, you can just check for problems in your own database:

CREATE SCHEMA sl;

CREATE SCHEMA s2;

CREATE TABLE sl.X(coll smallint,col2 TEXT);
CREATE TABLE s2.X(coll integer,col3 NUMERIC);

How to do it...

First, we will show you how to identify columns that are defined in different ways in
different tables, using a query against the catalog. We use an information_schema query,

as follows:

SELECT
table_schema
,table_name
, column_name
,data_type
| |lcoalesce (' | | text (character_maximum_length), '')
| |coalesce(' ' || text (numeric_precision), '')
|| text (numeric_scale), '')

| |coalesce(',"

as data_type
FROM information_schema.columns
WHERE column_name IN

(SELECT
column_name
FROM
(SELECT
column_name
,data_type

,character_maximum_length
,numeric_precision

,humeric_scale

FROM information_schema.columns

WHERE table_schema NOT IN ('information_schema', 'pg catalog')
GROUP BY

column_name

,data_type

,character_maximum_length
,numeric_precision

,humeric_scale
) derived
GROUP BY column_name

[147]

Tables and Data

Chapter 5

HAVING count (*) > 1
)

AND table_schema NOT IN ('information_schema',

ORDER BY column_name
The query gives an output as follows:

table_schema table_name

data_type

'pg_catalog')

+
+

sl x coll
s2 x coll
(2 rows)

smallint 16,0

|
|
| integer 32,0

Comparing two given tables is more complex, as there are so many ways that the tables
might be similar and yet a little different. The following query looks for all tables of the

same name (and hence, in different schemas) that have different definitions:

WITH table_definition as
(SELECT table_schema
, table_name
, string_agg(column_name

|| data_type

, ',' ORDER BY column_name

) AS def

FROM information_schema.columns
WHERE table_schema NOT IN ('information_schema'
, 'pg_catalog')

GROUP BY table_schema
, table_name

, unique_definition as
(SELECT DISTINCT table_name
, def
FROM table_definition

, multiple_definition as
(SELECT table_name
FROM unique_definition
GROUP BY table_name
HAVING count(*) > 1
)
SELECT table_schema
, table_name
, column_name
, data_type
FROM information_schema.columns
WHERE table_name
IN (SELECT table_name

[148]

Tables and Data Chapter 5

FROM multiple_definition)
ORDER BY table_name
, table_schema
, column_name

’

Here is its output:

table_schema | table_name | column_name | data_type
sl | x | coll | smallint
sl | x | col2 | text

s2 | x | coll | integer
s2 | x | col3 | numeric
(4 rows)

How it works...

The definitions of tables are held within PostgreSQL, and can be accessed using the
Information Schema catalog views.

There might be valid reasons why the definitions differ. We've excluded PostgreSQL's own
internal tables because there are similar names between the two catalogs: PostgreSQL's
implementation of the SQL Standard Information Schema and PostgreSQL's own internal
pg_catalog schema.

Those queries are fairly complex. In fact, there is even more complexity that we could add
to those queries to compare all sorts of things such as default values or constraints. The
basic idea can be extended in various directions from here.

There's more...
We can compare the definitions of any two tables using the following function:

CREATE OR REPLACE FUNCTION diff table_definition
(t1_schemaname text

,t1_tablename text

,t2_schemaname text

,t2_tablename text)

RETURNS TABLE

(t1l_column_name text

,t1l_data_type text

,£t2_column_name text

,t2_data_type text

[149]

Tables and Data Chapter 5

)
LANGUAGE SQL

as
$$
SELECT
tl.column_name
,tl.data_type
,t2.column_name
,t2.data_type
FROM
(SELECT column_name, data_type
FROM information_schema.columns
WHERE table_schema = $1
AND table_name = $2
) tl
FULL OUTER JOIN
(SELECT column_name, data_type
FROM information_schema.columns
WHERE table_schema = $3
AND table_name = $4
) t2
ON tl.column_name = t2.column_name
AND tl.data_type = t2.data_type
WHERE tl.column_name IS NULL OR t2.column_name IS NULL

$$;
Here is its usage with output:

select diff_table_definition('sl', 'x','s2','x"');
diff table_definition

(coll, smallint, ,)
(col2,text,,)

(, ,co0l3, numeric)
(, ,coll,integer)
(4 rows)

Identifying and removing duplicates

Relational databases work on the idea that items of data can be uniquely identified.
However hard we try, there will always be bad data arriving from somewhere. This recipe
shows you how to diagnose that and clean up the mess.

[150]

Tables and Data Chapter 5

Getting ready

Let's start by looking at our example table, cust. It has a duplicate value in customerid:

postgres=# SELECT * FROM cust;
customerid | firstname | lastname | age

1 | Philip | Marlowe | 38
2 | Richard | Hannay | 42
3 | Holly | Martins | 25
4 | Harry | Palmer | 36
4 | Mark | Hall | 47

(5 rows)

Before you delete duplicate data, remember that sometimes it isn't the data that is wrong: it
is your understanding of it. In those cases, it may be that you haven't properly normalized
your database model, and that you need to include additional tables to account for the
shape of the data. You might also find that duplicate rows are caused because of your
decision to exclude a column somewhere earlier in a data load process. Check twice, and
delete once.

How to do it...

First, identify the duplicates using a query such as the following:

CREATE UNLOGGED TABLE dup_cust AS
SELECT *
FROM cust
WHERE customerid IN
(SELECT customerid
FROM cust
GROUP BY customerid
HAVING count (*) > 1);

We save the list of duplicates in a separate table because the query can be very slow if the
table is big, so we don't want to run it more than once.

An UNLOGGED table can be created with less I/O because it does not write
WAL. It is better than a temporary table, because it doesn't disappear if
you disconnect and then reconnect. The other side of the coin is that you
lose its contents after a crash, but this is not too bad, because if you are
using an unlogged table then you are telling PostgreSQL that you are able
to recreate the contents of that table in the (unlikely) event of a crash.

[151]

Tables and Data Chapter 5

The results can be used to identify the bad data manually, and you can resolve the problem
by carrying out the following steps:

1. Merge the two rows to give the best picture of the data, if required. This might
use values from one row to update the row you decide to keep, as shown here:

UPDATE cust

SET age = 47

WHERE customerid = 4
AND lastname = 'Palmer’';

2. Delete the remaining undesirable rows:

DELETE FROM cust
WHERE customerid = 4
AND lastname = 'Hall';

In some cases, the data rows might be completely identical, as in the new_cust table, which
looks like the following:

postgres=# SELECT * FROM new_cust;

customerid
1
2
3
4
4
(5 rows)

Unlike the preceding case, we can't tell the data apart at all, so we cannot remove duplicate
rows without any manual process. SQL is a set-based language, so picking only one row
out of a set is slightly harder than most people want it to be.

In these circumstances, we should use a slightly different procedure to detect duplicates.
We will use a hidden column named ctid. It denotes the physical location of the row you
are observing; for example, duplicate rows will all have different ct id values. The steps are
as follows:

1. First, we start a transaction:

BEGIN;

[152]

Tables and Data Chapter 5

2. Then, we lock the table in order to prevent any INSERT, UPDATE, or DELETE
operations, which would alter the list of duplicates and/or change their ctid
values:

LOCK TABLE new_cust IN SHARE ROW EXCLUSIVE MODE;

3. Now we locate all duplicates, keeping track of the minimum ctid value so that
we don't delete that value:

CREATE TEMPORARY TABLE dups_cust AS
SELECT customerid, min(ctid) AS min_ctid
FROM new_cust

GROUP BY customerid

HAVING count (*) > 1;

4. Then we can delete each duplicate, with the exception of the duplicate with the
minimum ctid value:

DELETE FROM new_cust

USING dups_cust

WHERE new_cust.customerid = dups_cust.customerid
AND new_cust.ctid != dups_cust.min_ctid;

5. We commit the transaction, which also releases the lock we previously took:

COMMIT;

6. Finally, we clean up the table after the deletions:

VACUUM new_cust;

How it works...

The first query works by grouping together the rows on the unique column and counting
rows. Anything with more than one row must be caused by duplicate values. If we're
looking for duplicates of more than one column (or even all columns), then we have to use
a SQL of the following form:

SELECT *

FROM mytable
WHERE (coll, col2, ... ,colN) IN
(SELECT coll, col2, ... ,colN
FROM mytable

GROUP BY coll, col2, ... ,colN

HAVING count (*) > 1);

[153]

Tables and Data Chapter 5

Here, col1, col2, and so on up until colN are the columns of the key.

Note that this type of query may need to sort the complete table on all the key columns.
That will require sort space equal to the size of the table, so you'd better think first before
running that SQL on very large tables. You'll probably benefit from a large work_mem
setting for this query, probably 128 MB or more.

The DELETE FROM ... USING query that we showed, only works with

PostgreSQL because it uses the ctid value, which is the internal identifier of each row in
the table. If you wanted to run that query against more than one column, as we did earlier
in the chapter, you'd need to extend the queries in step 3, as follows:

SELECT customerid, customer_name, ..., min(ctid) AS min_ctid
FROM ...
GROUP BY customerid, customer_name,

Then, extend the query in step 4, like this:

DELETE FROM new_cust

WHERE new_cust.customerid = dups_cust.customerid
AND new_cust.customer_name = dups_cust.customer_name
AND ...

AND new_cust.ctid != dups_cust.min_ctid;

The preceding query works by grouping together all the rows with similar values and then
finding the row with the lowest ct id value. The lowest will be closer to the start of the
table, so duplicates will be removed from the far end of the table. When we run vACUUM, we
may find that the table gets smaller, because we have removed rows from the far end.

The BEGIN and COMMIT commands wrap the LOCK and DELETE commands into a single
transaction, which is required. Otherwise, the lock will be released immediately after being
taken.

Another reason to use a single transaction is that we can always roll back if anything goes
wrong, which is a good thing when we are removing data from a live table.

[154]

Tables and Data Chapter 5

There's more...

Locking the table against changes for long periods may not be possible while we remove
duplicate rows. That creates some fairly hard problems with large tables. In that case, we
need to do things slightly differently:

1. Identify the rows to be deleted, and save them in a side table.

2. Build an index on the main table to speed up access to rows (maybe using the
CONCURRENTLY keyword, as explained in the Maintaining indexes recipe in
Chapter 9, Regular Maintenance).

3. Write a program that reads the rows from the side table in a loop, performing a
series of smaller transactions.

4. Start a new transaction.
5. From the side table, read a set of rows that match.

6. Select those rows from the main table for updates, relying on the index to make
those accesses happen quickly.

7. Delete the appropriate rows.
8. Commit, and then loop again.

The aforementioned program can't be written as a database function, as we can't have
multiple transactions in a function. We need multiple transactions to ensure that we hold
locks on each row for the shortest possible duration.

Preventing duplicate rows

Preventing duplicate rows is one of the most important aspects of data quality for any
database. PostgreSQL offers some useful features in this area, extending beyond most
relational databases.

Getting ready

Identify the set of columns that you wish to make unique. Does this apply to all rows, or
just a subset of rows?

[155]

Tables and Data Chapter 5

Let's start with our example table:

postgres=# SELECT * FROM new_cust;
customerid

(4 rows)

How to do it...

To prevent duplicate rows, we need to create a unique index that the database server can
use to enforce uniqueness of a particular set of columns. We can do this in the following
three similar ways for basic data types:

1.

Create a primary key constraint on the set of columns. We are allowed only one
of these per table. The values of the data rows must not be NULL, as we force the
columns to be NOT NULL if they aren't already:

ALTER TABLE new_cust ADD PRIMARY KEY (customerid);

This creates a new index named new_cust_pkey.

Create a unique constraint on the set of columns. We can use these instead of/or
with a primary key. There is no limit on the number of these per table. NULL
values are allowed in the columns:

ALTER TABLE new_cust ADD UNIQUE (customerid);

This creates a new index named new_cust_customerid_key.

Create a unique index on the set of columns:

CREATE UNIQUE INDEX ON new_cust (customerid);

6. This creates a new index named new_cust_customerid_idx.

All of these techniques exclude duplicates, just with slightly different syntaxes. All of them
create an index, but only the first two create a formal constraint. Each of these techniques
can be used when we have a primary key or unique constraint that uses multiple columns.

[156]

Tables and Data Chapter 5

The last method is important because it allows you to specify a WHERE clause on the index.
This can be useful if you know that the column values are unique only in certain
circumstances. The resulting index is then known as a partial index.

Suppose our data looked like this:

postgres=# SELECT * FROM partial_unique;

This gives the following output:

customerid | status | close_date
1 | OPEN |
2 | OPEN |
3 | OPEN |
3 | CLOSED | 2010-03-22
(4 rows)

Then we can put a partial index on the table to enforce uniqueness of customerid only for
status = 'OPEN', like this:

CREATE UNIQUE INDEX ON partial_unique (customerid)
WHERE status = 'OPEN';

If your uniqueness constraint needs to be enforced across more complex data types, then
you may need to use a more advanced syntax. A few examples will help here.

Let's start with the simplest example: create a table of boxes and put sample data in it. This
may be the first time you're seeing PostgreSQL's data type syntax, so bear with me:

postgres=# CREATE TABLE boxes (name text, position box);
CREATE TABLE
postgres=# INSERT INTO boxes VALUES

('First', box '((0,0), (1,1))");
INSERT 0 1
postgres=# INSERT INTO boxes VALUES

('Second', box '((2,0), (2,1))");

INSERT 0 1
postgres=# SELECT * FROM boxes;
name | position
First | (1,1),(0,0)
Second | (2,1), (2,0)
(2 rows)

We can see two boxes that neither touch nor overlap, based on their x and y coordinates.

[157]

Tables and Data Chapter 5

To enforce uniqueness here, we want to create a constraint that will throw out any attempt
to add a position that overlaps with any existing box. The overlap operator for the box data
type is defined as & &, so we use the following syntax to add the constraint:

ALTER TABLE boxes ADD EXCLUDE USING gist (position WITH &&);

This creates a new index named boxes_position_excl:

#\d boxes_position_excl

Index "public.boxes_position_excl"
Column | Type | Key? | Definition
position | box | yes | "position"
gist, for table "public.boxes"

We can use the same syntax even with the basic data types. So, a fourth way of performing
our first example would be as follows:

ALTER TABLE new_cust ADD EXCLUDE (customerid WITH =);

This creates a new index named new_cust_customerid_excl and duplicates are
excluded:

insert into new_cust VALUES (4);

ERROR: conflicting key value violates exclusion constraint
"new_cust_customerid_excl"

DETAIL: Key (customerid)=(4) conflicts with existing key (customerid)=(4).

How it works...

Uniqueness is always enforced by an index.

Each index is defined with a data type operator. When a new row is inserted or the set of
column values is updated, we use the operator to search for existing values that conflict
with the new data.

So, to enforce uniqueness, we need an index and a search operator defined on the data
types of the columns. When we define normal UNIQUE constraints, we simply assume that
we mean the equality operator (=) for the data type. The EXCLUDE syntax offers a richer
syntax to allow us to express the same problem with different data types and operators.

[158]

Tables and Data Chapter 5

There's more...

Unique and exclusion constraints can be marked as deferrable, meaning that the user can
choose to postpone the check to the end of the transaction, a nice way to relax constraints
without reducing data integrity.

Duplicate indexes

Note that PostgreSQL allows you to have multiple indexes with exactly the same definition.
This is useful in some contexts, but can also be annoying if you accidentally create multiple
indexes, as each index has its own cost in terms of writes. You can also have constraints
defined using each of the aforementioned different ways. Each of these ways enforces,
essentially, the same constraint, so take care.

Uniqueness without indexes

It's possible to have uniqueness in a set of columns without creating an index. That might
be useful if all we want is to ensure uniqueness rather than allow index lookups.

To do that, you can do either of the following;:

¢ Use a serial data type
e Manually alter the default to be the nextval () function of a sequence

Each of these will provide a unique value for use as a row's key. The uniqueness is not
enforced, nor will there be a unique constraint defined. So, there is still a possibility that
someone might reset the sequence to an earlier value, which will eventually cause duplicate
values.

Consider, also, that this method provides the unique value as a default, which is not used
when the user specifies an explicit value. An example of this is as follows:

CREATE TABLE t (id serial, descr text);
INSERT INTO t (descr) VALUES ('First value');
INSERT INTO t (id,descr) VALUES (1, 'Cheating!');

Finally, you might also wish to have mostly unique data, such as using the
clock_timestamp () function to provide ascending times to microsecond resolution.

[159]

Tables and Data Chapter 5

Real-world example - IP address range allocation

The problem is about assigning ranges of IP addresses, while at the same time ensuring that
we don't allocate (or potentially allocate) the same addresses to different people or
purposes. This is easy to do if we keep track of each individual IP address, and much
harder to do if we want to deal solely with ranges of IP addresses.

Initially, you may think of designing the database as follows:

CREATE TABLE iprange
(iprange_start inet
,iprange_stop inet
,owner text);
INSERT INTO iprange VALUES
('192.168.0.1','192.168.0.16', 'Simon');
INSERT INTO iprange VALUES
('192.168.0.17"','192.168.0.24', 'Gianni');
INSERT INTO iprange VALUES
('192.168.0.32"','192.168.0.64', 'Gabriele');

However, you'll realize that there is no way to create a unique constraint that enforces the
model constraint of avoiding overlapping ranges. You could create an after trigger that
checks existing values, but it's going to be messy.

PostgreSQL offers a better solution, based on range types. In fact, every data type that
supports a bt ree operator class (that is, a way of ordering any two given values) can be
used to create a range type. In our case, the SQL is as follows:

CREATE TYPE inetrange AS RANGE (SUBTYPE = inet);

This command creates a new data type that can represent ranges of inet values, that is, of
IP addresses. Now we can use this new type when creating a table:

CREATE TABLE iprange2
(iprange inetrange
,owner text);

This new table can be populated as usual. We just have to group the extremes of each range
into a single value, as follows:

INSERT INTO iprange2

VALUES ('[192.168.0.1,192.168.0.16]', 'Simon');
INSERT INTO iprange2

VALUES ('[192.168.0.17,192.168.0.24]"', 'Gianni');
INSERT INTO iprange2

VALUES ('[192.168.0.32,192.168.0.64]', 'Gabriele');

[160]

Tables and Data Chapter 5

Now we can create a unique exclusion constraint on the table, using the following syntax:

ALTER TABLE iprange2
ADD EXCLUDE USING GIST (iprange WITH &&);

If we try to insert a range that overlaps with any of the existing ranges, then PostgreSQL
will stop us:

INSERT INTO iprange2

VALUES ('[192.168.0.10,192.168.0.20]"', 'Somebody else');

ERROR: conflicting key value violates exclusion constraint
"iprange2_iprange_excl"

DETAIL: Key (iprange)=([192.168.0.10,192.168.0.20]) conflicts with
existing key (iprange)=([192.168.0.1,192.168.0.16]).

Real-world example - range of time

In many databases, there will be historical data tables with data that has a

START_DATE value and an END_DATE value, or something similar. As in the previous
example, we can solve this example elegantly with a range type. Actually, this example is
even shorter — we don't need to create the range type since the most common cases are
already built-in, and, to be precise, include integers, decimal values, dates, and timestamps
with and without a time zone.

Real-world example - prefix ranges

Another common problem involves assigning credit card numbers or telephone numbers.
For example, with credit card numbers, we may need to perform additional checking for
certain financial institutions, assuming that each institution is assigned a given range. In
that case, we must check efficiently if a given credit card number belongs to a certain range.

The prefix range data type has been specifically designed to address this class of problems.
This is available as a PostgreSQL extension at http://github.com/dimitri/prefix.

A warning: despite the similar name, prefix ranges cannot be
implemented as range types.

[161]

http://github.com/dimitri/prefix

Tables and Data Chapter 5

Finding a unique key for a set of data

Sometimes, it can be difficult to find a unique set of key columns that describe the data.

Getting ready

Let's start with a small table, where the answer is fairly obvious:

postgres=# select * from ord;

We assume that the output is as follows:

orderid | customerid | amt
10677 | 2 | 5.50
5019 | 3 | 277.44
9748 | 3| 77.17
(3 rows)

How to do it...

First of all, there's no need to do this through a brute-force approach. Checking all the
permutations of columns to see which is unique might take you a long time.

Let's start by using PostgreSQL's own optimizer statistics. Run the following command on
our table to get a fresh sample of statistics:

postgres=# analyze ord;
ANALYZE

This runs quickly, so we don't have to wait too long. Now we can examine the relevant
columns of the statistics:

postgres=# SELECT attname, n_distinct
FROM pg_stats

WHERE schemaname = 'public'
AND tablename = 'ord';
attname | n_distinct
orderid | -1
customerid | -0.666667
amt | -1
(3 rows)

[162]

Tables and Data Chapter 5

The preceding example was chosen because we have two potential answers. If the value of
n_distinct is -1, then the column is thought to be unique within the sample of rows
examined.

We would then need to use our judgment to decide whether one or both of these columns
are unique by chance, or as part of the design of the database that created them.

It's possible that there is no single column that uniquely identifies the rows. Multiple
column keys are fairly common. If none of the columns were unique, then we should start
looking for unique keys that are combinations of the most unique columns. The following
query shows a frequency distribution for the table such that a value occurs twice in one
case, and another value occurs only once:

postgres=# SELECT num_of_values, count (%)
FROM (SELECT customerid, count (*) AS num_of_values
FROM ord
GROUP BY customerid) s
GROUP BY num_of_values
ORDER BY count (*);

num_of_values | count
2 | 1
1] 1
(2 rows)

We can change the query to include multiple columns, like this:

SELECT num_of_values, count (*)
FROM (SELECT customerid, orderid, amt
,count (*) AS num_of_values
FROM ord
GROUP BY customerid, orderid, amt
) s
GROUP BY num_of_values
ORDER BY count (*);

This query will result in only one row, once we find a set of columns that is unique.

As we get closer to finding the key, we will see that the distribution gets tighter and tighter.

[163]

Tables and Data Chapter 5

So, the procedure is as follows:

1. Choose one column to start with.

2. Compute the corresponding frequency distribution.

3. If the outcome is multiple rows, then add one more column and repeat from step
2. Otherwise, it means you have found a set of columns satisfying a uniqueness
constraint.

Now you must verify that the set of columns is minimal; for example, check whether it is
possible to remove one or more columns without violating the unique constraint. This can
be done using the frequency distribution as a test. To be precise, do the following:

1. Test each column by computing the frequency distribution on all the other
columns.

2. If the frequency distribution has one row, then the column is not needed in the
uniqueness constraint. Remove it from the set of columns and repeat from step 1.
Otherwise, you have found a minimal set of columns, which is also called a key
for that table.

How it works...

Finding a unique key is possible for a program, but in most cases, a human can do this
much faster by looking at things such as column names, foreign keys, or business
understanding to reduce the number of searches required by the brute-force approach.

The ANALYZE command works by taking a sample of the table data, and then performing a
statistical analysis of the results. The n_distinct value has two different meanings,
depending on its sign: if positive, it is the estimate of the number of distinct values for the
column; if negative, it is the estimate of the density of such distinct values, with the sign
changed. For example, n_distinct = -0.2 means that a table of one million rows is
expected to have 200,000 distinct values, while n_distinct = 5 means that we expect just
five distinct values.

Generating test data

DBAs frequently need to generate test data for a variety of reasons, whether it's for setting
up a test database or just for generating a test case for a SQL performance issue.

[164]

Tables and Data Chapter 5

How to do it...

To create a table of test data, we need the following:

e Some rows
e Some columns
e Some order

The steps are as follows:

1. First, generate a lot of rows of data. We use something named a set-returning
function. You can write your own, though PostgreSQL includes a couple of very
useful ones.

2. You can generate a sequence of rows using a query like the following:

postgres=# SELECT * FROM generate_series(1,5);
generate_series

s Wbk

(5 rows)

3. Alternatively, you can generate a list of dates, like this:

postgres=# SELECT date(t)
FROM generate_series (now(),
now() + 'l week', 'l day') AS f(t);
date
2018-04-24
2018-04-25
2018-04-26
2018-04-27
2018-04-28
2018-04-29
2018-04-30
2018-05-01
(8 rows)

[165]

Tables and Data Chapter 5

4. Then, we want to generate a value for each column in the test table. We can
break that down into a series of functions, using the following examples as a
guide:

e Either of these functions can be used to generate both rows and
reasonable primary key values for them

e For arandom integer value, this is the function:
(random() * (2*1079)) : :integer
e For arandom bigint value, the function is as follows:
(random () * (9*10718)) : :bigint
5. For random numeric data, the function is the following:
(random () *100.) : :numeric (5, 2)

¢ For a random-length string, up to a maximum length, this is the
function:

repeat ('l', (random() *40) : : integer)
¢ For a random-length substring, the function is as follows:

substr ('abcdefghijklmnopgrstuvwxyz', 1,
(random () *25) : :integer)

e Here is the function for a random string from a list of strings:
(ARRAY['one', 'two', 'three']) [0.5+random () *3]
6. Finally, we can put both techniques together to generate our table:
postgres=# SELECT key
, (random () *100.) : :numeric (4, 2)

,repeat ('l', (random () *25) : : integer)
FROM generate_series(1,10) AS f (key);

key | numeric | repeat
1| 83.05 | 1111
2 | 5.28 | 11111111111111
3| 41.85 | 1111111111111111111111
4 | 41.70 | 11111111111111111
5 | 53.31 | 1
6 | 10.09 | 1111111111111111
7 | 68.08 | 111

[166]

Tables and Data Chapter 5

8 | 19.42 | 1111111111111111
9 | 87.03 | 111111121111111111111
10 | 70.64 | 111111111111111

(10 rows)

7. Alternatively, we can use random ordering:

postgres=# SELECT key
, (random () *100.) : :numeric (4, 2)
,repeat ('1l', (random() *25) : : integer)
FROM generate_series(1,10) AS f (key)
ORDER BY random() * 1.0;

key | numeric | repeat
4 | 86.09 | 1111
10 | 28.30 | 11111111
2 | 64.09 | 111111
8 | 91.59 | 111111111111111
5 | 64.05 | 11111111
3 75.22 | 11111111111111111
6 | 39.02 | 1111
7 | 20.43 | 1111111
1| 42.91 | 11111111111111111111
9 | 88.64 | 1111111111111111111111
(10 rows)

How it works...

To set returning functions, literally return a set of rows. That allows them to be used in
either the FROM clause, as if they were a table, or the SELECT clause. The
generate_series () set of functions returns either dates or integers, depending on the
data types of the input parameters you use.

The : : operator is used to cast between data types. The random string from a list of strings
example uses PostgreSQL arrays. You can create an array using the ARRAY constructor
syntax, and then use an integer to reference one element in the array. In our case, we used a
random subscript.

[167]

Tables and Data Chapter 5

There's more...

There are also some commercial tools used to generate application-specific test data for
PostgreSQL. They are available
at http://www.sqglmanager.net/products/postgresql/datagenerator and

http://www.datanamic.com/datagenerator/index.html.
The key features for any data generator are as follows:

¢ The ability to generate data in the right format for custom data types

e The ability to add data to multiple tables, while respecting foreign key
constraints between tables

e The ability to add data to non-uniform distributions

The tools and tricks shown here are cool and clever, though there are some problems
hiding here as well. Real data has so many strange things in it that it can be very hard to
simulate. One of the most difficult things is generating data that follows realistic
distributions. For example, if we had to generate data for people's heights, then we'd want
to generate data to follow a normal distribution. If we were generating customer bank
balances, we'd want to use a ZIP distribution, or for the number of reported insurance
claims, perhaps a Poisson distribution (or perhaps not). Replicating the real quirks in data
can take some time.

Finally, note that casting a float into an integer rounds it to the nearest integer, so the
distribution of integers is not uniform on each extreme. For instance, the probability of
(random () *10) : : int being 0 is just 5%, as is its probability of being 10, while each
integer between 1 and 9 occurs with a probability of 10%. This is why we put 0.5 in the last
example, which is simpler than using the f1oor () function.

See also

* You can use existing data to generate test databases using sampling. That's the
subject of our next recipe, Randomly sampling data.

Randomly sampling data

DBAs may be asked to set up a test server and populate it with test data. Often, that server
will be old hardware, possibly with smaller disk sizes. So, the subject of data sampling
raises its head.

[168]

http://www.sqlmanager.net/products/postgresql/datagenerator
http://www.datanamic.com/datagenerator/index.html

Tables and Data Chapter 5

The purpose of sampling is to reduce the size of the dataset and improve the speed of later
analysis. Some statisticians are so used to the idea of sampling that they may not even
question whether its use is valid or if it can cause further complications.

The SQL standard way to perform sampling is by adding the TABLESAMPLE clause to the
SELECT statement.

How to do it...

In this section, we will take a random sample of a given collection of data (for example, a
given table). First, you should realize that there isn't a simple tool to slice off a sample of
your database. It would be neat if there were, but there isn't. You'll need to read all of this
to understand why:

1. We first consider using SQL to derive a sample. Random sampling is actually
very simple because we can use the TABLESAMPLE clause. Consider the following
example:

postgres=# SELECT count (*) FROM mybigtable;
count

(1 row)
postgres=# SELECT count (*) FROM mybigtable
TABLESAMPLE BERNOULLI (1) ;

(1 row)
postgres=# SELECT count (*) FROM mybigtable
TABLESAMPLE BERNOULLI (1);

2. Here, the TABLESAMPLE clause applies to mybigtable, and tells SELECT to
consider only a random sample, while the BERNOULLI keyword denotes the
sampling method used, and the number 1 between parentheses represents the
percentage of rows that we want to consider in the sample, that is, 1%. Quite
easy!

[169]

Tables and Data Chapter 5

3. Now we need to get the sampled data out of the database, which is tricky for a
few reasons. Firstly, there is no option to specify a WHERE clause for pg_dump.
Secondly, if you create a view that contains the WHERE clause, pg_dump dumps
only the view definition, not the view itself.

4. You can use pg_dump to dump all databases, apart from a set of tables, so you
can produce a sampled dump like this:

pg_dump ——exclude-table=mybigtable > db.dmp
pg_dump ——-table=mybigtable --schema-only > mybigtable.schema
psql -c '\copy (SELECT * FROM mybigtable
TABLESAMPLE BERNOULLI (1)) to mybigtable.dat'

5. Then reload onto a separate database using the following commands:

psql —-f db.dmp
psql —-f mybigtable.schema
psql -c '\copy mybigtable from mybigtable.dat'

Overall, my advice is to use sampling with caution. In general, it is easier to apply it to a
few very large tables only, in view of both the mathematical issues surrounding the sample
design and the difficulty of extracting the data.

How it works...

The extract mechanism shows off the capabilities of the PostgreSQL command-line tools,
psql and pg_dump, as pg_dump allows you to include or exclude objects and dump the
entire table (or only its schema), whereas psql allows you to dump out the result of an
arbitrary query into a file.

The BERNOULLI clause specifies the sampling method, that is, PostgreSQL takes the
random sample by performing a full table scan, and then selecting each row with the
required probability, here 1%.

Another built-in sampling method is SYSTEM, which reads a random sample of table pages,
and then includes all rows in these pages; this is generally faster, given that samples are
normally quite a bit smaller than the original, but the randomness of the selection is
affected by how rows are physically arranged on disk, which makes it suitable for some
applications only.

[170]

Tables and Data Chapter 5

Here is an example that shows what the problem is. Suppose you take a dictionary, rip out
a few pages, and then select all the words in them; you will get a random sample composed
of a few clusters of consecutive words. This is good enough if you want to estimate the
average length of a word, but not for analyzing the average number of words for each
initial letter. The reason is that the initial letter of a word is strongly correlated with how
the words are arranged in pages, while the length of a word is not.

We haven't discussed how random the TABLESAMPLE clause is. This isn't the right place for
such details; however, it is reasonably simple to extend PostgreSQL with extra functions or
sampling methods, so if you prefer another mechanism, you can find an external random
number generator, and create a new sampling method for the TABLESAMPLE clause.
PostgreSQL includes two extra sampling methods, t sm_system_rows and
tsm_system_time,, as contrib extensions: they are excellent examples to start from.

The t sm_system_rows method does not work with percentages; instead, the numeric
argument is interpreted as the number of rows to be returned. Similarly,

the t sm_system_t ime method will regard its argument as the number of milliseconds to
spend retrieving the random sample.

These two methods include the word system in their name because they use block-level
sampling, like the built-in system sampling method; hence, their randomness is affected by
the same clustering limitation as described previously.

The sampling method shown earlier is a simple random sampling technique that has an
equal probability of selection (EPS) design.

EPS samples are considered useful because the variance of the sample attributes is similar
to the variance of the original dataset. However, bear in mind that this is useful only if you
are considering variances.

Simple random sampling can make the eventual sample biased towards more frequently
occurring data. For example, if you have a 1% sample of data on which some kinds of data
occur only 0.001% of the time, you may end up with a dataset that doesn't have any of that
outlying data.

What you might wish to do is to pre-cluster your data and take different samples from each
group to ensure that you have a sampled dataset that includes many more outlying
attributes. A simple method might be to do the following:

e Include 1% of all normal data
e Include 25% of outlying data

Note that if you do this, then it is no longer an EPS sample design.

[171]

Tables and Data Chapter 5

Undoubtedly, there are statisticians who will be apoplectic after reading this. You're
welcome to use the facilities of the SQL language to create a more accurate sample. Just
make sure that you know what you're doing and/or check out some good statistical
literature, websites, or textbooks.

Loading data from a spreadsheet

Spreadsheets are the most obvious starting place for most data stores. Studies within a
range of businesses consistently show that more than 50% of smaller data stores are held in
spreadsheets or small desktop databases. Loading data from these sources is a frequent and
important task for many DBAs.

Getting ready

Spreadsheets combine data, presentation, and programs all into one file. That's perfect for
power users wanting to work quickly. Like other relational databases, PostgreSQL is
mainly concerned with the lowest level of data, so extracting just the data from these
spreadsheets can present some challenges.

We can easily handle spreadsheet data if that spreadsheet's layout follows a very specific
form, as follows:

Each spreadsheet column becomes one column in one table

Each row of the spreadsheet becomes one row in one table

Data is only in one worksheet of the spreadsheet
¢ Optionally, the first row is a list of column descriptions/titles

This is a very simple layout, and more often there will be other things in the spreadsheet,
such as titles, comments, constants for use in formulas, summary lines, macros, and images.
If you're in this position, the best thing to do is to create a new worksheet within the
spreadsheet in the pristine form described earlier, and then set up cross-worksheet
references to bring in the data. An example of a cross-worksheet reference would be
=Sheet2.Al. You'll need a separate worksheet for each set of data that will become one
table on PostgreSQL. You can load multiple worksheets into one table, however.

[172]

Tables and Data Chapter 5

Some spreadsheet users will say that all of this is unnecessary, and is evidence of the
problems of databases. The real spreadsheet gurus do actually advocate this type of layout
— data in one worksheet and calculation and presentation in other worksheets. So, it is
actually best practice to design spreadsheets in this way; however, we must work with the
world the way it is.

How to do it...

Here, we will show you an example where data in a spreadsheet is loaded into a database:

1. If your spreadsheet data is neatly laid out in a single worksheet, as shown in the
following screenshot, then you can go to File | Save As and then select CSV as

the file type to be saved:
Chapter05_sample_data.csv - LibreOffice Calc
File Edit Wew Insert Format Tools Data Wndow
24 -l AE =]
 mEweSs ¢ | c | o
1 |Key Value
2 1lc
3 2/d
5
&

2. This will export the current worksheet to a file, like the following:

"Key" , "Value"
1 , nan
2 , ngqr

3. We can then load it into an existing PostgreSQL table, using the following psql
command:

postgres=# \COPY sample FROM sample.csv CSV HEADER
postgres=# SELECT * FROM sample;
key | value

[173]

Tables and Data Chapter 5

4. Alternatively, from the command line, this would be as follows:

psql -c '\COPY sample FROM sample.csv CSV HEADER'

5. Note that the file can include a full file path if the data is in a different directory.
The psgl \CcOPY command transfers data from the client system where you run
the command through to the database server, so the file is on the client.

6. If you are submitting SQL through another type of connection, then you should
use the following SQL statement:

COPY sample FROM '/mydatafiledirectory/sample.csv' CSV HEADER;

Note that the preceding SQL statement runs on the database server and can only be
executed by a super user. So, you need to ensure that the server process is allowed to read
that file, then transfer the data yourself to the server, and finally load the file. The copy
statement shown in the preceding SQL statement uses an absolute path to identify data
files, which is required.

The copy (or \COPY) command does not create the table for you; that must be done
beforehand. Note also that the HEADER option does nothing but ignore the first line of the
input file, so the names of the columns from the . csv file don't need to match those of the
Postgres table. If it hasn't occurred to you yet, this is also a problem. If you say HEADER
and the file does not have a header line, then all it does is ignore the first data row.
Unfortunately, there's no way for PostgreSQL to tell whether the first line of the file is truly
a header or not. Be careful!

There isn't a standard tool to load data directly from the spreadsheet to the database. It's
fairly simple to write a spreadsheet macro to automate the aforementioned tasks, but that's
not a topic for this book.

How it works...

The \corPY command executes a COPY SQL statement, so the two methods described earlier
are very similar. There's more to be said about COPY, so we'll cover that in the next recipe.

[174]

Tables and Data Chapter 5

There's more...

There are many data extraction and loading tools available out there, some cheap and some
expensive. Remember that the hardest part of loading data from any spreadsheet is
separating the data from all the other things it contains. I've not yet seen a tool that can help
with that.

Loading data from flat files

Loading data into your database is one of the most important tasks. You need to do this
accurately and quickly. Here's how.

Getting ready

You'll need a copy of pgloader, which is commonly available in all main software
distribution.

At the time of writing, the current stable version is 3.4.1. The 3.x series is a major rewrite,
with many additional features, and the 2.x series is now considered obsolete.

How to do it...

PostgreSQL includes a command named COPY that provides the basic data load/unload
mechanism. The COPY command doesn't do enough when loading data, so let's skip the
basic command and go straight to pgloader.

To load data, we need to understand our requirements, so let's break this down into a step-
by-step process, as follows:

1. Identify the data files and where they are located. Make sure that pgloader is
installed at the location of the files.

2. Identify the table into which you are loading, ensure that you have the
permissions to load, and check the available space. Work out the file type
(examples include fixed-size fields, delimited text, and CSV) and check the
encoding.

[175]

Tables an

d Data Chapter 5

3.

Specify the mapping between columns in the file and columns on the table being
loaded. Make sure you know which columns in the file are not needed
—pgloader allows you to include only the columns you want. Identify any
columns in the table for which you don't have data. Do you need them to have a
default value on the table, or does pgloader need to generate values for those
columns through functions or constants?

Specify any transformations that need to take place. The most common issue is
date formats, although, possibly, there may be other issues.

Write the pgloader script.

The pgloader script will create a log file to record whether the load has
succeeded or failed, and another file to store rejected rows. You need a directory
with sufficient disk space if you expect them to be large. Their size is roughly
proportional to the number of failing rows.

Finally, consider what settings you need for performance options. This is
definitely last, as fiddling with things earlier can lead to confusion when you're
still making the load work correctly.

You must use a script to execute pgloader. This is not a restriction; actually, it is
more like best practice, because it makes it much easier to iterate towards
something that works. Loads never work the first time, except in the movies!

Let's look at a typical example from pgloader's quick start documentation, the csv.load

file.

Define the required operations in a command and save it in a file, say csv.load:

LOAD

Csv
FROM '/tmp/file.csv' (x, y, a, b, ¢, d)
INTO postgresql://postgres@localhost:5432/postgres?csv (a, b, d, c)

WITH truncate,
skip header =1,
fields optionally enclosed by '"',
fields escaped by double—quote,
fields terminated by ','

SET client_encoding to 'latinl',
work_mem to '12MB',
standard_conforming_strings to 'on'

BEFORE LOAD DO

$$ drop table if exists csv; $§,
$$ create table csv (
a bigint,

[176]

Tables and Data Chapter 5

b bigint,
c char(2),
d text
)i

$$;

This command allows loading the following CSV file content. Save this in a file,
say file.csv under the /tmp directory:

Header, with a © sign
"2.6.190.56","2.6.190.63","33996344","33996351", "GB", "United Kingdom"
"3.0.0.0","4.17.135.31", "50331648", "68257567", "US", "United States"
"4,.17.135.32","4.17.135.63","68257568","68257599", "CA", "Canada"
"4.17.135.64","4.17.142.255","68257600","68259583", "US", "United States"
"4.17.143.0","4.17.143.15","68259584","68259599", "CA", "Canada"
"4.17.143.16","4.18.32.71","68259600", "68296775","US", "United States"

We can use the following 1oad script:
pgloader csv.load

Here's what gets loaded in the PostgreSQL database:

postgres=# select * from csv ;

a | b | ¢ | d
33996344 | 33996351 | GB | United Kingdom
50331648 | 68257567 | US | United States
68257568 | 68257599 | CA | Canada
68257600 | 68259583 | US | United States
68259584 | 68259599 | CA | Canada
68259600 | 68296775 | US | United States
(6 rows)

How it works...

pgloader copes gracefully with errors. The COPY command loads all rows in a single
transaction, so only a single error is enough to abort the load. pgloader breaks down an
input file into reasonably sized chunks, and loads them piece by piece. If some rows in a
chunk cause errors, then pgloader will split it iteratively until it loads all the good rows
and skips all the bad rows, which are then saved in a separate rejects file for later
inspection. This behavior is very convenient if you have large data files with a small
percentage of bad rows; for instance, you can edit the rejects, fix them, and, finally, load
them with another pgloader run.

[177]

Tables and Data Chapter 5

Versions from the 2.x iteration of pgloader were written in Python and connected to
PostgreSQL through the standard Python client interface. Version 3.x is written in Common
Lisp. Yes, pgloader is less efficient than loading data files using a COPY command, but
running a COPY command has many more restrictions: the file has to be in the right place on
the server, has to be in the right format, and must be unlikely to throw errors on loading.
pgloader has additional overhead, but it also has the ability to load data using multiple
parallel threads, so it can be faster to use as well. pgloader's ability to reformat the data via
user-defined functions is often essential; straight COPY is just too simple.

pgloader also allows loading from fixed-width files, which copY does not.

There's more...

If you need to reload the table completely from scratch, then specify the -WITH TRUNCATE
clause in the pgloader script.

There are also options to specify SQL to be executed before and after loading the data. For
instance, you may have a script that creates the empty tables before, or you can add
constraints after, or both.

After loading, if we have load errors, then there will be some junk loaded into the
PostgreSQL tables. It is not junk that you can see, or that gives any semantic errors, but
think of it more like fragmentation. You should think about whether you need to add a
VACUUM command after the data load, though this will possibly make the load take much
longer.

We need to be careful to avoid loading data twice. The only easy way of doing that is to
make sure that there is at least one unique index defined on every table that you load. The
load should then fail very quickly.

String handling can often be difficult, because of the presence of formatting or non-
printable characters. The default setting for PostgreSQL is to have a parameter named
standard_conforming_strings set to of £, which means that backslashes will be
assumed to be escape characters. Put another way, by default, the \n string means line feed,
which can cause data to appear truncated. You'll need to

turn standard_conforming_strings to on, or you'll need to specify an escape character
in the load-parameter file.

[178]

Tables and Data Chapter 5

If you are reloading data that has been unloaded from PostgreSQL, then you may want to
use the pg_restore utility instead. The pg_restore utility has an option to reload data in
parallel, -3 number_of_threads, though this is only possible if the dump was produced
using the custom pg_dump format. Refer to the recipes in chapter 11, Backup and Recovery,
for more details. This can be useful for reloading dumps, though it lacks almost all of the
other pgloader features discussed here.

If you need to use rows from a read-only text file that does not have errors, then you may
consider using the file_fdw contrib module. The short story is that it lets you create a
virtual table that will parse the text file every time it is scanned. This is different from filling
a table once and for all, either with COPY or pgloader; therefore, it covers a different use
case. For example, think about an external data source that is maintained by a third party
and needs to be shared across different databases.

Making bulk data changes using server-side
procedures with transactions

In some cases, you'll need to make bulk changes to your data. In many cases, you need to
scroll through the data making changes according to a complex set of rules. You have a few
choices in that case:

e Write a single SQL statement that can do everything

¢ Open a cursor and read the rows out, then make changes with a client-side
program

e Write a procedure that uses a cursor to read the rows and make changes using
server-side SQL

Writing a single SQL statement that does everything is sometimes possible, but, if you need
to do more than just UPDATE then it becomes difficult very quickly. The main difficulty is
that the SQL statement isn't restartable, so, if you need to interrupt it then you lose all of
your work.

Reading all the rows back to a client-side program can be very slow — if you need to write
this kind of program, it is better to do it all on the database server.

[179]

Tables and Data Chapter 5

How to do it...

We're going to write a Procedure in PL/pgSQL. A Procedure is similar to a Function, except
that it doesn't return any value or object. We use a Procedure because it allows you to run
multiple server-side transactions. By using procedures in this way, we are able to break the
problem down into a set of smaller transactions that cause less of a problem with database

bloat and long running transactions.

As an example, let's consider a case where we need to update all employees with the A2 job
grade, giving each person a 2% pay rise:

CREATE PROCEDURE annual_pay_rise ()
LANGUAGE plpgsql AS $$
DECLARE
c CURSOR FOR
SELECT * FROM employee
WHERE job_code = 'A2';
BEGIN
FOR r IN c LOOP
UPDATE employee
SET salary = salary * 1.02
WHERE empid = r.empid;
IF mod (r.empid, 100) = 0 THEN
COMMIT;
END IF;
END LOOP;
END;
$$;

Execute the preceding procedure like this:
CALL annual_pay_rise();

We want to issue regular commits as we go. The preceding procedure is coded so it issues
commits roughly every 100 rows. There's nothing magical about that number: we just want
to break it down into smaller pieces whether it is number of rows scanned or rows updated.

[180]

Tables and Data Chapter 5

There's more...

You can use both COMMIT and ROLLBACK in a procedure. Each new transaction will see the
changes from prior transactions and any other concurrent commits that have occurred.

What happens if your Procedure is interrupted? Since we are using multiple transactions to
complete the task, we wouldn't expect the whole task to be atomic. If the execution is
interrupted, we would need to re-run the parts that didn’t execute successfully. What
happens if we accidentally re-run parts that have already been executed? We would give
some people a double pay rise, but not everyone.

To cope, let's invent a simple job restart mechanism. This uses a persistent table to track
changes as they are made, accessed by a simple API:

CREATE TABLE job_status
(id bigserial not null primary key,status text not null, restartdata
bigint);
CREATE OR REPLACE FUNCTION job_start_new ()
RETURNS bigint
LANGUAGE plpgsql
AS $$
DECLARE
p_id BIGINT;
BEGIN
INSERT INTO job_status (status, restartdata)
VALUES ('START', 0)
RETURNING id INTO p_id;
RETURN p_id;
END; $§;

CREATE OR REPLACE FUNCTION job_get_status (jobid bigint)
RETURNS bigint
LANGUAGE plpgsql
As $$
DECLARE
rdata BIGINT;
BEGIN
SELECT restartdata INTO rdata
FROM job_status
WHERE status != 'COMPLETE' AND id = jobid;
IF NOT FOUND THEN
RAISE EXCEPTION 'job id does not exist';
END IF;
RETURN rdata;
END; $§;
CREATE OR REPLACE PROCEDURE
job_update (jobid bigint, rdata bigint)

[181]

Tables and Data Chapter 5

LANGUAGE plpgsql

AS $8
BEGIN
UPDATE job_status
SET status = 'IN PROGRESS'

,restartdata = rdata
WHERE id = jobid;
END; $$;
CREATE OR REPLACE PROCEDURE job_complete (jobid bigint)
LANGUAGE plpgsql

AS $$
BEGIN
UPDATE job_status SET status = 'COMPLETE'
WHERE id = jobid;
END; $$;

First of all, we start a new job:

SELECT job_start_new();
Then we execute our procedure, passing the job number to it. Let's say this returns 8474:

CALL annual_pay_rise(8474);

If the procedure is interrupted, we will restart from the correct place, without needing to
specify any changes:

CALL annual_pay_rise(8474);

The existing procedure needs to be modified to use the new restart API, as shown in the
following code block. Note, also, that the cursor has to be modified to use an ORDER BY
clause to make the procedure sensibly repeatable:

CREATE OR REPLACE PROCEDURE annual_pay_rise (job bigint)
LANGUAGE plpgsgl AS $$
DECLARE
job_empid bigint;
c NO SCROLL CURSOR FOR
SELECT * FROM employee
WHERE job_code='A2'
AND empid > job_empid
ORDER BY empid;
BEGIN
SELECT job_get_status(job) INTO job_empid;
FOR r IN c LOOP
UPDATE employee
SET salary = salary * 1.02
WHERE empid = r.empid;

[182]

Tables and Data Chapter 5

IF mod (r.empid, 100) = 0 THEN
CALL job_update (job, r.empid);
COMMIT;
END IF;
END LOOP;
CALL job_complete (job);
END; $§;

For extra practice, follow execution using the debugger in pgAdmin or OmniDB.

The CALL statement can also be used to call functions that return void, but, other than that,
functions and Procedures are separate concepts. Procedures also allow you to execute
transactions in PL/Python and PL/perl.

[183]

Security

In this chapter, we will cover the following recipes:

e The PostgreSQL superuser

¢ Revoking user access to a table

¢ Granting user access to a table

e Granting user access to specific columns

e Granting user access to specific rows

¢ Creating a new user

e Temporarily preventing a user from connecting

¢ Removing a user without dropping their data

e Checking whether all users have a secure password
e Giving limited superuser powers to specific users

¢ Auditing database access

¢ Always knowing which user is logged in

¢ Integrating with Lightweight Directory Access Protocol (LDAP)
e Connecting using SSL

e Using SSL certificates to authenticate

e Mapping external usernames to database roles

¢ Encrypting sensitive data

Security Chapter 6

Introduction

First, set up access rules into the database server. PostgreSQL allows you to control access
based upon the host that is trying to connect, using the pg_hba. conf file. You can specify
SSL connections if needed or skip that if the network is secure. You can specify the use of
SCRAM authentication using 256 bit keys, as well as many other mechanisms.

Next, set up the role and privileges for accessing your data. Databases are mostly used to
store data, with several restrictions on how it can be used. Some records or tables can only
be seen by certain users, and even those tables that are visible to everyone can have
restrictions in terms of who can insert new data or change the existing data. All of this is
managed by a privilege system, where users are granted different privileges for different
tables or other database objects, such as schemas or functions.

It is good practice not to grant these privileges directly to users, but to use an intermediate
role to collect a set of privileges. Then, instead of granting all of the same privileges to the
actual user, the entire role is granted to users needing these privileges. For example, a clerk
role may have the right to both insert data and update existing data in the user_account
table, but may have the right to only insert data in the t ransaction_history table.

Fine-grained control over access can be managed using the Row-Level Security (RLS)
feature, which allows a defined policy on selected tables.

Another aspect of database security concerns the management of this access to the
database: making sure that only the right people can access the database; that one user can't
see what other users are doing (unless they are an administrator or auditor); and deciding
whether users can or cannot pass on the roles granted to them.

You should consider auditing the actions of administrators using pgaudit.

Typical user role

The minimal production database setup contains at least two types of users, namely
administrators and end users, where administrators can do everything (they are
superusers), and end users can only do very little, usually just modifying the data in only a
few tables and reading from a few more.

It is not a good idea to let ordinary users create or change database object definitions,
meaning that they should not have the CREATE privilege on any schema, including PUBLIC.

[185]

Security Chapter 6

There can be more roles for different types of end users, such as analysts, who can only
select from a single table or view, or some maintenance script users who see no data at all
and just have the ability to execute a few functions.

Alternatively, there can also be a manager role, which can grant and revoke roles for other
users but is not supposed to do anything else.

The PostgreSQL superuser

In this recipe, you will learn how to grant the right to a user to become a superuser.

A PostgreSQL superuser is a user that bypasses all permission checks, except the right to
log in. This is a dangerous privilege and should not be used carelessly. Many cloud
databases do not allow this level of privilege to be granted. It is normal to place strict
controls on users of this type.

How to do it...

Follow the steps to add or remove superuser privileges for any user:
1. A user becomes a superuser when it is created with the SUPERUSER attribute set:
CREATE USER username SUPERUSER;

2. A user can be deprived of its superuser status by removing the SUPERUSER
attribute using this command:

ALTER USER username NOSUPERUSER;
3. A user can be restored to superuser status later using the following command:

ALTER USER username SUPERUSER;

4. When neither SUPERUSER nor NOSUPERUSER is given in the CREATE USER
command, then the default is to create a user who is not a superuser.

How it works...

The rights to some operations in PostgreSQL are not available by default and need to be
granted specifically to users. They must be performed by a special user who has this special
attribute set. The preceding commands set and reset this attribute for the user.

[186]

Security Chapter 6

There's more...

The PostgreSQL system comes set up with at least one superuser. Most commonly, this
superuser is named postgres, but occasionally it adopts the same name as the system user
who owns the database directory and with whose rights the PostgreSQL server runs.

Other superuser-like attributes

In addition to SUPERUSER, there are two lesser attributes—CREATEDB and
CREATEUSER—which give the user only some of the power reserved for superusers, namely
creating new databases and users. See the Giving limited superuser powers to specific users
recipe for more information on this.

Attributes are never inherited

Later, you will learn about granting one role to another user—role inheritance—and how
privileges can be granted through these intermediate group roles. None of this applies to
attributes—to perform superuser-only operations, you must be that user.

See also

Also check out the Always knowing which user is logged in recipe in this chapter.

mentioned that they apply to or need a superuser.

0 All of the following recipes assume a non-superuser unless it is explicitly

Revoking user access to a table

This recipe answers the question: how do I make sure that user X cannot access table Y?

Getting ready

The current user must either be a superuser, the owner of the table, or a user with a GRANT
option for the table.

[187]

Security Chapter 6

Also, bear in mind that you can't revoke rights from a user who is a superuser.

How to do it...

To revoke all rights on the tablel table from the user2 user, you must run the following
SQL command:

REVOKE ALL ON tablel FROM user2;

However, if user?2 has been granted another role that gives them some rights on tablel,
say role3, this command is not enough; you must also choose one of the following options:

e Fix the user—that is, revoke role3 from user2
e Fix the role—that is, revoke privileges on tablel from role3

Both choices are imperfect because of their side-effects. The former will revoke all of the
privileges associated to role3, not just the privileges concerning tablel; the latter will
revoke the privileges on tablel from all of the other users that have been granted role3,
not just from user?2.

It is normally better to avoid damaging other legitimate users, so we opt for the first
solution. The following is a working example.

Using psql, display the list of roles that have been granted at least one privilege on tablel
by issuing \z tablel. For instance, you can obtain the following output (an extra column
about column privileges has been removed from the right-hand side because it was not
relevant here):

Access privileges

Schema | Name Type Access privileges

I
public | tablel | table | postgres=arwdDxt/postgres+|
| | | role3=r/postgres +|
| | | role5=a/postgres |
(1 row)

1 1
T T

Then, we check whether user2 is a member of any of those roles by typing \du user2:

List of roles

Role name | Attributes Member of

4 +
T L

user2 |

{role3, roled}

[188]

Security Chapter 6

In the previous step, we notice that role3 had been granted the SELECT privilege (r for
read) by the postgres user, so we must revoke it, as follows:

REVOKE role3 FROM user2;

We must also inspect role4. Even if it doesn't have privileges on tablel, in theory, it
could be a member of one of the three roles that have privileges on that table. We issue \du
role4 and get the following output:

List of roles
Role name | Attributes | Member of

1 I
T T

role4 | Cannot login | {role5}

Our suspicion was well founded: user2 can get the INSERT privilege (a for append) on
tablel, first via role4 and then via role5. So we must break this two-step chain as
follows:

REVOKE role4 FROM user2;

This example may seem too unlikely to be true. We unexpectedly gain
access to the table via a chain of two different role memberships, which
was made possible by the fact that a non-login role, such as role4, was
made a member of another non-login role, that is, role5. In most real-
world cases, superusers will know whether such chains exist at all, so
there will be no surprises; however, the goal of this recipe is to make sure
that the user cannot access the table, meaning we cannot exclude less-
likely options.

How it works...

The \z command, as well as its synonym, \dp, display all privileges granted on tables,
views, and sequences. If the Access privileges column is empty, it means default
privileges, that is, all privileges are given to the owner (and the superusers, as always).

The \du command shows you the attributes and roles that have been granted to roles.

Both commands accept an optional name or pattern to restrict the display.

[189]

Security Chapter 6

There's more...

Here, we'll cover some good practices on user and role management.

Database creation scripts

For production systems, it is usually a good idea to always include GRANT and REVOKE
statements in the database creation script so that you can be sure that only the right set of
users has access to the table. If this is done manually, it is easy to forget. Also, in this way,
you can be sure that the same roles are used in development and testing environments so
that there are no surprises at deployment time.

The following is a sample extract from the database creation script:
CREATE TABLE tablel (
)i
GRANT SELECT ON tablel TO webreaders;

GRANT SELECT, INSERT, UPDATE, DELETE ON tablel TO editors;
GRANT ALL ON tablel TO admins;

Default search path

It is always good practice to use a fully qualified name when revoking or granting rights;
otherwise, you may be inadvertently working with the wrong table.

To see the effective search path for the current database, run the following:

pguser=# show search_path ;
search_path

"$user",public
(1 row)

To see which table will be affected if you omit the schema name, run the following in PSQL.:

pguser=# \d x
Table "public.x"
Column | Type | Modifiers

+ +
T T

The public.x table name in the response contains the full name, including the schema.

[190]

Security Chapter 6

Securing views

It is a common technique to use a view to disclose only some parts of a secret table;
however, a clever attacker can use access to the view to display the rest of the table using
log messages. For instance, consider the following example:

CREATE VIEW for_the_public AS
SELECT * FROM reserved_data WHERE importance < 10;
GRANT SELECT ON for_the_public TO PUBLIC;

A malicious user could define the following function:

CREATE FUNCTION f (text)
RETURNS boolean
COST 0.00000001
LANGUAGE plpgsqgl AS $$
BEGIN
RAISE INFO '$1: %', $1;
RETURN true;
END;
$8;

They could use it to filter rows from the view:

SELECT * FROM for_the_public x WHERE f(x :: text);

The PostgreSQL optimizer will then internally rearrange the query, expanding the
definition of the view and then combining the two filter conditions into a single WHERE
clause. The trick here is that the function has been told to be very cheap using the cosT
keyword, so the optimizer will choose to evaluate that condition first. In other words, the
function will access all of the rows in the table, as you will realize when you see the
corresponding INFO lines on the console if you run the code yourself.

This security leak can be prevented using the security_barrier attribute:

ALTER VIEW for_the_public SET (security_barrier = on);

This means that the conditions that define the view will always be computed first,
irrespective of cost considerations.

The performance impact of this fix can be mitigated by the LEAKPROOF attribute for
functions. In short, a function that cannot leak information other than its output value can
be marked as LEAKPROOF by a superuser so the planner will know that it's secure enough to
compute the function before the other view conditions.

[191]

Security Chapter 6

Granting user access to a table

A user needs to have access to a table in order to perform any actions on it.

Getting ready

Make sure that you have the appropriate roles defined, and that privileges are revoked
from the PUBLIC role:

CREATE GROUP webreaders;

CREATE USER tim;

CREATE USER bob;

REVOKE ALL ON SCHEMA someschema FROM PUBLIC;

How to do it...

We had to grant access to the schema in order to allow access to the table. This suggests
that access to a given schema can be used as a fast and extreme way of preventing any
access to any object in that schema. Otherwise, if you want to allow some access, you must
use specific GRANT and REVOKE statements as needed:

GRANT USAGE ON SCHEMA someschema TO webreaders;

It is often desirable to give a group of users similar permissions to a group of database
objects. To do this, you first assign all the permissions to a proxy role (also known as a
permission group), and then assign the group to selected users, as follows:

GRANT SELECT ON someschema.pages TO webreaders;
GRANT INSERT ON someschema.viewlog TO webreaders;
GRANT webreaders TO tim, bob;

Now, both t im and bob have the SELECT privilege on the pages table and INSERT on
the viewlog table. You can also add privileges to the group role after assigning it to users.
Consider the following command:

GRANT INSERT, UPDATE, DELETE ON someschema.comments TO webreaders;

After running this command, both bob and t im have all of the aforementioned privileges
on the comments table.

[192]

Security Chapter 6

This assumes that both the bob and t im roles were created with the INHERIT default
setting. Otherwise, they do not automatically inherit the rights of roles but need to
explicitly set their role to the granted user to make use of the privileges granted to that role.

We can grant privileges on all objects of a certain kind in a specific schema, as follows:

GRANT SELECT ON ALL TABLES IN SCHEMA someschema TO bob;

You still need to grant the privileges on the schema itself in a separate GRANT statement.

How it works...

The preceding sequence of commands first grants access to a schema for a group role, then
gives appropriate viewing (SELECT) and modifying (INSERT) rights on certain tables to the
role, and finally grants membership in that role to two database users.

There's more...

There is no requirement in PostgreSQL to have some privileges in order to have others.
This means that you may well have write-only tables, where you are allowed to insert but
you can't select. This can be used to implement a mail-queue-like functionality, where
several users post messages to one user, but they can't see what other users have posted.

Alternatively, you could set up a situation where you can write a record, but you can't
change or delete it. This is useful for auditing log-type tables, where all changes
are recorded but cannot be tampered with.

Granting user access to specific columns

A user can be given access to only some table columns.

Getting ready

We will continue the example from the previous recipe, so we assume that there is already
a schema called someschema and a role called somerole with USAGE privileges on it. We
create a new table on which we will grant column-level privileges:

CREATE TABLE someschema.sometable2 (coll int, col2 text);

[193]

Security

Chapter 6

How to do it...

1.

We want to grant somerole the ability to view existing data and insert new data;
we also want to provide the ability to amend existing data, limited to column
col2 only. We use the following self-evident statements:

GRANT SELECT, INSERT ON someschema.sometable2 TO somerole;
GRANT UPDATE (col2) ON someschema.sometable2 TO somerole;

Let's assume the identity of the somerole role and test these privileges with the
following commands:

SET ROLE TO somerole;
INSERT INTO someschema.sometable2 VALUES (1, 'One');
SELECT * FROM someschema.sometable2 WHERE coll = 1;

As expected, we are able to insert a new row and to view its contents. Let's now
check our ability to update individual columns. We start with the second
column, which we have authorized:

UPDATE someschema.sometable2 SET col2 = 'The number one';
This command returns the familiar output:

UPDATE 1

This means that we were able to successfully update that column in one row.
Now, we try to update the first column:

UPDATE someschema.sometable2 SET coll = 2;

This time, we get the following error message:

ERROR: permission denied for relation sometable2

This confirms that, as planned, we only authorized updates to the second column.

How it works...

The GRANT command has been extended to allow for specifying a list of columns, meaning
that the privilege is granted on that list of columns, rather than on the whole table.

[194]

Security Chapter 6

There's more...

Consider a table, t, with columns, c1, c2, and c3; there are two different ways of
authorizing user u to perform the following query:

SELECT * FROM t;

The first is by granting a table-level privilege, as follows:

GRANT SELECT ON TABLE t TO u;

The alternative way is by granting column-level privileges, as follows:

GRANT SELECT (cl,c2,c3) ON TABLE t TO u;

Despite these two methods having overlapping effects, table-level privileges are distinct
from column-level privileges, which is correct since the meaning of each is different.
Granting privileges on a table means giving them to all columns present and future, while
column-level privileges require the explicit indication of columns and, therefore, don't
extend automatically to new columns.

The way privileges work in PostgreSQL means that a given role will be allowed to perform
a given action if it matches one of its privileges. This creates some ambiguity in overlapping
areas. For example, consider the following command sequence:

GRANT SELECT ON someschema.sometable2 TO somerole;
REVOKE SELECT (coll) ON someschema.sometable2 FROM
somerole;

The outcome, somehow surprisingly, will be that somerole is allowed to
view all of the columns of that table using the table-level privilege granted
by the first command. The second command was ineffective because it
tried to revoke a column-level privilege (SELECT on col1) that was never
granted in the first place.

Granting user access to specific rows

PostgreSQL supports granting users privileges on some rows only.

[195]

Security Chapter 6

Getting ready

This recipe uses RLS, which is available only in PostgreSQL version 9.5 or later, so start by
checking that you are not using an older version.

As for the previous recipe, we assume that there is already a schema called someschema
and a role called somerole with USAGE privileges on it. We create a new table to
experiment with row-level privileges:

CREATE TABLE someschema.sometable3(coll int, col2 text);

RLS must also be enabled on that table:

ALTER TABLE someschema.sometable3 ENABLE ROW LEVEL SECURITY;

How to do it...

First, we grant somerole the privilege to view the contents of the table, as we did in the
previous recipe:

GRANT SELECT ON someschema.sometable3 TO somerole;
Let's assume that the contents of the table are as shown by the following command:

SELECT * FROM someschema.sometable3;

coll | col2
1 | One
-1 | Minus one
(2 rows)

In order to grant the ability to access some rows only, we create a policy specifying what is
allowed and on which rows. For instance, this way, we can enforce the condition that
somerole is only allowed to select rows with positive values of col1:

CREATE POLICY examplel ON someschema.sometable3
FOR SELECT

TO somerole

USING (coll > 0);

[196]

Security Chapter 6

The effect of this command is that the rows that do not satisfy the policy are silently
skipped, as shown when somerole issues the following command:

SELECT * FROM someschema.sometable3;

coll | col2
1 | One
(1 row)

What if we want to introduce a policy on the INSERT clause? The preceding policy shows
how the USING clause specifies which rows are affected. There is also a WITH CHECK clause
that can be used to specify which inserts are accepted. More generally, the USING clause
applies to pre-existing rows, while WITH CHECK applies to rows that are generated by the
statement being analyzed. So, the former works with SELECT, UPDATE, and DELETE, while
the latter works with INSERT and UPDATE.

Coming back to our example, we may want to allow inserts only where col1 is positive:

CREATE POLICY example2 ON someschema.sometable3
FOR INSERT

TO somerole

WITH CHECK (coll > 0);

We must also remember to allow the INSERT commands on the table, as we did before
with SELECT:

GRANT INSERT ON someschema.sometable3 TO somerole;
SELECT * FROM someschema.sometable3;

coll | col2
1 | One
(1 row)

Now we are able to insert a new row and to see it afterward:

INSERT INTO someschema.sometable3 VALUES (2, 'Two');
SELECT * FROM someschema.sometable3;

coll | col2
1 | One
2 | Two

(2 rows)

[197]

Security Chapter 6

How it works...

RLS policies are created and dropped on a given table using the CREATE POLICY syntax.
The RLS policy itself must also be enabled explicitly on the given table, because it is
disabled by default.

In the previous example, we needed to grant privileges on the table or on the columns, in
addition to creating the RLS policy. This is because RLS is not one more privilege to be
added to the other; rather, it works like an additional check. In this sense, it is convenient
that it is off by default, as we have to create policies only on the tables where our access
logic depends on the row contents.

There's more...

RLS can lead to very complex configurations for a variety of reasons, as in the following
instances:

e An UPDATE policy can specify both the rows on which we act and what changes
can be accepted

e UPDATE and DELETE policies, in some cases, require visibility as granted by an
appropriate SELECT policy

e UPDATE policies are also applied to INSERT ... ON CONFLICT DO UPDATE

We recommend reading the finer details at the following URL: https://www.postgresql.
org/docs/11/static/ddl-rowsecurity.html.

Creating a new user

In this recipe, we will show you two ways of creating a new database user, one with a
dedicated command-line utility and one using SQL commands.

Getting ready

To create new users, you must either be a superuser or have the CREATEROLE or
CREATEROLE privilege.

[198]

https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html

Security Chapter 6

How to do it...

From the command line, you can run the createuser command:

pguser@hvost:~$ createuser bob

If you add the ——interactive command-line option, you activate the interactive mode,
which means you will be asked some questions, as follows:

pguser@hvost:~$ createuser —-interactive alice

Shall the new role be a superuser? (y/n) n

Shall the new role be allowed to create databases? (y/n) y
Shall the new role be allowed to create more new roles? (y/n) n

Without —-interactive, the preceding questions get no as the default answer; you can
change that with the -s, -d, and -r command-line options.

In interactive mode, questions are asked only if they make sense. One example is when the
user is a superuser; no other questions are asked because a superuser is not subject to
privilege checks. Another example is when one of the preceding options is used to specify a
non-default setting; the corresponding question will not be asked.

How it works...

The createuser program is just a shallow wrapper around the executing SQL against the
database cluster. It connects to the postgres database and then executes SQL commands
for user creation. To create the same users through SQL, you can issue the following
commands:

CREATE USER bob;
CREATE USER alice CREATEDB;

There's more...

You can check the attributes of a given user in psql, as follows:

pguser=# \du alice

[199]

Security Chapter 6

This gives you the following output:

List of roles

Role name | Attributes Member of

1 I
T T

alice | Create DB

{}

The CREATE USER and CREATE GROUP commands are actually variations of CREATE ROLE.
The CREATE USER username; statement is equivalent to CREATE ROLE username
LOGIN;, and the CREATE GROUP groupname; statement is equivalent to CREATE ROLE
groupname NOLOGIN;.

Temporarily preventing a user from
connecting

Sometimes, you need to temporarily revoke a user's connection rights without actually
deleting the user or changing the user's password. This recipe presents the ways of doing
this.

Getting ready

To modify other users, you must either be a superuser or have the CREATEROLE privilege
(in the latter case, only non-superuser roles can be altered).

How to do it...
Follow the steps to temporarily prevent and reissue the logging in capability to a user:
1. To temporarily prevent the user from logging in, run this command:

pguser=# alter user bob nologin;
ALTER ROLE

2. To let the user connect again, run the following:

pguser=# alter user bob login;
ALTER ROLE

[200]

Security Chapter 6

How it works...

This sets a flag in the system catalog, telling PostgreSQL not to let the user log in. It does
not kick out already connected users.

There's more...

Here are some additional remarks.

Limiting the number of concurrent connections by a
user

The same result can be achieved by setting the connection limit for that user to 0:

pguser=# alter user bob connection limit O;
ALTER ROLE

To allow 10 concurrent connections for the bob user, run this command:

pguser=# alter user bob connection limit 10;
ALTER ROLE

To allow an unlimited number of connections for this user, run the following:

pguser=# alter user bob connection limit -1;
ALTER ROLE

Note that unlimited connections to PostgreSQL concurrently could allow
a Denial of Service (DoS) attack by exhausting connection resources; also,
a system could fail or degrade by an overload of legitimate users.

To reduce these risks, we should always limit the number of concurrent
sessions per user.

Forcing NOLOGIN users to disconnect

In order to make sure that all users whose login privileges have been revoked are
disconnected right away, run the following SQL statement as a superuser:

SELECT pg_terminate_backend (pid)

FROM pg_stat_activity a
JOIN pg_roles r ON a.usename = r.rolname AND NOT rolcanlogin;

[201]

Security Chapter 6

This disconnects all users who no longer are allowed to connect by terminating the
backends opened by these users.

Removing a user without dropping their data

When trying to drop a user who owns some tables or other database objects, you get the
following error, and the user is not dropped:

testdb=# drop user bob;

ERROR: role “bob” cannot be dropped because some objects depend on it
DETAIL: owner of table bobstable

owner of sequence bobstable_id_ seq

This recipe presents two solutions to this problem.

Getting ready

To modify users, you must either be a superuser or have the CREATEROLE privilege.

How to do it...

The easiest solution to this problem is to refrain from dropping the user and use the trick
from a previous recipe to prevent the user from connecting:

pguser=# alter user bob nologin;
ALTER ROLE

This has the added benefit of the original owner of the table being available later, if needed,
for auditing or debugging purposes (Why is this table here? Who created it?).

Then, you can assign the rights of the deleted user to a new user, using the following code:

pguser=# GRANT bob TO bobs_replacement;
GRANT

[202]

Security Chapter 6

How it works...

As noted previously, a user is implemented as a role with the login attribute set. This recipe
works by removing that attribute from the user, which is then kept just as a role.

If you really need to get rid of a user, you have to assign all ownership to another user. To
do so, run the following query, which is a PostgreSQL extension to standard SQL:

REASSIGN OWNED BY bob TO bobs_replacement;

It does exactly what it says: it assigns ownership of all database objects currently owned by
the bob role to the bobs_replacement role.

However, you need to have privileges on both the old and the new roles to do that, and you
need to do it in all databases where bob owns any objects, as the REASSIGN OWNED
command works only on the current database.

After this, you can delete the original user, bob.

Checking whether all users have a secure
password

PostgreSQL has no built-in facilities to make sure that you are using strong passwords.

The best you can do is to make sure that all user passwords are encrypted, and that your
pg_hba. conf file does not allow logins with a plain password; that is, always use the
SCRAM-SHA-256 login method for users, which was added in PostgreSQL 10. Any servers
upgrading from earlier versions should upgrade from md5 to SCRAM-SHA-256 password
encryption.

For client applications connecting from trusted private networks, either real or virtual
(VPN), you may use host-based access, provided you know that the machine on which the
application is running is not used by some non-trusted individuals. For remote access over
public networks, it may be a better idea to use SSL client certificates.

[203]

Security Chapter 6

How to do it...

To see which users don't yet have SCRAM encrypted passwords, use this query:

test2=# select usename,passwd from pg_shadow where passwd
not like ‘SCRAM%’ or passwd is null;

usename | passwd
tim | weakpassword
asterisk | md5chicken
(2 rows)

To enable SCRAM-SHA-256 for encrypted passwords, use the following:

test2=# SET password_encryption = ‘scram-sha-256’;
test2=# ALTER USER bob ENCRYPTED PASSWORD ‘whatever’;
ALTER USER

How it works...

The password_encryption parameter decides how the ALTER USER statement will
encrypt the password. This should be set globally in the postgresql. conf file.

Having the passwords encrypted in the database is just half of the equation. The bigger
problem is making sure that users actually use passwords that are hard to guess.
Passwords such as password, secret, or test are out of the question, and most common
words are not good passwords either.

If you don't trust your users to select strong passwords, you can write a wrapper
application that checks the password strength and makes them use that when changing
passwords. A contrib module lets you do this for a limited set of cases (the password is
sent from client to server in plain text). Visit http: //www.postgresql.org/docs/11/
static/passwordcheck.html for more information on this.

Giving limited superuser powers to specific
users

The superuser role has some privileges that can also be granted to non-superuser roles
separately.

[204]

http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html

Security Chapter 6

To give the bob role the ability to create new databases, run this:

ALTER ROLE BOB WITH CREATEDB;

To give the bob role the ability to create new users, run the following;:

ALTER ROLE BOB WITH CREATEROLE;

It is also possible to give ordinary users more fine-grained and controlled access to an
action reserved for superusers using security definer functions. The same trick can also
be used to pass partial privileges between different users.

Getting ready

First, you must have access to the database as a superuser in order to delegate powers.
Here, we assume the use of the default superuser named postgres.

We will demonstrate two ways to make some superuser-only functionality available to a
selected ordinary user.

How to do it...

An ordinary user cannot tell PostgreSQL to copy table data from a file. Only a superuser
can do that, as follows:

pguser@hvost:~$ psql -U postgres
test2

test2=# create table lines(line text);
CREATE TABLE
test2=# copy lines from ‘/home/bob/names.txt’;

COPY 37
test2=# SET ROLE to bob;
SET

test2=> copy lines from ‘/home/bob/names.txt’;

ERROR: must be superuser to COPY to or from a file

HINT: Anyone can COPY to stdout or from stdin. psql’s \copy command also
works for anyone.

[205]

Security Chapter 6

To let bob copy directly from the file, the superuser can write a special wrapper function
for bob, as follows:

create or replace function copy_from(tablename text, filepath text)
returns void
security definer

as
$$
declare
begin
execute 'copy ' || quote_ident (tablename)
|| ' from ' || quote_literal (filepath) ;
end;

$$ language plpgsql;
It is usually a good idea to restrict the use of such a function to the intended user only:

revoke all on function copy_from(text, text) from public;
grant execute on function copy_from(text, text) to bob;

You may also want to verify that bob imports files only from his home directory.

Unfortunately, this solution is not completely secure against superuser
privilege escalation by a malicious attacker. This is because the execution
of the corY command inside the function will also cause the execution, as
the postgres user, of all side-effects, such as the execution of any INSERT
trigger, the computation of any CHECK constraint, the computation of any
functional index, and more.

In other words, if the user wants to execute a given function as the
superuser, it's enough to put that function inside any of the preceding
functions.

There are a few workarounds for this security hole, none of which are optimal.

You can require that the table has no triggers and CHECK constraints and functional indexes.

Instead of running COPY on the given table, create a new table with the same structure
using the CREATE newtable (LIKE oldtable) syntax. Run COPY against the new table,
drop the old table, and give the new table the same name as the old one.

[206]

Security Chapter 6

How it works...

When a function defined with security definer is called, PostgreSQL changes the
session's rights to those of the user who defined the function while that function is being
executed.

So, when bob executes the copy_from (tablename, filepath) function, bob is
effectively promoted to a superuser when the function is running.

This behavior is similar to the setuid flag in Unix systems, where you can have a program
that can be run by anybody (with execute access) as the owner of that program. It also
carries similar risks.

There's more...

There are other operations that are reserved for PostgreSQL superusers, such as setting
certain parameters.

Writing a debugging_info function for developers

Several of the parameters controlling logging are reserved for superusers.

If you want to allow some of your developers to set logging, you can write a function for
them to do exactly that:

create or replace function debugging_info_on()
returns void
security definer
as
$8
begin
set client_min_messages to 'DEBUGL';
set log_min_messages to 'DEBUGl’;
set log_error_verbosity to 'VERBOSE';
set log_min_duration_statement to O0;
end;
$$ language plpgsql;
revoke all on function debugging_info_on() from public;
grant execute on function debugging_info_on() to bob;

[207]

Security Chapter 6

You may also want to have a function go back to the default logging state by assigning
DEFAULT to all of the variables involved:

create or replace function debugging info_reset ()
returns void
security definer
as
$$
begin

set client_min_messages to DEFAULT;

set log_min_messages to DEFAULT;

set log_error_verbosity to DEFAULT;

set log_min_duration_statement to DEFAULT;
end;
$$ language plpgsql;

There's no need for GRANT and REVOKE statements here, as setting them back to the default
does not pose a security risk. Instead of SET xxx to DEFAULT, you can also use a shorter
version of the same command, namely RESET xxx.

Alternatively, you can simply end your session, as the parameters are valid only for the
current session.

Auditing database access

Auditing database access is a much bigger topic than you might expect because it can cover
a whole range of requirements.

Getting ready

First, decide which of these you want and look at the appropriate subsection:

What were the SQL statements executed? Auditing SQL
What were the tables accessed? Auditing table access

What were the data rows changed? Auditing data changes

What were the data rows viewed? Not described here, usually too much data

Auditing just SQL produces the lowest volume of audit log information, especially if you
choose to log only DDL. Higher levels accumulate more information very rapidly, so you
may quickly decide not to do this in practice. Read each section to understand the benefits
and trade-offs.

[208]

Security Chapter 6

Auditing SQL

There are two main ways to log SQL:

¢ Using the PostgreSQL log_statement parameter
¢ Using the pgaudit extension's pgaudit.log parameter

The 1og_statement parameter can be set to one of the following options:

e ALL: Logs all SQL statements executed at top level

e MOD: Logs all SQL statements for INSERT, UPDATE, DELETE, and TRUNCATE
e ddl: Logs all SQL statements for DDL commands

* NONE: No statements logged

For example, to log all DDL commands, edit your postgresql . conf file to set the
following:

log_statement = 'ddl'

The 1log_statement SQL statements are explicitly given in top-level commands. It is still
possible to perform SQL without it being logged by this setting if you use any of the PL
languages, either through DO statements or by calling a function that includes SQL
statements.

Was the change committed? It is possible to have some statements recorded in the log file
but not be visible in the database structure. Most DDL commands in PostgreSQL can be
rolled back, so what is in the log is just a list of commands executed by PostgreSQL—not
what was actually committed. The log file is not transactional, and it keeps commands that
were rolled back. It is possible to display the transaction identifier on each log line by
including %x in the 1og_line_prefix setting, though that has some difficulties in terms of
usage.

Who made the changes? To be able to know which database user made the DDL changes,
you have to make sure that this information is logged as well. In order to do so, you may
have to change the 1og_line_prefix parameter to include the $u format string.

A recommended minimal 1og_line_prefix format string for auditing DDL is st = %u
%d, which tells PostgreSQL to log the timestamp, database user, and database name at the
start of every log line.

[209]

Security

Chapter 6

The pgaudit extension provides two levels of audit logging: session and object levels. The
session level has been designed to solve some of the problems of 1og_statement.
pgaudit will log all access, even if it is not executed as a top-level statement, and it will log
all dynamic SQL. pgaudit.log can be set to include zero or more of the following settings:

READ: SELECT and COPY

WRITE: INSERT, UPDATE, DELETE, TRUNCATE, and COPY

FUNCTION: Function calls and DO blocks

ROLE: GRANT, REVOKE, CREATE/ALTER/DROP ROLE

DDL: All DDL not already included in the ROLE category

MISC: Miscellaneous—DISCARD, FETCH, CHECKPOINT, VACUUM, and so on

For example, to log all DDL commands, edit your postgresql . conf file to set the

following;:

pgaudit.log = 'role, ddl'

You should set these parameters to reduce the overhead of logging:

pgaudit.log_catalog = off
pgaudit.log_relation = off
pgaudit.log_statement_once = on

The pgaudit extension was originally written by Simon Riggs and Abhijit
Menon-Sen of 2ndQuadrant as part of the AXLE project for the EU. The
next version was designed by Simon Riggs and David Steele to provide
object-level logging. The original version was deprecated and is no longer
available. The new version is fully supported and has been adopted by the
US DoD as the tool of choice for PostgreSQL audit logging.

pgaudit is available in binary form via postgresql . org repositories.

Auditing table access

pgaudit can log access to each table. So, if an SQL table touches three tables, then it can
generate three log records, one for each table. This is important because otherwise, you
might have to try and parse the SQL to find out which tables it touched, which would be
difficult without access to the schema and the search_path settings.

[210]

Security Chapter 6

To make it easier to access the audit log per table, adjust these settings:

pgaudit.log_relation = on
pgaudit.log_statement_once = off

If you want even finer-grained auditing, pgaudit allows you to control which tables are
audited. The user cannot tell which tables are logged and which are not, so it is possible for
investigators to quietly enhance the level of logging once they are alerted to a suspect or a
potential attack.

First, set the role that will be used by the auditor:
pgaudit.role = ‘investigator’
Then, you can define logging through the privilege system, like the following command:
GRANT INSERT, UPDATE, DELETE on <vulnerable_table> TO investigator;
Remove it again when no longer required.

Privileges may be set at individual column level to protect Personally Identifiable
Information (PII).

Managing the audit log

Both 1log_statement and pgaudit output audit log records to the server log. This is the
most flexible approach since the log can be routed in various ways to ensure it is safe and
separate from normal log entries.

If you allow the log entries to go the normal server log, you can find all occurrences of the
CREATE, ALTER, and DROP commands in the log:

postgres@hvost:~$ egrep -i “create|alter|drop” \
/var/log/postgresql/postgresql-11l-main.log

If log rotation is in effect, you may need to use grep on older logs as well.

If the available logs are too new and you haven't saved the older logs in some other place,
you are out of luck.

The default settings in the postgresql. conf file for log rotation are as follows:
log_filename = 'postgresql-%Y-%$m—%d_$H$M%S.log'

log_rotation_age = 1d
log_rotation_size = 10MB

[211]

Security Chapter 6

Log rotation can also be implemented with third-party utilities. For
instance, the default behavior on Debian and Ubuntu distributions is to
use the logrotate utility to compress or delete old log files, according to
the rules specified in the /etc/logrotate.d/postgresgl-common file.

To make sure you have the full history of DDL commands, you may want to set up a cron
job that saves the DDL statements extracted from the main PostgreSQL log to a separate
DDL audit log. You would still want to verify that the logs are not rotating too fast for this
to catch all DDL statements.

If you use syslog, then you can route audit messages using various OS utilities.

Alternatively, you can use the pgaudit analyze extension to load data back into a special
audit log database. Various other options exist.

Auditing data changes

This recipe provides different ways of collecting changes to data contained in the tables for
auditing purposes.

First, you must make the following decisions:

¢ Do you need to audit all changes or only some?

e What information about the changes do you need to collect? Only the fact that
the data has changed?

¢ When recording the new value of a field or tuple, do you also need to record the
old value?

e Is it enough to record which user made the change, or do you also need to record
the IP address and other connection information?

e How secure (tamper-proof) must the auditing information be? For example, does
it need to be kept separately, away from the database being audited?

Changes can be collected using triggers which collect new (and if needed, old) values from
tuples, and save them to auditing table(s). Triggers can be added to whichever tables need
to be tracked.

The audit_trigger extension provides a handy universal audit trigger so you do not
need to write your own. It logs both old and new values of rows in any table, serialized as
hstore data type values. The latest version and its documentation are both available at
https://github.com/2ndQuadrant/audit-trigger.

[212]

https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger

Security Chapter 6

The extension creates a schema called audit, into which all of the other components of the
audit trigger code are placed, after which we can enable auditing on specific tables.

As an example, we create standard pgbench tables by running the pgbench utility:

pgbench -i

Next, we connect to PostgreSQL as a superuser, and issue the following SQL to enable
auditing on the pgbench_account table:

SELECT audit.audit_table ('pgbench_accounts');

Now, we perform some write activity to see how it is audited. The easiest choice is to run
the pgbench utility again, this time to perform some transactions, as follows:

pgbench -t 1000

We expect the audit trigger to have logged the actions on pgbench_accounts, as we have
enabled auditing on it. In order to verify this, we connect again with psql and issue the
following SQL:

cookbook=# SELECT count (*) FROM audit.logged_actions;
count

This confirms that we have indeed logged 1,000 actions. Let's inspect the information that is
logged by reading one row of the 1ogged_actions table. First, we enable expanded mode,
as the query produces a large number of columns:

cookbook=# \x on

Then, we issue the following command:

cookbook=# SELECT * FROM audit.logged_actions LIMIT 1;
-[RECORD 1] }

2017-01-18 19:48:05.626299+01
2017-01-18 19:48:05.626446+01
2017-01-18 19:48:05.628488+01

action_tstamp_tx
action_tstamp_stm
action_tstamp_clk

event_id | 1
schema_name | public
table_name | pgbench_accounts
relid | 246511
session_user_name | gianni

I

I

I

[213]

Security Chapter 6

182578
pgbench

transaction_id |
application_name |
client_addr |
client_port |
client_query |
WHERE aid = 86061;

UPDATE pgbench_accounts SET abalance = abalance + -758

action | U

row_data | "aid"=>"86061", "bid"=>"1", "filler"=>" ",
"abalance"=>"0"

changed_fields | "abalance"=>"-758"

statement_only | £

Always knowing which user is logged in

In the preceding recipes, we just logged the value of the user variable in the current
PostgreSQL session to log the current user role.

This does not always mean that this particular user was the user that was actually
authenticated at the start of the session. For example, a superuser can execute the SET

ROLE TO ... command to set its current role to any other user or role in the system. As
you might expect, non-superusers can assume only those roles that they own.

It is possible to differentiate between the logged-in role and the assumed role using the
current_user and session_user session variables

postgres=# select current_user, session_user;
current_user | session_user

+
postgres | postgres

postgres=# set role to bob;

SET

postgres=> select current_user, session_user;
current_user | session_user

4
+

bob postgres

Sometimes, it is desirable to let each user log in with their own username and just assume
the role needed on a case-by-case basis.

[214]

Security Chapter 6

Getting ready

Prepare the required group roles for different tasks and access levels by granting the
necessary privileges and options.

How to do it...

The steps are as follows:
1. Create user roles with no privileges and with the NOINHERIT option:

postgres=# create user alice noinherit;
CREATE ROLE

postgres=# create user bob noinherit;
CREATE ROLE

2. Then, create roles for each group of privileges that you need to assign:

postgres=# create group sales;

CREATE ROLE

postgres=# create group marketing;
CREATE ROLE

postgres=# grant postgres to marketing;
GRANT ROLE

3. Now, grant each user the roles it may need:

postgres=# grant sales to alice;

GRANT ROLE

postgres=# grant marketing to alice;
GRANT ROLE

postgres=# grant sales to bob;
GRANT ROLE

After you do this, the alice and bob users have no rights after login, but they can assume
the sales role by executing SET ROLE TO sales, and alice can additionally assume the
superuser role.

[215]

Security Chapter 6

How it works...

If a role or user is created with the NOINHERIT option, this user will not automatically get
the rights that have been granted to the other roles that have been granted to itself. To claim
these rights from a specific role, it has to set its role to one of those other roles.

In some sense, this works a bit like the su (set user) command in Unix and Linux systems.
That is, you (may) have the right to become that user, but you do not automatically have
the rights of the aforementioned user.

This setup can be used to get better audit information, as it lets you know who the actual
user was. If you just allow each user to log in as the role needed for a task, there is no good
way to know later which of the users was really logged in as clerk1 when a $100,000
transfer was made.

There's more...

The SET ROLE command works both ways, that is, you can both gain and lose privileges. A
superuser can set its role to any user defined in the system. To get back to your original
login role, just use RESET ROLE.

Not inheriting user attributes

Not all rights come to users via GRANT commands. Some important rights are given via user
attributes (SUPERUSER, CREATEDB, and CREATEROLE), and these are never inherited.

If your user has been granted a superuser role and you want to use the superuser powers of
this granted role, you have to use SET ROLE To mysuperuserrole before anything that
requires the superuser attribute to be set.

In other words, the user attributes always behave as if the user had been a NOINHERIT user.

Integrating with LDAP

This recipe shows you how to set up your PostgreSQL system so that it uses the LDAP for
authentication.

[216]

Security Chapter 6

Getting ready

Ensure that the usernames in the database and your LDAP server match, as this method
works for user authentication checks of users who are already defined in the database.

How to do it...

In the PostgreSQL authentication file, pg_hba. conf, we define some address ranges to use
LDAP as an authentication method, and we configure the LDAP server for this address
range:

host all all 10.10.0.1/16 ldap \
ldapserver=1ldap.our.net ldapprefix="cn=" ldapsuffix=",
dc=our,dc=net"

How it works...

This setup makes the PostgreSQL server check passwords from the configured LDAP
server.

User rights are not queried from the LDAP server but have to be defined inside the
database using the ALTER USER, GRANT, and REVOKE commands.

There's more...

We have shown you how PostgreSQL can use an LDAP server for password authentication.
It is also possible to use some more information from the LDAP server, as shown in the
next two examples.

Setting up the client to use LDAP

If you are using the pg_service.conf file to define your database access parameters, you
may define some to be queried from the LDAP server by including a line similar to the
following in your pg_service. conf file:

ldap://1ldap.mycompany .com/dc=mycompany, dc=com?uniqueMember?one? (cn=mydb)

[217]

Security Chapter 6

Replacement for the User Name Map feature

Although we cannot use the User Name Map feature with LDAP, we can achieve a similar
effect on the LDAP side. Use 1dapsearchattribute and the search + bind mode to
retrieve the PostgreSQL role name from the LDAP server.

See also

o For server setup, including the search + bind mode, visit http://www.
postgresgl.org/docs/11/static/auth-methods.html#AUTH-LDAP

e For client setup, visit http://www.postgresql.org/docs/11/static/libpg-
ldap.html

Connecting using SSL

Here, we will demonstrate how to enable PostgreSQL to use SSL for the protection of
database connections by encrypting all of the data passed over that connection. Using SSL
makes it much harder to sniff the database traffic, including usernames, passwords, and
other sensitive data. Otherwise, everything that is passed unencrypted between a client and
the database can be observed by someone listening to a network somewhere between them.
An alternative to using SSL is running the connection over a Virtual Private Network
(VPN).

Using SSL makes the data transfer on the encrypted connection a little slower, so you may
not want to use it if you are sure that your network is safe. The performance impact can be
quite large if you are creating lots of short connections, as setting up an SSL connection is
quite CPU heavy. In this case, you may want to run a local connection pooling solution,
such as PgBouncer, to which the client connects without encryption, and then configure
PgBouncer for server connections using SSL. Older versions of PgBouncer did not support
SSL; the solution was to channel server connections through stunnel, as described in the
PgBouncer FAQ at https://pgbouncer.github.io/faqg.html.

Getting ready

Get, or generate, an SSL server key and certificate pair for the server, and store these in the
data directory of the current database instance as the server.key and server.crt files.

[218]

http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html

Security Chapter 6

On some platforms, this is unnecessary; the key and certificate pair may
already be generated by the packager. For example, in Ubuntu,
PostgreSQL is set up to support SSL connections by default.

How to do it...

Set ss1 = oninpostgresql.conf and restart the database.

How it works...

If ss1 = onis set, then PostgreSQL listens to both plain and SSL connections on the same
port (5432 by default) and determines the type of connection from the first byte of a new
connection. Then, it proceeds to set up an SSL connection if an incoming request asks for it.

There's more...

You can leave the choice of whether or not to use SSL up to the client, or you can force SSL
usage from the server side.

To let the client choose, use a line of the following form in the pg_hba. conf file:
host database user IP-address/IP-mask auth-method

If you want to allow only SSL clients, use the hostss1 keyword instead of host.

The contents of pg_hba.conf can be seen using the pg_hba_file_rules view.

The following fragment of pg_hba . conf enables both non-SSL and SSL connections from
the 192.168.1.0/24 local subnet, but requires SSL from everybody accessing the database
from other networks:

host all all 192.168.1.0/24 md5
hostssl all all 0.0.0.0/0 md5

[219]

Security

Chapter 6

Getting the SSL key and certificate

For web servers, you must usually get your SSL certificate from a recognized Certificate
Authority (CA), as most browsers complain if the certificate is not issued by a known CA.
They warn the user of the most common security risks and require confirmation before
connecting to a server with a certificate issued by an unknown CA.

For your database server, it is usually sufficient to generate the certificate yourself using
OpenSSL. The following commands generate a self-signed certificate for your server:

openssl
openssl

genrsa 2048 > server.key
req -new -x509 -key server.key -out server.crt

Read more on X.509 keys and certificates by visiting OpenSSL's HOWTO
pages at https://github.com/openssl/openssl/tree/master/doc/HOWTO.

Setting up a client to use SSL

The behavior of the client application regarding SSL is controlled by an environment
variable, PGSSLMODE. This can have the following values, as defined in the official
PostgreSQL documentation:

Eavesdropping (MITM

SSL mode . . Statement
protection protection
. I don't care about security, and I don't want to pay
l 7
disabled No No the overhead of encryption.
allow Mavbe No I don't care about security, but I will pay the
Y overhead of encryption if the server insists on it.
I don't care about encryption, but I will to pay the
prefer Maybe No overhead of encryption if the server supports it.
I want my data to be encrypted, and I accept the
require Yes No overhead. I trust that the network will ensure that I

always connect to the server I want.

Depends on |l want my data encrypted, and I accept the overhead.

verify-ca .
Y Yes the CA policy |I want to be sure that I connect to a server that I trust.
I'want my data encrypted, and I accept the overhead.
verify-full|Yes Yes I want to be sure that I connect to a server I trust, and

that the server is the one I specify.

[220]

https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO

Security Chapter 6

MITM in the preceding table means man-in-the-middle attack, that is, someone posing as
your server, perhaps by manipulating DNS records or IP routing tables, but who actually
just observes and forwards the traffic.

For this to be possible with an SSL connection, this person needs to have obtained a
certificate that your client considers valid.

Checking server authenticity

The last two SSL modes allow you to be reasonably sure that you are actually talking to
your server by checking the SSL certificate presented by the server.

In order to enable this useful security feature, the following files must be available on the
client side. On Unix systems, they are located in the client home directory, in a subdirectory
named ~/.postgresqgl. On Windows, they are in $APPDATA% \postgresqgl\:

File Contents Effect

Certificates of one or more trusted PostgreSQL verifies that the server certificate is signed
root.crt

CAs by a trusted CA
root.crl|Certificates revoked by CAs The server certificate must not be on this list

Only the root . crt file is required for the client to authenticate the server certificate. It can
contain multiple root certificates against which the server certificate is compared.

Using SSL certificates to authenticate

This recipe shows you how to set up your PostgreSQL system so that it requires clients to
present a valid X.509 certificate before allowing them to connect.

This can be used as an additional security layer, using double authentication, where the
client must both have a valid certificate to set up the SSL connection and know the database
user's password. It can also be used as the sole authentication method, where the
PostgreSQL server will first verify the client connection using the certificate presented by
the client, and then retrieve the username from the same certificate.

Getting ready

Get, or generate, a root certificate and a client certificate to be used by the connecting client.

[221]

Security Chapter 6

How to do it...

For testing purposes, or for setting up a single trusted user, you can use a self-signed
certificate:

openssl genrsa 2048 > client.key
openssl req -new -x509 -key server.key -out client.crt

In the server, set up a line in the pg_hba. conf file with the hostss1 method and the
clientcert option set to 1:

hostssl all all 0.0.0.0/0 md5 clientcert=1

Put the client root certificate in the root . crt file in the server data directory
($PGDATA/root . crt). This file may contain multiple trusted root certificates.

If you are using a central certificate authority, you probably also have a certificate
revocation list, which should be putin a root . cr1l file and regularly updated.

In the client, put the client's private key and certificate in

~/ .postgresqgl/postgresqgl.key and ~/ .postgresqgl/postgresql.crt. Make sure
that the private key file is not world-readable or group-readable by running the following
command:

chmod 0600 ~/.postgresql/postgresql.key

In a Windows client, the corresponding files are
SAPPDATAS\postgresqgl\postgresqgl.key and
$APPDATA%\postgresgl\postgresqgl.crt. No permission check is done, as the location
is considered secure.

If the client certificate is not signed by the root CA but by an intermediate CA, then all of
the intermediate CA certificates up to the root certificate must be placed in the
postgresql.crt file as well.

How it works...

If the clientcert=1 option is set for a hostssl row in pg_hba. conf, then PostgreSQL
accepts only connection requests accompanied by a valid certificate.

The validity of the certificate is checked against certificates present in the root . crt file in
the server data directory.

[222]

Security Chapter 6

If there is a root . crl file, then the presented certificate is searched for in this file and, if
found, is rejected.

After the client certificate is validated and the SSL connection is established, the server
proceeds to validate the actual connecting user using whatever authentication method is
specified in the corresponding hostss1 line.

In the following example, clients from a special address can connect as any user when using
an SSL certificate, and they must specify a SCRAM-SHA-256 password for non-SSL
connections. Clients from all of the other addresses must present a certificate and use md5
password authentication:

host all all 10.10.10.10/32 md5
hostssl all all 10.10.10.10/32 trust clientcert=1
hostssl all all all scram—-sha-256 clientcert=1

There's more...

In this section, we provide some additional content, describing an important optimization
for an SSL-only database server, plus two extensions of the basic SSL configuration.

Avoiding duplicate SSL connection attempts

In the Setting up a client to use SSL section of the previous Connecting using SSL recipe, we
saw how the client's SSL behavior is affected by environment variables. Depending on how
the SSLMODE environment variable is set on the client (either via compile-time settings, the
PGSSLMODE environment variable, or the ss1lmode connection parameter), the client may
attempt to connect without SSL first, and then attempt an SSL connection only after the
server rejects the non-SSL connection. This duplicates a connection attempt every time a
client accesses an SSL-only server.

To make sure that the client tries to establish an SSL connection on the first attempt,
SSLMODE must be set to prefer or higher.

Using multiple client certificates

You may sometimes need different certificates to connect to different PostgreSQL servers.

[223]

Security Chapter 6

The location of the certificate and key files in postgresqgl.crt and postgresgl.key in
the table from the Checking server authenticity section is just the default and can be
overridden by specifying alternative file paths using the sslcert and sslkey connection
parameters or the PGSSLCERT and PGSSLKEY environment variables.

Using the client certificate to select the database user

It is possible to use the client certificate for two purposes at once: proving that the
connecting client is a valid one and selecting the database user to be used for the
connection.

To do this, you set the authentication method to cert in the hostss1 line:

hostssl all all 0.0.0.0/0 cert

As you can see, the clientcert=1 option used with hostss1 to require client certificates
is no longer required, as it is implied by the cert method itself.

When using the cert authentication method, a valid client certificate is required, and the
cn (short for common name) attribute of the certificate will be compared to the requested
database username. The login will be allowed only if they match.

It is possible to use a User Name Map to map the common names in the certificates to
database usernames by specifying the map option:

hostssl all all 0.0.0.0/0 cert map=x509cnmap

Here, x509cnmap is the name that we have arbitrarily chosen for our mapping. More
details on User Name Maps are provided in the Mapping external usernames to database
roles recipe.

See also

To understand more about SSL in general, and the OpenSSL library used by PostgreSQL in
particular, visit http://www.openssl.org or get a good book about SSL.

To get started with the generation of simple SSL keys and certificates, see
https://github.com/openssl/openssl/blob/master/doc/HOWIO/certificates.txt.

There is also a nice presentation named Encrypted PostgreSQL explaining these issues at
PGCon 2009. The slides are available at
http://www.pgcon.org/2009/schedule/events/120.en.html.

[224]

http://www.openssl.org/
https://github.com/openssl/openssl/blob/master/doc/HOWTO/certificates.txt
http://www.pgcon.org/2009/schedule/events/120.en.html

Security Chapter 6

Mapping external usernames to database
roles

In some cases, the authentication username is different from the PostgreSQL username. For
instance, this can happen when using an external system for authentication, such as
certificate authentication, as described in the previous recipe, or any other external or single
sign-on system authentication method from http://www.postgresql.org/docs/11/
static/auth-methods.html (GSSAPI, SSPI, Kerberos, Radius, or PAM). You may just need
to enable an externally authenticated user to connect as multiple database users. In such
cases, you can specify rules to map the external username to the appropriate database role.

Getting ready

Prepare a list of usernames from the external authentication system and decide which
database users they are allowed to connect as—that is, which external users map to which

database users.

How to do it...

Create a pg_ident . conf file in the usual place (PGDATA), with lines in the following
format:

map—-name system—-username database-username

Here, map-name is the value of the map option from the corresponding line in
pg_hba.conf, system-username is the username that the external system authenticated
the connection as, and database-username is the database user this system user is
allowed to connect as. The same system user may be allowed to connect as multiple
database users, so this is not a 1:1 mapping, but rather a list of allowed database users for
each system user.

If system-username starts with a slash (/), then the rest of it is treated as a regular
expression rather than a directly matching string, and it is possible to use the \1 string in
database-username to refer to the part captured by the parentheses in the regular
expression. For example, consider the following lines:

salesmap /*(.*)@sales\.comp\.com$ \1
salesmap /*(.*)@sales\.comp\.com$ sales
salesmap manager@sales.comp.com auditor

[225]

http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html

Security Chapter 6

These will allow any user authenticated with a @sales.comp.com email address to connect
both as a database user equal to the name before the @ sign in their email address and as the
sales user. They will additionally allow anager@sales.comp.com to connect as the
auditor user. Then, edit the pg_hba . conf line to specify the map=salesmap option.

How it works...

After authenticating the connection using an external authentication system, PostgreSQL
will usually proceed to check that the externally authenticated username matches the
database username that the user wishes to connect as and rejects the connection if these two
do not match.

If there is a map= parameter specified for the current line in pg_hba . conf, then the system
will scan the map line by line and will let the client proceed with connecting if a match is
found.

There's more...

By default, the map file is called pg_ident . conf (because it was first used for the ident
authentication method).

Nowadays, it is possible to change the name of this file via t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>