

PostgreSQL 11 Administration
Cookbook

Over 175 recipes for database administrators to manage
enterprise databases

Simon Riggs
Gianni Ciolli
Sudheer Kumar Meesala

BIRMINGHAM - MUMBAI

PostgreSQL 11 Administration Cookbook
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Ali Abidi
Content Development Editor: Karan Thakkar
Technical Editor: Sagar Sawant
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: May 2019

Production reference: 1020519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-758-1

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Simon Riggs is the CTO of 2ndQuadrant, having contributed to PostgreSQL as a
major developer and committer for 14 years. He has written and designed features for
replication, performance, BI, management, and security. Under his guidance, 2ndQuadrant
is now a leading developer of open source PostgreSQL, serving hundreds of clients in
USA, Europe, and worldwide. Simon is a frequent speaker at many conferences on
PostgreSQL Futures. He has worked as a database architect for 30 years.

Gianni Ciolli is the head of professional services at 2ndQuadrant and has been a
PostgreSQL consultant, trainer, and speaker at many PostgreSQL conferences in Europe
and abroad over the last 10 years. He has a PhD in Mathematics from the University of
Florence. He has worked with free and open source software since the 1990s and is active in
the community (the Prato Linux User Group and the Italian PostgreSQL Users Group). He
lives in London with his son. His other interests include music, drama, poetry, and
athletics.

Sudheer Kumar Meesala is a lead architect at Endurance International Group and has
spent the last few years designing and building scalable and secure web applications within
finance and internet industries. A large part of his job has included decomposing
monolithic legacy applications into microservices. This has required a deep understanding
of PostgreSQL, Cassandra, and other NoSQL databases. Other key areas of interest are
container orchestration, DevOps, and more. He is also an accomplished speaker and
trainer. He lives in Bangalore, India, and spends far too much time in traffic jams.

My contributions to this book would not have been possible without the support and
understanding of my wife, Sarika, and my mother, Rama. My colleagues at Endurance
International Group have inspired, challenged, and driven my technical growth.

About the reviewers
Sheldon Strauch is a twenty-year veteran of software consulting at companies such as IBM,
Sears, Ernst & Young, and Kraft Foods. He has a Bachelor's degree in Business
Administration and leverages his technical skills to improve businesses self-awareness. His
interests include data gathering, management, and mining; maps and mapping; business
intelligence; and the application of data analysis for continuous improvement. He is
currently focused on the development of end-to-end data management and mining at
Enova International, a financial services company located in Chicago. In his spare time, he
enjoys the performing arts, particularly music, and traveling with his wife Marilyn.

Birju Shah is the principal architect for Endurance International Group and he is the co-
author of Advanced MySql 8. He has the experience and expertise to build scalable products
for hosting domains. He is passionate about the latest architectural patterns, tools, and
technologies. He also helps organizations to follow best practices. He is passionate about
technical training and technical sessions.

I would like to thank my family and my colleagues for their help and continuous support.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: First Steps 8
Introducing PostgreSQL 11 9

What makes PostgreSQL different? 9
Robustness 11
Security 11
Ease of use 12
Extensibility 12
Performance and concurrency 13
Scalability 13
SQL and NoSQL data models 13
Popularity 14
Commercial support 14
Research and development funding 15

Getting PostgreSQL 15
How to do it... 15
How it works... 16
There's more… 16

Connecting to the PostgreSQL server 17
Getting ready 17
How to do it… 17
How it works… 19
There's more… 20
See also 20

Enabling access for network/remote users 20
How to do it… 21
How it works… 21
There's more… 23
See also 23

Using graphical administration tools 23
How to do it… 23
How it works… 27

OmniDB 28
How to do it… 28
See also 33

Using the psql query and scripting tool 33
Getting ready 34
How to do it… 34
How it works… 36
There's more… 37

Table of Contents

[ii]

See also 37
Changing your password securely 38

How to do it… 38
How it works… 38

Avoiding hardcoding your password 39
Getting ready 39
How to do it… 39
How it works… 40
There's more… 41

Using a connection service file 41
How to do it… 41
How it works… 42

Troubleshooting a failed connection 42
How to do it… 42
There's more… 44

Chapter 2: Exploring the Database 45
What type of server is this? 46

How to do it… 46
There's more... 47

What version is the server? 47
How to do it… 47
How it works… 48
There's more… 48

What is the server uptime? 49
How to do it… 49
How it works... 50
See also 50

Locating the database server files 50
Getting ready 50
How to do it... 51
How it works... 52
There's more… 53

Locating the database server's message log 54
Getting ready 54
How to do it... 55
How it works... 55
There's more... 56
See also 56

Locating the database's system identifier 57
Getting ready 57
How to do it… 57
How it works… 58

Listing databases on the database server 58
How to do it… 59

Table of Contents

[iii]

How it works... 59
There's more... 60

How many tables are there in a database? 62
How to do it... 62
How it works… 63
There's more… 64

How much disk space does a database use? 64
How to do it... 65
How it works... 65

How much disk space does a table use? 65
How to do it… 66
How it works… 66
There's more… 67

Which are my biggest tables? 67
How to do it... 67
How it works… 68

How many rows are there in a table? 68
How to do it… 68
How it works... 69

Quickly estimating the number of rows in a table 70
How to do it… 70
How it works… 71
There's more… 72

Listing extensions in this database 75
How to do it… 75
How it works… 76
There's more… 76
See also 77

Understanding object dependencies 77
Getting ready 77
How to do it… 78
How it works… 78
There's more… 78

Chapter 3: Configuration 80
Reading the fine manual 81

How to do it… 81
How it works… 82
There's more… 82

Planning a new database 82
Getting ready 82
How to do it… 83
How it works… 83
There's more… 84

Changing parameters in your programs 84

Table of Contents

[iv]

How to do it… 84
How it works… 85
There's more… 85

Finding the current configuration settings 86
How to do it… 86
How it works… 88

Which parameters are at non-default settings? 88
How to do it… 89
How it works... 90
There's more... 90

Updating the parameter file 90
Getting ready 91
How to do it… 91
How it works… 92
There's more… 92

Setting parameters for particular groups of users 93
How to do it… 93
How it works… 94

The basic server configuration checklist 94
Getting ready 94
How to do it… 95
There's more… 95

Adding an external module to PostgreSQL 96
Getting ready 97
How to do it… 98

Installing modules using a software installer 98
Installing modules from PGXN 99
Installing modules from source code 100

How it works... 101
Using an installed module 101

Getting ready 102
How to do it… 102
How it works... 102

Managing installed extensions 102
How to do it… 102
How it works… 105
There's more… 105

Chapter 4: Server Control 107
Introduction 107
Starting the database server manually 108

Getting ready 109
How to do it… 109
How it works… 111

Stopping the server safely and quickly 112

Table of Contents

[v]

How to do it… 112
How it works… 113
See also 113

Stopping the server in an emergency 114
How to do it… 114
How it works… 114

Reloading the server configuration files 115
How to do it… 115
How it works… 116
There's more… 117

Restarting the server quickly 117
How to do it… 117
There's more… 119

Preventing new connections 119
How to do it… 119
How it works… 121

Restricting users to only one session each 121
How to do it… 121
How it works… 122

Pushing users off the system 122
How to do it… 123
How it works… 124

Deciding on a design for multitenancy 125
How to do it… 125
How it works… 126

Using multiple schemas 126
Getting ready 126
How to do it… 127
How it works… 128

Giving users their own private database 129
Getting ready 129
How to do it… 129
How it works… 130
There's more… 131
See also 131

Running multiple servers on one system 131
Getting ready 131
How to do it… 131
How it works… 133

Setting up a connection pool 133
Getting ready 133
How to do it… 134
How it works… 135
There's more… 136

Accessing multiple servers using the same host and port 138

Table of Contents

[vi]

Getting ready 138
How to do it… 138
There's more… 139

Chapter 5: Tables and Data 141
Choosing good names for database objects 141

Getting ready 142
How to do it… 142
There's more… 143

Handling objects with quoted names 144
Getting ready 144
How to do it... 145
How it works… 145
There's more… 146

Enforcing the same name and definition for columns 146
Getting ready 147
How to do it... 147
How it works… 149
There's more… 149

Identifying and removing duplicates 150
Getting ready 150
How to do it… 151
How it works… 153
There's more… 155

Preventing duplicate rows 155
Getting ready 155
How to do it… 156
How it works… 158
There's more... 159

Duplicate indexes 159
Uniqueness without indexes 159
Real-world example – IP address range allocation 160
Real-world example – range of time 161
Real-world example – prefix ranges 161

Finding a unique key for a set of data 162
Getting ready 162
How to do it… 162
How it works… 164

Generating test data 164
How to do it... 164
How it works… 167
There's more… 168
See also 168

Randomly sampling data 168
How to do it… 169
How it works... 170

Table of Contents

[vii]

Loading data from a spreadsheet 172
Getting ready 172
How to do it... 173
How it works... 174
There's more... 175

Loading data from flat files 175
Getting ready 175
How to do it... 175
How it works… 177
There's more… 178

Making bulk data changes using server-side procedures with
transactions 179

How to do it… 180
There's more… 181

Chapter 6: Security 184
Introduction 185

Typical user role 185
The PostgreSQL superuser 186

How to do it… 186
How it works… 186
There's more… 187

Other superuser-like attributes 187
Attributes are never inherited 187

See also 187
Revoking user access to a table 187

Getting ready 187
How to do it… 188
How it works… 189
There's more… 190

Database creation scripts 190
Default search path 190
Securing views 191

Granting user access to a table 192
Getting ready 192
How to do it… 192
How it works... 193
There's more… 193

Granting user access to specific columns 193
Getting ready 193
How to do it… 194
How it works… 194
There's more… 195

Granting user access to specific rows 195
Getting ready 196
How to do it… 196

Table of Contents

[viii]

How it works… 198
There's more... 198

Creating a new user 198
Getting ready 198
How to do it... 199
How it works… 199
There's more… 199

Temporarily preventing a user from connecting 200
Getting ready 200
How to do it… 200
How it works... 201
There's more… 201

Limiting the number of concurrent connections by a user 201
Forcing NOLOGIN users to disconnect 201

Removing a user without dropping their data 202
Getting ready 202
How to do it… 202
How it works… 203

Checking whether all users have a secure password 203
How to do it… 204
How it works… 204

Giving limited superuser powers to specific users 204
Getting ready 205
How to do it… 205
How it works… 207
There's more… 207

Writing a debugging_info function for developers 207
Auditing database access 208

Getting ready 208
Auditing SQL 209
Auditing table access 210
Managing the audit log 211
Auditing data changes 212

Always knowing which user is logged in 214
Getting ready 214
How to do it… 215
How it works… 216
There's more… 216

Not inheriting user attributes 216
Integrating with LDAP 216

Getting ready 217
How to do it… 217
How it works… 217
There's more… 217

Setting up the client to use LDAP 217
Replacement for the User Name Map feature 218

Table of Contents

[ix]

See also 218
Connecting using SSL 218

Getting ready 218
How to do it… 219
How it works… 219
There's more… 219

Getting the SSL key and certificate 220
Setting up a client to use SSL 220
Checking server authenticity 221

Using SSL certificates to authenticate 221
Getting ready 221
How to do it… 222
How it works… 222
There's more… 223

Avoiding duplicate SSL connection attempts 223
Using multiple client certificates 223
Using the client certificate to select the database user 224

See also 224
Mapping external usernames to database roles 225

Getting ready 225
How to do it… 225
How it works… 226
There's more… 226

Encrypting sensitive data 226
Getting ready 227
How to do it… 228
How it works… 230
There's more… 230

For really sensitive data 230
For really, really, really sensitive data 231

See also 231

Chapter 7: Database Administration 232
Writing a script that either succeeds entirely or fails entirely 233

How to do it… 234
How it works… 234
There's more… 236

Writing a psql script that exits on the first error 238
Getting ready 238
How to do it… 238
How it works… 239
There's more… 239

Using psql variables 240
Getting ready 240
How to do it… 240
How it works… 240

Table of Contents

[x]

There's more… 241
Placing query output into psql variables 241

Getting ready 241
How to do it… 242
How it works… 242
There's more… 243

Writing a conditional psql script 243
Getting ready 243
How to do it… 243
How it works… 244
There's more… 244

Investigating a psql error 244
Getting ready 245
How to do it… 246
There's more… 246

Using pgAdmin for DBA tasks 246
Getting ready 246
How to do it… 247
How it works... 251
There's more 251

Using OmniDB for DBA tasks 251
Getting ready 252
How to do it... 252
How it works 255
There's more... 256

Performing actions on many tables 256
Getting ready 257
How to do it… 257
How it works… 259
There's more… 261

Adding/removing columns on a table 263
How to do it… 263
How it works… 264
There's more… 265

Changing the data type of a column 266
Getting ready 266
How to do it… 267
How it works… 268
There's more… 268

Changing the definition of a data type 270
Getting ready 270
How to do it… 270
How it works… 271
There's more… 273

Adding/removing schemas 273

Table of Contents

[xi]

How to do it… 274
There's more… 275

Using schema-level privileges 275
Moving objects between schemas 276

How to do it… 276
How it works… 276
There's more… 277

Adding/removing tablespaces 277
Getting ready 277
How to do it… 278
How it works… 280
There's more… 280

Putting pg_wal on a separate device 281
Tablespace-level tuning 281

Moving objects between tablespaces 282
Getting ready 282
How to do it… 282
How it works… 283
There's more… 284

Accessing objects in other PostgreSQL databases 285
Getting ready 285
How to do it… 286
How it works… 291
There's more… 292

Accessing objects in other foreign databases 295
Getting ready 296
How to do it… 296
How it works… 297
There's more… 298

Updatable views 298
Getting ready 298
How to do it… 300
How it works… 304
There's more… 305

Using materialized views 306
Getting ready 307
How to do it… 307
How it works… 308
There's more… 308

Chapter 8: Monitoring and Diagnosis 310
Introduction 310
Providing PostgreSQL information to monitoring tools 312

Finding more information about generic monitoring tools 313
Real-time viewing using pgAdmin or OmniDB 314

Table of Contents

[xii]

Getting ready 314
How to do it… 314

Using pgAdmin 314
Using OmniDB 315

Checking whether a user is connected 316
Getting ready 317
How to do it… 317
How it works… 317
There's more… 317

Checking whether a computer is connected 317
How to do it… 318
There's more… 318

Repeatedly executing a query in psql 318
How to do it… 318
There's more… 319

Checking which queries are running 319
Getting ready 319
How to do it… 319
How it works… 320
There's more… 320

Catching queries that only run for a few milliseconds 320
Watching the longest queries 321
Watching queries from ps 321

See also 322
Checking which queries are active or blocked 322

Getting ready 322
How to do it… 322
How it works… 323
There's more… 323

Knowing who is blocking a query 324
Getting ready 324
How to do it… 324
How it works… 325

Killing a specific session 325
How to do it… 325
How it works… 325
There's more… 326

Try to cancel the query first 326
What if the backend won't terminate? 326
Using statement_timeout to clean up queries that take too long to run 327
Killing idle in-transaction queries 327
Killing the backend from the command line 328

Detecting an in-doubt prepared transaction 328
How to do it… 328

Knowing whether anybody is using a specific table 329
Getting ready 329

Table of Contents

[xiii]

How to do it… 329
How it works… 330
There's more... 330

The quick-and-dirty way 330
Collecting daily usage statistics 330

Knowing when a table was last used 331
Getting ready 331
How to do it… 331
How it works... 333
There's more… 333

Usage of disk space by temporary data 333
Getting ready 333
How to do it… 334
How it works… 336
There's more… 336

Finding out whether a temporary file is in use anymore 336
Logging temporary file usage 336

Understanding why queries slow down 336
Getting ready 337
How to do it… 337
How it works… 338
There's more… 338

Do queries return significantly more data than they did earlier? 338
Do queries also run slowly when they run alone? 339
Is the second run of the same query also slow? 339
Table and index bloat 339

See also 340
Investigating and reporting a bug 340

Getting ready 341
How to do it… 341
How it works… 342

Producing a daily summary of log file errors 342
Getting ready 342
How to do it… 344
How it works… 345
There's more… 345

Analyzing the real-time performance of your queries 346
Getting ready 346
How to do it… 346
How it works… 347
There's more… 347

Chapter 9: Regular Maintenance 349
Controlling automatic database maintenance 350

Getting ready 350
How to do it… 351

Table of Contents

[xiv]

How it works… 352
There's more… 355
See also 356

Avoiding auto-freezing and page corruptions 356
How to do it… 357

Removing issues that cause bloat 358
Getting ready 358
How to do it… 359
How it works… 359
There's more… 360

Removing old prepared transactions 360
Getting ready 360
How to do it… 361
How it works… 361
There's more… 362

Actions for heavy users of temporary tables 363
How to do it… 363
How it works… 364

Identifying and fixing bloated tables and indexes 365
Getting ready 365
How to do it… 366
How it works… 368
There's more… 370

Monitoring and tuning a vacuum 370
Getting ready 370
How to do it… 371
How it works… 371
There's more… 373

Maintaining indexes 373
Getting ready 374
How to do it… 375
How it works… 376
There's more… 376

Adding a constraint without checking existing rows 377
Getting ready 377
How to do it… 378
How it works… 379

Finding unused indexes 379
How to do it… 380
How it works… 380

Carefully removing unwanted indexes 381
Getting ready 381
How to do it… 382
How it works… 383

Planning maintenance 383

Table of Contents

[xv]

How to do it… 383
How it works… 384
There's more… 385

Chapter 10: Performance and Concurrency 386
Finding slow SQL statements 387

Getting ready 387
How to do it… 388
How it works… 389
There's more… 389

Finding out what makes SQL slow 389
Getting ready 389
How to do it… 390
There's more… 392

Not enough CPU power or disk I/O capacity for the current load 393
Locking problems 393
EXPLAIN options 393

See also 394
Collect regular statistics from pg_stat* views 394

Getting ready 394
How to do it… 395
How it works… 395
There's more… 395

Another statistics collection package 396
Reducing the number of rows returned 396

How to do it… 396
There's more… 397

Simplifying complex SQL queries 399
Getting ready 399
How to do it… 400
There's more… 404

Using materialized views (long-living temporary tables) 405
Using set-returning functions for some parts of queries 406

Speeding up queries without rewriting them 407
How to do it… 407

Increasing work_mem 407
More ideas with indexes 407

There's more… 409
Time series partitioning 409
Using a TABLESAMPLE view 409
In case of many updates, set fillfactor on the table 410
Rewriting the schema – a more radical approach 410

Discovering why a query is not using an index 410
Getting ready 411
How to do it… 411
How it works… 412
There's more… 412

Table of Contents

[xvi]

Forcing a query to use an index 412
Getting ready 413
How to do it… 413
There's more… 415
There's more 415

Using parallel query 415
How to do it… 416
How it works… 416
There's more… 418

Creating time series tables 418
How to do it… 418
How it works… 420
There's more… 420

Using optimistic locking 421
How to do it… 421
How it works… 421
There's more… 422

Reporting performance problems 423
How to do it… 423
There's more… 424

Chapter 11: Backup and Recovery 425
Understanding and controlling crash recovery 426

How to do it… 427
How it works… 428
There's more… 429

Planning backups 429
How to do it… 430

Hot logical backups of one database 431
How to do it… 432
How it works… 432
There's more… 434
See also 434

Hot logical backups of all databases 435
How to do it… 435
How it works… 435
See also 436

Backups of database object definitions 436
How to do it… 436
There's more… 437

Standalone hot physical database backup 437
Getting ready 438
How to do it… 438
How it works… 441
There's more… 442

Table of Contents

[xvii]

See also 443
Hot physical backup and continuous archiving 443

Getting ready 444
How to do it… 444
How it works… 446

Recovery of all databases 447
Getting ready 447
How to do it… 447

Logical – from custom dump taken with pg_dump -F c 447
Logical – from the script dump created by pg_dump -F p 448
Logical – from the script dump created by pg_dumpall 448
Physical 448

How it works… 450
There's more… 451
See also 451

Recovery to a point in time 451
Getting ready 452
How to do it… 452
How it works… 452
There's more… 454
See also 454

Recovery of a dropped/damaged table 455
How to do it… 455

Logical – from custom dump taken with pg_dump -F c 455
Logical – from the script dump 457
Physical 457

How it works… 458
See also 458

Recovery of a dropped/damaged database 458
How to do it… 459

Logical – from the custom dump -F c 459
Logical – from the script dump created by pg_dump 459
Logical – from the script dump created by pg_dumpall 459
Physical 460

Improving performance of backup/recovery 460
Getting ready 460
How to do it… 461
How it works… 462
There's more… 463
See also 463

Incremental/differential backup and restore 463
How to do it… 464
How it works… 464
There's more… 465

Hot physical backups with Barman 466
Getting ready 467

Table of Contents

[xviii]

How to do it… 468
How it works… 472
There's more… 473

Recovery with Barman 475
Getting ready 476
How to do it… 477
How it works… 478
There's more… 479

Validating backups 481
Getting ready 481
How to do it… 482
How it works… 483
There's more… 483

Chapter 12: Replication and Upgrades 485
Replication concepts 486

Topics 487
Basic concepts 487
History and scope 488
Practical aspects 489
Data loss 490
Single-master replication 491
Multinode architectures 491
Clustered or massively parallel databases 492
Multimaster replication 492
Scalability tools 493
Other approaches to replication 494

Replication best practices 494
Getting ready 494
How to do it… 494
There's more… 496

Setting up file-based replication – deprecated 496
Getting ready 497
How to do it… 497
How it works… 498
There's more… 500
See also 500

Setting up streaming replication 500
Getting ready 501
How to do it… 501
How it works… 504
There's more… 505

Setting up streaming replication security 506
Getting ready 507
How to do it… 507

Table of Contents

[xix]

How it works… 508
There's more… 508

Hot standby and read scalability 509
Getting ready 509
How to do it… 510
How it works… 513

Managing streaming replication 513
Getting ready 514
How to do it… 514
There's more… 515
See also 516

Using repmgr 516
Getting ready 517
How to do it… 517
How it works… 519
There's more… 519

Using replication slots 519
Getting ready 520
How to do it… 520
There's more… 521
See also 521

Monitoring replication 522
Getting ready 522
How to do it… 523
There's more… 525

Performance and synchronous replication 526
Getting ready 526
How to do it... 527
How it works… 529
There's more… 529

Delaying, pausing, and synchronizing replication 530
Getting ready 530
How to do it… 530
There's more… 531
See also 532

Logical replication 532
Getting ready 534
How to do it… 536
How it works… 537
There's more… 538
See also 538

Bidirectional replication 539
Getting ready 540
How to do it… 541
How it works... 541

Table of Contents

[xx]

There's more… 542
Archiving transaction log data 542

Getting ready 543
How to do it… 543
There's more… 544
See also 544

Upgrading minor releases 545
Getting ready 545
How to do it… 545
How it works… 546
There's more… 546

Major upgrades in-place 547
Getting ready 547
How to do it… 547
How it works… 548

Major upgrades online 549
How to do it... 549
How it works... 550

Other Books You May Enjoy 551

Index 554

Preface
PostgreSQL is an advanced SQL database server; it is available on a wide range of
platforms and is fast becoming one of the world's most popular server databases with an
enviable reputation for performance, stability, and an enormous range of advanced
features. PostgreSQL is one of the oldest open source projects; it is completely free to use
and was developed by a diverse worldwide community. Most of all, it just works!

One of the clearest benefits of PostgreSQL is that it is open source, meaning that you have a
permissive license to install, use, and distribute PostgreSQL without paying anyone any
fees or royalties. Additionally, PostgreSQL is well known as a database that stays up for
long periods, and requires little or no maintenance. Overall, PostgreSQL provides a very
low total cost of ownership.

PostgreSQL 11 Administration Cookbook offers the information you need to manage your live
production databases on PostgreSQL. The book contains direct insights into PostgreSQL
replication and recovery features from the main author and the 2ndQuadrant team. This
hands-on guide will assist developers who are working on live databases, and who are
supporting web or enterprise software applications using Java, Python, Ruby, and .NET
from any development framework. It's easy to manage your database when you've got
PostgreSQL 11 Administration Cookbook at hand.

This practical guide gives you quick answers to common questions and problems, and
builds on the author's experience as a trainer, user, and core developer of the PostgreSQL
database server.

Each technical aspect is broken down into short recipes that demonstrate solutions with
working code, and then explain how and why that works. The book is intended to be a
desk reference for both new users and technical experts.

The book covers all the latest features available in PostgreSQL 11. Soon you will be running
a smooth database with ease!

Preface

[2]

Who this book is for
This book is for system administrators, database administrators, architects, developers, and
anyone with an interest in planning or running a live production database. This book is
most suited to those who have some technical experience.

What this book covers
Chapter 1, First Steps, introduces you PostgreSQL 11; it explains how to download and
install PostgreSQL 11, connect to a PostgreSQL server, enable server access to the network
or remote users, use graphical administration tools, use PSQL query and scripting tools,
change your password securely, avoid hardcoding your password, use a connection service
file, and troubleshoot a failed connection.

Chapter 2, Exploring the Database, demonstrates how to identify the version of the database
server you are using, as well as the server uptime. It helps you locate the database server
files, the database server message log, and the database's system identifier. It explains how
to list a database on the database server, and it contains recipes that let you know the
number of tables in your database, how much disk space is used by the database and tables,
what the the biggest tables are, how many rows a table has, how to estimate rows in a table,
and how to understand object dependencies.

Chapter 3, Configuration, explains topics such as Reading the Fine Manual (RTFM), how
to plan a new database, how to change the parameters in your programs, the current
configuration settings, the parameters that are at non-default settings, how to update the
parameter file, how to set parameters for particular groups of users, the basic server
configuration checklist, how to add an external module into the PostgreSQL server, and
how to run the server in power-saving mode.

Chapter 4, Server Control, provides information about starting the database server
manually, stopping the server quickly and safely, stopping the server in an emergency,
reloading the server configuration files, restarting the server quickly, preventing new
connections, restricting users to just one session each, and pushing users off the system. It
contains recipes that help you choose a design for multi-tenancy, as well as recipes that
explain how to use multiple schemas, give users their own private database, run multiple
database servers on one system, and set up a connection pool.

Preface

[3]

Chapter 5, Tables and Data, guides you through the process of choosing good names for
database objects. Additionally, it explains how to handle objects with quoted names,
enforce the same name, maintain the same definition for columns, identify and remove
duplicate rows, prevent duplicate rows, find a unique key for a set of data, generate test
data, randomly sample data, load data from a spreadsheet, and load data from flat files.

Chapter 6, Security, provides recipes on revoking user access to a table, granting user
access to a table, creating a new user, temporarily preventing a user from connecting,
removing a user without dropping their data, checking whether all users have a secure
password, giving limited superuser powers to specific users, auditing DDL changes,
auditing data changes, integrating with LDAP, connecting using SSL, and encrypting
sensitive data.

Chapter 7, Database Administration, provides recipes on useful topics such as writing a
script where all either succeed or fail, writing a PSQL script that exits on the first error,
performing actions on many tables, adding and removing columns in tables, changing the
data type of a column, adding and removing schemas, moving objects between schemas,
adding and removing tablespaces, moving objects between tablespaces, accessing objects in
other PostgreSQL databases, and enabling views to be updated.

Chapter 8, Monitoring and Diagnosis, provides recipes that answer questions such as
whether the user is connected, what they are running, whether they are active or blocked,
who they are being blocked by, whether anybody is using a specific table, when the table it
was last used, how much disk space is being used by temporary data, and why your
queries could be slowing down. It also demonstrates how to investigate and report a bug,
produce a daily summary report of log file errors, kill a specific session, and resolve an in-
doubt prepared transaction.

Chapter 9, Regular Maintenance, provides useful recipes on how to control automatic
database maintenance, avoid auto-freezing and page corruptions, avoid transaction
wraparound, remove old prepared transactions, offer solutions for heavy users of
temporary tables, identify and fix bloated tables and indexes, maintain indexes, find
unused indexes, carefully remove unwanted indexes, and plan maintenance.

Chapter 10, Performance and Concurrency, covers topics such as how to find slow SQL
statements, collect regular statistics from pg_stat* views, discover what makes SQL slow,
reduce the number of rows returned, simplify complex SQL, speed up queries without
rewriting them, understand why some queries are not using an index, force a query to use
an index, use optimistic locking, and report performance problems. And, of course, you'll
learn about the new parallel query features.

Preface

[4]

Chapter 11, Backup and Recovery, explains that backups are essential, although this topic is
only covered very briefly. So, this chapter provides useful information about the backup
and recovery of your PostgreSQL database through recipes on how to understand and
control crash recovery and how to plan backups. Additionally, you will learn about the hot
logical backup of one database, the hot logical backup of all databases, the hot logical
backup of all tables in a tablespace, the backup of database object definitions, the
standalone hot physical database backup, the hot physical backup, and continuous
archiving. It also includes topics such as the recovery of all databases, recovery to a point in
time, the recovery of a dropped or damaged table, the recovery of a dropped or damaged
database, the recovery of a dropped or damaged tablespace, how to improve the
performance of backup/recovery, and incremental/differential backup and restore.

Chapter 12, Replication and Upgrades, explains that replication isn't magic, although it can
be pretty cool. It's even cooler when it works, and that's what this chapter is all about. This
chapter covers replication concepts, replication best practices, how to set up file-based log
shipping replication, how to set up streaming log replication, how to manage log shipping
replication, how to manage hot standby, synchronous replication, how to upgrade to a new
minor release, in-place major upgrades, major upgrades online, and logical replication and
Postgres-BDR.

To get the most out of this book
In order for this book to be useful, you need access to a PostgreSQL client that is allowed to
execute queries on a server. Ideally, you'll also be the server administrator. Full client and
server packages for PostgreSQL are available for most popular operating systems at http:/
/www.postgresql.org/ download/ . All the examples here are executed at the Command
Prompt, usually running the PSQL program. This makes them applicable to most
platforms. It's straightforward to do most of these operations by using a GUI tool for
PostgreSQL, such as pgAdmin or OmniDB:

pgAdmin: https:/ /www. pgadmin. org/download/

OmniDB: https:/ / omnidb. org/ en/ downloads- en

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781789537581_ ColorImages. pdf.

http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
http://www.postgresql.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
https://omnidb.org/en/downloads-en
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789537581_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Copy the data files (excluding the pg_wal directory)."

A block of code is set as follows:

CREATE USER repuser
 SUPERUSER
 LOGIN
 CONNECTION LIMIT 1
 ENCRYPTED PASSWORD 'changeme';

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

SELECT *FROM mytable
 WHERE (col1, col2, … ,colN) IN
 (SELECT col1, col2, … ,colN
 FROM mytable
 GROUP BY col1, col2, … ,colN
 HAVING count(*) > 1);

Any command-line input or output is written as follows:

$ postgres --single -D /full/path/to/datadir postgres

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[7]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
First Steps

PostgreSQL is a feature-rich, general-purpose, database-management system. It's a complex
piece of software, but every journey begins with the first step.

We'll start with your first connection. Many people fall at the first hurdle, so we'll try not to
skip that too swiftly. We'll quickly move on to enabling remote users, and from there we
will move on to getting access through GUI administration tools.

We will also introduce the psql query tool, which is the tool used to load our sample
database, as well as many other examples in the book.

For additional help, we've included a few useful recipes that you may need for reference.

In this chapter, we will cover the following recipes:

Getting PostgreSQL
Connecting to the PostgreSQL server
Enabling access for network/remote users
Using graphical administration tools
Using the psql query and scripting tool
Changing your password securely
Avoiding hardcoding your password
Using a connection service file
Troubleshooting a failed connection

First Steps Chapter 1

[9]

Introducing PostgreSQL 11
PostgreSQL is an advanced SQL database server, available on a wide range of platforms.
One of the clearest benefits of PostgreSQL is that it is open source, meaning that you have a
very permissive license to install, use, and distribute PostgreSQL, without paying anyone
any fees or royalties. On top of that, PostgreSQL is known as a database that stays up for
long periods and requires little or no maintenance, in most cases. Overall, PostgreSQL
provides a very low total cost of ownership.

PostgreSQL is also known for its huge range of advanced features, developed over the
course of more than 30 years of continuous development and enhancement. Originally
developed by the Database Research Group at the University of California, Berkeley,
PostgreSQL is now developed and maintained by a huge army of developers and
contributors. Many of these contributors have full-time jobs related to PostgreSQL, working
as designers, developers, database administrators, and trainers. Some, but not many, of
these contributors work for companies that specialize in support for PostgreSQL. No single
company owns PostgreSQL, nor are you required (or even encouraged) to register your
usage.

PostgreSQL has the following main features:

Excellent SQL standards compliance, up to SQL: 2016
Client-server architecture
It has a highly concurrent design, where readers and writers don't block each
other
It is highly configurable and extensible for many types of applications
It has excellent scalability and performance, with extensive tuning features
It offers support for many kinds of data models, such as relational, post-
relational (arrays, nested relations via record types), document (JSON and XML),
and key/value

What makes PostgreSQL different?
The PostgreSQL project focuses on the following objectives:

Robust, high-quality software with maintainable, well-commented code
Low-maintenance administration for both embedded and enterprise use
Standards-compliant SQL, interoperability, and compatibility
Performance, security, and high availability

First Steps Chapter 1

[10]

What surprises many people is that PostgreSQL's feature set is more similar to Oracle or
SQL Server than it is to MySQL. The only connection between MySQL and PostgreSQL is
that these two projects are open source; apart from that, the features and philosophies are
almost totally different.

One of the key features of Oracle, since Oracle 7, has been snapshot isolation, where readers
don't block writers and writers don't block readers. You may be surprised to learn that
PostgreSQL was the first database to be designed with this feature, and it offers a complete
implementation. In PostgreSQL, this feature is called Multiversion Concurrency Control
(MVCC), and we will discuss this in more detail later in the book.

PostgreSQL is a general-purpose database management system. You define the database
that you would like to manage with it. PostgreSQL offers you many ways in which to work.
You can either use a normalized database model, augmented with features such as arrays
and record subtypes, or use a fully dynamic schema with the help of JSONB and an
extension named hstore. PostgreSQL also allows you to create your own server-side
functions in any of a dozen different languages.

PostgreSQL is highly extensible, so you can add your own data types, operators, index
types, and functional languages. You can even override different parts of the system, using
plugins to alter the execution of commands, or add a new query optimizer.

All of these features offer a huge range of implementation options to software architects.
There are many ways out of trouble when building applications and maintaining them over
long periods of time. Regrettably, we simply don't have space in this book for all the cool
features for developers; this book is about administration, maintenance, and backup.

In the early days, when PostgreSQL was still a research database, the focus was solely on
the cool new features. Over the last 20 years, enormous amounts of code have been
rewritten and improved, giving us one of the largest and most stable software servers
available for operational use.

Who is using PostgreSQL? Prominent users include Apple, BASF, Genentech, Heroku,
IMDB, Skype, McAfee, NTT, the UK Met Office, and the US National Weather Service.
Early in 2010, PostgreSQL received well in excess of 1,000,000 downloads per year,
according to data submitted to the European Commission, which concluded
that PostgreSQL is considered by many database users to be a credible alternative.

We need to mention one last thing: when PostgreSQL was first developed, it was named
Postgres, and therefore, many aspects of the project still refer to the word Postgres; for
example, the default database is named postgres, and the software is frequently installed
using the Postgres user ID. As a result, people shorten the name PostgreSQL to simply
Postgres, and, in many cases, use the two names interchangeably.

First Steps Chapter 1

[11]

PostgreSQL is pronounced as post-grez-q-l. Postgres is pronounced as post-grez.

Some people get confused and refer to it as Postgre, which is hard to say and likely to
confuse people. Two names are enough, so don't use a third name!

The following sections explain the key areas in more detail.

Robustness
PostgreSQL is robust, high-quality software, supported by testing for both features and
concurrency. By default, the database provides strong disk-write guarantees, and
developers take the risk of data loss very seriously in everything they do. Options to trade
robustness for performance exist, though they are not enabled by default.

All actions on the database are performed within transactions, protected by a transaction
log that will perform automatic crash recovery in case of software failure.

Databases may optionally be created with data block checksums to help diagnose hardware
faults. Multiple backup mechanisms exist, with full and detailed Point-in-time recovery
(PITR), in case you need a detailed recovery. A variety of diagnostic tools are available as
well.

Database replication is supported natively. Synchronous replication can provide greater
than 5 nines (99.999%) availability and data protection, if properly configured and
managed, or even higher with appropriate redundancy.

Security
Access to PostgreSQL is controllable via host-based access rules. Authentication is flexible
and pluggable, allowing for easy integration with any external security architecture. The
latest Salted Challenge Response Authentication Mechanism (SCRAM) provides full 256-
bit protection.

Full SSL-encrypted access is supported natively for both user access and replication. A full-
featured cryptographic function library is available for database users.

PostgreSQL provides role-based access privileges to access data, by command type.
PostgreSQL also provides Row-Level Security for privacy, medical, and military-grade
security.

First Steps Chapter 1

[12]

Functions may execute with the permissions of the definer, while views may be defined
with security barriers to ensure that security is enforced ahead of other processing.

All aspects of PostgreSQL are assessed by an active security team, while known exploits are
categorized and reported at http://www.postgresql.org/support/security/.

Ease of use
Clear, full, and accurate documentation exists as a result of a development process where
documentation changes are required. Hundreds of small changes occur with each release,
which smooth off any rough edges of usage, supplied directly by knowledgeable users.

PostgreSQL works on small and large systems in the same way, and across operating
systems.

Client access and drivers exist for every language and environment, so there is no
restriction on what type of development environment is chosen now, or in the future.

The SQL standard is followed very closely; there is no weird behavior, such as silent
truncation of data.

Text data is supported via a single data type that allows the storage of anything from 1 byte
to 1 gigabyte. This storage is optimized in multiple ways, so 1 byte is stored efficiently, and
much larger values are automatically managed and compressed.

PostgreSQL has the clear policy of minimizing the number of configuration parameters,
and with each release, we work out ways to auto-tune the settings.

Extensibility
PostgreSQL is designed to be highly extensible. Database extensions can be easily loaded
by using CREATE EXTENSION, which automates version checks, dependencies, and other
aspects of configuration.

PostgreSQL supports user-defined data types, operators, indexes, functions, and languages.

Many extensions are available for PostgreSQL, including the PostGIS extension, which
provides world-class Geographical Information System (GIS) features.

http://www.postgresql.org/support/security/

First Steps Chapter 1

[13]

Performance and concurrency
PostgreSQL 11 can achieve significantly more than 1,000,000 reads per second on a 4-socket
server, and it benchmarks at more than 30,000 write transactions per second with full
durability, depending upon your hardware. With advanced hardware, even higher levels of
performance are possible.

PostgreSQL has an advanced optimizer that considers a variety of join types, utilizing user
data statistics to guide its choices. PostgreSQL provides the widest range of index types of
any commonly available database server, fully supporting all data types.

PostgreSQL provides MVCC, which enables readers and writers to avoid blocking each
other.

Taken together, the performance features of PostgreSQL allow a mixed workload of
transactional systems and complex search and analytical tasks. This is important because it
means we don't always need to unload our data from production systems and reload it into
analytical data stores just to execute a few ad hoc queries. PostgreSQL's capabilities make it
the database of choice for new systems, as well as the correct long-term choice in almost
every case.

Scalability
PostgreSQL 11 scales well on a single node up to four CPU sockets. PostgreSQL
efficiently runs up to hundreds of active sessions, and up to thousands of connected
sessions when using a session pool. Further scalability is achieved in each annual release.

PostgreSQL provides multi-node read scalability using the Hot Standby feature. Multi-
node write scalability is under active development. The starting point for this is Bi-
Directional Replication (discussed in Chapter 12, Replication and Upgrades).

SQL and NoSQL data models
PostgreSQL follows the SQL standard very closely. SQL itself does not force any particular
type of model to be used, so PostgreSQL can easily be used for many types of models at the
same time, in the same database.

With PostgreSQL acting as a relational database, we can utilize any level of
denormalization, from the full third normal form (3NF), to the more normalized star
schema models. PostgreSQL extends the relational model to provide arrays, row types, and
range types.

First Steps Chapter 1

[14]

A document-centric database is also possible using PostgreSQL's text, XML, and binary
JSON (JSONB) data types, supported by indexes optimized for documents and by full text
search capabilities.

Key/value stores are supported using the hstore extension.

Popularity
When MySQL was taken over by a commercial database vendor some years back, it was
agreed in the EU monopoly investigation that followed that PostgreSQL was a viable
competitor. That's certainly been true, with the PostgreSQL user base expanding
consistently for more than a decade.

Various polls have indicated that PostgreSQL is the favorite database for building new,
enterprise-class applications. The PostgreSQL feature set attracts serious users who have
serious applications. Financial services companies may be PostgreSQL's largest user group,
though governments, telecommunication companies, and many other segments are strong
users as well. This popularity extends across the world; Japan, Ecuador, Argentina, and
Russia have very large user groups, as do the US, Europe, and Australasia.

Amazon Web Services' chief technology officer, Dr. Werner Vogels, described PostgreSQL
as An amazing database, going on to say that PostgreSQL has become the preferred open source
relational database for many enterprise developers and start-ups, powering leading geospatial and
mobile applications. AWS have more recently revealed that PostgreSQL is their
fastest growing service.

Commercial support
Many people have commented that strong commercial support is what enterprises need
before they can invest in open source technology. Strong support is available worldwide
from a number of companies.

The authors (Gianni and Simon) work for 2nd quadrant, which provides commercial
support for open source PostgreSQL, offering 24/7 support in English and Spanish with
bug-fix resolution times.

Many other companies provide strong and knowledgeable support to specific geographic
regions, vertical markets, and specialized technology stacks.

PostgreSQL is also available as a hosted or cloud solution from a variety of companies,
since it runs very well in cloud environments.

First Steps Chapter 1

[15]

A full list of companies is kept up to date at
http://www.postgresql.org/support/professional_support/.

Research and development funding
PostgreSQL was originally developed as a research project at the University of California,
Berkeley, in the late 1980s and early 1990s. Further work was carried out by volunteers until
the late 1990s. Then, the first professional developer became involved. Over time, more and
more companies and research groups became involved, supporting many professional
contributors. Further funding for research and development was provided by the NSF. The
project also received funding from the EU FP7 Programme, in the form of the 4CaaST
project for cloud computing, and the AXLE project for scalable data analytics. AXLE
deserves a special mention because it was a three-year project aimed at enhancing
PostgreSQL's business-intelligence capabilities, specifically for very large databases. The
project covered security, privacy, integration with data mining, and visualization tools and
interfaces for new hardware.

Further details about the AXLE project are available at http://www.axleproject.eu. Other
funding for PostgreSQL development comes from users who directly sponsor features and
companies that sell products and services based around PostgreSQL.

Getting PostgreSQL
PostgreSQL is 100% open source software and is freely available to use, alter, or
redistribute in any way you choose. Its license is an approved open source license, very
similar to the Berkeley Software Distribution (BSD) license, though only just different
enough that it is now known as The PostgreSQL License (TPL).

How to do it...
PostgreSQL is already being used by many different application packages, so you may find
it already installed on your servers. Many Linux distributions include PostgreSQL as part
of the basic installation, or include it with the installation disk.

One thing to be wary of is that the included version of PostgreSQL may not be the latest
release. It would typically be the latest major release that was available when that operating
system release was published. There is usually no good reason to stick to that level – there
is no increased stability implied there—and later production versions are just as well
supported by the various Linux distributions as the earlier versions.

http://www.postgresql.org/support/professional_support/
http://www.axleproject.eu/

First Steps Chapter 1

[16]

If you don't have a copy yet, or you don't have the latest version, you can download the
source code or binary packages for a wide variety of operating systems from
http://www.postgresql.org/download/.

Installation details vary significantly from platform to platform, and there aren't any special
tricks or recipes to mention. Just follow the installation guide, and away you go! We've
consciously avoided describing the installation processes here to make sure we don't garble
or override the information published to assist you.

If you would like to receive email updates of the latest news, you can subscribe to the
PostgreSQL announce mailing list, which contains updates from all the vendors that
support PostgreSQL. You'll get a few emails each month about new releases of core
PostgreSQL, related software, conferences, and user group information. It's worth keeping
in touch with these developments.

For more information about the PostgreSQL announcement mailing list,
visit http:/ / archives. postgresql. org/ pgsql- announce/ .

How it works...
Many people ask questions such as, How can this be free?, Are you sure I don't have to pay
someone? or, Who gives this stuff away for nothing?

Open source applications such as PostgreSQL work on a community basis, where many
contributors perform tasks that make the whole process work. For many of these people,
their involvement is professional, rather a hobby, and they can do this because there is
generally great value for both the contributors and their employers alike.

You might not believe it. You don't have to, because it just works!

There's more…
Remember that PostgreSQL is more than just the core software. There is a huge range of
websites that offer add-ons, extensions, and tools for PostgreSQL. You'll also find an army
of bloggers who describe useful tricks and discoveries that will help you in your work.

Besides these, a range of professional companies can offer you help when you need it.

http://www.postgresql.org/download/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/
http://archives.postgresql.org/pgsql-announce/

First Steps Chapter 1

[17]

Connecting to the PostgreSQL server
How do we access PostgreSQL?

Connecting to the database is the first experience of PostgreSQL for most people, so we
want to make it a good one. Let's do it now, and fix any problems we have along the way.
Remember that a connection needs to be made secure, so there may be some hoops for us to
jump through to ensure that the data we wish to access is secure.

Before we can execute commands against the database, we need to connect to the database
server, to give us a session.

Sessions are designed to be long-lived, so you connect once, perform many requests, and
eventually disconnect. There is a small overhead during connection. It may become
noticeable if you connect and disconnect repeatedly, so you may wish to investigate the use
of connection pools. Connection pools allow pre-connected sessions to be quickly served to
you when you wish to reconnect.

Getting ready
First, cache your database. If you don't know where it is, you'll probably have difficulty
accessing it. There may be more than one database, and you'll need to know the right one to
access, and also have the authority to connect to it.

How to do it…
You need to specify the following parameters to connect to PostgreSQL:

Host or host address
Port
Database name
User
Password (or other means of authentication, if any)

First Steps Chapter 1

[18]

To connect, there must be a PostgreSQL server running on host, listening to port number
port. On that server, a database named dbname and a user named user must also exist.
The host must explicitly allow connections from your client (explained in the Enabling access
for network/remote users recipe), and you must also pass authentication using the method the
server specifies; for example, specifying a password won't work if the server has requested
a different form of authentication.

Almost all PostgreSQL interfaces use the libpq interface library. When using libpq, most
of the connection parameter handling is identical, so we can discuss that just once.

If you don't specify the preceding parameters, PostgreSQL looks for values set through
environment variables, which are as follows:

PGHOST or PGHOSTADDR
PGPORT (set this to 5432 if it is not set already)
PGDATABASE

PGUSER

PGPASSWORD (this is definitely not recommended)

If you somehow specify the first four parameters, but not the password, PostgreSQL looks
for a password file, discussed in the Avoiding hardcoding your password recipe.

Some PostgreSQL interfaces use the client-server protocol directly, so the ways in which the
defaults are handled may differ. The information we need to supply won't vary
significantly, so check the exact syntax for that interface.

Connection details can also be specified using a Uniform Resource Identifier (URI) format,
as follows:

psql postgresql://myuser:mypasswd@myhost:5432/mydb

This specifies that we will connect the psql client application to the PostgreSQL server at
the myhost host, on the 5432 port, with the mydb database name, myuser user, and
mypasswd password.

If you do not set mypasswd in the preceding URI, you will be prompted to
enter the password.

First Steps Chapter 1

[19]

How it works…
PostgreSQL is a client-server database. The system it runs on is known as the host. We can
access the PostgreSQL server remotely, through the network. However, we must
specify host, which is a hostname, or hostaddr, which is an IP address. We can specify a
host as localhost if we wish to make a TCP/IP connection to the same system. It is often
better to use a Unix socket connection, which is attempted if the host begins with a slash (/)
and the name is presumed to be a directory name (the default is /tmp).

On any system, there can be more than one database server. Each database server listens to
exactly one well-known network port, which cannot be shared between servers on the same
system. The default port number for PostgreSQL is 5432, which has been registered with
the Internet Assigned Numbers Authority (IANA) and is uniquely assigned to
PostgreSQL (you can see it used in the /etc/services file on most *nix servers). The
port number can be used to uniquely identify a specific database server, if many exist.
IANA (http://www.iana.org) is the organization that coordinates the allocation of
available numbers for various internet protocols.

A database server is also sometimes known as a database cluster, because the PostgreSQL
server allows you to define one or more databases on each server. Each connection request
must identify exactly one database, identified by its dbname. When you connect, you will
only be able to see only the database objects created within that database.

A database user is used to identify the connection. By default, there is no limit on the
number of connections for a particular user. In the Enabling access for network/remote users
recipe, we will cover how to restrict that. In the more recent versions of PostgreSQL, users
are referred to as login roles, though many clues remind us of the earlier nomenclature, and
that still makes sense in many ways. A login role is a role that has been assigned the
CONNECT privilege.

Each connection will typically be authenticated in some way. This is defined at the server
level: client authentication will not be optional at connection time if the administrator has
configured the server to require it.

Once you've connected, each connection can have one active transaction at a time and one
fully active statement at any time.

The server will have a defined limit on the number of connections it can serve, so a
connection request can be refused if the server is oversubscribed.

http://www.iana.org/

First Steps Chapter 1

[20]

There's more…
If you are already connected to a database server with psql and you want to confirm that
you've connected to the right place and in the right way, you can execute some, or all, of the
following commands. Here is the command that shows the current_database:

SELECT current_database();

The following command shows the current_user ID:

SELECT current_user;

The next command shows the IP address and port of the current connection, unless you are
using Unix sockets, in which case both values are NULL:

SELECT inet_server_addr(), inet_server_port();

A user's password is not accessible using general SQL, for obvious reasons.

You may also need the following:

SELECT version();

From PostgreSQL version 9.1 onward, you can also use the new psql meta-command,
\conninfo. This displays most of the preceding information in a single line:

postgres=# \conninfo
You are connected to database postgres, as user postgres, via socket in
/var/run/postgresql, at port 5432.

See also
There are many other snippets of information required to understand connections. Some of
them are mentioned in this chapter, and others are discussed in Chapter 6, Security. For
further details, refer to the PostgreSQL server documentation.

Enabling access for network/remote users
PostgreSQL comes in a variety of distributions. In many of these, you will note that remote
access is initially disabled as a security measure.

First Steps Chapter 1

[21]

How to do it…
By default, PostgreSQL gives access to clients who connect using Unix sockets, provided
that the database user is the same as the system's username. Here, we'll show you how to
enable other connections.

In this recipe, we mention configuration files, which can be located as
shown in the Finding the current configuration settings recipe in Chapter 3,
Configuration.

The steps are as follows:

Add or edit this line in your postgresql.conf file:1.

listen_addresses = '*'

Add the following line as the first line of pg_hba.conf to allow access to all2.
databases for all users with an encrypted password:

TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 0.0.0.0/0 md5

After changing listen_addresses, we restart the PostgreSQL server, as3.
explained in the Updating the parameter file recipe in Chapter 3, Configuration

This recipe assumes that postgresql.conf does not include any other
configuration files, which is the case in a default installation. If changing
listen_addresses in postgresql.conf does not seem to work,
perhaps that setting is overridden by another configuration file. Check out
the Updating the parameter file recipe in Chapter 3, Configuration, for more
details.

How it works…
The listen_addresses parameter specifies which IP addresses to listen to. This allows
you to flexibly enable and disable listening on interfaces of multiple network cards (NICs)
or virtual networks on the same system. In most cases, we want to accept connections on all
NICs, so we use *, meaning all IP addresses.

First Steps Chapter 1

[22]

The pg_hba.conf file contains a set of host-based authentication rules. Each rule is
considered in sequence, until one rule fires or the attempt is specifically rejected with a
reject method.

The preceding rule means that a remote connection that specifies any user or database on
any IP address will be asked to authenticate using an MD5-encrypted password. The
following are the parameters required for MD5-encrypted passwords:

Type: For this, host means a remote connection.
Database: For this, all means for all databases. Other names match exactly,
except when prefixed with a plus (+) symbol, in which case we mean a group
role rather than a single user. You can also specify a comma-separated list of
users, or use the @ symbol to include a file with a list of users. You can even
specify sameuser, so that the rule matches when you specify the same name for
the user and database.
User: For this, all means for all users. Other names match exactly, except when
prefixed with a plus (+) symbol, in which case we mean a group role rather than
a single user. You can also specify a comma-separated list of users, or use the @
symbol to include a file with a list of users.
CIDR-ADDRESS: This consists of two parts: an IP address and a subnet mask.
The subnet mask is specified as the number of leading bits of the IP address that
make up the mask. Thus, /0 means 0 bits of the IP address, so that all IP
addresses will be matched. For example, 192.168.0.0/24 would mean
matching of the first 24 bits, so any IP address of the form 192.168.0.x would
match. You can also use samenet or samehost.
Method: For this, md5 means that PostgreSQL will ask the client to provide a
password encrypted with MD5. Another common setting is trust, which
effectively means no authentication. Other authentication methods include
GSSAPI, SSPI, LDAP, RADIUS, and PAM. PostgreSQL connections can also be
made using SSL, in which case client SSL certificates provide authentication. See
the Using SSL certificates to authenticate the client recipe in Chapter 6, Security, for
more details.

Don't use the password setting, as this sends the password in plain text. This is not a real
security issue if your connection is encrypted with SSL, and there are normally no
downsides with MD5 anyway, and you have extra security for non-SSL connections.

First Steps Chapter 1

[23]

There's more…
In earlier versions of PostgreSQL, access through the network was enabled by adding the -
i command-line switch when you started the server. This is still a valid option, but now it
means the following:

listen_addresses = '*'

So, if you're reading some notes about how to set things up and this is mentioned, be
warned that those notes are probably long out of date. They are not necessarily wrong, but
it's worth looking further to see whether anything else has changed.

See also
Look at installer and/or operating system-specific documentation to find the standard
location of the files.

Using graphical administration tools
Graphical administration tools are often requested by system administrators. PostgreSQL
has a range of tool options. In this book, we'll cover pgAdmin4 and OmniDB, which offers
access to PostgreSQL and other databases.

Both of these tools are client applications that send and receive SQL to PostgreSQL,
displaying the results for you. The admin client can access many databases servers,
allowing you to manage a fleet of servers. Both tools work in standalone app mode and
within web browsers.

How to do it…
pgAdmin 4 is usually named just pgAdmin. The 4 at the end has a long history, but isn't
that important. It is not the release level; pgAdmin 4 replaces the earlier pgAdmin 3.

First Steps Chapter 1

[24]

When you start pgAdmin, you will be prompted to register a new server.

Give your server a name on the General tab, and then click Connection and fill in the five
basic connection parameters, as well as the other information. You should uncheck the Save
password? box:

If you have many database servers, you can group them together. I suggest keeping any
replicated servers together in the same server group. Give each server a sensible name.

Once you've added a server, you can connect to it and display information about it.

The default screen is the Dashboard, which presents a few interesting graphs based on the
data it polls from the server. That's not very useful, so click on the Statistics tab.

First Steps Chapter 1

[25]

You will then get access to the main browser screen, with the object tree view on the left
and statistics on the right, as shown in the following screenshot:

pgAdmin easily displays much of the data that is available from PostgreSQL. The
information is context-sensitive, allowing you to navigate and see everything quickly and
easily. The information is not dynamically updated; this will occur only when you click to
refresh, so bear this in mind when using the application.

First Steps Chapter 1

[26]

pgAdmin also provides Grant Wizard. This is useful for DBAs for review and immediate
maintenance:

The pgAdmin query tool allows you to have multiple active sessions. The query tool has a
good-looking visual Explain feature, which displays the EXPLAIN plan for your query:

First Steps Chapter 1

[27]

How it works…
pgAdmin provides a wide range of features, many of which are provided by other tools as
well. This gives us the opportunity to choose which of those tools we want. For many
reasons, it is best to use the right tool for the right job, and that is always a matter of
expertise, experience, and personal taste.

pgAdmin submits SQL to the PostgreSQL server, and displays the results quickly and
easily. As a browser, it is fantastic. For performing small DBA tasks, it is ideal. As you
might've guessed from these comments, I don't recommend pgAdmin for every task.

Scripting is an important technique for DBAs. You keep a copy of the task executed, and
you can edit and resubmit if problems occur. It's also easy to put all the tasks in a script into
a single transaction, which isn't possible using the current GUI tools. pgAdmin provides
pgScript, which only works with pgAdmin, so it is more difficult to port. For scripting, I
strongly recommend the psql utility, which has many additional features that you'll
increasingly appreciate over time.

Although I recommend psql as a scripting tool, many people find it convenient as a query
tool. Some people may find this strange, and assume it is a choice for experts only. Two
great features of psql are the online help for SQL and the tab completion feature, which
allows you to build up SQL quickly without having to remember the syntax. See the Using
the psql query and scripting tool recipe for more information.

pgAdmin also provides pgAgent, which is a task scheduler. Again, more portable
schedulers are available, and you may wish to use those instead. Schedulers aren't covered
in this book.

A quick warning! When you create an object in pgAdmin, the object will be created with a
mixed case name if you use capitals anywhere in the object name. If I ask for a table named
MyTable, the only way to access that table is by referring to it in double quotes as
MyTable. See the Handling objects with quoted names recipe in Chapter 5, Tables and Data:

First Steps Chapter 1

[28]

OmniDB
OmniDB is designed to access PostgreSQL, MySQL, MariaDB, and Oracle in one interface,
though it makes sure it provides full features for the PostgreSQL database.

OmniDB is developing quickly, with monthly feature releases, so I recommend that you
check out the latest information at https:/ /omnidb. org/ .

OmniDB provides a very responsive interface and is designed with full security in mind. It
can be used as a desktop application and it can also be served using a web server, to be
accessed by the web browser of your choice.

How to do it…
OmniDB has the standard tree-view browsing interface, with multi-tab access for each
database server you access. It's easy to be connected to multiple PostgreSQL, MySQL,
and Oracle database servers at the same time:

https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/
https://omnidb.org/

First Steps Chapter 1

[29]

OmniDB has a SQL editor that has code completion and debugging. The EXPLAIN
ANALYZE output is colored to highlight the areas of the plan that take the most time:

First Steps Chapter 1

[30]

Or, if you prefer the command-line feel, try the Console tab:

First Steps Chapter 1

[31]

You can also visualize the query plan:

Administrators in OmniDB can manage users graphically. The interface gives you the
ability to add, edit, and remove users, along with the ability to make someone a superuser.
These users can then create connections to PostgreSQL, MySQL, MariaDB, and Oracle—all
managed through a unified web page. Connections can also be made via SSH tunnels:

First Steps Chapter 1

[32]

In order to ease the process of developing code in PL/pgSQL, OmniDB provides a
powerful, full-featured debugger. The debugger works as an inner tab of the SQL Editor
and provides insights into parameters, variables, result, messages, and statistics in five tabs:

First Steps Chapter 1

[33]

Another useful feature in OmniDB is the monitoring dashboard. The dashboard gives you
real-time statistics of important metrics you might want to monitor, such as system
Memory Usage, CPU Usage, and Locks:

OmniDB has been designed to be a flexible and an extensible tool. Though it comes with
several default charts, you can use Python and JSON to write new ones or use the existing
ones as templates to enhance and expand. OmniDB provides a plugin API, allowing users
to write and distribute their own plugins for expanded capabilities.

See also
You may also be interested in commercial tools of various kinds for PostgreSQL. A full
listing is given in the PostgreSQL software catalog at http:/ / www.postgresql. org/
download/products/ 1.

Using the psql query and scripting tool
psql is the query tool supplied as a part of the core distribution of PostgreSQL, so it is
available in all environments, and works similarly in all of them. This makes it an ideal
choice for developing portable applications and techniques.

psql provides features for use as both an interactive query tool and as a scripting tool.

http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1
http://www.postgresql.org/download/products/1

First Steps Chapter 1

[34]

Getting ready
From here on, we will assume that the psql command is enough to allow you access to the
PostgreSQL server. This assumes that all your connection parameters are defaults, which
may not be true.

Written in full, the connection parameters would be either of these options:

psql -h myhost -p 5432 -d mydb -U myuser
psql postgresql://myuser@myhost:5432/mydb

The default value for the port (-p) is 5432. By default, mydb and myuser are both identical
to the operating system's username. The default myhost on Windows is localhost, while on
Unix, we use the default directory for Unix socket connections. The location of such
directories varies across distributions and is set at compile time. However, note that you
don't actually need to know its value, because on local connections, both the server and the
client are normally compiled together, so they use the same default.

How to do it…
The command that executes a single SQL command and prints the output is the easiest, as
shown here:

$ psql -c "SELECT current_time"
 timetz

 18:48:32.484+01
(1 row)

The -c command is non-interactive. If we want to execute multiple commands, we can
write those commands in a text file and then execute them using the -f option. This
command loads a very small and simple set of examples:

$ psql -f examples.sql

It produces the following output when successful:

SET
SET
SET
SET
SET
SET
DROP SCHEMA

First Steps Chapter 1

[35]

CREATE SCHEMA
SET
SET
SET
CREATE TABLE
CREATE TABLE
COPY 5
COPY 3

The examples.sql script is very similar to a dump file produced by PostgreSQL backup
tools, so this type of file and the output it produces are very common. When a command is
executed successfully, PostgreSQL outputs a command tag equal to the name of that
command; this is how the preceding output was produced.

The psql tool can also be used with both the -c and -f modes together; each one can be
used multiple times. In this case, it will execute all the commands consecutively:

$ psql -c "SELECT current_time" –f examples.sql -c "SELECT current_time"
 timetz

 18:52:15.287+01
(1 row)
 ...output removed for clarity...
 timetz

 18:58:23.554+01
(1 row)

The psql tool can also be used in interactive mode, which is the default, so it requires no
option:

$ psql
postgres=#

The first interactive command you'll need is the following:

postgres=# help

You can then enter SQL or other commands. The following is the last interactive command
you'll need:

postgres=# \quit

Unfortunately, you cannot type quit on its own, nor can you type \exit, or other options.
Sorry, just \quit, or \q for short!

First Steps Chapter 1

[36]

How it works…
In psql, you can enter the following two types of commands:

psql meta-commands
SQL

A meta-command is a command for the psql client, whereas SQL is sent to the database
server. An example of a meta-command is \q, which tells the client to disconnect. All lines
that begin with \ (backslash) as the first nonblank character are presumed to be meta-
commands of some kind.

If it isn't a meta-command, it's SQL. We keep reading SQL until we find a semicolon, so we
can spread SQL across many lines and format it any way we find convenient.

The help command is the only exception. We provide this for people who are completely
lost, which is a good thought; so let's start from there ourselves.

There are two types of help commands, which are as follows:

\?: This provides help on psql meta-commands
\h: This provides help on specific SQL commands

Consider the following snippet as an example:

postgres=# \h DELETE
Command: DELETE
Description: delete rows of a table
Syntax:
[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [AS output_name] [,]]

I find this a great way to discover and remember options and syntax. You'll also appreciate
having the ability to scroll back through the previous command history.

You'll get a lot of benefits from tab completion, which will fill in the next part of the syntax
when you press the Tab key. This also works for object names, so you can type in just the
first few letters and then press Tab; all the options will be displayed. Thus, you can type in
just enough letters to make the object name unique, and then hit Tab to get the rest of the
name.

First Steps Chapter 1

[37]

One-line comments begin with two dashes, as follows:

-- This is a single-line comment

Multiline comments are similar to those in C and Java:

/*
 * Multiline comment
 */

You'll probably agree that psql looks a little daunting at first, with strange backslash
commands. I do hope you'll take a few moments to understand the interface and keep
digging for more information. The psql tool is one of the most surprising parts of
PostgreSQL, and it is incredibly useful for database administration tasks when used
alongside other tools.

There's more…
psql works across releases and works well with older versions. It may not work at all with
newer server versions, so use the latest client level of server you are accessing.

See also
Check out some other useful features of psql, which are as follows:

Information functions
Output formatting
Execution timing using the \timing command
Input/output and editing commands
Automatic startup files, such as .psqlrc
Substitutable parameters (variables)
Access to the OS command line
Crosstab views
Conditional execution

First Steps Chapter 1

[38]

Changing your password securely
If you are using password authentication, then you may wish to change your password
from time to time.

How to do it…
The most basic method is to use the psql tool. The \password command will prompt you
once for a new password and again to confirm. Connect to the psql tool and type the
following:

SET password_encryption = 'scram-sha-256';
\password

Enter a new password. This causes psql to send a SQL statement to the PostgreSQL server,
which contains an already encrypted password string. An example of the SQL statement
sent is as follows:

ALTER USER postgres PASSWORD 'SCRAM-
SHA-256$4096:H45+UIZiJUcEXrB9SHlv5Q==$I0mc87UotsrnezRKv9Ijqn/zjWMGPVdy1zHPA
RAGfVs=:nSjwT9LGDmAsMo+GqbmC2X/9LMgowTQBjUQsl45gZzA=';

Make sure you use SCRAM-SHA-256 encryption, not the older and easily compromised
md5 encryption. Whatever you do, don't use postgres as your password. This will make
you vulnerable to idle hackers, so make it a little more difficult than that!

Make sure you don't forget your password either. It may prove difficult to maintain your
database if you can't access it.

How it works…
As changing the password is just a SQL statement, any interface can do this. Other tools
also allow this, such as the following:

pgAdmin4
phpPgAdmin

First Steps Chapter 1

[39]

If you don't use one of the main routes to change the password, you can still do it yourself,
using SQL from any interface. Note that you need to encrypt your password, because if you
do submit a password in plain text, such as the following, it will be shipped to the server in
plain text:

ALTER USER myuser PASSWORD 'secret'

Luckily, the password in this case will still be stored in an encrypted form. But it will also
be recorded in plain text in psql's history file, as well as in any server and application logs,
depending on the actual log-level settings.

PostgreSQL doesn't enforce a password change cycle, so you may wish to use more
advanced authentication mechanisms, such as GSSAPI, SSPI, LDAP, or RADIUS.

Avoiding hardcoding your password
We can all agree that hardcoding your password is a bad idea. This recipe shows you how
to keep your password in a secure password file.

Getting ready
Not all database users need passwords; some databases use other means of authentication.
Don't perform this step unless you know you will be using password authentication, and
you know your password.

First, remove the hardcoded password from where you set it previously. Completely
remove the password = xxxx text from the connection string in a program. Otherwise,
when you test the password file, the hardcoded setting will override the details you are
about to place in the file. Keeping the password hardcoded and in the password file is not
any better. Using PGPASSWORD is not recommended either, so remove that also.

If you think someone may have seen the password, change your password before placing it
in the secure password file.

How to do it…
A password file contains the usual five fields that we require when connecting, as shown
here:

host:port:dbname:user:password

First Steps Chapter 1

[40]

Change this to the following:

myhost:5432:postgres:sriggs:moresecure

The password file is located using an environment variable named PGPASSFILE. If
PGPASSFILE is not set, a default filename and location must be searched for, as follows:

On *nix systems, look for ~/.pgpass
On Windows systems, look for %APPDATA%\postgresql\pgpass.conf, where
%APPDATA% is the application data subdirectory in the path (for me, that would
be C:\)

Don't forget to set the file permissions on the file, so that security is
maintained. File permissions are not enforced on Windows, though the
default location is secure. On *nix systems, you must issue the following
command: chmod 0600 ~/.pgpass.
If you forget to do this, the PostgreSQL client will ignore the .pgpass file.
While the psql tool will issue a clear warning, many other clients will just
fail silently, so don't forget!

How it works…
Many people name the password file .pgpass, whether or not they are on Windows, so
don't get confused if they do this.

The password file can contain multiple lines. Each line is matched against the requested
host:port:dbname:user combination until we find a line that matches. Then, we use that
password.

Each item can be a literal value or *, a wildcard that matches anything. There is no support
for partial matching. With appropriate permissions, a user can potentially connect to any
database. Using the wildcard in the dbname and port fields makes sense, but it is less
useful in other fields. The following are a few examples of wildcards:

myhost:5432:*:sriggs:moresecurepw

myhost:5432:perf:hannu:okpw

myhost:*:perf:gianni:sicurissimo

First Steps Chapter 1

[41]

There's more…
This looks like a good improvement if you have a few database servers. If you have many
different database servers, you may want to think about using a connection service file
instead (see the Using a connection service file recipe), or perhaps even storing details on a
Lightweight Directory Access Protocol (LDAP) server.

Using a connection service file
As the number of connection options grows, you may want to consider using a connection
service file.

The connection service file allows you to give a single name to a set of connection
parameters. This can be accessed centrally, to avoid the need for individual users to know
the host and port of the database, and it is more resistant to future change.

You can set up a system-wide file as well as individual per-user files. The default file paths
for these files are /etc/pg_service.conf and ~/.pg_service.conf, respectively.

A system-wide connection file controls service names for all users from a single place,
while a per-user file applies only to that particular user. Keep in mind that the per-user file
overrides the system-wide file—if a service is defined in both the files, then the definition in
the per-user file will prevail.

How to do it…
First, create a file named pg_service.conf with the following content:

[dbservice1]
host=postgres1
port=5432
dbname=postgres

You can then copy it to either /etc/pg_service.conf or another agreed upon central
location. You can then set the PGSYSCONFDIR environment variable to that directory
location.

First Steps Chapter 1

[42]

Alternatively, you can copy it to ~/.pg_service.conf. If you want to use a different
name, set PGSERVICEFILE. Either way, you can then specify a connection string, such as
the following:

service=dbservice1 user=sriggs

The service can also be set using an environment variable named PGSERVICE.

How it works…
This feature applies to libpq connections only, so it does not apply to JDBC.

The connection service file can also be used to specify the user, though that would mean
that the username would be shared.

The pg_service.conf and .pgpass files can work together, or you can use just one of the
two. Note that the pg_service.conf file is shared, so it is not a suitable place for
passwords. The per-user connection service file is not shared, but in any case, it seems best
to keep things separate and confine passwords to .pgpass.

Troubleshooting a failed connection
This recipe is all about what you should do when things go wrong.

Bear in mind that 90% of problems are just misunderstandings, and you'll quickly be on
track again.

How to do it…
Here, we've made a checklist to be followed if a connection attempt fails:

Check whether the database name and the username are accurate. You may be
requesting a service on one system when the database you require is on another
system. Recheck your credentials; ensure that you haven't mixed things up and
that you are not using the database name as the username, or vice versa. If you
receive too many connections, then you may need to disconnect another session
before you can connect, or wait for the administrator to re-enable the
connections.

First Steps Chapter 1

[43]

Check for explicit rejections. If you receive the pg_hba.conf rejects
connection for host... error message, it means your connection attempt
has been explicitly rejected by the database administrator for that server. You
will not be able to connect from the current client system using those credentials.
There is little point in attempting to contact the administrator, as you are
violating an explicit security policy with what you are attempting to do.
Check for implicit rejections. If the error message you receive is no
pg_hba.conf entry for..., it means there is no explicit rule that matches
your credentials. This is likely an oversight on the part of the administrator and
is common in very complex networks. Contact the administrator and request a
ruling on whether your connection should be allowed (hopefully) or explicitly
rejected in the future.
Check whether the connection works with psql. If you're trying to connect to
PostgreSQL from anything other than the psql command-line utility, switch to
that now. If you can make psql connect successfully, but cannot make your main
connection work correctly, the problem may be in the local interface you are
using.
PostgreSQL 9.3 and later versions ship the pg_isready utility, which checks the
status of a database server, either local or remote, by establishing a minimal
connection. Only the hostname and port are mandatory, which is great if you
don't know the database name, username, or password. The following outcomes
are possible:

The server is running and accepting connections.
The server is running but not accepting connections (because it is
starting up, shutting down, or in recovery).
A connection attempt was made, but it failed.
No connection attempt was made because of a client problem
(invalid parameters, out of memory).
Check whether the server is up. If a server is shut down, you
cannot connect. The typical problem here is simply mixing up the
server to which you are connecting. You need to specify the
hostname and port, so it's possible that you are mixing up those
details.
Check whether the server is up and accepting new connections. A
server that is shutting down will not accept new connections, apart
from superusers. Also, a standby server may not have the
hot_standby parameter enabled, preventing you from
connecting.

First Steps Chapter 1

[44]

Check whether the server is listening correctly, and check the port
to which the server is actually listening. Confirm that the incoming
request is arriving on the interface listed in the
listen_addresses parameter. Check whether it is set to * for
remote connections and localhost for local connections.
Check whether the database name and username exist. It's possible
that the database or user no longer exists.
Check the connection request; that is, check whether the
connection request was successful and was somehow dropped
following the connection. You can confirm this by looking at the
server log when the following parameters are enabled:

log_connections = on
log_disconnections = on

Check for other reasons for disconnection. If you are connecting to
a standby server, it is possible that you have been disconnected
because of Hot Standby conflicts. See Chapter 12, Replication and
Upgrades, for more information.

There's more…
Client authentication and security are the rapidly changing areas in subsequent major
PostgreSQL releases. You will also find differences between maintenance release levels. The
PostgreSQL documents on this topic can be viewed at
http://www.postgresql.org/docs/current/interactive/client-authentication.html.

Always check which release level you are using before consulting the manual or asking for
support. Many problems are caused simply by confusing the capabilities between release
levels.

http://www.postgresql.org/docs/current/interactive/client-authentication.html

2
Exploring the Database

To understand PostgreSQL, you need to see it in use. An empty database is like a ghost
town without houses.

For now, we will assume that you already have a database. There are over a thousand
books on how to design your own database from nothing. So, here, we aim to help
people who are still learning to use the PostgreSQL database management system with
handy routines to explore the database.

The best way to start is by asking some simple questions to orient yourself and begin the
process of understanding. Incidentally, these are also questions you'll need to answer if you
ask someone else for help.

In this chapter, we'll cover the following recipes:

What type of server is this?
What version is the server?
What is the server uptime?
Locating the database server files
Locating the database server's message log
Locating the database's system identifier
Listing databases on the database server
How many tables are there in a database?
How much disk space does a database use?
How much disk space does a table use?
Which are my biggest tables?
How many rows are there in a table?
Quickly estimating the number of rows in a table
Listing extensions in this database
Understanding object dependencies

Exploring the Database Chapter 2

[46]

What type of server is this?
PostgreSQL is an open source object-relational database management system
(ORDBMS) distributed under a very permissive license, and developed by an active
community.

There are a number of PostgreSQL-related services and software (https:/ / wiki.
postgresql.org/wiki/ PostgreSQL_ derived_ databases), either open source or not, that are
provided by other software companies. Here, we discuss how to recognize which one you
are using.

It is not so easy to detect the variant of PostgreSQL from the name; many of the products
and services involving PostgreSQL include the word Postgres or PostgreSQL.

However, if you need to check the documentation, or to buy services such as support and
consulting, you need to find out exactly what type your server is, as the available options
will vary.

If you are paying a license fee or a cloud service subscription, you will already know the
name of the company you are paying, and of the specific variant of PostgreSQL you are
subscribed to. But, it’s not rare to have multiple servers of different types, so it is still useful
to be able to tell them apart.

How to do it…
Unfortunately, there isn't a single function or parameter that works on each variant of
PostgreSQL and at the same time is able to answer that question. The closest you can get is
the version() function that is used in the next recipe, What version is the server?, which
returns a textual description of the version you are running, including (but not limited to)
the version number.

In some cases, this is enough, but otherwise, you have to determine the specific version
from other clues, such as the following:

The version number for stable releases of community PostgreSQL is either X.Y
(with X=10 or above) or X.Y.Z (up to X=9). An extra number usually indicates
that you are running a variant of PostgreSQL.
The presence of certain objects that are available only on a specific variant, for
instance an extension. More details on how to work with extensions can be found
in the Listing extensions in this database recipe in this chapter.

https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases

Exploring the Database Chapter 2

[47]

There's more...
Some of the PostgreSQL-based services on the cloud will return the same value of
version() as community PostgreSQL does. While this is correct, in the sense that they are
indeed running that version of PostgreSQL, it doesn’t mean that you have the same level of
control. For instance, you might not be given a superuser account, and you will probably be
unable to install extensions freely.

What version is the server?
PostgreSQL has internal version numbers for the data file format, database catalog layout,
and crash recovery format. Each of these is checked as the server runs to ensure that the
data doesn't become corrupt. PostgreSQL doesn't change these internal formats for a single
release; they only change across releases.

From a user's perspective, each release differs in terms of the way the server behaves. If you
know your application well, then it should be possible to assess the differences simply by
reading the release notes for each version. In many cases, a retest of the application is the
safest thing to do.

If you experience any general problems related to setup and configuration with your
database, then you'll need to double-check which version of the server you have. This will
help you to report a fault or to consult the correct version of the manual.

How to do it…
We will find out the version by directly querying the database server:

Connect to the database and issue the following command:1.

postgres # SELECT version();

You'll get a response that looks something like this:2.

PostgreSQL 11.2 on x86_64-apple-darwin16.7.0,
compiled by Apple LLVM version 9.0.0 (clang-900.0.39.2), 64-bit

That's probably too much information all at once!

Exploring the Database Chapter 2

[48]

Some other ways of checking the version number are as follows:

bash # psql --version
psql (PostgreSQL) 11.2

However, be wary that this shows the client software version number, which may differ
from the server software version number. You should check the server version directly by
using the following command:

bash # cat $PGDATA/PG_VERSION

Here, you must set PGDATA to the actual data directory. Refer to the Locating the database
server files recipe for more information.

Notice that the preceding command does not show the maintenance release number.

How it works…
The current PostgreSQL server version format is composed of two numbers; the first
number indicates the major release, and the second one denotes subsequent maintenance
releases for that major release. It is common to mention just the major release when
discussing what features are supported, as they are unchanged on a maintenance release.

11.0 is the first release of PostgreSQL 11, and subsequent maintenance releases will be 11.1,
11.2, 11.3, and so on. In the preceding example, we see that 11.2 is the version of that
PostgreSQL server.

For each major release, there is a separate version of the manual, since the feature set is not
the same. If something doesn't work exactly the way you think it should, make sure you are
consulting the correct version of the manual.

There's more…
Prior to release 10, PostgreSQL used a three-part numbering series, meaning that the
feature set and compatibility related to the first two numbers, while maintenance releases
were denoted by the third number. For instance, version 9.4 contains more additional
features and compatibility changes when compared to version 9.3; version 9.4.0 was the
initial release of 9.4, and version 9.4.1 was a later maintenance release.

Exploring the Database Chapter 2

[49]

The release support policy for PostgreSQL is available at http:/ /www. postgresql. org/
support/versioning/ . This article explains that each release will be supported for a period
of five years. Since we release one major version per year, this means five major releases.

Support for all releases up to and including 9.3, ended in September 2018. So, by the time
you're reading this book, only PostgreSQL 9.4 and higher versions will be supported. The
earlier versions are still robust, though many performance and enterprise features are
missing from those releases. The future end-of-support dates are as follows:

Version Last supported date
PostgreSQL 9.4 December 2019
PostgreSQL 9.5 January 2021
PostgreSQL 9.6 September 2021
PostgreSQL 10 September 2022
PostgreSQL 11 October 2023

What is the server uptime?
You may wonder, how long has it been since the server started?

For instance, you might want to verify that there was no server crash if your server is not
monitored; or to see when the server was last restarted, for instance, to change the
configuration. We will find this out by asking the database server.

How to do it…
Issue the following SQL from any interface:

postgres=# SELECT date_trunc('second', current_timestamp -
pg_postmaster_start_time()) as uptime;

You should get the output as follows:

 uptime

 2 days 02:48:04

http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/

Exploring the Database Chapter 2

[50]

How it works...
Postgres stores the server start time, so we can access it directly, as follows:

postgres=# SELECT pg_postmaster_start_time();
pg_postmaster_start_time
--
2018-01-01 19:37:41.389134+00

Then, we can write a SQL query to get the uptime, like this:

postgres=# SELECT current_timestamp - pg_postmaster_start_time();

?column?
--
2 days 02:50:02.23939

Finally, we can apply some formatting:

postgres=# SELECT date_trunc('second', current_timestamp -
pg_postmaster_start_time()) as uptime;
 uptime

2 days 02:51:18

See also
This is simple stuff. Further monitoring and statistics are covered in Chapter 8, Monitoring
and Diagnosis.

Locating the database server files
Database server files are initially stored in a location referred to as the data directory.
Additional data files may also be stored in tablespaces, if any exist.

In this recipe, you will learn how to find the location of these directories on a given
database server.

Getting ready
You'll need to get operating system access to the database system, which is what we call the
platform on which the database runs.

Exploring the Database Chapter 2

[51]

How to do it...
The following are the system default data directory locations:

Debian or Ubuntu systems: /var/lib/postgresql/MAJOR_RELEASE/main
Red Hat RHEL, CentOS, and Fedora: /var/lib/pgsql/data/
Windows: C:\Program Files\PostgreSQL\MAJOR_RELEASE\data

MAJOR_RELEASE is composed of just one number (for release 10 and above) or by two (for
releases up to 9.6).

On Debian or Ubuntu systems, the configuration files are located in
/etc/postgresql/MAJOR_RELEASE/main/, where main is just the name of a database
server. Other names are also possible. For the sake of simplicity, we assume that you only
have a single installation, although the point of including the release number and database
server name as components of the directory path is to allow multiple database servers to
coexist on the same host.

The pg_lsclusters utility is specific to Debian/Ubuntu, and displays a
list of all the available database servers, including information, such as the
following, for each server:

Major release number
Port
Status (for example, online and down)
Data directory
Log file

The pg_lsclusters utility is part of the postgresql-common
Debian/Ubuntu package, which provides a structure under which
multiple versions of PostgreSQL can be installed, and multiple clusters
can be maintained, at one time.

In the packages distributed with Red Hat RHEL, CentOS, and Fedora, the default data
directory location also contains the configuration files (*.conf) by default. However, note
that the packages distributed by the PostgreSQL community use a different default location
/var/lib/pgsql/MAJOR_RELEASE/data/.

Again, that is just the default location. You can create additional data directories using the
initdb utility.

Exploring the Database Chapter 2

[52]

The initdb utility populates the given data directory with the initial content. The directory
will be created for convenience if it is missing, but for safety, the utility will stop if the data
directory is not empty. The initdb utility will read the data directory name from the
PGDATA environment variable unless the -d command-line option is used.

How it works...
Even though the Debian/Ubuntu and Red Hat file layouts are different, they both follow
the Linux Filesystem Hierarchy Standard (FHS), so neither layout is wrong.

The Red Hat layout is simpler and easier to understand. The Debian/Ubuntu layout is more
complex, but it has different and more adventurous goals. The Debian/Ubuntu layout is
similar to the Optimal Flexible Architecture (OFA) of other database systems. As pointed
out earlier, the goals are to provide a file layout that will allow you to have multiple
PostgreSQL database servers on one system and to allow many versions of the software to
exist in the filesystem at once.

Again, the layouts for the Windows and OS X installers are different. Multiple database
clusters are possible, but they are also more complex than on Debian/Ubuntu.

I recommend that you follow the Debian/Ubuntu layout on whichever platform you are
using. It doesn't really have a name, so I call it the PostgreSQL Flexible Architecture (PFA).
Clearly, if you are using Debian or Ubuntu, then the Debian/Ubuntu layout is already being
used. If you do this on other platforms, you'll need to lay things out yourself, but it does
pay off in the long run. To implement PFA, you can set the following environment
variables to name parts of the file layout:

export PGROOT=/var/lib/pgsql/
export PGRELEASE=10
export PGSERVERNAME=mamba
export PGDATA=$PGROOT/$PGRELEASE/$PGSERVERNAME

In this example, PGDATA is /var/lib/pgsql/10/mamba.

Finally, you must run initdb to actually initialize the data directory, as noted earlier, and
custom administration scripts should be prepared to automate actions, such as starting or
stopping the database server, when the system undergoes similar procedures.

Exploring the Database Chapter 2

[53]

Note that server applications such as initdb can only work with one major PostgreSQL
version. On distributions that allow several major versions, such as Debian or Ubuntu,
these applications are placed in dedicated directories, which are not put in the default
command path. This means that if you just type initdb, the system will not find the
executable, and you will get an error message.

This may look like a bug, but in fact it is the desired behavior. Instead of directly accessing
initdb, you are supposed to use the pg_createcluster utility from postgresql-
common, which will select the right initdb utility depending on the major version you
specify.

If you plan to run more than one database server on the same host, you
must set the preceding variables differently for each server, as they
determine the name of the data directory. For instance, you can set them
in the script that you use to start or stop the database server, which would
be enough, because PGDATA is mostly used only by the database server
process.

There's more…
Once you've located the data directory, you can look for the files that comprise the
PostgreSQL database server. The layout is as follows:

Subdirectory Purpose

base This is the main table storage. Beneath this directory, each database has its own
directory, within which are the files for each database table or index.

global Here are the tables that are shared across all databases, including the list of databases.
pg_commit_ts Here we store transaction commit timestamp data (from 9.5 onward).
pg_dynshmem This includes dynamic shared memory information (from 9.4 onward).
pg_logical This includes logical decoding status data.
pg_multixact This includes files used for shared row-level locks.
pg_notify This includes the LISTEN/NOTIFY status files.
pg_replslot This includes information about replication slots (from 9.4 onward).
pg_serial This includes information on committed serializable transactions.
pg_snapshots This includes exported snapshot files.
pg_stat This includes permanent statistics data.
pg_stat_tmp This includes transient statistics data.
pg_subtrans This includes subtransaction status data.
pg_tblspc This includes symbolic links to tablespace directories.

Exploring the Database Chapter 2

[54]

pg_twophase This includes state files for prepared transactions.
pg_wal This includes the transaction log or Write-Ahead Log (WAL) (formerly pg_xlog).
pg_xact This includes the transaction status files (formerly pg_clog).

None of the aforementioned directories contain user-modifiable files, nor should any of the
files be manually deleted in order to save space, or for any other reason. Don't touch it,
because you'll break it, and you may not be able to fix it! It's not even sensible to copy files in
these directories without carefully following the procedures described in Chapter 11,
Backup and Recovery. Keep off the grass!

We'll talk about tablespaces later in the book. We'll also discuss a performance
enhancement that involves putting the transaction log on its own set of disk drives in
Chapter 10, Performance and Concurrency.

The only things you are allowed to touch are configuration files, which are all *.conf files,
and server message log files. Server message log files may or may not be in the data
directory. For more details on this, refer to the next recipe, Locating the database server's
message log.

Locating the database server's message log
The database server's message log is a record of all messages recorded by the database
server. This is the first place to look if you have server problems, and a good place to check
regularly.

This log will include messages that look something like the following:

2016-09-01 19:37:41 GMT [2507-1] LOG: database system was shut down at
2016-09-01 19:37:38 GMT

2016-09-01 19:37:41 GMT [2506-1] LOG: database system is ready to accept
connections

We'll explain some more about these logs once we've located the files.

Getting ready
You'll need to get operating system access to the database system, which is what we call the
platform on which the database runs.

Exploring the Database Chapter 2

[55]

The server log can be in a few different places, so let's list all of them first so that we can
locate the log or decide where we want it to be placed:

The server log may be in a directory beneath the data directory.
It may be in a directory elsewhere on the filesystem.
It may be redirected to syslog.
There may be no server log at all. In this case, it's time to add a log soon.

If not redirected to syslog, the server log consists of one or more files. You can change the
names of these files, so it may not always be the same on every system.

How to do it...
The following are the default server log locations:

Debian or Ubuntu systems: /var/log/postgresql
Red Hat, RHEL, CentOS, and Fedora: /var/lib/pgsql/data/pg_log
Windows systems: The messages are sent to the Windows Event Log

The current server log file is named postgresql-MAJOR_RELEASE-SERVER.log, where
SERVER is the name of the server (by default, main), and MAJOR_RELEASE represents the
major release of the server, for example, 9.6 or 11 (as we mentioned in a prior recipe, from
release 10 onward the major release is composed by just one number). An example is
postgresql-11-main.log, while older log files are numbered as postgresql-11-
main.log.1. The higher the final number, the older the file, since they are being rotated by
the logrotate utility.

How it works...
The server log is just a file that records messages from the server. Each message has a
severity level, the most typical of them being LOG, though there are others, as shown in the
following table:

PostgreSQL severity Meaning Syslog severity Windows Event Log
DEBUG 1 to DEBUG
5

This comprises the internal diagnostics. DEBUG INFORMATION

INFO This is the command output for the user. INFO INFORMATION

NOTICE This is helpful information. NOTICE INFORMATION

WARNING This warns of likely problems. NOTICE WARNING

Exploring the Database Chapter 2

[56]

ERROR This is the current command that is aborted. WARNING ERROR

LOG This is useful for sysadmins. INFO INFORMATION

FATAL This is the event that disconnects one session
only. ERR ERROR

PANIC This is the event that crashes the server. CRIT ERROR

Watch out for FATAL and PANIC. This shouldn't happen in most cases during normal server
operation, apart from certain cases related to replication, so you should also check out
Chapter 12, Replication and Upgrades.

You can adjust the number of messages that appear in the log by changing the
log_min_messages server parameter. You can also change the amount of information that
is displayed for each event by changing the log_error_verbosity parameter. If the
messages are sent to a standard log file, then each line in the log will have a prefix of useful
information that can also be controlled by the system administrator, with a parameter
named log_line_prefix.

You can also alter the what and the how much that goes into the logs by changing other
settings such as log_statements, log_checkpoints,
log_connections/log_disconnections, log_verbosity, and log_lock_waits.

There's more...
The log_destination parameter controls where the log messages are stored. The valid
values are stderr, csvlog, syslog, and eventlog (the latter is only on Windows).

The logging collector is a background process that writes to a log file everything that the
PostgreSQL server outputs to stderr. This is probably the most reliable way to log
messages in case of problems, since it depends on fewer services.

Log rotation can be controlled with settings such as log_rotation_age and
log_rotation_size if you are using the logging collector. Alternatively, it is possible to
configure the logrotate utility to perform log rotation, which is the default on Debian and
Ubuntu systems.

See also
In general, monitoring activities are covered in Chapter 8, Monitoring and Diagnosis, and
examining the message log is just one part of it. Refer to the Producing a daily summary of log
file errors recipe in Chapter 8, Monitoring and Diagnosis, for more details.

Exploring the Database Chapter 2

[57]

Locating the database's system identifier
Each database server has a system identifier assigned when the database is initialized
(created). The server identifier remains the same if the server is backed up, cloned, and so
on.

Many actions on the server are keyed to the system identifier, and you may be asked to
provide this information when you report a fault.

In this recipe, you will learn how to display the system identifier.

Getting ready
You need to connect as the Postgres OS user, or another user with execute privileges on the
server software.

How to do it…
In order to display the system identifier, we just need to launch the following command:

pg_controldata <data-directory> | grep "system identifier"
Database system identifier: 5558338346489861223

Note that the preceding syntax will not work on Debian or Ubuntu systems, for the same
reasons explained for initdb in the Locating the database server files recipe. However, in this
case, there is no postgresql-common alternative, so if you must run pg_controldata,
you need to specify the full path to the executable, as in this example:

/usr/lib/postgresql/11/bin/pg_controldata $PGDATA

Don't use -D in front of the data directory name. This is the only
PostgreSQL server application where you don't need to do that.

Exploring the Database Chapter 2

[58]

How it works…
The pg_controldata utility is a PostgreSQL server application that shows the content of a
server's control file. The control file is located within the data directory of a server, and it is
created at database initialization time. Some of the information within it is updated
regularly, and some is only updated when certain major events occur.

The full output of pg_controldata looks like the following (some values may change over
time as the server runs):

pg_control version number: 1100
Catalog version number: 201809051
Database system identifier: 6678846522653464085
Database cluster state: in production
pg_control last modified: Sun Apr 14 22:37:42 2019
Latest checkpoint location: 0/B29DDF8
… (not shown in full)

Never edit the PostgreSQL control file. If you do, the server probably
won't start correctly, or you may mask other errors. And if you do that,
people will be able to tell, so fess up as soon as possible!

Listing databases on the database server
When we connect to PostgreSQL, we always connect to just one specific database on any
database server. If there are many databases on a single server, it can get confusing, so
sometimes you may just want to find out which databases are parts of the database server.

This is also confusing because we can use the word database in two different, but related,
contexts. Initially, we start off by thinking that PostgreSQL is a database in which we put
data, referring to the whole database server by just the word database. In PostgreSQL, a
database server (also known as cluster) is potentially split into multiple, individual
databases, so, as you get more used to working with PostgreSQL, you'll start to separate the
two concepts.

Exploring the Database Chapter 2

[59]

How to do it…
If you have access to psql, you can type the following command:

bash $ psql -l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access
privileges
-----------+--------+----------+-------------+-------------+---------------

 postgres | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
 template0 | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/sriggs
+
 | | | | |
sriggs=CTc/sriggs
 template1 | sriggs | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/sriggs
+
 | | | | |
sriggs=CTc/sriggs
(3 rows)

You can also get the same information while running psql by simply typing \l.

The information that we just looked at is stored in a PostgreSQL catalog table named
pg_database. We can issue a SQL query directly against that table from any connection to
get a simpler result, as follows:

postgres=# select datname from pg_database;
datname

template1
template0
postgres
(3 rows)

How it works...
PostgreSQL starts with three databases: template0, template1, and postgres. The main
user database is postgres.

You can create your own databases as well, like this:

CREATE DATABASE my_database;

Exploring the Database Chapter 2

[60]

You can do the same from the command line, using the following expression:

bash $ createdb my_database

After you've created your databases, be sure to secure them properly, as discussed in
Chapter 6, Security.

When you create another database, it actually takes a copy of an existing database. Once it
is created, there is no further link between the two databases.

The template0 and template1 databases are known as template databases. The
template1 database can be changed to allow you to create a localized template for any
new databases that you create. The template0 database exists so that, when you alter
template1, you still have a pristine copy on which to fall back on. In other words, if you
break template1, then you can drop it and recreate it from template0.

You can drop the database named postgres. But don't, okay? Similarly, don't try to touch
template0, because you won't be allowed to do anything with it, except use it as a
template. On the other hand, the template1 database exists to be modified, so feel free to
change it.

There's more...
The information that we just saw is stored in a PostgreSQL catalog table named
pg_database. We can look at this directly to get some more information. In some ways,
the output is less useful as well, as we need to look up some of the code in other tables:

postgres=# \x
postgres=# select * from pg_database;
-[RECORD 1]-+------------------------------
datname | template1
datdba | 10
encoding | 6
datcollate | en_GB.UTF-8
datctype | en_GB.UTF-8
datistemplate | t
datallowconn | t
datconnlimit | -1
datlastsysoid | 11620
datfrozenxid | 644
dattablespace | 1663
datacl | {=c/sriggs,sriggs=CTc/sriggs}
-[RECORD 2]-+------------------------------
datname | template0

Exploring the Database Chapter 2

[61]

datdba | 10
encoding | 6
datcollate | en_GB.UTF-8
datctype | en_GB.UTF-8
datistemplate | t
datallowconn | f
datconnlimit | -1
datlastsysoid | 11620
datfrozenxid | 644
dattablespace | 1663
datacl | {=c/sriggs,sriggs=CTc/sriggs}
-[RECORD 3]-+------------------------------
datname | postgres
datdba | 10
encoding | 6
datcollate | en_GB.UTF-8
datctype | en_GB.UTF-8
datistemplate | f
datallowconn | t
datconnlimit | -1
datlastsysoid | 11620
datfrozenxid | 644
dattablespace | 1663
datacl |

First of all, look at the use of the \x command. It makes the output in psql appear as one
column per line, rather than one row per line.

We've already discussed templates. The other interesting things are that we can turn
connections on and off for a database, and we can set connection limits for them, as well.

Also, you can see that each database has a default tablespace. Therefore, data tables get
created inside one specific database, and the data files for that table get placed in one
tablespace.

You can also see that each database has a collation sequence, which is the way that various
language features are defined. We'll cover more on that in the Choosing good names for
database objects recipe in Chapter 5, Tables and Data.

Exploring the Database Chapter 2

[62]

How many tables are there in a database?
The number of tables in a relational database is a good measure of the complexity of a
database, so it is a simple way to get to know any database. But the complexity of what?
Well, a complex database may have been designed to be deliberately flexible in order to
cover a variety of business situations, or a complex business process may have a limited
portion of its details covered in the database. So, a large number of tables might likely
reveal a complex business process, or just a complex piece of software.

In this recipe, we will show you how to compute the number of tables.

How to do it...
From any interface, type the following SQL command:

SELECT count(*) FROM information_schema.tables
WHERE table_schema NOT IN ('information_schema','pg_catalog');

You can also look at the list of tables directly, and judge whether the list is a small or large
number.

In psql, you can see your own tables by using the following command:

$ psql -c "\d"
 List of relations
 Schema | Name | Type | Owner
--------+----------+-------+----------
 public | accounts | table | postgres
 public | branches | table | postgres

Exploring the Database Chapter 2

[63]

In pgAdmin 4, you can see the tables in the tree view on the left-hand side, as shown in the
following screenshot:

How it works…
PostgreSQL stores information about the database in catalog tables. They describe every
aspect of the way the database has been defined. There is a main set of catalog tables stored
in a schema, called pg_catalog. There is a second set of catalog objects called the
information schema, which is the SQL standard way of accessing information in a
relational database.

Exploring the Database Chapter 2

[64]

We want to exclude both of these schemas from our query. Otherwise, we'll get too much
information. We excluded them in the preceding query using the NOT IN phrase in the
WHERE clause.

Note that this query shows only the number of tables in one of the
databases on the PostgreSQL server. You can only see the tables in the
database to which you are currently connected, so you'll need to run the
same query on each database in turn.

There's more…
The highest number of distinct, major tables I've ever seen in a database is 20,000, without
counting partitions, views, and work tables. That clearly rates as a very complex system:

Number of
distinct tables
(entities)

Complexity rating

20,000 This is incredibly complex. You're either counting wrong or you have a big team to
manage this.

2,000 This is a complex business database. Usually, not many of these are seen.
200 This is a typical modern business database.
20 This is a simple business database.

2 This is a database with a single, clear purpose, strictly designed for performance or
some other goal.

0 This tells you that you haven't loaded any data yet!

Of course, you can't always easily tell which tables are entities, so we just need to count the
tables. Some databases use a lot of partitions or similar tables, so the numbers can grow
dramatically. I've seen databases with up to 200,000 tables (of any kind). That's not
recommended, however, as the database catalog tables then begin to become awfully large.

How much disk space does a database use?
It is very important to allocate sufficient disk space for your database. If the disk gets full, it
will not corrupt the data, but it might lead to database server panic and then consequent
shutdown.

For planning or space monitoring, we often need to know how big the database is.

Exploring the Database Chapter 2

[65]

How to do it...
We can do this in the following ways:

Look at the size of the files that make up the database server.
Run a SQL request to confirm the database size.

If you look at the size of the actual files, you'll need to make sure that you include the data
directory and all subdirectories, as well as all other directories that contain tablespaces. This
can be tricky, and it is also difficult to break out all the different pieces.

The easiest way is to ask the database a simple query, like this:

SELECT pg_database_size(current_database());

However, this is limited to only the current database. If you want to know the size of all the
databases together, then you'll need a query such as the following:

SELECT sum(pg_database_size(datname)) from pg_database;

How it works...
The database server knows which tables it has loaded. It also knows how to calculate the
size of each table, so the pg_database_size() function just looks at the file sizes.

How much disk space does a table use?
The maximum supported table size is 32 TB and it does not require large file support from
the operating system. The file system size limits do not impact the large tables, as they are
stored in multiple 1 GB files.

Large tables can suffer performance issues. Indexes can take much longer to update and
query performance can degrade. In this recipe, we will see how to measure the size of a
table.

Exploring the Database Chapter 2

[66]

How to do it…
We can see the size of a table by using this command:

postgres=# select pg_relation_size('pgbench_accounts');

The output of this command is as follows:

pg_relation_size

 13582336
(1 row)

We can also see the total size of a table, including indexes and other related spaces, as
follows:

postgres=# select pg_total_relation_size('pgbench_accounts');

The output is as follows:

pg_total_relation_size

 15425536
(1 row)

We can also use a psql command, like this:

postgres=# \dt+ pgbench_accounts
 List of relations
 Schema | Name | Type | Owner | Size | Description
--------+------------------+-------+--------+-------+-------------
 gianni | pgbench_accounts | table | gianni | 13 MB |
(1 row)

How it works…
In PostgreSQL, a table is made up of many relations. The main relation is the data table. In
addition, there are a variety of additional data files. Each index created on a table is also a
relation. Long data values are placed in a secondary table named TOAST, so, in most cases,
each table also has a TOAST table and a TOAST index.

Exploring the Database Chapter 2

[67]

Each relation consists of multiple data files. The main data files are broken into 1 GB pieces.
The first file has no suffix; others have a numbered suffix (such as .2). There are also files
marked _vm and _fsm, which represent the visibility map and free space map, respectively.
They are used as part of maintenance operations. They stay fairly small, even for very large
tables.

There's more…
The preceding functions, which measure the size of a relation, output the number of bytes,
which is normally too large to be immediately clear. You can apply the
pg_size_pretty() function to format that number nicely, as shown in the following
example:

SELECT pg_size_pretty(pg_relation_size('pgbench_accounts'));

This yields the following output:

pg_size_pretty

13 MB
(1 row)

TOAST stands for The Oversized-Attribute Storage Technique. As the name implies, this
is a mechanism used to store long column values. PostgreSQL allows many data types to
store values up to 1 GB in size. It transparently stores large data items in many smaller
pieces, so the same data type can be used for data ranging from 1 byte to 1 GB. When
appropriate, values are automatically compressed and decompressed before they are split
and stored, so the actual limit will vary, depending on compressibility.

You may also see files ending in _init; they are used by unlogged tables and their indexes,
for restoring them after a crash. Unlogged objects are called this way because they do not
produce WAL. So, they support faster writes, but in the event of a crash they must be
truncated, that is, restored to an empty state.

Which are my biggest tables?
We've looked at getting the size of a specific table, so now it's time to widen the problem to
related areas. Rather than having an absolute value for a specific table, let's look at the
relative sizes.

Exploring the Database Chapter 2

[68]

How to do it...
The following basic query will tell us the 10 biggest tables:

SELECT table_name,pg_relation_size(table_schema || '.' || table_name) as
size
FROM information_schema.tables
WHERE table_schema NOT IN ('information_schema', 'pg_catalog')
ORDER BY size DESC
LIMIT 10;

The tables are shown in descending order of size, with at the most 10 rows displayed. In
this case, we look at all the tables in all the schemas, apart from the tables in
information_schema or pg_catalog, like we did in the How many tables are in the
database? recipe.

How it works…
PostgreSQL provides a dedicated function, pg_relation_size, to compute the actual disk
space used by a specific table or index. We just need to provide the table name. In addition
to the main data files, there are other files (called forks) that can be measured by specifying
an optional second argument. These include the Visibility Map (VM), the Free Space Map
(FSM), and the initialization fork for unlogged objects.

How many rows are there in a table?
There is no limit on the number of rows in a table but it is limited to available disk space
and memory/swap space. If you are storing rows that exceed 2 KB aggregated data size,
then the maximum number of rows may be limited to 4 billion or less.

Counting is one of the easiest SQL statements, so it is also many people's first experience of
a PostgreSQL query.

How to do it…
From any interface, the SQL command used to count rows is as follows:

SELECT count(*) FROM table;

Exploring the Database Chapter 2

[69]

This will return a single integer value as the result.

In psql, the command looks like the following:

postgres=# select count(*) from orders;
 count

 345
(1 row)

How it works...
PostgreSQL can choose between two techniques available to compute the SQL count(*)
function. Both are available in all the currently supported versions:

The first is called sequential scan. We access every data block in the table one
after the other, reading the number of rows in each block. If the table is on the
disk, it will cause a beneficial disk access pattern, and the statement will be fairly
fast.
The other technique is known as index-only scan. It requires an index on the
table, and it covers a more general case than optimizing SQL queries with
count(*), so we will cover it in more detail in Chapter 10, Performance and
Concurrency.

Some people think that the count SQL statement is a good test of the performance of a
DBMS. Some DBMS have specific tuning features for the count SQL statement, and
Postgres optimizes this using index-only scans. The PostgreSQL project has talked about
this many times, but few people thought we should try to optimize this. Yes, the count
function is frequently used within applications, but without any WHERE clause, it is not that
useful. Therefore, the index-only scans feature has been implemented, which applies to
more real-world situations, as well as this recipe.

We scan every block of the table because of a major feature of Postgres,
named Multiversion Concurrency Control (MVCC). MVCC allows us to run the count
SQL statement at the same time that we are inserting, updating, or deleting data from the
table. That's a very cool feature, and we went to a lot of trouble in Postgres to provide it for
you.

Exploring the Database Chapter 2

[70]

MVCC requires us to record information on each row of a table, stating when that change
was made. If the changes were made after the SQL statement began to execute, then we just
ignore those changes. This means that we need to carry out visibility checks on each row in
the table to allow us to work out the results of the count SQL statement. The optimization
provided by index-only scans is the ability to skip such checks on the table blocks that are
already known to be visible to all current sessions. Rows in these blocks can be counted
directly on the index, which is normally smaller than the table, and is, therefore, faster.

If you think a little deeper about this, you'll see that the result of the count SQL statement is
just the value at a moment in time. Depending on what happens to the table, that value
could change a little or a lot while the count SQL statement is executing. So, once you've
executed this, all you really know is that, at a particular point in the past, there were exactly
x rows in the table.

Quickly estimating the number of rows in a
table
We don't always need an accurate count of rows, especially on a large table that may take a
long time to execute. Administrators often need to estimate how big a table is so that they
can estimate how long other operations may take.

How to do it…
We can get a quick estimate of the number of rows in a table using roughly the same
calculation that Postgres optimizer uses:

SELECT (CASE WHEN reltuples > 0 THEN
pg_relation_size(oid)*reltuples/(8192*relpages)
ELSE 0
END)::bigint AS estimated_row_count
FROM pg_class
WHERE oid = 'mytable'::regclass;

This gives us the following output:

estimated_count

 293
(1 row)

Exploring the Database Chapter 2

[71]

It returns a row count very quickly, no matter how large the table that we are examining
is. You may want to create a SQL function for the preceding calculation, so you won't need
to retype the SQL code every now and then.

The following function estimates the total number of rows using a mathematical procedure
called extrapolation. In other words, we take the average number of bytes per row
resulting from the last statistics collection, and we apply it to the current table size:

CREATE OR REPLACE FUNCTION estimated_row_count(text)
RETURNS bigint
LANGUAGE sql
AS $$
SELECT (CASE WHEN reltuples > 0 THEN
 pg_relation_size($1)*reltuples/(8192*relpages)
 ELSE 0
 END)::bigint
FROM pg_class
WHERE oid = $1::regclass;
$$;

How it works…
We saw the pg_relation_size() function earlier, so we know that it brings back an
accurate value for the current size of the table.

When we vacuum a table in Postgres, we record two pieces of information in the pg_class
catalog entry for the table. These two items are the number of data blocks in the table
(relpages) and the number of rows in the table (reltuples). Some people think they can
use the value of reltuples in pg_class as an estimate, but it could be severely out of
date. You will also be fooled if you use information in another table named
pg_stat_user_tables, which is discussed in more detail in Chapter 10, Performance and
Concurrency.

The Postgres optimizer uses the relpages and reltuples values to calculate the average
rows per block, which is also known as the average tuple density.

If we assume that the average tuple density remains constant over time, then we can
calculate the number of rows using this formula: Row estimate = number of data blocks * rows
per block.

We include some code to handle cases where the reltuples or relpages fields are zero.
The Postgres optimizer actually works a little harder than we do in that case, so our
estimate isn't very good.

Exploring the Database Chapter 2

[72]

The WHERE oid = 'mytable'::regclass; syntax introduces the concept of object
identifier types. They just use a shorthand trick to convert the name of an object to the
object identifier number for that object. The best way to understand this is to think of that
syntax as meaning the same as a function named relname2relid().

There's more…
The good thing about the aforementioned recipe is that it returns a value in about the same
time, no matter how big the table is. The bad thing about it is that pg_relation_size()
requests a lock on the table, so if any other user has an AccessExclusiveLock lock on the
table, then the table size estimate will wait for the lock to be released before returning a
value.

Err... so what is an AccessExclusiveLock lock? While performing a SQL maintenance
action, such as changing the data type of a column, PostgreSQL will lock out all other
actions on that table, including pg_relation_size, which takes a lock in the
AccessShareLock mode. For me, a typical case is when I issue some form of SQL
maintenance action, such as ALTER TABLE, and the statement takes much longer than I
thought it would. At that point, I think, Oh, was that table bigger than I thought? How long will
I be waiting? Yes, it's better to calculate that beforehand, but hindsight doesn't get you out of
the hole you are in right now. So, we need a way to calculate the size of a table without
needing the lock.

My solution is to look at the operating system files that Postgres uses to store data, and
figure out how large they are.

Now, this can get somewhat difficult. If the table is locked, PostgreSQL is probably doing
something to the table, so trying to look at the files might well be fruitless or give wrong
answers. The following are the steps we need to perform:

First, get some details on the table from pg_class:1.

SELECT reltablespace, relfilenode FROM pg_class
WHERE oid = 'mytable'::regclass;

Then, confirm the databaseid in which the table resides:2.

SELECT oid as databaseid FROM pg_database
WHERE datname = current_database();

Together, reltablespace, databaseid, and relfilenode are the three things we need
to locate the underlying data files within the data directory.

Exploring the Database Chapter 2

[73]

If reltablespace is zero, then the files will be at the following location:

$PGDATADIR/base/{databaseid}/{relfilenode}*

The bigger the table, the more files you see. If reltablespace is not zero, then the files
will be at the following location:

$PGDATADIR/pg_tblspc/{reltablespace}/{databaseid}/{relfilenode}*

Every file should be 1 GB in size, apart from the last file.

The preceding discussion glossed over a few other points, as follows:

Postgres uses the terms data blocks and pages to refer to the same concept.
Postgres also does that with the terms tuple and row.
A data block is 8,192 bytes in size, by default. You can change that if you
recompile the server yourself, and create a new database.

Here is a function that does what pg_relation_size does, more or less, without taking
any locks. Because of this, it is always fast, but it may give an incorrect result if the table is
being heavily altered at the same time:

CREATE OR REPLACE FUNCTION pg_relation_size_nolock(tablename regclass)
RETURNS BIGINT
LANGUAGE plpgsql
AS $$
DECLARE
 classoutput RECORD;
 tsid INTEGER;
 rid INTEGER;
 dbid INTEGER;
 filepath TEXT;
 filename TEXT;
 datadir TEXT;
 i INTEGER := 0;
 tablesize BIGINT;
BEGIN
 --
 -- Get data directory
 --
 EXECUTE 'SHOW data_directory' INTO datadir;
 --
 -- Get relfilenode and reltablespace
 --
 SELECT
 reltablespace as tsid, relfilenode as rid
 INTO classoutput

Exploring the Database Chapter 2

[74]

 FROM pg_class
 WHERE oid = tablename
 AND relkind = 'r';
 --
 -- Throw an error if we can't find the tablename specified
 --
 IF NOT FOUND THEN
 RAISE EXCEPTION 'tablename % not found', tablename;
 END IF;
 tsid := classoutput.tsid;
 rid := classoutput.rid;
 --
 -- Get the database object identifier (oid)
 --
 SELECT oid INTO dbid
 FROM pg_database
 WHERE datname = current_database();
 --
 -- Use some internals knowledge to set the filepath
 --
 IF tsid = 0 THEN
 filepath := datadir || '/base/' || dbid || '/' || rid;
 ELSE
 filepath := datadir || '/pg_tblspc/' || tsid || '/'
 || dbid || '/' || rid;
 END IF;
 --
 -- Look for the first file. Report if missing
 --
 SELECT (pg_stat_file(filepath)).size
 INTO tablesize;
 --
 -- Sum the sizes of additional files, if any
 --
 WHILE FOUND LOOP
 i := i + 1;
 filename := filepath || '.' || i;
 --
 -- pg_stat_file returns ERROR if it cannot see file
 -- so we must trap the error and exit loop
 --
 BEGIN
 SELECT tablesize + (pg_stat_file(filename)).size
 INTO tablesize;
 EXCEPTION
 WHEN OTHERS THEN
 EXIT;
 END;

Exploring the Database Chapter 2

[75]

 END LOOP;
 RETURN tablesize;
END;
$$;

This function can also work on Windows with a few minor changes, which are left as an
exercise for you.

Listing extensions in this database
Every PostgreSQL database contains some objects that are automatically brought in when
the database is created. Every user will find a pg_database system catalog that lists
databases, as shown in the Listing databases on this database server recipe. There is little point
in checking whether these objects exist, because even superusers are not allowed to drop
them.

On the other hand, PostgreSQL comes with tens of collections of optional objects, called
modules, or equivalently extensions. The database administrator can install or uninstall
these objects, depending on the requirements. They are not automatically included in a
newly created database, because they might not be required by every use case. Users will
install only the extensions they actually need, when they need them; an extension can be
installed while a database is up and running.

In this recipe, we will explain how to list extensions that have been installed on the current
database. This is important to get to know the database better, and also because certain
extensions affect the behavior of the database.

How to do it…
In PostgreSQL, there is a catalog table recording the list of installed extensions, so this
recipe is quite simple. Issue the following command:

cookbook=> SELECT * FROM pg_extension;

Exploring the Database Chapter 2

[76]

This results in the following output:

Note that the format is expanded, as if the \x meta command has been
previously issued.

-[RECORD 1]--+--------
extname | plpgsql
extowner | 10
extnamespace | 11
extrelocatable | f
extversion | 1.0
extconfig |
extcondition |

To get the same list with fewer technical details, you can use the \dx meta command, as
when listing databases.

How it works…
A PostgreSQL extension is represented by a control file, <extension name>.control,
located in the SHAREDIR/extension directory, plus one or more files containing the actual
extension objects. The control file specifies the extension name, version, and other
information that is useful for the extension infrastructure. Each time an extension is
installed, uninstalled, or upgraded to a new version, the corresponding row in the
pg_extension catalog table is inserted, deleted, or updated, respectively.

There's more…
In this recipe, we only mentioned extensions distributed with PostgreSQL, and solely for
the purpose of listing which ones are being used in the current database. The infrastructure
for extensions will be described in greater detail in Chapter 3, Configuration. We will talk
about the version number of an extension, and we will show you how to install, uninstall,
and upgrade extensions, including those distributed independently of PostgreSQL.

Exploring the Database Chapter 2

[77]

See also
To get an idea of which extensions are available, you can browse the list of additional
modules shipped together with PostgreSQL, which are almost all extensions,
at https://www.postgresql.org/docs/current/static/contrib.html.

Understanding object dependencies
In most databases, there will be dependencies between objects in the database. Sometimes,
we need to understand these dependencies to figure out how to perform certain actions,
such as modifying or deleting existing objects. Let's look at this in detail.

Getting ready
We'll use the following simple database to understand and investigate them:

Create two tables as follows:1.

CREATE TABLE orders (
orderid integer PRIMARY KEY
);
CREATE TABLE orderlines (
orderid integer
,lineid smallint
,PRIMARY KEY (orderid, lineid)
);

Now, we add a link between them to enforce what is known as referential2.
integrity, as follows:

ALTER TABLE orderlines ADD FOREIGN KEY (orderid)
REFERENCES orders (orderid);

If we try to drop the referenced table, we get the following message:3.

DROP TABLE orders;
ERROR: cannot drop table orders because other objects depend on it
DETAIL: constraint orderlines_orderid_fkey on table orderlines
depends on table orders
HINT: Use DROP ... CASCADE to drop the dependent objects too.

https://www.postgresql.org/docs/current/static/contrib.html

Exploring the Database Chapter 2

[78]

Be very careful! If you follow the hint, you may accidentally remove all the objects that
have any dependency on the orders table. You might think that this would be a great idea,
but it is not the right thing to do. It might work, but we need to ensure that it will work.

Therefore, you need to know what dependencies are present on the orders table, and then
review them. Then, you can decide whether it is okay to issue the CASCADE version of the
command, or whether you should reconcile the situation manually.

How to do it…
You can use the following command from psql to display full information about a table,
the constraints that are defined upon it, and the constraints that reference it:

\d+ orders

You can also get specific details of the constraints by using the following query:

SELECT * FROM pg_constraint
WHERE confrelid = 'orders'::regclass;

The aforementioned queries only covered constraints between tables. This is not the end of
the story, so read the There's more... section.

How it works…
When we create a foreign key, we add a constraint to the catalog table, known as
pg_constraint. Therefore, the query shows us how to find all the constraints that depend
upon the orders table.

There's more…
With Postgres, there's always a little more when you look beneath the surface. In this case,
there's a lot more, and it's important.

We didn't discuss dependencies with other kinds of objects. Two important types of object
that might have dependencies on tables are views and functions.

Exploring the Database Chapter 2

[79]

Consider the following command:

DROP TABLE orders;

If you issue this, the dependency on any of the views will prevent the table from being
dropped. So, you need to remove those views and then drop the table.

The story with function dependencies is not as useful. Relationships between functions and
tables are not recorded in the catalog, nor is the dependency information between
functions. This is partly due to the fact that most PostgreSQL procedural languages allow
dynamic query execution, so you wouldn't be able to tell which tables or functions a
function would access until it executes. That's only partly the reason, because most
functions clearly reference other tables and functions, so it should be possible to identify
and store those dependencies. However, right now, we don't do that. So, make a note that
you need to record the dependency information for your functions manually, so that you'll
know if and when it's okay to remove or alter a table or other objects that the functions
depend on.

3
Configuration

I get asked many questions about parameter settings in PostgreSQL. Everybody's busy, and
most people want a five-minute tour of how things work. That's exactly what a cookbook
does, so we'll do our best.

Some people believe that there are some magical parameter settings that will improve their
performance, and spend hours combing the pages of books to glean insights. Others feel
comfortable because they have found a website somewhere that explains everything, and
they know they have their database configured OK.

For the most part, the settings are easy to understand. Finding the best setting can be
difficult, and the optimal setting may change over time. This chapter is mostly about
knowing how, when, and where to change parameter settings.

In this chapter, we will cover the following recipes:

Reading the fine manual
Planning a new database
Changing parameters in your programs
Finding the current configuration settings
Which parameters are at non-default settings?
Updating the parameter file
Setting parameters for particular groups of users
The basic server configuration checklist
Adding an external module to PostgreSQL
Using an installed module
Managing installed extensions

Configuration Chapter 3

[81]

Reading the fine manual
Reading the fine manual (RTFM) is often (rudely) used to mean don't bother me; I'm
busy, or it is used as a stronger form of abuse. The strange thing is that asking you to read a
manual is most often very good advice. Don't force the advisor—instead, take the advice!
The most important point to remember is that you should refer to a manual whose release
version matches that of the server on which you are operating.

The PostgreSQL manual is very well-written and comprehensive in its coverage of specific
topics. However, one of its main failings is that the documents aren't organized in a way
that helps somebody who is trying to learn PostgreSQL. They are organized from the
perspective of people checking specific technical points so that they can decide whether
their difficulty is a user error. It sometimes answers what? But it seldom answers why? And
it seldom answers how?

I've helped write sections of the PostgreSQL documents, so I'm not embarrassed to steer
you toward reading them. There are, nonetheless, many things to read here that are useful.

How to do it…
The main documents for each PostgreSQL release are available at
http://www.postgresql.org/docs/manuals/.

The most frequently accessed parts of the documents are as follows:

The SQL command reference, as well as client and server tools reference:
http://www.postgresql.org/docs/current/interactive/reference.html

Configuration:
http://www.postgresql.org/docs/current/interactive/runtime-config.html

Functions:
http://www.postgresql.org/docs/current/interactive/functions.html

You can also grab yourself a PDF version of the manual, which can allow for easier
searching in some cases. Don't print it! The documents are more than 2,000 pages of A4-
sized sheets.

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/current/interactive/reference.html
http://www.postgresql.org/docs/current/interactive/runtime-config.html
http://www.postgresql.org/docs/current/interactive/functions.html

Configuration Chapter 3

[82]

How it works…
The PostgreSQL documents are written in Standard Generalized Markup Language
(SGML), which is similar to, but not the same as, XML. These files are then processed to
generate HTML files, PDFs, and so on. This ensures that all the formats have exactly the
same content. Then, you can choose the format you prefer, and you can even compile it in
other formats, such as EPUB, INFO, and so on.

Moreover, the PostgreSQL manual is actually a subset of the PostgreSQL source code, so it
evolves together with the software. It is written by the same people who make PostgreSQL,
which gives you even more reasons to read it!

There's more…
More information is also available at http://wiki.postgresql.org.

Many distributions offer packages that install static versions of the HTML documentation.
For example, on Debian and Ubuntu, the docs for the most recent stable PostgreSQL
version is named postregsql-doc-11.

Planning a new database
Planning a new database can be a daunting task. It's easy to get overwhelmed by it, so here
we will present some planning ideas. It's also easy to charge headlong at the task, thinking
that whatever you know is all you'll ever need to consider.

Getting ready
You are ready. Don't wait to be told what to do. If you haven't been told what the
requirements are, then write down what you think they are, clearly labeling them as
assumptions rather than requirements; you must not confuse the two.

Iterate until you get some agreement, and then build a prototype.

http://wiki.postgresql.org/

Configuration Chapter 3

[83]

How to do it…
Write a document that covers the following items:

Database design—plan your database design.
Calculate the initial database sizing.
Transaction analysis—how will we access the database?
Look at the most frequent access paths (for example, queries).
What are the requirements for the response times?
Hardware configuration.
Initial performance thoughts—will all of the data fit into the available RAM?
Choose the operating system and filesystem types.
How do we partition the disk?
Localization plan.
Decide the server encoding, locale, and the time zone.
Access and security plan.
Identify client systems and specify the required drivers.
Create roles according to a plan for access control.
Specify pg_hba.conf.
Monitoring—are there PostgreSQL plugins for the monitoring solution you are
already using (usually yes)? What are the business-specific metrics we need to
monitor?
Maintenance plan—who will keep it working? How?
Availability plan—consider the availability requirements.
checkpoint_timeout (for more details on this parameter, see the Understanding
and controlling crash recovery recipe in Chapter 11, Backup and Recovery).
Plan your backup mechanism and test it.
High-availability plan.
Decide which form of replication you'll need, if any.

How it works…
One of the most important reasons for planning your database ahead of time is that
retrofitting some things is difficult. This is especially true of server encoding and locale,
which can cause much downtime and exertion if we need to change them later. Security is
also much more difficult to set up after the system is live.

Configuration Chapter 3

[84]

There's more…
Planning always helps. You may know what you're doing, but others may not. Tell
everybody what you're going to do before you do it to avoid wasting time. If you're not
sure yet, then build a prototype to help you decide. Approach the administration
framework as if it were a development task. Make a list of things you don't know yet, and
work through them one by one.

This is deliberately a very short recipe. Everybody has their own way of doing things, and
it's very important not to be too prescriptive about how to do things. If you already have a
plan, great! If you don't, think about what you need to do, make a checklist, and then do it.

Changing parameters in your programs
PostgreSQL allows you to set some parameter settings for each session or transaction.

How to do it…
Execute the following steps to set custom parameters settings:

You can change the value of a setting during your session, like this:1.

SET work_mem = '16MB';

This value will then be used for every future transaction. You can also change it2.
only for the duration of the current transaction:

SET LOCAL work_mem = '16MB';

The setting will last until you issue this command:3.

RESET work_mem;

Alternatively, you can issue the following command:4.

RESET ALL;

Configuration Chapter 3

[85]

The SET and RESET commands are SQL commands that can be issued from any interface.
They apply only to PostgreSQL server parameters, but this does not mean that they affect
the entire server. In fact, the parameters you can change with SET and RESET apply only to
the current session. Also, note that there may be other parameters, such as JDBC driver
parameters, that cannot be set in this way. Refer to the Connecting to the PostgreSQL server
recipe in Chapter 1, First Steps, for help with those parameters.

How it works…
Suppose you change the value of a setting during your session, for example, by issuing this
command:

SET work_mem = '16MB';

Then, the following will show up in the pg_settings catalog view:

postgres=# SELECT name, setting, reset_val, source FROM pg_settings WHERE
source = 'session';
 name | setting | reset_val | source
----------+---------+-----------+---------
 work_mem | 16384 | 4096 | session

This will show until you issue this command:

RESET work_mem;

After issuing it, the setting returns to reset_val and the source returns to the default:

 name | setting | reset_val | source
---------+---------+-----------+---------
work_mem | 4096 | 4096 | default

There's more…
You can change the value of a setting during your transaction as well, like this:

SET LOCAL work_mem = '16MB';

This results in the following output:

WARNING: SET LOCAL can only be used in transaction blocks
SET

Configuration Chapter 3

[86]

In order to understand what the warning means, we can look that setting up in the
pg_settings catalog view:

postgres=# SELECT name, setting, reset_val, source FROM pg_settings WHERE
source = 'session';
 name | setting | reset_val | source
----------+---------+-----------+---------
 work_mem | 4096 | 4096 | session

Huh? What happened to your parameter setting? The SET LOCAL command takes effect
only for the transaction in which it was executed, which was just the SET LOCAL command
in our case. We need to execute it inside a transaction block to be able to see the setting take
hold, as follows:

BEGIN;
SET LOCAL work_mem = '16MB';

Here is what shows up in the pg_settings catalog view:

postgres=# SELECT name, setting, reset_val, source
 FROM pg_settings WHERE source = 'session';
 name | setting | reset_val | source
----------+---------+-----------+---------
 work_mem | 16384 | 4096 | session

You should also note that the value of source is session rather than transaction, as
you might have been expecting.

Finding the current configuration settings
At some point, it will occur to you to ask, What are the current configuration settings?

Most settings can be changed in more than one way, and some ways do not affect all users
or all sessions, so it is quite possible to get confused.

How to do it…
Your first thought is probably to look in postgresql.conf, which is the configuration file,
and is described in detail in the Updating the parameter file recipe. That works, but only as
long as there is only one parameter file. If there are two, then maybe you're reading the
wrong file! How would you know? So, the cautious and accurate way is to not trust a text
file, but to trust the server itself.

Configuration Chapter 3

[87]

Moreover, you learned in the previous recipe, Changing parameters in your programs, that
each parameter has a scope that determines when it can be set. Some parameters can be set
through postgresql.conf, but others can be changed afterwards. So, the current values
of the configuration settings may have been subsequently changed.

We can use the SHOW command like this:

postgres=# SHOW work_mem;

Its output is as follows:

work_mem

4MB
(1 row)

However, remember that it reports the current setting at the time it is run, and that can be
changed in many places.

Another way of finding the current settings is to access a PostgreSQL catalog view named
pg_settings:

postgres=# \x
Expanded display is on.
postgres=# SELECT * FROM pg_settings WHERE name = 'work_mem';
[RECORD 1] --
name | work_mem
setting | 4096
unit | kB
category | Resource Usage / Memory
short_desc | Sets the maximum memory to be used for query workspaces.
extra_desc | This much memory can be used by each internal sort operation
and hash table before switching to temporary disk files.
context | user
vartype | integer
source | default
min_val | 64
max_val | 2147483647
enumvals |
boot_val | 4096
reset_val | 4096
sourcefile |
sourceline |

Thus, you can use the SHOW command to retrieve the value for a setting, or you can access
the full details using the catalog table.

Configuration Chapter 3

[88]

The actual location of each configuration file can be asked directly to the PostgreSQL
server, as shown in this example:

postgres=# SHOW config_file;

This returns the following output:

 config_file
--
 /etc/postgresql/11/main/postgresql.conf
(1 row)

The other configuration files can be located by querying similar variables, that is, hba_file
and ident_file.

How it works…
Each parameter setting is cached within each session so that we can get quick access to the
parameter settings. This allows us to access the parameter settings with ease.

Remember that the values displayed are not necessarily settings for the server as a whole.
Many of those parameters will be specific to the current session. That's different than what
you experience with many other types of database software, and it is also very useful.

Which parameters are at non-default
settings?
Often, we need to check which parameters have been changed, or whether our changes
have taken effect correctly.

In the previous two recipes, we have seen that parameters can be changed in several ways,
and with different scopes. You learned how to inspect the value of one parameter or get the
full list of parameters.

In this recipe, we will show you how to use SQL capabilities to list only those parameters
whose value in the current session differs from the system-wide default value.

Configuration Chapter 3

[89]

This list is valuable for several reasons. First, it includes only a few of the 200+ available
parameters, so it is more immediate. Also, it is difficult to remember all our past actions,
especially in the middle of a long or complicated session.

PostgreSQL also supports the ALTER SYSTEM syntax, which we will describe in the next
recipe, Updating the parameter file. From the viewpoint of this recipe, the behavior of this
syntax is quite different compared to the other setting-related commands: you run it from
within your session, and it changes the default value, but not the value in your session.

How to do it…
We write an SQL query that lists all parameter values, excluding those whose current value
is either the default or set from a configuration file:

postgres=# SELECT name, source, setting
 FROM pg_settings
 WHERE source != 'default'
 AND source != 'override'
 ORDER by 2, 1;

The output is as follows:

 name | source | setting
----------------------------+----------------------+-----------------
 application_name | client | psql
 client_encoding | client | UTF8
 DateStyle | configuration file | ISO, DMY
 default_text_search_config | configuration file | pg_catalog.english
 dynamic_shared_memory_type | configuration file | posix
 lc_messages | configuration file | en_GB.UTF-8
 lc_monetary | configuration file | en_GB.UTF-8
 lc_numeric | configuration file | en_GB.UTF-8
 lc_time | configuration file | en_GB.UTF-8
 log_timezone | configuration file | Europe/Rome
 max_connections | configuration file | 100
 port | configuration file | 5460
 shared_buffers | configuration file | 16384
 TimeZone | configuration file | Europe/Rome
 max_stack_depth | environment variable | 2048

Configuration Chapter 3

[90]

How it works...
From pg_settings, you can see which parameters have non-default values, and what the
source of the current value is. The SHOW command doesn't tell you whether a parameter is
set at a non-default value. It just tells you the value, which isn't of much help if you're
trying to understand what is set and why. If the source is a configuration file, then the
sourcefile and sourceline columns are also set. These can be useful in understanding
where the configuration came from.

There's more...
The setting column of pg_settings shows the current value, but you can also look at
the boot_val and reset_val parameters. The boot_val parameter shows the value that
was assigned when the PostgreSQL database cluster was initialized (initdb), while
reset_val shows the value that the parameter will return to if you issue the RESET
command.

The max_stack_depth parameter is an exception, because pg_settings says it is set by
the environment variable, though it is actually set by ulimit -s on Linux and Unix
systems. The max_stack_depth parameter just needs to be set directly on Windows.

The timezone settings are also picked up from the OS environment, so you shouldn't need
to set those directly. They are written to postgresql.conf when the data directory is
initialized, so they show up as configuration files.

Updating the parameter file
The parameter file is the main location that's used for defining parameter values for the
PostgreSQL server. All the parameters can be set in the parameter file, which is known as
postgresql.conf. There are also two other parameter files: pg_hba.conf and
pg_ident.conf. Both of these relate to connections and security, so we'll cover them in the
appropriate chapters that follow.

Configuration Chapter 3

[91]

Getting ready
Before we start this recipe, we need to locate postgresql.conf, as described in Finding the
current configuration settings recipe.

How to do it…
Some of the parameters take effect only when the server is first started. A typical example
might be shared_buffers, which defines the size of the shared memory cache. Many of
the parameters can be changed while the server is still running.

After changing the required parameters, we issue a reload command to the server, forcing
PostgreSQL to re-read the postgresql.conf file (and all other configuration files). There
are a number of ways to do that, depending on your distribution and OS. The most
common is to issue the following command, with the same OS user that runs the
PostgreSQL server process:

pg_ctl reload

This assumes the default data directory; otherwise, you have to specify the correct data
directory with the -D option.

As we previously noted, Debian and Ubuntu have a different multiversion architecture, so
you should issue the following command instead:

pg_ctlcluster 11 main reload

On modern distributions, you should use systemd, as follows:

sudo systemctl reload postgresql@11-main

See the Starting the database server manually recipe in Chapter 4, Server
Control, for more details on how to manage PostgreSQL via systemd; the
Reloading the server configuration files recipe, also in Chapter 4, Server
Control, shows more ways to reload configuration files.

Some other parameters require a restart of the server for changes to take effect—for
instance, max_connections, listen_addresses, and so on. The syntax is very similar to
a reload operation, as shown here:

pg_ctl restart

Configuration Chapter 3

[92]

For Debian and Ubuntu, use this command:

pg_ctlcluster 11 main restart

With system, use this command:

sudo systemctl restart postgresql@11-main

Of course, a restart also has some impact on existing connections. See the Restarting the
server quickly recipe in Chapter 4, Server Control, for further details.

The postgresql.conf file is a normal text file that can be simply edited. Most of the
parameters are listed in the file, so you can just search for them and then insert the desired
value in the right place.

How it works…
If you set the same parameter twice in different parts of the file, the last setting is what
applies. This can cause lots of confusion if you add settings to the bottom of the file, so you
are advised against doing it.

A longstanding and good practice is to version-control configuration files by using Git
alongside any other code or configuration changes. An even better alternative is to use
configuration management software such as Ansible, Chef, or Puppet, rather than editing
configuration files directly.

There's more…
The postgresql.conf file also supports an include directive. This allows the
postgresql.conf file to reference other files, which can then reference other files, and so
on. That may help you organize your parameter settings better, if you don't make it too
complicated.

For more on reloading, see the Reloading the server configuration files recipe in Chapter 4,
Server Control.

Furthermore, you can change the values stored in the parameter files directly from your
session, with syntax such as the following:

ALTER SYSTEM SET shared_buffers = '1GB';

Configuration Chapter 3

[93]

This command will not actually edit postgresql.conf. Instead, it writes the new setting
to another file named postgresql.auto.conf. The effect is equivalent, albeit in a safer
way. The original configuration is never written, so it cannot be damaged in the event of a
crash. If you mess up with too many ALTER SYSTEM commands, you can always delete
postgresql.auto.conf manually and reload the configuration or restart PostgreSQL,
depending on what parameters you changed.

PostgreSQL 11 now supports up to 7 TB of cache, if you have that much
memory.

Setting parameters for particular groups of
users
PostgreSQL supports a variety of ways of defining parameter settings for various user
groups. This is very convenient, especially for managing user groups that have different
requirements.

How to do it…
Follow these steps to set parameters at various levels as per the requirements:

For all users in the saas database, use the following commands:1.

ALTER DATABASE saas
SET configuration_parameter = value1;

For a user named simon connected to any database, use the following2.
commands:

ALTER ROLE simon
SET configuration_parameter = value2;

Alternatively, you can set a parameter for a user only when they're connected to3.
a specific database, as follows:

ALTER ROLE simon
IN DATABASE saas
SET configuration_parameter = value3;

Configuration Chapter 3

[94]

The user won't know that these have been executed specifically for them. These are default
settings, and in most cases they can be overridden if the user requires non-default values.

How it works…
You can set parameters for each of the following:

Database
User (also called role by postgreSQL)
Database and user combination

Each of the parameter defaults is overridden by the one following it.

In the preceding three SQL statements, the following apply:

If gianni connects to the saas database, then value1 will apply
If simon connects to a database other than saas, then value2 will apply
If simon connects to the saas database, then value3 will apply

PostgreSQL implements this in exactly the same way as if the user had manually issued the
equivalent SET statements immediately after connecting.

The basic server configuration checklist
PostgreSQL arrives configured for use on a shared system, though many people want to
run dedicated database systems. The PostgreSQL project wishes to ensure that PostgreSQL
will play nicely with other server software, and will not assume that it has access to the full
server resources. If you, as the system administrator, know that there is no other important
server software running on the system, then you can crank the values up much higher.

Getting ready
Before we start, we need to know two sets of information:

The size of the physical RAM that will be dedicated to PostgreSQL
The types of applications for which we will use PostgreSQL

Configuration Chapter 3

[95]

How to do it…
If your database is larger than 32 MB, then you'll probably benefit from increasing
shared_buffers. You can increase this to a much larger value, but remember that running
out of memory induces many problems.

For instance, PostgreSQL is able to store information on disk when the available memory is
too small, and it employs sophisticated algorithms to treat each case differently and to place
each piece of data on the disk or in memory, depending on each use case.

On the other hand, overstating the amount of available memory confuses such abilities and
results in suboptimal behavior. For instance, if the memory is swapped to disk, then
PostgreSQL will inefficiently treat all data as if it were the RAM. Another unfortunate
circumstance is when the Linux Out-Of-Memory (OOM) killer terminates one of the
various processes spawned by the PostgreSQL server. So, it's better to be conservative. It is
good practice to set a low value in your postgresql.conf and increment slowly to ensure
that you get the benefits from each change.

If you increase shared_buffers and you're running on a non-Windows server, you will
almost certainly need to increase the value of the SHMMAX OS parameter (and on some
platforms, other parameters as well).

On Linux, macOS, and FreeBSD, you will need to either edit the /etc/sysctl.conf file or
use sysctl -w with the following values:

For Linux, use kernel.shmmax=value
For macOS, use kern.sysv.shmmax=value
For FreeBSD, use kern.ipc.shmmax=value

There's more…
For more information, you can refer to
http://www.postgresql.org/docs/11/static/kernel-resources.html#SYSVIPC.

For example, on Linux, add the following line to /etc/sysctl.conf:

kernel.shmmax=value

Don't worry about setting effective_cache_size. It is much less important a parameter
than you might think. There is no need for too much fuss when selecting the value.

http://www.postgresql.org/docs/11/static/kernel-resources.html#SYSVIPC
http://www.postgresql.org/docs/11/static/kernel-resources.html#SYSVIPC

Configuration Chapter 3

[96]

If there is heavy write activity, you may want to set wal_buffers to a much higher value
than the default. In fact, wal_buffers is automatically set from the value of
shared_buffers, following a rule that fits most cases. However, it is always possible to
specify an explicit value that overrides the computation for the very few cases where the
rule is not good enough.

If you're doing heavy write activity and/or large data loads, you may want to
set max_wal_size and min_wal_size higher than the default to avoid wasting I/O in
excessively frequent checkpoints. You may also wish to set checkpoint_timeout and
checkpoint_completion_target.

PostgreSQL tries its best to decouple query latency from storage performance: synchronous
writes are limited to the WAL directory, and most calculations are carried out in memory
buffers. However, there are cases where a query will need to use the disk before returning
(for example, for reading data that was not already cached), meaning that fewer
checkpoints will actually improve query latency.

If your database has many large queries, you may wish to set work_mem to a value higher
than the default. However, remember that such a limit applies to each node separately in
the query plan, so there is a real risk of over-allocating memory, with all the problems we
discussed earlier.

Ensure that autovacuum is turned on, unless you have a very good reason to turn it off;
most people don't. See later chapters for more information on autovacuum; in particular,
see Chapter 9, Regular Maintenance.

Leave the settings as they are for now. Don't fuss too much about getting the settings right.
You can change most of them later, so you can take an iterative approach to improving
things.

And, remember, don't touch the fsync parameter. It's keeping you safe.

Adding an external module to PostgreSQL
Another strength of PostgreSQL is its extensibility. Extensibility was one of the original
design goals, going back to the late 1980s. Now, in PostgreSQL 11, there are many
additional modules that plug into the core PostgreSQL server.

Configuration Chapter 3

[97]

There are many kinds of additional module offerings, such as the following:

Additional functions
Additional data types
Additional operators
Additional index types

Note that many tools and client interfaces work with PostgreSQL without
any special installation. Here, we are discussing modules that extend and
alter the behavior of the server beyond its normal range of SQL standard
syntax, functions, and behavior.

The procedure that makes a module usable is actually a two-step process.
First, you install the module's files on your system so that they become
available to the database server. Next, you connect to the database (or
databases) where you want to use the module, and create the required
objects. The first step is discussed in this recipe. For the second step, refer
to the next recipe, Using an installed module.

In this book, we will use the words extension and module as synonyms, as
we did in the PostgreSQL documentation. Note, however, that the SQL
commands that manage extensions, which we'll describe in the next
recipe, are as follows:

CREATE EXTENSION myext;

ALTER EXTENSION myext UPDATE;

In particular, commands such as CREATE MODULE won't work at all!

Getting ready
First, you'll need to select an appropriate module to install.

Configuration Chapter 3

[98]

The journey toward a complete, automated package management system for PostgreSQL is
not over yet, so you need to look in more than one place for the available modules, such as
the following:

Contrib: The PostgreSQL core includes many functions. There is also an official
section for add-in modules, known as contrib modules. They are always
available for your database server, but are not automatically enabled in every
database, because not all users might need them. In PostgreSQL Version 11, we
have 45 such modules. These are documented at
http://www.postgresql.org/docs/11/static/contrib.html.
PGXN: This is the PostgreSQL Extension Network, a central distribution system
dedicated to sharing PostgreSQL extensions. The website started in 2010 as a
repository dedicated to the sharing of extension files. As of November 2018, there
were 279 extensions from 317 different authors. You can learn more about it at
http://pgxn.org/.
Separate projects: These are large external projects, such as PostGIS, offering
extensive and complex PostgreSQL modules. For more information, take a look
at http://www.postgis.org/.

How to do it…
There are several ways to make additional modules available for your database server, as
follows:

Using a software installer
Installing from PGXN
Installing from a manually downloaded package
Installing from source code

Often, a particular module will be available in more than one way, and users are free to
choose their favorite, exactly like PostgreSQL itself, which can be downloaded and installed
through many different procedures.

Installing modules using a software installer
Certain modules are available exactly like any other software packages that you may want
to install in your server. All main Linux distributions provide packages for the most
popular modules, such as PostGIS, SkyTools, procedural languages other than those
distributed with the core, and so on.

http://www.postgresql.org/docs/11/static/contrib.html
http://pgxn.org/
http://www.postgis.org/

Configuration Chapter 3

[99]

Modules can sometimes be added during installation if you're using a standalone installer
application, for example, the OneClick installer, or tools such as rpm, apt-get, and YaST
on Linux distributions. The same procedure can also be followed after the PostgreSQL
installation, when the need for a certain module arrives. We will actually describe this case,
which is very common.

For example, let's say that you need to manage a collection of Debian package files and that
one of your tasks is to be able to pick the latest version of one of them. You start by building
a database that records all package files. Clearly, you need to store the version number of
each package. However, Debian version numbers are much more complex than what we
usually call numbers. For instance, on my Debian laptop, I currently have
the 11.1-1.pgdg90+1 version of the PostgreSQL client package. Despite being
complicated, that string follows a clearly defined specification, which includes many bits of
information, including how to compare two versions to establish which of them is older.

Since this recipe discusses extending PostgreSQL with custom data types and operators,
you might have already guessed that I will now consider a custom data type for Debian
version numbers that is capable of tasks such as understanding the Debian version number
format, sorting version numbers, choosing the latest version number in a given group, and
so on. It turns out that somebody else already did the work of creating the required
PostgreSQL data type, endowed with all the useful accessories: comparison operators,
input/output functions, support for indexes, and maximum/minimum aggregates. All of
this has been packaged as a PostgreSQL extension, as well as a Debian package (not a big
surprise), so it is just a matter of installing the postgresql-11-debversion package with
a Debian tool such as apt-get, aptitude, or synaptic. On my laptop, that boils down to
the following command:

apt-get install postgresql-11-debversion

This will download the required package and unpack all the files in the right locations,
making them available to my PostgreSQL server.

Installing modules from PGXN
The PostgreSQL Extension Network, PGXN for short, is a website (http://pgxn.org) that
was launched in late 2010 with the purpose of providing a central distribution system for
open source PostgreSQL extension libraries. Anybody can register and upload their own
module, packaged as an extension archive. The website allows you to browse the available
extensions and their versions, either via a search interface or from a directory of packages
and usernames.

http://pgxn.org/

Configuration Chapter 3

[100]

The simple way is to use a command-line utility called pgxnclient. It can be easily
installed in most systems; see the PGXN website for how to do this. Its purpose is to
interact with PGXN and take care of administrative tasks, such as browsing available
extensions, downloading the package, compiling the source code, installing files in the
proper places, and removing installed package files. Alternatively, you can download the
extension files from the website and place them in the right place by following the
installation instructions.

PGXN is different compared to the official repositories because it serves another purpose.
Official repositories usually contain only seasoned extensions, because they accept new
software only after a certain amount of evaluation and testing. On the other hand, anybody
can ask for a PGXN account and upload their own extensions, so there is no filter except
requiring that the extension has an open source license and a few files that any extension
must have.

Installing modules from source code
In many cases, useful modules may not have full packaging. In these cases, you may need
to install the module manually. This isn't very hard, and it's a useful exercise that will help
you understand what happens.

Each module will have different installation requirements. There are generally two aspects
of installing a module. They are as follows:

Building the libraries (only for modules that have libraries)
Installing the module files in the appropriate locations

You need to follow the instructions for the specific module in order to build the libraries, if
any are required. Installation will then be straightforward, and usually there will be a
suitably prepared configuration file for the make utility, so you just need to type the
following command:

make install

Each file will be copied to the right directory. Remember that you normally need to be a
system superuser in order to install files on the system's directories.

Once a library file is in the directory expected by the PostgreSQL server, it will be loaded
automatically as soon as requested by a function. Modules such as auto_explain do not
provide any additional user-defined functions, so they won't be auto-loaded; that needs to
be done manually by a superuser with a LOAD statement.

Configuration Chapter 3

[101]

How it works...
PostgreSQL can dynamically load libraries in the following ways:

Using the explicit LOAD command in a session
Using the shared_preload_libraries parameter in postgresql.conf at the
server start
At the session start, using the local_preload_libraries parameter for a
specific user, as set using ALTER ROLE

PostgreSQL functions and objects can reference code in these libraries, allowing extensions
to be bound tightly to the running server process. The tight binding makes this method
suitable for use in even very high-performance applications, and there's no significant
difference between additionally supplied features and native features.

Using an installed module
In this recipe, we will explain how to enable an installed module so that it can be used in a
particular database. The additional types, functions, and so on will exist only in those
databases where we have carried out this step.

Although most modules require this procedure, there are actually a
couple of notable exceptions. For instance, the auto_explain module we
mentioned earlier, which is shipped together with PostgreSQL, does not
create any function, type, or operator. To use it, you must load its object
file using the LOAD command. From that moment, all statements longer
than a configurable threshold will be logged together with their execution
plan. In the rest of this recipe, we will cover all the other modules. They
do not require a LOAD statement, because PostgreSQL can automatically
load the relevant libraries when they are required.

As we mentioned in the previous recipe, Adding an external module to PostgreSQL, specially
packaged modules are called extensions in PostgreSQL. They can be managed with
dedicated SQL commands.

Configuration Chapter 3

[102]

Getting ready
Suppose that you have chosen to install a certain module among those available for your
system (see the previous recipe, Adding an external module to PostgreSQL); all you need to
know is the extension name.

How to do it…
Each extension has a unique name, so it is just a matter of issuing the following command:

CREATE EXTENSION myextname;

This will automatically create all the required objects inside the current database.

For security reasons, you need to do so as a database superuser. For instance, if you want to
install the dblink extension, type this:

CREATE EXTENSION dblink;

How it works...
When you issue a CREATE EXTENSION command, the database server looks for a file
named EXTNAME.control in the SHAREDIR/extension directory. That file tells
PostgreSQL some properties of the extension, including a description, some installation
information, and the default version number of the extension (which is unrelated to the
PostgreSQL version number). Then, a creation script is executed in a single transaction;
thus, if it fails, the database is unchanged. The database server also notes down the
extension name and all the objects that belong to it in a catalog table.

Managing installed extensions
In the last two recipes, we showed you how to install external modules in PostgreSQL to
augment its capabilities.

In this recipe, we will show you some more capabilities that are offered by the extension
infrastructure.

Configuration Chapter 3

[103]

How to do it…
The following are the steps to manage the extensions:

First, we list all the available extensions:1.

postgres=# \x on
Expanded display is on.
postgres=# SELECT *
postgres-# FROM pg_available_extensions
postgres-# ORDER BY name;
-[RECORD 1]-----+--
--
name | adminpack
default_version | 2.0
installed_version |
comment | administrative functions for PostgreSQL
-[RECORD 2]-----+--
--
name | pg_stat statements
default_version | 1.6
installed_version |
comment | track execution statistics of all SQL
statements executed
(...)

In particular, if the dblink extension is installed, then we see a record such as
this:

-[RECORD 10]----+--
--
name | dblink
default_version | 1.2
installed_version | 1.2
comment | connect to other PostgreSQL databases from
within a database

Now, we can list all the objects in the dblink extension, as follows:2.

postgres=# \x off
Expanded display is off.
postgres=# \dx+ dblink
 Objects in extension "dblink"
 Object Description

--
 function dblink_build_sql_delete(text,int2vector,integer,text[])
 function

Configuration Chapter 3

[104]

dblink_build_sql_insert(text,int2vector,integer,text[],text[])
 function
dblink_build_sql_update(text,int2vector,integer,text[],text[])
 function dblink_cancel_query(text)
 function dblink_close(text)
 function dblink_close(text,boolean)
 function dblink_close(text,text)
(...)

Objects created as parts of extensions are not special in any way, except that you3.
can't drop them individually. This is done to protect you from mistakes:

postgres=# DROP FUNCTION dblink_close(text);
ERROR: cannot drop function dblink_close(text) because extension
dblink requires it
HINT: You can drop extension dblink instead.

Extensions might have dependencies, too. The cube and earthdistance4.
contrib extensions are a good example, since the latter depends on the former:

postgres=# CREATE EXTENSION earthdistance;
ERROR: required extension "cube" is not installed
HINT: Use CREATE EXTENSION ... CASCADE to install required
extensions too.
postgres=# CREATE EXTENSION earthdistance CASCADE;
NOTICE: installing required extension "cube"
CREATE EXTENSION

Note how the CASCADE keyword was used to automatically create all the other
extensions that the extension being created depends on, as clearly reminded by
the HINT message.

As you can reasonably expect, dependencies are taken into account when5.
dropping objects, just like for other objects:

postgres=# DROP EXTENSION cube;
ERROR: cannot drop extension cube because other objects depend on
it
DETAIL: extension earthdistance depends on extension cube
HINT: Use DROP ... CASCADE to drop the dependent objects too.
postgres=# DROP EXTENSION cube CASCADE;
NOTICE: drop cascades to extension earthdistance
DROP EXTENSION

Configuration Chapter 3

[105]

How it works…
The pg_available_extensions system view shows one row for each extension control
file in the SHAREDIR/extension directory (see the Using an installed module recipe). The
pg_extension catalog table records only the extensions that have actually been created.

The psql command-line utility provides the \dx meta-command to examine the
extensions. It supports an optional plus sign (+) to control verbosity, and an optional
pattern for the extension name to restrict its range. Consider the following command:

\dx+ db*

This will list all extensions whose names start with db, together with all their objects.

The CREATE EXTENSION command creates all objects belonging to a given extension and
then records the dependency of each object on the extension in pg_depend. That's how
PostgreSQL can ensure that you cannot drop one such object without dropping its
extension.

The extension control file admits an optional line, requires, that names one or more
extensions on which the current one depends. The implementation of dependencies is still
quite simple; for instance, there is no way to specify a dependency on a specific version
number of other extensions.

As a general PostgreSQL rule, the CASCADE keyword tells the DROP command to delete all
objects that depend on cube, which is the earthdistance extension in this example.

There's more…
Another system view, pg_available_extension_versions, shows all the versions that
are available for each extension. It can be valuable when there are multiple versions of the
same extension available at the same time—for example, when making preparations for an
extension upgrade.

When a more recent version of an already installed extension becomes available to the
database server, for instance, because of a distribution upgrade that installs updated
package files, the superuser can perform an upgrade by issuing the following command:

ALTER EXTENSION mytext UPDATE TO '1.1';

Configuration Chapter 3

[106]

This assumes that the author of the extension taught it how to perform the upgrade.

Extensions interact nicely with logical backup and restore nicely, a topic that will be fully
discussed in Chapter 11, Backup and Recovery. As an example, if your database contains the
cube extension, then you will surely want a single line (CREATE EXTENSION cube) in the
dump file instead of lots of lines recreating each object individually, which is inefficient and
also dangerous.

The use of CASCADE in a CREATE statement only applies to extensions, because for other
object types, the dependency is not predefined in the object metadata, and only exists after
creating a specific object (for example, a foreign key).

Remember that CREATE EXTENSION ... CASCADE will only work if all the extensions it
tries to install have already been placed in the appropriate location.

4
Server Control

 In this chapter, we will cover the following recipes:

Starting the database server manually
Stopping the server safely and quickly
Stopping the server in an emergency
Reloading the server configuration files
Restarting the server quickly
Preventing new connections
Restricting users to only one session each
Pushing users off the system
Deciding on a design for multitenancy
Using multiple schemas
Giving users their own private database
Running multiple servers on one system
Setting up a connection pool
Accessing multiple servers using the same host and port

Introduction
PostgreSQL consists of a set of server processes, the group leader of which is named the
postmaster. Starting the server is the act of creating these processes, and stopping the
server is the act of terminating those processes.

Each postmaster listens for client connection requests on a defined port number. Multiple
concurrently running postmasters cannot share that port number. The port number is often
used to uniquely identify a particular postmaster and hence also the database server that it
leads.

Server Control Chapter 4

[108]

When we start a database server, we refer to a data directory, which contains the heart and
soul—or at least the data—of our database. Subsidiary tablespaces may contain some data
outside the main data directory, so the data directory is just the main central location, and
not the only place where data for that database server is held. Each running server has at
minimum of one data directory, and one data directory can have, at the most, one running
server (or instance).

To perform any action for a database server, we must know the data directory for that
server. The basic actions we can perform on the database server are starting and stopping.
We can also perform a restart, though that is just a stop followed by a start. In addition, we
can reload the server, which means that we can reread the server's configuration files.

We should also mention a few other points.

The default port number for PostgreSQL is 5432. That has been registered with the Internet
Assigned Numbers Authority (IANA), and so it should already be reserved for
PostgreSQL's use in most places. Because each PostgreSQL server requires a distinct port
number, the normal convention is to use subsequent numbers for any additional
server—for example, 5433, 5434, and so on. Subsequent port numbers might not be as
easily recognized by the network infrastructure, which might, in some cases, make life
more difficult for you in large enterprises, especially in more security-conscious ones.

Port number 6432 has been registered with IANA for PgBouncer, the connection pooler
that we will describe in the Setting up a connection pool recipe. This happened only recently,
and many installations are using non-standard port numbers such as 6543 only because
they were deployed earlier.

A database server is also sometimes referred to as a database cluster. I don't recommend
this term for normal usage because it makes people think about multiple nodes and not one
database server on one system.

Starting the database server manually
Typically, the PostgreSQL server will start automatically when the system boots. You may
have opted to stop and start the server manually, or you may need to start it up or shut it
down for various operational reasons.

Server Control Chapter 4

[109]

Getting ready
First, you need to understand the difference between the service and the server. The word
server refers to the database server and its processes. The word service refers to the operating
system wrapper by which the server gets called. The server works in essentially the same
way on every platform, whereas each operating system and distribution has its own
concept of a service.

Moreover, the way services are managed has changed recently: for instance, at the time of
publication, most Linux distributions have adopted the systemd service manager. This
means that you need to know which distribution and release you are using to find the correct
variant of this recipe.

With systemd, a PostgreSQL server process is represented by a service unit, which is
managed via the systemctl command. The systemd command syntax is the same on all
distributions, but the name of the service unit unfortunately isn't; for example, it will have
to be adjusted depending on your distribution.

In other cases, you need to type the actual data directory path as part of the command line
to start the server. More information on how to find out the data directory path is available
in the Locating the database server files recipe in Chapter 2, Exploring the Database.

How to do it…
On each platform, there is a specific command to start the server.

If you are using a modern Linux distribution, you are probably using systemd. In this case,
PostgreSQL can be started with the following command:

sudo systemctl start SERVICEUNIT

This must be issued with OS superuser privileges, after replacing SERVICEUNIT with the
appropriate systemd service unit name.

The systemctl command must always be issued with operating system
superuser privileges. Remember that, throughout this book, we will
always prepend systemctl invocations with sudo.

Server Control Chapter 4

[110]

There are a couple of things to keep in mind:

This will work only if the user executing the command has been previously
granted appropriate sudo privileges by the system administrator.
If the command is executed from a superuser account, then the sudo keyword is
unnecessary, although not harmful.

As we mentioned previously, the service-unit name depends on what distribution you are
using, as follows:

On Ubuntu and Debian, there is a service unit called this:

postgresql@RELEASE-CLUSTERNAME

For each database server instance, there is another service unit called
just postgresql, and that can be used to manage all the database servers at
once. Therefore, you can issue the following command:

sudo systemctl start postgresql

To start all the available instances, and to start only the default version 11
instance, use the following:

sudo systemctl start postgresql@11-main

Default Red Hat/Fedora packages call the service unit simply postgresql, so
the syntax is as follows:

sudo systemctl start postgresql

Red Hat/Fedora packages from the PostgreSQL Yum repository create a service
unit called postgresql--RELEASE, so we can start version 11 as follows:

sudo systemctl start postgresql-11

As we noted previously, systemctl is part of systemd, which is only available
on Linux and is normally used by most of the recent distributions.

The following commands can be used where systemd is not available.

On Debian and Ubuntu releases, you must invoke the PostgreSQL-specific utility
pg_ctlcluster, as follows:

pg_ctlcluster 11 main start

Server Control Chapter 4

[111]

This command will also work when systemd is available; it will just
redirect the start request to systemctl and print a message on the screen
so that the next time you will remember to use systemctl directly.

For Red Hat/Fedora, you can use this command:

service postgresql start

For Windows, the command is as follows:

net start postgres

For Red Hat/Fedora, you can also use the following command:

pg_ctl -D $PGDATA start

Here PGDATA is set to the data directory path.

In fact, this command works on most distributions, including macOS, Solaris, and
FreeBSD, although bear in mind the following points:

It is recommended to use, whenever possible, the distribution-specific syntax we
described previously.
You may have to specify the full path to the pg_ctl executable if it's not in your
path already. This is normally the case with multi-version directory schemes
such as Debian/Ubuntu, where distribution-specific scripts pick the appropriate
executable for your version.

How it works…
On Ubuntu/Debian, the pg_ctlcluster wrapper is a convenient utility that allows
multiple servers to coexist more easily, which is especially good when you have servers
with different versions. This capability is very useful and is transposed on systemd, as
shown in the examples using @ in the name of the service unit, where @ denotes the usage
of a service file template.

Another interesting systemd feature is the capability to enable/ disable a service unit to
specify whether it will be started automatically on the next boot, with a syntax such as the
following:

sudo systemctl enable postgresql@11-main

Server Control Chapter 4

[112]

This can be very useful to set the appropriate behavior based on the purpose of each
instance.

A similar feature is implemented on Ubuntu and Debian by the start.conf file, located
next to the other configuration files (that is, in the same directory). Apart from the
informational comments, it contains only a single word, with the following meaning:

auto: The server will be started automatically on boot. This is the default when
creating a new server. It is suitable for frequently used servers, such as those
powering live services or those being used for everyday development activities.
manual: The server will not be started automatically on boot, but it can be started
with pg_ctlcluster. This is suitable for custom servers that are seldom used.
disabled: The server is not supposed to be started. This setting is only a
protection from starting the server accidentally. The pg_ctlcluster wrapper
won't let you start it, but a skilled user can easily bypass the protection.

If you need to reserve a port for a server not managed by
pg_ctlcluster, for example, when compiling directly from the source
code, then you can create a cluster with start.conf set to disabled and
then use its port. Any new servers will be allocated different ports.

Stopping the server safely and quickly
There are several modes to stop the server, depending on the level of urgency. We'll do a
comparison in view of the effects in each mode.

How to do it…
We provide two variants: with and without systemd. This is similar to the previous recipe,
Starting the database server manually, which we'll refer to for further information. For
example, what is the exact name of the systemd service unit for a given database server on
a given GNU/Linux distribution?

When using systemd, you can stop PostgreSQL using the fast mode by issuing the
following after having replaced SERVICEUNIT with the appropriate systemd service unit
name:

sudo systemctl stop SERVICEUNIT

Server Control Chapter 4

[113]

If systemd is not available, and you are using Debian or Ubuntu, the command is as in the
following example, which applies to the default version 11 instance:

pg_ctlcluster 11 main stop -m fast

The fast mode is the default since PostgreSQL 9.5; the previous default was to use the
smart mode, meaning wait for all users to finish before we exit. This can take a very long time,
and all the while new connections are refused.

On other Linux/Unix distributions, you can issue a database server stop command using
the fast mode, as follows:

pg_ctl -D datadir -m fast stop

How it works…
When you do a fast stop, all users have their transactions aborted and all connections
are disconnected. This is not very polite to users, but it still treats the server and its data
with care, which is good.

PostgreSQL is similar to other database systems in that it does do a shutdown checkpoint
before it closes. This means that the startup that follows will be quick and clean. The more
work the checkpoint has to do, the longer it will take to shut down.

One difference between PostgreSQL and some other RDBMSes such as Oracle, DB2, or SQL
Server is that the transaction rollback is very quick. On those other systems, if you shut
down the server in a mode that rolls back transactions, it can cause the shutdown to take a
while, possibly a very long time. This difference is for internal reasons, and isn't in any way
unsafe. Debian and Ubuntu's pg_ctlcluster supports the --force option, which is
rather nice because it first attempts a fast shutdown, and if that fails, it performs an
immediate shutdown. After that, it kills the postmaster.

See also
The technology that provides immediate rollback for PostgreSQL is called Multiversion
Concurrency Control (MVCC). More information on this is provided in the Identifying and
fixing bloated tables and indexes recipe in Chapter 9, Regular Maintenance.

Server Control Chapter 4

[114]

Stopping the server in an emergency
If nothing else is working, we may need to stop the server quickly, without caring about
disconnecting the clients gently.

Break the glass in case of emergency!

How to do it…
The basic command to perform an emergency stop on the server is the following:1.

pg_ctl -D datadir stop -m immediate

On Debian/Ubuntu, you can also use the following:2.

pg_ctlcluster 11 main stop -m immediate

As we mentioned in the previous recipe, this is just a wrapper around pg_ctl. From this
example, we can see that it can pass through the -m immediate option.

In the previous recipe, we have seen examples where the systemctl
command was used to stop a server safely; however, that command
cannot be used to perform an emergency stop.

How it works…
When you do an immediate stop, all users have their transactions aborted and all
connections are disconnected. There is no clean shutdown, nor is there politeness of any
kind.

An immediate mode stop is similar to a database crash. Some cached files will need to be
rebuilt, and the database itself needs to undergo crash recovery when it comes back up.

Note that for DBAs with Oracle experience, the immediate mode is the same thing as a
shutdown abort. The PostgreSQL immediate mode stop is not the same thing as shutdown
immediate on Oracle.

Server Control Chapter 4

[115]

Reloading the server configuration files
Some PostgreSQL configuration parameters can be changed only by reloading the entire
configuration files.

How to do it…
There are two variants of this recipe, depending on whether you are using systemd. This is
similar to the previous recipes in this chapter, and especially the Starting the database server
manually recipe. More details are explained there, such as the exact names of systemd
service units depending on which database server you want to reload, and which
GNU/Linux distribution you are working on.

With systemd, configuration files can be reloaded with the following syntax:

sudo systemctl reload SERVICEUNIT

Here, SERVICEUNIT must be replaced with the exact name of the systemd service unit for
the server(s) that you want to reload.

Otherwise, on each platform, there is a specific command to reload the server without using
systemd. All of these are listed as follows:

On Ubuntu and Debian, you can issue the following:

pg_ctlcluster 11 main reload

On older Red Hat/Fedora, the command is as follows:

service postgresql reload

You can also use the following command:

pg_ctl -D /var/lib/pgsql/data reload

This also works on macOS, Solaris, and FreeBSD, where you
replace /var/lib/pgsql/data with your actual data directory if it's different.

On all platforms, you can also reload the configuration files while still connected to
PostgreSQL. If you are a superuser, this can be done from the following command line:

postgres=# select pg_reload_conf();

Server Control Chapter 4

[116]

The output is rather short:

 pg_reload_conf

 t

This function is also often executed from an admin tool, such as OmniDB.

If you do this, you should realize that it's possible to implement a new authentication rule
that is violated by the current session. It won't force you to disconnect, but when you do
disconnect, you may not be able to reconnect.

Any error in a configuration file will be reported in the message log, so we
recommend that you look there immediately after reloading. You will
quickly notice (and fix!) syntax errors in the parameter file, because they
prevent any login even before reloading. Other errors, such as typos in
parameter names, or wrong units, will only be reported in the log;
moreover, only some non-syntax errors will prevent reloading the whole
file, so it's best to always check the log.

How it works…
To reload the configuration files, we send the SIGHUP signal to the postmaster, which then
passes that to all connected backends. That's why some people call reloading the server
sigh-up-ing.

If you look at the pg_settings catalog table, you'll see that there is a column named
context. Each setting has a time and a place where it can be changed. Some parameters
can only be reset by a server reload, and so the value of context for those parameters will
be a sighup. Here are a few of the parameters you'll want to change sometimes during
server operation (there are others, however):

postgres=# SELECT name, setting, unit
 ,(source = 'default') as is_default
 FROM pg_settings
 WHERE context = 'sighup'
 AND (name like '%delay' or name like '%timeout')
 AND setting != '0';
 name | setting | unit | is_default
------------------------------+---------+------+------------
 authentication_timeout | 60 | s | t
 autovacuum_vacuum_cost_delay | 20 | ms | t
 bgwriter_delay | 200 | ms | f
 checkpoint_timeout | 300 | s | f

Server Control Chapter 4

[117]

 max_standby_archive_delay | 30000 | ms | t
 max_standby_streaming_delay | 30000 | ms | t
 wal_receiver_timeout | 60000 | ms | t
 wal_sender_timeout | 60000 | ms | t
 wal_writer_delay | 200 | ms | t
(9 rows)

There's more…
Since reloading the configuration file is achieved by sending the SIGHUP signal, we can
reload the configuration file only for a single backend using the kill command. As you
might expect, you may get some strange results from doing this, so don't try it at home.

First, find the PID of the backend using pg_stat_activity. Then, from the OS prompt,
issue the following:

kill -SIGHUP pid

Alternatively, we can do both at once, as shown in this command:

kill -SIGHUP \
&& psql -t -c "select pid from pg_stat_activity limit 1";

This is only useful with a sensible WHERE clause.

Restarting the server quickly
Some of the database server parameters require you to stop and start the server again fully.
Doing this as quickly as possible can be very important in some cases. The best time to do
this is usually a quiet time, with lots of planning, testing, and forethought. Sometimes, not
everything goes according to plan.

How to do it…
It's now become a habit in many recipes in this chapter that they be presented in two forms:
one with systemd and one without. This may look repetitive or boring, but it's unavoidable
because the introduction of a new system does not automatically eliminate all existing
alternatives, or migrate old installations to new ones.

Server Control Chapter 4

[118]

Like before, the you can find further systemd details, including details on service unit
names, in the previous recipe, Starting the database server manually, of this chapter.

A PostgreSQL server managed by systemd can be restarted in fast mode by issuing the
following command:

sudo systemctl restart SERVICEUNIT

As before, change SERVICEUNIT to the appropriate service unit name—for example,
postgresql@11-main for a PostgreSQL 10 cluster running in Debian or Ubuntu.

If systemd is not available, then you can use the following syntax:

pg_ctlcluster 11 main restart -m fast

The basic command to restart the server is the following one:

pg_ctl -D datadir restart -m fast

A restart is just a stop that's going to be followed by a start, so it sounds very simple. In
many cases, it will be simple, but there are times when you'll need to restart the server
while it is fairly busy. That's when we need to start performing some tricks to make that
restart happen quicker.

First, the stop performed needs to be a fast stop. If we do a default or a smart stop, then
the server will just wait for everyone to finish. If we do an immediate stop, then the server
will crash, and we will need to crash-recover the data, which will be slower overall.

The running database server has a cache full of data blocks, many of which are dirty.
PostgreSQL is similar to other database systems in that it does a shutdown checkpoint
before it closes. This means that the startup that follows will be quick and clean. The more
work the checkpoint has to do, the longer it will take to shut down.

The actual shutdown will happen much quicker if we issue a normal checkpoint first, as the
shutdown checkpoint will have much less work to do. So, flush all the dirty shared buffers
to disk with the following command, issued by a database superuser:

psql -c "CHECKPOINT"

The next consideration is that once we restart, the database cache will be empty again and
will need to refresh itself. The larger the database cache, the longer it takes for the cache to
get warm again, and 30 to 60 minutes is not uncommon before returning to full speed. So,
what was a simple restart can actually have a large business impact if handled badly.

Server Control Chapter 4

[119]

There's more…
There is an extension called pgfincore that implements a set of functions to manage
PostgreSQL data pages in the operating system's file cache. One possible use is to preload
some tables so that PostgreSQL will load them quicker when requested. The general idea is
that you can provide more detailed information for the operating system cache, which can
therefore behave more efficiently.

The pgfincore extension is a stable project that was started in 2009. More details about it
are available at https:/ /github. com/ klando/ pgfincore, including the source code.
However, it should be noted that most distributions include a prebuilt pgfincore package,
which makes installation easier.

There is also a contrib module called pg_prewarm, which addresses a similar problem.
While there is some overlap with pgfincore, the feature sets are not the same; for instance,
pgfincore can operate on files that aren't in the shared buffer cache, and it can also
preload full relations with only a few system calls, taking into account the existing cache;
on the other hand, pg_prewarm can operate on the PostgreSQL shared buffer cache, and it
also works on Windows.

Preventing new connections
In certain emergencies, you may need to lock down the server completely, or just prevent
specific users from accessing the database. It's hard to foresee all the situations in which
you might need to do this, so we will present a range of options.

How to do it…
Connections can be prevented in a number of ways, as follows:

Pause and resume the session pool. See the Setting up a connection pool recipe later
in this chapter on controlling connection pools.
Stop the server! See the Stopping the server safely and quickly and the Stopping the
server in an emergency recipes, but this is not recommended.
Restrict the connections for a specific database to zero, by setting the connection
limit to zero:

ALTER DATABASE foo_db CONNECTION LIMIT 0;

https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore

Server Control Chapter 4

[120]

This will limit normal users from connecting to that database, though it will still
allow superuser connections.

Restrict the connections for a specific user to zero by setting the connection limit
to zero (see the Restricting users to only one session each recipe):

ALTER USER foo CONNECTION LIMIT 0;

This will limit normal users from connecting to that database, but it will still
allow connections if the user is a superuser, so luckily you cannot shut yourself
out accidentally.
Change the Host-Based Authentication (HBA) file to refuse all incoming
connections and then reload the server:

Create a new file named pg_hba_lockdown.conf, and add the
following two lines to the file. This puts in place rules that will
completely lock down the server, including superusers. You
should have no doubt that this is a serious and drastic action:

TYPE DATABASE USER ADDRESS METHOD
 local all all reject
 host all all 0.0.0.0/0 reject

If you still want superuser access, then try something such as the
following:

TYPE DATABASE USER ADDRESS METHOD
 local all postgres peer
 local all all reject
 host all all 0.0.0.0/0 reject

This will prevent connections to the database by any user except the
postgres operating system user ID, which connects locally to any
database. Be careful not to confuse the second and third columns—the
second column is the database and the third column is the username. It's
worth keeping the header line just for that reason. The peer method
should be replaced by other authentication methods if a more complex
configuration is in use.

Copy the existing pg_hba.conf file to pg_hba_access.conf so that it can be
replaced later, if required.
Copy pg_hba_lockdown.conf to pg_hba.conf.
Reload the server by following the recipe earlier in this chapter.

Server Control Chapter 4

[121]

How it works…
The pg_hba.conf file is where we specify the host-based authentication rules. We do not
specify the authentications themselves; just specify which authentication mechanisms will
be used. This is the top-level set of rules for PostgreSQL authentication. The rules are
specified in a file and applied by the postmaster process when connections are attempted.
To prevent denial-of-service attacks, the HBA rules never involve database access, so we do
not know whether a user is a superuser. As a result, you can lock out all users, but note that
you can always re-enable access by editing the file and reloading.

Restricting users to only one session each
If resources need to be closely controlled, you may wish to restrict users so that they can
only connect to the server once, at most. The same technique can be used to prevent
connections entirely for that user.

How to do it…
We can restrict users to only one connection using the following command:

postgres=# ALTER ROLE fred CONNECTION LIMIT 1;
ALTER ROLE

This will then cause any additional connections to receive the following error message:

FATAL: too many connections for role "fred".

You can eliminate this restriction by setting the value to -1.

It's possible to set the limit to zero or any positive integer. You can set this to a number
other than max_connections, though it is up to you to make sense of that if you do.

Setting the value to zero will completely restrict normal connections. Note that even if you
set the connection limit to zero for superusers, they will still be able to connect.

Server Control Chapter 4

[122]

How it works…
The connection limit is applied during the session connection. Raising this limit will never
affect any connected users. Lowering the limit doesn't have any effect either, unless they try
to disconnect and reconnect.

So, if you lower the limit, you should immediately check to see whether there are more
sessions connected than the new limit you just set. Otherwise, there may be some surprises
if there is a crash:

postgres=> SELECT rolconnlimit
 FROM pg_roles
 WHERE rolname = 'fred';
 rolconnlimit

 1
(1 row)
postgres=> SELECT count(*)
 FROM pg_stat_activity
 WHERE usename = 'fred';
 count

 2
(1 row)

If you have more connected sessions than the new limit, you can ask users politely to
disconnect, or you can apply the next recipe, Pushing users off the system.

Users can't raise or lower their own connection limit, just in case you are worried that they
might be able to override this somehow.

Pushing users off the system
Sometimes, we may need to remove groups of users from the database server for various
operational reasons. Here's how to do it.

Server Control Chapter 4

[123]

How to do it…
You can terminate a user's session with the pg_terminate_backend() function included
with PostgreSQL. This function takes the PID, or the process ID, of the user's session on the
server. This process is known as the backend, and it is a different system process from the
program that runs the client.

To find the PID of a user, we can look at the pg_stat_activity view. We can use it in a
query, like this:

SELECT pg_terminate_backend(pid)
FROM pg_stat_activity
WHERE ...

There are a couple of things to note if you run this query. If the WHERE clause doesn't match
any sessions, then you won't get any output from the query. Similarly, if it matches
multiple rows, you will get a fairly useless result, that is, a list of Boolean true values.
Unless you are careful enough to exclude your own session from the query, you will
disconnect yourself! What's even funnier is that you'll disconnect yourself halfway through
disconnecting the other users, as the query will run pg_terminate_backend() in the
order in which sessions are returned from the outer query.

Therefore, I suggest a safer and more useful query that gives a useful response in all cases,
which is as follows:

postgres=# SELECT count(pg_terminate_backend(pid))
FROM pg_stat_activity
WHERE usename NOT IN
(SELECT usename
 FROM pg_user
WHERE usesuper);
 count

 1

This is assuming that superusers are performing administrative tasks.

Other good filters might be the following:

WHERE application_name = 'myappname'
WHERE wait_event_type IS NOT NULL AND wait_event_type != 'Activity'
WHERE state = 'idle in transaction'
WHERE state = 'idle'

Server Control Chapter 4

[124]

How it works…
The pg_terminate_backend() function sends a signal directly to the operating system
process for that session.

It's possible that the session may have closed by the time pg_terminate_backend() is
named. As PID numbers are assigned by the operating system, it could even happen that
you try to terminate a given session (let's call it session A), but you actually terminate
another session (let's call it session B).

Here is how it could happen. Suppose you take note of the PID of session A and decide to
disconnect it. Before you actually issue pg_terminate_backend(), session A disconnects,
and right after, a new session, session B, is given exactly the same PID. So, when you
terminate that PID, you hit session B instead.

On the one hand, you need to be careful. On the other hand, this case is really unlikely, and
is only mentioned for completeness. For it to happen, all the following events must happen
as well:

One of the sessions you are trying to close must terminate independently in the
very short interval between the moment pg_stat_activity is read and the
moment pg_terminate_backend() is executed.
Another session on the same database server must be started in the even-shorter
interval between the old session closing and the execution of
pg_terminate_backend().
The new session must get exactly the same PID value as the old session, which is
less than one chance in 32,000 on a 32-bit Linux machine.

Nonetheless, probability theory is tricky, even for experts. Therefore, it's better to be aware
that there is a tiny risk, especially if you use the query many times per day over a long
period of time, in which case the probability of getting caught at least once builds up.

It's also possible that new sessions could start after we get the list of active sessions. There's
no way to prevent this other than by following the Preventing new connections recipe.

Finally, remember that superusers can terminate any session, while a non-superuser can
only terminate a session that belongs to the same user.

Server Control Chapter 4

[125]

Deciding on a design for multitenancy
There are many reasons why we might want to split groups of tables or applications:
security, resource control, convenience, and so on. Whatever the reason, we often need to
separate groups of tables (I avoid saying the word database, just to avoid various kinds of
confusion).

This topic is frequently referred to as multitenancy, though this is not a fully accepted term
yet.

The purpose of this recipe is to discuss the options and lead to other, more detailed recipes.

How to do it…
If you want to run multiple physical databases on one server, then you have four main
options, which are as follows:

Option 1: Run multiple sets of tables in different schemas in one database of a
PostgreSQL instance (covered in the Using multiple schemas recipe)
Option 2: Run multiple databases in the same PostgreSQL instance (covered in
the Giving users their own private database recipe)
Option 3: Run multiple PostgreSQL instances on the same virtual/physical
system (covered in the Running multiple servers on one system recipe)
Option 4: Run separate PostgreSQL instances in separate virtual machines on the
same physical server

Which is best? Well, that's certainly a question many people ask, and something on which
many views exist. The answer lies in looking at the specific requirements, which are as
follows:

If our goal is the separation of physical resources, then option 3 or option 4
works best. Separate database servers can be easily assigned different disks,
individual memory allocations can be assigned, and we can take the servers up
or down without impacting the others.
If our goal is security, then option 2 is sufficient.
If our goal is merely the separation of tables for administrative clarity, then
option 1 or option 2 can be useful.

Server Control Chapter 4

[126]

Option 2 allows complete separation for security purposes. This does, however, prevent
someone with privileges on both groups of tables from performing a join between those
tables. So, if there is a possibility of future cross-analytics, it might be worth considering
option 1. However, it might also be argued that such analytics should be carried out on a
separate data warehouse, not by co-locating production systems.

Option 3 has a difficulty in many of the PostgreSQL distributions: the default installation
uses a single location for the database, making it a little harder to configure that option.
Ubuntu/Debian handles that aspect particularly well, making it more attractive in that
environment.

Option 4 can be applied using virtualization technology, but that is outside the scope of this
book.

How it works…
I've seen people who use PostgreSQL with thousands of databases, but it is my opinion that
the majority of people use only one database, such as postgres (or at least, only a few
databases). I've also seen people with a great many schemas.

One thing you will find is that almost all admin GUI tools become significantly less useful if
there are hundreds or thousands of items to display. In most cases, administration tools use
a tree view, which doesn't cope gracefully with a large number of items.

Using multiple schemas
We can separate groups of tables into their own namespaces, referred to as schemas by
PostgreSQL. In many ways, they can be thought of as being similar to directories, though
that is not a precise description.

Getting ready
Make sure you've read the Deciding on a design for multitenancy recipe so that you're certain
that this is the route you wish to take. Other options exist, and they may be preferable in
some cases.

Server Control Chapter 4

[127]

How to do it…
 Schemas can be easily created using the following commands:1.

CREATE SCHEMA finance;
CREATE SCHEMA sales;

We can then create objects directly within those schemas using fully2.
qualified names, like this:

CREATE TABLE finance.month_end_snapshot (.....)

The default schema in which an object is created is known as
current_schema. We can find out which is our current schema by using the
following query:

postgres=# select current_schema;

This returns an output like the following:

current_schema

 public
(1 row)

When we access database objects, we use the user-settable search_path3.
parameter to identify the schemas to search for. The current_schema is the first
schema in the search_path parameter. There is no separate parameter for the
current_schema.

So, if we want to let only a specific user look at certain sets of tables, we can
modify their search_path parameter. This parameter can be set for each user so
that the value will be set when they connect. The SQL queries for this would be
something like the following:

ALTER ROLE fiona SET search_path = 'finance';
ALTER ROLE sally SET search_path = 'sales';

The public schema is not mentioned on search_path, so it will
not be searched. All tables created by fiona will go into the
finance schema by default, whereas all tables created by sally
will go into the sales schema by default.

Server Control Chapter 4

[128]

The users for finance and sales will be able to see that the other schema exists4.
and change search_path to use it, but we will be able to GRANT or REVOKE
privileges so that they can neither create objects nor read data in other people's
schemas:

REVOKE ALL ON SCHEMA finance FROM public;
GRANT ALL ON SCHEMA finance TO fiona;
REVOKE ALL ON SCHEMA sales FROM public;
GRANT ALL ON SCHEMA sales TO sally;

An alternate technique is to grant user create privileges on only one schema, but
grant usage rights on all other schemas. We can set up that arrangement like this:

REVOKE ALL ON SCHEMA finance FROM public;
GRANT USAGE ON SCHEMA finance TO fiona;
GRANT CREATE ON SCHEMA finance TO fiona;
REVOKE ALL ON SCHEMA sales FROM public;
GRANT USAGE ON SCHEMA sales TO sally;
GRANT CREATE ON SCHEMA sales TO sally;
GRANT USAGE ON SCHEMA sales TO fiona;
GRANT USAGE ON SCHEMA finance TO sally

Note that you need to grant the privileges for usage on the schema, as well as5.
specific rights on the objects in the schema. So, you will also need to issue specific
grants for objects, as shown here:

GRANT SELECT ON month_end_snapshot TO public;

You can also set default privileges so that they are picked up when objects are
created by using the following command:

ALTER DEFAULT PRIVILEGES FOR USER fiona IN SCHEMA finance
GRANT SELECT ON TABLES TO PUBLIC;

How it works…
Earlier, I said that schemas work like directories, or at least a little.

The PostgreSQL concept of search_path is similar to the concept of a PATH environment
variable.

Server Control Chapter 4

[129]

The PostgreSQL concept of the current schema is similar to the concept of the current
working directory. There is no cd command to change the directory. The current working
directory is changed by altering search_path.

A few other differences exist; for example, PostgreSQL schemas are not arranged in a
hierarchy like filesystem directories.

Many people create a user of the same name as the schema to make this work in a way
similar to other RDBMSes, such as Oracle.

Both the finance and sales schemas exist within the same PostgreSQL
database, and they run on the same database server. They use a common
buffer pool, and there are many global settings that tie the two schemas
fairly close together.

Giving users their own private database
Separating data and users is a key part of administration. There will always be a need to
give users a private, secure, or simply risk-free area (sandbox) to use the database. Here's
how.

Getting ready
Again, make sure you've read the Deciding on a design for multitenancy recipe so that you're
certain this is the route you wish to take. Other options exist, and they may be preferable in
some cases.

How to do it…
Follow these steps to create a database with restricted access to a specific user:

We can create a database for a specific user with some ease. From the command1.
line, as a superuser, these actions would be as follows:

postgres=# create user fred;
CREATE ROLE
postgres=# create database fred owner fred;
CREATE DATABASE

Server Control Chapter 4

[130]

As the database owners, users have login privileges, so they can connect to any2.
database by default. There is a command named ALTER DEFAULT
PRIVILEGES; however, this does not currently apply to databases, tablespaces, or
languages. The ALTER DEFAULT PRIVILEGES command also currently applies
only to roles (that is, users) that already exist.

So, we need to revoke the privilege to connect to our new database from
everybody except the designated user. There isn't a REVOKE ... FROM PUBLIC
EXCEPT command. Therefore, we need to revoke everything and then just re-
grant everything we need, all in one transaction, such as in the following code:

postgres=# BEGIN;
BEGIN
postgres=# REVOKE connect ON DATABASE fred FROM public;
REVOKE
postgres=# GRANT connect ON DATABASE fred TO fred;
GRANT
postgres=# COMMIT;
COMMIT
postgres=# create user bob;
CREATE ROLE

Then, try to connect as bob to the fred database:3.

os $ psql -U bob fred
psql: FATAL: permission denied for database "fred"
DETAIL: User does not have CONNECT privilege.

This is exactly what we wanted.

How it works…
If you didn't catch it before, PostgreSQL allows transactional DDL in most places, so either
both of the REVOKE and GRANT commands in the preceding section work or neither works.
This means that the fred user never loses the ability to connect to the database. Note that
CREATE DATABASE cannot be performed as part of a transaction, though nothing serious
happens as a result.

Server Control Chapter 4

[131]

There's more…
Superusers can still connect to the new database, and there is no way to prevent them from
doing so. No other users can see the tables that were created in the new database, nor can
they know the names of any of the objects. The new database can be seen to exist by other
users, and they can also see the name of the user who owns the database.

See also
See Chapter 6, Security, for more details on these issues.

Running multiple servers on one system
Running multiple PostgreSQL servers on one physical system is possible if it is convenient
for your needs.

Getting ready
Once again, make that sure you've read the Deciding on a design for multitenancy recipe so
that you're certain this is the route you wish to take. Other options exist, and they may be
preferable in some cases.

How to do it…
Core PostgreSQL easily allows multiple servers to run on the same system, but there are a
few wrinkles to be aware of.

Some installer versions create a PostgreSQL data directory named data. It then gets a little
difficult to have more than one data directory without using different directory structures
and names.

Debian/Ubuntu packagers chose a layout specifically designed to allow multiple servers
potentially running with different software release levels. You might remember this from
the Locating the database server files recipe in Chapter 2, Exploring the Database.

Server Control Chapter 4

[132]

Starting from /var/lib/postgresql, which is the home directory of the postgres user,
there is a subdirectory for each major version, for example, 10 or 9.3, inside which the
individual data directories are placed. When installing PostgreSQL server packages, a data
directory is created with the default name of main. Configuration files are separately placed
in /etc/postgresql/<version>/<name>, and log files are created in
/var/log/postgresql/postgresql-<version>-<name>.log.

Thus, not all files will be found in the data directory. As an example, let's create an
additional data directory:

We start by running this command:1.

sudo -u postgres pg_createcluster 11 main2

The new database server can then be started using the following command:2.

sudo -u postgres pg_ctlcluster 11 main2 start

This is sufficient to create and start an additional database cluster in version 11, named
main2. The data and configuration files are stored inside the
/var/lib/postgresql/11/main2/ and /etc/postgresql/11/main2/ directories,
respectively, giving the new database the next unused port number, for example, 5433 if
this is the second PostgreSQL server on that machine.

Local access to multiple PostgreSQL servers has been simplified as well. PostgreSQL client
programs, such as psql, are wrapped by a special script that takes the cluster name as an
additional parameter and automatically uses the corresponding port number. Hence, you
don't really need the following command:

psql --port 5433 -h /var/run/postgresql ...

Instead, you can refer to the database server by name, as shown here:

psql --cluster 11/main2 ...

This has its advantages, especially if you wish (or need) to change the port in the future. I
find this extremely convenient, and it works with other utilities such as pg_dump,
pg_restore, and so on.

With Red Hat systems, you will need to run initdb directly, selecting your directories
carefully:

First, initialize your data directory with something such as the following:1.

sudo -u postgres initdb -D /var/lib/pgsql/datadir2

Server Control Chapter 4

[133]

Then, modify the port parameter in the postgresql.conf file and start using2.
the following command:

sudo -u postgres pg_ctl -D /var/lib/pgsql/datadir2 start

This will create an additional database server at the default server version, with
files stored in /var/lib/pgsql/datadir2.

You can also set up the server with the chkconfig utility to ensure it starts on boot, if your
distribution supports it.

How it works…
PostgreSQL servers are controlled using pg_ctl. Everything else is a wrapper of some kind
around this utility. The only constraints on running multiple versions of PostgreSQL come
from file locations and naming conventions, assuming (of course) that you have enough
resources, such as disk space, memory, and so on. Everything else is straightforward.
Having said that, the Debian/Ubuntu design is currently the only design that makes it
actually easy to run multiple servers.

Setting up a connection pool
A connection pool is a term that's used for a collection of already-connected sessions that
can be used to reduce the overhead of connection and reconnection.

There are various ways by which connection pools can be provided, depending on the
software stack in use. The best option is to look at the server-side connection pool software
because that works for all connection types, not just within a single software stack.

Here, we're going to look at PgBouncer, which is designed as a very lightweight connection
pool. The name comes from the idea that the pool can be paused and resumed to allow the
server to be restarted, or bounced.

Getting ready
First of all, decide where you're going to store the PgBouncer parameter files, log files, and
PID files. PgBouncer can manage more than one database server's connections at the same
time, though that probably isn't wise for simple architectures. If you keep PgBouncer files
associated with the database server, then it should be easy to manage.

Server Control Chapter 4

[134]

How to do it…
Carry out the following steps to configure PgBouncer:

Create a pgbouncer.ini file, as follows:1.

;
; pgbouncer configuration example
;
[databases]
postgres = port=5432 dbname=postgres
[pgbouncer]

listen_addr = 127.0.0.1
listen_port = 6432
admin_users = postgres
;stats_users = monitoring userid
auth_type = any
; put these files somewhere sensible:
auth_file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid

server_reset_query = DISCARD ALL;
; default values
pool_mode = session
default_pool_size = 20
log_pooler_errors = 0

Create a users.txt file. This must contain the minimum users mentioned in2.
admin_users and stats_users. Its format is very simple: a collection of lines
with a username and a password. Consider the following as an example:

"postgres" ""

PgBouncer also supports MD5 authentication. To use that effectively, you need to3.
copy the MD5 encrypted passwords from the database server into the
users.txt file.

Note that, at the time of publication, pgBouncer doesn't support scram-
sha-256 encryption.

Server Control Chapter 4

[135]

You may wish to create the users.txt file by directly copying the details from4.
the server. This can be done by using the following psql script:

postgres=> \o users.txt
postgres=> \t
postgres=> SELECT '"'||rolname||'" "'||rolpassword||'"'
postgres-> FROM pg_authid;
postgres=> \q

Launch pgbouncer:5.

pgbouncer -d pgbouncer.ini

Test the connection; it should respond to reload:6.

psql -p 6432 -h 127.0.0.1 -U postgres pgbouncer -c "reload"

Finally, verify that PgBouncer's max_client_conn parameter does not exceed7.
the max_connections parameter on PostgreSQL.

How it works…
PgBouncer is a great piece of software. Its feature set is very carefully defined to ensure that
it is simple, robust, and very quick. PgBouncer is not multithreaded, so it runs in a single
process, and, thus, on a single CPU. It is very efficient, but very large data transfers will
take more time and reduce concurrency, so create those data dumps using a direct
connection.

PgBouncer provides connection pooling. If you set pool_mode = transaction, then
PgBouncer will also provide connection concentration. This allows hundreds or even
thousands of incoming connections to be managed, while only a few server connections are
made.

As new connections, transactions, or statements arrive, the pool will increase in size up to
the user-defined maximum values. Those connections will stay around until the
server_idle_timeout value before the pool releases them.

PgBouncer also releases sessions every server_lifetime. This allows the server to free
backends in rotation in order to avoid issues with very long-lived session connections.

Server Control Chapter 4

[136]

The earlier query that creates users.txt only includes database users that have a
password. All other users will have a null rolpassword field, so the whole string evaluates
to NULL, and the line is omitted from the password file. This is intentional; users without a
password represent a security risk, unless they are closely guarded. An example of this is
the postgres system user connecting from the same machine, which bypasses PgBouncer,
and is used only for maintenance by responsible and trusted people.

It is possible to use an HBA file with the same syntax as pg_hba.conf. This allows for
more flexibility when enabling TLS encryption (which includes SSL) only for connections to
remote servers, while using the more efficient peer authentication for local servers.

There's more…
Instead of retrieving passwords from the userlist.txt file, PgBouncer can retrieve them
directly from PostgreSQL, using the optional auth_user and auth_query parameters. If
auth_user is set, PgBouncer will connect to the database using that user and run
auth_query every time it needs to retrieve the password of some user trying to log in. The
default value of auth_query is as follows:

SELECT usename, passwd FROM pg_shadow WHERE usename=$1

This default is just a minimal functioning example, which illustrates the idea of
auth_query; however, it requires giving PgBouncer superuser access to PostgreSQL.
Hence, it is good practice to use the more sophisticated approach of creating a SECURITY
DEFINER function that can retrieve the username and password, possibly making some
checks on the username to allow only applicative connections. This is a good restriction
because database administration connections should not go through a connection pooler.

It's also possible to connect to PgBouncer itself to issue commands. This can be done
interactively, as if you were entering psql, or it can be done using single commands or
scripts.

To shut down PgBouncer, we can just type SHUTDOWN or enter a single command, as
follows:

psql -p 6432 pgbouncer -c "SHUTDOWN"

Server Control Chapter 4

[137]

You can also use the RELOAD command to make PgBouncer reload (which means reread)
the parameter files, as we did to test that everything is working.

If you are doing a switchover, you can use the WAIT_CLOSE command, followed by RELOAD
or RECONNECT, to wait until the respective configuration change has been fully activated.

If you are using pool_mode = transaction or pool_mode = statement, then you can
use the PAUSE command. This waits for the current transaction to complete before holding
further work on that session. Thus, it allows you to perform DDL more easily or restart the
server.

PgBouncer also allows you to use the SUSPEND mode, which waits for all server-side
buffers to flush.

The PAUSE or SUSPEND modes should eventually be followed by RESUME when the work is
done.

In addition to the PgBouncer control commands, there are many varieties of SHOW
commands, as listed here:

SHOW command Result set.

SHOW STATS
Traffic stats, total and average requests, query duration, bytes sent/received, and so
on. Also, take a look at SHOW STATS_TOTALS and SHOW STATS_AVERAGES.

SHOW SERVERS One row per connection to the database server.
SHOW CLIENTS One row per connection from the client.
SHOW POOLS One row per pool of users.
SHOW LISTS Gives a good summary of resource totals.
SHOW USERS Lists users in users.txt.
SHOW DATABASES Lists databases in pgbouncer.ini.
SHOW CONFIG Lists configuration parameters.
SHOW FDS Shows file descriptors.
SHOW SOCKETS Shows file sockets.
SHOW VERSION Shows the PgBouncer version.

Server Control Chapter 4

[138]

Accessing multiple servers using the same
host and port
We will now show you one simple, yet important, application of the previous recipe,
Setting up a connection pool. In that recipe, you saw how to reuse connections with
PgBouncer, and thus reduce the cost of disconnecting and reconnecting.

Here, we will demonstrate another way to use PgBouncer—one instance can connect to
databases hosted by different database servers at the same time. These databases can be on
separate hosts, and can even have different major versions of PostgreSQL!

Getting ready
Suppose we have three database servers, each one hosting one database. All you need to
know beforehand is the connection string for each database server.

More complex arrangements are possible, but those are left to you as an exercise.

Before you try this recipe, you should have already gone through the previous recipe.
These two recipes have many steps in common, but we've kept them separate because they
have clearly different goals.

How to do it…
Each database is completely identified by its connection string. PgBouncer will read this
information from its configuration file. Just follow these steps:

All you need to do is to set up PgBouncer like you did in the previous recipe, by1.
replacing the databases section of pgbouncer.ini with the following:

[databases]
myfirstdb = port=5432 host=localhost
anotherdb = port=5437 host=localhost
sparedb = port=5435 host=localhost

Once you have started PgBouncer, you can connect to the first database:2.

$ psql -p 6432 -h 127.0.0.1 -U postgres myfirstdb
psql (11.1)
Type "help" for help.

Server Control Chapter 4

[139]

myfirstdb=# show port;
port

5432
(1 row)

myfirstdb=# show server_version;
server_version

11.1
(1 row)

Now, you can connect to the anotherdb database as if it were on the same3.
server:

myfirstdb=# \c anotherdb
psql (11.1, server 9.5.15)
You are now connected to database "anotherdb" as user "postgres".

The server's greeting message suggests that we have landed on a different server,4.
so we check the port and the version:

anotherdb=# show port;
 port

 5437
(1 row)

anotherdb=# show server_version;
server_version

 9.5.15
(1 row)

There's more…
The Listing databases on this database server recipe in Chapter 2, Exploring the Database, shows
you how to list the available databases on the current database server, using either the \l
meta-command or a couple of equivalent variations. Unfortunately, that doesn't work when
using PgBouncer, for the very good reason that the current database server cannot know
the answer.

Server Control Chapter 4

[140]

We need to ask PgBouncer instead, and we do so by using the SHOW command when
connected to the pgbouncer special administrative database:

myfirstdb=# \c pgbouncer
psql (10.1, server 1.8.1/bouncer)
You are now connected to database "pgbouncer" as user "postgres".
pgbouncer=# show databases;
 name | host | port | database | force_user | pool_size |
reserve_pool
-----------+-----------+------+-----------+------------+-----------+-------

 anotherdb | localhost | 5437 | anotherdb | | 20 |
0
 myfirstdb | localhost | 5432 | myfirstdb | | 20 |
0
 pgbouncer | | 6432 | pgbouncer | pgbouncer | 2 |
0
 sparedb | localhost | 5435 | sparedb | | 20 |
0
(4 rows)

5
Tables and Data

This chapter covers a range of general recipes for your tables and for working with the data
they contain. Many of the recipes contain general advice, though with specific PostgreSQL
examples.

Some system administrators I've met work only on the external aspects of the database
server. What's actually in the database is someone else's problem.

Look after your data, and your database will look after you. Keep your data clean, and your
queries will run faster and cause fewer application errors. You'll also gain many friends in
the business. Getting called in the middle of the night to fix data problems just isn't cool.

In this chapter, we will cover the following recipes:

Choosing good names for database objects
Handling objects with quoted names
Enforcing the same name and definition for columns
Identifying and removing duplicates
Preventing duplicate rows
Finding a unique key for a set of data
Generating test data
Randomly sampling data
Loading data from a spreadsheet
Loading data from flat files
Making bulk data changes using server-side procedures with transactions

Choosing good names for database objects
The easiest way to help other people understand a database is to ensure that all the objects
have a meaningful name.

Tables and Data Chapter 5

[142]

What makes a name meaningful?

Getting ready
Take some time to reflect on your database to make sure you have a clear view of its
purpose and main use cases. This is because all the items in this recipe describe certain
naming choices that you need to consider carefully in view of your specific circumstances.

How to do it…
Here are the points you should consider when naming your database objects:

The name follows the existing standards and practices in place. Inventing new
standards isn't helpful; enforcing existing standards is.
The name clearly describes the role or table contents.
For major tables, use short, powerful names.
Name lookup tables after the table to which they are linked, such as
account_status.
For associative or linked tables, use all the names of the major tables to which
they relate, such as customer_account.
Make sure that the name is clearly distinct from other similar names.
Use consistent abbreviations.
Use underscores. Casing is not preserved by default, so using camel case names,
such as customerAccount, as used in Java, will just leave them unreadable. See
the Handling objects with quoted names recipe.
Use consistent plurals, or don't use them at all.
Use suffixes to identify the content type or domain of an object. PostgreSQL
already uses suffixes for automatically generated objects.
Think ahead. Don't pick names that refer to the current role or location of an
object. So don't name a table London, because it exists on a server in London.
That server might get moved to Los Angeles.

Tables and Data Chapter 5

[143]

Think ahead. Don't pick names that imply that an entity is the only one of its12.
kind, such as a table named TEST, or a table named BACKUP_DATA. On the other
hand, such information can be put in the database name, which is not normally
used from within the database.
Avoid using acronyms in place of long table names. For example,13.
money_allocation_decision is much better than MAD. This is especially
important when PostgreSQL translates the names into lowercase, so the fact that
it is an acronym may not be clear.
The table name is commonly used as the root for other objects that are created, so14.
don't add the table suffix or similar ideas.

There's more…
The standard names for indexes in PostgreSQL are as follows:

{tablename}_{columnname(s)}_{suffix}

Here, the suffix is one of the following:

pkey: This is used for a primary key constraint
key: This is used for a unique constraint
excl: This is used for an exclusion constraint
idx: This is used for any other kind of index

The standard suffix for all sequences is seq.

Tables can have multiple triggers fired on each event. Triggers are executed in alphabetical
order, so trigger names should have some kind of action name to differentiate them and to
allow the order to be specified. It might seem a good idea to put INSERT, UPDATE, or
DELETE in the trigger name, but that can get confusing if you have triggers that work on
both UPDATE and DELETE, and all of this may end up as a mess.

Tables and Data Chapter 5

[144]

The alphabetical order for trigger names always follows the C locale,
regardless of your actual locale settings. If your trigger names use non-
ASCII characters, then the actual ordering might not be what you expect.

The following example shows how the è and é characters are ordered in
the C locale. You can change the locale and/or the list of strings to explore
how different locales affect ordering:

WITH a(x) AS (
 VALUES ('è'),('é')
) SELECT *
FROM a
ORDER BY x
COLLATE "C";

A useful naming convention for triggers is as follows:

{tablename}_{actionname}_{after|before}_trig

If you do find yourself with strange or irregular object names, it will be a good idea to use
the RENAME subcommands to get things tidy again. Here is an example of this:

ALTER INDEX badly_named_index RENAME TO tablename_status_idx;

Handling objects with quoted names
PostgreSQL object names can contain spaces and mixed-case characters if we enclose the
table names in double quotes. This can cause some difficulties, so this recipe is designed to
help you if you get stuck with this kind of problem.

Case sensitivity issues can often be a problem for people more used to working with other
database systems, such as MySQL, or for people who are facing the challenge of migrating
code away from MySQL.

Getting ready
First, let's create a table that uses a quoted name with mixed cases, such as the following:

CREATE TABLE "MyCust"
AS
SELECT * FROM cust;

Tables and Data Chapter 5

[145]

How to do it...
If we try to access these tables without the proper case, we get this error:

postgres=# SELECT count(*) FROM mycust;
ERROR: relation "mycust" does not exist LINE 1: SELECT * FROM mycust;

So, we write it in the correct case:

postgres=# SELECT count(*) FROM MyCust;
ERROR: relation "mycust" does not exist
LINE 1: SELECT * FROM mycust;

This still fails, and in fact gives the same error.

If you want to access a table that was created with quoted names, then you must use
quoted names, such as the following:

postgres=# SELECT count(*) FROM "MyCust";

The output is as follows:

 count

 5
(1 row)

The usage rule is that, if you create your tables using quoted names, then you need to write
your SQL using quoted names. Alternatively, if your SQL uses quoted names, then you will
probably have to create the tables using quoted names as well.

How it works…
PostgreSQL folds all names to lowercase when used within an SQL statement. Consider
this command:

SELECT * FROM mycust;

This is exactly the same as the following command:

SELECT * FROM MYCUST;

It is also exactly the same as this command:

SELECT * FROM MyCust;

Tables and Data Chapter 5

[146]

However, it is not the same thing as the following command:

SELECT * FROM "MyCust";

There's more…
If you are extracting values from a table that is being used to create object names, then you
may need to use a handy function named quote_ident(). This function puts double
quotes around a value if PostgreSQL requires that for an object name, as shown here:

postgres=# SELECT quote_ident('MyCust');
 quote_ident

 "MyCust"
(1 row)
postgres=# SELECT quote_ident('mycust');
 quote_ident

 mycust
(1 row)

The quote_ident() function may be especially useful if you are creating a table based on
a variable name in a PL/pgSQL function, as follows:

EXECUTE 'CREATE TEMP TABLE ' || quote_ident(tablename) ||
 '(col1 INTEGER);'

Enforcing the same name and definition for
columns
Sensibly designed databases have smooth, easy-to-understand definitions. This allows all
users to understand the meaning of data in each table. It is an important way of removing
data quality issues.

Tables and Data Chapter 5

[147]

Getting ready
If you want to run the queries in this recipe as a test, then use the following examples.
Alternatively, you can just check for problems in your own database:

CREATE SCHEMA s1;
CREATE SCHEMA s2;
CREATE TABLE s1.X(col1 smallint,col2 TEXT);
CREATE TABLE s2.X(col1 integer,col3 NUMERIC);

How to do it...
First, we will show you how to identify columns that are defined in different ways in
different tables, using a query against the catalog. We use an information_schema query,
as follows:

SELECT
 table_schema
,table_name
,column_name
,data_type
 ||coalesce(' ' || text(character_maximum_length), '')
 ||coalesce(' ' || text(numeric_precision), '')
 ||coalesce(',' || text(numeric_scale), '')
 as data_type
FROM information_schema.columns
WHERE column_name IN
(SELECT
 column_name
FROM
(SELECT
 column_name
 ,data_type
 ,character_maximum_length
 ,numeric_precision
 ,numeric_scale
 FROM information_schema.columns
 WHERE table_schema NOT IN ('information_schema', 'pg_catalog')
 GROUP BY
 column_name
 ,data_type
 ,character_maximum_length
 ,numeric_precision
 ,numeric_scale
) derived
GROUP BY column_name

Tables and Data Chapter 5

[148]

HAVING count(*) > 1
)
AND table_schema NOT IN ('information_schema', 'pg_catalog')
ORDER BY column_name
;

The query gives an output as follows:

 table_schema | table_name | column_name | data_type
--------------+------------+-------------+---------------
 s1 | x | col1 | smallint 16,0
 s2 | x | col1 | integer 32,0
(2 rows)

Comparing two given tables is more complex, as there are so many ways that the tables
might be similar and yet a little different. The following query looks for all tables of the
same name (and hence, in different schemas) that have different definitions:

WITH table_definition as
(SELECT table_schema
 , table_name
 , string_agg(column_name || ' ' || data_type
 , ',' ORDER BY column_name
) AS def
 FROM information_schema.columns
 WHERE table_schema NOT IN ('information_schema'
 , 'pg_catalog')
 GROUP BY table_schema
 , table_name
)
 , unique_definition as
(SELECT DISTINCT table_name
 , def
 FROM table_definition
)
 , multiple_definition as
(SELECT table_name
 FROM unique_definition
 GROUP BY table_name
 HAVING count(*) > 1
)
SELECT table_schema
 , table_name
 , column_name
 , data_type
 FROM information_schema.columns
 WHERE table_name
 IN (SELECT table_name

Tables and Data Chapter 5

[149]

 FROM multiple_definition)
 ORDER BY table_name
 , table_schema
 , column_name
;

Here is its output:

 table_schema | table_name | column_name | data_type
--------------+------------+-------------+-----------
 s1 | x | col1 | smallint
 s1 | x | col2 | text
 s2 | x | col1 | integer
 s2 | x | col3 | numeric
(4 rows)

How it works…
The definitions of tables are held within PostgreSQL, and can be accessed using the
Information Schema catalog views.

There might be valid reasons why the definitions differ. We've excluded PostgreSQL's own
internal tables because there are similar names between the two catalogs: PostgreSQL's
implementation of the SQL Standard Information Schema and PostgreSQL's own internal
pg_catalog schema.

Those queries are fairly complex. In fact, there is even more complexity that we could add
to those queries to compare all sorts of things such as default values or constraints. The
basic idea can be extended in various directions from here.

There's more…
We can compare the definitions of any two tables using the following function:

CREATE OR REPLACE FUNCTION diff_table_definition
(t1_schemaname text
,t1_tablename text
,t2_schemaname text
,t2_tablename text)
RETURNS TABLE
(t1_column_name text
,t1_data_type text
,t2_column_name text
,t2_data_type text

Tables and Data Chapter 5

[150]

)
LANGUAGE SQL
as
$$
SELECT
 t1.column_name
,t1.data_type
,t2.column_name
,t2.data_type
FROM
 (SELECT column_name, data_type
 FROM information_schema.columns
 WHERE table_schema = $1
 AND table_name = $2
) t1
 FULL OUTER JOIN
 (SELECT column_name, data_type
 FROM information_schema.columns
 WHERE table_schema = $3
 AND table_name = $4
) t2
 ON t1.column_name = t2.column_name
 AND t1.data_type = t2.data_type
WHERE t1.column_name IS NULL OR t2.column_name IS NULL
;
$$;

Here is its usage with output:

select diff_table_definition('s1','x','s2','x');
 diff_table_definition

 (col1,smallint,,)
 (col2,text,,)
 (,,col3,numeric)
 (,,col1,integer)
(4 rows)

Identifying and removing duplicates
Relational databases work on the idea that items of data can be uniquely identified.
However hard we try, there will always be bad data arriving from somewhere. This recipe
shows you how to diagnose that and clean up the mess.

Tables and Data Chapter 5

[151]

Getting ready
Let's start by looking at our example table, cust. It has a duplicate value in customerid:

postgres=# SELECT * FROM cust;
 customerid | firstname | lastname | age
------------+-----------+----------+-----
 1 | Philip | Marlowe | 38
 2 | Richard | Hannay | 42
 3 | Holly | Martins | 25
 4 | Harry | Palmer | 36
 4 | Mark | Hall | 47
(5 rows)

Before you delete duplicate data, remember that sometimes it isn't the data that is wrong: it
is your understanding of it. In those cases, it may be that you haven't properly normalized
your database model, and that you need to include additional tables to account for the
shape of the data. You might also find that duplicate rows are caused because of your
decision to exclude a column somewhere earlier in a data load process. Check twice, and
delete once.

How to do it…
First, identify the duplicates using a query such as the following:

CREATE UNLOGGED TABLE dup_cust AS
SELECT *
FROM cust
WHERE customerid IN
 (SELECT customerid
 FROM cust
 GROUP BY customerid
 HAVING count(*) > 1);

We save the list of duplicates in a separate table because the query can be very slow if the
table is big, so we don't want to run it more than once.

An UNLOGGED table can be created with less I/O because it does not write
WAL. It is better than a temporary table, because it doesn't disappear if
you disconnect and then reconnect. The other side of the coin is that you
lose its contents after a crash, but this is not too bad, because if you are
using an unlogged table then you are telling PostgreSQL that you are able
to recreate the contents of that table in the (unlikely) event of a crash.

Tables and Data Chapter 5

[152]

The results can be used to identify the bad data manually, and you can resolve the problem
by carrying out the following steps:

Merge the two rows to give the best picture of the data, if required. This might1.
use values from one row to update the row you decide to keep, as shown here:

UPDATE cust
SET age = 47
WHERE customerid = 4
AND lastname = 'Palmer';

Delete the remaining undesirable rows:2.

DELETE FROM cust
WHERE customerid = 4
AND lastname = 'Hall';

In some cases, the data rows might be completely identical, as in the new_cust table, which
looks like the following:

postgres=# SELECT * FROM new_cust;
 customerid

 1
 2
 3
 4
 4
(5 rows)

Unlike the preceding case, we can't tell the data apart at all, so we cannot remove duplicate
rows without any manual process. SQL is a set-based language, so picking only one row
out of a set is slightly harder than most people want it to be.

In these circumstances, we should use a slightly different procedure to detect duplicates.
We will use a hidden column named ctid. It denotes the physical location of the row you
are observing; for example, duplicate rows will all have different ctid values. The steps are
as follows:

First, we start a transaction:1.

BEGIN;

Tables and Data Chapter 5

[153]

Then, we lock the table in order to prevent any INSERT, UPDATE, or DELETE2.
operations, which would alter the list of duplicates and/or change their ctid
values:

LOCK TABLE new_cust IN SHARE ROW EXCLUSIVE MODE;

Now we locate all duplicates, keeping track of the minimum ctid value so that3.
we don't delete that value:

CREATE TEMPORARY TABLE dups_cust AS
SELECT customerid, min(ctid) AS min_ctid
FROM new_cust
GROUP BY customerid
HAVING count(*) > 1;

Then we can delete each duplicate, with the exception of the duplicate with the4.
minimum ctid value:

DELETE FROM new_cust
USING dups_cust
WHERE new_cust.customerid = dups_cust.customerid
AND new_cust.ctid != dups_cust.min_ctid;

We commit the transaction, which also releases the lock we previously took:5.

COMMIT;

Finally, we clean up the table after the deletions:6.

VACUUM new_cust;

How it works…
The first query works by grouping together the rows on the unique column and counting
rows. Anything with more than one row must be caused by duplicate values. If we're
looking for duplicates of more than one column (or even all columns), then we have to use
a SQL of the following form:

SELECT *
FROM mytable
WHERE (col1, col2, ... ,colN) IN
(SELECT col1, col2, ... ,colN
 FROM mytable
 GROUP BY col1, col2, ... ,colN
 HAVING count(*) > 1);

Tables and Data Chapter 5

[154]

Here, col1, col2, and so on up until colN are the columns of the key.

Note that this type of query may need to sort the complete table on all the key columns.
That will require sort space equal to the size of the table, so you'd better think first before
running that SQL on very large tables. You'll probably benefit from a large work_mem
setting for this query, probably 128 MB or more.

The DELETE FROM ... USING query that we showed, only works with
PostgreSQL because it uses the ctid value, which is the internal identifier of each row in
the table. If you wanted to run that query against more than one column, as we did earlier
in the chapter, you'd need to extend the queries in step 3, as follows:

SELECT customerid, customer_name, ..., min(ctid) AS min_ctid
FROM ...
GROUP BY customerid, customer_name, ...
...;

Then, extend the query in step 4, like this:

DELETE FROM new_cust
...
WHERE new_cust.customerid = dups_cust.customerid
AND new_cust.customer_name = dups_cust.customer_name
AND ...
AND new_cust.ctid != dups_cust.min_ctid;

The preceding query works by grouping together all the rows with similar values and then
finding the row with the lowest ctid value. The lowest will be closer to the start of the
table, so duplicates will be removed from the far end of the table. When we run VACUUM, we
may find that the table gets smaller, because we have removed rows from the far end.

The BEGIN and COMMIT commands wrap the LOCK and DELETE commands into a single
transaction, which is required. Otherwise, the lock will be released immediately after being
taken.

Another reason to use a single transaction is that we can always roll back if anything goes
wrong, which is a good thing when we are removing data from a live table.

Tables and Data Chapter 5

[155]

There's more…
Locking the table against changes for long periods may not be possible while we remove
duplicate rows. That creates some fairly hard problems with large tables. In that case, we
need to do things slightly differently:

Identify the rows to be deleted, and save them in a side table.1.
Build an index on the main table to speed up access to rows (maybe using the2.
CONCURRENTLY keyword, as explained in the Maintaining indexes recipe in
Chapter 9, Regular Maintenance).
Write a program that reads the rows from the side table in a loop, performing a3.
series of smaller transactions.
Start a new transaction.4.
From the side table, read a set of rows that match.5.
Select those rows from the main table for updates, relying on the index to make6.
those accesses happen quickly.
Delete the appropriate rows.7.
Commit, and then loop again.8.

The aforementioned program can't be written as a database function, as we can't have
multiple transactions in a function. We need multiple transactions to ensure that we hold
locks on each row for the shortest possible duration.

Preventing duplicate rows
Preventing duplicate rows is one of the most important aspects of data quality for any
database. PostgreSQL offers some useful features in this area, extending beyond most
relational databases.

Getting ready
Identify the set of columns that you wish to make unique. Does this apply to all rows, or
just a subset of rows?

Tables and Data Chapter 5

[156]

Let's start with our example table:

postgres=# SELECT * FROM new_cust;
 customerid

 1
 2
 3
 4
(4 rows)

How to do it…
To prevent duplicate rows, we need to create a unique index that the database server can
use to enforce uniqueness of a particular set of columns. We can do this in the following
three similar ways for basic data types:

Create a primary key constraint on the set of columns. We are allowed only one1.
of these per table. The values of the data rows must not be NULL, as we force the
columns to be NOT NULL if they aren't already:

ALTER TABLE new_cust ADD PRIMARY KEY(customerid);

This creates a new index named new_cust_pkey.2.
Create a unique constraint on the set of columns. We can use these instead of/or3.
with a primary key. There is no limit on the number of these per table. NULL
values are allowed in the columns:

ALTER TABLE new_cust ADD UNIQUE(customerid);

This creates a new index named new_cust_customerid_key.4.
Create a unique index on the set of columns:5.

CREATE UNIQUE INDEX ON new_cust (customerid);

This creates a new index named new_cust_customerid_idx.6.

All of these techniques exclude duplicates, just with slightly different syntaxes. All of them
create an index, but only the first two create a formal constraint. Each of these techniques
can be used when we have a primary key or unique constraint that uses multiple columns.

Tables and Data Chapter 5

[157]

The last method is important because it allows you to specify a WHERE clause on the index.
This can be useful if you know that the column values are unique only in certain
circumstances. The resulting index is then known as a partial index.

Suppose our data looked like this:

postgres=# SELECT * FROM partial_unique;

This gives the following output:

customerid | status | close_date
-----------+--------+------------
 1 | OPEN |
 2 | OPEN |
 3 | OPEN |
 3 | CLOSED | 2010-03-22
(4 rows)

Then we can put a partial index on the table to enforce uniqueness of customerid only for
status = 'OPEN', like this:

CREATE UNIQUE INDEX ON partial_unique (customerid)
 WHERE status = 'OPEN';

If your uniqueness constraint needs to be enforced across more complex data types, then
you may need to use a more advanced syntax. A few examples will help here.

Let's start with the simplest example: create a table of boxes and put sample data in it. This
may be the first time you're seeing PostgreSQL's data type syntax, so bear with me:

postgres=# CREATE TABLE boxes (name text, position box);
CREATE TABLE
postgres=# INSERT INTO boxes VALUES
 ('First', box '((0,0), (1,1))');
INSERT 0 1
postgres=# INSERT INTO boxes VALUES
 ('Second', box '((2,0), (2,1))');
INSERT 0 1
postgres=# SELECT * FROM boxes;
 name | position
--------+-------------
 First | (1,1),(0,0)
 Second | (2,1),(2,0)
(2 rows)

We can see two boxes that neither touch nor overlap, based on their x and y coordinates.

Tables and Data Chapter 5

[158]

To enforce uniqueness here, we want to create a constraint that will throw out any attempt
to add a position that overlaps with any existing box. The overlap operator for the box data
type is defined as &&, so we use the following syntax to add the constraint:

ALTER TABLE boxes ADD EXCLUDE USING gist (position WITH &&);

This creates a new index named boxes_position_excl:

 #\d boxes_position_excl
 Index "public.boxes_position_excl"
 Column | Type | Key? | Definition
----------+------+------+------------
 position | box | yes | "position"
gist, for table "public.boxes"

We can use the same syntax even with the basic data types. So, a fourth way of performing
our first example would be as follows:

ALTER TABLE new_cust ADD EXCLUDE (customerid WITH =);

This creates a new index named new_cust_customerid_excl and duplicates are
excluded:

insert into new_cust VALUES (4);
ERROR: conflicting key value violates exclusion constraint
"new_cust_customerid_excl"
DETAIL: Key (customerid)=(4) conflicts with existing key (customerid)=(4).

How it works…
Uniqueness is always enforced by an index.

Each index is defined with a data type operator. When a new row is inserted or the set of
column values is updated, we use the operator to search for existing values that conflict
with the new data.

So, to enforce uniqueness, we need an index and a search operator defined on the data
types of the columns. When we define normal UNIQUE constraints, we simply assume that
we mean the equality operator (=) for the data type. The EXCLUDE syntax offers a richer
syntax to allow us to express the same problem with different data types and operators.

Tables and Data Chapter 5

[159]

There's more...
Unique and exclusion constraints can be marked as deferrable, meaning that the user can
choose to postpone the check to the end of the transaction, a nice way to relax constraints
without reducing data integrity.

Duplicate indexes
Note that PostgreSQL allows you to have multiple indexes with exactly the same definition.
This is useful in some contexts, but can also be annoying if you accidentally create multiple
indexes, as each index has its own cost in terms of writes. You can also have constraints
defined using each of the aforementioned different ways. Each of these ways enforces,
essentially, the same constraint, so take care.

Uniqueness without indexes
It's possible to have uniqueness in a set of columns without creating an index. That might
be useful if all we want is to ensure uniqueness rather than allow index lookups.

To do that, you can do either of the following:

Use a serial data type
Manually alter the default to be the nextval() function of a sequence

Each of these will provide a unique value for use as a row's key. The uniqueness is not
enforced, nor will there be a unique constraint defined. So, there is still a possibility that
someone might reset the sequence to an earlier value, which will eventually cause duplicate
values.

Consider, also, that this method provides the unique value as a default, which is not used
when the user specifies an explicit value. An example of this is as follows:

CREATE TABLE t(id serial, descr text);
INSERT INTO t(descr) VALUES ('First value');
INSERT INTO t(id,descr) VALUES (1,'Cheating!');

Finally, you might also wish to have mostly unique data, such as using the
clock_timestamp() function to provide ascending times to microsecond resolution.

Tables and Data Chapter 5

[160]

Real-world example – IP address range allocation
The problem is about assigning ranges of IP addresses, while at the same time ensuring that
we don't allocate (or potentially allocate) the same addresses to different people or
purposes. This is easy to do if we keep track of each individual IP address, and much
harder to do if we want to deal solely with ranges of IP addresses.

Initially, you may think of designing the database as follows:

CREATE TABLE iprange
 (iprange_start inet
 ,iprange_stop inet
 ,owner text);
INSERT INTO iprange VALUES
 ('192.168.0.1','192.168.0.16', 'Simon');
INSERT INTO iprange VALUES
 ('192.168.0.17','192.168.0.24', 'Gianni');
INSERT INTO iprange VALUES
 ('192.168.0.32','192.168.0.64', 'Gabriele');

However, you'll realize that there is no way to create a unique constraint that enforces the
model constraint of avoiding overlapping ranges. You could create an after trigger that
checks existing values, but it's going to be messy.

PostgreSQL offers a better solution, based on range types. In fact, every data type that
supports a btree operator class (that is, a way of ordering any two given values) can be
used to create a range type. In our case, the SQL is as follows:

CREATE TYPE inetrange AS RANGE (SUBTYPE = inet);

This command creates a new data type that can represent ranges of inet values, that is, of
IP addresses. Now we can use this new type when creating a table:

CREATE TABLE iprange2
(iprange inetrange
,owner text);

This new table can be populated as usual. We just have to group the extremes of each range
into a single value, as follows:

INSERT INTO iprange2
VALUES ('[192.168.0.1,192.168.0.16]', 'Simon');
INSERT INTO iprange2
VALUES ('[192.168.0.17,192.168.0.24]', 'Gianni');
INSERT INTO iprange2
VALUES ('[192.168.0.32,192.168.0.64]', 'Gabriele');

Tables and Data Chapter 5

[161]

Now we can create a unique exclusion constraint on the table, using the following syntax:

ALTER TABLE iprange2
 ADD EXCLUDE USING GIST (iprange WITH &&);

If we try to insert a range that overlaps with any of the existing ranges, then PostgreSQL
will stop us:

INSERT INTO iprange2
VALUES ('[192.168.0.10,192.168.0.20]', 'Somebody else');
ERROR: conflicting key value violates exclusion constraint
"iprange2_iprange_excl"
DETAIL: Key (iprange)=([192.168.0.10,192.168.0.20]) conflicts with
existing key (iprange)=([192.168.0.1,192.168.0.16]).

Real-world example – range of time
In many databases, there will be historical data tables with data that has a
START_DATE value and an END_DATE value, or something similar. As in the previous
example, we can solve this example elegantly with a range type. Actually, this example is
even shorter – we don't need to create the range type since the most common cases are
already built-in, and, to be precise, include integers, decimal values, dates, and timestamps
with and without a time zone.

Real-world example – prefix ranges
Another common problem involves assigning credit card numbers or telephone numbers.
For example, with credit card numbers, we may need to perform additional checking for
certain financial institutions, assuming that each institution is assigned a given range. In
that case, we must check efficiently if a given credit card number belongs to a certain range.

The prefix range data type has been specifically designed to address this class of problems.
This is available as a PostgreSQL extension at http://github.com/dimitri/prefix.

A warning: despite the similar name, prefix ranges cannot be
implemented as range types.

http://github.com/dimitri/prefix

Tables and Data Chapter 5

[162]

Finding a unique key for a set of data
Sometimes, it can be difficult to find a unique set of key columns that describe the data.

Getting ready
Let's start with a small table, where the answer is fairly obvious:

postgres=# select * from ord;

We assume that the output is as follows:

orderid | customerid | amt
---------+------------+--------
 10677 | 2 | 5.50
 5019 | 3 | 277.44
 9748 | 3 | 77.17
(3 rows)

How to do it…
First of all, there's no need to do this through a brute-force approach. Checking all the
permutations of columns to see which is unique might take you a long time.

Let's start by using PostgreSQL's own optimizer statistics. Run the following command on
our table to get a fresh sample of statistics:

postgres=# analyze ord;
ANALYZE

This runs quickly, so we don't have to wait too long. Now we can examine the relevant
columns of the statistics:

postgres=# SELECT attname, n_distinct
 FROM pg_stats
 WHERE schemaname = 'public'
 AND tablename = 'ord';
 attname | n_distinct
------------+------------
 orderid | -1
 customerid | -0.666667
 amt | -1
(3 rows)

Tables and Data Chapter 5

[163]

The preceding example was chosen because we have two potential answers. If the value of
n_distinct is -1, then the column is thought to be unique within the sample of rows
examined.

We would then need to use our judgment to decide whether one or both of these columns
are unique by chance, or as part of the design of the database that created them.

It's possible that there is no single column that uniquely identifies the rows. Multiple
column keys are fairly common. If none of the columns were unique, then we should start
looking for unique keys that are combinations of the most unique columns. The following
query shows a frequency distribution for the table such that a value occurs twice in one
case, and another value occurs only once:

postgres=# SELECT num_of_values, count(*)
 FROM (SELECT customerid, count(*) AS num_of_values
 FROM ord
 GROUP BY customerid) s
 GROUP BY num_of_values
 ORDER BY count(*);
 num_of_values | count
---------------+-------
 2 | 1
 1 | 1
(2 rows)

We can change the query to include multiple columns, like this:

SELECT num_of_values, count(*)
FROM (SELECT customerid, orderid, amt
 ,count(*) AS num_of_values
 FROM ord
 GROUP BY customerid, orderid, amt
) s
GROUP BY num_of_values
ORDER BY count(*);

This query will result in only one row, once we find a set of columns that is unique.

As we get closer to finding the key, we will see that the distribution gets tighter and tighter.

Tables and Data Chapter 5

[164]

So, the procedure is as follows:

Choose one column to start with.1.
Compute the corresponding frequency distribution.2.
If the outcome is multiple rows, then add one more column and repeat from step3.
2. Otherwise, it means you have found a set of columns satisfying a uniqueness
constraint.

Now you must verify that the set of columns is minimal; for example, check whether it is
possible to remove one or more columns without violating the unique constraint. This can
be done using the frequency distribution as a test. To be precise, do the following:

Test each column by computing the frequency distribution on all the other1.
columns.
If the frequency distribution has one row, then the column is not needed in the2.
uniqueness constraint. Remove it from the set of columns and repeat from step 1.
Otherwise, you have found a minimal set of columns, which is also called a key
for that table.

How it works…
Finding a unique key is possible for a program, but in most cases, a human can do this
much faster by looking at things such as column names, foreign keys, or business
understanding to reduce the number of searches required by the brute-force approach.

The ANALYZE command works by taking a sample of the table data, and then performing a
statistical analysis of the results. The n_distinct value has two different meanings,
depending on its sign: if positive, it is the estimate of the number of distinct values for the
column; if negative, it is the estimate of the density of such distinct values, with the sign
changed. For example, n_distinct = -0.2 means that a table of one million rows is
expected to have 200,000 distinct values, while n_distinct = 5 means that we expect just
five distinct values.

Generating test data
DBAs frequently need to generate test data for a variety of reasons, whether it's for setting
up a test database or just for generating a test case for a SQL performance issue.

Tables and Data Chapter 5

[165]

How to do it...
To create a table of test data, we need the following:

Some rows
Some columns
Some order

The steps are as follows:

First, generate a lot of rows of data. We use something named a set-returning1.
function. You can write your own, though PostgreSQL includes a couple of very
useful ones.
You can generate a sequence of rows using a query like the following:2.

postgres=# SELECT * FROM generate_series(1,5);
 generate_series

 1
 2
 3
 4
 5
(5 rows)

Alternatively, you can generate a list of dates, like this:3.

postgres=# SELECT date(t)
FROM generate_series(now(),
 now() + '1 week', '1 day') AS f(t);
 date

 2018-04-24
 2018-04-25
 2018-04-26
 2018-04-27
 2018-04-28
 2018-04-29
 2018-04-30
 2018-05-01
(8 rows)

Tables and Data Chapter 5

[166]

Then, we want to generate a value for each column in the test table. We can4.
break that down into a series of functions, using the following examples as a
guide:

Either of these functions can be used to generate both rows and
reasonable primary key values for them
For a random integer value, this is the function:

(random()*(2*10^9))::integer

For a random bigint value, the function is as follows:

(random()*(9*10^18))::bigint

For random numeric data, the function is the following:5.

(random()*100.)::numeric(5,2)

For a random-length string, up to a maximum length, this is the
function:

repeat('1',(random()*40)::integer)

For a random-length substring, the function is as follows:

substr('abcdefghijklmnopqrstuvwxyz',1,
(random()*25)::integer)

Here is the function for a random string from a list of strings:

(ARRAY['one','two','three'])[0.5+random()*3]

Finally, we can put both techniques together to generate our table:6.

postgres=# SELECT key
 ,(random()*100.)::numeric(4,2)
 ,repeat('1',(random()*25)::integer)
 FROM generate_series(1,10) AS f(key);
 key | numeric | repeat
-----+---------+------------------------
 1 | 83.05 | 1111
 2 | 5.28 | 11111111111111
 3 | 41.85 | 1111111111111111111111
 4 | 41.70 | 11111111111111111
 5 | 53.31 | 1
 6 | 10.09 | 1111111111111111
 7 | 68.08 | 111

Tables and Data Chapter 5

[167]

 8 | 19.42 | 1111111111111111
 9 | 87.03 | 11111111111111111111
 10 | 70.64 | 111111111111111
(10 rows)

Alternatively, we can use random ordering:7.

postgres=# SELECT key
 ,(random()*100.)::numeric(4,2)
 ,repeat('1',(random()*25)::integer)
 FROM generate_series(1,10) AS f(key)
 ORDER BY random() * 1.0;
 key | numeric | repeat
-----+---------+-------------------------
 4 | 86.09 | 1111
 10 | 28.30 | 11111111
 2 | 64.09 | 111111
 8 | 91.59 | 111111111111111
 5 | 64.05 | 11111111
 3 | 75.22 | 11111111111111111
 6 | 39.02 | 1111
 7 | 20.43 | 1111111
 1 | 42.91 | 11111111111111111111
 9 | 88.64 | 1111111111111111111111
(10 rows)

How it works…
To set returning functions, literally return a set of rows. That allows them to be used in
either the FROM clause, as if they were a table, or the SELECT clause. The
generate_series() set of functions returns either dates or integers, depending on the
data types of the input parameters you use.

The :: operator is used to cast between data types. The random string from a list of strings
example uses PostgreSQL arrays. You can create an array using the ARRAY constructor
syntax, and then use an integer to reference one element in the array. In our case, we used a
random subscript.

Tables and Data Chapter 5

[168]

There's more…
There are also some commercial tools used to generate application-specific test data for
PostgreSQL. They are available
at http://www.sqlmanager.net/products/postgresql/datagenerator and
http://www.datanamic.com/datagenerator/index.html.

The key features for any data generator are as follows:

The ability to generate data in the right format for custom data types
The ability to add data to multiple tables, while respecting foreign key
constraints between tables
The ability to add data to non-uniform distributions

The tools and tricks shown here are cool and clever, though there are some problems
hiding here as well. Real data has so many strange things in it that it can be very hard to
simulate. One of the most difficult things is generating data that follows realistic
distributions. For example, if we had to generate data for people's heights, then we'd want
to generate data to follow a normal distribution. If we were generating customer bank
balances, we'd want to use a ZIP distribution, or for the number of reported insurance
claims, perhaps a Poisson distribution (or perhaps not). Replicating the real quirks in data
can take some time.

Finally, note that casting a float into an integer rounds it to the nearest integer, so the
distribution of integers is not uniform on each extreme. For instance, the probability of
(random()*10)::int being 0 is just 5%, as is its probability of being 10, while each
integer between 1 and 9 occurs with a probability of 10%. This is why we put 0.5 in the last
example, which is simpler than using the floor() function.

See also
You can use existing data to generate test databases using sampling. That's the
subject of our next recipe, Randomly sampling data.

Randomly sampling data
DBAs may be asked to set up a test server and populate it with test data. Often, that server
will be old hardware, possibly with smaller disk sizes. So, the subject of data sampling
raises its head.

http://www.sqlmanager.net/products/postgresql/datagenerator
http://www.datanamic.com/datagenerator/index.html

Tables and Data Chapter 5

[169]

The purpose of sampling is to reduce the size of the dataset and improve the speed of later
analysis. Some statisticians are so used to the idea of sampling that they may not even
question whether its use is valid or if it can cause further complications.

The SQL standard way to perform sampling is by adding the TABLESAMPLE clause to the
SELECT statement.

How to do it…
In this section, we will take a random sample of a given collection of data (for example, a
given table). First, you should realize that there isn't a simple tool to slice off a sample of
your database. It would be neat if there were, but there isn't. You'll need to read all of this
to understand why:

We first consider using SQL to derive a sample. Random sampling is actually1.
very simple because we can use the TABLESAMPLE clause. Consider the following
example:

postgres=# SELECT count(*) FROM mybigtable;
 count

 10000
(1 row)
postgres=# SELECT count(*) FROM mybigtable
 TABLESAMPLE BERNOULLI(1);
 count

 106
(1 row)
postgres=# SELECT count(*) FROM mybigtable
 TABLESAMPLE BERNOULLI(1);
 count

 99
(1 row)

Here, the TABLESAMPLE clause applies to mybigtable, and tells SELECT to2.
consider only a random sample, while the BERNOULLI keyword denotes the
sampling method used, and the number 1 between parentheses represents the
percentage of rows that we want to consider in the sample, that is, 1%. Quite
easy!

Tables and Data Chapter 5

[170]

Now we need to get the sampled data out of the database, which is tricky for a3.
few reasons. Firstly, there is no option to specify a WHERE clause for pg_dump.
Secondly, if you create a view that contains the WHERE clause, pg_dump dumps
only the view definition, not the view itself.
You can use pg_dump to dump all databases, apart from a set of tables, so you4.
can produce a sampled dump like this:

pg_dump –-exclude-table=mybigtable > db.dmp
pg_dump –-table=mybigtable –-schema-only > mybigtable.schema
psql -c '\copy (SELECT * FROM mybigtable
 TABLESAMPLE BERNOULLI (1)) to mybigtable.dat'

Then reload onto a separate database using the following commands:5.

psql -f db.dmp
psql -f mybigtable.schema
psql -c '\copy mybigtable from mybigtable.dat'

Overall, my advice is to use sampling with caution. In general, it is easier to apply it to a
few very large tables only, in view of both the mathematical issues surrounding the sample
design and the difficulty of extracting the data.

How it works...
The extract mechanism shows off the capabilities of the PostgreSQL command-line tools,
psql and pg_dump, as pg_dump allows you to include or exclude objects and dump the
entire table (or only its schema), whereas psql allows you to dump out the result of an
arbitrary query into a file.

The BERNOULLI clause specifies the sampling method, that is, PostgreSQL takes the
random sample by performing a full table scan, and then selecting each row with the
required probability, here 1%.

Another built-in sampling method is SYSTEM, which reads a random sample of table pages,
and then includes all rows in these pages; this is generally faster, given that samples are
normally quite a bit smaller than the original, but the randomness of the selection is
affected by how rows are physically arranged on disk, which makes it suitable for some
applications only.

Tables and Data Chapter 5

[171]

Here is an example that shows what the problem is. Suppose you take a dictionary, rip out
a few pages, and then select all the words in them; you will get a random sample composed
of a few clusters of consecutive words. This is good enough if you want to estimate the
average length of a word, but not for analyzing the average number of words for each
initial letter. The reason is that the initial letter of a word is strongly correlated with how
the words are arranged in pages, while the length of a word is not.

We haven't discussed how random the TABLESAMPLE clause is. This isn't the right place for
such details; however, it is reasonably simple to extend PostgreSQL with extra functions or
sampling methods, so if you prefer another mechanism, you can find an external random
number generator, and create a new sampling method for the TABLESAMPLE clause.
PostgreSQL includes two extra sampling methods, tsm_system_rows and
tsm_system_time,, as contrib extensions: they are excellent examples to start from.

The tsm_system_rows method does not work with percentages; instead, the numeric
argument is interpreted as the number of rows to be returned. Similarly,
the tsm_system_time method will regard its argument as the number of milliseconds to
spend retrieving the random sample.

These two methods include the word system in their name because they use block-level
sampling, like the built-in system sampling method; hence, their randomness is affected by
the same clustering limitation as described previously.

The sampling method shown earlier is a simple random sampling technique that has an
equal probability of selection (EPS) design.

EPS samples are considered useful because the variance of the sample attributes is similar
to the variance of the original dataset. However, bear in mind that this is useful only if you
are considering variances.

Simple random sampling can make the eventual sample biased towards more frequently
occurring data. For example, if you have a 1% sample of data on which some kinds of data
occur only 0.001% of the time, you may end up with a dataset that doesn't have any of that
outlying data.

What you might wish to do is to pre-cluster your data and take different samples from each
group to ensure that you have a sampled dataset that includes many more outlying
attributes. A simple method might be to do the following:

Include 1% of all normal data
Include 25% of outlying data

Note that if you do this, then it is no longer an EPS sample design.

Tables and Data Chapter 5

[172]

Undoubtedly, there are statisticians who will be apoplectic after reading this. You're
welcome to use the facilities of the SQL language to create a more accurate sample. Just
make sure that you know what you're doing and/or check out some good statistical
literature, websites, or textbooks.

Loading data from a spreadsheet
Spreadsheets are the most obvious starting place for most data stores. Studies within a
range of businesses consistently show that more than 50% of smaller data stores are held in
spreadsheets or small desktop databases. Loading data from these sources is a frequent and
important task for many DBAs.

Getting ready
Spreadsheets combine data, presentation, and programs all into one file. That's perfect for
power users wanting to work quickly. Like other relational databases, PostgreSQL is
mainly concerned with the lowest level of data, so extracting just the data from these
spreadsheets can present some challenges.

We can easily handle spreadsheet data if that spreadsheet's layout follows a very specific
form, as follows:

Each spreadsheet column becomes one column in one table
Each row of the spreadsheet becomes one row in one table
Data is only in one worksheet of the spreadsheet
Optionally, the first row is a list of column descriptions/titles

This is a very simple layout, and more often there will be other things in the spreadsheet,
such as titles, comments, constants for use in formulas, summary lines, macros, and images.
If you're in this position, the best thing to do is to create a new worksheet within the
spreadsheet in the pristine form described earlier, and then set up cross-worksheet
references to bring in the data. An example of a cross-worksheet reference would be
=Sheet2.A1. You'll need a separate worksheet for each set of data that will become one
table on PostgreSQL. You can load multiple worksheets into one table, however.

Tables and Data Chapter 5

[173]

Some spreadsheet users will say that all of this is unnecessary, and is evidence of the
problems of databases. The real spreadsheet gurus do actually advocate this type of layout
– data in one worksheet and calculation and presentation in other worksheets. So, it is
actually best practice to design spreadsheets in this way; however, we must work with the
world the way it is.

How to do it...
Here, we will show you an example where data in a spreadsheet is loaded into a database:

If your spreadsheet data is neatly laid out in a single worksheet, as shown in the1.
following screenshot, then you can go to File | Save As and then select CSV as
the file type to be saved:

This will export the current worksheet to a file, like the following:2.

"Key","Value"
1,"c"
2,"d"

We can then load it into an existing PostgreSQL table, using the following psql3.
command:

postgres=# \COPY sample FROM sample.csv CSV HEADER
postgres=# SELECT * FROM sample;
 key | value
-----+-------
 1 | c
 2 | d

Tables and Data Chapter 5

[174]

Alternatively, from the command line, this would be as follows:4.

psql -c '\COPY sample FROM sample.csv CSV HEADER'

Note that the file can include a full file path if the data is in a different directory.5.
The psql \COPY command transfers data from the client system where you run
the command through to the database server, so the file is on the client.
If you are submitting SQL through another type of connection, then you should6.
use the following SQL statement:

COPY sample FROM '/mydatafiledirectory/sample.csv' CSV HEADER;

Note that the preceding SQL statement runs on the database server and can only be
executed by a super user. So, you need to ensure that the server process is allowed to read
that file, then transfer the data yourself to the server, and finally load the file. The COPY
statement shown in the preceding SQL statement uses an absolute path to identify data
files, which is required.

The COPY (or \COPY) command does not create the table for you; that must be done
beforehand. Note also that the HEADER option does nothing but ignore the first line of the
input file, so the names of the columns from the .csv file don't need to match those of the
Postgres table. If it hasn't occurred to you yet, this is also a problem. If you say HEADER
and the file does not have a header line, then all it does is ignore the first data row.
Unfortunately, there's no way for PostgreSQL to tell whether the first line of the file is truly
a header or not. Be careful!

There isn't a standard tool to load data directly from the spreadsheet to the database. It's
fairly simple to write a spreadsheet macro to automate the aforementioned tasks, but that's
not a topic for this book.

How it works...
The \COPY command executes a COPY SQL statement, so the two methods described earlier
are very similar. There's more to be said about COPY, so we'll cover that in the next recipe.

Tables and Data Chapter 5

[175]

There's more...
There are many data extraction and loading tools available out there, some cheap and some
expensive. Remember that the hardest part of loading data from any spreadsheet is
separating the data from all the other things it contains. I've not yet seen a tool that can help
with that.

Loading data from flat files
Loading data into your database is one of the most important tasks. You need to do this
accurately and quickly. Here's how.

Getting ready
You'll need a copy of pgloader, which is commonly available in all main software
distribution.

At the time of writing, the current stable version is 3.4.1. The 3.x series is a major rewrite,
with many additional features, and the 2.x series is now considered obsolete.

How to do it...
PostgreSQL includes a command named COPY that provides the basic data load/unload
mechanism. The COPY command doesn't do enough when loading data, so let's skip the
basic command and go straight to pgloader.

To load data, we need to understand our requirements, so let's break this down into a step-
by-step process, as follows:

Identify the data files and where they are located. Make sure that pgloader is1.
installed at the location of the files.
Identify the table into which you are loading, ensure that you have the2.
permissions to load, and check the available space. Work out the file type
(examples include fixed-size fields, delimited text, and CSV) and check the
encoding.

Tables and Data Chapter 5

[176]

Specify the mapping between columns in the file and columns on the table being3.
loaded. Make sure you know which columns in the file are not needed
– pgloader allows you to include only the columns you want. Identify any
columns in the table for which you don't have data. Do you need them to have a
default value on the table, or does pgloader need to generate values for those
columns through functions or constants?
Specify any transformations that need to take place. The most common issue is4.
date formats, although, possibly, there may be other issues.
Write the pgloader script.5.
The pgloader script will create a log file to record whether the load has6.
succeeded or failed, and another file to store rejected rows. You need a directory
with sufficient disk space if you expect them to be large. Their size is roughly
proportional to the number of failing rows.
Finally, consider what settings you need for performance options. This is7.
definitely last, as fiddling with things earlier can lead to confusion when you're
still making the load work correctly.
You must use a script to execute pgloader. This is not a restriction; actually, it is8.
more like best practice, because it makes it much easier to iterate towards
something that works. Loads never work the first time, except in the movies!

Let's look at a typical example from pgloader's quick start documentation, the csv.load
file.

Define the required operations in a command and save it in a file, say csv.load:

LOAD CSV
 FROM '/tmp/file.csv' (x, y, a, b, c, d)
 INTO postgresql://postgres@localhost:5432/postgres?csv (a, b, d, c)

 WITH truncate,
 skip header = 1,
 fields optionally enclosed by '"',
 fields escaped by double-quote,
 fields terminated by ','

 SET client_encoding to 'latin1',
 work_mem to '12MB',
 standard_conforming_strings to 'on'

 BEFORE LOAD DO
 $$ drop table if exists csv; $$,
 $$ create table csv (
 a bigint,

Tables and Data Chapter 5

[177]

 b bigint,
 c char(2),
 d text
);
 $$;

This command allows loading the following CSV file content. Save this in a file,
say file.csv under the /tmp directory:

Header, with a © sign
"2.6.190.56","2.6.190.63","33996344","33996351","GB","United Kingdom"
"3.0.0.0","4.17.135.31","50331648","68257567","US","United States"
"4.17.135.32","4.17.135.63","68257568","68257599","CA","Canada"
"4.17.135.64","4.17.142.255","68257600","68259583","US","United States"
"4.17.143.0","4.17.143.15","68259584","68259599","CA","Canada"
"4.17.143.16","4.18.32.71","68259600","68296775","US","United States"

We can use the following load script:

pgloader csv.load

Here's what gets loaded in the PostgreSQL database:

postgres=# select * from csv ;
 a | b | c | d
----------+----------+----+----------------
 33996344 | 33996351 | GB | United Kingdom
 50331648 | 68257567 | US | United States
 68257568 | 68257599 | CA | Canada
 68257600 | 68259583 | US | United States
 68259584 | 68259599 | CA | Canada
 68259600 | 68296775 | US | United States
(6 rows)

How it works…
pgloader copes gracefully with errors. The COPY command loads all rows in a single
transaction, so only a single error is enough to abort the load. pgloader breaks down an
input file into reasonably sized chunks, and loads them piece by piece. If some rows in a
chunk cause errors, then pgloader will split it iteratively until it loads all the good rows
and skips all the bad rows, which are then saved in a separate rejects file for later
inspection. This behavior is very convenient if you have large data files with a small
percentage of bad rows; for instance, you can edit the rejects, fix them, and, finally, load
them with another pgloader run.

Tables and Data Chapter 5

[178]

Versions from the 2.x iteration of pgloader were written in Python and connected to
PostgreSQL through the standard Python client interface. Version 3.x is written in Common
Lisp. Yes, pgloader is less efficient than loading data files using a COPY command, but
running a COPY command has many more restrictions: the file has to be in the right place on
the server, has to be in the right format, and must be unlikely to throw errors on loading.
pgloader has additional overhead, but it also has the ability to load data using multiple
parallel threads, so it can be faster to use as well. pgloader's ability to reformat the data via
user-defined functions is often essential; straight COPY is just too simple.

pgloader also allows loading from fixed-width files, which COPY does not.

There's more…
If you need to reload the table completely from scratch, then specify the -WITH TRUNCATE
clause in the pgloader script.

There are also options to specify SQL to be executed before and after loading the data. For
instance, you may have a script that creates the empty tables before, or you can add
constraints after, or both.

After loading, if we have load errors, then there will be some junk loaded into the
PostgreSQL tables. It is not junk that you can see, or that gives any semantic errors, but
think of it more like fragmentation. You should think about whether you need to add a
VACUUM command after the data load, though this will possibly make the load take much
longer.

We need to be careful to avoid loading data twice. The only easy way of doing that is to
make sure that there is at least one unique index defined on every table that you load. The
load should then fail very quickly.

String handling can often be difficult, because of the presence of formatting or non-
printable characters. The default setting for PostgreSQL is to have a parameter named
standard_conforming_strings set to off, which means that backslashes will be
assumed to be escape characters. Put another way, by default, the \n string means line feed,
which can cause data to appear truncated. You'll need to
turn standard_conforming_strings to on, or you'll need to specify an escape character
in the load-parameter file.

Tables and Data Chapter 5

[179]

If you are reloading data that has been unloaded from PostgreSQL, then you may want to
use the pg_restore utility instead. The pg_restore utility has an option to reload data in
parallel, -j number_of_threads, though this is only possible if the dump was produced
using the custom pg_dump format. Refer to the recipes in Chapter 11, Backup and Recovery,
for more details. This can be useful for reloading dumps, though it lacks almost all of the
other pgloader features discussed here.

If you need to use rows from a read-only text file that does not have errors, then you may
consider using the file_fdw contrib module. The short story is that it lets you create a
virtual table that will parse the text file every time it is scanned. This is different from filling
a table once and for all, either with COPY or pgloader; therefore, it covers a different use
case. For example, think about an external data source that is maintained by a third party
and needs to be shared across different databases.

Making bulk data changes using server-side
procedures with transactions
In some cases, you’ll need to make bulk changes to your data. In many cases, you need to
scroll through the data making changes according to a complex set of rules. You have a few
choices in that case:

Write a single SQL statement that can do everything
Open a cursor and read the rows out, then make changes with a client-side
program
Write a procedure that uses a cursor to read the rows and make changes using
server-side SQL

Writing a single SQL statement that does everything is sometimes possible, but, if you need
to do more than just UPDATE then it becomes difficult very quickly. The main difficulty is
that the SQL statement isn't restartable, so, if you need to interrupt it then you lose all of
your work.

Reading all the rows back to a client-side program can be very slow – if you need to write
this kind of program, it is better to do it all on the database server.

Tables and Data Chapter 5

[180]

How to do it…
We're going to write a Procedure in PL/pgSQL. A Procedure is similar to a Function, except
that it doesn't return any value or object. We use a Procedure because it allows you to run
multiple server-side transactions. By using procedures in this way, we are able to break the
problem down into a set of smaller transactions that cause less of a problem with database
bloat and long running transactions.

As an example, let's consider a case where we need to update all employees with the A2 job
grade, giving each person a 2% pay rise:

CREATE PROCEDURE annual_pay_rise ()
LANGUAGE plpgsql AS $$
DECLARE
c CURSOR FOR
SELECT * FROM employee
 WHERE job_code = 'A2';
BEGIN
FOR r IN c LOOP
UPDATE employee
SET salary = salary * 1.02
WHERE empid = r.empid;
 IF mod (r.empid, 100) = 0 THEN
COMMIT;
END IF;
END LOOP;
END;
$$;

Execute the preceding procedure like this:

CALL annual_pay_rise();

We want to issue regular commits as we go. The preceding procedure is coded so it issues
commits roughly every 100 rows. There's nothing magical about that number: we just want
to break it down into smaller pieces whether it is number of rows scanned or rows updated.

Tables and Data Chapter 5

[181]

There's more…
You can use both COMMIT and ROLLBACK in a procedure. Each new transaction will see the
changes from prior transactions and any other concurrent commits that have occurred.

What happens if your Procedure is interrupted? Since we are using multiple transactions to
complete the task, we wouldn't expect the whole task to be atomic. If the execution is
interrupted, we would need to re-run the parts that didn’t execute successfully. What
happens if we accidentally re-run parts that have already been executed? We would give
some people a double pay rise, but not everyone.

To cope, let's invent a simple job restart mechanism. This uses a persistent table to track
changes as they are made, accessed by a simple API:

CREATE TABLE job_status
(id bigserial not null primary key,status text not null,restartdata
bigint);
CREATE OR REPLACE FUNCTION job_start_new ()
 RETURNS bigint
 LANGUAGE plpgsql
 AS $$
 DECLARE
 p_id BIGINT;
BEGIN
 INSERT INTO job_status (status, restartdata)
 VALUES ('START', 0)
 RETURNING id INTO p_id;
 RETURN p_id;
 END; $$;

CREATE OR REPLACE FUNCTION job_get_status (jobid bigint)
RETURNS bigint
LANGUAGE plpgsql
AS $$
DECLARE
 rdata BIGINT;
BEGIN
 SELECT restartdata INTO rdata
 FROM job_status
 WHERE status != 'COMPLETE' AND id = jobid;
 IF NOT FOUND THEN
 RAISE EXCEPTION 'job id does not exist';
 END IF;
 RETURN rdata;
END; $$;
CREATE OR REPLACE PROCEDURE
job_update (jobid bigint, rdata bigint)

Tables and Data Chapter 5

[182]

LANGUAGE plpgsql
AS $$
BEGIN
 UPDATE job_status
 SET status = 'IN PROGRESS'
 ,restartdata = rdata
 WHERE id = jobid;
END; $$;
CREATE OR REPLACE PROCEDURE job_complete (jobid bigint)
LANGUAGE plpgsql
AS $$
BEGIN
 UPDATE job_status SET status = 'COMPLETE'
 WHERE id = jobid;
END; $$;

First of all, we start a new job:

SELECT job_start_new();

Then we execute our procedure, passing the job number to it. Let's say this returns 8474:

CALL annual_pay_rise(8474);

If the procedure is interrupted, we will restart from the correct place, without needing to
specify any changes:

CALL annual_pay_rise(8474);

The existing procedure needs to be modified to use the new restart API, as shown in the
following code block. Note, also, that the cursor has to be modified to use an ORDER BY
clause to make the procedure sensibly repeatable:

CREATE OR REPLACE PROCEDURE annual_pay_rise (job bigint)
LANGUAGE plpgsql AS $$
DECLARE
 job_empid bigint;
 c NO SCROLL CURSOR FOR
 SELECT * FROM employee
 WHERE job_code='A2'
 AND empid > job_empid
 ORDER BY empid;
BEGIN
 SELECT job_get_status(job) INTO job_empid;
 FOR r IN c LOOP
 UPDATE employee
 SET salary = salary * 1.02
 WHERE empid = r.empid;

Tables and Data Chapter 5

[183]

 IF mod (r.empid, 100) = 0 THEN
 CALL job_update(job, r.empid);
 COMMIT;
 END IF;
 END LOOP;
 CALL job_complete(job);
END; $$;

For extra practice, follow execution using the debugger in pgAdmin or OmniDB.

The CALL statement can also be used to call functions that return void, but, other than that,
functions and Procedures are separate concepts. Procedures also allow you to execute
transactions in PL/Python and PL/perl.

6
Security

In this chapter, we will cover the following recipes:

The PostgreSQL superuser
Revoking user access to a table
Granting user access to a table
Granting user access to specific columns
Granting user access to specific rows
Creating a new user
Temporarily preventing a user from connecting
Removing a user without dropping their data
Checking whether all users have a secure password
Giving limited superuser powers to specific users
Auditing database access
Always knowing which user is logged in
Integrating with Lightweight Directory Access Protocol (LDAP)
Connecting using SSL
Using SSL certificates to authenticate
Mapping external usernames to database roles
Encrypting sensitive data

Security Chapter 6

[185]

Introduction
First, set up access rules into the database server. PostgreSQL allows you to control access
based upon the host that is trying to connect, using the pg_hba.conf file. You can specify
SSL connections if needed or skip that if the network is secure. You can specify the use of
SCRAM authentication using 256 bit keys, as well as many other mechanisms.

Next, set up the role and privileges for accessing your data. Databases are mostly used to
store data, with several restrictions on how it can be used. Some records or tables can only
be seen by certain users, and even those tables that are visible to everyone can have
restrictions in terms of who can insert new data or change the existing data. All of this is
managed by a privilege system, where users are granted different privileges for different
tables or other database objects, such as schemas or functions.

It is good practice not to grant these privileges directly to users, but to use an intermediate
role to collect a set of privileges. Then, instead of granting all of the same privileges to the
actual user, the entire role is granted to users needing these privileges. For example, a clerk
role may have the right to both insert data and update existing data in the user_account
table, but may have the right to only insert data in the transaction_history table.

Fine-grained control over access can be managed using the Row-Level Security (RLS)
feature, which allows a defined policy on selected tables.

Another aspect of database security concerns the management of this access to the
database: making sure that only the right people can access the database; that one user can't
see what other users are doing (unless they are an administrator or auditor); and deciding
whether users can or cannot pass on the roles granted to them.

You should consider auditing the actions of administrators using pgaudit.

Typical user role
The minimal production database setup contains at least two types of users, namely
administrators and end users, where administrators can do everything (they are
superusers), and end users can only do very little, usually just modifying the data in only a
few tables and reading from a few more.

It is not a good idea to let ordinary users create or change database object definitions,
meaning that they should not have the CREATE privilege on any schema, including PUBLIC.

Security Chapter 6

[186]

There can be more roles for different types of end users, such as analysts, who can only
select from a single table or view, or some maintenance script users who see no data at all
and just have the ability to execute a few functions.

Alternatively, there can also be a manager role, which can grant and revoke roles for other
users but is not supposed to do anything else.

The PostgreSQL superuser
In this recipe, you will learn how to grant the right to a user to become a superuser.

A PostgreSQL superuser is a user that bypasses all permission checks, except the right to
log in. This is a dangerous privilege and should not be used carelessly. Many cloud
databases do not allow this level of privilege to be granted. It is normal to place strict
controls on users of this type.

How to do it…
Follow the steps to add or remove superuser privileges for any user:

A user becomes a superuser when it is created with the SUPERUSER attribute set:1.

CREATE USER username SUPERUSER;

A user can be deprived of its superuser status by removing the SUPERUSER2.
attribute using this command:

ALTER USER username NOSUPERUSER;

A user can be restored to superuser status later using the following command:3.

ALTER USER username SUPERUSER;

When neither SUPERUSER nor NOSUPERUSER is given in the CREATE USER4.
command, then the default is to create a user who is not a superuser.

How it works…
The rights to some operations in PostgreSQL are not available by default and need to be
granted specifically to users. They must be performed by a special user who has this special
attribute set. The preceding commands set and reset this attribute for the user.

Security Chapter 6

[187]

There's more…
The PostgreSQL system comes set up with at least one superuser. Most commonly, this
superuser is named postgres, but occasionally it adopts the same name as the system user
who owns the database directory and with whose rights the PostgreSQL server runs.

Other superuser-like attributes
In addition to SUPERUSER, there are two lesser attributes—CREATEDB and
CREATEUSER—which give the user only some of the power reserved for superusers, namely
creating new databases and users. See the Giving limited superuser powers to specific users
recipe for more information on this.

Attributes are never inherited
Later, you will learn about granting one role to another user—role inheritance—and how
privileges can be granted through these intermediate group roles. None of this applies to
attributes—to perform superuser-only operations, you must be that user.

See also
Also check out the Always knowing which user is logged in recipe in this chapter.

All of the following recipes assume a non-superuser unless it is explicitly
mentioned that they apply to or need a superuser.

Revoking user access to a table
This recipe answers the question: how do I make sure that user X cannot access table Y?

Getting ready
The current user must either be a superuser, the owner of the table, or a user with a GRANT
option for the table.

Security Chapter 6

[188]

Also, bear in mind that you can't revoke rights from a user who is a superuser.

How to do it…
To revoke all rights on the table1 table from the user2 user, you must run the following
SQL command:

REVOKE ALL ON table1 FROM user2;

However, if user2 has been granted another role that gives them some rights on table1,
say role3, this command is not enough; you must also choose one of the following options:

Fix the user—that is, revoke role3 from user2
Fix the role—that is, revoke privileges on table1 from role3

Both choices are imperfect because of their side-effects. The former will revoke all of the
privileges associated to role3, not just the privileges concerning table1; the latter will
revoke the privileges on table1 from all of the other users that have been granted role3,
not just from user2.

It is normally better to avoid damaging other legitimate users, so we opt for the first
solution. The following is a working example.

Using psql, display the list of roles that have been granted at least one privilege on table1
by issuing \z table1. For instance, you can obtain the following output (an extra column
about column privileges has been removed from the right-hand side because it was not
relevant here):

 Access privileges
 Schema | Name | Type | Access privileges | ...
--------+--------+-------+---------------------------+ ...
 public | table1 | table | postgres=arwdDxt/postgres+| ...
 | | | role3=r/postgres +| ...
 | | | role5=a/postgres | ...
(1 row)

Then, we check whether user2 is a member of any of those roles by typing \du user2:

 List of roles
 Role name | Attributes | Member of
-----------+------------+---------------
 user2 | | {role3, role4}

Security Chapter 6

[189]

In the previous step, we notice that role3 had been granted the SELECT privilege (r for
read) by the postgres user, so we must revoke it, as follows:

REVOKE role3 FROM user2;

We must also inspect role4. Even if it doesn't have privileges on table1, in theory, it
could be a member of one of the three roles that have privileges on that table. We issue \du
role4 and get the following output:

 List of roles
 Role name | Attributes | Member of
-----------+--------------+-----------
 role4 | Cannot login | {role5}

Our suspicion was well founded: user2 can get the INSERT privilege (a for append) on
table1, first via role4 and then via role5. So we must break this two-step chain as
follows:

REVOKE role4 FROM user2;

This example may seem too unlikely to be true. We unexpectedly gain
access to the table via a chain of two different role memberships, which
was made possible by the fact that a non-login role, such as role4, was
made a member of another non-login role, that is, role5. In most real-
world cases, superusers will know whether such chains exist at all, so
there will be no surprises; however, the goal of this recipe is to make sure
that the user cannot access the table, meaning we cannot exclude less-
likely options.

How it works…
The \z command, as well as its synonym, \dp, display all privileges granted on tables,
views, and sequences. If the Access privileges column is empty, it means default
privileges, that is, all privileges are given to the owner (and the superusers, as always).

The \du command shows you the attributes and roles that have been granted to roles.

Both commands accept an optional name or pattern to restrict the display.

Security Chapter 6

[190]

There's more…
Here, we'll cover some good practices on user and role management.

Database creation scripts
For production systems, it is usually a good idea to always include GRANT and REVOKE
statements in the database creation script so that you can be sure that only the right set of
users has access to the table. If this is done manually, it is easy to forget. Also, in this way,
you can be sure that the same roles are used in development and testing environments so
that there are no surprises at deployment time.

The following is a sample extract from the database creation script:

CREATE TABLE table1(
...
);
GRANT SELECT ON table1 TO webreaders;
GRANT SELECT, INSERT, UPDATE, DELETE ON table1 TO editors;
GRANT ALL ON table1 TO admins;

Default search path
It is always good practice to use a fully qualified name when revoking or granting rights;
otherwise, you may be inadvertently working with the wrong table.

To see the effective search path for the current database, run the following:

pguser=# show search_path ;
 search_path

 "$user",public
(1 row)

To see which table will be affected if you omit the schema name, run the following in PSQL:

pguser=# \d x
 Table "public.x"
 Column | Type | Modifiers
--------+------+-----------

The public.x table name in the response contains the full name, including the schema.

Security Chapter 6

[191]

Securing views
It is a common technique to use a view to disclose only some parts of a secret table;
however, a clever attacker can use access to the view to display the rest of the table using
log messages. For instance, consider the following example:

CREATE VIEW for_the_public AS
 SELECT * FROM reserved_data WHERE importance < 10;
GRANT SELECT ON for_the_public TO PUBLIC;

A malicious user could define the following function:

CREATE FUNCTION f(text)
RETURNS boolean
COST 0.00000001
LANGUAGE plpgsql AS $$
BEGIN
 RAISE INFO '$1: %', $1;
 RETURN true;
END;
$$;

They could use it to filter rows from the view:

SELECT * FROM for_the_public x WHERE f(x :: text);

The PostgreSQL optimizer will then internally rearrange the query, expanding the
definition of the view and then combining the two filter conditions into a single WHERE
clause. The trick here is that the function has been told to be very cheap using the COST
keyword, so the optimizer will choose to evaluate that condition first. In other words, the
function will access all of the rows in the table, as you will realize when you see the
corresponding INFO lines on the console if you run the code yourself.

This security leak can be prevented using the security_barrier attribute:

ALTER VIEW for_the_public SET (security_barrier = on);

This means that the conditions that define the view will always be computed first,
irrespective of cost considerations.

The performance impact of this fix can be mitigated by the LEAKPROOF attribute for
functions. In short, a function that cannot leak information other than its output value can
be marked as LEAKPROOF by a superuser so the planner will know that it's secure enough to
compute the function before the other view conditions.

Security Chapter 6

[192]

Granting user access to a table
A user needs to have access to a table in order to perform any actions on it.

Getting ready
Make sure that you have the appropriate roles defined, and that privileges are revoked
from the PUBLIC role:

CREATE GROUP webreaders;
CREATE USER tim;
CREATE USER bob;
REVOKE ALL ON SCHEMA someschema FROM PUBLIC;

How to do it…
We had to grant access to the schema in order to allow access to the table. This suggests
that access to a given schema can be used as a fast and extreme way of preventing any
access to any object in that schema. Otherwise, if you want to allow some access, you must
use specific GRANT and REVOKE statements as needed:

GRANT USAGE ON SCHEMA someschema TO webreaders;

It is often desirable to give a group of users similar permissions to a group of database
objects. To do this, you first assign all the permissions to a proxy role (also known as a
permission group), and then assign the group to selected users, as follows:

GRANT SELECT ON someschema.pages TO webreaders;
GRANT INSERT ON someschema.viewlog TO webreaders;
GRANT webreaders TO tim, bob;

Now, both tim and bob have the SELECT privilege on the pages table and INSERT on
the viewlog table. You can also add privileges to the group role after assigning it to users.
Consider the following command:

GRANT INSERT, UPDATE, DELETE ON someschema.comments TO webreaders;

After running this command, both bob and tim have all of the aforementioned privileges
on the comments table.

Security Chapter 6

[193]

This assumes that both the bob and tim roles were created with the INHERIT default
setting. Otherwise, they do not automatically inherit the rights of roles but need to
explicitly set their role to the granted user to make use of the privileges granted to that role.

We can grant privileges on all objects of a certain kind in a specific schema, as follows:

GRANT SELECT ON ALL TABLES IN SCHEMA someschema TO bob;

You still need to grant the privileges on the schema itself in a separate GRANT statement.

How it works...
The preceding sequence of commands first grants access to a schema for a group role, then
gives appropriate viewing (SELECT) and modifying (INSERT) rights on certain tables to the
role, and finally grants membership in that role to two database users.

There's more…
There is no requirement in PostgreSQL to have some privileges in order to have others.
This means that you may well have write-only tables, where you are allowed to insert but
you can't select. This can be used to implement a mail-queue-like functionality, where
several users post messages to one user, but they can't see what other users have posted.

Alternatively, you could set up a situation where you can write a record, but you can't
change or delete it. This is useful for auditing log-type tables, where all changes
are recorded but cannot be tampered with.

Granting user access to specific columns
A user can be given access to only some table columns.

Getting ready
We will continue the example from the previous recipe, so we assume that there is already
a schema called someschema and a role called somerole with USAGE privileges on it. We
create a new table on which we will grant column-level privileges:

CREATE TABLE someschema.sometable2(col1 int, col2 text);

Security Chapter 6

[194]

How to do it…
We want to grant somerole the ability to view existing data and insert new data;1.
we also want to provide the ability to amend existing data, limited to column
col2 only. We use the following self-evident statements:

GRANT SELECT, INSERT ON someschema.sometable2 TO somerole;
GRANT UPDATE (col2) ON someschema.sometable2 TO somerole;

Let's assume the identity of the somerole role and test these privileges with the2.
following commands:

SET ROLE TO somerole;
INSERT INTO someschema.sometable2 VALUES (1, 'One');
SELECT * FROM someschema.sometable2 WHERE col1 = 1;

As expected, we are able to insert a new row and to view its contents. Let's now3.
check our ability to update individual columns. We start with the second
column, which we have authorized:

UPDATE someschema.sometable2 SET col2 = 'The number one';

This command returns the familiar output:4.

UPDATE 1

This means that we were able to successfully update that column in one row.5.
Now, we try to update the first column:

UPDATE someschema.sometable2 SET col1 = 2;

This time, we get the following error message:6.

ERROR: permission denied for relation sometable2

This confirms that, as planned, we only authorized updates to the second column.

How it works…
The GRANT command has been extended to allow for specifying a list of columns, meaning
that the privilege is granted on that list of columns, rather than on the whole table.

Security Chapter 6

[195]

There's more…
Consider a table, t, with columns, c1, c2, and c3; there are two different ways of
authorizing user u to perform the following query:

SELECT * FROM t;

The first is by granting a table-level privilege, as follows:

GRANT SELECT ON TABLE t TO u;

The alternative way is by granting column-level privileges, as follows:

GRANT SELECT (c1,c2,c3) ON TABLE t TO u;

Despite these two methods having overlapping effects, table-level privileges are distinct
from column-level privileges, which is correct since the meaning of each is different.
Granting privileges on a table means giving them to all columns present and future, while
column-level privileges require the explicit indication of columns and, therefore, don't
extend automatically to new columns.

The way privileges work in PostgreSQL means that a given role will be allowed to perform
a given action if it matches one of its privileges. This creates some ambiguity in overlapping
areas. For example, consider the following command sequence:

 GRANT SELECT ON someschema.sometable2 TO somerole;
 REVOKE SELECT (col1) ON someschema.sometable2 FROM
 somerole;

The outcome, somehow surprisingly, will be that somerole is allowed to
view all of the columns of that table using the table-level privilege granted
by the first command. The second command was ineffective because it
tried to revoke a column-level privilege (SELECT on col1) that was never
granted in the first place.

Granting user access to specific rows
PostgreSQL supports granting users privileges on some rows only.

Security Chapter 6

[196]

Getting ready
This recipe uses RLS, which is available only in PostgreSQL version 9.5 or later, so start by
checking that you are not using an older version.

As for the previous recipe, we assume that there is already a schema called someschema
and a role called somerole with USAGE privileges on it. We create a new table to
experiment with row-level privileges:

CREATE TABLE someschema.sometable3(col1 int, col2 text);

RLS must also be enabled on that table:

ALTER TABLE someschema.sometable3 ENABLE ROW LEVEL SECURITY;

How to do it…
First, we grant somerole the privilege to view the contents of the table, as we did in the
previous recipe:

GRANT SELECT ON someschema.sometable3 TO somerole;

Let's assume that the contents of the table are as shown by the following command:

SELECT * FROM someschema.sometable3;
 col1 | col2
------+-----------
 1 | One
 -1 | Minus one
(2 rows)

In order to grant the ability to access some rows only, we create a policy specifying what is
allowed and on which rows. For instance, this way, we can enforce the condition that
somerole is only allowed to select rows with positive values of col1:

CREATE POLICY example1 ON someschema.sometable3
FOR SELECT
TO somerole
USING (col1 > 0);

Security Chapter 6

[197]

The effect of this command is that the rows that do not satisfy the policy are silently
skipped, as shown when somerole issues the following command:

SELECT * FROM someschema.sometable3;
 col1 | col2
------+-----------
 1 | One
(1 row)

What if we want to introduce a policy on the INSERT clause? The preceding policy shows
how the USING clause specifies which rows are affected. There is also a WITH CHECK clause
that can be used to specify which inserts are accepted. More generally, the USING clause
applies to pre-existing rows, while WITH CHECK applies to rows that are generated by the
statement being analyzed. So, the former works with SELECT, UPDATE, and DELETE, while
the latter works with INSERT and UPDATE.

Coming back to our example, we may want to allow inserts only where col1 is positive:

CREATE POLICY example2 ON someschema.sometable3
FOR INSERT
TO somerole
WITH CHECK (col1 > 0);

We must also remember to allow the INSERT commands on the table, as we did before
with SELECT:

GRANT INSERT ON someschema.sometable3 TO somerole;
SELECT * FROM someschema.sometable3;
 col1 | col2
------+-----------
 1 | One
(1 row)

Now we are able to insert a new row and to see it afterward:

INSERT INTO someschema.sometable3 VALUES (2, 'Two');
SELECT * FROM someschema.sometable3;
 col1 | col2
------+-----------
 1 | One
 2 | Two
(2 rows)

Security Chapter 6

[198]

How it works…
RLS policies are created and dropped on a given table using the CREATE POLICY syntax.
The RLS policy itself must also be enabled explicitly on the given table, because it is
disabled by default.

In the previous example, we needed to grant privileges on the table or on the columns, in
addition to creating the RLS policy. This is because RLS is not one more privilege to be
added to the other; rather, it works like an additional check. In this sense, it is convenient
that it is off by default, as we have to create policies only on the tables where our access
logic depends on the row contents.

There's more...
RLS can lead to very complex configurations for a variety of reasons, as in the following
instances:

An UPDATE policy can specify both the rows on which we act and what changes
can be accepted
UPDATE and DELETE policies, in some cases, require visibility as granted by an
appropriate SELECT policy
UPDATE policies are also applied to INSERT ... ON CONFLICT DO UPDATE

We recommend reading the finer details at the following URL: https:/ /www. postgresql.
org/docs/11/static/ ddl- rowsecurity. html.

Creating a new user
In this recipe, we will show you two ways of creating a new database user, one with a
dedicated command-line utility and one using SQL commands.

Getting ready
To create new users, you must either be a superuser or have the CREATEROLE or
CREATEROLE privilege.

https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/11/static/ddl-rowsecurity.html

Security Chapter 6

[199]

How to do it...
From the command line, you can run the createuser command:

pguser@hvost:~$ createuser bob

If you add the --interactive command-line option, you activate the interactive mode,
which means you will be asked some questions, as follows:

pguser@hvost:~$ createuser --interactive alice
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) y
Shall the new role be allowed to create more new roles? (y/n) n

Without --interactive, the preceding questions get no as the default answer; you can
change that with the -s, -d, and -r command-line options.

In interactive mode, questions are asked only if they make sense. One example is when the
user is a superuser; no other questions are asked because a superuser is not subject to
privilege checks. Another example is when one of the preceding options is used to specify a
non-default setting; the corresponding question will not be asked.

How it works…
The createuser program is just a shallow wrapper around the executing SQL against the
database cluster. It connects to the postgres database and then executes SQL commands
for user creation. To create the same users through SQL, you can issue the following
commands:

CREATE USER bob;
CREATE USER alice CREATEDB;

There's more…
You can check the attributes of a given user in psql, as follows:

pguser=# \du alice

Security Chapter 6

[200]

This gives you the following output:

 List of roles
 Role name | Attributes | Member of
-----------+------------+-----------
 alice | Create DB | {}

The CREATE USER and CREATE GROUP commands are actually variations of CREATE ROLE.
The CREATE USER username; statement is equivalent to CREATE ROLE username
LOGIN;, and the CREATE GROUP groupname; statement is equivalent to CREATE ROLE
groupname NOLOGIN;.

Temporarily preventing a user from
connecting
Sometimes, you need to temporarily revoke a user's connection rights without actually
deleting the user or changing the user's password. This recipe presents the ways of doing
this.

Getting ready
To modify other users, you must either be a superuser or have the CREATEROLE privilege
(in the latter case, only non-superuser roles can be altered).

How to do it…
Follow the steps to temporarily prevent and reissue the logging in capability to a user:

To temporarily prevent the user from logging in, run this command:1.

pguser=# alter user bob nologin;
ALTER ROLE

To let the user connect again, run the following:2.

pguser=# alter user bob login;
ALTER ROLE

Security Chapter 6

[201]

How it works...
This sets a flag in the system catalog, telling PostgreSQL not to let the user log in. It does
not kick out already connected users.

There's more…
Here are some additional remarks.

Limiting the number of concurrent connections by a
user
The same result can be achieved by setting the connection limit for that user to 0:

pguser=# alter user bob connection limit 0;
ALTER ROLE

To allow 10 concurrent connections for the bob user, run this command:

pguser=# alter user bob connection limit 10;
ALTER ROLE

To allow an unlimited number of connections for this user, run the following:

pguser=# alter user bob connection limit -1;
ALTER ROLE

Note that unlimited connections to PostgreSQL concurrently could allow
a Denial of Service (DoS) attack by exhausting connection resources; also,
a system could fail or degrade by an overload of legitimate users.

To reduce these risks, we should always limit the number of concurrent
sessions per user.

Forcing NOLOGIN users to disconnect
In order to make sure that all users whose login privileges have been revoked are
disconnected right away, run the following SQL statement as a superuser:

SELECT pg_terminate_backend(pid)
 FROM pg_stat_activity a
 JOIN pg_roles r ON a.usename = r.rolname AND NOT rolcanlogin;

Security Chapter 6

[202]

This disconnects all users who no longer are allowed to connect by terminating the
backends opened by these users.

Removing a user without dropping their data
When trying to drop a user who owns some tables or other database objects, you get the
following error, and the user is not dropped:

testdb=# drop user bob;
ERROR: role “bob” cannot be dropped because some objects depend on it
DETAIL: owner of table bobstable
owner of sequence bobstable_id_seq

This recipe presents two solutions to this problem.

Getting ready
To modify users, you must either be a superuser or have the CREATEROLE privilege.

How to do it…
The easiest solution to this problem is to refrain from dropping the user and use the trick
from a previous recipe to prevent the user from connecting:

pguser=# alter user bob nologin;
ALTER ROLE

This has the added benefit of the original owner of the table being available later, if needed,
for auditing or debugging purposes (Why is this table here? Who created it?).

Then, you can assign the rights of the deleted user to a new user, using the following code:

pguser=# GRANT bob TO bobs_replacement;
GRANT

Security Chapter 6

[203]

How it works…
As noted previously, a user is implemented as a role with the login attribute set. This recipe
works by removing that attribute from the user, which is then kept just as a role.

If you really need to get rid of a user, you have to assign all ownership to another user. To
do so, run the following query, which is a PostgreSQL extension to standard SQL:

REASSIGN OWNED BY bob TO bobs_replacement;

It does exactly what it says: it assigns ownership of all database objects currently owned by
the bob role to the bobs_replacement role.

However, you need to have privileges on both the old and the new roles to do that, and you
need to do it in all databases where bob owns any objects, as the REASSIGN OWNED
command works only on the current database.

After this, you can delete the original user, bob.

Checking whether all users have a secure
password
PostgreSQL has no built-in facilities to make sure that you are using strong passwords.

The best you can do is to make sure that all user passwords are encrypted, and that your
pg_hba.conf file does not allow logins with a plain password; that is, always use the
SCRAM-SHA-256 login method for users, which was added in PostgreSQL 10. Any servers
upgrading from earlier versions should upgrade from md5 to SCRAM-SHA-256 password
encryption.

For client applications connecting from trusted private networks, either real or virtual
(VPN), you may use host-based access, provided you know that the machine on which the
application is running is not used by some non-trusted individuals. For remote access over
public networks, it may be a better idea to use SSL client certificates.

Security Chapter 6

[204]

How to do it…
To see which users don't yet have SCRAM encrypted passwords, use this query:

test2=# select usename,passwd from pg_shadow where passwd
not like ‘SCRAM%’ or passwd is null;
 usename | passwd
----------+--------------
 tim | weakpassword
 asterisk | md5chicken
(2 rows)

To enable SCRAM-SHA-256 for encrypted passwords, use the following:

test2=# SET password_encryption = ‘scram-sha-256’;
test2=# ALTER USER bob ENCRYPTED PASSWORD ‘whatever’;
 ALTER USER

How it works…
The password_encryption parameter decides how the ALTER USER statement will
encrypt the password. This should be set globally in the postgresql.conf file.

Having the passwords encrypted in the database is just half of the equation. The bigger
problem is making sure that users actually use passwords that are hard to guess.
Passwords such as password, secret, or test are out of the question, and most common
words are not good passwords either.

If you don't trust your users to select strong passwords, you can write a wrapper
application that checks the password strength and makes them use that when changing
passwords. A contrib module lets you do this for a limited set of cases (the password is
sent from client to server in plain text). Visit http:/ /www. postgresql. org/ docs/ 11/
static/passwordcheck. html for more information on this.

Giving limited superuser powers to specific
users
The superuser role has some privileges that can also be granted to non-superuser roles
separately.

http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html
http://www.postgresql.org/docs/11/static/passwordcheck.html

Security Chapter 6

[205]

To give the bob role the ability to create new databases, run this:

ALTER ROLE BOB WITH CREATEDB;

To give the bob role the ability to create new users, run the following:

ALTER ROLE BOB WITH CREATEROLE;

It is also possible to give ordinary users more fine-grained and controlled access to an
action reserved for superusers using security definer functions. The same trick can also
be used to pass partial privileges between different users.

Getting ready
First, you must have access to the database as a superuser in order to delegate powers.
Here, we assume the use of the default superuser named postgres.

We will demonstrate two ways to make some superuser-only functionality available to a
selected ordinary user.

How to do it…
An ordinary user cannot tell PostgreSQL to copy table data from a file. Only a superuser
can do that, as follows:

pguser@hvost:~$ psql -U postgres
test2
...
test2=# create table lines(line text);
CREATE TABLE
test2=# copy lines from ‘/home/bob/names.txt’;
COPY 37
test2=# SET ROLE to bob;
SET
test2=> copy lines from ‘/home/bob/names.txt’;
ERROR: must be superuser to COPY to or from a file
HINT: Anyone can COPY to stdout or from stdin. psql’s \copy command also
works for anyone.

Security Chapter 6

[206]

To let bob copy directly from the file, the superuser can write a special wrapper function
for bob, as follows:

create or replace function copy_from(tablename text, filepath text)
returns void
security definer
as
$$
 declare
 begin
 execute 'copy ' || quote_ident(tablename)
 || ' from ' || quote_literal(filepath) ;
 end;
$$ language plpgsql;

It is usually a good idea to restrict the use of such a function to the intended user only:

revoke all on function copy_from(text, text) from public;
grant execute on function copy_from(text, text) to bob;

You may also want to verify that bob imports files only from his home directory.

Unfortunately, this solution is not completely secure against superuser
privilege escalation by a malicious attacker. This is because the execution
of the COPY command inside the function will also cause the execution, as
the postgres user, of all side-effects, such as the execution of any INSERT
trigger, the computation of any CHECK constraint, the computation of any
functional index, and more.

In other words, if the user wants to execute a given function as the
superuser, it's enough to put that function inside any of the preceding
functions.

There are a few workarounds for this security hole, none of which are optimal.

You can require that the table has no triggers and CHECK constraints and functional indexes.

Instead of running COPY on the given table, create a new table with the same structure
using the CREATE newtable(LIKE oldtable) syntax. Run COPY against the new table,
drop the old table, and give the new table the same name as the old one.

Security Chapter 6

[207]

How it works…
When a function defined with security definer is called, PostgreSQL changes the
session's rights to those of the user who defined the function while that function is being
executed.

So, when bob executes the copy_from(tablename, filepath) function, bob is
effectively promoted to a superuser when the function is running.

This behavior is similar to the setuid flag in Unix systems, where you can have a program
that can be run by anybody (with execute access) as the owner of that program. It also
carries similar risks.

There's more…
There are other operations that are reserved for PostgreSQL superusers, such as setting
certain parameters.

Writing a debugging_info function for developers
Several of the parameters controlling logging are reserved for superusers.

If you want to allow some of your developers to set logging, you can write a function for
them to do exactly that:

create or replace function debugging_info_on()
returns void
security definer
as
$$
 begin
 set client_min_messages to 'DEBUG1';
 set log_min_messages to 'DEBUG1';
 set log_error_verbosity to 'VERBOSE';
 set log_min_duration_statement to 0;
 end;
$$ language plpgsql;
revoke all on function debugging_info_on() from public;
grant execute on function debugging_info_on() to bob;

Security Chapter 6

[208]

You may also want to have a function go back to the default logging state by assigning
DEFAULT to all of the variables involved:

create or replace function debugging_info_reset()
returns void
security definer
as
$$
 begin
 set client_min_messages to DEFAULT;
 set log_min_messages to DEFAULT;
 set log_error_verbosity to DEFAULT;
 set log_min_duration_statement to DEFAULT;
 end;
$$ language plpgsql;

There's no need for GRANT and REVOKE statements here, as setting them back to the default
does not pose a security risk. Instead of SET xxx to DEFAULT, you can also use a shorter
version of the same command, namely RESET xxx.

Alternatively, you can simply end your session, as the parameters are valid only for the
current session.

Auditing database access
Auditing database access is a much bigger topic than you might expect because it can cover
a whole range of requirements.

Getting ready
First, decide which of these you want and look at the appropriate subsection:

What were the SQL statements executed? Auditing SQL
What were the tables accessed? Auditing table access
What were the data rows changed? Auditing data changes
What were the data rows viewed? Not described here, usually too much data

Auditing just SQL produces the lowest volume of audit log information, especially if you
choose to log only DDL. Higher levels accumulate more information very rapidly, so you
may quickly decide not to do this in practice. Read each section to understand the benefits
and trade-offs.

Security Chapter 6

[209]

Auditing SQL
There are two main ways to log SQL:

Using the PostgreSQL log_statement parameter
Using the pgaudit extension's pgaudit.log parameter

The log_statement parameter can be set to one of the following options:

ALL: Logs all SQL statements executed at top level
MOD: Logs all SQL statements for INSERT, UPDATE, DELETE, and TRUNCATE
ddl: Logs all SQL statements for DDL commands
NONE: No statements logged

For example, to log all DDL commands, edit your postgresql.conf file to set the
following:

log_statement = 'ddl'

The log_statement SQL statements are explicitly given in top-level commands. It is still
possible to perform SQL without it being logged by this setting if you use any of the PL
languages, either through DO statements or by calling a function that includes SQL
statements.

Was the change committed? It is possible to have some statements recorded in the log file
but not be visible in the database structure. Most DDL commands in PostgreSQL can be
rolled back, so what is in the log is just a list of commands executed by PostgreSQL—not
what was actually committed. The log file is not transactional, and it keeps commands that
were rolled back. It is possible to display the transaction identifier on each log line by
including %x in the log_line_prefix setting, though that has some difficulties in terms of
usage.

Who made the changes? To be able to know which database user made the DDL changes,
you have to make sure that this information is logged as well. In order to do so, you may
have to change the log_line_prefix parameter to include the %u format string.

A recommended minimal log_line_prefix format string for auditing DDL is %t %u
 %d, which tells PostgreSQL to log the timestamp, database user, and database name at the
start of every log line.

Security Chapter 6

[210]

The pgaudit extension provides two levels of audit logging: session and object levels. The
session level has been designed to solve some of the problems of log_statement.
pgaudit will log all access, even if it is not executed as a top-level statement, and it will log
all dynamic SQL. pgaudit.log can be set to include zero or more of the following settings:

READ: SELECT and COPY
WRITE: INSERT, UPDATE, DELETE, TRUNCATE, and COPY
FUNCTION: Function calls and DO blocks
ROLE: GRANT, REVOKE, CREATE/ALTER/DROP ROLE
DDL: All DDL not already included in the ROLE category
MISC: Miscellaneous—DISCARD, FETCH, CHECKPOINT, VACUUM, and so on

For example, to log all DDL commands, edit your postgresql.conf file to set the
following:

pgaudit.log = 'role, ddl'

You should set these parameters to reduce the overhead of logging:

pgaudit.log_catalog = off
pgaudit.log_relation = off
pgaudit.log_statement_once = on

The pgaudit extension was originally written by Simon Riggs and Abhijit
Menon-Sen of 2ndQuadrant as part of the AXLE project for the EU. The
next version was designed by Simon Riggs and David Steele to provide
object-level logging. The original version was deprecated and is no longer
available. The new version is fully supported and has been adopted by the
US DoD as the tool of choice for PostgreSQL audit logging.

pgaudit is available in binary form via postgresql.org repositories.

Auditing table access
pgaudit can log access to each table. So, if an SQL table touches three tables, then it can
generate three log records, one for each table. This is important because otherwise, you
might have to try and parse the SQL to find out which tables it touched, which would be
difficult without access to the schema and the search_path settings.

Security Chapter 6

[211]

To make it easier to access the audit log per table, adjust these settings:

pgaudit.log_relation = on
pgaudit.log_statement_once = off

If you want even finer-grained auditing, pgaudit allows you to control which tables are
audited. The user cannot tell which tables are logged and which are not, so it is possible for
investigators to quietly enhance the level of logging once they are alerted to a suspect or a
potential attack.

First, set the role that will be used by the auditor:

pgaudit.role = ‘investigator’

Then, you can define logging through the privilege system, like the following command:

GRANT INSERT, UPDATE, DELETE on <vulnerable_table> TO investigator;

Remove it again when no longer required.

Privileges may be set at individual column level to protect Personally Identifiable
Information (PII).

Managing the audit log
Both log_statement and pgaudit output audit log records to the server log. This is the
most flexible approach since the log can be routed in various ways to ensure it is safe and
separate from normal log entries.

If you allow the log entries to go the normal server log, you can find all occurrences of the
CREATE, ALTER, and DROP commands in the log:

postgres@hvost:~$ egrep -i “create|alter|drop” \
/var/log/postgresql/postgresql-11-main.log

If log rotation is in effect, you may need to use grep on older logs as well.

If the available logs are too new and you haven't saved the older logs in some other place,
you are out of luck.

The default settings in the postgresql.conf file for log rotation are as follows:

log_filename = 'postgresql-%Y-%m-%d_%H%M%S.log'
log_rotation_age = 1d
log_rotation_size = 10MB

Security Chapter 6

[212]

Log rotation can also be implemented with third-party utilities. For
instance, the default behavior on Debian and Ubuntu distributions is to
use the logrotate utility to compress or delete old log files, according to
the rules specified in the /etc/logrotate.d/postgresql-common file.

To make sure you have the full history of DDL commands, you may want to set up a cron
job that saves the DDL statements extracted from the main PostgreSQL log to a separate
DDL audit log. You would still want to verify that the logs are not rotating too fast for this
to catch all DDL statements.

If you use syslog, then you can route audit messages using various OS utilities.

Alternatively, you can use the pgaudit analyze extension to load data back into a special
audit log database. Various other options exist.

Auditing data changes
This recipe provides different ways of collecting changes to data contained in the tables for
auditing purposes.

First, you must make the following decisions:

Do you need to audit all changes or only some?
What information about the changes do you need to collect? Only the fact that
the data has changed?
When recording the new value of a field or tuple, do you also need to record the
old value?
Is it enough to record which user made the change, or do you also need to record
the IP address and other connection information?
How secure (tamper-proof) must the auditing information be? For example, does
it need to be kept separately, away from the database being audited?

Changes can be collected using triggers which collect new (and if needed, old) values from
tuples, and save them to auditing table(s). Triggers can be added to whichever tables need
to be tracked.

The audit_trigger extension provides a handy universal audit trigger so you do not
need to write your own. It logs both old and new values of rows in any table, serialized as
hstore data type values. The latest version and its documentation are both available at
https://github.com/ 2ndQuadrant/ audit- trigger.

https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger
https://github.com/2ndQuadrant/audit-trigger

Security Chapter 6

[213]

The extension creates a schema called audit, into which all of the other components of the
audit trigger code are placed, after which we can enable auditing on specific tables.

As an example, we create standard pgbench tables by running the pgbench utility:

pgbench -i

Next, we connect to PostgreSQL as a superuser, and issue the following SQL to enable
auditing on the pgbench_account table:

SELECT audit.audit_table('pgbench_accounts');

Now, we perform some write activity to see how it is audited. The easiest choice is to run
the pgbench utility again, this time to perform some transactions, as follows:

pgbench -t 1000

We expect the audit trigger to have logged the actions on pgbench_accounts, as we have
enabled auditing on it. In order to verify this, we connect again with psql and issue the
following SQL:

cookbook=# SELECT count(*) FROM audit.logged_actions;
count

1000
(1 row)

This confirms that we have indeed logged 1,000 actions. Let's inspect the information that is
logged by reading one row of the logged_actions table. First, we enable expanded mode,
as the query produces a large number of columns:

cookbook=# \x on

Then, we issue the following command:

cookbook=# SELECT * FROM audit.logged_actions LIMIT 1;
-[RECORD 1]-----+--

event_id | 1
schema_name | public
table_name | pgbench_accounts
relid | 246511
session_user_name | gianni
action_tstamp_tx | 2017-01-18 19:48:05.626299+01
action_tstamp_stm | 2017-01-18 19:48:05.626446+01
action_tstamp_clk | 2017-01-18 19:48:05.628488+01

Security Chapter 6

[214]

transaction_id | 182578
application_name | pgbench
client_addr |
client_port |
client_query | UPDATE pgbench_accounts SET abalance = abalance + -758
WHERE aid = 86061;
action | U
row_data | "aid"=>"86061", "bid"=>"1", "filler"=>" ",
"abalance"=>"0"
changed_fields | "abalance"=>"-758"
statement_only | f

Always knowing which user is logged in
In the preceding recipes, we just logged the value of the user variable in the current
PostgreSQL session to log the current user role.

This does not always mean that this particular user was the user that was actually
authenticated at the start of the session. For example, a superuser can execute the SET
 ROLE TO ... command to set its current role to any other user or role in the system. As
you might expect, non-superusers can assume only those roles that they own.

It is possible to differentiate between the logged-in role and the assumed role using the
current_user and session_user session variables:

postgres=# select current_user, session_user;
current_user | session_user
-------------+--------------
postgres | postgres

postgres=# set role to bob;
SET
postgres=> select current_user, session_user;
current_user | session_user
-------------+--------------
bob | postgres

Sometimes, it is desirable to let each user log in with their own username and just assume
the role needed on a case-by-case basis.

Security Chapter 6

[215]

Getting ready
Prepare the required group roles for different tasks and access levels by granting the
necessary privileges and options.

How to do it…
The steps are as follows:

Create user roles with no privileges and with the NOINHERIT option:1.

postgres=# create user alice noinherit;
CREATE ROLE
postgres=# create user bob noinherit;
CREATE ROLE

Then, create roles for each group of privileges that you need to assign:2.

postgres=# create group sales;
CREATE ROLE
postgres=# create group marketing;
CREATE ROLE
postgres=# grant postgres to marketing;
GRANT ROLE

Now, grant each user the roles it may need:3.

postgres=# grant sales to alice;
GRANT ROLE
postgres=# grant marketing to alice;
GRANT ROLE
postgres=# grant sales to bob;
GRANT ROLE

After you do this, the alice and bob users have no rights after login, but they can assume
the sales role by executing SET ROLE TO sales, and alice can additionally assume the
superuser role.

Security Chapter 6

[216]

How it works…
If a role or user is created with the NOINHERIT option, this user will not automatically get
the rights that have been granted to the other roles that have been granted to itself. To claim
these rights from a specific role, it has to set its role to one of those other roles.

In some sense, this works a bit like the su (set user) command in Unix and Linux systems.
That is, you (may) have the right to become that user, but you do not automatically have
the rights of the aforementioned user.

This setup can be used to get better audit information, as it lets you know who the actual
user was. If you just allow each user to log in as the role needed for a task, there is no good
way to know later which of the users was really logged in as clerk1 when a $100,000
transfer was made.

There's more…
The SET ROLE command works both ways, that is, you can both gain and lose privileges. A
superuser can set its role to any user defined in the system. To get back to your original
login role, just use RESET ROLE.

Not inheriting user attributes
Not all rights come to users via GRANT commands. Some important rights are given via user
attributes (SUPERUSER, CREATEDB, and CREATEROLE), and these are never inherited.

If your user has been granted a superuser role and you want to use the superuser powers of
this granted role, you have to use SET ROLE To mysuperuserrole before anything that
requires the superuser attribute to be set.

In other words, the user attributes always behave as if the user had been a NOINHERIT user.

Integrating with LDAP
This recipe shows you how to set up your PostgreSQL system so that it uses the LDAP for
authentication.

Security Chapter 6

[217]

Getting ready
Ensure that the usernames in the database and your LDAP server match, as this method
works for user authentication checks of users who are already defined in the database.

How to do it…
In the PostgreSQL authentication file, pg_hba.conf, we define some address ranges to use
LDAP as an authentication method, and we configure the LDAP server for this address
range:

host all all 10.10.0.1/16 ldap \
ldapserver=ldap.our.net ldapprefix="cn=" ldapsuffix=",
 dc=our,dc=net"

How it works…
This setup makes the PostgreSQL server check passwords from the configured LDAP
server.

User rights are not queried from the LDAP server but have to be defined inside the
database using the ALTER USER, GRANT, and REVOKE commands.

There's more…
We have shown you how PostgreSQL can use an LDAP server for password authentication.
It is also possible to use some more information from the LDAP server, as shown in the
next two examples.

Setting up the client to use LDAP
If you are using the pg_service.conf file to define your database access parameters, you
may define some to be queried from the LDAP server by including a line similar to the
following in your pg_service.conf file:

ldap://ldap.mycompany.com/dc=mycompany,dc=com?uniqueMember?one?(cn=mydb)

Security Chapter 6

[218]

Replacement for the User Name Map feature
Although we cannot use the User Name Map feature with LDAP, we can achieve a similar
effect on the LDAP side. Use ldapsearchattribute and the search + bind mode to
retrieve the PostgreSQL role name from the LDAP server.

See also
For server setup, including the search + bind mode, visit http:/ /www.
postgresql. org/ docs/ 11/ static/ auth- methods. html#AUTH- LDAP

For client setup, visit http:/ /www. postgresql. org/ docs/ 11/static/ libpq-
ldap.html

Connecting using SSL
Here, we will demonstrate how to enable PostgreSQL to use SSL for the protection of
database connections by encrypting all of the data passed over that connection. Using SSL
makes it much harder to sniff the database traffic, including usernames, passwords, and
other sensitive data. Otherwise, everything that is passed unencrypted between a client and
the database can be observed by someone listening to a network somewhere between them.
An alternative to using SSL is running the connection over a Virtual Private Network
(VPN).

Using SSL makes the data transfer on the encrypted connection a little slower, so you may
not want to use it if you are sure that your network is safe. The performance impact can be
quite large if you are creating lots of short connections, as setting up an SSL connection is
quite CPU heavy. In this case, you may want to run a local connection pooling solution,
such as PgBouncer, to which the client connects without encryption, and then configure
PgBouncer for server connections using SSL. Older versions of PgBouncer did not support
SSL; the solution was to channel server connections through stunnel, as described in the
PgBouncer FAQ at https://pgbouncer.github.io/faq.html.

Getting ready
Get, or generate, an SSL server key and certificate pair for the server, and store these in the
data directory of the current database instance as the server.key and server.crt files.

http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/auth-methods.html#AUTH-LDAP
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
http://www.postgresql.org/docs/11/static/libpq-ldap.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html

Security Chapter 6

[219]

On some platforms, this is unnecessary; the key and certificate pair may
already be generated by the packager. For example, in Ubuntu,
PostgreSQL is set up to support SSL connections by default.

How to do it…
Set ssl = on in postgresql.conf and restart the database.

How it works…
If ssl = on is set, then PostgreSQL listens to both plain and SSL connections on the same
port (5432 by default) and determines the type of connection from the first byte of a new
connection. Then, it proceeds to set up an SSL connection if an incoming request asks for it.

There's more…
You can leave the choice of whether or not to use SSL up to the client, or you can force SSL
usage from the server side.

To let the client choose, use a line of the following form in the pg_hba.conf file:

host database user IP-address/IP-mask auth-method

If you want to allow only SSL clients, use the hostssl keyword instead of host.

The contents of pg_hba.conf can be seen using the pg_hba_file_rules view.

The following fragment of pg_hba.conf enables both non-SSL and SSL connections from
the 192.168.1.0/24 local subnet, but requires SSL from everybody accessing the database
from other networks:

host all all 192.168.1.0/24 md5
hostssl all all 0.0.0.0/0 md5

Security Chapter 6

[220]

Getting the SSL key and certificate
For web servers, you must usually get your SSL certificate from a recognized Certificate
Authority (CA), as most browsers complain if the certificate is not issued by a known CA.
They warn the user of the most common security risks and require confirmation before
connecting to a server with a certificate issued by an unknown CA.

For your database server, it is usually sufficient to generate the certificate yourself using
OpenSSL. The following commands generate a self-signed certificate for your server:

openssl genrsa 2048 > server.key
openssl req -new -x509 -key server.key -out server.crt

Read more on X.509 keys and certificates by visiting OpenSSL's HOWTO
pages at https:/ /github. com/ openssl/ openssl/ tree/ master/ doc/HOWTO.

Setting up a client to use SSL
The behavior of the client application regarding SSL is controlled by an environment
variable, PGSSLMODE. This can have the following values, as defined in the official
PostgreSQL documentation:

SSL mode Eavesdropping
protection

MITM
protection Statement

disabled No No I don't care about security, and I don't want to pay
the overhead of encryption.

allow Maybe No I don't care about security, but I will pay the
overhead of encryption if the server insists on it.

prefer Maybe No I don't care about encryption, but I will to pay the
overhead of encryption if the server supports it.

require Yes No
I want my data to be encrypted, and I accept the
overhead. I trust that the network will ensure that I
always connect to the server I want.

verify-ca Yes Depends on
the CA policy

I want my data encrypted, and I accept the overhead.
I want to be sure that I connect to a server that I trust.

verify-full Yes Yes
I want my data encrypted, and I accept the overhead.
I want to be sure that I connect to a server I trust, and
that the server is the one I specify.

https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO
https://github.com/openssl/openssl/tree/master/doc/HOWTO

Security Chapter 6

[221]

MITM in the preceding table means man-in-the-middle attack, that is, someone posing as
your server, perhaps by manipulating DNS records or IP routing tables, but who actually
just observes and forwards the traffic.

For this to be possible with an SSL connection, this person needs to have obtained a
certificate that your client considers valid.

Checking server authenticity
The last two SSL modes allow you to be reasonably sure that you are actually talking to
your server by checking the SSL certificate presented by the server.

In order to enable this useful security feature, the following files must be available on the
client side. On Unix systems, they are located in the client home directory, in a subdirectory
named ~/.postgresql. On Windows, they are in %APPDATA%\postgresql\:

File Contents Effect

root.crt Certificates of one or more trusted
CAs

PostgreSQL verifies that the server certificate is signed
by a trusted CA

root.crl Certificates revoked by CAs The server certificate must not be on this list

Only the root.crt file is required for the client to authenticate the server certificate. It can
contain multiple root certificates against which the server certificate is compared.

Using SSL certificates to authenticate
This recipe shows you how to set up your PostgreSQL system so that it requires clients to
present a valid X.509 certificate before allowing them to connect.

This can be used as an additional security layer, using double authentication, where the
client must both have a valid certificate to set up the SSL connection and know the database
user's password. It can also be used as the sole authentication method, where the
PostgreSQL server will first verify the client connection using the certificate presented by
the client, and then retrieve the username from the same certificate.

Getting ready
Get, or generate, a root certificate and a client certificate to be used by the connecting client.

Security Chapter 6

[222]

How to do it…
For testing purposes, or for setting up a single trusted user, you can use a self-signed
certificate:

openssl genrsa 2048 > client.key
openssl req -new -x509 -key server.key -out client.crt

In the server, set up a line in the pg_hba.conf file with the hostssl method and the
clientcert option set to 1:

hostssl all all 0.0.0.0/0 md5 clientcert=1

Put the client root certificate in the root.crt file in the server data directory
($PGDATA/root.crt). This file may contain multiple trusted root certificates.

If you are using a central certificate authority, you probably also have a certificate
revocation list, which should be put in a root.crl file and regularly updated.

In the client, put the client's private key and certificate in
~/.postgresql/postgresql.key and ~/.postgresql/postgresql.crt. Make sure
that the private key file is not world-readable or group-readable by running the following
command:

chmod 0600 ~/.postgresql/postgresql.key

In a Windows client, the corresponding files are
%APPDATA%\postgresql\postgresql.key and
%APPDATA%\postgresql\postgresql.crt. No permission check is done, as the location
is considered secure.

If the client certificate is not signed by the root CA but by an intermediate CA, then all of
the intermediate CA certificates up to the root certificate must be placed in the
postgresql.crt file as well.

How it works…
If the clientcert=1 option is set for a hostssl row in pg_hba.conf, then PostgreSQL
accepts only connection requests accompanied by a valid certificate.

The validity of the certificate is checked against certificates present in the root.crt file in
the server data directory.

Security Chapter 6

[223]

If there is a root.crl file, then the presented certificate is searched for in this file and, if
found, is rejected.

After the client certificate is validated and the SSL connection is established, the server
proceeds to validate the actual connecting user using whatever authentication method is
specified in the corresponding hostssl line.

In the following example, clients from a special address can connect as any user when using
an SSL certificate, and they must specify a SCRAM-SHA-256 password for non-SSL
connections. Clients from all of the other addresses must present a certificate and use md5
password authentication:

host all all 10.10.10.10/32 md5
hostssl all all 10.10.10.10/32 trust clientcert=1
hostssl all all all scram-sha-256 clientcert=1

There's more…
In this section, we provide some additional content, describing an important optimization
for an SSL-only database server, plus two extensions of the basic SSL configuration.

Avoiding duplicate SSL connection attempts
In the Setting up a client to use SSL section of the previous Connecting using SSL recipe, we
saw how the client's SSL behavior is affected by environment variables. Depending on how
the SSLMODE environment variable is set on the client (either via compile-time settings, the
PGSSLMODE environment variable, or the sslmode connection parameter), the client may
attempt to connect without SSL first, and then attempt an SSL connection only after the
server rejects the non-SSL connection. This duplicates a connection attempt every time a
client accesses an SSL-only server.

To make sure that the client tries to establish an SSL connection on the first attempt,
SSLMODE must be set to prefer or higher.

Using multiple client certificates
You may sometimes need different certificates to connect to different PostgreSQL servers.

Security Chapter 6

[224]

The location of the certificate and key files in postgresql.crt and postgresql.key in
the table from the Checking server authenticity section is just the default and can be
overridden by specifying alternative file paths using the sslcert and sslkey connection
parameters or the PGSSLCERT and PGSSLKEY environment variables.

Using the client certificate to select the database user
It is possible to use the client certificate for two purposes at once: proving that the
connecting client is a valid one and selecting the database user to be used for the
connection.

To do this, you set the authentication method to cert in the hostssl line:

hostssl all all 0.0.0.0/0 cert

As you can see, the clientcert=1 option used with hostssl to require client certificates
is no longer required, as it is implied by the cert method itself.

When using the cert authentication method, a valid client certificate is required, and the
cn (short for common name) attribute of the certificate will be compared to the requested
database username. The login will be allowed only if they match.

It is possible to use a User Name Map to map the common names in the certificates to
database usernames by specifying the map option:

hostssl all all 0.0.0.0/0 cert map=x509cnmap

Here, x509cnmap is the name that we have arbitrarily chosen for our mapping. More
details on User Name Maps are provided in the Mapping external usernames to database
roles recipe.

See also
To understand more about SSL in general, and the OpenSSL library used by PostgreSQL in
particular, visit http://www.openssl.org or get a good book about SSL.

To get started with the generation of simple SSL keys and certificates, see
https://github.com/openssl/openssl/blob/master/doc/HOWTO/certificates.txt.

There is also a nice presentation named Encrypted PostgreSQL explaining these issues at
PGCon 2009. The slides are available at
http://www.pgcon.org/2009/schedule/events/120.en.html.

http://www.openssl.org/
https://github.com/openssl/openssl/blob/master/doc/HOWTO/certificates.txt
http://www.pgcon.org/2009/schedule/events/120.en.html

Security Chapter 6

[225]

Mapping external usernames to database
roles
In some cases, the authentication username is different from the PostgreSQL username. For
instance, this can happen when using an external system for authentication, such as
certificate authentication, as described in the previous recipe, or any other external or single
sign-on system authentication method from http:/ /www. postgresql. org/ docs/ 11/
static/auth-methods. html (GSSAPI, SSPI, Kerberos, Radius, or PAM). You may just need
to enable an externally authenticated user to connect as multiple database users. In such
cases, you can specify rules to map the external username to the appropriate database role.

Getting ready
Prepare a list of usernames from the external authentication system and decide which
database users they are allowed to connect as—that is, which external users map to which
database users.

How to do it…
Create a pg_ident.conf file in the usual place (PGDATA), with lines in the following
format:

map-name system-username database-username

Here, map-name is the value of the map option from the corresponding line in
pg_hba.conf, system-username is the username that the external system authenticated
the connection as, and database-username is the database user this system user is
allowed to connect as. The same system user may be allowed to connect as multiple
database users, so this is not a 1:1 mapping, but rather a list of allowed database users for
each system user.

If system-username starts with a slash (/), then the rest of it is treated as a regular
expression rather than a directly matching string, and it is possible to use the \1 string in
database-username to refer to the part captured by the parentheses in the regular
expression. For example, consider the following lines:

salesmap /^(.*)@sales\.comp\.com$ \1
salesmap /^(.*)@sales\.comp\.com$ sales
salesmap manager@sales.comp.com auditor

http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html
http://www.postgresql.org/docs/11/static/auth-methods.html

Security Chapter 6

[226]

These will allow any user authenticated with a @sales.comp.com email address to connect
both as a database user equal to the name before the @ sign in their email address and as the
sales user. They will additionally allow anager@sales.comp.com to connect as the
auditor user. Then, edit the pg_hba.conf line to specify the map=salesmap option.

How it works…
After authenticating the connection using an external authentication system, PostgreSQL
will usually proceed to check that the externally authenticated username matches the
database username that the user wishes to connect as and rejects the connection if these two
do not match.

If there is a map= parameter specified for the current line in pg_hba.conf, then the system
will scan the map line by line and will let the client proceed with connecting if a match is
found.

There's more…
By default, the map file is called pg_ident.conf (because it was first used for the ident
authentication method).

Nowadays, it is possible to change the name of this file via the ident_file configuration
parameter in postgresql.conf. It can also be located outside the PGDATA directory by
setting ident_file to a full path.

A relative path can also be used, but since it is relative to where the postgres process is
started, this is usually not a good idea.

Encrypting sensitive data
This recipe shows you how to encrypt data using the pgcrypto contrib package.

Security Chapter 6

[227]

Getting ready
Make sure you (and/or your database server) are in a country where encryption is not
illegal—it still is in some countries.

In order to create and manage PGP keys, you also need the well-known GnuPG command-
line utility, which is available on practically all distributions.

pgcrypto is part of the contrib collection. Starting from version 10, on Debian and Ubuntu
it is part of the main postgresql-10 server package, while in previous versions there was
a separate package, for example, postgresql-contrib-9.6.

Install it on the database in which you want to use it, following the Adding an external
module to PostgreSQL recipe from Chapter 3, Configuration.

You also need to have PGP keys set up:

pguser@laptop:~$ gpg --gen-key

Answer some questions here (the defaults are OK, unless you are an expert), select the key
type as DSA and Elgamal, and enter an empty password.

Now, export the keys:

pguser@laptop:~$ gpg -a --export “PostgreSQL User (test key for PG
Cookbook) <pguser@somewhere.net>“ > public.key
pguser@laptop:~$ gpg -a --export-secret-keys “PostgreSQL User (test key for
PG Cookbook) <pguser@somewhere.net>“ > secret.key

Make sure only you and the postgres database user have access to the secret key:

pguser@laptop:~$ sudo chgrp postgres secret.key
pguser@laptop:~$ chmod 440 secret.key
pguser@laptop:~$ ls -l *.key
-rw-r--r-- 1 pguser pguser 1718 2016-03-26 13:53 public.key
-r--r----- 1 pguser postgres 1818 2016-03-26 13:54 secret.key

Last but not least, make a copy of the public and the secret key; if you lose them, you'll lose
the ability to encrypt/decrypt.

Security Chapter 6

[228]

How to do it…
To ensure that the secret keys are never visible in database logs, write a wrapper function to
get the keys from the file. You need to do it in an untrusted embedded language, such as
PL/PythonU, as only untrusted languages can access the filesystem. You need to be a
PostgreSQL superuser in order to create functions in untrusted languages. It's not difficult
to write a PostgreSQL function that reads a text file. For convenience, here is an example
that requires PL/PythonU:

create or replace function get_my_public_key() returns text as $$
return open('/home/pguser/public.key').read()
$$
language plpythonu;
revoke all on function get_my_public_key() from public;
create or replace function get_my_secret_key() returns text as $$
return open('/home/pguser/secret.key').read()
$$
language plpythonu;
revoke all on function get_my_secret_key() from public;

This can also be fully implemented in PL/pgSQL using the built-in
PostgreSQL system function, pg_read_file (filename), and you don't
have to bother with PL/PythonU at all. However, to use this function, you
must place the files in the data directory as required by that function for
additional security, so the database superuser is not allowed to access the
rest of the filesystem directly.

If you don't want other database users to be able to see the keys, you also
need to write wrapper functions for encryption and decryption and then
give access to these wrapper functions to end users.

The encryption function can be like this:

create or replace function encrypt_using_my_public_key(
 cleartext text,
 ciphertext out bytea
)
AS $$
DECLARE
 pubkey_bin bytea;
BEGIN
 -- text version of public key needs to be passed through function
dearmor() to get to raw key
 pubkey_bin := dearmor(get_my_public_key());

Security Chapter 6

[229]

 ciphertext := pgp_pub_encrypt(cleartext, pubkey_bin);
END;
$$ language plpgsql security definer;
revoke all on function encrypt_using_my_public_key(text) from public;
grant execute on function encrypt_using_my_public_key(text) to bob;

The decryption function can be as follows:

create or replace function decrypt_using_my_secret_key(
 ciphertext bytea,
 cleartext out text
)
AS $$
DECLARE
 secret_key_bin bytea;
BEGIN
 -- text version of secret key needs to be passed through function
dearmor() to get to raw binary key
 secret_key_bin := dearmor(get_my_secret_key());

 cleartext := pgp_pub_decrypt(ciphertext, secret_key_bin);
END;
$$ language plpgsql security definer;
revoke all on function decrypt_using_my_secret_key(bytea) from public;
grant execute on function decrypt_using_my_secret_key(bytea) to bob;

Finally, we test the encryption:

test2=# select encrypt_using_my_public_key(‘X marks the spot!’);

This function returns a bytea (that is, raw binary) result that looks something like the
following:

encrypt_using_my_public_key |
\301\301N\003\223o\215\2125\203\252;\020\007\376-z\233\211H...

To see that it actually works, you must go both ways:

test2=# select decrypt_using_my_secret_key(encrypt_using_my_public_key(‘X
marks the spot!’));
 decrypt_using_my_secret_key

 X marks the spot!
(1 row)

Yes, we got back our initial string!

Security Chapter 6

[230]

How it works…
What we have done here is the following:

Hidden the keys from non-superuser database users
Provided wrappers for authorized users to use encryption and decryption
functionalities

To ensure that your sensitive data is not stolen while in transit between the client and the
database server, make sure you connect to PostgreSQL either using an SSL-encrypted
connection or from localhost.

You also have to trust your server administrators and all of the other users with superuser
privileges to be sure that your encrypted data is safe. And, of course, you must trust the
safety of the entire environment; PostgreSQL can decrypt the data, so any other user or
software that has access to the same files can do the same.

There's more…
A higher level of security is possible, with more complex procedures and architecture, as
shown in the next sections. We also mention a limited pgcrypto version that does not use
OpenSSL.

For really sensitive data
For some data, you wouldn't want to risk keeping the decryption password on the same
machine as the encrypted data.

In those cases, you can use public-key cryptography, also known as asymmetric
cryptography, and carry out only the encryption part on the database server. This also
means that you only have the encryption key on the database host and not the key needed
for decryption. Alternatively, you can deploy a separate, extra-secure encryption server in
your server infrastructure that provides just the encrypting and decrypting functionality as
a remote call.

Security Chapter 6

[231]

This solution is secure because, in asymmetric cryptography, the private
(that is, decryption) key cannot be derived from the corresponding public
(that is, encryption) key, hence the names public and private, which
denote the appropriate dissemination policies.

If you wish to prove the identity of the author of a file, the correct method
is to use a digital signature, which is an entirely different application of
cryptography. Note that this is not currently supported by pgcrypto, so
you must implement your own methods as C functions or in a procedural
language capable of using cryptographic libraries.

For really, really, really sensitive data
For even more sensitive data, you may never want the data to leave the client computer
unencrypted. Therefore, you need to encrypt the data before sending it to the database. In
that case, PostgreSQL receives already encrypted data and never sees the unencrypted
version. This also means that the only useful indexes you can have are for use in WHERE
encrypted_column = encrypted_data and for ensuring uniqueness.

Even these forms can be used only if the encryption algorithm always produces the same
ciphertext (output) for the same plaintext (input), which is true only for weaker encryption
algorithms. For example, it would be easy to determine the age or sex of a person if the
same value were always encrypted into the same ciphertext. To avoid this vulnerability,
strong encryption algorithms are able to produce a different ciphertext for the same value.

The versions of pgcrypto are usually compiled to use the OpenSSL library
(http://www.openssl.org). If, for some reason, you don't have OpenSSL, or just don't want
to use it, it is possible to compile pgcrypto without it, with a smaller number of supported
encryption algorithms and a slightly reduced performance.

See also
The page on pgcrypto in the PostgreSQL online documentation, available at
http://www. postgresql. org/ docs/11/ static/ pgcrypto. html

The OpenSSL web page, accessed at http://www.openssl.org/
The GNU Privacy Handbook at http://www.gnupg.org/gph/en/manual.html

http://www.openssl.org/
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.postgresql.org/docs/11/static/pgcrypto.html
http://www.openssl.org/
http://www.gnupg.org/gph/en/manual.html

7
Database Administration

In Chapter 5, Tables and Data, we looked at the contents of tables and various complexities.
Now we'll turn our attention to larger administration tasks that we need to perform from
time to time, such as creating things, moving things around, storing things neatly, and
removing them when they're no longer required.

The most sensible way to perform major administrative tasks is to write a script to do what
you think is required. If you're unsure, you can always run the script on a system test
server, and then run it again on the production server once you're happy. Manically typing
commands against production database servers isn't wise. Worse, using an admin tool can
lead to serious issues if that tool doesn't show you the SQL you're about to execute. If you
haven't dropped your first live table yet, don't worry; you will. Perhaps you might want to
read Chapter 11, Backup and Recovery, first, eh? Back it up using scripts.

Scripts are great because you can automate common tasks, and there's no need to sit there
with a mouse, working your way through hundreds of changes. If you're drawn to the
discussion about the command line versus GUI, then my thoughts and reasons are
completely orthogonal to that. I want to encourage you to avoid errors and save time by
performing repetitive and automatic execution of small administration programs or scripts.
If it were safe or easy to do the equivalent of mouse movements in a script, then that would
be an option, but it's definitely not. The only viable way to write a repeatable script is by
writing text SQL commands. Which scripting tool to use is a more interesting debate. We
consider psql here because if you've got PostgreSQL, then you've certainly got it, without
needing to install additional software. So, we're on solid ground to provide examples that
way.

Let's move on to the recipes! First, we'll start by looking at some scripting techniques that
are valuable in PostgreSQL.

In this chapter, we will cover the following recipes:

Writing a script that either succeeds entirely or fails entirely
Writing a psql script that exits on the first error

Database Administration Chapter 7

[233]

Using psql variables
Placing query output into psql variables
Writing a conditional psql script
Investigating a psql error
Performing actions on many tables
Using pgAdmin for DBA tasks
Using OmniDB for DBA tasks
Adding/removing columns on a table
Changing the data type of a column
Changing the definition of a data type
Adding/removing schemas
Moving objects between schemas
Adding/removing tablespaces
Moving objects between tablespaces
Accessing objects in other PostgreSQL databases
Accessing objects in other foreign databases
Updatable views
Using materialized views

Writing a script that either succeeds entirely
or fails entirely
Database administration often involves applying a coordinated set of changes to the
database. One of PostgreSQL's great strengths is its transaction system, wherein almost all
actions can be executed inside a transaction. This allows us to build a script with many
actions that will either all succeed or all fail. This means that if any of these actions fail, then
all the other actions in the script are rolled back and never become visible to any other user,
which can be critically important on a production system. This property is referred to as
atomicity in the sense that the script is intended as a single unit that cannot be split. This is
the meaning of the A in the ACID properties of database transactions.

Transactions definitely apply to Data Definition Language (DDL), which refers to the set
of SQL commands used to define, modify, and delete database objects. The term DDL goes
back many years, but it persists because that subset is a useful short name for the
commands that most administrators need to execute: CREATE, ALTER, DROP, and so on.

Database Administration Chapter 7

[234]

Although most commands in PostgreSQL are transactional, there are a
few that cannot be. The most common example is of commands that use
sequences. They cannot be transactional because when a new sequence
number is allocated, the effect of having consumed that number must
become visible immediately, without waiting for that transaction to be
committed. Otherwise, the same number will be given to another
transaction, which is contrary to what sequences are supposed to do.

How to do it…
The basic way to ensure that we get all commands successful or none at all is to literally
wrap our script into a transaction, as follows:

BEGIN;
command 1;
command 2;
command 3;
COMMIT;

Writing a transaction control command involves editing the script, which you may not
want to do or even have access to. There are, however, other ways as well.

From psql, you can do this by simply using the -1 or --single-transaction command-
line options, as follows:

bash $ psql -1 -f myscript.sql
bash $ psql --single-transaction -f myscript.sql

The -1 option is short, but I recommend using --single-transaction, as it's much
clearer which option is being selected.

How it works…
The entire script will fail if, at any point, one of the commands gives an error (or higher)
message. Almost all of the SQL used to define objects (DDL) provides a way to avoid
throwing errors. More precisely, commands that begin with the DROP keyword have an IF
EXISTS option. This allows you to execute the DROP keyword, regardless of whether or not
the object already exists.

Database Administration Chapter 7

[235]

Thus, by the end of the command, that object will not exist:

DROP VIEW IF EXISTS cust_view;

Similarly, most commands that begin with the CREATE keyword have the optional OR
REPLACE suffix. This allows the CREATE statement to overwrite the definition if one already
exists, or add the new object if it doesn't exist yet, like this:

CREATE OR REPLACE VIEW cust_view AS SELECT * FROM cust;

In the cases where both the DROP IF EXISTS and CREATE OR REPLACE options exist, you
might think that CREATE OR REPLACE is usually sufficient. However, if you change the
output definition of a function or a view, then using OR REPLACE is not sufficient. In that
case, you must use DROP and recreate it, as shown in the following example:

postgres=# CREATE OR REPLACE VIEW cust_view AS
SELECT col as title1 FROM cust;
CREATE VIEW
postgres=# CREATE OR REPLACE VIEW cust_view
AS SELECT col as title2 FROM cust;
ERROR: cannot change name of view column "title1" to "title2"

Also, note that CREATE INDEX does not have an OR REPLACE option. If you run it twice,
you'll get two indexes on your table, unless you specifically name the index. There is a
DROP INDEX IF EXISTS option, but it may take a long time to drop and recreate an index.
An index exists just for the purpose of optimization, and it does not change the actual result
of any query, so this different behavior is actually very convenient. This is also reflected in
the fact that the SQL standard doesn't mention indexes at all, even though they exist in
practically all database systems, because they do not affect the logical layer.

PostgreSQL does not support nested transaction control commands, which can lead to
unexpected behavior. For instance, consider the following code, written in a nested
transaction style:

postgres=# BEGIN;
BEGIN
postgres=# CREATE TABLE a(x int);
CREATE TABLE
postgres=# BEGIN;
WARNING: there is already a transaction in progress
BEGIN
postgres=# CREATE TABLE b(x int);
CREATE TABLE
postgres=# COMMIT;
COMMIT
postgres=# ROLLBACK;

Database Administration Chapter 7

[236]

NOTICE: there is no transaction in progress
ROLLBACK

A hypothetical author of such code probably meant to create table a first, and then create
table b. Then, they changed their mind and rolled back both the inner transaction and the
outer transaction. However, what PostgreSQL does is discard the second BEGIN statement
so that the COMMIT statement is matched with the first BEGIN statement and the inner
transaction becomes a top-level transaction. Hence, right after the COMMIT statement, we are
outside a transaction block, so the next statement is assigned its own transaction. When
ROLLBACK is issued as the next statement, PostgreSQL notices that the transaction is
actually empty.

The danger in this particular example is that the user inadvertently committed a
transaction, thus waving the right to roll it back; however, we should say that a careful user
would have noticed the warning and paused to think before going ahead.

From this example, you have learned a valuable lesson: if you have used transaction control
commands in your script, then wrapping them again in a higher-level script or command
can cause problems of the worst kind, such as committing stuff that you wanted to roll
back. This is important enough to deserve a boxed warning.

PostgreSQL accepts nested transactional control commands, but does not
act on them. After the first commit, the commands will be assumed to be
transactions in their own right and will persist, should the script fail. Be
careful!

There's more…
The following commands cannot be included in a script that uses transactions in the way
we just described:

CREATE DATABASE/DROP DATABASE
CREATE TABLESPACE/DROP TABLESPACE
CREATE INDEX CONCURRENTLY

VACUUM

REINDEX DATABASE/REINDEX SYSTEM
CLUSTER

Database Administration Chapter 7

[237]

None of these actions need to be run manually on a regular basis within complex programs,
so this shouldn't be a problem for you.

Also, note that these commands do not substantially alter the logical content of a database;
that is, they don't create new user tables or alter any rows, so there's less need to use them
inside complex transactions.

While PostgreSQL does not support nested transaction commands, it supports the notion of
SAVEPOINT, which can be used to achieve the same behavior. Suppose we wanted to
implement the following pseudocode:

(begin transaction T1)
 (statement 1)
 (begin transaction T2)
 (statement 2)
 (commit transaction T2)
 (statement 3)
(commit transaction t1)

The effect we seek has the following properties:

If statements 1 and 3 succeed, and statement 2 fails, then statements 1
and 3 will be committed
If all three statements succeed, then they will all be committed
Otherwise, no statement will be committed

These properties also hold with the following PostgreSQL commands:

BEGIN;
 (statement 1)
 SAVEPOINT T2;
 (statement 2)
 RELEASE SAVEPOINT T2; /* we assume that statement 2 does not fail */
 (statement 3)
COMMIT;

This form, as noted in the code, applies only if statement 2 does not fail. If it fails, we
must replace RELEASE SAVEPOINT with ROLLBACK TO SAVEPOINT, or we will get an
error. This is a slight difference between top-level transaction commands; a COMMIT
statement is silently converted into a ROLLBACK when the transaction is in a failed state.

Database Administration Chapter 7

[238]

Writing a psql script that exits on the first
error
The default mode for the psql script tool is to continue processing when it finds an error.
This sounds dumb, but it exists for historical compatibility only. There are some easy and
mostly permanent ways to avoid this, so let's look at them.

Getting ready
Let's start with a simple script, with a command we know will fail:

$ $EDITOR test.sql
mistake1;
mistake2;
mistake3;

Execute the following script using psql to see what the results look like:

$ psql -f test.sql
psql:test.sql:1: ERROR: syntax error at or near "mistake1"
LINE 1: mistake1;
 ^
psql:test.sql:2: ERROR: syntax error at or near "mistake2"
LINE 1: mistake2;
 ^
psql:test.sql:3: ERROR: syntax error at or near "mistake3"
LINE 1: mistake3;
 ^

How to do it…
We will perform the following steps:

To exit the script on the first error, we can write the following command:1.

$ psql -f test.sql -v ON_ERROR_STOP=on
psql:test.sql:1: ERROR: syntax error at or near "mistake1"
LINE 1: mistake1;
 ^

Database Administration Chapter 7

[239]

Alternatively, we can edit the test.sql file with the initial line that's shown2.
here:

$ $EDITOR test.sql
\set ON_ERROR_STOP on
mistake1;
mistake2;
mistake3;

Note that the following command will not work because we have missed the3.
crucial ON value:

$ psql -f test.sql -v ON_ERROR_STOP

How it works…
The ON_ERROR_STOP variable is a psql special variable that controls the behavior of psql
as it executes in script mode. When this variable is set, a SQL error will generate an OS
return code 3, whereas other OS-related errors will return code 1.

There's more…
You can place some psql commands in a profile that will get executed when you run psql.
Adding ON_ERROR_STOP to your profile will ensure that this setting is applied to all psql
sessions:

$ $EDITOR ~/.psqlrc
\set ON_ERROR_STOP

You can forcibly override this, and request psql to execute without a profile using -X. This
is probably the safest thing to do for the batch execution of scripts so that they always work
in the same way, irrespective of the local settings.

ON_ERROR_STOP is one of some special variables that affects the way psql behaves. The full
list is available at the following URL: https:/ /www. postgresql. org/ docs/ 11/static/ app-
psql.html#APP-PSQL- VARIABLES.

https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES
https://www.postgresql.org/docs/11/static/app-psql.html#APP-PSQL-VARIABLES

Database Administration Chapter 7

[240]

Using psql variables
In the previous recipe, we have seen how to use the ON_ERROR_STOP variable. Here, we
will show you how to work with any variable, including user-defined ones.

Getting ready
As an example, we will create a script that does some work on a given table. We will keep it
simple, because we just want to show how variables work.

For instance, we might want to add a text column to a table, and then set it to a given value.
So, we write the following lines into a file called vartest.sql:

ALTER TABLE mytable ADD COLUMN mycol text;
UPDATE mytable SET mycol = 'myval';

The script can be run as follows:

psql -f vartest.sql

How to do it…
We change vartest.sql as follows:

\set tabname mytable
\set colname mycol
\set colval 'myval'
ALTER TABLE :tabname ADD COLUMN :colname text;
UPDATE :tabname SET :colname = :'colval';

How it works…
What do these changes mean? We have defined three variables, setting them to the table
name, column name, and column value, respectively. Then, we have replaced the mentions
of those specific values with the name of the variable preceded by a colon, which in psql
means replace with the value of this variable. In the case of colval, we have also surrounded the
variable name with single quotes, meaning treat the value as a string.

Database Administration Chapter 7

[241]

If we want vartest.sql to add a different column, we just have to make one change to the
top of the script, where all variables are conveniently set. Then, the new column name will
be used.

There's more…
This was just one way to define variables. Another is to indicate them in the command line,
when running the script:

psql -v tabname=mytab2 -f vartest.sql

Variables can also be set interactively. The following line will prompt the user, and then set
the variable to whatever is typed before hitting Enter:

\prompt 'Insert the table name: ' tabname

In the next recipe, we will see how to set variables using a SQL query.

Placing query output into psql variables
It is also possible to store some values produced by a query into variables—for instance, to
reuse them later in other queries.

In this recipe, we will demonstrate this approach with a concrete example.

Getting ready
In the Controlling automatic database maintenance recipe of Chapter 9,
Regular Maintenance, we will describe VACUUM, showing that it runs regularly on each table
based on the number of rows that might need vacuuming (dead rows).
The VACUUM command will run if that number exceeds a given threshold, which by default
is just above 20% of the row count.

Database Administration Chapter 7

[242]

In this recipe, we will create a script that picks the table with the largest number of dead
rows and runs VACUUM on it.

How to do it…
The script is as follows:

SELECT schemaname
, relname
, n_dead_tup
, n_live_tup
FROM pg_stat_user_tables
ORDER BY n_dead_tup DESC
LIMIT 1
\gset
\qecho Running VACUUM on table :"relname" in schema :"schemaname"
\qecho Rows before: :n_dead_tup dead, :n_live_tup live
VACUUM ANALYZE :schemaname.:relname;
\qecho Waiting 1 second...
SELECT pg_sleep(1);
SELECT n_dead_tup AS n_dead_tup_now
, n_live_tup AS n_live_tup_now
FROM pg_stat_user_tables
WHERE schemaname = :'schemaname'
AND relname = :'relname'
\gset
\qecho Rows after: :n_dead_tup_now dead, :n_live_tup_now live

How it works…
You might have noticed that the first query does not end with a semicolon, as usual. This is
because we end it with \gset instead, which means run the query, and assign each returned
value to a variable having the same name as the output column.

This command expects the query to return exactly one row, as you might expect it to, and if
not, it does not set any variable.

Database Administration Chapter 7

[243]

The script waits one second before reading the updated number of dead and live rows. The
reason for the wait is that such statistics are updated after the end of the transaction that
makes the changes, which sends a signal to the statistics collector, which then does the
update.

There's more…
See the next recipe on how to improve the script with iterations so that it vacuums more
than one table.

Writing a conditional psql script
psql supports the conditional meta-commands \if, \elif, \else, and \endif. In this
recipe, we will demonstrate some of them.

Getting ready
We want to improve the vartest.sql, script so that it runs VACUUM only if there actually
are dead rows in that table.

How to do it…
We add conditional commands to vartest.sql resulting in the following script:

SELECT schemaname
, relname
, n_dead_tup
, n_live_tup
, n_dead_tup > 0 AS needs_vacuum
FROM pg_stat_user_tables
ORDER BY n_dead_tup DESC
LIMIT 1
\gset
\if :needs_vacuum
\qecho Running VACUUM on table :"relname" in schema :"schemaname"
\qecho Rows before: :n_dead_tup dead, :n_live_tup live
VACUUM ANALYZE :schemaname.:relname;
\qecho Waiting 1 second...
SELECT pg_sleep(1);

Database Administration Chapter 7

[244]

SELECT n_dead_tup AS n_dead_tup_now
, n_live_tup AS n_live_tup_now
FROM pg_stat_user_tables
WHERE schemaname = :'schemaname' AND relname = :'relname'
\gset
\qecho Rows after: :n_dead_tup_now dead, :n_live_tup_now live
\else
\qecho Skipping VACUUM on table :"relname" in schema :"schemaname"
\endif

How it works…
We have added an extra column, needs_vacuum, to the first query, resulting in one more
variable that we can use to make the VACUUM part conditional.

There's more…
Conditional statements are usually part of flow-control statements, which also include
iterations.

While iterating is not directly supported by psql, a similar effect can be achieved in other
ways, for instance:

A script called file.sql (for instance) can be iterated by adding some lines at
the end, as in the following fragment:

SELECT /* add a termination condition as appropriate */ AS do_loop
\gset
\if do_loop
\ir file.sql
\endif

Instead of iterating, you can follow the approach described later in this chapter in
the Performing actions on many tables recipe.

Investigating a psql error
Error messages can sometimes be cryptic, and you may be left wondering, Why did this error
happen at all?

Database Administration Chapter 7

[245]

For this purpose, psql recognizes two variables, VERBOSITY and CONTEXT; valid values are
terse, default, or verbose for the former, and never, errors, or always for the latter.
A more verbose error message will hopefully specify extra detail, and the context
information will be included. Here is an example to show the difference:

postgres=# \set VERBOSITY terse
postgres=# \set CONTEXT never
postgres=# select * from missingtable;
ERROR: relation "missingtable" does not exist at character 15

This is quite a simple error, so we don't actually need the extra detail, but it is nevertheless
useful for illustrating the extra detail you get when raising verbosity and enabling context
information:

postgres=# \set VERBOSITY verbose
postgres=# \set CONTEXT errors
postgres=# select * from missingtable;
ERROR: 42P01: relation "missingtable" does not exist
LINE 1: select * from missingtable;
 ^
LOCATION: parserOpenTable, parse_relation.c:1159

Now you get the SQL error code 42P01, which you can look up in the PostgreSQL manual,
and even a reference to the file and the line in the PostgreSQL source code where this error
is raised so that you can investigate it (the beauty of open source!).

However, there is a problem with having to enable verbosity in advance: you need to do it
before running the command. If all errors were reproducible, this would not be a huge
inconvenience. But in certain cases, you may hit a transient error, such as a serialization
failure, which is difficult to detect itself, and it could sometimes happen that you struggle
to reproduce the error, let alone analyze it.

The \errverbose meta command in psql was introduced precisely to avoid these
problems.

Getting ready
In fact, there isn't much to do, as the point of the \errverbose meta-command is precisely
to capture information on the error without requiring any prior activity.

Database Administration Chapter 7

[246]

How to do it…
Check the following example to understand the usage of the \errverbose meta-
command.

Suppose you hit an error, as in the following query, and verbose reporting was1.
not enabled:

postgres=# create table wrongname();
ERROR: relation "wrongname" already exists

The extra detail that is not displayed is nevertheless remembered by psql, so you2.
can view it as follows:

postgres=# \errverbose
ERROR: 42P07: relation "wrongname" already exists
LOCATION: heap_create_with_catalog, heap.c:1067

There's more…
The error and source codes for this recipe can be found in the following links:

The list of PostgreSQL error codes is available in the manual at the following
URL: https://www.postgresql.org/docs/11/static/errcodes-appendix.html
The PostgreSQL source code can be downloaded or inspected from the following
URL https://git.postgresql.org/

Using pgAdmin for DBA tasks
In this recipe, we will show you how to use pgAdmin for the administration of your
database. PgAdmin is one of the two graphical interfaces that we introduced in the Using
graphical administration tools recipe in Chapter 1, First Steps; the other one is OmniDB, to
which we dedicate this next recipe.

Getting ready
You should have already installed pgAdmin as part of the Using graphical administration
tools recipe from Chapter 1, First Steps, which includes website pointers. If you haven't
done so, please read it now.

https://www.postgresql.org/docs/11/static/errcodes-appendix.html
https://git.postgresql.org/

Database Administration Chapter 7

[247]

Remember to install pgAdmin 4, which is the last generation of the software; the previous
one, pgAdmin 3, is no longer supported and hasn't been for a few years, and will give
various errors on PostgreSQL 10 and above.

How to do it…
The first task of a DBA is to get access to the database, and get a first glance of its contents.
In that respect, we have already seen how to create a connection, access the dashboard, and
display some database statistics. We also mentioned the Grant Wizard and the graphical
Explain tool:

The list of schemas in a given database can be obtained by opening a database1.
and selecting Schemas:

Database Administration Chapter 7

[248]

If you right-click on an individual schema, you get a number of possible actions.2.
For instance, you can take a backup of that schema only:

Database Administration Chapter 7

[249]

Clicking the left button on the mouse will drill down inside the schema and show3.
you a number of object types. You will probably want to start from Tables:

Database Administration Chapter 7

[250]

A PostgreSQL table supports a wide range of operations. For instance, you can4.
count the number of rows:

Note that this is just an example of a pgAdmin feature, and we are not suggesting that
counting table rows is the best way to gather information on your database; see the How
many rows are there in a table? recipe in Chapter 2, Exploring the Database, for a discussion on
this topic.

Database Administration Chapter 7

[251]

How it works...
PostgreSQL is a complex database system, with many features and even more actions, so
we can't discuss them all; we will just mention three table actions of interest:

The Maintenance... entry opens a dialog that includes actions such as VACUUM
and ANALYZE, which are discussed in various recipes in Chapter 9, Regular
Maintenance.
The Import/Export... entry leads to a dialog where you can export and import
data using the COPY command, which includes CSV format, as demonstrated in
Chapter 5, Tables and Data.
With View/Edit Data, you can edit the contents of the table as you would do in a
spreadsheet. This is slightly different than the CSV import/export feature because
you edit the data directly inside the database without having to export it to
another tool.

Finally, we would also like to mention these other three options as well:

Each server (for example, connection) offers the option to Backup Globals,
meaning roles (users/groups) and tablespaces
The Maintenance... entry inside Indexes, which itself is a sub-entry of Tables,
allows you to REINDEX or CLUSTER a given index
You can create SQL scripts to perform some of the specific actions, for example, if
you want to execute a procedure, or write an INSERT query on a given table

There's more
As you can see, the general idea of pgAdmin is that a right-click on an object, or on a group
of objects, opens a menu presenting a number of actions for that particular object or group.

Browsing available actions is a very good way to get more familiar with what PostgreSQL
can do, although not all the actions that are available in PostgreSQL will be reachable
through pgAdmin's interface.

Using OmniDB for DBA tasks
Like pgAdmin, OmniDB was introduced first in Chapter 1, First Steps, as part of the Using
graphical administration tools recipe. This recipe shows how it can be used to carry out some
database administration tasks.

Database Administration Chapter 7

[252]

Getting ready
You should read the recipe we mentioned previously, if you haven't done so already, to get
started with OmniDB.

How to do it...
Let's begin by opening the database and looking inside it:

You will already have a connection to your local database; if you haven't, you can1.
create one by selecting New Connection in the Connections tab. This adds a new
row with mostly empty fields, which you can fill before selecting Save Data:

If you open one of your connections, you can access the corresponding
database server through the familiar tree view, with a right-click interface
that, like pgAdmin, opens a set of available actions on that particular object.

Database Administration Chapter 7

[253]

Here is an example where we operate on a column of a table:2.

Database Administration Chapter 7

[254]

More generally, OmniDB offers graphical interfaces for inspecting and managing3.
the various kinds of database objects; we cannot possibly provide a
comprehensive list here, and this is probably a good thing because we like to
encourage you to test it yourself. Let's provide just one example; here, we are
managing the structure of a given table:

Database Administration Chapter 7

[255]

Going beyond database object administration, an interesting feature is the ability4.
to remember some metadata about all the queries that you ran through OmniDB,
from the Query History tab:

In particular, you don't need to remember the queries that you ran because OmniDB does it
for you.

How it works
We close this section by noting that OmniDB has dedicated support for a number of
replication solutions related to PostgreSQL, such as the following:

Native PostgreSQL Logical Replication
BDR
pglogical
Postgres-XL

Database Administration Chapter 7

[256]

There's more...
When we mentioned OmniDB's monitoring dashboard, earlier in Chapter 1, First Steps, we
discussed that OmniDB has a plugin API that allows users to expand its capabilities.

This is a general design principle of OmniDB that can also be seen in the feature that allows
for the customization of the monitoring dashboard, including adding custom metrics:

Performing actions on many tables
As a database administrator, you will often need to apply multiple commands as part of the
same overall task. That task could be one of the following:

Many different actions on multiple tables
The same action on multiple tables
The same action on multiple tables in parallel
Different actions, one on each table, in parallel

Database Administration Chapter 7

[257]

The first is a general case where you need to make a set of coordinated changes. The
solution is to write a script, as we've already discussed. We can also call this static scripting
because you write the script manually and then execute it.

The second type of task can be achieved very simply with dynamic scripts, where we write
a script that writes another script. This technique is the main topic of this recipe.

Performing actions in parallel sounds really cool, and it would be useful if it were easy. In
some ways it is, but trying to run multiple tasks concurrently and trap and understand all
the errors is much harder. And if you're thinking it won't matter if you don't check for
errors, think again. If you run tasks in parallel, then you cannot run them inside the same
transaction, so you definitely need error-checking.

Don't worry! Running in parallel is usually not as bad as it may seem after reading the
previous paragraph, and we'll explain it after a few basic examples.

Getting ready
Let's just create a basic schema to run some examples:

postgres=# create schema test;
CREATE SCHEMA
postgres=# create table test.a (col1 INTEGER);
CREATE TABLE
postgres=# create table test.b (col1 INTEGER);
CREATE TABLE
postgres=# create table test.c (col1 INTEGER);
CREATE TABLE

How to do it…
Our task is to run a SQL statement using this form, with X as the table name, against each of
our three test tables:

ALTER TABLE X
ADD COLUMN last_update_timestamp TIMESTAMP WITH TIME ZONE;

Database Administration Chapter 7

[258]

The steps are as follows:

Our starting point is a script that lists the tables that we want to perform tasks1.
against—something like the following:

 postgres=# SELECT relname
 FROM pg_class c
 JOIN pg_namespace n
 ON c.relnamespace = n.oid
 WHERE n.nspname = 'test'
 AND c.relkind = 'r';

This displays the list of tables that we will act upon (so that you can check it):2.

 relname

 a
 b
 c
 (3 rows)

We then use the preceding SQL to generate the text for a SQL script, substituting3.
the schema name and table name in the SQL text. We then output to a script file
named multi.sql, as follows:

 postgres=# \pset format unaligned
 postgres=# \t on
 postgres=# \o multi.sql
 postgres=# SELECT format('ALTER TABLE %I.%I ADD COLUMN
 last_update_timestamp TIMESTAMP WITH TIME ZONE;'
 , n.nspname, c.relname)
 FROM pg_class c
 JOIN pg_namespace n
 ON c.relnamespace = n.oid
 WHERE n.nspname = 'test'
 AND c.relkind = 'r';
 \o

Once we've generated the script, we can check whether all of it looks correct:4.

 postgres=# \! cat multi.sql
 ALTER TABLE test.a ADD COLUMN
 last_update_timestamp TIMESTAMP WITH TIME ZONE;
 ALTER TABLE test.b ADD COLUMN
 last_update_timestamp TIMESTAMP WITH TIME ZONE;
 ALTER TABLE test.c ADD COLUMN
 last_update_timestamp TIMESTAMP WITH TIME ZONE;

Database Administration Chapter 7

[259]

Finally, we run the script and watch the results (success!):5.

 postgres=# \i multi.sql
 ALTER TABLE
 ALTER TABLE
 ALTER TABLE

How it works…
Overall, this is just an example of dynamic scripting, and it has been used by DBAs for
many decades, even before PostgreSQL was born.

This method can go wrong in various ways, especially if you generate SQL text with syntax
errors. Just fix that and carry on.

The \t command means tuples only, so keeping \t to on will ensure that there are no
headers, command tags, or row counts following the results.

Similarly, we set the output format to unaligned, meaning that psql will not add extra

spaces to make all values the same width.

The \o FILENAME command redirects the output to a file until the subsequent \o
command reverts to no redirection.

We use the format function, which takes a template string as its first argument and replaces
all occurrences of %I, %L, and %s with the values supplied as additional arguments (in our
case, the values of n.nspname and r.relname). The differences between these three forms
is in how the replacement values are quoted:

%I treats the value as an SQL Identifier, adding double quotes as appropriate
%L treats the value as an SQL Literal, adding single quotes as appropriate
%s treats the value as a simple string

Also, note that %% is replaced by a single % character.

Database Administration Chapter 7

[260]

The \! command runs operating system commands, so \! cat will show the file contents
on *nix systems.

The \i command redirects the input from a file, or in simpler terms, executes the named
file. Running the script in this way may ignore earlier recipes, so I still recommend
following those earlier guidelines.

The \ir command does the same as \i; the difference is that \ir is relative to the directory
where the current script is, while \i is relative to the current directory. This directory is the
one where the psql command line was started, and is changed by the \cd command.

Dynamic scripting can also be called a quick and dirty approach. The previous scripts
didn't filter out views and other objects in the test schema, so you'll need to add that
yourself, or not, as required.

There is another way of doing this as well:

DO $$
DECLARE t record;
 FOR t IN SELECT c.*, n.nspname
 FROM pg_class c JOIN pg_namespace n
 ON c.relnamespace = n.oid
 WHERE n.nspname = 'test'
 AND c.relkind = 'r' /* ; not needed */
 LOOP
 EXECUTE format('
 ALTER TABLE %I.%I
 ADD COLUMN last_update_timestamp
 TIMESTAMP WITH TIME ZONE;
 ' , t.nspname, t.relname);
 END LOOP;
END $$;

I don't prefer using this method because it executes the SQL directly and doesn't allow you
to review it before, or keep the script afterwards.

The preceding syntax with DO is called an anonymous code block because it's like a
function without a name.

Database Administration Chapter 7

[261]

There's more…
Earlier, I said I'd explain how to run multiple tasks in parallel. Some practical approaches to
this are possible, with a bit of discussion.

Making tasks run in parallel can be thought of as subdividing the main task so that we run
x2, x4, x8, and other subscripts, rather than one large script.

First, you should note that error-checking gets worse when you spawn more parallel tasks,
whereas performance improves the most for the first few subdivisions. Also, we're often
constrained by CPU, RAM, or I/O resources for intensive tasks. This means that splitting a
main task into two to four parallel subtasks isn't practical without some kind of tool to help
us manage them.

There are two approaches here, depending on the two types of tasks:

A task consists of many smaller tasks, all roughly of the same size
A task consists of many smaller tasks, and the execution times vary according to
the size and complexity of the database object

If we have lots of smaller tasks, then we can simply run our scripts multiple times using a
simple round-robin split of tasks so that each subscript runs a part of all subtasks. Here is
how to do it: each row in pg_class has a hidden column called oid, whose value is a 32-
bit number allocated from an internal counter on table creation. Therefore, about half of the
tables will have even values of oid, and we can achieve an even split by adding the
following clauses:

Script 1: Add WHERE c.oid % 2 = 0.
Script 2: Add WHERE c.oid % 2 = 1.

The task we were performing as an example was to add a column to many tables. In the
previous example, we were adding the column with no specified default; so, the new
column will have a NULL value, and as a result, it will run very quickly with ALTER TABLE,
even on large tables. If we change the ALTER TABLE statement so as to specify a default,
then we should choose a non-volatile expression for the default value; otherwise,
PostgreSQL will need to rewrite the entire table. So, the runtime will vary according to the
table size (approximately, and also according to the number and type of indexes).

Database Administration Chapter 7

[262]

Now that our subtasks vary in runtime according to size, we need to be more careful when
splitting the subtasks so that we can end up with multiple scripts that will run for about the
same time.

If we already know that we have just a few big tables, it's easy to split those manually into
their own scripts.

If the database has many large tables, then we can sort SQL statements by table size and
then distribute them using round-robin distribution into multiple subscripts that will have
approximately the same runtime. The following SQL script, which should be saved in a
make-script.sql file, is an example of this technique:

\t on
\o script-:i.sql
SELECT sql FROM (
SELECT format('ALTER TABLE %I.%I ADD COLUMN
last_update_timestamp TIMESTAMP WITH TIME ZONE
DEFAULT now();' , n.nspname, c.relname) as sql,
row_number() OVER (ORDER BY pg_relation_size(c.oid))
FROM pg_class c
 JOIN pg_namespace n
 ON c.relnamespace = n.oid
WHERE n.nspname = 'test'
 AND c.relkind = 'r'
ORDER BY 2 DESC) as s
WHERE row_number % 2 = :i;
\o

Then, we generate the two scripts, as follows:

$ psql -v i=0 -f make-script.sql
$ psql -v i=1 -f make-script.sql

Finally, we execute the two jobs in parallel, like this:

$ psql -f script-0.sql &
$ psql -f script-1.sql &

Note how we used psql parameters—via the -v command-line option—to select different
rows using the same script.

Also, note how we used the row_number() window function to sort the data by size. Then,
we split the data into pieces using the following line:

WHERE row_number % N = i;

Database Administration Chapter 7

[263]

Here, N is the total number of scripts we're producing, and i ranges between 0 and N minus
1 (we are using modular arithmetic to distribute the subtasks).

Adding/removing columns on a table
As designs change, we may want to add or remove columns from our data tables. These are
common operations in development, though they need more careful planning on a running
production database server, as they take full locks and may run for long periods.

How to do it…
You can add a new column to a table using this command:

ALTER TABLE mytable
ADD COLUMN last_update_timestamp TIMESTAMP WITHOUT TIME ZONE;

You can drop the same column using the following command:

ALTER TABLE mytable
DROP COLUMN last_update_timestamp;

You can combine multiple operations when using ALTER TABLE, which then applies the
changes in a sequence. This allows you to do a useful trick, which is to add a column
unconditionally using IF EXISTS, as follows:

ALTER TABLE mytable
DROP COLUMN IF EXISTS last_update_timestamp,ADD COLUMN
last_update_timestamp TIMESTAMP WITHOUT TIME ZONE;

Note that this will have almost the same effect as the following command:

UPDATE mytable SET last_update_timestamp = NULL;

However, ALTER TABLE runs much faster. That's very cool if you want to perform an
update, but not much fun if you want to keep the data in the existing column.

Database Administration Chapter 7

[264]

How it works…
The ALTER TABLE statement, which is used to add or drop a column, takes a full table lock
(at the AccessExclusiveLock lock level) so that it can prevent all other actions on the
table. So, we want it to be as fast as possible.

The DROP COLUMN command doesn't actually remove the column from each row of the
table; it just marks the column as dropped. This makes DROP COLUMN a very fast operation.

The ADD COLUMN command is also very fast if we are adding a nullable column with a non-
volatile default value, for example, a NULL value or a constant. A non-volatile expression
always returns the same value, when computed multiple times within the same SQL
statement; this means that PostgreSQL can compute the default value once and write it into
the table metadata. Conversely, if the default is a volatile expression, then it is not
guaranteed to evaluate to the same result for each of the existing rows; therefore,
PostgreSQL needs to rewrite every row of the table, which can be quite slow.

The ALTER TABLE command allows us to execute many column operations at once, as
shown in the main recipe. The ALTER TABLE command is optimized so that we are able to
include all column operations in a single pass of the table, greatly improving the speed for
complex sets of changes:

ALTER TABLE mytable
ADD COLUMN last_update_userid INTEGER DEFAULT 0,ADD COLUMN
last_update_comment TEXT;

If we rewrite the table, then the dropped columns are removed. If not, they may stay there
for some time. Subsequent INSERT and UPDATE operations will insert a null value for the
dropped column(s). Updates will reduce the size of the stored rows if they were not null
already. So, in theory, you just have to wait, and the database will eventually reclaim the
space. In practice, this works only if all the rows in the table are updated within a given
period of time. Many tables contain historical data, so space may not be reclaimed at all
without additional actions.

The PostgreSQL manual recommends changing the data type of a column to the same,
which forces the rewriting of every row as a technique to reclaim the space taken by the
dropped columns. I don't recommend this because it will completely lock the table for a
long period, at least on larger databases. My recommendation is not to drop the column at
all, if you can avoid it, when you're in production. Just keep track of the changes you would
make if you get time, if ever. If you're looking at alternatives, then VACUUM will not rewrite
the table, though a VACUUM FULL or a CLUSTER statement will. Be careful in those cases as
well, because they also hold a full table lock.

Database Administration Chapter 7

[265]

There's more…
Indexes that depend on a dropped column are automatically dropped as well. All other
objects that depend on the column(s), such as foreign keys from other tables, will cause the
ALTER TABLE statement to be rejected. You can override this and drop everything in sight
using the CASCADE option, as follows:

ALTER TABLE x
DROP COLUMN last_update_timestamp
CASCADE;

Adding a column with a non-null default value can be done with ALTER TABLE … ADD

COLUMN … DEFAULT …, as we have just shown, but this holds an AccessExclusive lock
for the whole duration of the command, which can take a long time if the DEFAULT is a
volatile expression, as 100% of the rows must be rewritten.

The script which introduced in the Using psql variables recipe in this chapter is an example
of how to do the same without holding an AccessExclusive lock for a long time. This
lighter solution has only one other tiny difference: it doesn't use a single transaction, which
would be pointless, since it would hold the lock until the end.

If any row is inserted by another session between ALTER TABLE and UPDATE and that row
has a NULL value for the new column, then that value will be updated together with all the
rows that existed before the ALTER TABLE, which is OK in most cases, but not in all,
depending on the data model of the application.

A proper solution would involve using two sessions to ensure that no such writes can
happen in-between, with a procedure that can be sketched as follows:

Open two sessions, and note their PIDs.1.
In session 1, BEGIN a transaction, and then take an ACCESS EXCLUSIVE lock on2.
the table, which will be granted.

Database Administration Chapter 7

[266]

Immediately after, but in session 2, BEGIN a transaction, then take a SHARE lock3.
on the table, which will hang waiting for session 1.
In a third session, display the ordered wait queue for locks on session 1, as4.
follows:

SELECT *
FROM pg_stat_activity
WHERE pg_blocking_pids(pid) @> array[pid1]
ORDER BY state_change;

Here, pid1 is the PID of session 1. Check that PID2 is the second one in the list; if
not, it means that step 3 was not fast enough, so ROLLBACK both sessions and
repeat from step 1.

In session 1, perform ALTER TABLE and then COMMIT.5.
In session 2 (which will be unblocked by the previous step, and will therefore6.
acquire the SHARE lock straight away), perform the UPDATE and then the COMMIT.

Changing the data type of a column
Thankfully, changing column data types is not an everyday task, but when we need to do
it, we must know all the details so that we can perform the conversion on a production
system without any errors.

Getting ready
Let's start with a simple example of a table, as follows:

postgres=# select * from birthday;

This gives the following output:

 name | dob
-------+--------
 simon | 690926
(1 row)

The preceding table was created using this command:

CREATE TABLE birthday
(name TEXT, dob INTEGER);

Database Administration Chapter 7

[267]

How to do it…
Let's say we want to change the dob column to another data type. Let's try with a simple
example first, as follows:

postgres=# ALTER TABLE birthday
postgres-# ALTER COLUMN dob SET DATA TYPE text;
ALTER TABLE

This works fine. Let's just change that back to the integer type so that we can try
something more complex, such as a date data type:

postgres=# ALTER TABLE birthday
postgres-# ALTER COLUMN dob SET DATA TYPE integer;
ERROR: column "dob" cannot be cast to type integer

Oh! What went wrong? Let's try using an explicit conversion with the USING clause, as
follows:

postgres=# ALTER TABLE birthday
 ALTER COLUMN dob SET DATA TYPE integer
 USING dob::integer;
ALTER TABLE

This works as expected. Now, let's try moving to a date type:

postgres=# ALTER TABLE birthday
ALTER COLUMN dob SET DATA TYPE date
USING date(to_date(dob::text, 'YYMMDD') -
 (CASE WHEN dob/10000 BETWEEN 16 AND 69 THEN interval '100
 years'
 ELSE interval '0' END));

Now, it gives us what we were hoping to see:

postgres=# select * from birthday;
 name | dob
-------+------------
 simon | 26/09/1969
(1 row)

Database Administration Chapter 7

[268]

With PostgreSQL, you can also set or drop default expressions, irrespective of whether the
NOT NULL constraints are applied:

ALTER TABLE foo
ALTER COLUMN col DROP DEFAULT;
ALTER TABLE foo
ALTER COLUMN col SET DEFAULT 'expression';
ALTER TABLE foo
ALTER COLUMN col SET NOT NULL;
ALTER TABLE foo
ALTER COLUMN col DROP NOT NULL;

How it works…
Moving from the integer to the date type uses a complex USING expression. Let's break
that down step by step so that we can see why, as follows:

postgres=# ALTER TABLE birthday
ALTER COLUMN dob SET DATA TYPE date
USING date(to_date(dob::text, 'YYMMDD') -
 (CASE WHEN dob/10000 BETWEEN 16 AND 69
 THEN interval '100 years'
 ELSE interval '0' END));

First, we can't move directly from integer to date. We need to convert it into text and
then to date. The dob::text statement means cast to text.

Once we have text, we use the to_date() function to move to a date type.

This is not enough; our starting data was 690926, which we presume is a date in the
YYMMDD format. When PostgreSQL converts this data into a date, it assumes that the two-
digit year, 69, is in the current century because it chooses the year nearest to 2020. So, it
outputs 2069 rather than 1969. This is why a case statement is added to reduce any year
between 16 and 69 to be a date in the previous century by explicitly subtracting an interval
of 100 years. We do not need to take away one century for years after 69 because they are
already placed in the 20th century.

It is very strongly recommended that you test this conversion by performing a SELECT first.
Converting data types, especially to/from dates, always causes some problems, so don't try
to do this quickly. Always take a backup of the data first.

Database Administration Chapter 7

[269]

There's more…
The USING clause can also be used to handle complex expressions involving other columns.
This could be used for data transformations, which might be useful for DBAs in some
circumstances, such as migrating to a new database design on a production database
server. Let's put everything together in a full, working example. We will start with this
table that has to be transformed:

postgres=# select * from cust;
 customerid | firstname | lastname | age
------------+-----------+----------+-----
 1 | Philip | Marlowe | 38
 2 | Richard | Hannay | 42
 3 | Holly | Martins | 25
 4 | Harry | Palmer | 36
(4 rows)

We want to transform it into a table design like the following:

postgres=# select * from cust;
 customerid | custname | age
------------+----------------+-----
 1 | Philip Marlowe | 38
 2 | Richard Hannay | 42
 3 | Holly Martins | 25
 4 | Harry Palmer | 36
(4 rows)

We can decide to do it using these simple steps:

ALTER TABLE cust ADD COLUMN custname text NOT NULL DEFAULT '';
UPDATE cust SET custname = firstname || ' ' || lastname;
ALTER TABLE cust DROP COLUMN firstname;
ALTER TABLE cust DROP COLUMN lastname;

We can also use the SQL commands directly or make them use a tool such as OmniDB.
Following those steps may cause problems, as the changes aren't within a transaction,
meaning that other users can see the changes when they are only half finished. Hence, it
would be better to do this in a single transaction using BEGIN and COMMIT. Also, those four
changes require us to make two passes over the table.

Database Administration Chapter 7

[270]

However, we can perform the entire transformation in one pass using multiple clauses on
the ALTER TABLE command. So, instead, we do the following:

BEGIN;
ALTER TABLE cust
 ALTER COLUMN firstname SET DATA TYPE text
 USING firstname || ' ' || lastname,
 ALTER COLUMN firstname SET NOT NULL,
 ALTER COLUMN firstname SET DEFAULT '',
 DROP COLUMN lastname;
ALTER TABLE cust RENAME firstname TO custname;
COMMIT;

This is a great example of why I personally prefer using scripts to make such changes to
large production databases rather than directly making the changes using a GUI.

Some type changes can be performed without actually rewriting rows—for example, if you
are casting data from varchar to text, or from NUMERIC(10,2) to NUMERIC(18,2), or
simply to NUMERIC. Moreover, foreign key constraints will recognize type changes of this
kind on the source table, and will therefore skip the constraint check whenever it is safe.

Changing the definition of a data type
PostgreSQL comes with several data types, but users can create custom types to faithfully
represent any value. Data type management is mostly, but not exclusively, a developer's
job, and data type design goes beyond the scope of this book. This is a quick recipe that
covers only the simpler problem of the need to apply a specific change to an existing data
type.

Getting ready
Enumerative data types are defined like this:

CREATE TYPE satellites_urani AS ENUM ('titania','oberon');

The other popular case is composite data types, which are created as follows:

CREATE TYPE node AS
(node_name text,
 connstr text,
 standbys text[]);

Database Administration Chapter 7

[271]

How to do it…
If you made a mistake in the spelling of some enumerative values, and you realize it too
late, you can fix it like so:

ALTER TYPE satellites_urani RENAME VALUE ‘titania’ TO 'Titania';
ALTER TYPE satellites_urani RENAME VALUE ‘oberon’ TO 'Oberon';

This is very useful if the application expects—and uses—the right names.

A more complicated case is when you are upgrading your database to a new version, say
because you want to consider some facts that were not available during the initial design,
and you need extra values for the enumerative type that we defined in the preceding code.
You want to put the new values in a certain position to preserve the correct ordering. For
that, you can use an ALTER TYPE syntax, as follows:

ALTER TYPE satellites_urani ADD VALUE 'Ariel' BEFORE 'Titania';
ALTER TYPE satellites_urani ADD VALUE 'Umbriel' AFTER 'Ariel';

Composite data types can be changed with similar commands. Attributes can be renamed,
as in this example:

ALTER TYPE node
RENAME ATTRIBUTE slaves TO standbys;

And new attributes can be added as follows:

ALTER TYPE node
DROP ATTRIBUTE standbys,
ADD ATTRIBUTE async_standbys text[],
ADD ATTRIBUTE sync_standbys text[];

This form supports a list of changes, perhaps because composite types are more complex
than a list of enumerative values, and can therefore require complicated modifications.

How it works…
Each time you create a table, a composite type is automatically created with the same
attribute names, types, and positions. Each ALTER TABLE command that changes table
column definitions will silently issue a corresponding ALTER TYPE statement to keep the
type in agreement with its table definition.

Database Administration Chapter 7

[272]

Enumerative values in PostgreSQL are stored in tables as numbers, which are transparently
mapped to strings via the pg_enum catalog table. In order to allow inserting a new value
between two existing ones, enumerative values are indexed by real numbers, which allow
decimal points and have the same size in bytes as integer numbers. The motive is to use the
numeric ordering to encode the order of values that was specified by the user.

In the satellites_urani example, the first two values were Titania and Oberon, which
initially got indexed by the real numbers 1 and 2:

postgres=# select * from pg_enum where enumtypid = regtype
'satellites_urani';

 enumtypid | enumsortorder | enumlabel
-----------+---------------+-----------
 38112 | 1 | Titania
 38112 | 2 | Oberon
(2 rows)

When we add a third value before Titania (that is, 1), the number 0 is taken, as you
would probably expect:

postgres=# ALTER TYPE satellites_urani ADD VALUE 'Ariel' BEFORE 'Titania';
ALTER TYPE
postgres=# select * from pg_enum where enumtypid = regtype
'satellites_urani';
 enumtypid | enumsortorder | enumlabel
-----------+---------------+-----------
 38112 | 1 | Titania
 38112 | 2 | Oberon
 38112 | 0 | Ariel
(3 rows)

And, finally, when adding a fourth value between Ariel (0) and Titania (1), PostgreSQL
can pick the real value, 0.5:

postgres=# ALTER TYPE satellites_urani ADD VALUE 'Umbriel' AFTER 'Ariel';

ALTER TYPE

postgres=# select * from pg_enum where enumtypid = regtype
'satellites_urani';
 enumtypid | enumsortorder | enumlabel
-----------+---------------+-----------
 38112 | 1 | Titania
 38112 | 2 | Oberon
 38112 | 0 | Ariel

Database Administration Chapter 7

[273]

 38112 | 0.5 | Umbriel
(4 rows)

In order to test the resulting order, we can build a test table with all the possible values, and
then sort it:

postgres=# CREATE TABLE test(x satellites_urani);
CREATE TABLE

postgres=# INSERT INTO test VALUES ('Ariel'), ('Oberon'), ('Titania'),
('Umbriel');
INSERT 0 4

postgres=# SELECT * FROM test ORDER BY x;
 x

 Ariel
 Umbriel
 Titania
 Oberon
(4 rows)

There's more…
When an attribute is removed from a composite data type, the corresponding values will
instantly disappear from all the values of that same type stored in any database table. What
actually happens is that these values are still inside the tables, but they have become
invisible because their attribute is now marked as deleted, and the space they occupy will
be reclaimed only when the contents of the composite type are parsed again. This can be
forced with a query such as the following:

UPDATE mytable SET mynode = mynode :: text :: node;

Here, mytable is a table that has a mynode column of the node type. This query converts
the values into the text type, displaying only current attribute values, and then back to
node. You may have noticed that this behavior is very similar to the example of the
dropped column in the previous recipe.

Adding/removing schemas
Separating groups of objects is a good way of improving administration efficiency. You
need to know how to create new schemas and remove schemas that are no longer required.

Database Administration Chapter 7

[274]

How to do it…
To add a new schema, issue this command:

CREATE SCHEMA sharedschema;

If you want that schema to be owned by a particular user, then you can add the following
option:

CREATE SCHEMA sharedschema AUTHORIZATION scarlett;

If you want to create a new schema that has the same name as an existing user so that the
user becomes the owner, then try this:

CREATE SCHEMA AUTHORIZATION scarlett;

In many database systems, the schema name is the same as that of the owning user.
PostgreSQL allows schemas owned by one user to have objects owned by another user
within them. This can be especially confusing when you have a schema that has the same
name as the owning user. To avoid this, you should have two types of schema: schemas
that are named the same as the owning user should be limited to only objects owned by
that user. Other general schemas can have shared ownership.

To remove a schema named str, we can issue the following command:

DROP SCHEMA str;

If you want to ensure that the schema exists in all cases, you can issue the following
command:

CREATE SCHEMA IF NOT EXISTS str;

Clearly, you need to be careful because the outcome of the command depends on the
previous state of the database. As an example, try issuing the following:

CREATE TABLE str.tb (x int);

This can generate an error if the str schema contained that table before CREATE SCHEMA
IF NOT EXISTS was run. Otherwise, there's no namespace error.

Irrespective of your PostgreSQL version, there isn't a CREATE OR REPLACE SCHEMA
command, so when you want to create a schema, regardless of whether it already exists,
you can do the following:

DROP SCHEMA IF EXISTS newschema;
CREATE SCHEMA newschema;

Database Administration Chapter 7

[275]

The DROP SCHEMA command won't work unless the schema is empty or unless you use the
Nuclear option:

DROP SCHEMA IF EXISTS newschema CASCADE;

The Nuclear option kills all known germs and all your database objects (even the good
objects).

There's more…
In the SQL standard, you can also create a schema and the objects it contains in one SQL
statement. PostgreSQL accepts this syntax if you need it:

CREATE SCHEMA foo
 CREATE TABLE account
 (id INTEGER NOT NULL PRIMARY KEY
 ,balance NUMERIC(50,2))
 CREATE VIEW accountsample AS
 SELECT *
 FROM account
 WHERE random() < 0.1;

Mostly, I find this limiting. This syntax exists to allow us to create two or more objects at
the same time. This can be achieved more easily using PostgreSQL's ability to allow
transactional DDL, which was discussed in the Writing a script that either succeeds entirely or
fails entirely recipe.

Using schema-level privileges
Privileges can be granted for objects in a schema using the GRANT command, as follows:

GRANT SELECT ON ALL TABLES IN SCHEMA sharedschema TO PUBLIC;

However, this will only affect tables that already exist. Tables that are created in the future
will inherit privileges defined by the ALTER DEFAULT PRIVILEGES command, as follows:

ALTER DEFAULT PRIVILEGES IN SCHEMA sharedschema
GRANT SELECT ON TABLES TO PUBLIC;

Database Administration Chapter 7

[276]

Moving objects between schemas
Once you've created schemas for administration purposes, you'll want to move existing
objects to keep things tidy.

How to do it…
To move one table from its current schema to a new schema, use the following:

ALTER TABLE cust
SET SCHEMA anotherschema;

If you want to move all objects, you can consider renaming the schema itself by using the
following query:

ALTER SCHEMA existingschema RENAME TO anotherschema;

This only works if another schema with that name does not exist. Otherwise, you'll need to
run ALTER TABLE for each table you want to move. You can use the earlier recipe in this
chapter Performing actions on many tables, to achieve that.

Views, sequences, functions, aggregates, and domains can also be moved by ALTER
commands with SET SCHEMA options.

How it works…
When you move tables to a new schema, all the indexes, triggers, and rules defined on
those tables will also be moved to the new schema. If you've used a SERIAL data type and
an implicit sequence has been created, then that also moves to the new schema. Schemas
are purely an administrative concept and they do not affect the location of the table's data
files. Tablespaces don't work this way, as we will see in later recipes.

Databases, users/roles, languages, and conversions don't exist in a schema. Schemas exist in
a particular database. Schemas don't exist within schemas; they are not arranged in a tree or
hierarchy. More details can be found in the Using multiple schemas recipe in Chapter 4,
Server Control.

Database Administration Chapter 7

[277]

There's more…
Casts don't exist in a schema, though the data types and functions they reference do exist.
These things are not typically something we want to move around, anyway. This is just a
note if you're wondering how things work.

Adding/removing tablespaces
Tablespaces allow us to store PostgreSQL data across different devices. We might want to
do that for performance or administrative ease, or our database might just have run out of
disk space.

Getting ready
Before we can create a useful tablespace, we need the underlying devices in a production-
ready form.

Think carefully about the speed, volume, and robustness of the disks you are about to use.
Make sure that they are configured correctly. Those decisions will affect your life for the
next few months and years!

Disk performance is a subtle issue that most people think can be decided in a few seconds.
We recommend reading Chapter 10, Performance and Concurrency, from this book, as well
as additional books on the same topic.

Once you've done all of that, then you can create a directory for your tablespace. The
directory must be as follows:

Empty
Owned by the PostgreSQL-owning user ID
Specified with an absolute pathname

On Linux and Unix systems, you shouldn't use a mount point directly. Create a
subdirectory and use that instead. That simplifies ownership and avoids some filesystem-
specific issues, such as getting lost+found directories.

Database Administration Chapter 7

[278]

The directory also needs to follow sensible naming conventions so that we can clearly
identify which tablespace goes with which server. Do not be tempted to use something
simple, such as data, because it will make later administration more difficult. Be especially
careful that test or development servers do not and cannot get confused with production
systems.

How to do it…
Once you've created your directory, adding the tablespace is simple:

CREATE TABLESPACE new_tablespace
LOCATION '/usr/local/pgsql/new_tablespace';

The command to remove the tablespace is also simple and is as follows:

DROP TABLESPACE new_tablespace;

Every tablespace has a location assigned to it, with the exception of the pg_global and
pg_default default tablespaces, for shared system catalogs and all other objects,
respectively. They don't have a location because they live in a subdirectory of the data
directory.

A tablespace can be dropped only when it is empty, so how do you know when a
tablespace is empty?

Tablespaces can contain both permanent and temporary objects. Permanent data objects are
tables, indexes, and TOAST objects. We don't need to worry too much about TOAST objects
because they are created and always live in the same tablespace as their main table, and
you cannot manipulate their privileges or ownership.

Indexes can exist in separate tablespaces as a performance option, though that requires
explicit specification in the CREATE INDEX statement. The default is to create indexes in the
same tablespace as the table to which they belong.

Temporary objects may also exist in a tablespace. These exist when users have explicitly
created temporary tables or there may be implicitly created data files when large queries
overflow their work_mem settings. These files are created according to the setting of the
temp_tablespaces parameter. This might cause an issue because you can't tell for certain
what the setting of temp_tablespaces is for each user. Users can change their setting of
temp_tablespaces from the default value specified in the postgresql.conf file to
something else.

Database Administration Chapter 7

[279]

We can identify the tablespace of each user object using the following query:

SELECT spcname
 ,relname
 ,CASE WHEN relpersistence = 't' THEN 'temp '
 WHEN relpersistence = 'u' THEN 'unlogged '
 ELSE '' END ||
 CASE
 WHEN relkind = 'r' THEN 'table'
 WHEN relkind = 'p' THEN 'partitioned table'
 WHEN relkind = 'f' THEN 'foreign table'
 WHEN relkind = 't' THEN 'TOAST table'
 WHEN relkind = 'v' THEN 'view'
 WHEN relkind = 'm' THEN 'materialized view'
 WHEN relkind = 'S' THEN 'sequence'
 WHEN relkind = 'c' THEN 'type'
 ELSE 'index' END as objtype
FROM pg_class c join pg_tablespace ts
ON (CASE WHEN c.reltablespace = 0 THEN
 (SELECT dattablespace FROM pg_database
 WHERE datname = current_database())
 ELSE c.reltablespace END) = ts.oid
WHERE relname NOT LIKE 'pg_toast%'
AND relnamespace NOT IN
 (SELECT oid FROM pg_namespace
 WHERE nspname IN ('pg_catalog', 'information_schema'))
;

This displays an output such as the following:

 spcname | relname | objtype
------------------+-----------+------------
 new_tablespace | x | table
 new_tablespace | y | table
 new_tablespace | z | temp table
 new_tablespace | y_val_idx | index

You may also want to look at the spcowner, relowner, relacl, and spcacl columns to
determine who owns what and what they're allowed to do. The relacl and spcacl
columns refer to the Access Control List (ACL) that details the privileges available on those
objects. The spcowner and relowner columns record the owners of the tablespace and
tables/indexes, respectively.

Database Administration Chapter 7

[280]

How it works…
A tablespace is just a directory where we store PostgreSQL data files. We use symbolic links
from the data directory to the tablespace.

We exclude TOAST tables because they are always in the same tablespace as their parent
tables, but remember that TOAST tables are always in a separate schema. You can exclude
TOAST tables using the relkind column, but that would still include the indexes on the
TOAST tables. TOAST tables and TOAST indexes both start with pg_toast, so we can exclude
those easily from our queries.

The preceding query needs to be complex because the pg_class entry for an object will
show reltablespace = 0 when an object is created in the database's default tablespace.
So, if you directly join pg_class and pg_tablespace, you end up losing rows.

Note that we can see that a temporary object exists, and we can see the tablespace in which
it is created, even though we cannot refer to a temporary object in another user's session.

There's more…
Some more notes on best practices follow.

A tablespace can contain objects from multiple databases, so it's possible to be in a position
where there are no objects visible in the current database. The tablespace just refuses to go
away, giving the following error:

ERROR: tablespace "old_tablespace" is not empty

You are strongly advised to make a separate tablespace for each database to avoid
confusion. This can be especially confusing if you have the same schema names and table
names in the separate databases.

How do you avoid this? If you just created a new tablespace directory, you might want to
create subdirectories within that for each database that needs space, and then change the
subdirectories to tablespaces instead.

You may also wish to consider giving each tablespace a specific owner by using the
following query:

ALTER TABLESPACE new_tablespace OWNER TO eliza;

This may help smooth administration.

Database Administration Chapter 7

[281]

You may also wish to set default tablespaces for a user so that tables are automatically
created there by issuing the following query:

ALTER USER eliza SET default_tablespace = 'new_tablespace';

Putting pg_wal on a separate device
You may seek advice about placing the pg_wal directory on a separate device for
performance reasons. This sounds very similar to tablespaces, though there is no explicit
command to do this once you have a running database, and files in pg_wal are frequently
written. So, you must perform the steps outlined in the following example:

Stop the database server:1.

[postgres@myhost ~]$ pg_ctl stop

Move pg_wal to a location supported by a different disk device:2.

[postgres@myhost ~]$ mv $PGDATA/pg_wal /mnt/newdisk/

Create a symbolic link from the old location to the new location:3.

[postgres@myhost ~]$ ln -s /mnt/newdisk/pg_wal $PGDATA/pg_wal

Restart the database server:4.

[postgres@myhost ~]$ pg_ctl start

Verify that everything is working by committing any transaction (preferably, a5.
transaction that does not damage the existing workload):

[postgres@myhost ~]$ psql -c 'CREATE TABLE all is ok()'

Tablespace-level tuning
Since each tablespace has different I/O characteristics, we may wish to alter the planner cost
parameters for each tablespace. These can be set with the following command:

ALTER TABLESPACE new_tablespace SET
(seq_page_cost = 0.05, random_page_cost = 0.1);

In this example, settings are roughly appropriate for an SSD drive, and it assumes that the
drive is 40 times faster than an HDD for random reads, and 20 times faster for sequential
reads.

Database Administration Chapter 7

[282]

The values given need more discussion than we have time for here; these are only examples
to demonstrate the procedure to change the settings.

Moving objects between tablespaces
Moving data between tablespaces may be required.

Getting ready
First, create your tablespaces. Once the old and new tablespaces exist, we can issue the
commands to move them.

How to do it…
Tablespaces can contain both permanent and temporary objects.

Permanent data objects are tables, indexes, and TOAST objects. We don't need to worry too
much about TOAST objects because they are created in and always live in the same
tablespace as their main table. So, if you alter the tablespace of a table, its TOAST objects will
also move:

ALTER TABLE mytable SET TABLESPACE new_tablespace;

Indexes can exist in separate tablespaces, and moving a table leaves the indexes where they
are. Don't forget to run ALTER INDEX commands as well, one for each index, as follows:

ALTER INDEX mytable_val_idx SET TABLESPACE new_tablespace;

Temporary objects cannot be explicitly moved to a new tablespace, so we need to ensure
they are created somewhere else in the future. To do that, you need to do the following:

Edit the temp_tablespaces parameter, as shown in the Updating the parameter1.
file recipe in Chapter 3, Configuration.
Reload the server to allow new configuration settings to take effect.2.

There is no single command to do this that will work for all users.

Database Administration Chapter 7

[283]

How it works…
If you want to move a table and its indexes all in one pass, you can issue all the commands
in a single transaction, as follows:

BEGIN;
ALTER TABLE mytable SET TABLESPACE new_tablespace;
ALTER INDEX mytable_val1_idx SET TABLESPACE new_tablespace;
ALTER INDEX mytable_val2_idx SET TABLESPACE new_tablespace;
COMMIT;

Moving tablespaces means the bulk copying of data. Copying happens sequentially, block
by block. That works well, but there's no way to avoid the fact that the bigger the table, the
longer it will take.

Performance will be optimized if archiving or streaming replication is not active, as no
WAL will be written in that case.

You should be aware that the table is fully locked (the AccessExclusiveLock lock) while
the copy is taking place, so this can cause an effective outage for your application. Be very
careful!

If you want to ensure that objects are created in the right place next time you create them,
then you can use this query:

SET default_tablespace = 'new_tablespace';

You can run this automatically for all users that connect to a database using the following
query:

ALTER DATABASE mydb SET default_tablespace = 'new_tablespace';

Take care that you do not run the following command by mistake, however:

ALTER DATABASE mydb SET TABLESPACE new_tablespace;

This literally moves all objects that do not have an explicitly defined tablespace into
new_tablespace. For a large database, this will take a very long time, and your database
will be completely locked while it runs; not preferred, if you do it by accident!

Database Administration Chapter 7

[284]

There's more…
If you just discovered that indexes don't get moved when you move a table, then you may
want to check whether any indexes are in tablespaces that are different than their parent
tables. Run the following to check:

SELECT i.relname as index_name
 , tsi.spcname as index_tbsp
 , t.relname as table_name
 , tst.spcname as table_tbsp
 FROM (pg_class t /* tables */
 JOIN pg_tablespace tst
 ON t.reltablespace = tst.oid
 OR (t.reltablespace = 0
 AND tst.spcname = 'pg_default')
)
 JOIN pg_index pgi
 ON pgi.indrelid = t.oid
 JOIN (pg_class i /* indexes */
 JOIN pg_tablespace tsi
 ON i.reltablespace = tsi.oid
 OR (i.reltablespace = 0
 AND tsi.spcname = 'pg_default')
)
 ON pgi.indexrelid = i.oid
 WHERE i.relname NOT LIKE 'pg_toast%'
 AND i.reltablespace != t.reltablespace
;

If we have one table with an index in a separate tablespace, we might see this as a psql
definition:

postgres=# \d y
 Table "public.y"
 Column | Type | Modifiers
--------+------+-----------
 val | text |
Indexes:
 "y_val_idx" btree (val), tablespace "new_tablespace"
Tablespace: "new_tablespace2"

Running the previously presented query gives the following results:

 relname | spcname | relname | spcname
-----------+------------------+---------+---------------
 y_val_idx | new_tablespace | y | new_tablespace2
(1 row)

Database Administration Chapter 7

[285]

Accessing objects in other PostgreSQL
databases
Sometimes, you may want to access data in other PostgreSQL databases. The reasons may
be as follows:

You have more than one database server, and you need to extract data (such as
reference) from one server and load it into the other.
You want to access data that is in a different database on the same database
server, which was split for administrative purposes.
You want to perform some changes that you do not wish to rollback in the event
of an error or transaction abort. These are known as function side effects or
autonomous transactions.

You might also be considering this because you are exploring the scale out, sharding, or
load balancing approaches. If so, read the last part of this recipe, the See also section, and
then skip to Chapter 12, Replication and Upgrades.

PostgreSQL includes two separate mechanisms for accessing external
PostgreSQL databases: dblink and the PostgreSQL Foreign Data
Wrapper. The latter is more efficient and implements a part of the SQL
standard, but does not fully replace dblink; therefore, we provide two
variants of this recipe.

Getting ready
First of all, let's make a distinction to prevent confusion:

The Foreign Data Wrapper infrastructure, a mechanism to manage the definition
of remote connections, servers, and users, is available in all supported
PostgreSQL versions
The PostgreSQL Foreign Data Wrapper is a specific contrib extension that uses
the Foreign Data Wrapper infrastructure to connect to remote PostgreSQL
servers

In particular, the Foreign Data Wrapper infrastructure will be used to manage definitions in
both cases, that is, when using the PostgreSQL Foreign Data Wrapper and when using the
dblink module.

Database Administration Chapter 7

[286]

Foreign Data Wrapper extensions for other database systems will be discussed in the next
recipe, Accessing objects in other foreign databases.

How to do it…
We will first describe the variant that uses dblink:

First, we need to install the dblink contrib module. The general procedure is1.
explained in the Adding an external module to PostgreSQL recipe of Chapter 3,
Configuration.

Then, we create some access definitions. The preferred way is to use the2.
following commands, which are SQL standard (SQL/MED):

postgres=# CREATE FOREIGN DATA WRAPPER postgresql
 VALIDATOR postgresql_fdw_validator;
CREATE FOREIGN DATA WRAPPER

postgres=# CREATE SERVER otherdb
 FOREIGN DATA WRAPPER postgresql
 OPTIONS (host 'foo', dbname 'otherdb', port '5432');
CREATE SERVER

postgres=# CREATE USER MAPPING FOR PUBLIC
SERVER otherdb;
CREATE USER MAPPING

You must create FOREIGN DATA WRAPPER only once, though you need one3.
SERVER for each PostgreSQL destination database to which you may wish to
connect. This is just the connection definition, not the connection itself.
Creating a public user mapping with no options seems strange, though it will4.
mean that we use the libpq default behavior. It will also mean that we will
connect the remote database using the value of PGUSER, or if it is not set, use the
operating system user. Clearly, if we want to use different credentials, then we
must specify them with suitable options, either while creating the mapping or
afterwards (ALTER USER MAPPING).

The VALIDATOR clause specifies a function whose purpose is to validate
the parameters. That function is a part of the Foreign Data Wrapper and
should have been provided by the author, so you need to create it only if
you are developing a new type of Foreign Data Wrapper yourself.

Database Administration Chapter 7

[287]

Now, connect using an unnamed connection, as follows:5.

SELECT dblink_connect('otherdb');

This produces the following output:6.

dblink_connect

OK
(1 row)

We limit ourselves to unnamed connections for simplicity. It is also possible to7.
create a named connection, that is, a connection that is assigned a string so that it
can be referred to directly later. This is obviously useful if we want to manage
several connections, but it comes at the price of actually having to manage their
life cycle (connection and disconnection).

Suppose you want to execute the following command:8.

postgres=# INSERT INTO audit_log VALUES (current_user,
now());

To do so, run it on the unnamed remote connection, like this:9.

postgres=# SELECT dblink_exec('INSERT INTO audit_log VALUES'
||
 ' (current_user, now())', true);

This will give the following output:10.

 dblink_exec

 INSERT 0 1
(1 row)

Notice that the remote command returns the command tag and the number of11.
rows that were processed as the return value of the function. The second option
means fail on error. If you look closely, there's also a subtle error—when the
INSERT command is executed locally, we use this server's value of
current_user. But when we execute remotely, we use the remote server's value
of current_user, which might differ, depending on the user mapping defined
previously.

Database Administration Chapter 7

[288]

Similarly, suppose you want to execute the following query on the unnamed12.
remote connection:

SELECT generate_series(1,3)

We start by typing this:13.

SELECT *
FROM dblink('SELECT generate_series(1,3)')

This will result in the following error:14.

ERROR: a column definition list is required for functions
returning
"record"
LINE 2: FROM dblink('SELECT generate_series(1,3)');
 ^

This error message is telling us that we need to specify the list of output columns15.
and output types that we expect from the dblink() function, because
PostgreSQL is unable to determine them automatically at parsing time (that is,
without running the query).

We can add the missing information by providing an alias in the FROM clause, as16.
in the following example:

SELECT *
FROM dblink('SELECT generate_series(1,3)')
AS link(col1 integer);

This will succeed, and result in the following output:17.

col1

1
2
3
(3 rows)

To disconnect from the unnamed connection, you can issue the following:18.

SELECT dblink_disconnect();

Database Administration Chapter 7

[289]

You get the following output:19.

dblink_connect

OK
(1 row)

Now, we will describe the second variant of this recipe, which uses the PostgreSQL Foreign
Data Wrapper instead of dblink:

The first step is to install the postgres_fdw contrib module, which is as1.
simple as this:

postgres=# CREATE EXTENSION postgres_fdw;

The result is as follows:2.

CREATE EXTENSION

This extension automatically creates the corresponding Foreign Data Wrapper, as3.
you can check with psql's \dew meta-command:

postgres=# \dew
 List of foreign-data wrappers
 Name | Owner | Handler | Validator
--------------+--------+----------------------+--------------------

 postgres_fdw | gianni | postgres_fdw_handler |
postgres_fdw_validator
(1 row)

We can now define a server:4.

postgres=# CREATE SERVER otherdb
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'foo', dbname 'otherdb', port '5432');

This produces the following output:5.

CREATE SERVER

Then, we can define the user mapping:6.

postgres=# CREATE USER MAPPING FOR PUBLIC SERVER otherdb;

Database Administration Chapter 7

[290]

The output is as follows:7.

CREATE USER MAPPING

As an example, we will access a portion of a remote table containing (integer, text)
pairs:

postgres=# CREATE FOREIGN TABLE ft (
 num int ,
 word text)
SERVER otherdb
OPTIONS (
 schema_name 'public' , table_name 't');

The result is quite laconic:

CREATE FOREIGN TABLE

This table can now be operated almost like any other table. We check whether it is
empty:

postgres=# select * from ft;

This is the output:

num | word
-----+------
(0 rows)

We can insert rows as follows:8.

postgres=# insert into ft(num,word) values
(1,'One'), (2,'Two'),(3,'Three');

This query produces the following output:9.

INSERT 0 3

Then, we can verify that the aforementioned rows have been inserted:10.

postgres=# select * from ft;

Database Administration Chapter 7

[291]

This is confirmed by the output:11.

num | word
-----+-------
1 | One
2 | Two
3 | Three
(3 rows)

Note that you don't have to manage connections or format text strings to
assemble your queries. Most of the complexity is handled automatically
by the Foreign Data Wrapper.

How it works…
The dblink module establishes a persistent connection with the other database. The
dblink functions track the details of that connection, so you don't need to worry about
doing so yourself. You should be aware that this is an external resource, and so the generic
programming problem of resource leaks becomes possible. If you forget about your
connection and forget to disconnect it, you may experience problems later. The remote
connections will be terminated should your session disconnect.

Note that the remote connection persists even across transaction failures and other errors,
so there is no need to reconnect.

The postgres_fdw extension can manage connections transparently and efficiently, so if
your use case does not involve commands other than SELECT, INSERT, UPDATE, and
DELETE, then you should definitely go for it.

The dblink() module executes the remote query and will assemble the result set in the
memory before the local reply begins to be sent. This means that very large queries might
fail due to lack of memory, and everybody else will notice that. This isn't a problem;
dblink is simply not designed to handle bulk data flows. Look at the Loading data from flat
files recipe in Chapter 5, Tables and Data, if that's what you want to do.

Running slightly larger queries can be achieved using cursors. They allow us to bring the
answer set back in smaller chunks. Conceptually, we need to open the cursor, loop while
fetching rows until we are done, and then close the cursor. An example query for that is as
follows:

postgres=# SELECT dblink_open('example',
 'SELECT generate_series(1,3)', true);

Database Administration Chapter 7

[292]

 dblink_open

 OK
(1 row)
postgres=# SELECT *
 FROM dblink_fetch('example', 10, true)
 AS link (col1 integer);
 col1

 1
 2
 3
(3 rows)

Notice that we didn't need to define the cursor when we opened it, though we do need to
define the results from the cursor when we fetch from it, just as we did with a normal
query. For instance, to fetch 10 rows at a time, we can do this:

postgres=# SELECT *
 FROM dblink_fetch('example', 10, true)
 AS link (col1 integer);
 col1

(0 rows)
postgres=# SELECT dblink_close('example');
 dblink_close

 OK(1 row)

The dblink module also allows you to use more than one connection. Using just one
connection is generally not good for modular programming. For more complex situations,
it's good practice to assume that the connection you want is not the same as the connection
that another part of the program might need. The dblink module allows named
connections, so you don't need to hope that the default connection is still the right
connection. There is also a function named dblink_get_connections() that will allow
you to see which connections you have active.

There's more…
Remote data sources look as if they can be treated as tables, and, in fact, they are
represented as such by Foreign Data Wrappers. Unfortunately, in practice, this doesn't
work in all the ways you might hope and expect.

Database Administration Chapter 7

[293]

However, by writing your queries and code in the standard way, you give the database
usable context information about what you are trying to achieve; future PostgreSQL
versions might achieve better optimization on the same SQL code. This is a general
advantage over custom solutions, which are usually opaque to the server and thus cannot
be optimized further.

Ideally, we would like to use foreign tables interchangeably with local tables, with
minimum possible performance penalty and maintenance cost, so it is important to know
what already works and what is still on the wish list.

First, here's the good news: foreign tables can have statistics collected, just like ordinary
tables, and they can be used as models to create local tables:

CREATE TABLE my_local_copy (LIKE my_foreign_table);

This is not supported by dblink, because it works on statements instead of managing
tables. In general, there is no federated query optimizer. If we join a local table and a
remote table with dblink, then data from the remote database is simply pulled through,
even if it would have been quicker to send the data and then pull back matching rows. On
the other hand, postgres_fdw can share information with the query planner, allowing
some optimization, and more improvements are likely to come in the following years, now
that the infrastructure has been built.

As of version 11, postgres_fdw transparently pushes WHERE clauses to the remote server.
Suppose you issue the following:

SELECT * FROM ft WHERE num = 2;

Then, only the matching rows will be fetched, using any remote index if available. This is a
massive advantage in working with selective queries on large tables.

The dblink module cannot automatically send a local WHERE clause to the remote database,
so a query such as the following would perform poorly:

SELECT *
 FROM dblink('otherdb',
 'SELECT * FROM bigtable') AS link (...)
 WHERE filtercolumn > 100;

Database Administration Chapter 7

[294]

We will need to explicitly add the WHERE clause to the remote query at the application level,
as shown here:

SELECT *
FROM dblink('otherdb',
 'SELECT * FROM bigtable' ||
 ' WHERE filtercolumn > 100') AS link (...);

This means that, in general, setting up views of remote data this way isn't very helpful, as it
encourages users to think that the table location doesn't matter, whereas, from a
performance perspective, it definitely does. This isn't really any different than other
federated or remote access database products.

The version of postgres_fdw that's shipped with PostgreSQL 11 can delegate even more
activities to the remote node. This includes performing sorts or joins, computing aggregates
carrying out entire UPDATE or DELETE statements, and evaluating operators or functions
provided by suitable extensions.

There are also a few performance considerations that you may wish to consider. The first is
that when the remote query executes, the current session waits for it to complete. You can
also execute queries without waiting for them to return by using the following functions:

dblink_send_query()

dblink_is_busy()

dblink_get_result()

If you are concerned about the overhead of connection time, then you may want to consider
using a session pool. This will reserve a number of database connections, which will allow
you to reduce apparent connection time. For more information, look at the Setting up a
connection pool recipe in Chapter 4, Server Control.

Another—and sometimes easier—way of accessing other databases is with a tool named
PL/Proxy, available as a PostgreSQL extension. PL/Proxy allows you to create a local
database function that is a proxy for a remote database function. PL/Proxy works only for
functions, and some people regard this as a restriction in a way similar to postgres_fdw,
which operates only on rows in tables. That is why these solutions complement dblink,
rather than replacing it.

Database Administration Chapter 7

[295]

Creating a local proxy function is simple:

CREATE FUNCTION my_task(VOID)
RETURNS SETOF text AS $$
 CONNECT 'dbname=myremoteserver';
 SELECT my_task();
$$ LANGUAGE plproxy;

You need a local function, but you don't need to call a remote function; you can use SQL
statements directly. The following example shows a parameterized function:

CREATE FUNCTION get_cust_email(p_username text)
RETURNS SETOF text AS $$
 CONNECT 'dbname=myremoteserver';
 SELECT email FROM users WHERE username = p_username;
$$ LANGUAGE plproxy;

PL/Proxy is specifically designed to allow more complex architecture for sharding and load
balancing. The RUN ON command allows us to dynamically specify the remote database on
which we will run the SQL statement. So, the preceding example becomes as follows:

CREATE FUNCTION get_cust_email(p_username text)
RETURNS SETOF text AS $$
 CLUSTER 'mycluster';
 RUN ON hashtext(p_username);
 SELECT email FROM users WHERE username = p_username;
$$ LANGUAGE plproxy;

You'll likely need to read Chapter 12, Replication and Upgrades, before you begin designing
application architecture using these concepts.

Accessing objects in other foreign
databases
In the previous recipe, you saw how to use objects from a different PostgreSQL database,
either with dblink or by using the Foreign Data Wrapper infrastructure. Here, we will
explore another variant of the latter—using Foreign Data Wrappers to access databases
other than PostgreSQL.

There are many Foreign Data Wrappers for other database systems, all of which are
maintained as extensions independently from the PostgreSQL project. The PostgreSQL
Extension Network (PGXN) we mentioned in Chapter 3, Configuration, is a good place
where you can see which extensions are available.

Database Administration Chapter 7

[296]

Just note this so that you don't get confused: while you can find Foreign Data Wrappers to
access several database systems, there are also other wrappers for different types of data
sources, such as text files, web services, and so on. There is even postgres_fdw, a backport
of the contrib module that we covered in the previous recipe, for users of older
PostgreSQL versions who do not have it yet.

When evaluating external extensions, I advise you to carefully examine
the README file in each extension before making stable choices, as the code
maturity varies a lot. Some extensions are still development experiments,
while others are production-ready extensions, such as oracle_fdw.

Getting ready
For this example, we will use the Oracle Foreign Data Wrapper, oracle_fdw, whose
current version is 2.1.1.

You must have obtained and installed the required Oracle software as specified in the
oracle_fdw documentation at https:/ / github. com/ laurenz/ oracle_ fdw/blob/ ORACLE_
FDW_2_1_0/README. oracle_ fdw#L503.

The oracle_fdw wrapper is available in the PostgreSQL Extension Network, so you can
follow the straightforward installation procedure described in the Installing modules from
PGXN section of the Adding an external module to PostgreSQL recipe in Chapter 3,
Configuration.

Obviously, you must have access to an Oracle database server.

How to do it…
Here, we provide the steps to follow regarding how to connect to an Oracle server using
oracle_fdw:

First, we ensure that the extension is loaded:1.

CREATE EXTENSION IF NOT EXISTS oracle_fdw;

https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503
https://github.com/laurenz/oracle_fdw/blob/ORACLE_FDW_2_1_0/README.oracle_fdw#L503

Database Administration Chapter 7

[297]

Then, we configure the server and the user mapping:2.

CREATE SERVER myserv
FOREIGN DATA WRAPPER oracle_fdw
OPTIONS (dbserver '//myhost/MYDB');
CREATE USER MAPPING FOR myuser
SERVER myserv;

Then, we create a PostgreSQL foreign table with the same column names as the3.
source table in Oracle, and with compatible column types:

CREATE FOREIGN TABLE mytab(id bigint, descr text)
SERVER myserv
OPTIONS (user 'scott', password 'tiger');

Now, we can try to write to the table:4.

INSERT INTO mytab VALUES (-1, 'Minus One');

Finally, we are able to read the values that we have inserted:5.

SELECT * FROM mytab WHERE id = -1;

This should result in the following output:

id | descr
----+-----------
-1 | Minus One
(1 row)

How it works…
Our query has a WHERE condition that filters the rows we select from the foreign table. As in
the postgres_fdw example from the previous recipe, Foreign Data Wrappers do the clever
thing: the WHERE condition is pushed to the remote server, and only the matching rows are
retrieved.

This is good in two ways: firstly, we delegate some work to another system, and secondly,
we reduce the overall network traffic by not transferring unnecessary data.

We also notice that the WHERE condition is expressed in the PostgreSQL syntax; the Foreign
Data Wrapper is able to translate it into whatever form is required by the remote system.

Database Administration Chapter 7

[298]

There's more…
PostgreSQL provides the infrastructure for collecting statistics on foreign tables, so the
planner will be able to consider such information, provided that the feature is implemented
in the specific Foreign Data Wrapper you are using. For example, statistics are supported
by oracle_fdw.

The latest improvements for foreign tables include trigger support, IMPORT FOREIGN
SCHEMA, and several improvements to the query planner.

Particularly useful for database administrators is the IMPORT FOREIGN SCHEMA syntax,
which can be used to create foreign tables for all tables and views in a given remote
schema with a single statement.

Among the query planner improvements, we wish to mention Join Pushdown. In a
nutshell: a query that joins some foreign tables that belong to the same server is able to have
the join performed transparently on the remote server. To avoid security issues, this can
only happen if these tables are all accessed with the same role.

Another interesting extension is Multicorn (http:/ /multicorn. org). It helps Python
programmers create Foreign Data Wrappers by providing a dedicated interface. Multicorn
reduces the creation of a basic Foreign Data Wrapper to the implementation of one Python
method. Additional features, such as write access, are available through further optional
methods.

Updatable views
PostgreSQL supports the SQL standard CREATE VIEW command, which supports
automatic UPDATE, INSERT, and DELETE commands, provided they are simple enough.

Note that certain types of updates are forbidden just because it is either impossible or
impractical to derive a corresponding list of modifications on the constituent tables. We'll
discuss those issues here.

Getting ready
First, you need to consider that only simple views can be made to receive insertions,
updates, and deletions easily. The SQL standard differentiates between views that are
simple and updatable, and more complex views that cannot be expected to be updatable.

http://multicorn.org/
http://multicorn.org/
http://multicorn.org/
http://multicorn.org/
http://multicorn.org/
http://multicorn.org/
http://multicorn.org/

Database Administration Chapter 7

[299]

So, before we proceed, we need to understand what a simple updatable view is and what it
is not. Let's start from the cust table:

postgres=# SELECT * FROM cust;
 customerid | firstname | lastname | age
------------+-----------+----------+-----
 1 | Philip | Marlowe | 38
 2 | Richard | Hannay | 42
 3 | Holly | Martins | 25
 4 | Harry | Palmer | 36
 4 | Mark | Hall | 47
(5 rows)

We will create a very simple view on top of it, such as the following:

CREATE VIEW cust_view AS
SELECT customerid
 ,firstname
 ,lastname
 ,age
FROM cust;

Each row in our view corresponds to one row in a single-source table, and each column is
referred to directly without any further processing, except possibly for a column rename.
Thus, we expect to be able to make INSERT, UPDATE, and DELETE commands pass through
our view into the base table, which is what happens in PostgreSQL.

The following examples are three views where INSERT, UPDATE, and DELETE commands
cannot be made to flow to the base table easily, for the reasons just described:

CREATE VIEW cust_avg AS
SELECT avg(age)
FROM cust;
CREATE VIEW cust_above_avg_age AS
SELECT customerid
 ,substr(firstname, 1, 20) as fname
 ,substr(lastname, 1, 20) as lname
 ,age -
 (SELECT avg(age)::integer
 FROM cust) as years_above_avg
FROM cust
WHERE age >
 (SELECT avg(age)
 FROM cust);

CREATE VIEW potential_spammers AS
SELECT customerid, spam_score(firstname,lastname)

Database Administration Chapter 7

[300]

FROM cust
ORDER BY spam_score(firstname,lastname) DESC
LIMIT 100;

The first view just shows a single row with the average of a numeric column. Changing an
average directly doesn't make much sense. For instance, if we want to raise the average age
by 1, should we increase all numbers by 1, resulting in an update of each row that is
unusual? Or should we change some rows only, by a larger amount? A user who really
wants to do this can update the cust table directly.

The second view shows a column called years_above_avg, which is the difference
between the age of that customer and the average. Changing that column would be more
complex than it seems at first glance: just consider that increasing the age by 10 would not
result in increasing years_above_avg by 10, because the average will also be affected.

The third view displays a computed column that can definitely not be updated
directly—we can't change the value in the spam_score column without changing the
algorithm implemented by the spam_score() function.

Now, we can proceed to the steps to allow any or all of insertions, updates, or deletions to
flow from views to base tables, since we've clarified whether this makes sense conceptually.

How to do it…
There is nothing to do for simple views—PostgreSQL will propagate modifications to the
underlying table automatically.

Conversely, if the view is not simple enough, but you still have a clear idea of how you
would like to propagate changes to the underlying table(s), then you can allow updatable
views by telling PostgreSQL how to actually perform Data Manipulation Language
(DML) statements, which in PostgreSQL means INSERT, UPDATE, DELETE, or TRUNCATE.

PostgreSQL supports two mechanisms to achieve updatable views, namely rewrite rules
and INSTEAD OF triggers. The latter provide a mechanism to implement updatable views
by creating trigger functions that execute arbitrary code every time a data-modification
command is executed on the view.

The INSTEAD OF triggers are part of the SQL standard, and other database systems support
them. Conversely, query rewrite rules are specific to PostgreSQL and cannot be found
anywhere else in this exact form.

Database Administration Chapter 7

[301]

There is no clearly preferable method. On one hand, rules can be more efficient than
triggers, but, on the other hand, they can be more difficult to understand than triggers and
could result in inefficient execution if the code is badly written (although the latter is not an
exclusive property of rules, unfortunately).

To explain this point concretely, we will now provide an example using rules, and then we
will re-implement the same example with triggers.

We will start with a table of mountains and their height in meters:

CREATE TABLE mountains_m
(name text primary key
, meters int not null
);

Then, we will create a view that adds a computed column expressing the height in feet, and
that displays the data in descending height order:

CREATE VIEW mountains AS
SELECT *, ROUND(meters / 0.3048) AS feet
FROM mountains_m
ORDER BY meters DESC;

DML automatically flows to the base table when inserting only columns that are not
computed:

INSERT INTO mountains(name, meters)
VALUES ('Everest', 8848);
TABLE mountains;
name | meters | feet
-------+--------+-------
Everest| 8848 | 29029
(1 row)

However, when we try to insert data with the height specified in feet, we get the following
error:

INSERT INTO mountains(name, feet)
VALUES ('K2', 28251);
ERROR: cannot insert into column "feet" of view "mountains"
DETAIL: View columns that are not columns of their base relation are not
updatable.

Database Administration Chapter 7

[302]

So, we create a rule that replaces the update with another query that works all the time:

CREATE RULE mountains_ins_rule AS
ON INSERT TO mountains DO INSTEAD
INSERT INTO mountains_m
VALUES (NEW.name, COALESCE (NEW.meters, NEW.feet * 0.3048));

Now, we can insert both meters and feet:

INSERT INTO mountains(name, feet)
VALUES ('K 2', 28251);
INSERT INTO mountains(name, meters)
VALUES ('Kangchenjunga', 8586);
TABLE mountains;
name | meters | feet
--------------+--------+----
Everest | 8848 | 29029
K 2 | 8611 | 28251
Kangchenjunga | 8586 | 28169
(3 rows)

Updates are also propagated automatically, but only to non-computed columns:

UPDATE mountains SET name = 'K2' WHERE name = 'K 2';
TABLE mountains;
name | meters | feet
--------------+--------+-------
Everest | 8848 | 29029
 K2 | 8611 | 28251
Kangchenjunga | 8586 | 28169
(3 rows)
UPDATE mountains SET feet = 29064 WHERE name = 'K2';
ERROR: cannot update column "feet" of view "mountains"
DETAIL: View columns that are not columns of their base relation are not
updatable.

If we add another rule replacing updates with a query that covers all cases, then the last
update will succeed and produce the desired effect:

CREATE RULE mountains_upd_rule AS
ON UPDATE TO mountains DO INSTEAD
UPDATE mountains_m
SET name = NEW.name, meters =
CASE
WHEN NEW.meters != OLD.meters
THEN NEW.meters
WHEN NEW.feet != OLD.feet
THEN NEW.feet * 0.3048

Database Administration Chapter 7

[303]

ELSE OLD.meters
END
WHERE name = OLD.name;
UPDATE mountains SET feet = 29064 WHERE name = 'K2';
TABLE mountains;
name | meters | feet
--------------+--------+-------
K2 | 8859 | 29065
Everest | 8848 | 29029
Kangchenjunga | 8586 | 28169
(3 rows)

The query that's used in this rule also covers the simpler case of a non-computed column:

UPDATE mountains SET meters = 8611 WHERE name = 'K2';
TABLE mountains;
name | meters | feet
--------------+--------+-------
Everest | 8848 | 29029
K2 | 8611 | 28251
Kangchenjunga | 8586 | 28169
(3 rows)

The same effect can be achieved by adding the following trigger, which replaces the earlier
two rules:

CREATE FUNCTION mountains_tf()
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
BEGIN
IF TG_OP = 'INSERT' THEN
INSERT INTO mountains_m VALUES (NEW.name,
CASE
 WHEN NEW.meters IS NULL
 THEN NEW.feet * 0.3048
 ELSE NEW.meters
 END);
ELSIF TG_OP = 'UPDATE' THEN
UPDATE mountains_m
SET name = NEW.name, meters =
CASE
WHEN NEW.meters != OLD.meters
THEN NEW.meters
WHEN NEW.feet != OLD.feet
THEN NEW.feet * 0.3048
ELSE OLD.meters
END

Database Administration Chapter 7

[304]

WHERE name = OLD.name;
END IF;
RETURN NEW;
END;
$$;
CREATE TRIGGER mountains_tg
INSTEAD OF INSERT OR UPDATE ON mountains
FOR EACH ROW
EXECUTE PROCEDURE mountains_tf();

How it works…
In the rule-based example, we use the COALESCE function, which returns the first argument,
if not null, or the second one otherwise. When the original INSERT statement does not
specify a value in meters, then it uses the value in feet divided by 0.3048.

The second rule sets the value in meters to different expressions—if the value in meters was
updated, we use the new one, if the value in feet was updated, we use the new value in feet
divided by 0.3048, and otherwise we use the old value in meters (that is, we don't change
it).

The logic implemented in the trigger function is similar to the previous one; note that we
use the TG_OP automatic variable to handle INSERT and UPDATE separately.

We've just scratched the surface of what you can achieve with rules, though personally I
find them too complex for widespread use.

You can do a lot of things with rules; you just need to be sure that everything you do makes
sense and has a practical purpose. There are some other important points that I should
mention about rules before you dive in and start using them everywhere.

Rules are applied by PostgreSQL after the SQL has been received by the server and parsed
for syntax errors, but before the planner tries to optimize the SQL statement.

In the rules in the preceding recipe, we referenced the values of the old or the new row, just
as we do within trigger functions, using the old and new keywords. Similarly, there are
only new values in an INSERT command and only old values in a DELETE command.

One of the major downsides of using rules is that we cannot bulk load data into the table
using the COPY command. Also, we cannot transform a stream of inserts into a single COPY
command, nor can we do a COPY operation against the view. Bulk loading requires direct
access to the table.

Database Administration Chapter 7

[305]

Suppose we have a view such as the following:

CREATE VIEW cust_minor AS
SELECT customerid
 ,firstname
,lastname
,age
FROM cust
WHERE age < 18;

Then, we have some more difficulties. If we wish to update this view, then you might read
the manual and understand that we can use a conditional rule by adding a WHERE clause to
match the WHERE clause in the view, as follows:

CREATE RULE cust_minor_update AS
ON update TO cust_minor
WHERE new.age < 18
DO INSTEAD
UPDATE cust SET
 firstname = new.firstname
,lastname = new.lastname
,age = new.age
WHERE customerid = old.customerid;

This fails, however, as you can see if you try to update cust_minor. The fix is to add two
rules—one as an unconditional rule that does nothing (literally) and needs to exist for
internal reasons, and the other to do the work we want:

CREATE RULE cust_minor_update_dummy AS ON
update TO cust_minor
DO INSTEAD NOTHING;
CREATE RULE cust_minor_update_conditional AS
ON update TO cust_minor
WHERE new.age < 18
DO INSTEAD
UPDATE cust SET firstname = new.firstname
,lastname = new.lastname
,age = new.age
WHERE customerid = old.customerid;

There's more…
There is yet another question posed by updatable views.

Database Administration Chapter 7

[306]

As an example, we shall use the cust_minor view we just defined, which does not allow
you to perform insertions or updates so that the affected rows fall out of the view itself. For
instance, consider this query:

UPDATE cust_minor SET age = 19 WHERE customerid = 123;

The preceding query will not affect any row because of the WHERE age < 18 conditions in
the rule definition.

The CREATE VIEW statement has a WITH CHECK OPTION clause; if specified, any update
that excludes any row from the view will fail.

If a view includes some updatable columns together with other non-updatable columns (for
example expressions, literals, and so on), then updates are allowed if they only change the
updatable columns.

Finally, let's show that views are just (empty) tables with a SELECT rule. Let's start by
creating an empty table, as follows:

CREATE TABLE cust_view AS SELECT * FROM cust WHERE false;

The SELECT rule works only if it is named _RETURN and the table is completely empty:

postgres # CREATE RULE "_RETURN" AS
 ON SELECT TO cust_view
 DO INSTEAD
 SELECT * FROM cust;
CREATE RULE
postgres=# \d cust_view

Huh? So, what is it if it's not a table?

postgres # DROP TABLE cust_view;
ERROR: "cust_view" is not a table
HINT: Use DROP VIEW to remove a view
postgres # DROP VIEW cust_view;
DROP VIEW

Yes, we created a table and then added a rule to it. This turned the table into a view.

Using materialized views
Every time we select rows from a view, we actually select from the result of the underlying
query. If that query is slow and we need to use it more than once, then it makes sense to
run the query once, save its output as a table, and then select the rows from the latter.

Database Administration Chapter 7

[307]

This procedure has been available for a long time, and there is a dedicated syntax, CREATE
MATERIALIZED VIEW, which we will describe in this recipe.

Getting ready
Let's create two randomly populated tables, of which one is large:

CREATE TABLE dish
(dish_id SERIAL PRIMARY KEY
, dish_description text
);

CREATE TABLE eater
(eater_id SERIAL
, eating_date date
, dish_id int REFERENCES dish (dish_id)
);
INSERT INTO dish (dish_description)
VALUES ('Lentils'), ('Mango'), ('Plantain'), ('Rice'), ('Tea');

INSERT INTO eater(eating_date, dish_id)
SELECT floor(abs(sin(n)) * 365) :: int + date '2014-01-01'
, ceil(abs(sin(n :: float * n))*5) :: int
FROM generate_series(1,500000) AS rand(n);

Notice that the data is not truly random. It is generated by a deterministic procedure, so
you can get exactly the same result if you copy the preceding code.

How to do it…
Let's create the following view:

CREATE VIEW v_dish AS
SELECT dish_description, count(*)
FROM dish JOIN eater USING (dish_id)
GROUP BY dish_description
ORDER BY 1;

Then, we'll query it:

SELECT * FROM v_dish;

Database Administration Chapter 7

[308]

We will obtain the following output:

dish_description | count
------------------+--------
 Lentils | 64236
 Mango | 66512
 Plantain | 74058
 Rice | 90222
 Tea | 204972
(5 rows)

With a very similar syntax, we create a materialized view with the same underlying query:

CREATE MATERIALIZED VIEW m_dish AS
SELECT dish_description, count(*)
FROM dish JOIN eater USING (dish_id)
GROUP BY dish_description
ORDER BY 1;

The corresponding query yields the same output as before:

SELECT * FROM m_dish;

The materialized version is much faster than the non-materialized version. On my laptop,
their execution times are 0.2 milliseconds versus 300 milliseconds.

How it works…
Creating a non-materialized view is exactly the same as creating an empty table with a
SELECT rule, as we discovered from the previous recipe. No data is extracted until the view
is actually used.

When creating a materialized view, the default is to run the query immediately and then
store its results, as we do for table content.

In short, creating a materialized view is slow, but using it is fast. This is the opposite of
standard views, which are created instantly and recomputed at every use.

There's more…
The output of a materialized view is physically stored like a regular table, and the analogy
doesn't stop here. In both cases, it is possible to create indexes to speed up queries.

Database Administration Chapter 7

[309]

A materialized view will not automatically change when its constituent tables change. For
that to happen, you must issue the following:

REFRESH MATERIALIZED VIEW m_dish;

This replaces all the contents of the view with newly computed ones.

It is possible to quickly create an empty materialized view and populate it later. Just add
WITH NO DATA at the end of the CREATE MATERIALIZED VIEW statement. Obviously, the
view cannot be used before being populated, which you can do with REFRESH
MATERIALIZED VIEW, as you just saw.

A materialized view cannot be read while it is being refreshed. For that, you need to use the
CONCURRENTLY clause at the expense of a somewhat slower refresh.

As you can see from these paragraphs, currently, there is only a partial advantage in using
materialized views, compared to previous solutions such as this:

CREATE UNLOGGED TABLE m_dish AS SELECT * FROM v_dish;

However, when using a declarative language, such as SQL, the same syntax may
automatically result in a more efficient algorithm in the case of future improvements to
PostgreSQL. For instance, one day, PostgreSQL will be able to perform a faster refresh by
simply replacing those rows that changed, instead of recomputing the entire content.

What PostgreSQL already provides is the ability to collect all changes that happen in a
given statement, in the form of transition tables that AFTER triggers can use. This can be
useful if you have a materialized view, for which you can write a trigger that uses
transition tables data to perform the equivalent of an incremental refresh.

Finally, remember that you are not allowed to modify a materialized with INSERT, UPDATE,
or DELETE commands. Therefore, the simpleset way to use transition tables to implement
an incremental refresh is to use an unlogged table.

8
Monitoring and Diagnosis

In this chapter, we will cover the following recipes:

Providing PostgreSQL information to monitoring tools
Real-time viewing using pgAdmin or OmniDB
Checking whether a user is connected
Checking whether a computer is connected
Repeatedly executing a query in psql
Checking which queries are running
Checking which queries are active or blocked
Knowing who is blocking a query
Killing a specific session
Detecting an in-doubt prepared transaction
Knowing whether anybody is using a specific table
Knowing when a table was last used
Usage of disk space by temporary data
Understanding why queries slow down
Investigating and reporting a bug
Producing a daily summary of log file errors
Analyzing the real-time performance of your queries

Introduction
In this chapter, you will find recipes for some common monitoring and diagnosis actions
that you will want to perform inside your database. They are meant to answer specific
questions that you often face when using PostgreSQL.

Monitoring and Diagnosis Chapter 8

[311]

Databases are not isolated entities. They live on computer hardware using CPUs, RAM, and
disk subsystems. Users access databases using networks. Depending on the setup,
databases themselves may need network resources to function in any of the following
ways: performing some authentication checks when users log in, using disks that are
mounted over the network (not generally recommended), or making remote function calls
to other databases.

This means that monitoring only the database is not enough. As a minimum, you should also
monitor everything directly involved in using the database. This means knowing about the
following:

Is the database host available? Does it accept connections?
How much of the network bandwidth is in use? Have there been network
interruptions and dropped connections?
Is there enough RAM available for the most common tasks? How much of it is
left?
Is there enough disk space available? When will you run out of disk space?
Is the disk subsystem keeping up? How much more load can it take?
Can the CPU keep up with the load? How many spare idle cycles do the CPUs
have?
Are other network services the database access depends on (if any) available? For
example, if you use Kerberos for authentication, you need to monitor it as well.
How many context switches are happening when the database is running?
For most of these things, you are interested in the history; that is, how have
things evolved? Was everything mostly the same yesterday or last week?
When did the disk usage start changing rapidly?
For any larger installation, you probably have something already in place to
monitor the health of your hosts and network.

The two aspects of monitoring are collecting historical data to see how things have evolved,
and getting alerts when things go seriously wrong. Tools based on a Round Robin
Database Tool (RRDtool) such as Munin, or time series databases such as Graphite's
Carbon, and Prometheus, are quite popular for collecting historical information on all
aspects of the servers, and presenting this information in an easy-to-follow graphical form,
for which Grafana is a popular tool. Seeing several statistics on the same timescale can
really help when trying to figure out why the system is behaving the way it is.

Another aspect of monitoring is getting alerts when something goes really wrong and
needs (immediate) attention.

Monitoring and Diagnosis Chapter 8

[312]

For alerting, one of the most widely used tools is Icinga (a fork of Nagios), an established
solution. The aforementioned trending tools can integrate with it. check_postgres is a
rather popular Icinga plugin for monitoring many standard aspects of a PostgreSQL
database server.

Icinga is a stable and mature solution, based on the long-standing approach where each
plugin decides whether a given measurement is a cause for alarm, which means that it's
more complex to manage and maintain. A more recent tool is the aforementioned
Prometheus, based on a design that separates data collection from the centralized alerting
logic.

Should you need a solution for both the alerting and trending aspects of a monitoring tool,
you might also want to look into Zabbix.

Furthermore, if you require integration with a system based on the Simple Network
Management Protocol (SNMP), the pgsnmpd project offers some basic support. However,
as it is not actively maintained, we recommend switching to one of the other monitoring
approaches, if at all possible.

Providing PostgreSQL information to
monitoring tools
It's best to use historical monitoring information when all of it is available from the same
place and on the same timescale. Most monitoring systems are designed for generic
purposes, while allowing application and system developers to integrate their specific
checks with the monitoring infrastructure. This is possible through a plugin architecture.
Adding new kinds of data inputs to them means installing a plugin. Sometimes, you may
need to write or develop this plugin, but writing a plugin for something such as Cacti is
easy. You just have to write a script that outputs monitored values in simple text format.

In most common scenarios, the monitoring system is centralized and data is collected
directly (and remotely) by the system itself or through some distributed components that
are responsible for sending the observed metrics back to the main node.

As far as PostgreSQL is concerned, some useful things to include in graphs are the
number of connections, disk usage, number of queries, number of WAL files, most numbers
from pg_stat_user_tables and pg_stat_user_indexes, and so on. One Swiss Army
knife script, which can be used from both Cacti and Nagios/Icinga, is check_postgres. It is
available at http://bucardo.org/wiki/Check_postgres. It has ready-made
reporting actions for a large array of things that are worth monitoring in PostgreSQL.

http://bucardo.org/wiki/Check_postgres

Monitoring and Diagnosis Chapter 8

[313]

For Munin, there are some PostgreSQL plugins available at the Munin plugin repository at
https://github.com/munin-monitoring/contrib/tree/master/plugins/postgresql.

The following screenshot shows a Munin graph about PostgreSQL buffer cache hits for a
specific database, where cache hits (the blue line) dominate reads from the disk (the green
line):

Finding more information about generic
monitoring tools
Setting up the tools themselves is a larger topic, and it is beyond the scope of this book. In
fact, each of these tools has more than one book written about them. The basic setup
information and the tools themselves can be found at the following URLs:

RRDtool: http:/ /www. mrtg. org/rrdtool/

Cacti: http:/ / www. cacti. net/

Icinga: http:/ /www. icinga. org

https://github.com/munin-monitoring/contrib/tree/master/plugins/postgresql
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.mrtg.org/rrdtool/
http://www.cacti.net/
http://www.cacti.net/
http://www.cacti.net/
http://www.cacti.net/
http://www.cacti.net/
http://www.cacti.net/
http://www.cacti.net/
http://www.cacti.net/
http://www.cacti.net/
http://www.cacti.net/
http://www.icinga.org/
http://www.icinga.org/
http://www.icinga.org/
http://www.icinga.org/
http://www.icinga.org/
http://www.icinga.org/
http://www.icinga.org/
http://www.icinga.org/
http://www.icinga.org/

Monitoring and Diagnosis Chapter 8

[314]

Munin: http:/ / munin- monitoring. org/

Nagios: http://www.nagios.org/
Zabbix: http://www.zabbix.org/

Real-time viewing using pgAdmin or
OmniDB
You can also use a GUI tool such as pgAdmin or OmniDB, which we discussed for the first
time in Chapter 1, First Steps, to get a quick view of what is going on in the database.

Getting ready
If you use pgAdmin, for better control, you need to install the adminpack extension in the
destination database by issuing the following command:

CREATE EXTENSION adminpack;

This extension is a part of the additionally supplied modules of PostgreSQL (also known as
contrib). It provides several administration functions that pgAdmin (and other tools) can
use in order to manage, control, and monitor a Postgres server from a remote location.

How to do it…
In this section, we will be covering pgAdmin and OmniDB usage.

Using pgAdmin
This section illustrates the pgAdmin tool.

http://munin-monitoring.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
http://www.nagios.org/
http://www.zabbix.org/

Monitoring and Diagnosis Chapter 8

[315]

Once you have installed adminpack, connect to the database server; this will open a
window similar to the one that's shown in the following screenshot, where you can see a
general view plus information on connections, locks, and running transactions:

Using OmniDB
This is another section that illustrates the OmniDB tool.

Monitoring and Diagnosis Chapter 8

[316]

After starting OmniDB and opening a database, a tab called Monitoring is automatically
displayed, as shown in the following screenshot:

The Monitoring tab shows a series of charts and diagrams about sessions, locks, activity,
database size, and table size.

The display can be customized by adding/removing charts from a list of predefined
templates, or by creating a bespoke chart by modifying the data script and/or the chart
script.

The easiest way to add a new type of chart is to take an existing one, understanding what
information it displays, and then using it as a starting point to make a different one.

Checking whether a user is connected
Here, we will show you how to learn whether a certain database user is currently
connected to the database.

Monitoring and Diagnosis Chapter 8

[317]

Getting ready
If you are logged in as a superuser, you will have full access to monitoring information.

How to do it…
Issue the following query to see whether the user bob is connected:

SELECT datname FROM pg_stat_activity WHERE usename = 'bob';

If this query returns any rows, then it that means bob is connected to the database. The
returned value is the name of the database to which the user is connected.

How it works…
PostgreSQL's pg_stat_activity system view keeps track of all running PostgreSQL
backends. This includes information such as the query that is being currently executed, or
the last query that was executed by each backend, who is connected, when the connection,
the transaction, and/or the query were started, and so on.

There's more…
Please spend a few minutes reading the PostgreSQL documentation, which contains more
detailed information about pg_stat_activity, available at http:/ /www. postgresql. org/
docs/11/static/monitoring- stats. html#PG- STAT- ACTIVITY- VIEW.

You can find answers to many administration-related questions by analyzing the
pg_stat_activity view. One common example is outlined in the following recipe.

Checking whether a computer is connected
Often, several different processes may connect as the same database user. In that case, you
may actually want to know whether there is a connection from a specific computer.

http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW

Monitoring and Diagnosis Chapter 8

[318]

How to do it…
You can get this information from the pg_stat_activity view, as it includes the
connected clients' IP address, port, and hostname (where applicable). The port is only
needed if you have more than one connection from the same client computer and you need
to do further digging to see which process there connects to which database. Run the
following command:

SELECT datname, usename, client_addr, client_port,
 application_name FROM pg_stat_activity;

The client_addr and client_port parameters help you look up the exact computer and
even the process on that computer that has connected to the specific database. You can also
retrieve the hostname of the remote computer through the client_hostname option (this
requires log_hostname to be set to on).

There's more…
I would always recommend including application_name in your reports. This field has
become widely recognized and honored by third-party application developers (I advise you
to do the same with your own applications).

For information on how to set the application name for your connections, refer to Database
Connection Control Functions in the PostgreSQL documentation at http:/ /www. postgresql.
org/docs/11/static/ libpq- connect. html.

Repeatedly executing a query in psql
Sometimes, we want to execute a query more than once, repeated at regular intervals; in
this recipe, we will look at an interesting psql command that does exactly that.

How to do it…
The \watch meta-command allows psql users to automatically (and continuously) re-
execute a query.

This behavior is similar to the watch utility of some Linux and Unix environments.

http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html
http://www.postgresql.org/docs/11/static/libpq-connect.html

Monitoring and Diagnosis Chapter 8

[319]

In the following example, we will run a simple query on pg_stat_activity and ask psql
to repeat it every 5 seconds. You can exit at any time by pressing Ctrl + C:

gabriele=> SELECT count(*) FROM pg_stat_activity;
 count

 1
(1 row)

gabriele=> \watch 5
Watch every 5s Tue Aug 27 21:47:24 2013

 count

 1
(1 row)
<snip>

There's more…
For further information about the psql utility, refer to the PostgreSQL documentation at
http://www.postgresql.org/docs/11/static/app-psql.html.

Checking which queries are running
In this section, we will show you how to check which query is currently running.

Getting ready
You have to make sure that you are logged in as a superuser or as the same database user
you want to check out. Also, ensure that the track_activities = on parameter is set
(which it normally should be, being the default setting). If not, check the Updating the
parameter file recipe in Chapter 3, Configuration.

How to do it…
To see which connected users are running at this moment, just run the following code:

SELECT datname, usename, state, query
 FROM pg_stat_activity;

http://www.postgresql.org/docs/11/static/app-psql.html

Monitoring and Diagnosis Chapter 8

[320]

On systems with a lot of users, you may notice that the majority of backends have state
set to idle. This denotes that no query is actually running, and PostgreSQL is waiting for
new commands from the user. The query field shows the statement that was last executed
by that particular backend.

If, on the other hand, you are interested in active queries only, limit your selection to those
records that have state set to active:

SELECT datname, usename, state, query
 FROM pg_stat_activity WHERE state = 'active';

How it works…
When track_activities = on is set, PostgreSQL collects data about all running queries.
Users with sufficient rights can then view this data using the pg_stat_activity system
view.

The pg_stat_activity view uses a system function named pg_stat_get_activity
(procpid int). You can use this function directly to watch for the activity of a specific
backend by supplying the process ID as an argument. Giving NULL as an argument returns
information for all backends.

There's more…
Sometimes, you don't care about getting all queries that are currently running. You may be
only interested in seeing some of these, or you may not like to connect to the database just
to see what is running.

Catching queries that only run for a few milliseconds
Since most queries on modern online transaction processing (OLTP) systems take only a
few milliseconds to run, it is often hard to catch the active ones when simply probing the
pg_stat_activity table.

Most likely, you will be able to see only the last executed query for those backends that
have state different from active. In some cases, this can be enough.

Monitoring and Diagnosis Chapter 8

[321]

In general, if you need to perform a deeper analysis, I strongly recommend installing and
configuring the pg_stat_statements module, which is described in the Analyzing the real-
time performance of your queries recipe in this chapter. Another option is to run a post
analysis of log files using pgBadger. Depending on the workload of your system, you may
want to limit the production of highly granular log files (that is, log all queries) to a short
period of time. For further information on pgBadger, refer to the Producing a daily summary
of log file errors recipe of this chapter.

Watching the longest queries
Another point of interest that you may want to look for is long-running queries. To get a list
of running queries ordered by how long they have been executing, use the following code:

SELECT
 current_timestamp - query_start AS runtime,
 datname, usename, query
FROM pg_stat_activity
WHERE state = 'active'
ORDER BY 1 DESC;

This will return currently running queries, with the longest running queries in the front.

On busy systems, you may want to limit the set of queries that are returned to only the first
few queries (add LIMIT 10 at the end) or only the queries that have been running over a
certain period of time. For example, to get a list of queries that have been running for more
than a minute, use the following query:

SELECT
 current_timestamp - query_start AS runtime,
 datname, usename, query
FROM pg_stat_activity
WHERE state = 'active'
 AND current_timestamp - query_start > '1 min'
ORDER BY 1 DESC;

Watching queries from ps
If you want, you can also make queries that are being run show up in process titles, by
setting the following configuration in the postgresql.conf file:

update_process_title = on

Although the ps and top outputs are not the best places for watching database queries,
they may make sense in some circumstances.

Monitoring and Diagnosis Chapter 8

[322]

See also
The page in PostgreSQL's online documentation that covers the appropriate
settings is available at
http://www.postgresql.org/docs/11/static/runtime-config-
statistics.html

Checking which queries are active or
blocked
Here, we will show you how to find out whether a query is actually running or waiting for
another query.

Getting ready
If you are logged in as superuser, you will have full access to monitoring information.

How to do it…
Follow these steps to check if a query is waiting for another query:

Run the following query:1.

SELECT datname, usename, wait_event_type, wait_event, backend_type,
query
FROM pg_stat_activity
WHERE wait_event_type IS NOT NULL
AND wait_event_type NOT IN ('Activity', 'Client');

You will receive the following output:2.

-[RECORD 1]---+-----------------
datname | postgres
usename | gianni
wait_event_type | Lock
wait_event | relation
backend_type | client backend
query | select * from t;

http://www.postgresql.org/docs/11/static/runtime-config-statistics.html
http://www.postgresql.org/docs/11/static/runtime-config-statistics.html
http://www.postgresql.org/docs/11/static/runtime-config-statistics.html

Monitoring and Diagnosis Chapter 8

[323]

How it works…
The pg_stat_activity system view includes the wait_event_type and
wait_event columns, which are set to the kind of wait, and to the kind of object that is
blocked, respectively. The backend_type column indicates the type of current backend.

The preceding query uses the wait_event_type field to filter out only those queries that
are waiting.

There's more…
PostgreSQL provides a version of the pg_stat_activity view that's capable of capturing
many kinds of waits; however, in older versions, pg_stat_activity could only detect
waits on locks such as those placed on SQL objects, via the pg_stat_activity.waiting
field.

Although this is the main cause of waiting when using pure SQL, it is possible to write
a query in any of PostgreSQL's embedded languages that can wait on other system
resources, such as waiting for an HTTP response, for a file write to get completed, or just
waiting on a timer.

As an example, you can make your backend sleep for a certain number of seconds using
pg_sleep(seconds). While you are monitoring pg_stat_activity, open a new
Terminal session with psql and run the following statement in it:

db=# SELECT pg_sleep(10);
<it "stops" for 10 seconds here>
pg_sleep

(1 row)

In older versions of Postgres, it will show up as not waiting in the pg_stat_activity
view, even though the query is, in fact, blocked in the timer.

You will see the following output with newer versions of Postgres where
the wait_event_type is Timeout—the server process is waiting for a timeout to
expire and wait_event is PgSleep—waiting for a process that called pg_sleep:

-[RECORD 1]---+---------------------
datname | postgres
usename | postgres
wait_event_type | Timeout

Monitoring and Diagnosis Chapter 8

[324]

wait_event | PgSleep
backend_type | client backend
query | SELECT pg_sleep(10);

Knowing who is blocking a query
Once you have found out that a query is being blocked, you need to know who or what is
blocking it.

Getting ready
If you are logged in as a superuser, you will have full access to monitoring information.

How to do it…
Perform the following steps:

Write the following query:1.

SELECT datname, usename, wait_event_type, wait_event,
pg_blocking_pids(pid) AS blocked_by, backend_type, query
FROM pg_stat_activity
WHERE wait_event_type IS NOT NULL
AND wait_event_type NOT IN ('Activity', 'Client');

You will receive the following output:2.

-[RECORD 1]---+-----------------
datname | postgres
usename | gianni
wait_event_type | Lock
wait_event | relation
blocked_by | {18142}
backend_type | client backend
query | select * from t;

This is, in fact, the query we described in the previous recipe, with the addition of
the blocked_by column. Recall that the PID is the unique identifier assigned by the
operating system to each session; for more details, see Chapter 4, Server Control. Here, the
PID is used by the pg_blocking_pids(pid) system function to identify blocking sessions.

Monitoring and Diagnosis Chapter 8

[325]

Parallel queries allow powerful queries using multiple cores, but also increase the number
of ways in which one query can be blocked by another. Think how complicated it can be to
extract dependencies and display them neatly if there are multiple PIDs for a single session.

How it works…
The query is relatively simple: we just introduced the pg_blocking_pids() function,
which returns an array that was composed by the PIDs of all the sessions that were
blocking the session with the given PID.

Killing a specific session
Sometimes, the only way to let the system continue as a whole is by surgically terminating
some offending database sessions. Yes, you read it right: surgically. You might indeed be
tempted to reboot the server, but you should think of that as a last resort in a business
continuity scenario.

In this recipe, you will learn how to intervene, from gracefully canceling a query, to
brutally killing the actual process from the command line.

How to do it…
You can either run this function as a superuser or with the same user as that of the
offending backend (look for the usename field in the pg_stat_activity view).

Once you have figured out the backend you need to kill, use the
pg_terminate_backend(pid) function to kill it.

How it works…
When a backend executes the pg_terminate_backend(pid) function, it sends a signal,
SIGTERM, to the backend as an argument after verifying that the process identified by the
pid argument is actually a PostgreSQL backend.

The backend receiving this signal stops whatever it is doing, and terminates it in a
controlled way.

Monitoring and Diagnosis Chapter 8

[326]

The client using that backend loses the connection to the database. Depending on how the
client application is written, it may silently reconnect, or it may show an error to the user.

There's more…
Killing the session may not always be what you really want, so consider other options as
well.

It might also be a good idea to look at the Server Signaling Functions section in the
PostgreSQL documentation at
http://www.postgresql.org/docs/11/static/functions-admin.html#FUNCTIONS-ADMIN-S

IGNAL.

Try to cancel the query first
First, you may want to try pg_cancel_backend(pid), a milder version of
pg_terminate_backend(pid).

The difference between these two is that pg_cancel_backend() just cancels the current
query, whereas pg_terminate_backend() really kills the backend. (Therefore, this can be
used for idle or idle in transaction backends).

What if the backend won't terminate?
If pg_terminate_backend(pid) fails to kill the backend and you really need to reset the
database state to make it continue processing requests, then you have yet another
option: sending SIGKILL to the offending backend.

This can be done only from the command line as the root or the postgres system user,
and on the same host the database is running, by executing the following code:

kill -9 <backend_pid>

This command kills that backend immediately, without giving it a chance to clean up.
Consequently, the postmaster is forced to kill all the other backends as well and restart the
whole cluster.

Therefore, it actually does not matter which of the PostgreSQL backends you kill.

http://www.postgresql.org/docs/11/static/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL
http://www.postgresql.org/docs/11/static/functions-admin.html#FUNCTIONS-ADMIN-SIGNAL

Monitoring and Diagnosis Chapter 8

[327]

You must be extremely careful if you have set the synchronous_commit parameter to off.
You may end up losing some supposedly committed transactions if you use kill -9 on a
backend.

Thus, kill -9 is a last resort, but only if nothing else helps, and not on a regular basis.

Using statement_timeout to clean up queries that take
too long to run
Often, you know that you don't have any use for queries running longer than a given time.
Maybe your web frontend just refuses to wait for more than 10 seconds for a query to
complete and returns a default answer to users if it takes longer, abandoning the query.

In such a case, it might be a good idea to set statement_timeout = 10 sec, either in
postgresql.conf or as a per-user or per-database setting. Once you do so, queries
running too long won't consume precious resources and make other queries fail.

The queries terminated by a statement timeout show up in the log, as follows:

postgres=# SET statement_timeout TO '3 s';
SET
postgres=# SELECT pg_sleep(10);
ERROR: canceling statement due to statement timeout

Killing idle in-transaction queries
Sometimes, people start a transaction, run some queries, and then just leave, without
ending the transaction. This can leave some system resources in a state where some
housekeeping processes can't be run. They may even have done something more serious,
such as locking a table, thereby causing immediate denial of service for other users who need
that table.

You can use the following query to kill all backends that have an open transaction but have
been doing nothing for the last 10 minutes:

SELECT pg_terminate_backend(pid)
 FROM pg_stat_activity
WHERE state = 'idle in transaction'
 AND current_timestamp - query_start > '10 min';

Monitoring and Diagnosis Chapter 8

[328]

You can even schedule this to run every minute while you are trying to find the specific
frontend application that ignores open transactions, or when you have a lazy
administration that leaves a psql connection open, or when a flaky network drops clients
without the server noticing it.

Killing the backend from the command line
Another way to terminate a backend is by using a Unix/Linux command named kill N.
This command orders the SIGTERM signal to process N on the system where it is running.
You have to be either the root user or the user running the database backends (usually
postgres) to be able to send signals to processes.

You can cancel a backend (and simulate the pg_cancel_backend(pid) function) by
sending a SIGINT signal:

kill -SIGINT <backend_pid>

For more detailed information and the exact syntax, type man kill from your favorite
shell environment.

Detecting an in-doubt prepared transaction
While using two-phase commit (2PC), you may end up in a situation where you have
something locked but cannot find a backend that holds the locks. This recipe describes how
to detect such a case.

How to do it…
Perform the following steps:

You need to look up the pg_locks table for those entries with an empty pid1.
value. Run the following query:

SELECT t.schemaname || '.' || t.relname AS tablename,
 l.pid, l.granted
 FROM pg_locks l JOIN pg_stat_user_tables t
 ON l.relation = t.relid;

Monitoring and Diagnosis Chapter 8

[329]

The output will be something similar to the following:2.

 tablename | pid | granted
-----------+-------+---------
 db.x | | t
 db.x | 27289 | f
(2 rows)

The preceding example shows a lock on the db.x table, which has no process associated
with it.

If you need to remove a particular prepared transaction, you can refer to the Removing old
prepared transactions recipe in Chapter 9, Regular Maintenance.

Knowing whether anybody is using a
specific table
This recipe helps you when you are in doubt about whether an obscure table is being used
anymore, or if it has been left over from past use and is just taking up space.

Getting ready
Make sure that you are a superuser, or at least have full rights to the table in question.

How to do it…
Perform the following steps:

To see whether a table is currently in active use (that is, whether anyone is using1.
it while you are watching it), run the following query on the database you plan to
inspect:

CREATE TEMPORARY TABLE tmp_stat_user_tables AS
 SELECT * FROM pg_stat_user_tables;

Monitoring and Diagnosis Chapter 8

[330]

Then, wait a little and see what has changed:2.

SELECT * FROM pg_stat_user_tables n
 JOIN tmp_stat_user_tables t
 ON n.relid=t.relid
 AND (n.seq_scan,n.idx_scan,n.n_tup_ins,n.n_tup_upd,n.n_tup_del)
 <> (t.seq_scan,t.idx_scan,t.n_tup_ins,t.n_tup_upd,t.n_tup_del);

How it works…
The pg_stat_user_tables view shows the current statistics for table usage.

To see whether a table is being used, you can check for changes in its usage counts.

The previous query selects all the tables where any of the usage counts for SELECT or data
manipulation have changed.

There's more...
You can use one of the following approaches to detect usage changes.

The quick-and-dirty way
If you are sure that you have no use for the cumulative statistics gathered by PostgreSQL,
you can just reset all table statistics by executing the following command:

SELECT pg_stat_reset();

This sets all statistics to zero, and you can detect table use by just looking for tables where
any usage count is not zero.

Of course, you can make a backup copy of the statistics table first, as follows:

CREATE TABLE backup_stat_user_tables AS
 SELECT current_timestamp AS snaptime,*
 FROM pg_stat_user_tables;

Collecting daily usage statistics
It is often useful to have historical usage statistics for tables when trying to solve
performance problems or understand usage patterns.

Monitoring and Diagnosis Chapter 8

[331]

For this purpose, you can collect usage data in a regular manner, daily or even more often,
using either a cron or a PostgreSQL-specific scheduler such as pg_agent. Advanced users
can take advantage of background workers to schedule such an activity. For more
information on background worker processes, go to
http://www.postgresql.org/docs/11/static/bgworker.html.

The following query adds a snapshot of current usage statistics with a timestamp to the
table we created earlier:

INSERT INTO backup_stat_user_tables
 SELECT current_timestamp AS snaptime,*
 FROM pg_stat_user_tables;

Knowing when a table was last used
Once you know that a table is not currently being used, the next question is, When was it last
used?

Getting ready
You need to use a user with appropriate privileges.

How to do it…
PostgreSQL does not have any built-in last used information about tables, so you have to
use other means to figure it out.

If you have set up a cron job to collect usage statistics, as described in the previous chapter,
then it is relatively easy to find out the last date of change using a SQL query.

Other than this, there are basically two possibilities, neither of which give you absolutely
reliable answers.

You can either look at the actual timestamps of the files in which the data is stored, or you
can use the xmin and xmax system columns to find out the latest transaction ID that
changed the table data.

In this recipe, we will cover the first case and focus on the date information in the table's
files.

http://www.postgresql.org/docs/11/static/bgworker.html

Monitoring and Diagnosis Chapter 8

[332]

The following PL/pgSQL function looks for the table's data files to get the value of their last
access and modification times:

CREATE OR REPLACE FUNCTION table_file_access_info(
 IN schemaname text, IN tablename text,
 OUT last_access timestamp with time zone,
 OUT last_change timestamp with time zone
) LANGUAGE plpgsql AS $func$
DECLARE
 tabledir text;
 filenode text;
BEGIN
 SELECT regexp_replace(
 current_setting('data_directory') || '/' ||
pg_relation_filepath(c.oid),
 pg_relation_filenode(c.oid) || '$', ''),
 pg_relation_filenode(c.oid)
 INTO tabledir, filenode
 FROM pg_class c
 JOIN pg_namespace ns
 ON c.relnamespace = ns.oid
 AND c.relname = tablename
 AND ns.nspname = schemaname;
 RAISE NOTICE 'tabledir: % - filenode: %', tabledir, filenode;
 -- find latest access and modification times over all segments
 SELECT max((pg_stat_file(tabledir || filename)).access),
 max((pg_stat_file(tabledir || filename)).modification)
 INTO last_access, last_change
 FROM pg_ls_dir(tabledir) AS filename
 -- only use files matching <basefilename>[.segmentnumber]
 WHERE filename ~ ('^' || filenode || '([.]?[0-9]+)?$');
END;
$func$;

Here is the sample output:

postgres=# select * from table_file_access_info('public','job_status');
NOTICE: tabledir: /Library/PostgreSQL/11/data/base/13329/ - filenode:
169733
 last_access | last_change
---------------------------+---------------------------
 2019-04-19 22:42:00+05:30 | 2019-04-19 09:36:40+05:30

Monitoring and Diagnosis Chapter 8

[333]

How it works...
The table_file_access_info(schemaname, tablename) function returns the last
access and modification times for a given table, using the filesystem as a source of
information.

The last query uses this data to get the latest time any of these files were modified or read
by PostgreSQL. Beware that this is not a very reliable way to get information about the
latest use of any table, but it gives you a rough upper-limit estimate about when it was last
modified or read (for example, consider the autovacuum process for accessing a table).

You can definitely improve and personalize the preceding function. I advise that you look
at the PostgreSQL documentation and read about two built-in functions,
pg_ls_dir(dirname text) and pg_stat_file(filename text).

Another good source of information is the Database File Layout page in the PostgreSQL
documentation at
http://www.postgresql.org/docs/11/static/storage-file-layout.html.

There's more…
Recently, there have been discussions about adding last-used data to the information about
tables that PostgreSQL keeps, so it is quite possible that answering the question when did
anybody last use this table? will be much easier in the next version of PostgreSQL.

Usage of disk space by temporary data
In addition to ordinary persistent tables, you can also create temporary tables.

PostgreSQL may use temporary files for query processing if it can't fit all the necessary data
into memory.

So, how do you find out how much data is being used by temporary tables and files? You
can do this by using any untrusted embedded language, or directly on the database host.

Getting ready
You have to use an untrusted language, because trusted languages run in a sandbox, which
prohibits them from directly accessing the host filesystem.

http://www.postgresql.org/docs/11/static/storage-file-layout.html

Monitoring and Diagnosis Chapter 8

[334]

How to do it…
Perform the following steps:

First, check whether your database defines special tablespaces for temporary1.
files, as follows:

SELECT current_setting('temp_tablespaces');

As explained later on in this recipe, if the setting is empty, it means that2.
PostgreSQL is not using temporary tablespaces, and temporary objects will be
located in the default tablespace for each database.
On the other hand, if temp_tablespaces has one or more tablespaces, then3.
your task is easy because all temporary files, both those used for temporary
tables and those used for query processing, are inside the directories of these
tablespaces. The following query (which uses WITH queries and string and array
functions) demonstrates how to check the space that's being used by temporary
tablespaces:

WITH temporary_tablespaces AS (SELECT
 unnest(string_to_array(
 current_setting('temp_tablespaces'), ',')
) AS temp_tablespace
)
SELECT tt.temp_tablespace,
pg_tablespace_location(t.oid) AS location,

 pg_tablespace_size(t.oid) AS size
FROM temporary_tablespaces tt
JOIN pg_tablespace t ON t.spcname = tt.temp_tablespace
 ORDER BY 1;

The output shows very limited use of temporary space (I ran the preceding query while I
had two open transactions that had just created small, temporary tables using random data
through generate_series()):

temp_tablespace | location | size
-----------------+--------------+---------
 pgtemp1 | /srv/pgtemp1 | 3633152
 pgtemp2 | /srv/pgtemp2 | 376832
(2 rows)

Monitoring and Diagnosis Chapter 8

[335]

Even though you can obtain similar results using different queries, or just by checking the
disk usage from the filesystem through du (once you know the location of tablespaces), I
would like to focus on two functions here:

pg_tablespace_location(oid): This provides the location of the tablespace
with the given oid
pg_tablespace_size(oid) or pg_tablespace_size(name): This allows you
to check the size being used by a named tablespace directly within PostgreSQL

Because the amount of temporary disk space being used can vary a lot in an active system,
you may want to repeat the query several times to get a better picture of how the disk
usage changes. (With psql, use \watch, as explained in the Checking whether a user is
connected recipe.)

Further information on these functions can be found at
http://www.postgresql.org/docs/11/static/functions-admin.html.

On the other hand, if the temp_tablespaces setting is empty, then the temporary tables
are stored in the same directory as ordinary tables, and the temporary files that are used for
query processing are stored in the pgsql_tmp directory inside the main database directory.

Look up the cluster's home directory using the following query:

SELECT current_setting('data_directory') || '/base/pgsql_tmp'

The size of this directory gives the total size of current temporary files for query processing.

The total size of temporary files used by a database can be found in the
pg_stat_database system view, and specifically in the two fields temp_files and
temp_bytes. The following query returns the cumulative number of temporary files and
the space being used by every database since the last reset (stats_reset):

SELECT datname, temp_files, temp_bytes, stats_reset
 FROM pg_stat_database;

The pg_stat_database view holds very important statistics. I recommend that you look
at the official documentation at
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-DATABASE

-VIEW for detailed information and to get further ideas on how to improve your monitoring
skills.

http://www.postgresql.org/docs/11/static/functions-admin.html
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-DATABASE-VIEW
http://www.postgresql.org/docs/11/static/monitoring-stats.html#PG-STAT-DATABASE-VIEW

Monitoring and Diagnosis Chapter 8

[336]

How it works…
Because all temporary tables and other temporary on-disk data are stored in files, you can
use PostgreSQL's internal tables to find the locations of these files, and then determine the
total size of these files.

There's more…
While the preceding information about temporary tables is correct, it is not the entire story.

Finding out whether a temporary file is in use anymore
Because temporary files are not as carefully preserved as ordinary tables (this is actually
one of the benefits of temporary tables, as less bookkeeping makes them faster), it may
sometimes happen that a system crash leaves a few temporary files, which can (in the worst
case) take up a significant amount of disk space.

As a rule, you can clean up such files by shutting down the PostgreSQL server and then
deleting all files from the pgsql_tmp directory.

Logging temporary file usage
If you set log_temp_files = 0 or a larger value, then the creation of all temporary files
that are larger than this value in kilobytes is logged to the standard PostgreSQL log.

If, while monitoring the log and the pg_stat_database view, you notice an increase in
temporary file activity, you should consider increasing work_mem, either globally or
(preferably) on a query/session basis.

Understanding why queries slow down
In production environments with large databases and high concurrent access, it might
happen that queries that used to run in tens of milliseconds suddenly take several seconds.

Likewise, a summary query for a report that used to run in a few seconds might take half
an hour to complete.

Here are some ways to find out what is slowing them down.

Monitoring and Diagnosis Chapter 8

[337]

Getting ready
Any questions of the type why is this different today from what it was last week? are much
easier to answer if you have some kind of historical data collection setup.

The tools we mentioned in the earlier recipe, Providing PostgreSQL information, to monitor
tools so that we can monitor general server characteristics, such as CPU and RAM usage,
disk I/O, network traffic, and load average, and so on are very useful for seeing what has
changed recently, and for trying to correlate these changes with the observed performance
of some database operations.

Also, collecting historical statistics data from pg_stat_* tables, whether daily, hourly, or
even every five minutes if you have enough disk space, is also very useful for detecting
possible causes of sudden changes or a gradual degradation in performance.

If you are gathering both of these, then that's even better. If you have none, then the
question is actually: Why is this query slow?

But don't despair! There are a few things you can do to try to restore performance.

How to do it…
First, analyze your database using the following code:

db_01=# analyse;
ANALYZE
Time: 6231.313 ms
db_01=#

This is the first thing to try, as it is usually cheap and is meant to be done quite often
anyway.

If this restores the query's performance or at least improves the current performance
considerably, then it means that autovacuum is not doing its task well, and the next thing to
do is find out why.

Monitoring and Diagnosis Chapter 8

[338]

You must ensure that the performance improvement is not due to caching of the pages
required by the requested query. Make sure that you repeat your query several times before
classifying it as slow. Looking at pg_stat_statements (which is covered later in this
chapter) can help you analyze the impact of a particular query in terms of caching, and is
done by inspecting two fields: shared_blks_hit and shared_blks_read.

How it works…
The ANALYZE command updates statistics about data size and data distribution in all tables.
If a table size has changed significantly without its statistics being updated, then
PostgreSQL's statistics-based optimizer may choose a bad plan. Manually running the
ANALYZE command updates the statistics for all tables.

There's more…
There are a few other common problems.

Do queries return significantly more data than they did
earlier?
If you've initially tested your queries on almost empty tables, it is entirely possible that you
are querying much more data than you need.

As an example, if you select all users' items and then show the first 10 items, this query
runs very fast when the user has 10 or even 50 items, but not so well when they have
50,000.

Ensure that you don't ask for more data than you need. Use the LIMIT clause to return less
data to your application (and to give the optimizer at least a chance to select a plan that
processes less data when selecting: it may also have a lower startup cost). In some cases,
you can evaluate the use of cursors for your applications.

Monitoring and Diagnosis Chapter 8

[339]

Do queries also run slowly when they run alone?
If you can, then try to run the same slow query when the database has no (or very few)
other queries running concurrently. If it runs well in this situation, then it may be that the
database host is just overloaded (CPU, memory, or disk I/O) or other applications are
interfering with PostgreSQL on the same server. Consequently, a plan that works well
under a light load is not very good any more. It may even be that this is not a very good
query plan with which to begin, and you were fooled by modern computers being really
fast:

db=# select count(*) from t;
 count

 1000000
(1 row)
Time: 329.743 ms

As you can see, scanning 1 million rows takes just 0.3 seconds on a laptop that is a few
years old if these rows are already cached.

However, if you have a few such queries running in parallel, and also other queries
competing for memory, this query is likely to slow down an order of magnitude or two.

See Chapter 10, Performance and Concurrency, for general advice on performance tuning.

Is the second run of the same query also slow?
This test is related to the previous test, and it checks whether the slowdown is caused by
some of the necessary data not fitting into the memory or being pushed out of the memory
by other queries.

If the second run of the query is fast, then you probably lack enough memory. Again, see
Chapter 10, Performance and Concurrency, for details about this.

Table and index bloat
Table bloat is something that can develop over time if some maintenance processes can't be
run properly. In other words, due to the way Multiversion Concurrency Control (MVCC)
works, your table will contain a lot of older versions of rows, if these versions can't be
removed in a timely manner.

Monitoring and Diagnosis Chapter 8

[340]

There are several ways this can develop, but all involve lots of updates or deletes and
inserts, while autovacuum is prevented from doing its job of getting rid of old tuples. It is
possible that, even after the old versions are deleted, the table stays at its newly acquired
and large size, thanks to visible rows being located at the end of the table and preventing
PostgreSQL from shrinking the file. There have been cases where a one-row table has
grown to several gigabytes in size.

If you suspect that some tables may contain bloat, then run the following query:

SELECT pg_relation_size(relid) AS tablesize,schemaname,relname,n_live_tup
FROM pg_stat_user_tables
WHERE relname = <tablename>;

Then, see whether the relation of tablesize to n_live_tup makes sense.

For example, if the table size is tens of megabytes, and there are only a small number of
rows, then you have bloat, and proper VACUUM strategies are necessary (as explained in
Chapter 9, Regular Maintenance).

It is important to check that the statistics are up-to-date. You might indeed need to run
ANALYSE on the table and run the query again.

See also
The Collecting daily usage statistics section shows one way to collect information
on table changes
Chapter 9, Regular Maintenance
Chapter 10, Performance and Concurrency
The How many rows in a table? recipe in Chapter 2, Exploring the Database, for an
introduction to MVCC
The auto_explain contrib module, at
http://www.postgresql.org/docs/11/static/auto-explain.html

Investigating and reporting a bug
When you find out that PostgreSQL is not doing what it should, then it's time to
investigate.

http://www.postgresql.org/docs/11/static/auto-explain.html

Monitoring and Diagnosis Chapter 8

[341]

Getting ready
It is a good idea to make a full copy of your PostgreSQL installation before you start
investigating. This will help you restart several times and be sure that you are actually
investigating the results of the bug, and not chasing your own tail by looking at changes
that were introduced by your last investigation and debugging attempt.

Do not forget to include your tablespaces in the full copy.

How to do it…
Try to make a minimal repeatable test scenario that exhibits this bug. Sometimes, the bug
disappears while doing this, but mostly it is needed to make the process easy. It is almost
impossible to fix a bug that you can't observe and repeat at will.

If it is about query processing, then you can usually provide a minimal dump file (the result
of running pg_dump) of your database, together with a SQL script that exhibits the error.

If you have corrupt data, then you may want to make a subset of the corrupted data files
available for people who have the knowledge and time to look at it. Sometimes, you can
find such people on the PostgreSQL hackers' list, and sometimes you have to hire someone
or even fix it yourself. The more preparatory work you do yourself and the better you
formulate your questions, the higher the chance you have of finding help quickly.

If you suspect a data corruption bug and feel adventurous, then you can read about data
formats at http://www.postgresql.org/docs/current/static/storage.html, and
investigate your data tables using the pageinspect package from contrib.

When reporting a bug, always include at least the PostgreSQL version you are using and
the operating system on which you are using it.

More detailed information on this process is available at the PostgreSQL wiki. By following
the official recommendations at
http://wiki.postgresql.org/wiki/Guide_to_reporting_problems and
http://wiki.postgresql.org/wiki/SlowQueryQuestions, you will have a higher chance of
getting your questions answered.

http://www.postgresql.org/docs/current/static/storage.html
http://wiki.postgresql.org/wiki/Guide_to_reporting_problems
http://wiki.postgresql.org/wiki/SlowQueryQuestions

Monitoring and Diagnosis Chapter 8

[342]

How it works…
If everything works really well, then it goes as follows:

A user submits a well-researched bug report to the PostgreSQL hackers' list.
Some discussions follow on the list, and the user may be asked to provide some
additional information.
Somebody finds out what is wrong and proposes a fix.
The fix is discussed on the hackers' list.
The bug is fixed. There is a patch for the current version, and the fix is sure to be
included in the next version.
Sometimes, the fix is backported to older versions.

Unfortunately, any step may go wrong due to various reasons, such as nobody feeling that
this is their area of expertise, the right people not having time and hoping for someone else
to deal with it, and these other people not reading the list at the right moment.

If this happens, follow up your question in a day or two to try and understand why there
was no reaction.

Producing a daily summary of log file errors
PostgreSQL can generate gigabytes of logs per day. Lots of data is good if you want to
investigate a specific event, but it is not what you will use for daily monitoring of database
health.

In this recipe, we'll look at how to perform a post analysis of our log files and get reports
(and insights) about what has happened in a given period of time.

A different approach is to perform real-time analysis of queries through the
pg_stat_statements extension, which will be covered in the next recipe.

Getting ready
Make sure that your PostgreSQL is set up to rotate log files, for example, daily. I personally
prefer to integrate PostgreSQL with rsyslog and logrotate for log management on
Linux or Unix systems, but you can use any method that is allowed by PostgreSQL (CSV or
standard error, for example).

Monitoring and Diagnosis Chapter 8

[343]

A typical default setup will divert log messages to stderr, and you can set up log rotation
directly in PostgreSQL through the log_rotation_age configuration option.

Once you have your logs ready, it is time to feed them to a PostgreSQL log-processing
program. Here, we will describe how to do so using pgBadger, a multi-platform application
written in Perl that has recently become more popular than its famous predecessor,
pgFouine.

Some of the cool features of pgBadger include multi-file processing, parallel processing,
auto-detection of the input format, on-the-fly decompression, as well as very light HTML
reports with JavaScript-generated charts (that have zooming capabilities), as shown here:

The following screenshot shows the report of time-consuming queries with pgBadger:

For most Linux systems, you should be able to use your default package manager to install
pgBadger. Otherwise, you can simply download its sources.

Configure your PostgreSQL server to produce log files in a format that pgBadger
understands. Everything is thoroughly described in the online documentation for pgBadger
at https://pgbadger.darold.net/.

https://pgbadger.darold.net/

Monitoring and Diagnosis Chapter 8

[344]

Suppose you are using syslog and you want to exclude queries that take less than a
second to be executed. You can have a logging configuration of your PostgreSQL server
similar to this:

log_destination = syslog
syslog_facility = LOCAL0
syslog_ident = 'postgres'
log_line_prefix = 'user=%u,db=%d,client=%h '
log_temp_files = 0
log_statement = ddl
log_min_duration_statement = 1000
log_min_messages = info
log_checkpoints = on
log_lock_waits = on

The documentation for pgBadger is a great source of information regarding PostgreSQL
configuration in terms of logging. You are advised to read that together with the Error
Reporting and Logging section of the Postgres documentation, which is available at http:/ /
www.postgresql.org/ docs/ 11/ static/ runtime- config- logging. html.

How to do it…
Set up a cron job to run regularly (for example, once every hour, day, or week) and let
pgBadger analyze one or more log files. Here, you can find a very simple example that can
be used to prepare daily reports every hour.

For the sake of simplicity, the script has been purged of any error checks. Production usage
requires the addition of some basic shell controls:

#!/bin/bash
outdir=/var/www/reports
begin=$(date +'%Y-%m-%d %H:00:00' -d '-1 day')
end=$(date +'%Y-%m-%d %H:00:00')
outfile="$outdir/daily-$(date +'%H').html"

pgbadger -q -b "$begin" -e "$end" -o "$outfile" \
 /var/log/postgres.log.1 /var/log/postgres.log

The preceding script informs pgbadger to analyze the current log file
(/var/log/postgresql.log) and the previously rotated file
(/var/log/postgres.log.1), to limit the reporting activity to the last 24 hours (see how
the date command was used to generate timestamps), and then write the output to the
$outfile HTML file.

http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html
http://www.postgresql.org/docs/11/static/runtime-config-logging.html

Monitoring and Diagnosis Chapter 8

[345]

Once again, this is just a very simple use case for pgBadger. I strongly advise that you look
at the documentation and investigate all the options and possibilities that pgBadger offers.

I want to end this recipe with a practical idea that you can explore with your system
administrators. You might have noticed that the output directory has been set as a common
default DocumentRoot for Apache servers (/var/www).

A very practical way to use pgBadger is to integrate it with a web server.

Production environments may benefit from SSL encryption, basic authentication, and the
mod_dir module, which allows you to make your reports automatically available through
the internet (or your intranet).

How it works…
The pgBadger tool condenses and ranks error messages for easy viewing, and produces a
nicely formatted report in HTML. From that report, you can find out the most frequent
errors.

As a rule, it is good practice not to tolerate errors in database logs if you can avoid them.
Once the errors start showing up in the log and report, you should find their cause and fix
them.

While it is tempting to leave the errors there and consider them as just a small nuisance
because they do no harm, simple errors are often an indication of other problems in the
application. These problems, if not found and understood, may lead to all kinds of larger
problems, such as security breaches or eventual data corruption at the logical level.

Also, if you normally have lots of recurring error messages, you might not notice an
important error when it occurs for the first time.

There's more…
If you have only a small number of errors in your log files, then it may be sufficient to run
each log file through grep to find errors:

user@dbhost: $ egrep "FATAL|ERROR" /var/log/postgres.log

Monitoring and Diagnosis Chapter 8

[346]

Analyzing the real-time performance of your
queries
The pg_stat_statements extension adds the capability to track execution statistics of
queries that are run in a database, including the number of calls, total execution time, total
number of returned rows, and internal information on memory and I/O access.

It is evident how this approach opens up new opportunities in PostgreSQL performance
analysis by allowing DBAs to get insights directly from the database through SQL and in
real time.

Getting ready
The pg_stat_statements module is available as a contrib module of PostgreSQL. The
extension must be installed as a superuser in the desired databases. It also requires
administrators to add the library in the postgresql.conf file, as follows:

shared_preload_libraries = 'pg_stat_statements'

This change requires restarting the PostgreSQL server.

Finally, in order to use it, the extension must be installed in the desired database through
the usual CREATE EXTENSION command (run as a superuser):

gabriele=# CREATE EXTENSION pg_stat_statements;
CREATE EXTENSION

How to do it…
Connect to a database where you have installed the pg_stat_statements extension,
preferably as a superuser.

You can start by retrieving a list of the most frequent queries:

SELECT query FROM pg_stat_statements ORDER BY calls DESC;

Monitoring and Diagnosis Chapter 8

[347]

Alternatively, you can retrieve the queries with the highest average execution time:

SELECT query, total_time/calls AS avg, calls
 FROM pg_stat_statements ORDER BY 2 DESC;

These are just examples. I strongly recommend that you look at the PostgreSQL
documentation at http://www.postgresql.org/docs/44/static/pgstatstatements.html
for more detailed information on the structure of the pg_stat_statements view.

How it works…
Since the pg_stat_statements shared library has been loaded by the PostgreSQL server,
Postgres starts collecting statistics for every database in the instance.

The extension simply installs the pg_stat_statements view and the
pg_stat_statements_reset() function in the current database, allowing the DBA to
inspect the available statistics.

By default, read access to the pg_stat_statements view is granted to every user who can
access the database (even though standard users are only allowed to see the SQL statements
of their queries).

The pg_stat_statements_reset() function can be used to discard the statistics
collected by the server up to that moment, and set all the counters to 0. It requires a
superuser in order to be run.

There's more…
A very important pg_stat_statements feature is the normalization of queries that can be
planned (SELECT, INSERT, DELETE, and UPDATE). You might have indeed noticed some ?
characters in the query field being returned by the queries we outlined in the previous
section. The normalization process intercepts constants in SQL statements run by users and
replaces them with a placeholder (identified by a question mark).

Consider the following queries:

SELECT * FROM bands WHERE name = 'AC/DC';
SELECT * FROM bands WHERE name = 'Lynyrd Skynyrd';

http://www.postgresql.org/docs/44/static/pgstatstatements.html

Monitoring and Diagnosis Chapter 8

[348]

After the normalization process, these two queries appear as one in pg_stat_statements:

gabriele=# SELECT query, calls FROM pg_stat_statements;
 query | calls
---------------------------------------+-------
 SELECT * FROM bands WHERE name = ?; | 2
 … <snip> …

This is the expected behavior, isn't it?

The extension comes with a few configuration options, such as the maximum number of
queries to be tracked.

9
Regular Maintenance

In these busy times, many people believe: if it ain't broken, don't fix it. I believe that too, but
it isn't an excuse for not taking action to maintain your database servers and be sure that
nothing will break.

Database maintenance is about making your database run smoothly.

PostgreSQL prefers regular maintenance, so please read the Planning maintenance recipe for
more information.

We recognize that you're here for a reason and are looking for a quick solution to your
needs. You're probably thinking—Fix me first, and I'll plan later. So, off we go!

PostgreSQL provides a utility command named VACUUM, which is a jokey name for a
garbage collector that sweeps up all of the bad things and fixes them—or at least, most of
them. That's the single most important thing you need to remember
to do—I say single because closely connected to that is the ANALYZE command, which
collects optimizer statistics. It's possible to run VACUUM and ANALYZE as a single joint
command, VACUUM ANALYZE, and those actions are automatically executed for you when
appropriate by autovacuum, a special background process that runs as part of the
PostgreSQL server.

VACUUM performs a range of cleanup activities, some of them too complex to describe
without a whole sideline into their internals. VACUUM has been heavily optimized over a 30-
year period to take the minimum required lock levels on tables and execute them in the
most efficient manner possible, skipping all of the unnecessary work and using L2 cache
CPU optimizations when work is required.

Many experienced PostgreSQL DBAs will prefer to execute their own VACUUM commands,
though autovacuum now provides a fine degree of control, which—if enabled and
controlled—can save much of your time. Using both manual and automatic vacuuming
gives you control and a safety net.

Regular Maintenance Chapter 9

[350]

In this chapter, we will cover the following recipes:

Controlling automatic database maintenance
Avoiding auto-freezing and page corruptions
Removing issues that cause bloat
Removing old prepared transactions
Actions for heavy users of temporary tables
Identifying and fixing bloated tables and indexes
Monitoring and tuning a vacuum
Maintaining indexes
Adding a constraint without checking existing rows
Finding unused indexes
Carefully removing unwanted indexes
Planning maintenance

Controlling automatic database
maintenance
Autovacuum is enabled by default in PostgreSQL and mostly does a great job of
maintaining your PostgreSQL database. We say mostly because it doesn't know everything
you do about the database, such as the best time to perform maintenance actions. Let's
explore the settings that can be tuned so that you can use vacuums efficiently.

Getting ready
Exercising control requires some thinking about what you actually want:

What are the best times of day to do things? When are system resources more
available?
Which days are quiet, and which are not?
Which tables are critical to the application, and which are not?

Regular Maintenance Chapter 9

[351]

How to do it…
Perform the following steps:

The first thing to do is make sure that autovacuum is switched on, which is the
default. Check that you have the following parameters enabled in your
postgresql.conf file:

autovacuum = on
track_counts = on

PostgreSQL controls autovacuum with more than 40 individually tunable
parameters that provide a wide range of options, though it can be a little
daunting. The following are the relevant parameters that can be set in
postgresql.conf to tune the VACUUM command:

vacuum_cleanup_index_scale_factor
vacuum_cost_delay
vacuum_cost_limit
vacuum_cost_page_dirty
vacuum_cost_page_hit
vacuum_cost_page_miss
vacuum_defer_cleanup_age
vacuum_freeze_min_age
vacuum_freeze_table_age
vacuum_multixact_freeze_min_age
vacuum_multixact_freeze_table_age

There are also parameters that apply specifically to the autovacuum process:

autovacuum
autovacuum_analyze_scale_factor
autovacuum_analyze_threshold
autovacuum_freeze_max_age
autovacuum_max_workers
autovacuum_multixact_freeze_max_age
autovacuum_naptime
autovacuum_vacuum_cost_delay
autovacuum_vacuum_cost_limit
autovacuum_vacuum_scale_factor
autovacuum_vacuum_threshold
autovacuum_work_mem
log_autovacuum_min_duration

Regular Maintenance Chapter 9

[352]

The preceding parameters apply to all tables at once. Individual tables can be
controlled by storage parameters, which are set using the following command:

ALTER TABLE mytable SET (storage_parameter = value);

The storage parameters that relate to maintenance are as follows:

autovacuum_enabled
autovacuum_vacuum_cost_delay
autovacuum_vacuum_cost_limit
autovacuum_vacuum_scale_factor
autovacuum_vacuum_threshold
autovacuum_freeze_min_age
autovacuum_freeze_max_age
autovacuum_freeze_table_age
autovacuum_multixact_freeze_min_age
autovacuum_multixact_freeze_max_age
autovacuum_multixact_freeze_table_age
autovacuum_analyze_scale_factor
autovacuum_analyze_threshold
log_autovacuum_min_duration

The toast tables can be controlled with the following parameters:

toast.autovacuum_enabled
toast.autovacuum_vacuum_cost_delay
toast.autovacuum_vacuum_cost_limit
toast.autovacuum_vacuum_scale_factor
toast.autovacuum_vacuum_threshold
toast.autovacuum_freeze_min_age
toast.autovacuum_freeze_max_age
toast.autovacuum_freeze_table_age
toast.autovacuum_multixact_freeze_min_age
toast.autovacuum_multixact_freeze_max_age
toast.autovacuum_multixact_freeze_table_age
toast.log_autovacuum_min_duration

How it works…
If autovacuum is set, then it will wake up every autovacuum_naptime seconds, and
decide whether to run VACUUM, ANALYZE, or both (don't modify that).

Regular Maintenance Chapter 9

[353]

There will never be more than autovacuum_max_workers maintenance processes running
at any time. As these autovacuum workers perform I/O, they accumulate cost points until
they hit the autovacuum_vacuum_cost_limit value, after which they sleep for an
autovacuum_vacuum_cost_delay period of time. This is designed to throttle the resource
utilization of autovacuum to prevent it from using all of the available disk performance,
which it should never do. So, increasing autovacuum_vacuum_cost_delay will slow
down each VACUUM to reduce the impact on user activity. Autovacuum will run ANALYZE
when there have been at least autovacuum_analyze_threshold changes and a fraction of
the table defined by autovacuum_analyze_scale_factor has been inserted, updated, or
deleted.

Autovacuum will run VACUUM when there have been at least
autovacuum_vacuum_threshold changes, and a fraction of the table defined by
autovacuum_vacuum_scale_factor has been updated or deleted.

The autovacuum_* parameters only change vacuums and analyze operations that are
executed by autovacuum. User initiated VACUUM and ANALYZE commands are affected by
vacuum_cost_delay and other vacuum_* parameters.

If you set log_autovacuum_min_duration, then any autovacuum process that runs for
longer than this value will be logged to the server log, like so:

2019-04-19 01:33:55 BST (13130) LOG: automatic vacuum of table
"postgres.public.pgbench_accounts": index scans: 1
 pages: 0 removed, 3279 remain
 tuples: 100000 removed, 100000 remain
 system usage: CPU 0.19s/0.36u sec elapsed 19.01 sec
2019-04-19 01:33:59 BST (13130) LOG: automatic analyze of table
"postgres.public.pgbench_accounts"
 system usage: CPU 0.06s/0.18u sec elapsed 3.66 sec

Most of the preceding global parameters can also be set at the table level. For example, if
you think that you don't want a table to be autovacuumed, then you can set the following:

ALTER TABLE big_table SET (autovacuum_enabled = off);

It's also possible to set parameters for toast tables. A toast table is the location where
the oversized column values get placed, which the documents refer to as supplementary
storage tables. If there are no oversized values, then the toast table will occupy little space.
Tables with very wide values often have large toast tables. TOAST (short for The
Oversized Attribute Storage Technique) is optimized for UPDATE.

Regular Maintenance Chapter 9

[354]

If you have a heavily updated table, the toast table is untouched, so it may make sense to
turn off autovacuuming for the toast table, as follows:

ALTER TABLE pgbench_accounts
SET (toast.autovacuum_enabled = off);

Note that autovacuuming of the toast table is performed completely
separately from the main table, even though you can't ask for an explicit
include or exclude of the toast table yourself when running VACUUM.

Use the following query to display the reloptions for tables and their toast tables:

postgres=#
SELECT n.nspname
, c.relname
, array_to_string(
 c.reloptions ||
ARRAY(
SELECT 'toast.' || x
FROM unnest(tc.reloptions) AS x
), ', ')
AS relopts
FROM pg_class c
LEFT JOIN pg_class tc ON c.reltoastrelid = tc.oid
JOIN pg_namespace n ON c.relnamespace = n.oid
WHERE c.relkind = 'r'
AND nspname NOT IN ('pg_catalog', 'information_schema');

This query gives the following output:

 nspname | relname | relopts
---------+------------------+------------------------------
 public | pgbench_accounts | fillfactor=100,
 autovacuum_enabled=on,
 autovacuum_vacuum_cost_delay=20
 public | pgbench_tellers | fillfactor=100
 public | pgbench_branches | fillfactor=100
 public | pgbench_history |
 public | text_archive | toast.autovacuum_enabled=off

VACUUM allows insertions, updates, and deletions while it runs, but it prevents actions such
as ALTER TABLE and CREATE INDEX. Autovacuum can detect whether a user has
requested a conflicting lock on the table while it runs, and it will cancel itself if it is getting
in the user's way. VACUUM doesn't cancel itself since we expect that the DBA would not
want it to be canceled.

Regular Maintenance Chapter 9

[355]

Note that VACUUM does not shrink a table when it runs, unless there is a large run of space
at the end of a table, and nobody is accessing the table when we try to shrink it. To shrink a
table properly, you'll need VACUUM FULL, but it locks up the whole table for a long time,
and should be avoided if possible. The VACUUM FULL command will literally rewrite every
row of the table and completely rebuild all indexes. This process is faster than it used to be,
though it still takes a long time for larger tables.

There's more…
The postgresql.conf file also allows include directives, which look like the following:

include 'autovacuum.conf'

These specify another file that will be read at that point, just as if those parameters had
been included in the main file.

This can be used to maintain multiple sets of files for the autovacuum configuration. Let's
say we have a website that is busy mainly during the daytime, with some occasional
nighttime use. We decide to have two profiles, one for daytime, when we want less
aggressive autovacuuming, and another at night, where we can allow more aggressive
vacuuming:

You need to add the following lines to postgresql.conf:1.

autovacuum = on
autovacuum_max_workers = 3
include 'autovacuum.conf'

Remove all other autovacuum parameters.2.
Then, create a file named autovacuum.conf.day that contains the following3.
parameters:

autovacuum_analyze_scale_factor = 0.1
autovacuum_analyze_threshold = 50
autovacuum_vacuum_cost_delay = 30
autovacuum_vacuum_cost_limit = -1
autovacuum_vacuum_scale_factor = 0.2
autovacuum_vacuum_threshold = 50

Then, create another file, named autovacuum.conf.night, that contains the4.
following parameters:

autovacuum_analyze_scale_factor = 0.05
autovacuum_analyze_threshold = 50

Regular Maintenance Chapter 9

[356]

autovacuum_vacuum_cost_delay = 10
autovacuum_vacuum_cost_limit = -1
autovacuum_vacuum_scale_factor = 0.1
autovacuum_vacuum_threshold = 50

To swap profiles, simply do the following:5.

$ ln -sf autovacuum.conf.night autovacuum.conf
$ pg_ctl reload

The latter is the command to reload the server configuration, and it must be customized
depending on your platform.

This then allows us to switch profiles twice per day without needing to edit the
configuration files. You can also easily tell which is the active profile simply by looking at
the full details of the linked file (using ls -l). The exact details of the schedule are up to
you. Night and day was just an example, which is unlikely to suit everybody.

See also
The autovacuum_freeze_max_age parameter is explained in the next recipe, Avoiding
auto-freezing and page corruptions, as are the more complex table-level parameters.

Avoiding auto-freezing and page
corruptions
There are some aspects of VACUUM whose reason for existence is complex to explain, and
occasionally they have negative behaviors. Let's look at these in more details and find some
solutions to them.

PostgreSQL uses internal transaction identifiers that are 4 bytes long, so we only have
232 transaction IDs (about four billion). PostgreSQL starts again from the beginning when
that wraps around, allocating new identifiers in a circular manner. The reason we do this is
that moving to an 8-byte identifier has various other negative effects and costs that we
would rather not pay, so we keep the 4-byte transaction identifier, which means we need to
do regular sweeps to replace old transaction identifiers with a special value that is not
interpreted in a circular way, which is called frozen transaction ID; that's why this
procedure is known as freezing.

Regular Maintenance Chapter 9

[357]

How to do it…
There are two routes that a row can take in PostgreSQL—a row version dies and needs to
be removed by VACUUM, or a row version gets old enough and needs to be frozen, which is
also performed by the VACUUM process.

Why do we care? Suppose that we load a table with 100 million rows, and everything is
fine. When those rows have been there long enough to begin being frozen, the next VACUUM
operation on that table will rewrite all of them to freeze their transaction identifiers. Put
another way, autovacuum will wake up and start using lots of I/O to perform the freezing.

The most obvious way to forestall this problem is to explicitly vacuum a table after a major
load. Of course, that doesn't remove the problem entirely, and you might not have time for
that.

The knee-jerk reaction for many people is to turn off autovacuum, because it keeps waking
up at the most inconvenient times. My way is described in the Controlling automatic database
maintenance recipe.

Freezing takes place when a transaction identifier on a row becomes more than
vacuum_freeze_min_age transactions older than the current next value. Normal VACUUM
operations will perform a small amount of freezing as you go, and in most cases, you won't
notice that at all. As explained in the previous example, large transactions leave many rows
with the same transaction identifiers, so those might cause problems at the freezing time.

The VACUUM command is normally optimized to only look at the chunks of a table that
require cleaning, both for normal vacuum and freezing operations.

If you fiddle with those parameters to try to forestall heavy VACUUM operations, then you'll
notice that the autovacuum_freeze_max_age parameter controls when the table will be
scanned by a forced VACUUM command. To put that another way, you can't turn off the need
to freeze rows, but you can get to choose when this happens. My advice is to control
autovacuum as we described in the previous recipe or perform explicit VACUUM operations
at a time of your choosing.

The VACUUM command is also an efficient way to confirm the absence of page corruptions,
so it is worth scanning the whole database, block-by-block, from time to time. To do this,
you can run the following command on each of your databases:

VACUUM (DISABLE_PAGE_SKIPPING);

Regular Maintenance Chapter 9

[358]

You can do this table by table, as well. There's nothing special about whole database
VACUUM operations anymore; in earlier versions of PostgreSQL, this was important, so you
may read that this is a good idea on the web.

If you've never had a corrupt block, then you may only need to scan every two to three
months. If you start to get corrupt blocks, then you may want to increase the scan rate to
confirm that everything is OK. Corrupt blocks are usually hardware induced, though they
show up as database errors. It's possible but rare that the corruption was from a
PostgreSQL bug instead.

There's no easy way to fix page corruptions at present. There are, however, ways to
investigate and extract data from corrupt blocks, for example, by using the pageinspect
contrib utility that Simon wrote. You can also detect them automatically by creating the
whole cluster using the following code:

initdb --data-checksums

This command initializes the data directory and enables data block checksums. This means
that, every time something changes in a block, PostgreSQL will compute the new
checksum, and then store the resulting block checksums in that same block so that a simple
program can detect it.

Removing issues that cause bloat
Bloat can be caused by long-running queries or long-running write transactions that
execute alongside write-heavy workloads. Resolving that is mostly down to understanding
the workloads running on the server.

Getting ready
Look at the age of the oldest snapshots that are running, like this:

postgres=# SELECT now() -
 CASE
 WHEN backend_xid IS NOT NULL
 THEN xact_start
 ELSE query_start END
 AS age
, pid
, backend_xid AS xid
, backend_xmin AS xmin
, state

Regular Maintenance Chapter 9

[359]

FROM pg_stat_activity
WHERE backend_type = 'client backend'
ORDER BY 1 DESC;
age | pid | xid | xmin | state
----------------+-------+----------+----------+------------------
00:00:25.791098 | 27624 | | 10671262 | active
00:00:08.018103 | 27591 | | | idle in transaction
00:00:00.002444 | 27630 | 10703641 | 10703639 | active
00:00:00.001506 | 27631 | 10703642 | 10703640 | active
00:00:00.000324 | 27632 | 10703643 | 10703641 | active
00:00:00 | 27379 | | 10703641 | active

The preceding example shows an updated workload of three sessions alongside one session
that is waiting in an idle in transaction state, plus two other sessions that are only reading
data.

How to do it…
If you have sessions stuck in idle in transaction state, then you may want to consider setting
the idle_in_transaction_session_timeout parameter so that transactions in that
mode will be canceled. The default for that is zero, meaning there will be no cancellation.

If not, try running shorter transactions or shorter queries.

If that is not an option, then consider setting old_snapshot_threshold. This parameter
sets a time delay, after which dead rows are at risk of being removed. If a query attempts to
read data that has been removed, then we cancel the query. All queries executing in less
time than the old_snapshot_threshold parameter will be safe. This is a very similar
concept to the way Hot Standby works (see Chapter 12, Replication and Upgrades).

How it works…
VACUUM cannot remove dead rows until they are invisible to all users. The earliest data
that's visible to a session is defined by its oldest snapshot's xmin value, or if that is not set,
then by the backend's xid value.

Regular Maintenance Chapter 9

[360]

There's more…
A session that is not running any query is in the idle state if it's outside of a transaction, or
in the idle in transaction state if it's inside a transaction, that is, between a BEGIN and the
corresponding COMMIT. Recall the Writing a script that either succeeds entirely or fails
entirely recipe in Chapter 7, Database Administration, which was about how BEGIN and
COMMIT can be used to wrap several commands into one transaction.

The reason to distinguish between these two states is that locks are released at the end of a
transaction. Hence, an idle in transaction session is not currently doing anything, but it might
be preventing other queries, including VACUUM, from accessing some tables.

Removing old prepared transactions
You may have been routed here from other recipes, so you might not even know what
prepared transactions are, let alone what an old prepared transaction looks like.

The good news is that prepared transactions don't just happen; they happen in certain
situations. If you don't know what I'm talking about, it's OK! You won't need to, and better
still, you probably don't have any prepared transactions either.

Prepared transactions are part of the two-phase commit feature, also known as 2PC. A
transaction commits in two stages rather than one, allowing multiple databases to have
synchronized commits. Its typical use is to combine multiple so-called resource managers
using the XA protocol, which is usually provided by a Transaction Manager (TM), as used
by the Java Transaction API (JTA) and others. If none of this means anything to you, then
you probably don't have any prepared transactions.

Getting ready
First, check the setting of max_prepared_transactions:

SHOW max_prepared_transactions;

If your setting is more than zero, then check whether you have any prepared transactions.
As an example, you may find something like the following:

postgres=# SELECT * FROM pg_prepared_xacts;
-[RECORD 1]------------------------------
transaction | 459812
gid | prep1

Regular Maintenance Chapter 9

[361]

prepared | 2017-04-11 13:21:51.912374+01
owner | postgres
database | postgres

Here, gid (global identifier) will usually be automatically generated.

How to do it…
Removing a prepared transaction is also referred to as resolving in-doubt transactions. The
transaction is literally stuck between committing and aborting. The database or transaction
manager may have crashed, leaving the transaction midway through the two-phase commit
process.

If you have a connection pool of 100 active connections and something crashes, you'll
probably find 1 to 20 transactions stuck in the prepared state, depending on how long your
average transaction is.

To resolve the transaction, we need to decide whether we want that change or not. The best
way is to check what happened externally to PostgreSQL. That should help you to decide.

If you need further help, look at the There's more... section for this recipe.

If you wish to commit these changes, then use the following command:

COMMIT PREPARED 'prep1';

If you want to roll back the changes, then use the following command:

ROLLBACK PREPARED 'prep1';

How it works…
Prepared transactions are persistent across crashes, so you can't just do a fast restart to get
rid of them. They have both an internal transaction identifier and an external global
identifier. Either of these can be used to locate locked resources and decide how to resolve
the transactions.

Regular Maintenance Chapter 9

[362]

There's more…
If you're not sure what the prepared transaction actually did, you can go and look, but this
is time-consuming. The pg_locks view shows locks that are held by prepared transactions.
You can get a full report of what is being locked by using the following query:

postgres=# SELECT l.locktype, x.database, l.relation, l.page,
l.tuple,l.classid, l.objid, l.objsubid, l.mode, x.transaction, x.gid,
x.prepared, x.owner
FROM pg_locks l JOIN pg_prepared_xacts x ON l.virtualtransaction = ‘-1/' ||
x.transaction::text;

The documents mention that you can join pg_locks to pg_prepared_xacts, but they
don't mention that, if you join directly on the transaction ID, all it tells you is that there is a
transaction lock unless there are some row-level locks. The table locks are listed as being
held by a virtual transaction. A simpler query is the following:

postgres=# SELECT DISTINCT x.database, l.relation FROM pg_locks l JOIN
pg_prepared_xacts x ON l.virtualtransaction = ‘-1/' || x.transaction::text
WHERE l.locktype != ‘transactionid';
database | relation
---------+----------
postgres | 16390
postgres | 16401
(2 rows)

This tells you which relations in which databases have been touched by the remaining
prepared transactions. We don't know their names because we'd need to connect to those
databases to check.

Finally, we can inspect which rows have been changed by the transaction. We will use
xmin, which is a hidden column in each table. For more details on that, refer to the
Identifying and fixing bloated tables and indexes recipe in this chapter.

You can then fully scan each of those tables and look for changes like the following:

SELECT * FROM table WHERE xmax = 121083;

This query will show you all of the rows in that table that will be deleted or updated by
transaction 121083, which has been taken from the transaction column of
pg_prepared_xacts.

Regular Maintenance Chapter 9

[363]

Not all rows touched by the transaction can be displayed, however.
Newly inserted rows and new versions of updated rows will not be
accessible in this way, for the very good reason that they must be invisible
before the transaction is committed.

As you might expect, the PostgreSQL developers did their homework properly. Say that
you have some prepared transactions and you change max_prepared_transactions to
zero, which requires a restart to come into effect. No prepared transaction will sneak into
your database unnoticed. When starting, PostgreSQL will try to recover every prepared
transaction and refuse to start unless max_prepared_transactions is large enough.

Actions for heavy users of temporary tables
If you are a heavy user of temporary tables in your applications, then there are some
additional actions that you may need to perform.

How to do it…
There are four main things to check, which are as follows:

Make sure you run VACUUM on system tables or enable autovacuum to do this for
you.
Monitor running queries to see how many temporary files are active and how
large they are.
Tune the memory parameters. Think about increasing the temp_buffers
parameter, but be careful not to over-allocate memory by doing so.
Separate the temp table's I/O. In a query-intensive system, you may find that
reads/writes to temporary files exceed reads/writes on permanent data tables and
indexes. In this case, you should create new tablespace(s) on separate disks, and
ensure that the temp_tablespaces parameter is configured to use the
additional tablespace(s).

Regular Maintenance Chapter 9

[364]

How it works…
When we create a temporary table, we insert entries into the pg_class, pg_type, and
pg_attribute catalog tables. These catalog tables and their indexes begin to grow and
bloat—an issue that will be covered in further recipes. To control that growth, you can
either vacuum those tables manually or let autovacuum do its work. You cannot run ALTER
TABLE against system tables, so it is not possible to set specific autovacuum settings for any
of these tables.

If you vacuum the system catalog tables manually, make sure that you get all of the system
tables. You can get the full list of tables to vacuum and a list of their indexes by using the
following query:

postgres=# SELECT relname, pg_relation_size(oid) FROM pg_class
WHERE relkind in ('i','r') AND relnamespace = 'pg_catalog'::regnamespace
ORDER BY 2 DESC;

This results in the following output:

 relname | pg_relation_size
---------------------------------+------------------
 pg_proc | 450560
 pg_depend | 344064
 pg_attribute | 286720
 pg_depend_depender_index | 204800
 pg_depend_reference_index | 204800
 pg_proc_proname_args_nsp_index | 180224
 pg_description | 172032
 pg_attribute_relid_attnam_index | 114688
 pg_operator | 106496
 pg_statistic | 106496
 pg_description_o_c_o_index | 98304
 pg_attribute_relid_attnum_index | 81920
 pg_proc_oid_index | 73728
 pg_rewrite | 73728
 pg_class | 57344
 pg_type | 57344
 pg_class_relname_nsp_index | 40960
...(partial listing)

The preceding values are for a newly created database. These tables can get very large if
they're not properly maintained, with values of 11 GB for one index being witnessed in one
unlucky installation.

Regular Maintenance Chapter 9

[365]

Identifying and fixing bloated tables and
indexes
PostgreSQL implements Multiversion Concurrency Control (MVCC), which allows users
to read data at the same time as writers make changes. This is an important feature for
concurrency in database applications, as it can allow the following:

Better performance because of fewer locks
Greatly reduced deadlocking
Simplified application design and management

Bloated tables and indexes are a natural consequence of MVCC design in PostgreSQL. It is
caused mainly by updates, as we must retain both the old and new updates for a certain
period of time.

Bloating results in increased disk consumption, as well as performance loss—if a table is
twice as big as it should be, scanning it takes twice as long. VACUUM is one of the best ways
of removing bloat.

Many users execute VACUUM far too frequently, while at the same time complaining about
the cost of doing so. This recipe is all about understanding when you need to
run VACUUM by estimating the amount of bloat in tables and indexes.

Getting ready
MVCC is a core part of PostgreSQL and cannot be turned off, nor would you really want it
to be. The internals of MVCC have some implications for the DBA that need to be
understood: each row represents a row version, and therefore it has two system
columns, xmin and xmax, indicating the identifiers of the two transactions when the version
was created and deleted, respectively. The value of xmax is NULL if that version has not
been deleted yet.

The general idea is that, instead of actually removing row versions, we alter their visibility
by changing their xmin and/or xmax values. To be more precise, when a row is inserted,
its xmin value is set to the number of the creating transaction, while xmax is emptied; when
a row is deleted, xmax is set to the number of the deleting transaction, without actually
removing the row. An UPDATE operation is treated exactly like
a DELETE operation, followed by INSERT; the deleted row represents the older version, and
the row inserted is the newer version. Finally, when rolling back a transaction, all of its
changes are made invisible by marking that transaction ID as aborted.

Regular Maintenance Chapter 9

[366]

In this way, we get faster DELETE, UPDATE, and ROLLBACK statements, but the price of these
benefits is that the SQL UPDATE command can cause tables and indexes to grow in size,
because they leave behind dead row versions. The DELETE and aborted INSERT statements
take up space, which must be reclaimed by garbage collection. VACUUM is the mechanism by
which we reclaim space, though there is another internal feature named Heap-Only
Tuples (HOT), which does much of this work for us automatically.

How to do it…
The best way to understand things is to look at things the same way that autovacuum does,
by using a view that's been created with the following query:

CREATE OR REPLACE VIEW av_needed AS
SELECT N.nspname, C.relname
, pg_stat_get_tuples_inserted(C.oid) AS n_tup_ins
, pg_stat_get_tuples_updated(C.oid) AS n_tup_upd
, pg_stat_get_tuples_deleted(C.oid) AS n_tup_del
, CASE WHEN pg_stat_get_tuples_updated(C.oid) > 0
 THEN pg_stat_get_tuples_hot_updated(C.oid)::real
 / pg_stat_get_tuples_updated(C.oid)
 END
 AS HOT_update_ratio
, pg_stat_get_live_tuples(C.oid) AS n_live_tup
, pg_stat_get_dead_tuples(C.oid) AS n_dead_tup
, C.reltuples AS reltuples
, round(COALESCE(threshold.custom,
current_setting('autovacuum_vacuum_threshold'))::integer
 + COALESCE(scale_factor.custom,
current_setting('autovacuum_vacuum_scale_factor'))::numeric
 * C.reltuples)
 AS av_threshold
, date_trunc('minute',
 greatest(pg_stat_get_last_vacuum_time(C.oid),
 pg_stat_get_last_autovacuum_time(C.oid)))
 AS last_vacuum
, date_trunc('minute',
 greatest(pg_stat_get_last_analyze_time(C.oid),
 pg_stat_get_last_analyze_time(C.oid)))
 AS last_analyze
, pg_stat_get_dead_tuples(C.oid) >
 round(current_setting('autovacuum_vacuum_threshold')::integer
 + current_setting('autovacuum_vacuum_scale_factor')::numeric
 * C.reltuples)
 AS av_needed
, CASE WHEN reltuples > 0

Regular Maintenance Chapter 9

[367]

 THEN round(100.0 * pg_stat_get_dead_tuples(C.oid) / reltuples)
 ELSE 0 END
 AS pct_dead
FROM pg_class C
LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
NATURAL LEFT JOIN LATERAL (
 SELECT (regexp_match(unnest,'^[^=]+=(.+)$'))[1]
 FROM unnest(reloptions)
 WHERE unnest ~ '^autovacuum_vacuum_threshold='
) AS threshold(custom)
 NATURAL LEFT JOIN LATERAL (
 SELECT (regexp_match(unnest,'^[^=]+=(.+)$'))[1]
 FROM unnest(reloptions)
 WHERE unnest ~ '^autovacuum_vacuum_scale_factor='
) AS scale_factor(custom)
WHERE C.relkind IN ('r', 't', 'm')
 AND N.nspname NOT IN ('pg_catalog', 'information_schema')
 AND N.nspname NOT LIKE 'pg_toast%'
ORDER BY av_needed DESC, n_dead_tup DESC;

We can then use this to look at individual tables, as follows:

postgres=# \x
postgres=# SELECT * FROM av_needed WHERE nspname = 'public' AND relname =
'pgbench_accounts';

We get the following output:

-[RECORD 1]----+------------------------
nspname | public
relname | pgbench_accounts
n_tup_ins | 100001
n_tup_upd | 117201
n_tup_del | 1
hot_update_ratio | 0.123454578032611
n_live_tup | 100000
n_dead_tup | 0
reltuples | 100000
av_threshold | 20050
last_vacuum | 2010-04-29 01:33:00+01
last_analyze | 2010-04-28 15:21:00+01
av_needed | f
pct_dead | 0

Regular Maintenance Chapter 9

[368]

How it works…
We can compare the number of dead row versions, shown as n_dead_tup, against the
required threshold, av_threshold.

The preceding query doesn't take into account table-specific autovacuum thresholds. It
could do so if you really need it, but the main purpose of the query is to give us
information to understand what is happening, and then set the parameters
accordingly—not the other way around.

Notice that the table query shows insertions, updates, and deletions so that you can
understand your workload better. There is also something named the hot_update_ratio.
This shows the fraction of updates that take advantage of the HOT feature, which allows a
table to self-vacuum as the table changes. If that ratio is high, then you may avoid VACUUM
activities altogether or at least for long periods. If the ratio is low, then you will need to
execute VACUUM commands or autovacuums more frequently. Note that the ratio never
reaches 1.0, so if you have it above 0.95, then that is very good and you need not think
about it further.

HOT updates take place when the UPDATE statement does not change any of the column
values that are indexed by any index, and there is enough free space in the disk page where
the updated row is located. If you change even one column that is indexed by just one
index, then it will be a non-HOT update, and there will be a performance hit. So, careful
selection of indexes can improve update performance and reduce the need for maintenance.
Also, if HOT updates do occur, though not often enough for your liking, you might want to
try to decrease the fillfactor storage parameter for the table to make more space for
them. Remember that this will be important only on your most active tables. Seldom
touched tables don't need much tuning.

To recap, non-HOT updates cause indexes to bloat. The following query is useful in
investigating the index size and how it changes over time. It runs fairly quickly, and can be
used to monitor whether your indexes are changing in size over time:

SELECT
nspname,relname,
round(100 * pg_relation_size(indexrelid) /
 pg_relation_size(indrelid)) / 100
 AS index_ratio,
 pg_size_pretty(pg_relation_size(indexrelid))
 AS index_size,
 pg_size_pretty(pg_relation_size(indrelid))
 AS table_size
FROM pg_index I
LEFT JOIN pg_class C ON (C.oid = I.indexrelid)

Regular Maintenance Chapter 9

[369]

LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
WHERE
 nspname NOT IN ('pg_catalog', 'information_schema', 'pg_toast') AND
 C.relkind='i' AND
 pg_relation_size(indrelid) > 0;

Another route is to use the pgstattuple contrib module, which provides very detailed
statistics. You can scan tables using pgstattuple(), as follows:

test=> SELECT * FROM pgstattuple('pg_catalog.pg_proc');

The output will look like as follows:

-[RECORD 1]------+-------
table_len | 458752
tuple_count | 1470
tuple_len | 438896
tuple_percent | 95.67
dead_tuple_count | 11
dead_tuple_len | 3157
dead_tuple_percent | 0.69
free_space | 8932
free_percent | 1.95

The downside of pgstattuple is that it derives exact statistics by scanning the whole table
and literally counting everything. If you have time to scan the table, you may as well
vacuum the whole table anyway. So, a better idea is to use pgstattuple_approx(),
which is much, much faster, and yet is still fairly accurate. It works by accessing the table's
visibility map first and then only scanning the pages that need VACUUM, so I recommend
that you use it in all cases for checking tables (there is no equivalent for indexes):

postgres=# select * from pgstattuple_approx('pgbench_accounts');
-[RECORD 1]--------+-----------------
table_len | 268591104
scanned_percent | 0
approx_tuple_count | 1001738
approx_tuple_len | 137442656
approx_tuple_percent | 51.1717082037088
dead_tuple_count | 0
dead_tuple_len | 0
dead_tuple_percent | 0
approx_free_space | 131148448
approx_free_percent | 48.8282917962912

Regular Maintenance Chapter 9

[370]

You can also scan indexes using pgstatindex(), as follows:

postgres=> SELECT * FROM pgstatindex('pg_cast_oid_index');
-[RECORD 1]------+------
version | 2
tree_level | 0
index_size | 8192
root_block_no | 1
internal_pages | 0
leaf_pages | 1
empty_pages | 0
deleted_pages | 0
avg_leaf_density | 50.27
leaf_fragmentation | 0

There's more…
You may want to set up monitoring for the bloated tables and indexes. Look at the Nagios
plugin called check_postgres_bloat, which is a part of the check_postgres plugins.

It provides some flexible options to assess bloat. Unfortunately, it's not that well-
documented, but if you've read this, it should make sense. You'll need to play with it to get
the thresholding correct anyway, so that shouldn't be a problem.

Also, note that the only way to know for certain the exact bloat of a table or index is to scan
the whole relation. Anything else is just an estimate and might lead to you running
maintenance either too early or too late.

Monitoring and tuning a vacuum
If you're currently waiting for a long-running vacuum (or autovacuum) to finish, go
straight to the How to do it... section.

If you've just had a long-running vacuum complete, then you may want to think about
setting a few parameters.

Getting ready
autovacuum_max_workers should always be set to more than 2. Setting it too high may
not be very useful, and so you need to be careful.

Regular Maintenance Chapter 9

[371]

Setting vacuum_cost_delay too high is counterproductive. VACUUM is your friend, not
your enemy, so delaying it until it doesn't happen at all just makes things worse.

maintenance_work_mem should be set to anything up to 1 GB, according to how much
memory you can allocate to this task at this time.

Let's watch what happens when we run a large VACUUM. Don't run VACUUM FULL, because
it runs for a long time while holding an AccessExclusiveLock on the table.

First, locate which process is running the VACUUM by using the pg_stat_activity view to
identify the specific pid (34399 is just an example).

How to do it…
Repeatedly execute the following query to see the progress of the VACUUM command:

postgres=# SELECT * FROM pg_stat_progress_vacuum WHERE pid = 34399;

How it works…
VACUUM works in three phases:

The first main phase is scanning heap. The heap_blks_scanned columns will
increase from 0 up to the value of heap_blks_total. The number of blocks
vacuumed is shown as heap_blks_vacuumed, and the resulting rows to be
removed are shown as num_dead_tuples:

Pid | 34399
datid | 12515
datname | postgres
relid | 16422
phase | scanning heap
heap_blks_total | 32787
heap_blks_scanned | 25207
heap_blks_vacuumed | 0
index_vacuum_count | 0
max_dead_tuples | 9541017
num_dead_tuples | 537600

Regular Maintenance Chapter 9

[372]

After this, we switch to the second phase, where we start vacuuming indexes. In
PostgreSQL 11, it's possible that we can skip scanning the indexes altogether, so
you may find that VACUUM is faster in this release. You can control whether
indexes are vacuumed by setting
the vacuum_cleanup_index_scale_factor parameter, which can also be set
at table-level if needed. The default value seems good in this instance.

While this phase is happening, the progress data doesn't change until it has
vacuumed all of the indexes. This phase can take a long time; more indexes
increase the time that is required. PostgreSQL 11 will skip index vacuum in some
cases, so expect some vacuums to run quickly and others to run for longer:

Pid | 34399
datid | 12515
datname | postgres
relid | 16422
phase | vacuuming indexes
heap_blks_total | 32787
heap_blks_scanned | 32787
heap_blks_vacuumed | 0
index_vacuum_count | 0
max_dead_tuples | 9541017
num_dead_tuples | 999966

Once the indexes have been vacuumed, we move onto the third phase, where we
return to the vacuuming heap. The value of max_dead_tuples is defined by the
setting of maintenance_work_mem. PostgreSQL makes space for the largest
meaningful number of entries allowed by that setting.
If num_dead_tuples reaches the limit of max_dead_tuples, then we repeat
phases two and three until complete. Each iteration will
increment index_vacuum_count. It's a good idea to
set maintenance_work_mem high enough to avoid multiple iterations:

Pid | 34399
datid | 12515
datname | postgres
relid | 16422
phase | vacuuming heap
heap_blks_total | 32787
heap_blks_scanned | 32787
heap_blks_vacuumed | 25051
index_vacuum_count | 1
max_dead_tuples | 9541017
num_dead_tuples | 999966

Regular Maintenance Chapter 9

[373]

VACUUM moves through various other fairly short phases. If there are many empty blocks at
the end of the table, VACUUM will attempt to get AccessExclusiveLock on the table, and
once acquired, it will truncate the end of the table, showing a phase of truncating heap.
Truncation does not occur every time, because PostgreSQL will attempt it only if the gain is
significant and if there's no conflicting lock; if it does, it can often last a long time.

All phases of VACUUM will be slowed down by vacuum_cost_delay, but there's nothing
you can do there to speed it up.

If you need to change the settings to speed up a running process, then autovacuum will
pick up any new default settings when you reload the postgresql.conf file.

There's more…
VACUUM doesn't run in parallel on a single table.

If you want to run multiple VACUUMs at once, you can do it like so, for example, by
running four vacuums at once to scan all databases:

$ vacuumdb --jobs=4 --all

If you run multiple VACUUM at once, you'll use more memory and I/O, so be careful. The
exact calculation is complex, especially if you have tables with custom VACUUM settings, but
the general idea is that I/O can be slowed down by raising vacuum_cost_delay or
lowering vacuum_cost_limit.

Maintaining indexes
Indexes can become a problem in many database applications that involve a high
proportion of INSERT/DELETE commands. Just as tables can become bloated, so can
indexes.

In the Identifying and fixing bloated tables and indexes recipe, you saw that non-HOT updates
can cause bloated indexes.
Non-primary key indexes are also prone to some bloat from normal INSERT commands, as
is common in most relational databases.

Autovacuum does not detect bloated indexes, nor does it do anything to rebuild indexes.
Therefore, we need to look at other ways to maintain indexes.

Regular Maintenance Chapter 9

[374]

Getting ready
PostgreSQL supports commands that will rebuild indexes for you. The client utility,
reindexdb, allows you to execute the REINDEX command in a convenient way from the
operating system:

$ reindexdb

This executes the SQL REINDEX command on every table in the default database. If you
want to reindex all databases, then use the following command:

$ reindexdb -a

That's what the manual says, anyway. My experience is that most indexes don't need
rebuilding, and even if they do, REINDEX puts a full-table lock (AccessExclusiveLock) on
the table while it runs. That locks your database for possibly hours, and I advise that you
think about not doing that.

Try these steps instead:

First, let's create a test table with two indexes—a primary key and an additional1.
index—as follows:

DROP TABLE IF EXISTS test; CREATE TABLE test
(id INTEGER PRIMARY KEY
,category TEXT
, value TEXT);
CREATE INDEX ON test (category);

Now, let's look at the internal identifier of the tables, oid, and the current file2.
number (relfilenodes), as follows:

 SELECT oid, relname, relfilenode
 FROM pg_class
 WHERE oid in (SELECT indexrelid
 FROM pg_index
 WHERE indrelid = 'test'::regclass);
 oid | relname | relfilenode
 -------+-------------------+-------------
 16639 | test_pkey | 16639
 16641 | test_category_idx | 16641
 (2 rows)

Regular Maintenance Chapter 9

[375]

How to do it…
PostgreSQL supports a command known as CREATE INDEX CONCURRENTLY, which builds
an index without taking a full table lock. PostgreSQL also supports the ability to have two
indexes, with different names, that have exactly the same definition. So, the trick is to build
another index identical to the one you wish to rebuild, drop the old index, and then rename
the new index to the same name as the old index. Et voilà, fresh index, and no locking! Let's
see that in slow motion:

CREATE INDEX CONCURRENTLY new_index
 ON test (category);
BEGIN;
DROP INDEX test_category_idx;
ALTER INDEX new_index RENAME TO test_category_idx;
COMMIT;

When we check our internal identifiers again, we get the following:

SELECT oid, relname, relfilenode
FROM pg_class
WHERE oid in (SELECT indexrelid
 FROM pg_index
 WHERE indrelid = 'test'::regclass);
 oid | relname | relfilenode
-------+-------------------+-------------
 16639 | test_pkey | 16639
 16642 | test_category_idx | 16642
(2 rows)

We can see that test_category_idx is now a completely new index.

This seems pretty good, and it works on primary keys too, but in a slightly complex
way—you need to create a new index using UNIQUE and CONCURRENTLY, and then issue
this to make it a primary key:

ALTER TABLE ... ADD PRIMARY KEY USING INDEX ...

This is not optimal yet, because a primary key could be the target of one or more foreign
keys. In that case, we need to drop and recreate the foreign keys, which unfortunately has
no CONCURRENTLY variant. The next recipe, Adding a constraint without checking existing rows,
is a recommended read.

Regular Maintenance Chapter 9

[376]

How it works…
The CREATE INDEX CONCURRENTLY statement allows INSERT, UPDATE, and DELETE
commands while the index is being created. It cannot be executed inside another
transaction, and only one index per table can be created concurrently at any time.

Swapping the indexes is easy and doesn't use any trickery.

There's more…
CREATE INDEX for B-tree indexes can be run in parallel for PostgreSQL 11. The amount of
parallelism will be directly controlled by the setting of a table's parallel_workers
parameter. Be careful, since setting this at the table level affects all queries, not just the
index build/rebuild. If the table-level parameter is not set, then the
maintenance_work_mem and max_parallel_maintenance_workers parameters will
determine how many workers will be used; the default is 64 MB
for maintenance_work_mem and 2 MB
for max_parallel_maintenance_workers—increase both to get further gains in
performance and/or concurrency. Note that these workers are shared across all users, so be
careful not to over-allocate jobs, otherwise there won't be enough workers to let everybody
run in parallel.

If you are fairly new to database systems, you might think rebuilding indexes for
performance is something that only PostgreSQL needs to do. Other DBMSs require this as
well —they just don't say so.

Indexes are designed for performance, and in all databases, deleting index entries causes
contention and loss of performance. PostgreSQL does not remove index entries for a row
when that row is deleted, so an index can be filled with dead entries. PostgreSQL attempts
to remove dead entries when a block becomes full, but that doesn't stop a small number of
dead entries from accumulating in many data blocks.

At the time of writing, no REINDEX CONCURRENTLY command has been added to
PostgreSQL yet.

Regular Maintenance Chapter 9

[377]

Adding a constraint without checking
existing rows
A table constraint is a guarantee that must be satisfied by all of the rows in the table.
Therefore, adding a constraint to a table is a two-phase procedure—first, the constraint is
created, and then all of the existing rows are checked. Both happen in the same transaction,
and the table cannot be accessed in the meantime. The constraint becomes visible after the
check, yielding perfect consistency, which is usually the desired behavior, but it's at the
expense of availability, which is not that great.

This recipe demonstrates another case—how to enforce a constraint on future transactions
only, without checking existing rows. This may be desirable in some specific cases, such as
the following:

Enabling the constraint on newer rows of a large table that cannot remain
unavailable for a long time
Enforcing the constraint on newer rows, while keeping older rows that are
known to violate the constraint

The constraint is marked as NOT VALID to make it clear that it does not exclude violations,
unlike ordinary constraints.

As we will see, it is possible to validate the constraint at a later time, for example, when
allowed by the workload or business continuity requirements. All existing rows will be
checked, and then the NOT VALID mark will be removed from the constraint. Conversely,
the constraint will never be validated, and its only purpose will be to prevent further
violations by rejecting incompatible transactions.

Getting ready
We'll start this recipe by creating two tables with a few test rows:

postgres=# CREATE TABLE ft(fk int PRIMARY KEY, fs text);
CREATE TABLE
postgres=# CREATE TABLE pt(pk int, ps text);
CREATE TABLE
postgres=# INSERT INTO ft(fk,fs) VALUES (1,'one'), (2,'two');
INSERT 0 2
postgres=# INSERT INTO pt(pk,ps) VALUES (1,'I'), (2,'II'), (3,'III');
INSERT 0 3

Regular Maintenance Chapter 9

[378]

How to do it…
We have inserted inconsistent data on purpose so that any attempt to check existing rows
will be revealed by an error message.

If we attempt to create an ordinary foreign key, we get an error, since the number 3 does
not appear in the ft table:

postgres=# ALTER TABLE pt ADD CONSTRAINT pc FOREIGN KEY (pk) REFERENCES
ft(fk);
ERROR: insert or update on table "pt" violates foreign key constraint
pc"
DETAIL: Key (pk)=(3) is not present in table "ft".

However, the same constraint can be successfully created as NOT VALID:

postgres=# ALTER TABLE pt ADD CONSTRAINT pc FOREIGN KEY (pk) REFERENCES
ft(fk) NOT VALID;
ALTER TABLE

postgres=# \d pt
 Table "public.pt"
 Column | Type | Modifiers
--------+---------+-----------
 pk | integer |
 ps | text |
Foreign-key constraints:
 "pc" FOREIGN KEY (pk) REFERENCES ft(fk) NOT VALID

Note that the invalid state of the foreign key is mentioned by psql.

The violation is detected when we try to transform the NOT VALID constraint into a valid
one:

postgres=# ALTER TABLE pt VALIDATE CONSTRAINT pc;
ERROR: insert or update on table "pt" violates foreign key constraint
pc"
DETAIL: Key (pk)=(3) is not present in table "ft".

Regular Maintenance Chapter 9

[379]

Validation becomes possible after removing the inconsistency, and the foreign key is
upgraded to an ordinary one:

postgres=# DELETE FROM pt WHERE pk = 3;
DELETE 1
postgres=#
ALTER TABLE
postgres=# \d pt
 Table "public.pt"
 Column | Type | Modifiers
--------+---------+-----------
 pk | integer |
 ps | text |
Foreign-key constraints:
 "pc" FOREIGN KEY (pk) REFERENCES ft(fk)

How it works…
ALTER TABLE ... ADD CONSTRAINT.. NOT VALID uses ShareRowExclusiveLock,
which blocks writes, and VACUUM, yet allows reads on the table to continue. The ALTER
TABLE ... VALIDATE CONSTRAINT command executes using
ShareUpdateExclusiveLock, which allows both reads and writes on the table, yet blocks
DDL and VACUUM while it scans the table.

PostgreSQL takes SQL locks according to the ISO standard, that is, locks are taken during
the transaction and then released at its end. This means that algorithms like this one, where
there is a short activity requiring stronger locks, followed by a longer activity that needs
only lighter locks, cannot be implemented as a single command.

Finding unused indexes
Selecting the correct set of indexes for a workload is known to be a hard problem. It usually
involves trial and error by developers and DBAs to get a good mix of indexes.

Tools for identifying slow queries exist and many SELECT statements can be improved by
the addition of an index.

What many people forget is to check whether the mix of indexes remains valuable over
time, which is something for the DBA to investigate and optimize.

Regular Maintenance Chapter 9

[380]

How to do it…
PostgreSQL keeps track of each access against an index. We can view that information and
use it to see whether an index is unused, as follows:

postgres=# SELECT schemaname, relname, indexrelname, idx_scan FROM
pg_stat_user_indexes ORDER BY idx_scan;
 schemaname | indexrelname | idx_scan
------------+--------------------------+----------
 public | pgbench_accounts_bid_idx | 0
 public | pgbench_branches_pkey | 14575
 public | pgbench_tellers_pkey | 15350
 public | pgbench_accounts_pkey | 114400
(4 rows)

As we can see in the preceding code, there is one index that is totally unused, alongside
others that have some usage. You now need to decide whether unused means that you
should remove the index. That is a more complex question, and we first need to explain
how it works.

How it works…
The PostgreSQL statistics accumulate various pieces of useful information. These statistics
can be reset to zero using an administrator function. Also, as the data accumulates over
time, we usually find that objects that have been there for longer periods of time have
higher apparent usage. So, if we see a low number for idx_scan, then it might be that the
index was newly created (as was the case in my preceding demonstration), or that the index
is only used by a part of the application that runs only at certain times of the day, week,
month, and so on.

Another important consideration is that the index may be a unique constraint index that
exists specifically to safeguard against duplicate INSERT commands. An INSERT operation
does not show up as idx_scan, even if the index was actually used while checking the
uniqueness of the newly inserted values, whereas UPDATE or DELETE might show up
because they have to locate the row first. So, a table that only has INSERT commands
against it will appear to have unused indexes.

Regular Maintenance Chapter 9

[381]

Here is an updated version of the preceding query, which excludes unique constraint
indexes:

SELECT schemaname
 , relname
 , indexrelname
 , idx_scan
 FROM pg_stat_user_indexes i
 LEFT JOIN pg_constraint c
 ON i.indrelid = c.conindid
 WHERE c.contype IS NULL;

Also, some indexes that show usage might be showing usage that was historical, and there
is no further usage. Or it might be the case that some queries use an index where they could
just as easily and almost as cheaply use an alternative index. Those things are for you to
explore and understand before you take action. A very common approach is to regularly
monitor such numbers in order to gain knowledge by examining their evolution over time
on both the master database and on any replicated hot standby nodes.

In the end, you may decide from this that you want to remove an index. If only there was a
way to try removing an index and then put it back again quickly, in case you cause
problems! Rebuilding an index might take hours on a big table, so these decisions can be a
little scary. No worries! Just follow the next recipe, Carefully removing unwanted indexes.

Carefully removing unwanted indexes
Carefully removing? You mean press Enter gently after typing DROP INDEX? Err, no!

The reasoning is that it takes a long time to build an index and a short time to drop it.

What we want is a way of removing an index so that if we discover that removing it was a
mistake, we can put the index back again quickly.

Getting ready
The following query will list all invalid indexes, if any:

SELECT ir.relname AS indexname
, it.relname AS tablename
, n.nspname AS schemaname
FROM pg_index i
JOIN pg_class ir ON ir.oid = i.indexrelid
JOIN pg_class it ON it.oid = i.indrelid

Regular Maintenance Chapter 9

[382]

JOIN pg_namespace n ON n.oid = it.relnamespace
WHERE NOT i.indisvalid;

Take note of these indexes, so that later you can tell whether a given index is invalid
because we marked it as invalid during this recipe, in which case it can safely be marked as
valid, or because it was already invalid for other reasons.

How to do it…
Here, we will describe a procedure that allows us to deactivate an index without actually
dropping it so that we can appreciate what its contribution was and possibly reactivate it:

First, create the following function:1.

CREATE OR REPLACE FUNCTION trial_drop_index(iname TEXT)
RETURNS VOID
LANGUAGE SQL AS $$ UPDATE pg_index
SET indisvalid = false
WHERE indexrelid = $1::regclass;
$$;

Then, run it to do a trial of dropping the index.2.
If you experience performance issues after dropping the index, then use the3.
following function to undrop the index:

CREATE OR REPLACE FUNCTION trial_undrop_index(iname TEXT)
RETURNS VOID
LANGUAGE SQL AS
$$ UPDATE pg_index
SET indisvalid = true
WHERE indexrelid = $1::regclass;
$$;

Be careful to avoid undropping any index that was detected by the query
in the Getting Ready section; if it wasn't marked as invalid when applying
this recipe, then it may be unusable because it really isn't valid.

Regular Maintenance Chapter 9

[383]

How it works…
This recipe also uses some inside knowledge. When we create an index using CREATE
INDEX CONCURRENTLY, it is a two-stage process. The first phase builds the index and then
marks it invalid. INSERT, UPDATE, and DELETE statements now begin maintaining the
index, but we perform a further pass over the table to see if we missed anything, before
declaring the index valid. User queries don't use the index until it says that it is valid.

Once the index is built and the valid flag is set, if we set the flag to invalid, the index will
still be maintained. It's just that it will not be used by queries. This allows us to turn the
index off quickly, though with the option to turn it on again if we realize that we actually
do need the index after all. This makes it practical to test whether dropping the index will
alter the performance of any of your most important queries.

Planning maintenance
Monitoring systems are not a substitute for good planning. They alert you to unplanned
situations that need attention. The more unplanned things you respond to, the greater the
chance that you will need to respond to multiple emergencies at once. And when that
happens, something will break. Ultimately, that is your fault. If you wish to take your
responsibilities seriously, you should plan ahead.

How to do it…
This recipe is about planning, so we'll provide discussion points rather than portions of
code. We'll cover the main points that should be addressed and provide a list of points as
food for thought, around which the actual implementation should be built:

Let's break a rule: If you don't have a backup, take one now. I mean now—go on,
off you go! Then, let's talk some more about planning maintenance. If you
already do, well done! It's hard to keep your job as a DBA if you lose data
because of missing backups, especially today, when everybody's grandmother
knows to keep their photos backed up.
First, plan your time: Decide a regular date on which to perform certain actions.
Don't allow yourself to be a puppet of your monitoring system, running up and
down every time the lights change. If you keep getting dragged off on other
assignments, then you must understand that you need to get a good handle on
the database maintenance to make sure that it doesn't bite you.

Regular Maintenance Chapter 9

[384]

Don't be scared: It's easy to worry about what you don't know, and either
overreact or underreact. Your database probably doesn't need to be inspected
daily, but it's never bad practice.

How it works…
Build a regular cycle of activity around the following tasks:

Capacity planning: Observe long-term trends in system performance and keep
track of the growth of database volumes. Plan to schedule any new data feeds
and new projects that increase the rates of change. This is best done monthly so
that you can monitor what has happened and what will happen.
Backups, recovery testing, and emergency planning: Organize regular reviews
of written plans and test scripts. Check the tape rotation, confirm that you still
have the password to the off-site backups, and so on. Some sysadmins run a test
recovery every night so that they always know that successful recovery is
possible.
Vacuum and index maintenance: Do this to reduce bloat, as well as collecting
optimizer statistics through the ANALYZE command. Also, regularly check index
usage and drop unused indexes. Consider VACUUM again, with the need to
manage the less frequent freezing process. This is listed as a separate task so that
you don't ignore this and let it bite you later!
Server log file analysis: How many times has the server restarted? Are you sure
you know about each incident?
Security and intrusion detection: Has your database already been hacked? What
did they do?
Understanding usage patterns: If you don't know much about what your
database is used for, then I'll wager it is not very well-tuned or maintained.
Long-term performance analysis: It's a common occurrence for me to get asked
to come and tune a system that is slow. Often, what happens is that a database
server gets slower over a very long period. Nobody ever noticed any particular
day when it got slow—it just got slower over time. Keeping records of response
times over time can help to confirm whether everything is as good now as it was
months or years earlier. This activity is where you might reconsider current
index choices.

Many of these activities are mentioned in this chapter or throughout the rest of this
cookbook. Some are not because they aren't very technical, but more about planning and
understanding your environment.

Regular Maintenance Chapter 9

[385]

There's more…
You might also find time to consider the following:

Data quality: Are the contents of the database accurate and meaningful? Could
the data be enhanced?
Business intelligence: Is the data being used for everything that can bring value
to the organization?

10
Performance and Concurrency

Performance and concurrency are two problems that are often tightly coupled—when
concurrency problems are encountered, performance usually degrades, and
in some cases, a lot. If you take care of concurrency problems, you will achieve
better performance.

In this chapter, we will show you how to find slow queries and how to find queries that
make other queries slow.

Performance tuning, unfortunately, is still not an exact science, so you may also encounter a
performance problem that's not covered by any of the given methods.

We will also show you how to get help in the final recipe, Reporting performance problems, in
case none of the other recipes that are covered here work.

In this chapter, we will cover the following recipes:

Finding slow SQL statements
Finding out what makes SQL slow
Collecting regular statistics from pg_stat* views
Reducing the number of rows returned
Simplifying complex SQL queries
Speeding up queries without rewriting them
Discovering why a query is not using an index
Forcing a query to use an index
Using parallel query
Creating time series tables
Using optimistic locking
Reporting performance problems

Performance and Concurrency Chapter 10

[387]

Finding slow SQL statements
There are two main kinds of slowness that can manifest themselves in a database.

The first kind is a single query that can be too slow to be really usable, such as a customer
information query in a CRM running for minutes, a password check query running in tens
of seconds, or a daily data aggregation query running for more than a day. These can be
found by logging queries that take over a certain amount of time, either at the client end or
in the database.

The second kind is a query that is run frequently (say a few thousand times a second) and
used to run in single-digit milliseconds, but is now running in several tens or even
hundreds of milliseconds, hence slowing the system down. This kind of slowness is much
harder to find.

Here, we will show you several ways to find the statements that are either slow or cause the
database as a whole to slow down (although they are not slow by themselves).

Getting ready
Connect to the database as the user whose statements you want to investigate or as a
superuser to investigate all users' queries.

Check that you have the pg_stat_statements extension installed:

 postgres=# \x
 postgres=# \dx pg_stat_statements

The following is a list of our installed extensions:

-[RECORD 1]--
Name | pg_stat_statements
Version | 1.4
Schema | public
Description | track execution statistics of all SQL statements executed

If you can't see them, then issue the following command:

postgres=# CREATE EXTENSION pg_stat_statements;
postgres=# ALTER SYSTEM
 SET shared_preload_libraries = 'pg_stat_statements';

Then, restart the server, or refer to the Using an installed module and Managing installed
extensions recipes from Chapter 3, Configuration, for more details.

Performance and Concurrency Chapter 10

[388]

How to do it…
Run this query to look at the top ten highest workloads on your server side:

postgres=# SELECT calls, total_time, query FROM pg_stat_statements
 ORDER BY total_time DESC LIMIT 10;

The output is ordered by total_time, so it doesn't matter whether it was a single query or
thousands of smaller queries.

There are many additional columns that are useful in tracking down further information
about particular entries:

postgres=# \d pg_stat_statements
 View "public.pg_stat_statements"
 Column | Type | Modifiers
---------------------+------------------+-----------
 userid | oid |
 dbid | oid |
 queryid | bigint |
 query | text |
 calls | bigint |
 total_time | double precision |
 min_time | double precision |
 max_time | double precision |
 mean_time | double precision |
 stddev_time | double precision |
 rows | bigint |
 shared_blks_hit | bigint |
 shared_blks_read | bigint |
 shared_blks_dirtied | bigint |
 shared_blks_written | bigint |
 local_blks_hit | bigint |
 local_blks_read | bigint |
 local_blks_dirtied | bigint |
 local_blks_written | bigint |
 temp_blks_read | bigint |
 temp_blks_written | bigint |
 blk_read_time | double precision |
 blk_write_time | double precision |

Performance and Concurrency Chapter 10

[389]

How it works…
pg_stat_statements collects data on all running queries by accumulating data in
memory, producing minimal overheads.

Similar SQL statements are normalized so that the constants and parameters that are used
for execution are removed. This allows you to see all similar SQL statements in one line of
the report, rather than seeing thousands of lines, which would be fairly useless. While
useful, it can sometimes mean that it's hard to work out which parameter values are
actually causing the problem.

There's more…
Another way to find slow queries is to set up PostgreSQL to log them all. So, if you decide
to monitor a query that takes over 10 seconds, then set up logging queries over 10 seconds
by executing the following command:

postgres=# ALTER SYSTEM
 SET log_min_duration_statement = 10000;

Remember that the duration is in milliseconds. After doing this, reload PostgreSQL. All
queries that are slow enough to exceed the threshold will be logged.

The PostgreSQL log files are usually located together with other log files; for example, on
Debian/Ubuntu Linux, they are in the /var/log/postgresql/ directory.

You can also log every query, though that can often swamp the log files and cause
performance problems itself and so is hardly ever recommend.

Query logging will show the parameters that are being used for the slow query, even when
pg_stat_statements does not.

Finding out what makes SQL slow
A SQL statement can be slow for a lot of reasons. Here, we will give a short list of these
reasons, with at least one way of recognizing each.

Performance and Concurrency Chapter 10

[390]

Getting ready
If the SQL statement is still running, look at Chapter 8, Monitoring and Diagnosis.

How to do it…
The core issues are likely to be the following:

You're asking it to do too much work
Something is stopping it from doing the work

This might not sound that helpful at first, but it's good to know that there's nothing really
magical going on that you can't understand if you look.

In more detail, the main reasons are as follows:

Returning too much data
Processing too much data index needed
Wrong plan for other reasons
Cache or I/O problems
Locking problems

The first reason can be handled as described in the Reducing the number of rows returned
recipe. The rest of the preceding reasons can be investigated from two perspectives: the
SQL itself and the objects that the SQL touches. Let's start by looking at the SQL itself by
running the query with EXPLAIN ANALYZE. We're going to use the optional form, as
follows:

postgres=# EXPLAIN (ANALYZE, BUFFERS) ...SQL...

The EXPLAIN command provides output to describe the execution plan of the SQL,
showing access paths and costs (in abstract units). The ANALYZE option causes the
statement to be executed (be careful), with instrumentation to show the number of rows
accessed and the timings for that part of the plan. The BUFFERS option provides
information about the number of database buffers read and the number of buffers that were
hit in the cache. Taken together, we have everything we need to diagnose whether the SQL
performance is slow in the preceding last three reasons:

postgres=# EXPLAIN (ANALYZE, BUFFERS) SELECT count(*) FROM t;
 QUERY PLAN
--
 Aggregate (cost=4427.27..4427.28 rows=1 width=0) \

Performance and Concurrency Chapter 10

[391]

 (actual time=32.953..32.954 rows=1 loops=1)
 Buffers: shared hit=X read=Y
 -> Seq Scan on t (cost=0.00..4425.01 rows=901 width=0) \
 (actual time=30.350..31.646 rows=901 loops=1)
 Buffers: shared hit=X read=Y
 Planning time: 0.045 ms
 Execution time: 33.128 ms
(6 rows)

Let's use this technique to look at an SQL statement that would benefit from an index.

For example, if you want to get the three latest rows in a one million row table, run the
following query:

SELECT * FROM events ORDER BY id DESC LIMIT 3;

You can either read through just three rows using an index on the id SERIAL column, or
you can perform a sequential scan of all rows followed by a sort, as shown in the following
snippet. Your choice depends on whether you have a usable index on the field from which
you want to get the top three rows:

postgres=# CREATE TABLE events(id SERIAL);
CREATE TABLE
postgres=# INSERT INTO events SELECT generate_series(1,1000000);
INSERT 0 1000000
postgres=# EXPLAIN (ANALYZE)
 SELECT * FROM events ORDER BY id DESC LIMIT 3;
 QUERY PLAN
--
 Limit (cost=25500.67..25500.68 rows=3 width=4) \
 (actual time=3143.493..3143.502 rows=3 loops=1)
 -> Sort (cost=25500.67..27853.87 rows=941280 width=4)
 (actual time=3143.488..3143.490 rows=3 loops=1)
 Sort Key: id DESC
 Sort Method: top-N heapsort Memory: 25kB
 -> Seq Scan on events
 (cost=0.00..13334.80 rows=941280 width=4)
 (actual time=0.105..1534.418 rows=1000000 loops=1)
 Planning time: 0.331 ms
 Execution time: 3143.584 ms
(10 rows)
postgres=# CREATE INDEX events_id_ndx ON events(id);
CREATE INDEX
postgres=# EXPLAIN (ANALYZE)
 SELECT * FROM events ORDER BY id DESC LIMIT 3;
 QUERY PLAN
--
 Limit (cost=0.00..0.08 rows=3 width=4) (actual

Performance and Concurrency Chapter 10

[392]

 time=0.295..0.311 rows=3 loops=1)
 -> Index Scan Backward using events_id_ndx on events
 (cost=0.00..27717.34 rows=1000000 width=4) (actual
 time=0.289..0.295 rows=3 loops=1)
 Total runtime: 0.364 ms
(3 rows)

This produces a huge difference in query runtime, even when all of the data is in the cache.

If you run the same analysis using EXPLAIN (ANALYZE, BUFFERS) on your production
system, you'll be able to see the cache effects as well. Remember that each new index you
add increases the pressure on the cache, so it is possible to have too many indexes.

You can also look at the statistics for the objects touched by queries, as mentioned in the
Knowing whether anybody is using a specific table recipe from Chapter 8, Monitoring and
Diagnosis. In pg_stat_user_tables, fast growth of seq_tup_read means that there are
lots of sequential scans occurring. The ratio of seq_tup_read to seq_scan shows how
many tuples each seqscan reads. Similarly, the idx_scan and idx_tup_fetch columns
show whether indexes are being used and how effective they are.

There's more…
If not enough of the data fits in the shared buffers, lots of rereading of the same data
happens, causing performance issues. In pg_statio_user_tables, watch the
heap_blks_hit and heap_blks_read fields, or the equivalent ones for index and toast
relations. They give you a fairly good idea of how much of your data is found in
PostgreSQL's shared buffers (heap_blks_hit) and how much had to be fetched from the
disk (heap_blks_read). If you see large numbers of blocks being read from the disk
continuously, you may want to tune those queries; if you determine that the disk reads
were justified, you can make the configured shared_buffers value bigger.

If your shared_buffers parameter is tuned properly and you can't rewrite the query to
perform less block I/O, you might need a beefier computer.

You can find a lot of resources on the web that explain how shared buffers work and how
to set them based on your available hardware and your expected data access patterns. Our
professional advice is to always test your database servers and perform benchmarks before
you deploy them in production. Information on the shared_buffers configuration
parameter can be found at http://www.postgresql.org/docs/11/static/runtime-
config-resource.html.

http://www.postgresql.org/docs/11/static/runtime-config-resource.html
http://www.postgresql.org/docs/11/static/runtime-config-resource.html
http://www.postgresql.org/docs/11/static/runtime-config-resource.html
http://www.postgresql.org/docs/11/static/runtime-config-resource.html

Performance and Concurrency Chapter 10

[393]

Not enough CPU power or disk I/O capacity for the
current load
These issues are usually caused by suboptimal query plans, but sometimes, your computer
is just not powerful enough.

In this case, top is your friend. For quick checks, run the following from the command line:

user@host:~$ top

First, watch the percentage of idle CPU from top. If this is in low single digits most of the
time, you probably have problems with the CPU's power.

If you have a high load average with a lot of CPU idle left, you are probably out of disk
bandwidth. In this case, you should also have lots of Postgres processes in the D status,
meaning that the process is in an uninterruptible state (usually waiting for I/O).

Locking problems
Thanks to its MVCC design, PostgreSQL does not suffer from most locking problems, such
as writers locking out readers or readers locking out writers, but it still has to take locks
when more than one process wants to update the same row. Also, it has to hold the write
lock until the current writer's transaction finishes.

So, if you have a database design where many queries update the same record, you can
have a locking problem.

Refer to the Knowing who is blocking a query recipe of Chapter 8, Monitoring and Diagnosis,
for more detailed information.

To diagnose locking problems retrospectively, use the log_lock_waits parameter to
generate log output for locks that are held for a long time.

EXPLAIN options
Use the FORMAT option to retrieve the output of EXPLAIN in a different format, such as
JSON, XML, and YAML. This could allow us to write programs to manipulate the outputs.

The following command is an example of this:

EXPLAIN (ANALYZE, BUFFERS, FORMAT JSON) SELECT count(*) FROM t;

Performance and Concurrency Chapter 10

[394]

See also
For further information on the syntax of the EXPLAIN SQL command, refer to the
PostgreSQL documentation at http://www.postgresql.org/docs/11/static/sql-
explain.html.

Collect regular statistics from pg_stat*
views
This recipe describes how to collect the statistics that are needed to understand what
is going on in the database system on a regular basis so that they can be used to further
optimize the queries that are slow or are becoming slow as the database changes.

We have included an example extension, called pgstatslog. It can be used to track these
changes. The extension works on PostgreSQL 9.1+.

Look at the Using an installed module and managing installed extensions recipes from Chapter
3, Configuration, for an overview of the extensions infrastructure in PostgreSQL.

Getting ready
Find the pgstatslog directory in the set of files that were distributed with this book.

Find out the directory to place shared files using pg_config --sharedir and then copy
the files to the extension subdirectory of that directory.

Now that the extension has been installed in your PostgreSQL server, it is time to install it
in each database that you want to monitor:

postgres=# CREATE EXTENSION pgstatslog;
CREATE EXTENSION

You can verify that the extension is installed by typing \dx in psql.

http://www.postgresql.org/docs/11/static/sql-explain.html
http://www.postgresql.org/docs/11/static/sql-explain.html
http://www.postgresql.org/docs/11/static/sql-explain.html
http://www.postgresql.org/docs/11/static/sql-explain.html

Performance and Concurrency Chapter 10

[395]

How to do it…
You can collect information by executing the following query for each database that you
intend to monitor:

SELECT collect_deltas();

This will collect the changes in the pg_stat_user_* and pg_statio_user_* tables that
have occurred since the last invocation.

You should probably set up a cron job to run on a regular basis so that you have good
coverage of what happens at what time of the day and week. Running it at an interval of 5
to 15 minutes should usually give you enough temporal resolution to understand what is
going on with your tables.

For example, you can add the following (or a similar variation) to the postgres user's cron
table:

*/5 * * * * /usr/bin/psql -c 'SELECT collect_deltas()' mydbname

How it works…
The collect_deltas() function makes static copies of
the pg_stat_user_tables, pg_statio_user_tables, pg_stat_user_indexes,
and pg_statio_user_indexes tables at each run. It then compares the current copies
with the copies saved at the last run, and saves the timestamped deltas in
the stat_user_tables_delta_log and stat_user_indexes_delta_log log tables.
These tables can then be analyzed later to get insight into access and I/O patterns.

The latest set of deltas is also kept in
the stat_user_tables_delta and stat_user_indexes_delta tables, which can be
used for external monitoring systems, such as Cacti, to get a graphical representation of it.

There's more…
The collect_deltas() function simply appends data to the same tables. This should not
cause performance problems, as the large log tables are without indexes. Thus, insertions in
them are fast, but if you are low on disk space and have many tables, you may want to
introduce a rotation scheme for these tables that throws away older data.

Performance and Concurrency Chapter 10

[396]

In case you experience performance issues with the proposed approach, you might want to
either purge the old data from the *_delta_log tables (and keep a window of the last four
weeks) or use horizontal partitioning.

In the first approach, you can set a weekly cron job that deletes all records that are older
than four weeks from the tables. For this purpose, we have created
the rotate_deltas() function in the pgstatslog extension.

Take some time and investigate the content of the extension—in particular,
the pgstatslog--1.0.sql file. It contains definitions for tables, views, and functions, as
well as usage instructions.

In regards to the second approach, refer to the Creating Time Series tables recipe.

Another statistics collection package
If you are interested in a more powerful way of tracking database statistics over time, I
suggest that you look at pg_statsinfo, an open source package available at http:/ /
pgstatsinfo.sourceforge. net/ and developed by our friends from NTT.

Reducing the number of rows returned
Although the problem is often producing many rows in the first place, it is made worse by
returning all of the unnecessary rows to the client. This is especially true if the client and
server are not on the same host.

Here are some ways to reduce the traffic between the client and server.

How to do it…
Consider the following scenario: a full-text search returns 10,000 documents, but only the
first 20 are displayed to users. In this case, order the documents by rank on the server, and
return only the top 20 that actually need to be displayed:

SELECT title, ts_rank_cd(body_tsv, query, 20) AS text_rank
FROM articles, plainto_tsquery('spicy potatoes') AS query
WHERE body_tsv @@ query
ORDER BY rank DESC
LIMIT 20
;

http://pgstatsinfo.sourceforge.net/
http://pgstatsinfo.sourceforge.net/
http://pgstatsinfo.sourceforge.net/
http://pgstatsinfo.sourceforge.net/
http://pgstatsinfo.sourceforge.net/
http://pgstatsinfo.sourceforge.net/
http://pgstatsinfo.sourceforge.net/
http://pgstatsinfo.sourceforge.net/
http://pgstatsinfo.sourceforge.net/

Performance and Concurrency Chapter 10

[397]

If you need the next 20 documents, don't just query with a limit of 40 and throw away the
first 20. Instead, use OFFSET 20 LIMIT 20 to return the next 20 documents.

To gain some stability so that documents with the same rank still come out in the same
order when using OFFSET 20, add a unique field (such as the id column of the articles
table) to ORDER BY in both queries:

SELECT title, ts_rank_cd(body_tsv, query, 20) AS text_rank
FROM articles, plainto_tsquery('spicy potatoes') AS query
WHERE body_tsv @@ query
ORDER BY rank DESC, articles.id
OFFSET 20 LIMIT 20;

Another use case is an application that requests all products of a branch office so that it can
run a complex calculation over them. In such a case, try to do as much data analysis as
possible inside the database.

There is no need to run the following:

SELECT * FROM accounts WHERE branch_id = 7;

Also, instead of counting and summing the rows on the client side, you can run this:

SELECT count(*), sum(balance) FROM accounts WHERE branch_id = 7;

With some research on the SQL language, which is supported by PostgreSQL, you can
carry out an amazingly large portion of your computation using plain SQL (for example, do
not underestimate the power of window functions).

If SQL is not enough, you can use PL/pgSQL or any other embedded procedural languages
supported by PostgreSQL for even more flexibility.

There's more…
Consider one more scenario: an application runs a huge number of small lookup queries.
This can easily happen with modern Object Relational Mappers (ORMs) and other
toolkits that do a lot of work for the programmer, but at the same time, hide a lot of what is
happening.

Performance and Concurrency Chapter 10

[398]

For example, if you define an HTML report over a query in a templating language, and
then define a lookup function to resolve an ID inside the template, you may end up with a
form that performs a separate, small lookup for each row displayed, even when most of the
values looked up are the same. This doesn't usually pose a big problem for the database, as
queries of the SELECT name FROM departments WHERE id = 7 form are really fast
when the row for id = 7 is in shared buffers. However, repeating this query thousands of
times still takes seconds, due to network latency, process scheduling for each request, and
other factors.

The two proposed solutions are as follows:

Make sure that the value is cached by your ORM
Perform the lookup inside the query that gets the main data so that it can be
displayed directly

Exactly how to carry out these solutions depends on the toolkit, but they are both worth
investigating, as they really can make a difference in speed and resource usage.

PostgreSQL 9.5 introduced the TABLESAMPLE clause into SQL. This allows you to run
commands much faster by using a sample of a table's rows, giving an approximate answer.
In certain cases, this can be just as useful as the most accurate answer:

postgres=# SELECT avg(id) FROM events;
 avg

 500000.500
(1 row)
postgres=# SELECT avg(id) FROM events TABLESAMPLE system(1);
 avg

 507434.635
(1 row)
postgres=# EXPLAIN (ANALYZE, BUFFERS) SELECT avg(id) FROM events;
 QUERY PLAN

 Aggregate (cost=16925.00..16925.01 rows=1 width=32) (actual
time=204.841..204.841 rows=1 loops=1)
 Buffers: shared hit=96 read=4329
 -> Seq Scan on events (cost=0.00..14425.00 rows=1000000 width=4) (actual
time=1.272..105.452 rows=1000000 loops=1)
 Buffers: shared hit=96 read=4329
 Planning time: 0.059 ms
 Execution time: 204.912 ms
(6 rows)
postgres=# EXPLAIN (ANALYZE, BUFFERS)

Performance and Concurrency Chapter 10

[399]

 SELECT avg(id) FROM events TABLESAMPLE system(1);
 QUERY PLAN

--
 Aggregate (cost=301.00..301.01 rows=1 width=32) (actual time=4.627..4.627
rows=1 loops=1)
 Buffers: shared hit=1 read=46
 -> Sample Scan on events (cost=0.00..276.00 rows=10000 width=4) (actual
time=0.074..2.833 rows=10622 loops=1)
 Sampling: system ('1'::real)
 Buffers: shared hit=1 read=46

Planning time: 0.066 ms
 Execution time: 4.702 ms
(7 rows)

Simplifying complex SQL queries
There are two types of complexity that you can encounter in SQL queries.

First, the complexity can be directly visible in the query if it has hundreds or even
thousands of rows of SQL code in a single query. This can cause both maintenance
headaches and slow execution.

This complexity can also be hidden in subviews, so the SQL code of the query may seem
simple, but it uses other views and/or functions to do part of the work, which can, in turn,
use others. This is much better for maintenance, but it can still cause performance
problems.

Both types of queries can either be written manually by programmers or data analysts, or
emerge as a result of a query generator.

Getting ready
First, verify that you really have a complex query.

A query that simply returns lots of database fields is not complex by itself. In order to be
complex, the query has to join lots of tables in complex ways.

The easiest way to find out whether the query is complex is to look at the output of
EXPLAIN. If it has lots of rows, the query is complex, and it's not just that there is a lot of
text.

Performance and Concurrency Chapter 10

[400]

All of the examples in this recipe have been written with a very typical use case in mind:
sales.

What follows is a description of the fictitious model that's used in this recipe. The most
important fact is the sale event, stored in the sale table (I specifically used the word fact,
as this is the right term to use in a data warehousing context). Every sale takes place at a
point of sale (the salespoint table) at a specific time, and involves an item. That item is
stored in a warehouse (see the item and warehouse tables, as well as the item_in_wh link
table).

Both warehouse and salespoint are located in a geographical area (the location table).
This is important, for example, to study the provenance of a transaction.

Here is a simplified entity-relationship model, which is useful for understanding all of the
joins that occur in the following queries:

How to do it…
Simplifying a query usually means restructuring it so that parts of it can be defined
separately and then used by other parts.

We'll illustrate these possibilities by rewriting the following query in several ways.

The complex query in our example case is a so-called pivot or cross-tab query. This query
retrieves the quarterly profit for non-local sales from all shops, as shown in the following
code:

SELECT shop.sp_name AS shop_name,
 q1_nloc_profit.profit AS q1_profit,
 q2_nloc_profit.profit AS q2_profit,

Performance and Concurrency Chapter 10

[401]

 q3_nloc_profit.profit AS q3_profit,
 q4_nloc_profit.profit AS q4_profit,
 year_nloc_profit.profit AS year_profit
 FROM (SELECT * FROM salespoint ORDER BY sp_name) AS shop
 LEFT JOIN (
 SELECT
 spoint_id,
 sum(sale_price) - sum(cost) AS profit,
 count(*) AS nr_of_sales
 FROM sale s
 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id
 JOIN item i ON iw.item_id = i.id
 JOIN salespoint sp ON s.spoint_id = sp.id
 JOIN location sploc ON sp.loc_id = sploc.id
 JOIN warehouse wh ON iw.whouse_id = wh.id
 JOIN location whloc ON wh.loc_id = whloc.id
 WHERE sale_time >= '2013-01-01'
 AND sale_time < '2013-04-01'
 AND sploc.id != whloc.id
 GROUP BY 1
) AS q1_nloc_profit
 ON shop.id = Q1_NLOC_PROFIT.spoint_id
 LEFT JOIN (
< similar subquery for 2nd quarter >
) AS q2_nloc_profit
 ON shop.id = q2_nloc_profit.spoint_id
 LEFT JOIN (
< similar subquery for 3rd quarter >
) AS q3_nloc_profit
 ON shop.id = q3_nloc_profit.spoint_id
 LEFT JOIN (
< similar subquery for 4th quarter >
) AS q4_nloc_profit
 ON shop.id = q4_nloc_profit.spoint_id
 LEFT JOIN (
< similar subquery for full year >
) AS year_nloc_profit
 ON shop.id = year_nloc_profit.spoint_id
ORDER BY 1
;

Since the preceding query has an almost identical repeating part for finding the sales for a
period (the four quarters of 2013, in this case), it makes sense to move it to a separate view
(for the whole year) and then use that view in the main reporting query, as follows:

CREATE VIEW non_local_quarterly_profit_2013 AS
 SELECT
 spoint_id,

Performance and Concurrency Chapter 10

[402]

 extract('quarter' from sale_time) as sale_quarter,
 sum(sale_price) - sum(cost) AS profit,
 count(*) AS nr_of_sales
 FROM sale s
 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id
 JOIN item i ON iw.item_id = i.id
 JOIN salespoint sp ON s.spoint_id = sp.id
 JOIN location sploc ON sp.loc_id = sploc.id
 JOIN warehouse wh ON iw.whouse_id = wh.id
 JOIN location whloc ON wh.loc_id = whloc.id
 WHERE sale_time >= '2013-01-01'
 AND sale_time < '2014-01-01'
 AND sploc.id != whloc.id
 GROUP BY 1,2;
SELECT shop.sp_name AS shop_name,
 q1_nloc_profit.profit as q1_profit,
 q2_nloc_profit.profit as q2_profit,
 q3_nloc_profit.profit as q3_profit,
 q4_nloc_profit.profit as q4_profit,
 year_nloc_profit.profit as year_profit
 FROM (SELECT * FROM salespoint ORDER BY sp_name) AS shop
 LEFT JOIN non_local_quarterly_profit_2013 AS q1_nloc_profit
 ON shop.id = Q1_NLOC_PROFIT.spoint_id
 AND q1_nloc_profit.sale_quarter = 1
 LEFT JOIN non_local_quarterly_profit_2013 AS q2_nloc_profit
 ON shop.id = Q2_NLOC_PROFIT.spoint_id
 AND q2_nloc_profit.sale_quarter = 2
 LEFT JOIN non_local_quarterly_profit_2013 AS q3_nloc_profit
 ON shop.id = Q3_NLOC_PROFIT.spoint_id
 AND q3_nloc_profit.sale_quarter = 3
 LEFT JOIN non_local_quarterly_profit_2013 AS q4_nloc_profit
 ON shop.id = Q4_NLOC_PROFIT.spoint_id
 AND q4_nloc_profit.sale_quarter = 4
 LEFT JOIN (
 SELECT spoint_id, sum(profit) AS profit
 FROM non_local_quarterly_profit_2013 GROUP BY 1
) AS year_nloc_profit
 ON shop.id = year_nloc_profit.spoint_id
ORDER BY 1;

Moving the subquery to a view has not only made the query shorter but also easier to
understand and maintain.

Performance and Concurrency Chapter 10

[403]

You might want to consider materialized views. Even though their support does not yet
allow for differential updates, you can still benefit from on-demand refreshing of the view
results and, most importantly, indexes. Materialized views are described later in this recipe.

Before that, we will be using common table expressions (also known as WITH queries)
instead of a separate view. Starting with PostgreSQL version 8.4, you can use the WITH
statement to define the view in line, as follows:

WITH nlqp AS (
 SELECT
 spoint_id,
 extract('quarter' from sale_time) as sale_quarter,
 sum(sale_price) - sum(cost) AS profit,
 count(*) AS nr_of_sales
 FROM sale s
 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id
 JOIN item i ON iw.item_id = i.id
 JOIN salespoint sp ON s.spoint_id = sp.id
 JOIN location sploc ON sp.loc_id = sploc.id
 JOIN warehouse wh ON iw.whouse_id = wh.id
 JOIN location whloc ON wh.loc_id = whloc.id
 WHERE sale_time >= '2013-01-01'
 AND sale_time < '2014-01-01'
 AND sploc.id != whloc.id
 GROUP BY 1,2
)
SELECT shop.sp_name AS shop_name,
 q1_nloc_profit.profit as q1_profit,
 q2_nloc_profit.profit as q2_profit,
 q3_nloc_profit.profit as q3_profit,
 q4_nloc_profit.profit as q4_profit,
 year_nloc_profit.profit as year_profit
 FROM (SELECT * FROM salespoint ORDER BY sp_name) AS shop
 LEFT JOIN nlqp AS q1_nloc_profit
 ON shop.id = Q1_NLOC_PROFIT.spoint_id
 AND q1_nloc_profit.sale_quarter = 1
 LEFT JOIN nlqp AS q2_nloc_profit
 ON shop.id = Q2_NLOC_PROFIT.spoint_id
 AND q2_nloc_profit.sale_quarter = 2
 LEFT JOIN nlqp AS q3_nloc_profit
 ON shop.id = Q3_NLOC_PROFIT.spoint_id
 AND q3_nloc_profit.sale_quarter = 3
 LEFT JOIN nlqp AS q4_nloc_profit
 ON shop.id = Q4_NLOC_PROFIT.spoint_id
 AND q4_nloc_profit.sale_quarter = 4
 LEFT JOIN (
 SELECT spoint_id, sum(profit) AS profit

Performance and Concurrency Chapter 10

[404]

 FROM nlqp GROUP BY 1
) AS year_nloc_profit
 ON shop.id = year_nloc_profit.spoint_id
ORDER BY 1;

For more information on WITH queries (also known as Common Table Expressions
(CTEs)), read the official documentation at http:/ /www. postgresql. org/ docs/ 11/ static/
queries-with.html.

There's more…
Another ace in the hole is represented by temporary tables, which are used for parts of the
query. By default, a temporary table is dropped at the end of a Postgres session, but the
behavior can be changed at the time of creation.

PostgreSQL itself can choose to materialize parts of the query during the
query optimization phase, but sometimes, it fails to make the best choice for the query plan,
either due to insufficient statistics, or because—as it can happen for large query plans,
where Genetic Query Optimization (GEQO) is used—it may have just overlooked some
possible query plans.

If you think that materializing (separately preparing) some parts of the query is a good
idea, you can do this by using a temporary table, simply by running CREATE TEMPORARY
TABLE my_temptable01 AS <the part of the query you want to

materialize> and then using my_temptable01 in the main query, instead of the
materialized part.

You can even create indexes on the temporary table for PostgreSQL to use in the main
query:

BEGIN;
CREATE TEMPORARY TABLE nlqp_temp ON COMMIT DROP
 AS
 SELECT
 spoint_id,
 extract('quarter' from sale_time) as sale_quarter,
 sum(sale_price) - sum(cost) AS profit,
 count(*) AS nr_of_sales
 FROM sale s
 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id
 JOIN item i ON iw.item_id = i.id
 JOIN salespoint sp ON s.spoint_id = sp.id
 JOIN location sploc ON sp.loc_id = sploc.id
 JOIN warehouse wh ON iw.whouse_id = wh.id

http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html
http://www.postgresql.org/docs/11/static/queries-with.html

Performance and Concurrency Chapter 10

[405]

 JOIN location whloc ON wh.loc_id = whloc.id
 WHERE sale_time >= '2013-01-01'
 AND sale_time < '2014-01-01'
 AND sploc.id != whloc.id
 GROUP BY 1,2
;

You can create indexes on the table and analyze the temporary table here:

SELECT shop.sp_name AS shop_name,
 q1_NLP.profit as q1_profit,
 q2_NLP.profit as q2_profit,
 q3_NLP.profit as q3_profit,
 q4_NLP.profit as q4_profit,
 year_NLP.profit as year_profit
 FROM (SELECT * FROM salespoint ORDER BY sp_name) AS shop
 LEFT JOIN nlqp_temp AS q1_NLP
 ON shop.id = Q1_NLP.spoint_id AND q1_NLP.sale_quarter = 1
 LEFT JOIN nlqp_temp AS q2_NLP
 ON shop.id = Q2_NLP.spoint_id AND q2_NLP.sale_quarter = 2
 LEFT JOIN nlqp_temp AS q3_NLP
 ON shop.id = Q3_NLP.spoint_id AND q3_NLP.sale_quarter = 3
 LEFT JOIN nlqp_temp AS q4_NLP
 ON shop.id = Q4_NLP.spoint_id AND q4_NLP.sale_quarter = 4
 LEFT JOIN (
 select spoint_id, sum(profit) AS profit FROM nlqp_temp GROUP BY 1
) AS year_NLP
 ON shop.id = year_NLP.spoint_id
ORDER BY 1
;
COMMIT; -- here the temp table goes away

Using materialized views (long-living temporary tables)
If the part you put in the temporary table is large, does not change very often, and/or is
hard to compute, then you may be able to do it less often for each query by using a
technique named materialized views.

Materialized views are views that are prepared before they are used (similar to a cached
table). They are either fully regenerated as underlying data changes, or in some cases, can
update only those rows that depend on the changed data.

Performance and Concurrency Chapter 10

[406]

PostgreSQL natively supports materialized views through the CREATE MATERIALIZED
VIEW, ALTER MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW, and DROP
MATERIALIZED VIEW commands. At the time of writing, PostgreSQL only supports full
regeneration of the cached tables and does so by using a concurrent REFRESH
of MATERIALIZED VIEW.

A fundamental aspect of materialized views is that they can have their own indexes, like
any other table. See
http://www.postgresql.org/docs/11/static/sql-creatematerializedview.html for
more information on creating materialized views.

For instance, you can rewrite the example in the previous recipe using a materialized
view instead of a temporary table:

CREATE MATERIALIZED VIEW nlqp_temp AS
 SELECT spoint_id,
 extract('quarter' from sale_time) as sale_quarter,
 sum(sale_price) - sum(cost) AS profit,
 count(*) AS nr_of_sales
 FROM sale s
 JOIN item_in_wh iw ON s.item_in_wh_id=iw.id
 JOIN item i ON iw.item_id = i.id
 JOIN salespoint sp ON s.spoint_id = sp.id
 JOIN location sploc ON sp.loc_id = sploc.id
 JOIN warehouse wh ON iw.whouse_id = wh.id
 JOIN location whloc ON wh.loc_id = whloc.id
 WHERE sale_time >= '2013-01-01'
 AND sale_time < '2014-01-01'
 AND sploc.id != whloc.id
 GROUP BY 1,2

Using set-returning functions for some parts of queries
Another possibility for achieving similar results to temporary tables and/or materialized
views is by using a set-returning function for some parts of the query.

It is easy to have a materialized view freshness check inside a function. However, a detailed
analysis and an overview of these techniques go beyond the goals of this book, as they
require a deep understanding of the PL/pgSQL procedural language.

http://www.postgresql.org/docs/11/static/sql-creatematerializedview.html

Performance and Concurrency Chapter 10

[407]

Speeding up queries without rewriting them
Often, you either can't or don't want to rewrite the query. However, you can still try and
speed it up through any of the techniques we will discuss here.

How to do it…
By now, we assume that you've looked at various problems already, so the following are
more advanced ideas for you to try.

Increasing work_mem
For queries involving large sorts or for join queries, it may be useful to increase the amount
of working memory that can be used for query execution. Try setting the following:

SET work_mem = '1TB';

Then, run EXPLAIN (not EXPLAIN ANALYZE). If EXPLAIN changes for the query, then it may
benefit from more memory. I'm guessing that you don't have access to 1 terabyte of RAM;
the previous setting was only used to prove that the query plan is dependent on available
memory. Now, issue the following:

RESET work_mem;

Now, choose a more appropriate value for production use, such as the following:

SET work_mem = '128MB';

Remember to increase maintenace_work_mem when creating indexes or adding foreign
keys, rather than work_mem.

More ideas with indexes
Try and add a multicolumn index that is specifically tuned for that query.

If you have a query that, for example, selects rows from the t1 table on the a column and
sorts on the b column, then creating the following index enables PostgreSQL to do it all in
one index scan:

CREATE INDEX t1_a_b_idx ON t1(a, b);

Performance and Concurrency Chapter 10

[408]

PostgreSQL 9.2 introduced a new plan type: index-only scans. This allows you to utilize a
technique known as covering indexes. If all of the columns requested by the SELECT list of
a query are available in an index, that particular index is a covering index for that query.
This technique allows PostgreSQL to fetch valid rows directly from the index, without
accessing the table (heap), so performance improves significantly. If the index is non-
unique, you can just add columns onto the end of the index, like so. However, please be
aware that this only works for non-unique indexes:

CREATE INDEX t1_a_b_c_idx ON t1(a, b, c);

PostgreSQL 11 provides syntax to identify covering index columns in a way that works for
both unique and non-unique indexes, like this:

CREATE INDEX t1_a_b_cov_idx ON t1(a, b) INCLUDE (c);

Another often underestimated (or unknown) feature of PostgreSQL is partial indexes. If
you use SELECT on a condition, especially if this condition only selects a small number of
rows, you can use a conditional index on that expression, like this:

CREATE INDEX t1_proc_ndx ON t1(i1)
WHERE needs_processing = TRUE;

The index will be used by queries that have a WHERE clause that includes the index clause,
like so:

SELECT id, ... WHERE needs_processing AND i1 = 5;

There are many types of indexes in Postgres, so you may find that there are multiple types
of indexes that can be used for a particular task and many options to choose from:

Identifier data: BTREE and HASH
Text data: GIST and GIN
JSONB or XML data: GIN
Time-range data: BRIN
Geographical data: BRIN, GIST, and SP-GIST

Performance gains in Postgres can also be obtained with another technique: clustering
tables on specific indexes. However, index access may still not be very efficient if the
values that are accessed by the index are distributed randomly, all over the table. If you
know that some fields are likely to be accessed together, then cluster the table on an index
defined on those fields. For a multicolumn index, you can use the following command:

CLUSTER t1_a_b_ndx ON t1;

Performance and Concurrency Chapter 10

[409]

Clustering a table on an index rewrites the whole table in index order. This can lock the
table for a long time, so don't do it on a busy system. Also, CLUSTER is a one-time
command. New rows do not get inserted in cluster order, and to keep the performance
gains, you may need to cluster the table every now and then.

Once a table has been clustered on an index, you don't need to specify the index name in
any cluster commands that follow. It is enough to type this:

CLUSTER t1;

It still takes time to rewrite the entire table, though it is probably a little faster once most of
the table is in index order.

There's more…
We will complete this recipe by listing four examples of query performance issues that can
be addressed with a specific solution.

Time series partitioning
Refer to the Creating time series tables recipe for more information on this.

Using a TABLESAMPLE view
Where some queries access a table, replace that with a view that retrieves fewer rows using
a TABLESAMPLE clause. In this example, we are using a sampling method that produces a
sample of the table using a scan lasting no longer than 5 seconds; if the table is small
enough, the answer is exact, otherwise progressive sampling is used to ensure that we meet
our time objective:

CREATE EXTENSION tsm_system_time;
CREATE SCHEMA fast_access_schema;
CREATE VIEW tablename AS
 SELECT * FROM data_schema TABLESAMPLE system_time(5000); --5 secs
SET search_path = 'fast_access_schema, data_schema';

So, the application can use the new table without changing the SQL. Be careful, as some
answers can change when you're accessing fewer rows (for example, sum()), making this
particular idea somewhat restricted; the overall idea of using views is still useful.

Performance and Concurrency Chapter 10

[410]

In case of many updates, set fillfactor on the table
If you often update only some tables and can arrange your query/queries so that you don't
change any indexed fields, then setting fillfactor to a lower value than the default of
100 for those tables enables PostgreSQL to use Heap-Only Tuples (HOT) updates, which
can be an order of magnitude faster than ordinary updates. HOT updates not only avoid
creating new index entries, but can also perform a fast mini-vacuum inside the page to
make room for new rows:

ALTER TABLE t1 SET (fillfactor = 70);

This tells PostgreSQL to fill only 70 percent of each page in the t1 table when performing
insertions so that 30 percent is left for use by in-page (HOT) updates.

Rewriting the schema – a more radical approach
In some cases, it may make sense to rewrite the database schema and provide an old view
for unchanged queries using views, triggers, rules, and functions.

One such case occurs when refactoring the database, and you would want old queries to
keep running while changes are made.

Another case is an external application that is unusable with the provided schema, but can
be made to perform OK with a different distribution of data between tables.

Discovering why a query is not using an
index
This recipe explains what to do if you think your query should use an index, but it isn't.

There could be several reasons for this, but most often, the reason is that the optimizer
believes that, based on the available distribution statistics, it is cheaper and faster to use a
query plan that does not use that specific index.

Performance and Concurrency Chapter 10

[411]

Getting ready
First, check that your index exists, and ensure that the table has been analyzed. If there is
any doubt, rerun it to be sure:

postgres=# ANALYZE;
ANALYZE

How to do it…
Force index usage and compare plan costs with an index and without, as follows:

postgres=# EXPLAIN ANALYZE SELECT count(*) FROM itable WHERE id > 500;
 QUERY PLAN

 Aggregate (cost=188.75..188.76 rows=1 width=0)
 (actual time=37.958..37.959 rows=1 loops=1)
 -> Seq Scan on itable (cost=0.00..165.00 rows=9500 width=0)
 (actual time=0.290..18.792 rows=9500 loops=1)
 Filter: (id > 500)
 Total runtime: 38.027 ms
(4 rows)
postgres=# SET enable_seqscan TO false;
SET
postgres=# EXPLAIN ANALYZE SELECT count(*) FROM itable WHERE id > 500;
 QUERY PLAN

 Aggregate (cost=323.25..323.26 rows=1 width=0)
 (actual time=44.467..44.469 rows=1 loops=1)
 -> Index Scan using itable_pkey on itable
 (cost=0.00..299.50 rows=9500 width=0)
 (actual time=0.100..23.240 rows=9500 loops=1)
 Index Cond: (id > 500)
 Total runtime: 44.556 ms
(4 rows)

Note that you must use EXPLAIN ANALYZE, rather than just EXPLAIN. EXPLAIN ANALYZE
shows you how much data is being requested and measures the actual execution time,
while EXPLAIN only shows what the optimizer thinks will happen. EXPLAIN ANALYZE is
slower, but it gives an accurate picture of what is happening.

Performance and Concurrency Chapter 10

[412]

How it works…
By setting the enable_seqscan parameter to off, we greatly increase the cost of
sequential scans for the query. This setting is never recommended for production use, only
for testing.

This allows us to generate two different plans, one with SeqScan and one without. The
optimizer works by selecting the lowest cost option available. In this case, the cost
of SeqScan is 188.75 and the cost of IndexScan is 323.25, so for this specific
case, IndexScan will not be used.

Remember that each case is different, and always relates to the exact data distribution.

There's more…
Be sure that the WHERE clause you are using can be used with the type of index you have.
For example, the WHERE clause, abs(val) < 2, won't use an index, because you're
performing a function on the column, while val BETWEEN -2 AND 2 could use the index.
With more advanced operators and data types, it's easy to get confused as to the type of
clause that will work, so check the documentation for the data type carefully.

In PostgreSQL 10, join statistics were also improved by the use of foreign keys, since they
can be used in some queries to prove that joins on those keys return exactly one row.

Forcing a query to use an index
Often, we think we know better than the database optimizer. Most of the time, your
expectations are wrong, and if you look carefully, you'll see that. So, recheck everything
and come back later.

It is a classic error to try to get the database optimizer to use indexes when the database has
very little data in it. Put some genuine data in the database first, then worry about it. Better
yet, load some data on a test server first, rather than doing this in production.

Sometimes, the optimizer gets it wrong. You feel elated, and possibly angry, that the
database optimizer doesn't see what you see. Please bear in mind that the data distributions
within your database change over time, and this causes the optimizer to change its plans
over time as well.

Performance and Concurrency Chapter 10

[413]

If you have found a case where the optimizer is wrong, it might have been correct last
week, and will be correct again next week: it correctly calculated that a change of plan was
required, but it made that change slightly ahead of time, or slightly too late. Again, trying
to force the optimizer to do the right thing now might prevent it from doing the right thing
later, when the plan changes again.

Some optimizer estimation errors can be corrected using CREATE STATISTICS, a new
command added in PostgreSQL 10, which is described in this recipe's There's
more… section.

In the long run, it is not recommended to try to force the use of a particular index.

Getting ready
Still here? Oh well.

In fact, it is not possible to tell PostgreSQL to use an index by submitting an access path
hint, like other DBMS products do. However, you can trick it into using an index by telling
the optimizer that all other options are prohibitively expensive.

First, you have to make sure that it is worth it to use the index. This is best done on a
development or testing system, but if you are careful, it can also be done on the production
server. Sometimes, it is very hard to generate a load similar to a live system in a test
environment, and then your best option may be to carefully test it on the production server.

Since the PostgreSQL optimizer does not take into account the parallel load caused by other
backends, it may make sense to lie to PostgreSQL about some statistics in order to make it
use indexes.

How to do it…
The most common problem is selecting too much data.

A typical point of confusion comes from data that has a few very common values among a
larger group. Requesting data for the very common values costs more because we need to
bring back more rows. As we bring back more rows, the cost of using the index increases.
Therefore, it is possible that we won't use the index for the very common values, whereas
we would use the index for the less common values. To use an index effectively, make sure
you're reducing the number of rows that are returned.

Performance and Concurrency Chapter 10

[414]

Another technique for making indexes more usable is partial indexes. Instead of indexing
all of the values in a column, you might choose to index only the set of rows that are
frequently accessed, for example, by excluding NULL or other unwanted data. By making
the index smaller, it will be cheaper to access and fit within the cache better, avoiding
pointless work by targeting the index at only the important data. Data statistics are kept for
such indexes, so it can also improve the accuracy of query planning. Let's look at an
example:

CREATE INDEX ON customer(id)
 WHERE blocked = false AND subscription_status = 'paid';

Another nudge toward using indexes is to set random_page_cost to a lower
value—maybe even equal to seq_page_cost. This makes PostgreSQL prefer index scans
on more occasions, but it still does not produce entirely unreasonable plans, at least for
cases where data is mostly cached in shared buffers, or system disk caches or underlying
disks are solid-state drives.

The default values for these parameters are as follows:

random_page_cost = 4;
seq_page_cost = 1;

Try setting this:

set random_page_cost = 2;

See if it helps; if not, you can try setting it to 1.

Changing random_page_cost allows you to react to whether data is on disk or in memory.
Letting the optimizer know that more of an index is in the cache will help it to understand
that using the index is actually cheaper.

Index scan performance for larger scans can also be improved by allowing multiple
asynchronous I/O operations by increasing effective_io_concurrency. Both
random_page_cost and effective_io_concurrency can be set for specific tablespaces,
or for individual queries.

Rather than trying to force the use of an index, you might want to consider using a parallel
query to speed up scans. Refer to the Using parallel query recipe for more information.

Performance and Concurrency Chapter 10

[415]

There's more…
If you have multi-column indexes (or joins), the optimizer will assume that the column
values are independent of each other, which can lead to misestimation in cases where there
is a correlation between the values.

If you have two dependent columns, such as state and area_code, then you can define
additional statistics that will be collected when you next ANALYZE the table:

CREATE STATISTICS cust_s1 (ndistinct, dependencies) ON state, area_code
FROM cust;

The execution time of ANALYZE will increase to collect the additional stats information, plus
there is a small increase in query planning time, so use this sparingly when you can confirm
this will make a difference. You don't need to have both distinct and dependencies in all
cases, only when it matters.

Include the table name in the statistics you create since the name cannot be repeated on
different tables. In future releases, we will also add cross-table statistics.

Unfortunately, you cannot collect statistics on individual fields within JSON documents at
the moment, nor collect dependency information between them; this command only applies
to whole column values at this time.

There's more
If you absolutely, positively have to use the index, then you'll want to know about an
extension called pg_hint_plan. It is available for PostgreSQL 9.1 and later versions. For
more information and to download it, go to http:/ / pghintplan. sourceforge. jp/ .

It works, but as I said previously, try to avoid fixing things now and causing yourself pain
later.

Using parallel query
PostgreSQL now has an increasingly effective parallel query feature.

Response times from long-running queries can be improved by the use of parallel
processing. The concept is that we divide a large task up into multiple smaller pieces. We
get the answer faster, but we use more resources to do that.

http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/
http://pghintplan.sourceforge.jp/

Performance and Concurrency Chapter 10

[416]

Very short queries won't get faster by using parallel query, so if you have lots of those
you'll gain more by thinking about better indexing strategies. Parallel query is aimed at
making very large tasks faster, so it is useful for reporting and business intelligence queries.

How to do it…
Take a query that needs to do a big chunk of work, such as the following:

\timing
SELECT count(*) FROM accounts;
count

1000000
(1 row)
Time: 261.652 ms
SET max_parallel_workers_per_gather = 8;
SELECT count(*) FROM accounts;
count

1000000
(1 row)
Time: 180.513 ms

By setting the max_parallel_workers_per_gather parameter, we've improved
performance using parallel query. Note that we didn't need to change the query at all.

In PostgreSQL 9.6 and 10, parallel query only works for read-only queries, so only SELECT
statements that do not contain the FOR clause (for example, SELECT ... FOR UPDATE). In
addition, a parallel query can only use functions or aggregates that are marked
as PARALLEL SAFE. No user-defined functions are marked PARALLEL SAFE by default, so
read the docs carefully to see whether your functions can be enabled for parallelism for the
current release.

How it works…
By default, a query will use only one process. Parallel query is enabled by setting
max_parallel_workers_per_gather to a value higher than zero. This parameter
specifies the maximum number of additional processes that are available, if needed. So, a
setting of 1 will mean you have the leader process plus one additional worker process, so
two processes in total.

Performance and Concurrency Chapter 10

[417]

The query optimizer will decide whether parallel query is a useful plan based upon cost,
just like other aspects of the optimizer. Importantly, it will decide how many parallel
workers to use in its plan, up to the maximum you specify.

Across the whole server, the maximum number of worker processes available is specified
by the max_worker_processes parameter and is set at server start only. PostgreSQL 10
introduced the max_parallel_workers parameter to further control the number of
worker processes that are available.

At execution time, the query will use its planned number of worker processes if that many
are available. The plan for our earlier example of parallel query looks like this:

postgres=# EXPLAIN ANALYZE
 SELECT count(*) FROM demo;
 QUERY PLAN

Finalize Aggregate (cost=78117.63..78117.64 rows=1 width=8) (actual
time=203.426..203.426 rows=1 loops=1)
 -> Gather (cost=78117.21..78117.62 rows=4 width=8) (actual
time=203.286..203.421 rows=5 loops=1)
 Workers Planned: 4
 Workers Launched: 4
 -> Partial Aggregate (cost=77117.21..77117.22 rows=1 width=8)
(actual time=194.315..194.315 rows=1 loops=5)
 -> Parallel Seq Scan on demo (cost=0.00..76863.57
rows=101457 width=0) (actual time=115.632..164.688 rows=200200 loops=5)
 Planning time: 0.076 ms
 Execution time: 206.197 ms
(8 rows)

If worker processes aren't available, the query will run with fewer worker processes. As a
result, it pays to not be too greedy, since if all concurrent users specify more workers than
are available, you'll end up with variable performance as the number of concurrent parallel
queries changes.

Also note that the performance increase from adding more workers isn't linear for anything
other than simple plans, so there are diminishing returns from using too many workers.
The biggest gains are from adding the first few extra processes.

As a result of those factors, I recommend a setting of just 1-3 extra worker processes for
general use, meaning that two processes will be used for queries, when needed. For specific
long-running queries, there may be as many as 8-16 workers, though that will vary
considerably, depending on the kind of servers you're running on.

Performance and Concurrency Chapter 10

[418]

There's more…
PostgreSQL 9.6 includes the basic parallel query feature. In this release, it works with Seq
Scans, aggregation, and to a certain extent, with joins. For many cases, this is a very useful
addition. PostgreSQL 10 added plan improvements that allow parallel query to work with
B-tree index scans, bitmap heap scans, merge joins, and non-correlated subqueries. Also,
starting PostgreSQL 10, you can now get parallel query plans from SQL inside procedural
language functions.

If you have an immediate requirement for higher levels of scalability or very large
databases, then you'll want to look at the Postgres-XL project. Postgres-XL is an open
source project that uses the PostgreSQL License and has a modified PostgreSQL to provide
multi-node parallel query, or Massively Parallel Processing (MPP) as it's commonly
known. MPP parallel queries are much faster than single node parallel queries. The project
has been running for many years now and provides a fully functional version of Postgres
that's aimed at larger and/or more scalable workloads. Almost all of the operations are fully
parallelized, including many types of queries, as well as maintenance commands and DDL
operations. Postgres-XL features are expected to be integrated into PostgreSQL core within
the next two to three years.

Creating time series tables
In many applications, we need to store data in time series.

There are various mechanisms in PostgreSQL that are designed to support this, and it is an
area that has changed dramatically in PostgreSQL 11.

How to do it…
If you have a huge table and a query to select only a subset of that table, then you may wish
to use a BRIN index (block range index). These indexes give performance improvements
when the data is naturally ordered as it is added to the table, such as logtime columns or a
naturally ascending OrderId column. Adding a BRIN index is fast and very easy, and
works well for the use case of time series data logging, though it works less well under
intensive updates. INSERTs into BRIN indexes are specifically designed to not slow down
as the table gets bigger, so they perform much better than B-tree indexes.

Performance and Concurrency Chapter 10

[419]

You may also think that you need to manually partition a table. This can involve significant
effort to set up an effective partitioning scheme using multiple DDL statements, so try
BRIN first, like so:

CREATE TABLE measurement (
 logtime TIMESTAMP WITH TIME ZONE NOT NULL,
 measures JSONB NOT NULL);

CREATE INDEX ON measurement USING BRIN (logtime);

Partitioning syntax was introduced in PostgreSQL 10. In this release, it is effective
for INSERTs and large/slow SELECT queries, which makes it suitable for time series logging
and business intelligence. It is not yet fully optimized for fast OLTP SELECT, UPDATE,
or DELETE commands, unless you explicitly request those commands against the specific
partition you wish to target. Some of those restrictions were substantially lifted in the
PostgreSQL 11 release, allowing partitioning to be effective for more use cases, but there are
still many cases where you will need to wait for PostgreSQL 12 or use enhanced versions of
PostgreSQL.

For example, to create a table for time series data, you may want something like this:

CREATE TABLE measurement (
 logtime TIMESTAMP WITH TIME ZONE NOT NULL,
 measures JSONB NOT NULL
) PARTITION BY RANGE (logtime);

CREATE TABLE measurement_week1 PARTITION OF measurement
 FOR VALUES FROM ('2019-03-01') TO ('2019-04-01');

CREATE INDEX ON measurement_week1 USING BRIN (logtime);

CREATE TABLE measurement_week2 PARTITION OF measurement
 FOR VALUES FROM ('2019-04-01') TO ('2019-05-01');

CREATE INDEX ON measurement_week2 USING BRIN (logtime);

Notice that you can use both BRIN indexes and partitioning at the same time, so there is
less need to have a huge numbers of partitions. A typical partition size should allow the
whole current partition to sit within shared buffers. For more details on partitioning, check
out https://www. postgresql. org/ docs/ 11/ddl- partitioning. html.

https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html
https://www.postgresql.org/docs/11/ddl-partitioning.html

Performance and Concurrency Chapter 10

[420]

How it works…
Each partition is actually a normal table, so you can refer to it in queries. A partitioned table
is similar in many ways to a view, since it links all of the partitions under it together. The
partition key defines which data goes into which partition, so that each row lives in exactly
one partition. Partitioning can also be defined with multiple levels, so a single top-level
partitioned table, then with each sub-table also having sub-sub-partitions.

Using a single partition indexed with a B-tree will give poor performance. B-tree
performance degrades slowly as tables get bigger, so limiting the size of your partitions will
prevent any bad news. Using a B-tree on columns such as logtime can be done – this has
been optimized recently for INSERTs.

The best reason to use partitioning is to allow you to drop old data quickly. For example, if
you are only allowed to keep data for 30 days, it might make sense to store data in 30
partitions. Each day, you would add one new empty partition and detach the last partition
in the time series.

Often, people want to have a very structured approach, such as hourly partitions, which
can lead to thousands of partitions. This can have considerable overhead without any
useful benefit. Drop partitions less frequently, say once a week at most, to avoid issues with
DDL locking.

There's more…
PostgreSQL 11 adds the ability to have primary keys defined over a partitioned table,
enforcing uniqueness across partitions. This requires that the partition key is the same, or a
subset of the columns of the primary key.

You can define references from a partitioned table to normal tables to enforce foreign key
constraints. References to a partitioned table should be possible in PostgreSQL 12.

Partition tables can now have row triggers.

Partitioned tables also support default partitions, but I recommend against using them
because of the way table locking works with that feature.

Performance and Concurrency Chapter 10

[421]

Using optimistic locking
If you perform work in one long transaction, the database will lock rows for long periods of
time. Long lock times often result in application performance issues because of long lock
waits:

BEGIN;
SELECT * FROM accounts WHERE holder_name ='BOB' FOR UPDATE;
<do some calculations here>
UPDATE accounts SET balance = 42.00 WHERE holder_name ='BOB';
COMMIT;

If that is happening, then you may gain some performance by moving from explicit locking
(SELECT ... FOR UPDATE) to optimistic locking.

Optimistic locking assumes that others don't update the same record, and checks this at
update time, instead of locking the record for the time it takes to process the information on
the client side.

How to do it…
Rewrite your application so that the SQL is transformed into two separate transactions,
with a double-check to ensure that the rows haven't changed (pay attention to the
placeholders):

SELECT A.*, (A.*::text) AS old_acc_info
FROM accounts a WHERE holder_name ='BOB';
<do some calculations here>
UPDATE accounts SET balance = 42.00
WHERE holder_name ='BOB'
AND (A.*::text) = <old_acc_info from select above>;

Then, check whether the UPDATE operation really did update one row in your application
code. If it did not, then the account for BOB was modified between SELECT and UPDATE,
and you probably need to rerun your entire operation (both transactions).

How it works…
Instead of locking Bob's row for the time the data from the first SELECT command is
processed in the client, PostgreSQL queries the old state of Bob's account record in the
old_acc_info variable and then uses this value to check that the record has not changed
when we eventually update.

Performance and Concurrency Chapter 10

[422]

You can also save all fields individually and then check them all in the UPDATE query; if
you have an automatic last_change field, then you can use that instead. Alternatively, if
you only care about a few fields changing, such as balance, and are fine ignoring others,
such as email, then you only need to check the relevant fields in the UPDATE statement.

There's more…
You can also use the serializable transaction isolation level when you need to be absolutely
sure that the data you are looking at is not affected by other user changes.

The default transaction isolation level in PostgreSQL is read committed, but you can choose
from two more levels, repeatable read and serializable, if you require stricter control over
visibility of data within a transaction;
see http://www.postgresql.org/docs/11/static/transaction-iso.html for more
information.

Another design pattern that's available in some cases is to use a single statement for the
UPDATE and return data to the user via the RETURNING clause, as in the following example:

UPDATE accounts
 SET balance = balance - i_amount
WHERE username = i_username
AND balance - i_amount > - max_credit
RETURNING balance;

In some cases, moving the entire computation to the database function is a very good idea.
If you can pass all of the necessary information to the database for processing as a database
function, it will run even faster, as you save several round-trips to the database. If you use a
PL/pgSQL function, you also benefit from automatically saving query plans on the first call
in a session and using saved plans in subsequent calls.

Therefore, the preceding transaction is replaced by a function in the database, like so:

CREATE OR REPLACE FUNCTION consume_balance
(i_username text
, i_amount numeric(10,2)
, max_credit numeric(10,2)
, OUT success boolean
, OUT remaining_balance numeric(10,2)
) AS
$$
BEGIN
 UPDATE accounts SET balance = balance - i_amount
 WHERE username = i_username

http://www.postgresql.org/docs/11/static/transaction-iso.html

Performance and Concurrency Chapter 10

[423]

 AND balance - i_amount > - max_credit
 RETURNING balance
 INTO remaining_balance;
 IF NOT FOUND THEN
 success := FALSE;
 SELECT balance
 FROM accounts
 WHERE username = i_username
 INTO remaining_balance;
 ELSE
 success := TRUE;
 END IF;
END;
$$ LANGUAGE plpgsql;

You can call it by simply running the following line from your client:

SELECT * FROM consume_balance ('bob', 7, 0);

The output will return the success variable. It tells you whether there was a sufficient
balance in Bob's account. The output will also return a number telling the balance bob has
left after this operation.

Reporting performance problems
Sometimes, you face performance issues and feel lost, but you should never feel alone
when working with one of the most successful open source projects ever.

How to do it…
If you need to get some advice on your performance problems, then the right place to do so
is the performance mailing list at http://archives.postgresql.org/pgsql-performance/.

First, you may want to ensure that it is not a well-known problem by searching the mailing
list archives.

A very good description of what to include in your performance problem report is available
at http://wiki.postgresql.org/wiki/Guide_to_reporting_problems.

http://archives.postgresql.org/pgsql-performance/
http://wiki.postgresql.org/wiki/Guide_to_reporting_problems

Performance and Concurrency Chapter 10

[424]

There's more…
More performance-related information can be found at
http://wiki.postgresql.org/wiki/Performance_Optimization.

http://wiki.postgresql.org/wiki/Performance_Optimization

11
Backup and Recovery

Most people admit that backups are essential, though they also devote a very small amount
of time to thinking about the topic.

The first recipe is about understanding and controlling crash recovery. You need to
understand what happens if the database server crashes so that you can understand
whether you need to perform a recovery operation.

The next recipe is all about planning. That's really the best place to start before you perform
backups.

The physical backup mechanisms here were initially written by Simon Riggs (one of the
authors of this book) for PostgreSQL 8.0 in 2004 and have been supported by him ever
since, now with increasing help from the community as its popularity grows. 2ndQuadrant
has also been providing database recovery services since 2004, and regrettably, many
people have needed them as a result of missing or damaged backups.

It is important to note that, in the last few years, the native streaming replication protocol
has become more and more relevant in PostgreSQL. It can be used for backup purposes too;
not only to take a base backup with pg_basebackup, but also to stream WAL files
using pg_receivewal.

As authors, we had a dilemma when planning this book. Should we introduce streaming
replication before backups or leave it to the replication section? For now, we decided to
leave it out of this chapter and postpone it to the next. We would like your feedback on this
subject for future editions of this book.

Backup and Recovery Chapter 11

[426]

As a final note, all of the examples regarding physical backup and recovery in this chapter
are thoroughly explained so that you understand what is happening behind the scenes.
However, unless you have very specific requirements dictating otherwise, we highly
recommend that, when in production, you use Barman (our open source backup and
recovery tool) or a similar product that is specialized in this area. The last two recipes in
this chapter will introduce Barman.

In this chapter, we will cover the following recipes:

Understanding and controlling crash recovery
Planning backups
Hot logical backup of one database
Hot logical backup of all databases
Backup of database object definitions
Standalone hot physical database backup
Hot physical backup and continuous archiving
Recovery of all databases
Recovery to a point in time
Recovery of a dropped/damaged table
Recovery of a dropped/damaged database
Improving performance of backup/recovery
Incremental/differential backup and restore
Hot physical backups with Barman
Recovery with Barman
Validating backups

Understanding and controlling crash
recovery
Crash recovery is the PostgreSQL subsystem that saves us, should the server crash or fail as
part of a system crash.

It's good to understand a little about it and to do what we can to control it in our favor.

Backup and Recovery Chapter 11

[427]

How to do it…
If PostgreSQL crashes, there will be a message in the server log with the severity level set
to PANIC. PostgreSQL will immediately restart and attempt to recover using the transaction
log or Write-Ahead Log (WAL).

The WAL consists of a series of files written to the pg_wal subdirectory of the
PostgreSQL data directory. Each change made to the database is recorded first in WAL,
hence the name write-ahead log, as a synonym of transaction log. Note that the former is
probably more accurate since, in the WAL, there are also changes not related to
transactions. When a transaction commits, the default (and safe) behavior is to force the
WAL records to disk. Should PostgreSQL crash, the WAL will be replayed, which returns
the database to the point of the last committed transaction, and hence ensures the durability
of any database changes.

Database changes themselves aren't written to disk at transaction commit.
Those changes are written to disk some time later by the background
writer on a well-tuned server.

Crash recovery replays the WAL, but from what point does it start to recover? Recovery
starts from points in the WAL known as checkpoints. The duration of a crash recovery
depends on the number of changes in the transaction log since the last checkpoint. A
checkpoint is a known safe starting point for recovery, since it guarantees that all of the
previous changes to the database have already been written to disk.

A checkpoint can become a performance bottleneck on busy database servers because of the
number of writes required. We will look at a number of ways to fine-tune that, but you
must also understand the effect that those tuning options may have on crash recovery.

A checkpoint can be either immediate or scheduled. Immediate checkpoints are triggered
by some action of a superuser, such as the CHECKPOINT command. Scheduled checkpoints
are decided automatically by PostgreSQL.

Two parameters control the occurrence of scheduled checkpoints. The first is
checkpoint_timeout, which is the number of seconds until the next checkpoint. While
this parameter is time-based, the second parameter, max_wal_size, influences the amount
of WAL data that will be written before a checkpoint is triggered; the actual limit is
computed from that parameter, taking into account the fact that WAL files can only be
deleted after one checkpoint (two in older releases). A checkpoint is called whenever either
of these two limits is reached.

Backup and Recovery Chapter 11

[428]

It's tempting to banish checkpoints as much as possible by setting the following parameters:

max_wal_size = 20GB
checkpoint_timeout = 3600

However, if you do this, you should give some thought to how long crash recovery will
take, and whether you want that; you must also consider how many changes will
accumulate before the next checkpoint, and more importantly how much I/O the
checkpoint will generate due to those changes.

Also, you should make sure that the pg_wal directory is mounted on disks with enough
disk space. By default, max_wal_size is set to 1 GB. The amount of disk space required by
pg_wal might also be influenced by the following:

Unexpected spikes in workload
Failures in continuous archiving (see archive_command in the Hot physical
backup and continuous archiving recipe)
The wal_keep_segments setting (you will need 16 MB wal_keep_segments of
space)

In contrast to max_wal_size, with min_wal_size, you can control the minimum size
allotted to WAL storage, and allow PostgreSQL to recycle existing WAL files instead of
removing them.

How it works…
Recovery continues until the end of the transaction log. WAL data is being written
continually, so there is no defined endpoint; it is literally the last correct record. Each WAL
record is individually CRC-checked so that we know whether a record is complete and
valid before trying to process it. Each record contains a pointer to the previous record, so
we can tell that the record forms a valid link in the chain of actions recorded in the WAL.
As a result of that, recovery always ends with some kind of error in reading the next WAL
record. That is normal and means the next record does not exist (yet).

Recovery performance can be very fast, though its speed does depend on the actions being
recovered. The best way to test recovery performance is to set up a standby replication
server, as described in Chapter 12, Replication and Upgrades, which is actually implemented
as a variant of crash recovery.

Backup and Recovery Chapter 11

[429]

There's more…
It's possible for a problem to be caused by replaying the transaction log so that the database
server will fail to start.

Some people's response to this is to use a utility named pg_resetwal, which removes the
current transaction log files and tidies up after that operation has taken place.

The pg_resetwal utility destroys data changes and that means data loss. If you do decide
to run that utility, make sure that you take a backup of the pg_wal directory first. Our
advice is to seek immediate assistance rather than do this. You don't know for certain that
doing this will fix a problem though, once you've done it, you will have difficulty going
back.

When discussing min_wal_size, we mentioned that WAL files are recycled; what this
actually means is that older WAL files are renamed so that they are ready to be reused as
future WAL files. This reduces commit latency in case of heavy write workloads, because
creating a new file is slower than writing into an existing one.

Planning backups
This recipe is all about thinking ahead and planning. If you're reading this recipe before
you've decided to take a backup, well done!

The key thing to understand is that you should plan your recovery, not your backup. The
type of backup you take influences the type of recovery that is possible, so you must give
some thought to what you are trying to achieve beforehand.

If you want to plan your recovery, then you need to consider the different types of failure
that can occur. What type of recovery do you wish to perform?

You need to consider the following main aspects:

Full or partial database?
Everything or just object definitions?
Point-In-Time Recovery (PITR)
Restore performance

We need to look at the characteristics of the utilities to understand what our backup and
recovery options are. It's often beneficial to have multiple types of backup to cover the
different types of failure possible.

Backup and Recovery Chapter 11

[430]

Your main backup options are the following:

Logical backup, using pg_dump
Physical backup, which is a filesystem backup

The pg_dump utility comes in two main flavors—pg_dump and pg_dumpall.
The pg_dump utility has a -F option for producing backups in various file formats. The file
format is very important when it comes to restoring from backup, so you need to pay close
attention to it.

As far as physical backup is concerned, in this chapter, we will focus on filesystem backup
using pg_start_backup() and pg_stop_backup(). However, it is important to note that
PostgreSQL has its own built-in application for physical base backups, pg_basebackup,
which relies on the native streaming replication protocol. As authors, in order to distribute
the content more evenly, we have decided to cover pg_basebackup and streaming
replication in the next chapter, that is, Chapter 12, Replication and Upgrades.

How to do it…
The following table shows the features that are available, depending on the backup
technique selected. The details of these techniques are covered in the remaining recipes in
this chapter:

SQL dump to
an archive file:
pg_dump -F
c

SQL dump to a script
file: pg_dump -F p
or pg_dumpall

Filesystem backup
using pg_start_backup
and pg_stop_backup

Backup type Logical Logical Physical
Recover to point in time No No Yes
Zero data loss No No Yes (see note 6)
Back up all databases One at a time Yes (pg_dumpall) Yes
All databases backed up
at the same time No No Yes

Selective backup Yes Yes No (see note 2)
Incremental backup No No Possible (see note 3)
Selective restore Yes Possible (see note 1) No (see note 4)
DROP TABLE recovery Yes Yes Possible (see note 4)
Compressed backup
files Yes Yes Yes

Backup in multiple files No No Yes

Backup and Recovery Chapter 11

[431]

SQL dump to
an archive file:
pg_dump -F
c

SQL dump to a script
file: pg_dump -F p
or pg_dumpall

Filesystem backup
using pg_start_backup

Parallel backup possible No No Yes
Parallel restore possible Yes No Yes
Restore to later release Yes Yes No (but see note 7)
Standalone backup Yes Yes Yes (see note 6)
Allows DDL during
backup No No Yes

The following notes were referenced in the preceding table:

If you've generated a script with pg_dump or pg_dumpall and need to restore1.
just a single object, then you will need to go deeper. You will need to write a Perl
script (or similar) to read the file and extract the parts you want. This is messy
and time-consuming, but probably faster than restoring the whole thing to a
second server and then extracting just the parts you need with another pg_dump.
Selective backup with a physical backup is possible, but will cause problems later2.
when you try to restore.
See the Incremental/differential backup and restore recipe.3.
Selective restore with a physical backup isn't possible with the currently supplied4.
utilities. See the Recovery of a dropped/damaged table recipe for partial recovery.
See the Standalone hot physical database backup recipe.5.
See the Hot physical backups with Barman recipe. Barman 2 fully supports6.
synchronous WAL streaming, allowing you to achieve Recovery Point Objective
(RPO) equal to 0, meaning zero data loss.
A physical backup cannot be directly restored to a different PostgreSQL major7.
version. However, it is possible to restore it to the same PostgreSQL major
version, and then follow the procedure described in the Major upgrades in-place
recipe, in Chapter 12, Replication and Upgrades, to upgrade restored files to a
newer major version.

Hot logical backups of one database
Logical backup makes a copy of the data in the database by dumping the content of each
table, as well as object definitions for that same database (such as schemas, tables, indexes,
views, privileges, triggers, and constraints).

Backup and Recovery Chapter 11

[432]

How to do it…
The command to do this is simple. The following is an example of doing this when using a
database called pgbench:

pg_dump -F c pgbench > dumpfile

Alternatively, you can use the following command:

pg_dump -F c -f dumpfile pgbench

Finally, we note that you can also run pg_dump via the pgAdmin 4 GUI, as shown in the
following screenshot:

How it works…
The pg_dump utility produces a single output file. This output file can use the split
command to separate the file into multiple pieces, if required.

Backup and Recovery Chapter 11

[433]

The pg_dump archive file, also known as the custom format, is lightly compressed by
default. Compression can be removed or made more aggressive.

Even though, by default, pg_dump writes an SQL script directly to
standard output, it is recommended to use the archive file instead by
enabling the custom format through the -F c option. As we will cover
later in this chapter, backing up in the form of archive files gives you more
flexibility and versatility when restoring. Archive files must be used with
a tool called pg_restore.

The pg_dump utility runs by executing SQL statements against the database to unload data.
When PostgreSQL runs a SQL statement, we take a snapshot of transactions that are
currently running, which freezes our viewpoint of the database. The pg_dump utility can
take a parallel dump of a single database using the snapshot export feature.

We can't (yet) share that snapshot across sessions connected to more than one database, so
we cannot run an exactly consistent pg_dump in parallel across multiple databases.

The time of the snapshot is the only moment we can recover to—we can't recover to a time
either before or after. Note that the snapshot time is the start of the backup, not the end.

When pg_dump runs, it holds the very lowest kind of lock on the tables being dumped.
Those are designed to prevent DDL from running against the tables while the dump takes
place. If a dump is run at the point at which other DDLs are already running, then the
dump will sit and wait. If you want to limit the waiting time, you can do so by setting the -
-lock-wait-timeout option.

Since pg_dump runs SQL queries to extract data, it will have some performance impact.
This must be taken into account when executing on a live server.

The pg_dump utility allows you to take a selective backup of tables. The -t option also
allows you to specify views and sequences. There's no way to dump other object types
individually using pg_dump. You can use some supplied functions to extract individual
snippets of information from the catalog.

More details on these functions are available at
https://www.postgresql.org/docs/11/static/functions-info.html#FU

NCTIONS-INFO-CATALOG-TABLE.

The pg_dump utility works against earlier releases of PostgreSQL, so it can be used to
migrate data between releases.

https://www.postgresql.org/docs/11/static/functions-info.html#FUNCTIONS-INFO-CATALOG-TABLE
https://www.postgresql.org/docs/11/static/functions-info.html#FUNCTIONS-INFO-CATALOG-TABLE

Backup and Recovery Chapter 11

[434]

When migrating your database from an earlier version, it is generally
recommended to use pg_dump of the same version of the target
PostgreSQL. For example, if you are migrating a PostgreSQL 10.7
database to PostgreSQL 11, you should use pg_dump v11 to remotely
connect to the 10.7 server and back up the database.

As far as extensions are concerned, pg_dump is aware of any objects (namely tables and
functions) that have been installed as part of an additional package, such as PostGIS or
Slony. Thanks to that, they can be recreated by issuing appropriate CREATE EXTENSION
commands instead of dumping and restoring them together with the other database
objects. Extension support removes such difficulties when restoring from a logical backup,
maintaining the list of additional tables that have been created as part of the software
installation process. Look at the Managing installed extensions recipe in Chapter 3,
Configuration, for more details.

There's more…
What time was pg_dump taken? The snapshot for pg_dump is taken at the beginning of a
backup. The file modification time will tell you when the dump finished. The dump is
consistent at the time of the snapshot, so you may need to know that time.

If you are making a script dump, you can do a verbose dump, as follows:

pg_dump -v

This adds the time to the top of the script. Custom dumps store the start time as well, and
that can be accessed using the following command:

pg_restore --schema-only -v dumpfile 2>/dev/null | head | grep Started
-- Started on 2018-06-03 09:05:46 BST

See also
Note that pg_dump does not dump roles (such as users and groups) and tablespaces. Those
two are only dumped by pg_dumpall; see the following recipes for more detailed
descriptions.

Backup and Recovery Chapter 11

[435]

Hot logical backups of all databases
If you have more than one database in your PostgreSQL server, you may want to take a
logical backup of all of the databases at the same time.

How to do it…
Our recommendation is that you do exactly what you do for one database to each database
in your cluster.

You can run individual dumps in parallel if you want to speed things up.

Once this is complete, dump the global information using the following command:

pg_dumpall -g

How it works…
To back up all databases, you may be told that you need to use the pg_dumpall utility. The
following are four good reasons why you shouldn't do that:

If you use pg_dumpall, the only output produced will be in a script file. Script
files can't benefit from all the features of archive files, such as parallel and
selective restore of pg_restore. By making your backup in this way, you will
immediately deprive yourself of flexibility and versatility at restore time.
The pg_dumpall utility produces dumps of each database, one after another.
This means that pg_dumpall is slower than running multiple pg_dump tasks in
parallel, one against each database.

The dumps of individual databases are not consistent to a
particular point in time. As we pointed out in the Hot logical
backups of one database recipe, if you start the dump at 04:00 and it
ends at 07:00, then you cannot be sure exactly what time the dump
relates to; it could be any time between 04:00 and 07:00.

Options for pg_dumpall and pg_dump are similar in many ways. pg_dump has
more options and therefore gives you more flexibility.

Backup and Recovery Chapter 11

[436]

See also
If you are taking a logical backup of all of your databases for disaster recovery purposes,
you should look at hot physical backup options instead.

Backups of database object definitions
Sometimes, it's useful to get a dump of the object definitions that make up a database. This
is useful for comparing what's in the database against the definitions in a data- or object-
modeling tool. It's also useful to make sure you can recreate objects in the correct schema,
tablespace, and database with the correct ownership and permissions.

How to do it…
The basic command to dump the definitions for every database of your PostgreSQL
instance is as follows:

pg_dumpall --schema-only > myscriptdump.sql

This includes all objects, including roles, tablespaces, databases, schemas, tables, indexes,
triggers, constraints, views, functions, ownerships, and privileges.

If you want to dump PostgreSQL role definitions, use the following command:

pg_dumpall --roles-only > myroles.sql

If you want to dump PostgreSQL tablespace definitions, use the following command:

pg_dumpall --tablespaces-only > mytablespaces.sql

If you want to dump both roles and tablespaces, use the following command:

pg_dumpall --globals-only > myglobals.sql

The output is a human-readable script file that can be re-executed to recreate each of the
databases.

The short form for the --globals-only option is -g, which we have
already seen in a previous recipe, Hot logical backups of all databases. Similar
abbreviations exist for --schema-only (-s), --tablespaces-only (-t),
and --roles-only (-r).

Backup and Recovery Chapter 11

[437]

There's more…
In PostgreSQL, the word schema is also used to organize a set of related objects of a
database in a logical container, similar to a directory. It is also known as a namespace. Be
careful that you don't confuse what is happening here. The --schema-only option makes
a backup of the database schema, that is, the definitions of all objects in the database (and in
all namespaces). To make a backup of the data and definitions in just one namespace and
one database, use pg_dump with the -n option. To make a backup of only the definitions, in
just one namespace and one database, use pg_dump with both -n and --schema-only
together.

You can also take advantage of a previously generated archive file (see the Hot logical
backups of one database recipe) and generate a script file using pg_restore, as follows:

pg_restore --schema-only mydumpfile > myscriptdump.sql

Standalone hot physical database backup
Hot physical backup is an important capability for databases.

Physical backup allows us to get a completely consistent view of the changes to all
databases at once. Physical backup also allows us to back up even while DDL changes are
being executed on the database. Apart from resource constraints, there is no additional
overhead or locking with this approach.

Physical backup procedures used to be slightly more complex than logical backup
procedures, but in version 10, some defaults have been changed, making them easier; after
these changes, making a backup with pg_basebackup has become very easy, even with
default settings.

As specified in the introduction to this chapter, making a backup with pg_basebackup is
covered in Chapter 12, Replication and Upgrades, and in this chapter, we will focus on the
variant of the filesystem backup that uses pg_start_backup() and pg_stop_backup(),
which is the only way to overcome some of the limitations of pg_basebackup, for instance,
if you want an incremental backup or a parallel backup. For similar reasons, this method is
also supported by many advanced backup solutions, such as Barman.

So, let's start with a simple procedure to produce a standalone backup.

Backup and Recovery Chapter 11

[438]

Getting ready
The following steps assume that a number of environment variables have been set, which
are as follows:

$PGDATA is the path to the PostgreSQL data directory, ending with /
All required PostgreSQL connection parameters have been set

These assumptions are not strictly required, but they make the whole procedure simpler
and more readable because we can avoid adding lots of command-line options to specify
the data directory or any connection detail every time we connect to the database.

The initial procedure is step 1 onward. If you are running subsequent backups, start from
step 3.

How to do it…
The steps are as follows:

Create a new backup directory as a sibling of $PGDATA, if it is not already1.
present, as follows:

cd $PGDATA
mkdir ../standalone

Create the archive directory, as follows:2.

mkdir ../standalone/archive

 Start archiving with the following command:3.

pg_receivewal -D ../standalone/archive/

This command will not return, because pg_receivewal will run until
interrupted. Therefore, you must open a new Terminal session to perform the
next steps, starting with step 4.

Backup and Recovery Chapter 11

[439]

First, we described how to configure streaming archiving (steps 2 and 3). For file-
based archiving, follow the alternate steps, 2a and 3a, instead, which are as
follows:

2a: Set archive_command. In postgresql.conf, you will need to
add the following lines and restart the server, or just confirm that
they are present:

archive_mode = on
archive_command = 'test ! -f
../standalone/archiving_active ||
cp -i %p ../standalone/archive/%f'

The last setting is only split into two lines for typesetting reasons;
in postgresql.conf, you must keep it in a single line.

You must also check that wal_level is set to either replica or
logical, which is normally true as replica is the default setting.

3a: Start archiving, as follows:

cd $PGDATA
mkdir ../standalone/archive
touch ../standalone/archiving_active

Irrespective of whether you have chosen streaming archiving or
file-based archiving, you can now proceed with step 4.

Define the name of the backup file. The following example includes time4.
information in the filename:

BACKUP_FILENAME=$(date '+%Y%m%d%H%M').tar

 Start the backup, as follows:5.

psql -c "select pg_start_backup('standalone')"

This step could take a while because PostgreSQL performs a checkpoint
before returning to ensure that the data files copied in the next step include
all of the latest data changes. See the Understanding and controlling crash
recovery recipe from earlier in this chapter for more details about
checkpoints.

Backup and Recovery Chapter 11

[440]

Depending on system configuration and workload, a checkpoint could take a
long time, even several minutes. This time is part of the backup duration,
which in turn affects the amount of WAL files needed for the backup; so it
could be a good idea to reduce the duration of this checkpoint by issuing a
CHECKPOINT command just before archiving is activated in step 3, and then
by starting the backup in fast mode, as follows:

psql -c "select pg_start_backup('standalone', fast := true)"

fast mode means that the checkpoint included in pg_start_backup runs
as quickly as possible, irrespective of its impact on the system; this should
not be a problem because most of the shared buffers will have been written
already by the CHECKPOINT command that was issued previously.

Make a base backup—copy the data files (excluding the content of the pg_wal6.
and pg_wal directories) using the following command:

tar -cv \
--exclude="pg_wal/*" --exclude="pg_replslot/*" \
-f ../standalone/$BACKUP_FILENAME *

Stop the backup, as follows:7.

psql -c "select pg_stop_backup(), current_timestamp"

 If you have followed steps 2 and step 3 (for example, if you are using streaming8.
archiving), stop archiving by hitting Ctrl + C in the Terminal session where
pg_receivewal is running:

8a: Alternatively, if you have chosen steps 2a and 3a (for example, file-
based archiving), enter the standalone directory and stop archiving,
as follows:

rm ../standalone/archiving_active

 Add the archived files to the standalone backup, as follows:9.

cd ../standalone
tar -rf $BACKUP_FILENAME archive

Write a recovery.conf file to recover with:10.

echo "restore_command = 'cp archive/%f %p'" > recovery.conf
echo "recovery_end_command = 'rm -R archive' " >> recovery.conf

Backup and Recovery Chapter 11

[441]

Add recovery.conf to the tar archive, as follows:11.

tar -rf $BACKUP_FILENAME recovery.conf

Clean up:12.

rm -rf archive recovery.conf

Store $BACKUP_FILENAME somewhere safe. A safe place is definitely not on the13.
same server.

This procedure ends with a file named $BACKUP_FILENAME in the standalone directory. It
is imperative to remember to copy it somewhere safe. This file contains everything that you
need to recover, including a recovery parameter file.

How it works…
The backup produced by the preceding procedure only allows you to restore to a single
point in time. That point is the time of the pg_stop_backup() function.

A physical backup takes a copy of all files in the database (step 6—the base backup). That
alone is not sufficient as a backup, and you need the other steps as well. A simple copy of
the database produces a time-inconsistent copy of the database files. To make the backup
time consistent, we need to add all of the changes that took place from the start to the end
of the backup. That's why we have steps 5 and 7 to bracket our backup step.

In technical terms, steps 5 and 7 take advantage of the API that controls exclusive backups,
meaning that there can only be one physical backup at a time, and it has to be performed on
a master server.

PostgreSQL supports non-exclusive backups as well, allowing users to perform
pg_start_backup() and pg_stop_backup() functions on a read-only standby server. To
make a backup non-exclusive, just add the exclusive := false parameter to those
functions. However, programming backup scripts for the non-exclusive backup method is
more complex and it is not covered in this recipe.

Backup and Recovery Chapter 11

[442]

The changes that are made are put in the standalone/archive directory as a set of archived
transaction log or WAL files. Steps 2 and 3 start streaming archiving, while the alternate
steps, 2a and 3a, set the parameters that copy the files to the archive and start file-based
archiving. Note that changing archive_mode requires us to restart the database server, so
we use a well-known trick to avoid restarting while switching archiving on and
off; archive_command is conditional upon the existence of a file named
archiving_active, whose presence enables or disables the archiving process.

Note that these are just two of the possible ways to configure archiving, so PostgreSQL
doesn't always need to work this way. Steps 3 and 8 enable and disable archiving,
respectively, so we only store copies of the WAL files created during the period of the
backup. Hence, steps 1 and 2 are setup and steps 3 to 9 are where the backup happens. Step
10 onward is gift wrapping, so that the backup script ends with everything in one neat file
and proper cleanup operations take place.

Step 9 appends the WAL files to the backup file so that it is just one file.

Steps 10 and 11 add a recovery.conf file with its parameters set up so that there are no
manual steps when we recover from this backup. This is explained in detail in the Recovery
of all databases recipe.

In case your PGDATA does not contain configuration files, such as postgresql.conf and
pg_hba.conf, you might have to manually copy them before performing a recovery.
Remember that standard Debian and Ubuntu installations keep configuration files outside
PGDATA, specifically under /etc/postgresql.

The important thing to understand in this recipe is that we need both the base backup and
the appropriate archived WAL files to allow us to recover. Without both of these, we have
nothing. Most of these steps are designed to ensure that we really will have the appropriate
WAL files in all cases.

There's more…
One advantage of file-based WAL archiving is that it works in a push mode, without
requiring inbound access to the database server. On the other hand, streaming WAL
archiving has the advantage of transferring WAL as soon as it is produced, without waiting
for the 16 MB WAL segment to be completed, which usually results in little or no data loss,
even in the event of a disaster.

Backup and Recovery Chapter 11

[443]

In summary, neither choice is superior to the other one, so we opted for documenting both.
PostgreSQL ships a command-line utility called pg_basebackup, which uses the streaming
replication infrastructure to carry out steps 4 to 6, as reported previously.

As an alternative, it is simpler than using rsync and issuing pg_start_backup() and
pg_stop_backup() manually, but it's not a complete replacement because it has some
limitations and restrictions.

If you want to make your life easier, you can rely on software that is specialized in backup
and recovery. In this book, we will cover software that we at 2ndQuadrant have written
and that has become very popular among PostgreSQL users: Barman. This open source tool
is covered in two recipes—Hot physical backups with Barman and Recovery with Barman.

See also
It's common to use continuous archiving when using the physical backup technique
because this allows you to recover to any point in time, should you need that.

Hot physical backup and continuous
archiving
This recipe describes how to set up a hot physical backup with a continuous archiving
mechanism. The purpose of continuous archiving is to allow us to recover to any point in
time after the completion of the backup.

Manually performing each step of this procedure is a great way to gain a clear
understanding of PostgreSQL's backup and restore infrastructure. However, to reduce the
chances of human errors, it is good practice to avoid reliance on complex activities that
must be performed by a human operator.

Procedures such as taking a hot physical backup or restoring it up to a given point in time
can be performed using specialized third-party tools such as the following:

Barman: http:/ / www. pgbarman. org/

OmniPITR: https:/ / github. com/ omniti- labs/ omnipitr

PgBackRest: http:/ /www. pgbackrest. org/

PgHoard: https:/ /github. com/ ohmu/ pghoard

WAL-E: https:/ /github. com/ wal-e/ wal-e

http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
https://github.com/omniti-labs/omnipitr
http://www.pgbackrest.org/
http://www.pgbackrest.org/
http://www.pgbackrest.org/
http://www.pgbackrest.org/
http://www.pgbackrest.org/
http://www.pgbackrest.org/
http://www.pgbackrest.org/
http://www.pgbackrest.org/
http://www.pgbackrest.org/
http://www.pgbackrest.org/
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/ohmu/pghoard
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e
https://github.com/wal-e/wal-e

Backup and Recovery Chapter 11

[444]

Being the creators and developers of Barman, our preference goes with this tool. However,
we strongly advise that you to look at each of the aforementioned tools and make your own
decision based on your needs. If you are interested in Barman, you can read two recipes
later in this chapter—Hot physical backups with Barman and Recovery with Barman.

Getting ready
This recipe builds upon the previous recipe, Standalone hot physical database backup. You
should read that before following this recipe.

Before starting, you need to decide on a few things:

Where will you store the WAL files (known as the archive)?
How will you send WAL files to the archive?
Where will you store your base backups?
How will you take base backups?
How many backups (also known as retention policies) will you keep?
What is your policy for maintaining the archive?

These are hard questions to answer immediately. So, we will give a practical example as a
way of explaining how this works, and then let you decide how you would like it to
operate.

How to do it…
The rest of this recipe assumes the following answers to the key questions:

The archive is a directory, such as /backups/archive, on a remote server for
disaster recovery named $DRNODE
We send WAL files to the archive using rsync; however, WAL streaming can
also be used by changing the recipe in a way similar to the previous one
Base backups are also stored on $DRNODE, in the /backups/base directory
Base backups are made using rsync

The following steps assume that a number of environment variables have been set, which
are as follows:

$PGDATA is the path to the PostgreSQL data directory, ending with /
$DRNODE is the name of the remote server

Backup and Recovery Chapter 11

[445]

$BACKUP_NAME is an identifier for the backup
All the required PostgreSQL connection parameters have been set

We also assume that the PostgreSQL user can connect via SSH to the backup server from
the server where PostgreSQL is running, without having to type a passphrase. This
standard procedure is described in detail in several places, including Barman's
documentation at http:/ /docs. pgbarman. org/ .

The procedure is as follows:

Create the archive and backup directories on a backup server.1.
Set archive_command. In postgresql.conf, you will need to add the2.
following lines and restart the server or just confirm that they are present:

archive_mode = on
archive_command = 'rsync -a %p $DRNODE:/archive/%f'

Define the name of the backup, as follows:3.

BACKUP_NAME=$(date '+%Y%m%d%H%M')

Start the backup, as follows:4.

psql -c "select pg_start_backup('$BACKUP_NAME')"

Copy the data files (excluding the content of the pg_wal directory), like this:5.

rsync -cva --inplace -exclude='pg_wal/*' \
${PGDATA}/ $DRNODE:/backups/base/$BACKUP_NAME/

Stop the backup, as follows:6.

psql -c "select pg_stop_backup(), current_timestamp"

It's also good practice to put a README.backup file in the data directory prior to the backup
so that it forms part of the set of files that make up the base backup. This should say
something intelligent about the location of the archive, including any identification
numbers, names, and so on.

Notice that we didn't put recovery.conf in the backup this time. That's because we're
assuming we want flexibility at the time of recovery, rather than a gift-wrapped solution.
The reason for that is that we don't know when, where, or how we will be recovering, nor
do we need to make that decision yet.

http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/

Backup and Recovery Chapter 11

[446]

How it works…
The key point here is that we must have both the base backup and the archive in order to
recover. Where you put them is entirely up to you. You can use any filesystem backup
technology and/or filesystem backup management system to do this.

Many backup management systems have claimed that they have a PostgreSQL interface or
plugin, but most of the time they only support logical backups. However, there's no need
for them to officially support PostgreSQL; no Runs on PostgreSQL badge or certification is
required. If you can copy files, then you can run the preceding processes to keep your
database safe.

In the event that the network or backup server goes down, then the command will begin to
fail. When the archive_command fails, it will repeatedly retry until it succeeds.

You can monitor the status of archive_command and get current statistics through the
pg_stat_archiver view in the catalog.

PostgreSQL does not remove WAL files from pg_wal directory until they have been
successfully archived, so the end result is that your pg_wal directory fills up. It's a good
idea to have an archive_command that reacts better to that condition, though this is left as
an improvement for the sys admin. A typical action is to make it an emergency callout so
that we can resolve the problem manually. Automatic resolution is difficult to get right, as
this condition is one for which it is hard to test.

While continuously archiving, we will generate a considerable number of WAL files. If
archive_timeout is set to 30 seconds, we will generate a minimum of 2*60*24 = 2,880 files
per day, with each being 16 MB in size. This amounts to a total volume of 46 GB per day
(minimum).

With a reasonable transaction rate, a database server might generate 100 GB of archive data
per day. Use this as a rough figure for calculations until you get actual measurements. Of
course, the rate could be much higher, with rates of 1 TB per day or higher being possible.

Clearly, we would only want to store WAL files that are useful for backup, so when we
decide that we no longer wish to keep a backup, we will also want to remove files from the
archive. In each base backup, you will find a file called backup_label. The earliest WAL
file that's required by a physical backup is the filename we mentioned in the first line of the
backup_label file. We can use a contrib module called pg_archive_cleanup to
remove any WAL files that were created earlier than the earliest file.

Backup and Recovery Chapter 11

[447]

Recovery of all databases
Recovery of a complete database server, including all of its databases, is an important
feature. This recipe covers how to execute a recovery in the simplest way possible.

Some complexities are discussed here, though most are covered in later recipes.

Getting ready
Find a suitable server on which to perform the restore.

Before you recover onto a live server, always make another backup. Whatever problem you
thought you had could get worse if you aren't prepared.

How to do it…
Here, we'll provide four distinct examples, depending on what type of backup was taken.

Logical – from custom dump taken with pg_dump -F c
The procedure is as follows:

Restoring of all databases means simply restoring each individual database from1.
each dump you took. Confirm that you have the correct backup before you
restore:

pg_restore --schema-only -v dumpfile | head | grep Started

Reload the global objects from the script file, as follows:2.

psql -f myglobals.sql

Reload all databases. Create the databases using parallel tasks to speed things up.3.
This can be executed remotely without the need to transfer dump files between
systems. Note that there is a separate dumpfile for each database:

pg_restore -C -d postgres -j 4 dumpfile

Backup and Recovery Chapter 11

[448]

Logical – from the script dump created by pg_dump -F
p
As in the previous method, this can be executed remotely without needing to transfer
dumpfile between systems:

Confirm that you have the correct backup before you restore. If the following1.
command returns nothing, then it means that the file is not timestamped, and
you'll have to identify it in a different way:

head myscriptdump.sql | grep Started

Reload the globals from the script file, as follows:2.

psql -f myglobals.sql

Reload all scripts, as follows:3.

psql -f myscriptdump.sql

Logical – from the script dump created by pg_dumpall
In order to recover a full backup generated by pg_dumpall, you need to execute the
following steps on a PostgreSQL server that has just been initialized:

Confirm that you have the correct backup before you restore. If the following1.
command returns nothing, then it means that the file is not timestamped, and
you'll have to identify it in a different way:

head myscriptdump.sql | grep Started

Reload the script in full:2.

psql -f myscriptdump.sql

Physical
The steps for this method are as follows:

If you've following the Standalone hot physical database backup recipe, then1.
recovery is very easy. Restore the backup file in the target server.
Extract the backup file to the new data directory.2.

Backup and Recovery Chapter 11

[449]

Confirm that you have the correct backup before you restore:3.

$ cat backup_label
START WAL LOCATION: 0/12000020 (file 000000010000000000000012)
CHECKPOINT LOCATION: 0/12000058
START TIME: 2018-06-03 19:53:23 BST
LABEL: standalone

Verify that all file permissions and ownerships are correct and that the links are4.
valid. This should already be the case if you are using the Postgres user ID
everywhere, which is recommended.
Start the server.5.

This procedure is so simple because, in the Standalone hot physical database backup recipe, we
gift-wrapped everything for you. That also helped you to understand that you need both a
base backup and the appropriate WAL files.

If you've used other techniques, then you need to step through the tasks to make sure you
cover everything required, as follows:

Shut down any server running in the data directory.1.
Restore the backup so that any files in the data directory that have matching2.
names are replaced with the version from the backup. (The manual says, delete all
files and then restore the backup. You could speed up the recovery operation
reusing the existing data directory, but unless you are familiar with rsync we
recommend going by the book. You can look at the source code of Barman for an
example, or otherwise simply use it.) Remember that this step can be performed
in parallel to speed things up, though it is up to you to script that.
Ensure that all file permissions and ownerships are correct and that the links are3.
valid. This should already be the case if you are using the Postgres user ID
everywhere, which is recommended.
Remove any files that are in pg_wal/. If you've been following our recipes, you'll4.
be able to skip this step because they were never backed up in the first place.
Add a recovery.conf file and set its file permissions correctly.5.
Start the server.6.

The only part that requires some thought and checking is selecting which parameters to use
for the recovery.conf file. There's only one that matters here, and that is
restore_command.

restore_command tells us how to restore archived WAL files. It needs to be the command
that will be executed to bring back WAL files from the archive.

Backup and Recovery Chapter 11

[450]

If you have been thinking ahead, there'll be a README.backup file for you to read to find
out how to set restore_command. If it is not there, then presumably you've got the location
of the WAL files you've been saving written down somewhere. Say, for example, that your
files are being saved to a directory named /backups/pg/servername/archive, owned
by the Postgres user.

On a remote server named backup1, we would then write all of this on one line of the
recovery.conf file, as follows:

restore_command = 'scp backup1:/backups/pg/servername/archive/%f
 %p'

How it works…
PostgreSQL is designed to require very minimal information to perform a recovery. We'll
try to wrap all of the details up for you:

Logical recovery: This recreates database objects by executing SQL statements. If
performance is an issue, look at the Improving performance of backup/recovery
recipe.
Physical recovery: This reapplies data changes at the block level, and so tends to
be much faster than logical recovery. It requires both a base backup and a set of
archived WAL files.

There is a file named backup_label in the data directory of the base backup. If you want
to know the start and stop WAL locations of the base backup, look for a .backup file in the
archive.

Recovery then starts to apply changes from the starting WAL location, and it must proceed
as far as the stop address for the backup to be valid.

After the recovery is complete, the recovery.conf file is renamed to recovery.done to
prevent the server from re-entering recovery in case of a restart.

The server log records each WAL file restored from the archive, so you can check their
progress and rate of recovery. You can query the archive to find the name of the latest
restored WAL file so that you can calculate how many files are left to recover.

Backup and Recovery Chapter 11

[451]

restore_command should return 0 if a file has been restored and non-zero for cases of
failure. Recovery will proceed until there are no more WAL files remaining, so eventually
there will be an error recorded in the logs.

If you have lost some of the WAL files, or they are damaged, then recovery will stop at that
point. No further changes after that will be applied, and you will likely lose those changes.
This would be the time to call your support vendor.

There's more…
You can start and stop the server once recovery has started without any problems. It will
not interfere with the recovery.

You can connect to the database server while it is recovering and run queries, if that is
useful. This is known as hot standby mode and is discussed in Chapter 12, Replication and
Upgrades.

See also
Once the recovery reaches the stop address, you can stop it at any point, as
discussed in the Recovery to a point in time recipe
The procedure described in this recipe is covered by the command-line utility,
Barman, which is mentioned in the Hot physical backup and continuous archiving
recipe

Recovery to a point in time
If your database suffers a problem at 3:22 p.m and your backup was taken at 4:00 a.m,
you're probably hoping there is a way to recover the changes made between those two
times. What you need is known as Point-in-Time Recovery (PITR).

Regrettably, if you've made a backup with the pg_dump utility at 4:00 a.m, then you won't
be able to recover to any other time. As a result, the term PITR has become synonymous
with the physical backup and restore technique in PostgreSQL.

Backup and Recovery Chapter 11

[452]

Getting ready
If you have a backup made with pg_dump utility, then give up all hope of using that as a
starting point for a PITR. It's a frequently asked question, but the answer is still no. The
reason it gets asked is exactly why we are pleading with you to plan your backups ahead of
time.

First, you need to decide from what point in time you would like to recover. If the answer is
as late as possible, then you don't need to do a PITR at all—just recover until the end of the
logs.

How to do it…
How do you decide at what point to recover to? The point where we stop recovery is
known as the recovery target. The most straightforward way is to do this based on a
timestamp.

In the recovery.conf file, you can add (or uncomment) a line that says the following or
something similar:

recovery_target_time = '2018-06-01 16:59:14.27452+01'

Note that you need to be careful to specify the time zone of the target so that it matches the
time zone of the server that wrote the log. That might differ from the time zone of the
current server, so be sure to double-check them.

After that, you can check the progress during a recovery by running queries in hot standby
mode. By default, when hot standby mode is enabled, the recovered server is paused once
the target is reached. You can change this behavior with the recovery_target_action
option in the recovery.conf file, as discussed in the Delaying, pausing, and synchronizing
replication recipe in Chapter 12, Replication and Upgrades.

How it works…
Recovery works by applying individual WAL records. These correspond to individual
block changes, so there are many WAL records for each transaction. The final part of any
successful transaction is a commit WAL record, though there are abort records as well.
Each transaction completion record has a timestamp that allows us to decide whether or
not to stop at that point.

Backup and Recovery Chapter 11

[453]

You can also define a recovery target using a transaction ID (xid), though finding out
which xid to use is somewhat difficult, and you may need to refer to external records, if
they exist. Using a Log Sequence Number (LSN) is also possible, and equally tricky; in
both cases, you can get an idea of what transaction IDs, or LSN, to use, by inspecting the
contents of a given WAL file with the pg_waldump utility, which is part of PostgreSQL.

Another practical way, which rarely applies after an unexpected disaster, is to define a
recovery target with a label, formally known as a named restore point. A restore point is
created with the pg_create_restore_point() function, and requires superuser
privileges. For example, let's you have to perform a critical update of part of the data in
your database. As a precaution, before you start the update, you can execute the following
query as a superuser:

SELECT pg_create_restore_point('before_critical_update');

Then, you can use the before_critical_update label in the recovery_target_name
option.

Finally, you can simply stop as soon as the recovery process becomes consistent by
specifying recovery_target = 'immediate' in place of any other recovery target
parameter.

The recovery target is specified in the recovery.conf file and cannot change while the
server is running. If you want to change the recovery target, you can shut down the server,
edit recovery.conf, and then restart the server. Be careful, however; if you change the
recovery target and recovery is already past the new point, it can lead to errors. If you
define a recovery_target_timestamp that has already been passed, then the recovery
will stop almost immediately, though this will be after the correct stopping point. If you
define a recovery_target_xid or recovery_target_name that has already been
passed, then the recovery will just continue until the end of the logs. Restarting a recovery
from the beginning using a fresh restore of the base backup is always the safest option.

Once a server completes the recovery, it will assign a new timeline. Once a server is fully
available, we can write new changes to the database. Those changes might differ from the
changes we made in a previous future history of the database. So, we differentiate between
alternate futures using different timelines. If we need to go back and run the recovery
again, we can create a new server history using the original or subsequent timelines. The
best way to think about this is that it is exactly like a Sci-Fi novel – you can't change the
past, but you can return to an earlier time and take a different action instead. However,
you'll need to be careful not to get confused.

Backup and Recovery Chapter 11

[454]

There's more…
The pg_dump utility cannot be used as a base backup for a PITR. The reason for this is that a
log replay contains the physical changes to data blocks, not the logical changes based on
primary keys. If you reload the pg_dump utility, the data will likely go back into different
data blocks, so the changes won't correctly reference the data.

WAL files don't contain enough information to fully reconstruct all of the SQL that
produced those changes. Later feature additions to PostgreSQL may add the required
information to WAL files. It will be very interesting and exciting to follow how logical
replication evolves in the future.

The timeline is a 32-bit integer which constitutes the first eight characters in the name of a
WAL file; changing timeline therefore means using a new series of file names. There are
cases where this is important; for instance, if you restore a backup and start that server
while the original server is still running, then it's convenient that both servers archive the
WAL they produce without disturbing each other. In other words, if you made a backup,
then you want to be able to restore it as many times as you want, and you don't want that
the restored instances overwriting some files in the original backup.

See also
PostgreSQL can pause, resume, and stop recovery while the server is up dynamically. This
allows you to use the hot standby facility to locate the correct stopping point more easily.
You can trick hot standby into stopping recovery, which may help. See the Delaying,
pausing, and synchronizing replication recipe in Chapter 12, Replication and Upgrades, on
managing hot standby. This procedure is also covered by the command-line utility Barman,
as mentioned in the Hot physical backup and continuous archiving recipe.

You can use the pg_waldump utility to print the content of WAL files in a human-readable
way. This can be very valuable to locate the exact transaction ID, or timestamp, or when a
certain change was committed, for instance, if we want to stop recovery exactly before that.
pg_waldump is part of PostgreSQL and is described here: https:/ /www. postgresql. org/
docs/11/static/pgwaldump. html.

https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html
https://www.postgresql.org/docs/11/static/pgwaldump.html

Backup and Recovery Chapter 11

[455]

Recovery of a dropped/damaged table
You may drop or even damage a table in some way. Tables could be damaged for physical
reasons, such as disk corruption, or they could also be damaged by running poorly
specified UPDATE or DELETE commands, which update too many rows or overwrite critical
data.

Recovering from this backup situation is a common request.

How to do it…
The methods to this approach differ, depending on the type of backup you have available.
If you have multiple types of backup, you have a choice.

Logical – from custom dump taken with pg_dump -F c
If you've taken a logical backup using the pg_dump utility in a custom file, then you can
simply extract the table you want from the dumpfile, like so:

pg_restore -t mydroppedtable dumpfile | psql

Alternatively, you can directly connect to the database using -d. If you use this option, then
you can allow multiple jobs in parallel with the -j option.

When working with just one table, as in this case, this is useful only if there are things that
can be done at the same time, that is, if the table has more than one index and/or constraint.
More details about parallel restore are available in the Improving performance of
backup/recovery recipe, later in this chapter.

Note that PostgreSQL can also use multiple jobs when creating single B-Tree indexes. This
is controlled by an entirely different set of parameters; see the Maintaining indexes recipe in
Chapter 9, Regular Maintenance, for more details.

The preceding command tries to recreate the table and then load data into it. Note that the
pg_restore -t option does not dump any of the indexes on the selected table. This means
that we need a slightly more complex procedure than would first appear, and the
procedure needs to vary depending on whether we are repairing a damaged table or
putting back a dropped table.

Backup and Recovery Chapter 11

[456]

To repair a damaged table, we want to replace the data in the table in a single transaction.
There isn't a specific option to do this, so we need to do the following:

Dump the data of the table (the -a option) to a script file, as follows:1.

pg_restore -a -t mydamagedtable dumpfile > mydamagedtable.sql

Edit a script named repair_mydamagedtable.sql with the following code:2.

BEGIN;
TRUNCATE mydamagedtable;
\i mydamagedtable.sql
COMMIT;

Then, run it using the following command:3.

psql -f repair_mydamagedtable.sql

If you've already dropped a table, then you need to perform these steps:

Create a new database in which to work and name it restorework, as follows:1.

CREATE DATABASE restorework;

Restore the complete schema (-s option) to the new database, like this:2.

pg_restore -s -d restorework dumpfile

Now, dump only the definitions of the dropped table in a new file. It will contain3.
CREATE TABLE, indexes, and other constraints and grants. Note that this
database has no data in it, so specifying -s is optional, as follows:

pg_dump -t mydroppedtable -s restorework > mydroppedtable.sql

Now, recreate the table on the main database:4.

psql -f mydroppedtable.sql

Now, reload only the data into the maindb database:5.

pg_restore -t mydroppedtable -a -d maindb dumpfile

If you've got a very large table, then the fourth step can be a problem because it builds
indexes as well. If you want, you can manually edit the script in two pieces—one before the
load (preload) and one after the load (postload). There are some ideas for that at the end of
this recipe.

Backup and Recovery Chapter 11

[457]

Logical – from the script dump
Once you have located the PostgreSQL server on which you will prepare and verify the
data to restore (the staging server), you can proceed like so:

Reload the script in full on the staging server, as follows:1.

psql -f myscriptdump.sql

From the recovered database server, dump the table, its data, and all of the2.
definitions of the dropped table into a new file:

pg_dump -t mydroppedtable -F c mydatabase > dumpfile

Now, recreate the table in the original server and database, using parallel tasks to3.
speed things up (here, we will pick two parallel jobs as an example):

pg_restore -d mydatabase -j 2 dumpfile

The last step can be executed remotely without having to transfer
dumpfile between systems. Just add connection parameters to
pg_restore, as in the following example:
pg_restore -h remotehost -U remoteuser ...

The only way to extract a single table from a script dump without doing all of the
preceding steps is to write a custom script to read and extract only those parts of the file
that you want. This can be complicated because you may need certain SET commands at
the top of the file, the table, and data in the middle of the file, and the indexes and
constraints on the table are near the end of the file. Writing a custom script can be very
complex. The safer route is to follow the recipe we just described.

Physical
To recover a single table from a physical backup, you first need to recreate a PostgreSQL
server from scratch, usually in a confined environment. Typically, this server is called
the recovery server, if dedicated to recovery drills and procedures, or the staging server, if
used for a broader set of cases including testing. Then, you need to proceed as follows:

Recover the database server in full, as described in the previous recipes on1.
physical recovery, including all databases and all tables. You may wish to stop at
a useful point in time, in which case you can look at the Recovery to a point in time
recipe later in this chapter.

Backup and Recovery Chapter 11

[458]

From the recovered database server, dump the table, its data, and all the2.
definitions of the dropped table into a new file, as follows:

pg_dump -t mydroppedtable -F c mydatabase > dumpfile

Now, recreate the table in the original server and database using parallel tasks to3.
speed things up. This can be executed remotely without needing to transfer
dumpfile between systems:

pg_restore -d mydatabase -j 2 dumpfile

How it works…
Restoring a single table from a logical backup is relatively easy, as each logical object is
backed up separately from the others, and its data and metadata can be filtered out.

However, a physical backup is composed of a set of binary data files, in a complex storage
format that can be interpreted by a PostgreSQL engine.

This means that the only way to extract individual objects from it, at present, is to restore
the backup on a new instance, and then make a logical dump, as explained in the previous
recipe: there's no way to restore a single table from a physical backup in just a single step.

See also
The pg_dump and pg_restore utilities are able to split the dump into three parts: pre-data,
data, and post-data. Both commands support a section option that's used to specify which
section(s) should be dumped or reloaded.\

Recovery of a dropped/damaged database
Recovering a complete database is also required sometimes. It's actually a lot easier than
recovering a single table. Many users choose to place all of their tables in a single database;
in that case, this recipe isn't relevant.

Backup and Recovery Chapter 11

[459]

How to do it…
The methods differ, depending on the type of backup you have available. If you have
multiple types of backup, you have a choice.

Logical – from the custom dump -F c
Recreate the database in the original server using parallel tasks to speed things along. This
can be executed remotely without needing to transfer dumpfile between systems, as
shown in the following example, where we use the -j option to specify four parallel
processes:

pg_restore -h myhost -d postgres --create -j 4 dumpfile

Logical – from the script dump created by pg_dump
Recreate the database in the original server. This can be executed remotely without needing
to transfer dump files between systems, as shown here, where we must create the empty
database first:

createdb -h myhost myfreshdb
psql -h myhost -f myscriptdump.sql myfreshdb

Logical – from the script dump created by pg_dumpall
There's no easy way to extract the required tables from a script dump. You need to operate
on a separate PostgreSQL server for recovery or staging purposes, and then follow these
steps:

Reload the script in full, as follows:1.

psql -f myscriptdump.sql

Once the restore is complete, you can dump the tables in the database by2.
following the Hot logical backups of one database recipe.
Now, recreate the database on the original server, as described for logical dumps3.
earlier in this recipe.

Backup and Recovery Chapter 11

[460]

Physical
To recover a single database from a physical backup, you need to work on a separate
PostgreSQL server (for recovery or staging purposes), and then you must follow these
steps:

Recover the database server in full, as described in the previous recipes on1.
physical recovery, including all databases and all tables. You may wish to stop at
a useful point in time, in which case you can look at the Recovery to a point in time
recipe, earlier in this chapter.
Once the restore is complete, you can dump the tables in the database by2.
following the Hot logical backups of one database recipe.
Now, recreate the database on the original server, as described for logical dumps3.
earlier in this recipe.

Improving performance of backup/recovery
Performance is often a concern in any medium-sized or large database.

Backup performance is often a delicate issue, because resource usage may need to be
limited to remain within certain boundaries. There may also be a restriction on the
maximum runtime for the backup, for example, a backup that runs every Sunday.

Again, restore performance may be more important than backup performance, even if
backup is the more obvious concern.

Getting ready
If performance is a concern or is likely to be, then you should read the Planning backups
recipe first.

Backup and Recovery Chapter 11

[461]

How to do it…
Backup and restore performance can be improved in different ways, depending on the
backup type:

Physical backup: Improving the performance of a physical backup can be done
by performing the backup in parallel and copying the files using more than one
task. The more tasks you use, the more it will impact the current system. When
backing up, you can skip certain files. You won't need the following:

Any files placed in the data directory by DBA that shouldn't
actually be there
Any files in pg_wal
Any old server log files in pg_log (even the current one)

Remember, it's safer not to try to exclude files at all because, if you miss
something critical, you may end up with data loss. Also, remember that your
backup speed may be bottlenecked by your disks or your network. Some larger
systems have dedicated networks in place, solely for backups.

Logical backup: As explained in a Recovery of a dropped/damaged database
recipe, if you want to back up all databases in a database server, then you should
use multiple pg_dump tasks running in parallel. You may want to increase the
dump speed of a pg_dump task, but there really isn't an easy way of doing that
right now. If you're using compression, look at the There's more... section at the
end of this recipe.
Physical restore: Just like the physical backup, it's possible for us to put
everything back quicker if we use parallel copy, which is able to speed things up
by automatically reusing existing files.
Logical restore: Whether you use psql or pg_restore, you can speed up the
program by assigning maintenance_work_mem = 128MB or more, either in
postgresql.conf or on the user that will run the restore. If neither of those
ways is easily possible, you can specify the option using the PGOPTIONS
environment variable, as follows:

export PGOPTIONS ="-c work_mem = 128000"

This will then be used to set that option value for subsequent connections.

Backup and Recovery Chapter 11

[462]

If you are running archiving or streaming replication then transaction log writes may
become a problem. This can be mitigated by increasing the size of the WAL buffer and
making checkpoints less frequent for the duration of the recovery operation. Set
wal_buffers between 16 MB and 64 MB, and set max_wal_size to a large value such as
20 GB so that it has room to breathe.

If you aren't running archiving or streaming replication, or you've turned it off during the
restore, then you'll be able to minimize the amount of transaction log writes. In that case,
you may wish to use the single transaction option, as that will also help to improve
performance.

If pg_dump was made using -F c (custom format), then we can restore in parallel, as
follows:

pg_restore -j NumJobs

You'll have to be careful about how you select the degree of parallelism to use. A good
starting point is the number of CPUs of the server. Be very careful that you don't overflow
the available memory when using parallel restore. Each job will use memory up to the
value of maintenance_work_mem, so the whole restore could begin swapping when it hits
larger indexes later in the restore. Plan the size of shared_buffers and
maintenance_work_mem according to the number of jobs specified.

Whatever you do, make sure that you run ANALYZE afterwards on every object that was
created. This will happen automatically if autovacuum is enabled. It often helps to disable
autovacuum completely while running a large restore, so double-check that you have it
switched on again after the restore. The consequence of skipping this step will be extremely
poor performance when you start your application again, which can easily make everybody
panic.

How it works…
A physical backup and restore is completely up to you. Copy those files as fast as you like
and in any way you like. Put them back in the same way or a different way.

Logical backup and restore involves moving data out of and into the database. That's
typically going to be slower than physical backup and restore. Particularly with a restore,
rebuilding indexes and constraints takes time, even when run in parallel. Plan ahead and
measure the performance of your backup and restore techniques so that you have a chance
when you need your database back in a hurry.

Backup and Recovery Chapter 11

[463]

There's more…
Compressing backups is often considered as a way to reduce the size of the backup for
storage. Even mild compression can use large amounts of CPU. In some cases, this might
offset network transfer costs, so there isn't any hard rule as to whether compression is
always good.

Compression for WAL files from physical backups is a common practice. Physical backups
can be compressed in various ways, depending on the exact backup mechanism used. By
default, the custom dump format for logical backups will be compressed. Even when
compressed, the objects can be accessed individually if required.

Using --compress with script dumps will result in a compressed text file, just as if you
had dumped the file and then compressed it. Access to individual tables is not possible.

Using multiple processes is known as pipeline parallelism. If you're using a physical
backup, then you can copy the data in multiple streams, which also allows you to take
advantage of parallel compression/decompression.

See also
If taking a backup is an expensive operation, then a way around this is to take the backup
from a replica instead, which offloads the cost of the backup operation away from the
master. Look at the recipes in Chapter 12, Replication and Upgrades, to see how to set up a
replica.

Incremental/differential backup and restore
If you have performance problems with a backup of a large PostgreSQL database, then you
may consider incremental or differential backups.

An incremental backup is a backup of all files that have changed since the last backup,
either incremental or full. In order to restore a given incremental backup, you must restore
the full backup and then all of the incremental backups in-between.

A differential backup is a backup of all individual changes since the last full backup. In
order to restore a differential backup, you only need that backup and the full backup it
refers to.

Backup and Recovery Chapter 11

[464]

How to do it…
To perform a differential physical backup, you can use rsync to compare the existing files
against the previous full backup and then overwrite only the changed data blocks. It's a bad
plan to overwrite your last backup because, if the new backup fails, you are left without
backups. Therefore, keep two or more copies. An example backup schedule is as follows:

Day of the week Backup set 1 Backup set 2
Sunday New full backup to set 1 New full backup to set 2
Monday Differential to set 1 Differential to set 2
Tuesday Differential to set 1 Differential to set 2
Wednesday Differential to set 1 Differential to set 2
Thursday Differential to set 1 Differential to set 2
Friday Differential to set 1 Differential to set 2
Saturday Differential to set 1 Differential to set 2

You should keep at least two full backup sets.

Many large databases have tables that are insert-only. In that case, it's easy to store parts of
those tables. If the tables are partitioned by insertion date, creation date, or a similar field, it
makes our task much simpler. Either way, you're still going to need a good way of
recording which data is where in your backup.

In general, there's no easy way to run a differential backup using pg_dump.

How it works…
PostgreSQL doesn't explicitly keep track of the last changed date or similar information for
a file or table. PostgreSQL tables are held as files, so you should be able to rely on the
modification time (mtime) of the files on the filesystem.

Another problem with this approach is that filesystem timestamps might not have a
resolution that is sufficiently granular to separate all changes. This means that some
additional verification, such as computing a checksum, is required to confirm that two files
with the same mtime are indeed identical. If, for this or some other reason, you don't trust
mtime, or it has been disabled, then incremental and differential backups are not for you.

Backup and Recovery Chapter 11

[465]

The pg_dump utility doesn't allow WHERE clauses to be specified, so even if you add your
own columns to track last_changed_date, you'll still need to manually perform that
somehow.

There's more…
The article at http:/ /en. wikipedia. org/ wiki/Backup_ rotation_ scheme gives further
useful information on this.

When thinking about incremental backups, you should note that replication techniques
work by continually applying changes to a full backup. This could be considered a
technique for an incremental updated backup, also known as an incremental forever backup
strategy. The changes are applied ahead of time so that you can restore easily and quickly.
You should still take a backup, but you can take it from the replication standby instead.

It's possible to write a utility that takes a differential backup of data blocks. You can read
each data block and check the block's LSN to see whether it has changed in comparison to a
previous copy. This is similar to the approach followed by pgBackRest.

In the Hot physical backup and continuous archiving recipe, we discussed using third-party
backup and recovery software. All of the tools we mentioned support compression of WAL
files by invoking popular general-purpose compression utilities such as bzip2, gzip, and
lzh directly on WAL files. This is safe and does not increase the actual risk of data loss.
Such utilities have been extensively used for many years, and all serious bugs have been
ironed out.

The pg_rman and pgBackRest utilities can also read changed data pages and interpret
their contents, for instance, to compress them using detailed knowledge of the internals of
PostgreSQL's data page format, or for deciding whether to include the page in an
incremental/differential backup. Any bugs that exist there could cause data loss in your
backups, and issues with third-party tools aren't resolved by the main PostgreSQL project.
This is why we personally advise against using third-party software that operates on
individual data pages without a formal support contract. Various companies support this;
ask them.

In order to avoid taking those risks, the Barman utility follows the opposite approach of not
handling the contents of each PostgreSQL data page directly, choosing instead to delegate
the file transfer logic to other well-known tools such as rsync or pg_basebackup.

http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg
http://en.wikipedia.org/wiki/Backup_rotation_schemeg

Backup and Recovery Chapter 11

[466]

Hot physical backups with Barman
The main reason we came up with the idea of starting a new open source project for
disaster recovery of PostgreSQL databases was the lack (back in 2011) of a simple and
standard procedure for managing backups and, most importantly, recovery. Disasters and
failures in ICT will happen.

As a database administrator, your duty is to plan for backups and the recovery of
PostgreSQL databases and perform regular tests in order to sweep away stress and fear,
which typically follow those unexpected events. Barman, which stands for Backup and
Recovery Manager, is definitely a tool that you can use for these purposes.

Before you dive into this recipe and the next one, which will introduce you to Barman, I
recommend that you read the following recipes from earlier in this chapter—Understanding
and controlling crash recovery, Planning backups, Hot physical backup and continuous archiving,
and Recovery to a point in time. Although Barman hides the complexity of the underlying
concepts, it is important that you be aware of them, as it will make you more resilient to
installation, configuration, and recovery issues with Barman.

Barman is currently available only for Linux systems and is written in Python. It supports
PostgreSQL versions from 8.3 onward. Among its main features worth citing are remote
backup, remote recovery, multiple server management, backup catalogs, incremental
backups, retention policies, WAL streaming, compression of WAL files, parallel copy
(backup and restore), backup from a standby server, and georedundancy.

For the sake of simplicity, in this recipe, we will assume the following architecture:

One Linux server named angus, running your PostgreSQL production database
server
One Linux server named malcolm, running Barman for disaster recovery of your
PostgreSQL database server
Both the servers are in the same LAN and, for better business continuity
objectives, the only resource they share is the network

Later on, we will see how easy it is to add more PostgreSQL servers (such as bon) to our
disaster recovery solution on malcolm with Barman.

Backup and Recovery Chapter 11

[467]

Getting ready
Although Barman can be installed via sources or through pip—Python's main package
manager—the easiest way to install Barman is by using the software package manager of
your Linux distribution.

Currently, 2ndQuadrant maintains packages for RHEL, CentOS 6/7, Debian, and Ubuntu
systems. If you are using a different distribution or another Unix system, you can follow the
instructions written in the official documentation of Barman, available at http:/ /docs.
pgbarman.org/.

In this book, we will cover the installation of Barman 2.6 (currently the latest stable release)
on CentOS 7 and Ubuntu 16.04 LTS Linux servers.

If you are using RHEL or CentOS 7 on the malcolm server, you need to install the following
repositories:

Fedora Extra Packages Enterprise Linux (EPEL), available at http:/ /
fedoraproject. org/ wiki/ EPEL

The PostgreSQL Global Development Group RPM repository, available at http:/
/yum.postgresql. org/

Then, as root, type in the following:

yum install barman

If you are using Ubuntu on malcolm, you need to install the APT PostgreSQL repository,
following the instructions available at http:/ /apt. postgresql. org/ . Then, as root, type in
the following:

apt-get install barman

From now on, we will assume the following:

A freshly installed PostgreSQL is running on angus as the postgres system user
and listening to the default port (5432). Its configuration allows the barman
system user on malcolm to connect as the postgres database user without
having to type in a password.
Barman is installed on malcolm and runs as the barman system user.
TCP connections for SSH and PostgreSQL are allowed between the two servers
(check your firewall settings).
Two-way automated communication via SSH is properly set up between these
users.

http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://yum.postgresql.org/
http://yum.postgresql.org/
http://yum.postgresql.org/
http://yum.postgresql.org/
http://yum.postgresql.org/
http://yum.postgresql.org/
http://yum.postgresql.org/
http://yum.postgresql.org/
http://yum.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/
http://apt.postgresql.org/

Backup and Recovery Chapter 11

[468]

You have created a superuser called Barman in your PostgreSQL server on
angus and it can only connect from the malcolm server. See Chapter 1, First
Steps, the Enabling access for network/remote users recipe, and Chapter 6, Security,
the PostgreSQL Superuser recipe, for more information.

The last operation requires exchanging a public SSH key without a passphrase between the
postgres user on angus and the barman user on malcolm. If you are not familiar with this
topic, which goes beyond the scope of this book, you are advised to follow Barman's
documentation or surf the net for more information.

Alternatively, if your system administrator complains about opening SSH access to your
PostgreSQL server, you can always take your backups via streaming replication. Indeed,
Barman transparently integrates with pg_basebackup, meaning that base backups can be
taken through the 5432 port and permissions can be granted at PostgreSQL level.

However, in this book, we will concentrate on the rsync method, which uses rsync via
SSH. If you are interested in setting up backups via streaming replication, look at Barman's
documentation, in particular the backup_method and streaming_conninfo options, as
well as the Setting up streaming replication recipe in Chapter 12, Replication and Upgrades.

How to do it…
We will start by looking at Barman's main configuration file:

As root on malcolm, open the /etc/barman.conf file for editing. This file1.
contains global options for Barman. Once you are familiar with the main
configuration options, I recommend that you set the default compression
method by uncommenting the following line:

compression = gzip

Add the configuration file for the angus server. Drop the angus.conf file,2.
containing the following lines, into the /etc/barman.d directory:

[angus]
description = "PostgreSQL Database on angus"
active = off
archiver = on
backup_method = rsync
ssh_command = ssh postgres@angus
conninfo = host=angus user=barman dbname=postgres

Backup and Recovery Chapter 11

[469]

You have just added the angus server to the list of Postgres servers managed by3.
Barman. The server is temporarily inactive until configuration is completed. You
can verify this by typing barman list-server, as follows:

[root@malcolm]# barman list-server
angus - PostgreSQL Database on angus (inactive)

In this recipe, you will be executing commands as the root user. Be aware,4.
however, that every command will be executed by the barman system user (or,
more generally, as specified in the configuration file by the barman_user
option).

Anyway, it is now time to set up continuous archiving of WAL files between
Postgres and Barman. Execute the barman show-server angus command and
write down the directory for incoming WALs (incoming_wals_directory):

[root@malcolm]# barman show-server angus

Server angus (inactive):
active: False
archive_command: None
archive_mode: None
 incoming_wals_directory:
 /var/lib/barman/angus/incoming

The next task is to initialize the directory layout for the angus server through the5.
check command. You are advised to add this command to your monitoring
infrastructure as, among other things, it ensures that the connection to the
Postgres server via SSH and libpq is working properly, as well as continuous
archiving. It returns 0 if everything is fine:

[root@malcolm]#

barman check angus
Server angus (inactive):
 WAL archive: FAILED (please make sure WAL shipping is setup)
 PostgreSQL: OK
 superuser: OK
 wal_level: FAILED (please set it to a higher level than
'minimal')
 directories: OK
 retention policy settings: OK
 backup maximum age: OK (no last_backup_maximum_age provided)
 compression settings: OK
 failed backups: OK (there are 0 failed backups)
 minimum redundancy requirements: OK (have 0 backups, expected

Backup and Recovery Chapter 11

[470]

at least 0)
 ssh: OK (PostgreSQL server)
 not in recovery: OK
 archive_mode: FAILED (please set it to 'on' or 'always')
 archive_command: FAILED (please set it accordingly to
documentation)
 archiver errors: OK

[root@malcolm]# echo $?
1

As you can see, the returned value is 1, meaning that the angus server is not yet6.
ready for backup. The output suggests that archive_mode and
archive_command in Postgres are not set for continuous archiving. Connect to
angus and modify the postgresql.conf file by adding this:

archive_mode = on
archive_command = 'rsync -a %p
barman@malcolm:/var/lib/barman/angus/incoming/%f'

wal_level = replica

Restart the PostgreSQL server.7.
Activate the server in Barman by removing the line that starts with active.8.
Run the check command on malcolm (suppressing the output with -q) again,9.
and compare the results with what you got earlier:

[root@malcolm]# barman -q check angus
[root@malcolm]# echo $?
0

It returned 0. Everything is good! PostgreSQL on angus should now be regularly
shipping WAL files to Barman on malcolm, depending on the write workload of
your database.

Don't worry if the check command complains with the following error:

WAL archive: FAILED (please make sure WAL shipping is setup)

Backup and Recovery Chapter 11

[471]

It is a precautionary measure we had to take in order to prevent users from going
live without a working archiving process. This means that your server (like
angus, in this case) has a very low workload and no WAL files have been
produced, shipped, and archived yet. If you want to speed up the installation,
you can execute the following commands:

[root@malcolm]# barman switch-wal --force --archive angus
[root@malcolm]# barman archive-wal angus

I recommend that you check both the PostgreSQL and Barman log files and verify
that the WALs have been correctly shipped. Continuous archiving is indeed the
main requirement for physical backups in Postgres.

Once you have set up continuous archiving, in order to add the disaster recovery10.
capability to your Postgres server, you need to have at least one full base backup.
Taking a full base backup in Barman is as easy as typing one single command. It
should not be hard for you to guess that the command to execute is barman
backup angus.

Barman initiates the physical backup procedure and waits for the checkpoint to
happen, before copying the data files from angus to malcom using rsync:

[root@malcolm]# barman backup angus
Starting backup using rsync-exclusive method for server angus
in /var/lib/barman/angus/base/20181003T194717
Backup start at xlog location: 0/3000028
(000000010000000000000003, 00000028)
This is the first backup for server angus
WAL segments preceding the current backup have been found:
 000000010000000000000001 from server angus has been removed
Copying files.
Copy done.
This is the first backup for server angus
Asking PostgreSQL server to finalize the backup.
Backup size: 21.1 MiB
Backup end at xlog location: 0/3000130
(000000010000000000000003, 00000130)
Backup completed
Processing xlog segments from file archival for angus
 000000010000000000000002
 000000010000000000000003
 000000010000000000000003.00000028.backup

It is worth noting that, during the backup procedure, your PostgreSQL server is available
for both read and write operations. This is because PostgreSQL natively implements hot
backup, a feature that other DBMS vendors might make you pay for.

Backup and Recovery Chapter 11

[472]

From now on, your angus PostgreSQL server is continuously backed up on malcolm. You
can now schedule weekly backups (using the barman user's cron) and manage retention
policies so that you can build a catalog of backups covering you for weeks, months, or years
of data, allowing you to perform recovery operations at any point in time between the first
available backup and the last successfully archived WAL file.

How it works…
Barman is a Python application that wraps PostgreSQL core technology for continuous
backup and PITR. It also adds some practical functionality focused on helping the database
administrator to manage the disaster recovery of one or more PostgreSQL servers.

When devising Barman, we decided to keep the design simple and not to use any daemon
or client/server architecture. Maintenance operations are simply delegated to the barman
cron command, which is mainly responsible for archiving WAL files (moving them from
the incoming directory to the WAL file and compressing them) and managing retention
policies.

If you have installed Barman through RPM or APT packages, you will notice that
maintenance is run every minute through cron:

[root@malcolm ~]# cat /etc/cron.d/barman
m h dom mon dow user command
 * * * * * barman [-x /usr/bin/barman] && /usr/bin/barman -q
cron

Barman follows the convention over configuration paradigm and uses an INI format
configuration file with options operating at two different levels:

Global options: These are options specified in the [barman] section, and are used
by any Barman command and for every server. Several global options can be
overridden at the server level.
Server options: These are options specified in the [SERVER_ID] section, used by
server commands. These options can be customized at the server level (including
overriding general settings).

The SERVER_ID placeholder (such as angus) is fundamental, as it identifies the server in
the catalog (therefore, it must be unique).

Backup and Recovery Chapter 11

[473]

Similarly, commands in Barman are of two types:

Global commands: These are general commands, not tied with any server in
particular, such as a list of the servers managed by the Barman installation
(list-server) and maintenance (cron)
Server commands: These are commands executed on a specific server, such as
diagnostics (check and status), backup control (backup, list-backup,
delete and show-backup), and recovery control (recover, which is discussed in
the next recipe, Recovery with Barman)

The previous sections of this recipe showed you how to add a server (angus) to a Barman
installation on the malcolm server. You can easily add a second server (bon) to the Barman
server on malcolm. All you have to do is create the bon.conf file in the /etc/barman.d
directory and repeat the steps outlined in the How it works... section, as you have done for
angus.

There's more…
Every time you execute the barman backup command for a given server, you take a full
base backup (a more generic term for this is periodical full backup). Once completed, this
backup can be used as a base for any recovery operation from the start time of the backup
to the last available WAL file for that server (provided there is continuity among all of the
WAL segments).

As we mentioned earlier, by scheduling daily or weekly automated backups, you end up
having several periodic backups for a server. In Barman's jargon, this is known as the
backup catalog, and it is one of our favorite features of this tool.

At any time, you can get a list of available backups for a given server through the list-
backup command:

[root@malcolm ~]# barman list-backup angus
7angus 20181003T194717 - Mon Oct 3 19:47:20 2018 - Size: 21.1 MiB - WAL
Size: 26.6 KiB

The last informative command you might want to get familiar with is show-backup, which
gives you detailed information on a specific backup regarding the server, base backup time,
WAL archive, and context within the catalog (for example, the last available backup):

[root@malcolm ~]# barman show-backup angus 20181003T194717

Backup and Recovery Chapter 11

[474]

Rather than the full backup ID (20181003T194717), you can use a few synonyms, such as
these:

Last or latest: This refers to the latest available backup (the last in the catalog)
First or oldest: This refers to the oldest available backup (the first in the catalog)

For the show-backup command, however, we will use a real and concrete example, taken
directly from one of our customer's installations of Barman on a 16.4 TB Postgres 9.4
database:

Backup 20180930T130002:
 Server Name : skynyrd
 Status : DONE
 PostgreSQL Version : 90409
 PGDATA directory : /srv/pgdata

 Base backup information:
 Disk usage : 16.4 TiB (16.4 TiB with WALs)
 Incremental size : 5.7 TiB (-65.08%)
 Timeline : 1
 Begin WAL : 000000010000358800000063
 End WAL : 00000001000035A0000000A2
 WAL number : 6208
 WAL compression ratio: 79.15%
 Begin time : 2018-09-30 13:00:04.245110+00:00

 End time : 2018-10-01 13:24:47.322288+00:00
 Begin Offset : 24272
 End Offset : 11100576
 Begin XLOG : 3588/63005ED0
 End XLOG : 35A0/A2A961A0

 WAL information:
 No of files : 3240
 Disk usage : 11.9 GiB
 WAL rate : 104.33/hour
 Compression ratio : 76.43%
 Last available : 00000001000035AD0000004A

 Catalog information:
 Retention Policy : not enforced
 Previous Backup : 20180923T130001
 Next Backup : - (this is the latest base backup)

As you can see, Barman is a production-ready tool that can be used in large, business-
critical contexts, as well as in basic Postgres installations. It provides good Recovery Point
Objective (RPO) outcomes, allowing you to limit potential data loss to a single WAL file.

Backup and Recovery Chapter 11

[475]

Finally, Barman also supports WAL streaming, which dramatically reduces the amount of
data you can lose. With synchronous replication and replication slot support, you can
achieve zero data loss backups. For further information, please refer to Barman's
documentation, in particular: streaming_archiver, streaming_archiver_name,
streaming_conninfo, and slot_name.

Barman is distributed under GNU GPL 3 terms and is available for download at http:/ /
www.pgbarman.org/ .

There is also a module for Puppet, which is available at https:/ /github. com/2ndquadrant-
it/puppet-barman.

For further and more detailed information, refer to the following:

The man barman command, which gives the man page for the Barman
application
The man 5 barman command, which gives the man page for the configuration
file
The barman help command, which gives a list of the available commands
The official documentation for Barman, which is publicly available at http:/ /
docs.pgbarman. org/

The mailing list for community support at http:/ / www.pgbarman. org/ support/

Recovery with Barman
This recipe assumes that you have read the previous recipe, Hot physical backups with
Barman, and successfully installed Barman on the malcolm server, hence backing up the
Postgres databases running on angus and bon. We will use the same nomenclature in the
examples in this recipe.

A recovery procedure is a reaction to a failure. In database terms, this could be related to an
unintentional human error (for example, a DROP operation on a table), an attack (think of
Little Bobby Tables), a hardware failure (for example, a broken hard drive), or (less likely) a
natural disaster.

Even though you might be tempted to think that you are immune to disasters or failures
(we wish you were), you are advised to perform regular tests and simulations of recovery
procedures. If you have a team of engineers, we suggest that you schedule a simulation
every six months (at least) and regularly test your backups through the safest way of
checking their content—performing a recovery.

http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
http://www.pgbarman.org/
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
https://github.com/2ndquadrant-it/puppet-barman
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/

Backup and Recovery Chapter 11

[476]

You don't want to take backups for years and, in your moment of need, suddenly discover
that they have not been working for the last three months.

Barman allows you to perform two types of recovery:

Local recovery: This involves restoring a PostgreSQL instance on the same server
where Barman resides
Remote recovery: This involves restoring a PostgreSQL instance directly from
the Barman server to another server, through the network

It is important to note that the terms local and remote are defined from Barman's standpoint,
as every recovery command is executed where Barman is installed.

In this recipe, we will cover a single use case—total failure of one of the servers where
PostgreSQL is running (fortunately, it is backed up by Barman) and a full remote recovery
on a third server.

Getting ready
Even though Barman can centrally manage backups of several servers that have different
versions of PostgreSQL, when it comes to recovery, the same requirements for
PostgreSQL's PITR technology apply—in particular, the following:

You must recover on a server with the same hardware architecture and
PostgreSQL version
Recovery is full, meaning that the entire Postgres cluster will be restored (and not
a single database)

The use case of this recipe is as follows:

The bon server has been lost forever, due to a permanent hardware failure
The brian server, which has similar characteristics to bon, has been selected for
recovery
The same Linux distribution and PostgreSQL packages have been installed on
brian

Barman will be used to perform remote recovery of the latest backup available
for bon on the brian server

Backup and Recovery Chapter 11

[477]

In order to proceed, you need to add the public SSH key of the barman user on malcolm in
the ~/.ssh/authorized_keys file of the Postgres user on brian. If you are not familiar
with the process of exchanging a public SSH key, which goes beyond the scope of this book,
you are advised to follow Barman's documentation or surf the net for more information.

The first step is to make sure that the PGDATA directory, as specified in the bon backup,
exists on brian and can be written by the postgres user.

Ask barman for the location of PGDATA by querying the latest available backup metadata:

barman show-backup bon last

Write down the content of the PGDATA directory entry:

PGDATA directory : /var/lib/pgsql/11/data

You might have noticed that we are using the default PGDATA directory for a
RHEL/CentOS cluster based on packages maintained by the PostgreSQL community. On
Ubuntu, you will probably have /var/lib/postgresql/11/main.

As the second step, also make sure that PostgreSQL is not running on brian, using either
the service or pg_ctl command.

Executing a recovery operation on a target directory that's being used by a running
PostgreSQL instance will permanently damage that instance. Be extremely careful when
you perform such an operation.

How to do it…
Connect as the barman user on malcolm and type the following:

barman recover --remote-ssh-command 'ssh postgres@brian' bon last
/var/lib/pgsql/11/data

The preceding command will use the latest available backup for the bon server and prepare
everything you need to restore your server in the PostgreSQL destination directory
(/var/lib/pgsql/11/data), as shown in the following output:

Starting remote restore for server bon using backup 20181003T194717
Destination directory: /var/lib/pgsql/11/data
Copying the base backup.
Copying required WAL segments.
Generating archive status files
Identify dangerous settings in destination directory.

Backup and Recovery Chapter 11

[478]

IMPORTANT
These settings have been modified to prevent data losses

postgresql.conf line 645: archive_command = false

Your PostgreSQL server has been successfully prepared for recovery!

Once again, Ubuntu users will have to use a different destination directory, such as
/var/lib/postgresql/11/main.

Before you start the server, you are advised to connect to Brian as Postgres and inspect the
content of the Postgres destination directory. You should notice that its content should be
very similar to what was in the bon server before the crash.

You are also strongly encouraged to review the content of the postgresql.conf file
before starting the server, even though Barman takes care of disabling or removing some
potentially dangerous options. The most critical option is archive_command, which is
preemptively set to false, forcing you to deliberately analyze and consider new
continuous archiving strategies (for example, you might want to add the new Brian server
to Barman by repeating the steps outlined in the previous recipe).

When you are ready, you can start Postgres as a standard service. On CentOS 7, for
example, you can execute as root, as follows:

systemctl start postgresql-11

On Ubuntu, use the following command:

systemctl start postgresql

Look at the logs to verify that you do not have any problems and then at ps -axf.

Your PostgreSQL databases that were hosted on bon have been successfully restored on
brian, using all of the WAL files that were shipped to the backup server.

How it works…
When executed with the --remote-ssh-command option, the recover command will
activate remote recovery and will use those credentials to connect to the remote server
(similar to what the ssh-command configuration option does in the backup phase but in
reverse—see the Hot physical backups with Barman recipe for more information). Internally,
Barman relies on rsync for this operation.

Backup and Recovery Chapter 11

[479]

When performing a full recovery (up to the latest available archived WAL file), Barman
recreates the structure of the PGDATA according to the backup. It will then deposit all of the
necessary WAL files in the pg_wal directory.

A careful analysis of the content of the restored PGDATA directory shows that no
recovery.conf file is generated by Barman in the case of a full recovery.

It will just simulate a standard crash recovery of PostgreSQL and start replaying the WAL
files from the REDO point, contrary to the Recovery of all databases recipe, where
recovery.conf was used.

We decided to adopt this strategy in Barman so that we could maintain the same timeline
(as a recovery.conf file would start a new era in the cluster's existence) and avoid setting
restore_command.

There's more…
If you are using tablespaces, you may be wondering if and how Barman manages them.
Barman fully supports tablespaces, including their relocation at recovery time, through the
--tablespace runtime option. For information on the syntax of the relocation rules, type
any of the following commands:

barman help recover

man barman

In this recipe, we have seen only one use case, which covers remote recovery. As we
mentioned previously, however, Barman also allows DBAs to recover instances of
PostgreSQL on the same server as Barman.

This is called local recovery. For local recovery, you will need to have installed the binaries
and libraries of the same version of PostgreSQL on the Barman server as the backup file
you want to restore.

You can dedicate a directory in Barman for local recovery, which will be used as the
destination directory for your recover commands.

A typical use case for local recovery is to restore the situation of a PostgreSQL server at a
specific point in time, usually before an unintentional action such as the DROP of a table.

Backup and Recovery Chapter 11

[480]

Barman supports PITR, as explained in the Recovery to a point in time recipe, through three
options that define the recovery target:

--target-time TARGET_TIME: The target is a timestamp
--target-xid TARGET_XID: The target is a transaction ID
--target-name TARGET_NAME: The target is a named restore point, which was
created previously with the pg_create_restore_point(name) function

When executed with one of these options, Barman will generate the recovery.conf file
for you. Advanced users might want to activate the hot standby facility and take advantage
of the recovery_target_action option (by default, this is set to pause and is effective
only if hot_standby is enabled in the postgresql.conf file).

This will allow you to check whether the database is in the desired state or not. If not, you
can stop the server, change the recovery target time, and start it again. Repeat this
operation until you reach your goal, keeping in mind that PostgreSQL can only roll forward
WAL files (they are called REDO operations for a reason).

You can then follow the instructions outlined in the Recovery of a dropped/damaged table
recipe to restore the objects in the primary database.

At the end of any recovery operation, remember to stop the running of local servers and
remove recovered instances (even though this is not mandatory, as Barman uses rsync and
will be able to perform an incremental copy of the files where applicable).

The -j command-line switch can be used to specify the number of parallel jobs that
Barman can use while copying files between itself and PostgreSQL. This feature is
generically referred to as parallel copy, which includes both taking a backup and restoring
it.

Another interesting feature of Barman is the get-wal command, which transforms Barman
into an infinite basin of WAL files. Instead of copying WAL files before the actual start of
the server, you can let PostgreSQL pull the required WAL files on demand at recovery time,
via restore_command. For further information, look at the barman-cli package—more
specifically the barman-wal-restore script—at https:/ /github. com/ 2ndquadrant- it/
barman-cli.

As a final note for this recipe, another important use case for Barman is to regularly create
copies of the server to be used for business intelligence purposes or even
staging/development. These environments do not normally require a strict up-to-date
situation and are very often happy to work on a snapshot of the previous day.

https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli
https://github.com/2ndquadrant-it/barman-cli

Backup and Recovery Chapter 11

[481]

A typical workflow for this use case can be as follows:

Stop the PostgreSQL server on the BI/staging server1.
Issue a full remote recovery operation of the desired backup from Barman to the2.
BI server (rsync will use the existing data directory for incremental copy)
Start the PostgreSQL server on the BI/staging server3.

This recipe has covered only a few aspects of the recovery process in Barman. For further
and more detailed information, refer to the following links:

The official documentation for Barman, which is publicly available at http:/ /
docs.pgbarman. org/

The mailing list for community support at http:/ / www.pgbarman. org/ support/

The Barman section of our blog at https:/ /blog. 2ndquadrant. com/ tag/barman

Validating backups
In this recipe, we will use the Data Checksum feature to detect data corruption caused by
I/O malfunctioning in advance.

It is important to discover such problems as soon as possible. For instance, we want a
chance to recover lost data from one of our older backups, or we may want to stop data
errors before they spread to the rest of the database, when newer data depends on existing
data.

Getting ready
This feature is disabled by default, since it results in some overhead; it must be enabled
when the cluster is initialized by using the --data-checksums option of the initdb
utility.

Also, before trying this recipe, you should be familiar with how to take backups and how to
restore them afterward, which are the subjects of most of this chapter.

http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://docs.pgbarman.org/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
http://www.pgbarman.org/support/
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman
https://blog.2ndquadrant.com/tag/barman

Backup and Recovery Chapter 11

[482]

How to do it…
First, check whether data checksums are enabled:

postgres=# SHOW data_checksums ;
 data_checksums

 on

(1 row)

If not, then we must regrettably stop here. We mentioned previously that this feature needs
to be enabled before you need it; you shouldn't be surprised because the same is true for
most business continuity capabilities, such as high availability or disaster recovery.

If data checksums are enabled, and you are taking a backup with pg_basebackup, then
checksums are verified while pages are read from data files. Let's look at an example:

$ pg_basebackup -D backup2

If nothing goes wrong, then the backup finishes with no output—we know already that
pg_basebackup operates by default in no news good news mode. Conversely, if a
checksum fails, then the return code is non-zero and we get a warning like the following:

WARNING: checksum verification failed in file "./base/16385/16388", block
0: calculated 246D but expected C938

pg_basebackup: checksum error occurred

In the (unlikely) case that you have a good reason for skipping this check, you can use the
no-verify-checksums option.

When a physical backup is taken without pg_basebackup, there is no PostgreSQL utility
that can verify checksums while the backup is being taken; the check must be carried out
afterwards by running the pg_verify_checksums utility against the actual files in the
data directory.

Unfortunately, this utility requires the data directory to be in a clean shutdown state, which
is not the case when hot physical backups are taken. Therefore, we need to restore the
backup to a temporary directory, and then carry out a recovery process, as described in the
Recovery to a point in time recipe previously, for instance, by using the following settings in
recovery.conf:

recovery_target = 'immediate'
recovery_target_action = shutdown

Backup and Recovery Chapter 11

[483]

The immediate target means that the recovery will stop as soon as the data directory
becomes consistent, and then PostgreSQL will shut down, which is the specified target
action.

Once we have a clean data directory, we just run pg_verify_checksums against the
temporary directory, as follows:

$ pg_verify_checksums -D tempdir1

Should any checksum fail, you will see an output like the following:

pg_verify_checksums: checksum verification failed in file
"tempdir1/base/16385/16388", block 0: calculated checksum 246D but block
contains C938

Checksum scan completed
Data checksum version: 1
Files scanned: 1226
Blocks scanned: 3852
Bad checksums: 1

How it works…
When the data checksum feature is enabled, each page header includes a 16-bit checksum
of its contents and block number, which is updated when the page is flushed to disk.

If enabled, data checksums are verified every time a block is read from disk to shared
buffers as well as when pg_basebackup is used to perform a backup.

Since the checksum is computed and added to the block when flushing to disk, a failure
must be caused by a change inside the block that occurred while the block was not cached
in the shared buffers; conversely, a change occurring while the block was buffered would
be overwritten at the next flush.

There's more…
In our example, we have showed a case where the checksum fails. The checksum mismatch
will also be detected when a query causes PostgreSQL to attempt reading that block into
the shared buffers.

Backup and Recovery Chapter 11

[484]

In that case, the query will fail with an error, which is good because it protects the user
from inadvertently using corrupt data:

postgres=# SELECT * FROM t;

WARNING: page verification failed, calculated checksum 42501 but expected
37058
ERROR: invalid page in block 0 of relation base/16385/16388

If we want to intentionally load corrupt data, for example, to attempt some repair activities,
we can temporarily disable the checksum, as in the following example:

postgres=# SET ignore_checksum_failure = on;
postgres=# SELECT * FROM t;
WARNING: page verification failed, calculated checksum 42501 but expected
37058
 x

 88
(1 row)

We can see that the warning is still displayed, but we can proceed to read the data.

In the case that the data corruption results in an invalid page format, the
user will get the same error, irrespective of the value of
ignore_checksum_failure. This is intentional: this parameter
eliminates the risk of undetected failures. In other words, a page with an
invalid format does not need checksums to be detected, nor it can be read,
or amended, within SQL queries.

As you would expect, only a superuser can change the ignore_checksum_failure
parameter.

12
Replication and Upgrades

Replication isn't magic, though it can be pretty cool! It's even cooler when it works, and
that's what this chapter is all about.

Replication requires understanding, effort, and patience. There are a significant number of
points to get right. My emphasis here is on providing simple approaches to get you started,
and some clear best practices on operational robustness.

PostgreSQL has included some form of native or in-core replication since Version 8.2,
though that support has steadily improved over time. External projects and tools have
always been a significant part of the PostgreSQL landscape, with most of them being
written and supported by very skilled PostgreSQL technical developers. Some people with
a negative viewpoint have observed that this weakens PostgreSQL or emphasizes
shortcomings. My view would be that PostgreSQL has been lucky enough to be supported
by a huge range of replication tools, together offering a wide set of supported use cases
from which to build practical solutions. This view extends throughout this chapter on
replication, with many recipes using tools that are not part of the core PostgreSQL project
yet.

All the tools mentioned in this chapter are actively enhanced by current core PostgreSQL
developers. The pace of change in this area is high, and it is likely that some of the
restrictions mentioned here could well be removed by the time you read this book. Double-
check the documentation for each tool or project.

Which technique is the best? is a question that gets asked many times. The answer varies
depending on the exact circumstances. In many cases, people use one technique on one
server and a different technique on other servers. Even the developers of particular tools
use other tools when it is appropriate. Use the right tools for the job. All the tools and
techniques listed in this chapter have been recommended by me at some point, in relevant
circumstances. If something isn't mentioned here by me, that probably does imply that it is
less favorable for various reasons, and there are some tools and techniques that I would
personally avoid altogether in their present form or level of maturity.

Replication and Upgrades Chapter 12

[486]

I (Simon Riggs) must also confess to being the developer or designer of many parts of the
basic technology presented here. That gives me some advantages and disadvantages over
other authors. It means I understand some things better than others, which hopefully
translates into better descriptions and comparisons. It may also hamper me by providing
too narrow a focus, though the world is big and this book is already long enough!

This book, and especially this chapter, covers technology in depth. As a result, we face the
risk of minor errors. We've gone to a lot of trouble to test all of our recommendations, but
just like software, I have learned that books can be buggy too. I hope our efforts to present
actual commands, rather than just words, will be appreciated by you.

In this chapter, we will cover the following recipes:

Replication best practices
Setting up file-based replication—deprecated
Setting up streaming replication
Setting up streaming replication security
Hot standby and read scalability
Managing streaming replication
Using repmgr
Using replication slots
Monitoring replication
Performance and synchronous replication
Delaying, pausing, and synchronizing replication
Logical replication
Bidirectional replication
Archiving transaction log data
Upgrading—minor releases
Major upgrades in-place
Major upgrades online

Replication concepts
Replication technology can be confusing. You might be forgiven for thinking that people
have a reason to keep it that way. My observation is that there are many techniques, each
with their own advocates, and their strengths and weaknesses are often hotly debated.

Replication and Upgrades Chapter 12

[487]

There are some simple, underlying concepts that can help you understand the various
options that are available. The terms used here are designed to avoid favoring any
particular technique, and we've used standard industry terms whenever available.

Topics
Database replication is the term we use to describe the technology that's used to maintain a
copy of a set of data on a remote system.

There are usually two main reasons for you wanting to do this, and those reasons are often
combined:

High availability: Reducing the chances of data unavailability by having
multiple systems, each holding a full copy of the data.
Data movement: Allowing data to be used by additional applications or
workload on additional hardware. Examples of this are reference data
management (RDM), where a single central server might provide information to
many other applications, and business intelligence/reporting systems.

Of course, both of those topics are complex areas, and there are many architectures and
possibilities for implementing each of them.

What we will talk about here is high availability, where there is no transformation of the
data. We simply copy the data from one PostgreSQL database server to another. So, we are
specifically avoiding all discussion on ETL tools, EAI tools, inter-database migration, data-
warehousing strategies, and so on. Those are valid topics in IT architecture; it's just that we
don't cover them in this book.

Basic concepts
Let's look at the basic architecture. Typically, individual database servers are referred to as
nodes. The whole group of database servers involved in replication is known as a cluster.
That is the common usage of the term, but be careful; the term cluster is also used for two
other quite separate meanings elsewhere in PostgreSQL. Firstly, "cluster" is sometimes used
to refer to the database instance, though I prefer the term database server. Secondly, there
is a command named cluster. It is designed to sort data in a specific order within a table.

Replication and Upgrades Chapter 12

[488]

A database server that allows a user to make changes is known as a master or primary, or
may be described as a source of changes.

A database server that only allows read-only access is known as a hot standby, or
sometimes, a slave server, or read replica.

The key aspect of replication is that data changes are captured on a master, and then
transferred to other nodes. In some cases, a node may send data changes to other nodes,
which is a process known as cascading or relay. Thus, the master is a sending node, but a
sending node does not need to be a master.

Replication is often categorized by whether more than one master node is allowed, in
which case it will be known as multimaster replication. There is a significant difference
between how single-master and multimaster systems work, so we'll discuss that aspect in
more detail later. Each has its advantages and disadvantages.

History and scope
PostgreSQL didn't always have in-core replication. For many years, PostgreSQL users
needed to use one of many external packages to provide this important feature.

Slony was the first package to provide useful replication features. Londiste was a variant
system that was somewhat easier to use. Both of those systems provided single-master
replication based around triggers. Another variant of this idea was the bucardo package,
which offered multimaster replication using triggers.

Trigger-based replication has now been superseded by transaction-log-based replication,
which provides considerable performance improvements. There is some discussion on
exactly how much difference that makes, but log-based replication is approximately twice
as fast, though many users have reported much higher gains. Trigger-based systems also
have considerably higher replication lag. Lastly, triggers need to be added to each table
involved in replication, making these systems more time-consuming to manage and more
sensitive to production problems. These factors taken together mean that trigger-based
systems will likely be avoided for new developments, and I'm taking the decision not to
cover them at all in the latest edition of this book.

Outside the world of PostgreSQL, there are many competing concepts and there is a lot of
research being done on them. This is a practical book, so we've mostly avoided comments
on research or topics concerning computer science.

Replication and Upgrades Chapter 12

[489]

The focus of this chapter is replication technologies that are part of the core software of
PostgreSQL, or will be in the reasonably near future. The first of these is known as
streaming replication, introduced in PostgreSQL 9.0, but based on earlier file-based
mechanisms for physical transaction log replication. In this book, we refer to this as
physical streaming replication (PSR) because we take the transaction log (often known as
the write-ahead log (WAL)) and ship that data to the remote node. The WAL contains an
exact physical copy of the changes made to a data block, so the remote node is an exact
copy of the master. Therefore, the remote node cannot execute transactions that write to the
database; this type of node is known as a standby.

Starting with PostgreSQL 9.4, we introduced an efficient mechanism for reading the
transaction log (WAL) and transforming it into a stream of changes; that is, a process
known as logical decoding. This is then the basis for the later, even more useful
mechanism, known as logical streaming replication (LSR). This allows a receiver to
replicate data without needing to keep an exact copy of the data blocks, as we do with PSR.
This has significant advantages, which we will discuss later.

PSR requires us to have only a single master node, though it allows multiple standbys. LSR
can be used for all the same purposes as PSR. It just has fewer restrictions and allows a
great range of additional use cases. Crucially, LSR can be used as the basis of multimaster
clusters.

PSR and LSR are sometimes known as physical log streaming replication (PLSR) and
logical log streaming replication (LLSR). Those terms are sometimes used to explain
differences between transaction-log-based and trigger-based replication.

Practical aspects
Since we refer to the transfer of replicated data as streaming, it becomes natural to talk
about the flow of data between nodes as if it were a river or stream. Cascaded data can flow
through a series of nodes to create complex architectures. From the perspective of any
node, it may have downstream nodes that receive replicated data from it and/or upstream
nodes that send data to it. Practical limits need to be understood to allow us to understand
and design replication architectures.

Replication and Upgrades Chapter 12

[490]

After a transaction commits on the master, the time taken to transfer data changes to a
remote node is usually referred to as the latency or replication delay. Once the remote
node has received the data, changes must then be applied to the remote node, which takes
an amount of time known as the apply delay. The total time a record takes from the master
to a downstream node is the replication delay plus the apply delay. Be careful to note that
some authors describe those terms differently, and sometimes confuse the two, which is
easy to do. Also, note that these delays will be different for any two nodes.

Replication delay is best expressed as an interval (in seconds), but that is much harder to
measure than it first appears. In PostgreSQL 11, the delays of particular phases of
replication are given with the lag columns on pg_stat_replication. These are derived
from sampling the message stream and interpolating the current delay from recent
samples.

All forms of replication are initialized in roughly the same way. First, you enable change
capture, and then make a full replica of the dataset on the remote node, which we refer to
as the base backup. After that, we begin applying the changes, starting from the point
immediately before the base backup started and continuing with any changes that occurred
while the base backup was taking place. As a result, the replication delay immediately
following the initial copy task will be equal to the duration of the initial copy task. The
remote node will then begin to catch up with the master, and the replication delay will
begin to reduce. The time taken to get the lowest replication delay possible is known as the
catch-up interval. If the master is busy generating new changes, which can increase the time
it takes for the new node to catch up, you should try to generate new nodes during quieter
periods, if any exist. Note that in some cases, the catch-up period will be too long to be
acceptable. Be sure to include this understanding in your planning and monitoring. The
faster and more efficient your replication system is, the easier it will be to operate in the real
world. Performance matters!

Either replication will copy all tables, or in some cases, we can copy a subset of tables, in
which case we call it selective replication. If you choose selective replication, you should
note that the management overhead increases roughly as the number of objects managed
increases. Replicated objects are often manipulated in groups known as replication sets to
help minimize the administrative overhead.

Data loss
By default, PostgreSQL provides asynchronous replication, where data is streamed out
whenever convenient for the server. If replicated data is acknowledged back to the user
prior to committing, we refer to that as synchronous replication.

Replication and Upgrades Chapter 12

[491]

With synchronous replication, the replication delay directly affects the elapsed time of
transactions on the master. With asynchronous replication, the master may continue at full
speed, though this opens up a possible risk that the standby may not be able to keep pace
with the master. All replication must be monitored to ensure that a significant lag does not
develop, which is why we must be careful to monitor the replication delay.

Synchronous replication guarantees that data is written to at least two nodes before the
user or application is told that a transaction has committed. You can specify the number of
nodes and other details that you wish to use in your configuration.

Single-master replication
In single-master replication, if the master dies, one of the standbys must take its place.
Otherwise, we will not be able to accept new write transactions. Thus, the designations
master and standby are just roles that any node can take at some point. To move the master
role to another node, we perform a procedure named switchover. If the master dies and
does not recover, then the more severe role change is known as a failover. In many ways,
these can be similar, but it helps to use different terms for each event.

We use the term clusterware for software that manages the cluster. Clusterware may
provide features such as automatic failover, and in some cases, load balancing.

The complexity of failover makes single-master replication harder to configure correctly
than many people would like it to be. The good news is that from an application
perspective, it is safe and easy to retrofit this style of replication to an existing system. Or,
put another way, since application developers don't really worry about high availability
and replication until the very end of a project, single-master replication is frequently the
best solution, be it PSR or LSR.

Multinode architectures
Multinode architectures allow users to write data to multiple nodes concurrently. There are
two main categories—tightly coupled and loosely coupled:

Tightly coupled database clusters: These allow a single image of the database, so
there is less perception that you're even connected to a cluster at all. This
consistency comes at a price—the nodes of the cluster cannot be
separated geographically, which means if you need to protect against site
disasters, then you'll need additional technology to allow disaster recovery.
Clustering requires replication as well.

Replication and Upgrades Chapter 12

[492]

Loosely coupled database clusters: These have greater independence for each
node, allowing us to spread out nodes across wide areas, such as across multiple
continents. You can connect to each node individually. There are two benefits of
this. The first is that all data access can be performed quickly against local copies
of the data. The second benefit is that we don't need to work out how to route
read-only transactions to (a) standby node(s) and read/write transactions to the
master node.

Clustered or massively parallel databases
An example of a tightly coupled system is the open source Postgres-XL. This supersedes the
earlier Postgres-XC clustering software. These systems introduced the concept of a global
transaction manager (GTM), which allows nodes in a tightly coupled system to work
together while guaranteeing consistency across reads and writes.

Postgres-XL spreads data across multiple nodes. Larger tables can be distributed evenly
using a hash-based distribution scheme. This feature allows Postgres-XL to scale well for
both high-transaction-rate (OLTP) and business intelligence (OLAP) systems.

On Postgres-XL, smaller tables can be duplicated on all nodes. Changes to smaller tables
are coordinated, so there is no possibility of the multiple copies diverging from one
another. The synchronization cost is high, and XL is not suitable for geographically
distributed databases, though it does support high availability.

Postgres-XL is not covered in more detail in this book, simply because of the lack of time
and space. Postgres-XL is released with the PostgreSQL license.

Multimaster replication
An example of a loosely coupled system would be bidirectional replication (BDR).
Postgres-BDR does not utilize a GTM, so the nodes contain data that is eventually
consistent between nodes. This is a performance optimization since tests have showed that
trying to use tightly coupled approaches catastrophically limits performance when servers
are geographically separated.

In its simplest multimaster configuration, each node has a copy of similar data. You can
update data on any node and the changes will flow to other nodes. This makes it ideal for
databases that have users in many different locations, which is probably the case with most
websites. Each location can have its own copy of the application code and database, giving
fast response times for all your users, wherever they are located.

Replication and Upgrades Chapter 12

[493]

It is possible to make changes to the same data at the same time on different nodes, causing
update conflicts. These could become a problem, but the reality is that it is also easily
possible to design applications that do not generate conflicts in normal running, especially if
each user is modifying their own data (for example, in social media, retail, and so on).

We need to understand where conflicts might arise so that we can resolve them. On a single
node, any application that allows concurrent updates to the same data will experience poor
performance because of contention. The negative effect of contention will get much worse
on multimaster clusters. In addition, multiple nodes require us to allow for the possibility
that the updated data differs, so we must implement conflict-handling logic to resolve data
differences between nodes. With some thought and planning, we can use multimaster
technologies very effectively in the real world. Visit
https://en.wikipedia.org/wiki/Replication_(computing) for more information on this.

Scalability tools
Many PostgreSQL users have designed applications that scale naturally by routing
database requests based on the client number or a similar natural sharding key. This is
what we call manual sharding at the application level.

For PostgreSQL 11 and earlier versions, PostgreSQL does not directly support features for
automatic write scalability, such as sharding. This is an active area of work, and much will
change in this area, though it may take some time.

Postgres-XL provides automatic hash sharding and is currently the most complete open
source implementation that allows automatic write scalability at the database level.

PL/Proxy provides a mature mechanism for database scalability. It was originally designed
for Skype, but it is also in use at a number of high-volume sites. It provides most of the
things that you'll need to create a scalable cluster. PL/Proxy requires that you define your
main database accesses as functions, which requires early decisions about your application
architecture.

https://en.wikipedia.org/wiki/Replication_(computing)

Replication and Upgrades Chapter 12

[494]

Other approaches to replication
This book covers in-database replication only. Replication is also possible in the application
layer (that is, above the database) or in the operating system (OS) layers (that is, below the
database):

Application-level replication: For example, HA-JDBC, and rubyrep
OS-level replication: For example, DRBD

None of these approaches are very satisfying, since core database features cannot easily
integrate with them in ways that truly work. From a sysadmin's perspective, they work, but
not very well from the perspective of a database architect.

Replication best practices
Some general best practices for running replication systems are described in this recipe.

Getting ready
Reading the list of best practices should be the very first thing you do when designing your
database architecture. So, the best way to get ready for it is to avoid doing anything and
start with the next section, How to do it....

How to do it…
Use the latest release of PostgreSQL. Replication features are changing fast, with
each new release improving on the previous in major ways based on our real-
world experience. The idea that earlier releases are somehow more stable, and
thus more easily usable, is definitely not the case for replication.
Use similar hardware and OSes on all systems. Replication allows nodes to
switch roles. If we switch over or failover to different hardware, we may get
performance issues and it will be hard to maintain a smoothly running
application.
Configure all systems identically as far as possible. Use the same mount points,
directory names, and users; keep everything the same, where possible. Don't be
tempted to make one system more important than others in some way. It's just a
single point of failure and gets confusing.

Replication and Upgrades Chapter 12

[495]

Give systems/servers good names to reduce confusion. Never, ever call one of
your systems "master" and the other "slave." When you do a switchover, you will
get very confused! Try to pick system names that have nothing to do whatsoever
with their role. Replication roles will inevitably change; system names should
not. If one system fails, and you add a new system, never reuse the name of the
old system; pick another name, or it will be too confusing. Don't pick names that
relate to something in the business. Colors are also a bad choice, because if you
have two servers named "Yellow" and "Red," you then end up saying things
like, There is a red alert on Server Yellow, which can easily be confusing. Don't pick
place names, either. Otherwise, you'll be confused trying to remember that
"London" is in Edinburgh and "Paris" is in Rome. Make sure that you use names,
rather than IP addresses.
Set the application_name parameter to be the server name in the replication
connection string. Set the cluster_name parameter to be the server name in the
postgresql.conf.
Make sure that all tables are marked as LOGGED (the default). UNLOGGED and
TEMPORARY tables will not be replicated by either PSR or LSR.
Keep the system clocks synchronized. This helps you keep sane when looking at
log files that are produced by multiple servers. You should automate this, rather
than doing it manually, but however you do it, make sure it works.
Use a single, unambiguous time zone. Use Coordinated Universal Time (UTC)
or something similar. Don't pick a time zone that has daylight saving time
(DST), especially in regions that have complex DST rules. This just leads to
(human) confusion with replication, as servers are often in different countries,
and time zone differences vary throughout the year. Do this even if you start
with all your servers in one country, because over the lifetime of the application,
you may need to add new servers in different locations. Think ahead.
Monitor each of the database servers. If you want high availability, then you'll
need to check regularly that your servers are operational. I speak to many people
who would like to regard replication as a one-shot deal. Think of it more as a
marriage and plan for it to be a happy one!
Monitor the replication delay between servers. All forms of replication are only
useful if the data is flowing correctly between the servers. Monitoring the time it
takes for the data to go from one server to another is essential for understanding
whether replication is working for you or not. Replication can be bursty, so you'll
need to watch to make sure it stays within sensible limits. You may be able to set
tuning parameters to keep things low, or you may need to look at other factors.

Replication and Upgrades Chapter 12

[496]

The important point is that your replication delay is directly related to the amount of data
you're likely to lose when running asynchronous replication. Be careful here, because it is
the replication delay, not the apply delay, that affects data loss. A long apply delay may be
more acceptable as a result.

As described previously, your initial replication delay will be high, and it should reduce to
a lower and more stable value over a period of time. For large databases, this could take
days, so be careful to monitor it during the catch-up period.

There's more…
The preceding list doesn't actually say this explicitly, but you should use the same major
version of PostgreSQL for all systems. With PSR, you are required to do that, so it doesn't
even need to be said.

I've heard people argue that it's OK to have dissimilar systems and even that it's a good
idea because if you get a bug, it only affects one node. I'd say that the massive increase in
complexity is much more likely to cause problems.

Setting up file-based replication –
deprecated
This technique is mostly superseded by streaming replication (PSR), so if you are a novice,
you probably don't want to read this recipe yet. Nonetheless, this is relevant and useful as
part of a comprehensive backup strategy. It is also worth understanding how this works, as
this technique can also be used as the starting phase for a large streaming replication setup.
Look at the following recipes for some further details on that.

Log shipping is a replication technique used by many database management systems. The
master records database changes in its transaction log, and then the log files are shipped
from the master to the standby, where the log is replayed.

File-based log shipping has been available for PostgreSQL for many years now. It is simple,
has very low overhead, and is a trustworthy form of replication.

Replication and Upgrades Chapter 12

[497]

Getting ready
If you haven't read the Replication concepts section and the Replication best practices recipe at
the start of this chapter, go and read them now. Replication is complex, and even if you
think, No problem, I know that, it's worth just checking out the basic concepts and names that
I'll be using here. Note that log-shipping replication refers to the master node as the
primary node, and these two terms are used interchangeably.

How to do it…
Follow these steps for the initial configuration of file-based log shipping:

Identify your archive location and ensure that it has sufficient space. This recipe1.
assumes that the archive is a directory on the standby node, identified by the
$PGARCHIVE environment variable. This is set on both the master and standby
nodes, as the master must write to the archive and the standby must read from it.
The standby node is identified on the master using $STANDBYNODE.
Configure replication security. Perform a key exchange to allow the master and2.
the standby to run the rsync command in either direction.
Adjust the master's parameters in postgresql.conf, as follows:3.

 wal_level = 'archive'
 archive_mode = on
 archive_command = 'scp %p $STANDBYNODE:$PGARCHIVE/%f'
 archive_timeout = 30

Adjust the hot standby parameters, if required (see the Hot standby and read4.
scalability recipe).
Take a base backup, which is very similar to the process for taking a physical that5.
we backup described in Chapter 11, Backup and Recovery.
Start the backup by running the following command:6.

psql -c "select pg_start_backup('base backup for log
shipping')"

Replication and Upgrades Chapter 12

[498]

Copy the data files (excluding the pg_wal directory). Note that this requires7.
some security configuration to ensure that rsync can be executed without
needing to provide a password when it executes. If you skipped Step 2, do this
now, as follows:

rsync -cva --inplace --exclude=*pg_wal* \
${PGDATA}/ $STANDBYNODE:$PGDATA

Stop the backup by running the following command:8.

psql -c "select pg_stop_backup(), current_timestamp"

Set the recovery.conf parameters in the data directory on the standby server,9.
as follows:

standby_mode = 'on'
restore_command = 'cp $PGARCHIVE/%f %p'
archive_cleanup_command = 'pg_archivecleanup $PGARCHIVE %r'
trigger_file = '/tmp/postgresql.trigger.5432'

Start the standby server.10.
Carefully monitor the replication delay until the catch-up period is over. During11.
the initial catch-up period, the replication delay will be much higher than we
would normally expect it to be. You are advised to set hot_standby to off for
the initial period only.

Use a script; don't do this by hand, even when testing or just exploring the capabilities. If
you make a mistake, you'd want to rerun things from the start again, and doing things
manually is both laborious and an extra source of error.

How it works…
Transaction log (WAL) files will be written on the master. Setting wal_level to archive
ensures that we collect all of the changed data and that WAL is never optimized away.
WAL is sent from the master to the archive using archive_command and, from there, the
standby reads WAL files using restore_command. Then, it replays the changes.

The archive_command is executed when a file becomes full or an archive_timeout
number of seconds has passed since any user inserted change data into the transaction log.
If the server does not write any new transaction log data for an extended period, then files
will switch every checkpoint_timeout seconds. This is normal and not a problem.

Replication and Upgrades Chapter 12

[499]

The preceding configuration assumes that the archive is on the standby, so the
restore_command that's shown is a simple copy command (cp). If the archive were on a
third system, then we would need to either mount the filesystem remotely or use a network
copy command.

The archive_cleanup_command ensures that the archive only holds the files that the
standby needs for restarting, in case it stops for any reason. Files older than the last file
required are deleted regularly to ensure that the archive does not overflow. Note that if the
standby is down for an extended period, then the number of files in the archive will
continue to accumulate, and eventually they will overflow. The number of files in the
archive should also be monitored.

In the configuration shown in this recipe, a command named pg_archivecleanup is used
to remove files from the archive. (This used to be a contrib module but is now part of the
main server.) The pg_archivecleanup module is designed to work with one standby
node at a time. Note that pg_archivecleanup requires two parameters: the archive
directory and %r, with a space between them. PostgreSQL transforms %r into the cut-off
filename.

If you wish to have multiple standby nodes, then a shared archive would be a single point
of failure and should be avoided, so each standby should maintain its own archive. We
must modify the archive_command to be a script, rather than execute the command
directly.

This allows us to handle archiving to multiple destinations:

archive_command = 'myarchivescript %p %f'

Then, we can write myarchivescript so that it looks something like the following, though
you'll need to add some suitable error checking for your environment:

scp $1 $STANDBYNODE1:$PGARCHIVE/$2
scp $1 $STANDBYNODE2:$PGARCHIVE/$2
scp $1 $STANDBYNODE3:$PGARCHIVE/$2

The initial copy, or base backup, is performed using the rsync utility, which may require
you to have direct security authorization, for example, using SSH and key exchange. You
may also choose to perform the base backup in a different way. If so, feel free to substitute
your preferred method.

Replication and Upgrades Chapter 12

[500]

There's more…
Monitoring file-based log shipping can be performed in a number of ways. You can look at
the current files on both the master and standby, as follows:

ps -ef | grep archiver on master
postgres: archiver process last was 000000010000000000000040
ps -ef | grep startup on standby
postgres: startup process waiting for 000000010000000000000041

This allows you to see the replication delay in terms of the number of WAL files, by which
the standby is behind the master. Prior to PostgreSQL 9.0, it was difficult to measure the
replication delay as a time interval with any accuracy, and some hackish methods were
needed. Those aren't presented here. The latest ways of monitoring replication are covered
in more detail in the Monitoring replication recipe.

See also
If you have configuration instructions written for versions ranging from
PostgreSQL 8.2 to 8.4, then they will work almost exactly the same from
PostgreSQL 9.0 onwards. The only difference is that you will also need to specify
wal_level, as we've just shown.
Note that the procedures covered here are not the default configuration, and they
do differ from earlier releases. In PostgreSQL 9.0, the pg_standby utility is no
longer required, as many of its features are now performed directly by the server.
If you prefer to continue using pg_standby with PostgreSQL 9.0, then you do
not need to use the archive_cleanup_command, standby_mode, or
trigger_file parameters at all.

Setting up streaming replication
Log shipping is a replication technique that's used by many database management systems.
The master records change in a transaction log (WAL), and then the log data is shipped
from the master to the standby, where the log is replayed.

In PostgreSQL, PSR transfers WAL data directly from the master to the standby, giving us
integrated security and reduced replication delay.

Replication and Upgrades Chapter 12

[501]

There are two main ways to set up streaming replication: with or without an additional
archive. Setting it up without an external archive is presented here, as it is the simpler and
more efficient way. However, there is one downside that suggests that the simpler
approach may not be appropriate for larger databases, which is explained later in this
recipe.

Getting ready
If you haven't read the Replication concepts section and the Replication best practices recipes at
the start of this chapter, go and read them now. Note that streaming replication refers to the
master node as the primary node, and the two terms can be used interchangeably.

How to do it…
You can use the following procedure for base backups:

Identify your master and standby nodes and ensure that they have been1.
configured according to the Replication best practices recipe.
Configure replication security. Create or confirm the existence of the replication2.
user on the master node:

CREATE USER repuser
 REPLICATION
 LOGIN
 CONNECTION LIMIT 2
 ENCRYPTED PASSWORD 'changeme';

Allow the replication user to authenticate. The following example allows access3.
from any IP address using MD5-encrypted password authentication; you may
wish to consider other options. Add the following line to pg_hba.conf:

host replication repuser 0.0.0.1/0 md5

Set the logging options in postgresql.conf on both the master and the standby4.
so that you can get more information regarding replication connection attempts
and associated failures:

log_connections = on

Replication and Upgrades Chapter 12

[502]

Set max_wal_senders on the master in postgresql.conf, or increase it if the5.
value is already nonzero. Check the server first, since the default is now 10:

max_wal_senders = 10
wal_level = 'archive'
archive_mode = on
archive_command = 'cd .'

Adjust the hot standby parameters, if required (see a Setting up streaming6.
replication security recipe).
Create a replication slot, if needed (see a later recipe). A new option in7.
PostgreSQL 11 can do this for you, if you wish—add the --create-slot
parameter in Step 11.
Take a base backup:8.

pg_basebackup -d 'connection string' -D /path/to_data_dir

You are advised to use the following additional option on the pg_basebackup9.
command line. This option allows the required WAL files to be streamed
alongside the base backup on a second session, greatly improving the startup
time on larger databases, without the need to fuss over large settings of
wal_keep_segments (as seen in Step 6):

--wal-method=stream

If the backup uses too many server resources (CPU, memory, disk, or10.
bandwidth), you can throttle down the speed for the backup using the following
additional option on the pg_basebackup command line. The RATE value is
specified in kb/s by default:

--max-rate=RATE

If you are using replication slots, specify the slot name. If you want to create the11.
slot as well, please use the --create-slot option as well:

--slot=myslotname --create-slot

Replication and Upgrades Chapter 12

[503]

Set the recovery.conf parameters on the standby. Note that12.
primary_conninfo must not specify a database name, though it can contain any
other PostgreSQL connection option. Also, note that all options in
recovery.conf are enclosed in quotes, whereas the postgresql.conf
parameters need not be. For PostgreSQL 9.4 and later versions, you can skip this
step if you wish by specifying the --write-recovery-conf option on
pg_basebackup:

standby_mode = 'on'
primary_conninfo = 'host=192.168.0.1 user=repuser'
trigger_file = '' # no need for trigger file 9.1+

Start the standby server.13.
Carefully monitor the replication delay until the catch-up period is over. During14.
the initial catch-up period, the replication delay will be much higher than we
would normally expect it to be. The pg_basebackup utility also allows you to
produce a compressed TAR file using the following command:

pg_basebackup -F -z

An alternate procedure can be used if needed or desirable:

First, perform Steps 1 to Step 5 of the preceding procedure.1.
Use wal_keep_segments, or use replication slots (see a later recipe).2.
Adjust wal_keep_segments on the master in postgresql.conf. Set this to a3.
value no higher than the amount of free space on the drive on which the pg_wal
directory is mounted, divided by 16 MB (note: this value is configurable).
If pg_wal isn't mounted on a separate drive, then don't assume that all of the4.
current free space is available for transaction log files: wal_keep_segments =
10000 # 160 GB.
Adjust the hot standby parameters, if required (see the Hot standby and read5.
scalability recipe). Take a base backup, which is very similar to the process for
taking a physical backup, as described in Chapter 11, Backup and Recovery.

Start the backup:6.

psql -c "select pg_start_backup('base backup for streaming
rep')"

Replication and Upgrades Chapter 12

[504]

Copy the data files (excluding the pg_wal directory):7.

rsync -cva --inplace --exclude=*pg_wal* \
${PGDATA}/ $STANDBYNODE:$PGDATA

Stop the backup:8.

psql -c "select pg_stop_backup(), current_timestamp"

Set the recovery.conf parameters on the standby. Note that9.
primary_conninfo must not specify a database name, though it can contain any
other PostgreSQL connection option. Also, note that all options in
recovery.conf are enclosed in quotes, whereas the postgresql.conf
parameters need not be:

standby_mode = 'on'
primary_conninfo = 'host=alpha user=repuser'
trigger_file = '/tmp/postgresql.trigger.5432'

Start the standby server.10.
Carefully monitor the replication delay until the catch-up period is over. During11.
the initial catch-up period, the replication delay will be much higher than we
would normally expect it to be.

How it works…
Multiple standby nodes can connect to a single master. Set max_wal_senders to the
number of standby nodes, plus at least 1. If you are planning to use pg_basebackup -
wal-method=stream, then allow for an additional connection per concurrent backup you
plan for. You may wish to set up an individual user for each standby node, though it may
be sufficient just to set the application_name parameter in primary_conninfo.

The architecture for streaming replication is this: on the master, one WALSender process is
created for each standby that connects for the streaming replication. On the standby node, a
WALReceiver process is created to work cooperatively with the master. Data transfer has
been designed and measured to be very efficient, and data is typically sent in 8,192-byte
chunks, without additional buffering at the network layer.

Both WALSender and WALReceiver will work continuously on any outstanding data, and
will be replicated until the queue is empty. If there is a quiet period, then WALReceiver
will sleep for a while.

Replication and Upgrades Chapter 12

[505]

The standby connects to the master using native PostgreSQL libpq connections. This means
that all forms of authentication and security work for replication, just as they do for normal
connections. Note that, for replication sessions, the standby is the client and the master is
the server, if any parameters need to be configured. Using standard PostgreSQL libpq
connections also means that normal network port numbers are used, so no additional
firewall rules are required. You should also note that if the connections use SSL, then
encryption costs will slightly increase the replication delay and the CPU resources required.

There's more…
If the connection between the master and standby drops, it will take some time for that to
be noticed across an indirect network. To ensure that a dropped connection is noticed as
soon as possible, you may wish to adjust the timeout settings.

The standby will notice that the connection to the master has dropped after
wal_receiver_timeout milliseconds. Once the connection is dropped, the standby will
retry the connection to the sending server every wal_retrieve_retry_interval
milliseconds. Set these parameters in the postgresql.conf file on the standby.

A sending server will notice that the connection has dropped after wal_sender_timeout
milliseconds, set in the postgresql.conf file on the sender. Once the connection is
dropped, the standby is responsible for reestablishing the connection.

You may also wish to increase max_wal_senders to one or two more than the current
number of nodes so that it will be possible to reconnect even before a dropped connection is
noted. This allows a server restart to reestablish connections more easily. If you do this,
then also increase the connection limit for the replication user. Check the existing value
first, since defaults have been increased in PostgreSQL 11.

Data transfer may stop if the connection drops or the standby server or the standby system
is shut down. If replication data transfer stops for any reason, it will attempt to restart from
the point of the last transfer. Will that data still be available? There are a few options here,
though the preferred option is now to use replication slots.

Replication slots reserve WAL files for use by disconnected nodes. Therefore, it is
important to be careful that WAL files don't build up, causing out of disk space errors due to
physical replication slots created with no currently connected standby. The amount of
space taken by WAL should be monitored, and the slot should be dropped if space reaches
a critical limit.

Replication and Upgrades Chapter 12

[506]

An alternate approach is to reserve WAL data, but only up to a limit. For streaming
replication, the master keeps a number of files that is at least equal
to wal_keep_segments. If the standby database server has been down for long enough,
the master will have moved on and will no longer have the data for the last point of
transfer. If that should occur, then the standby needs to be reconfigured using the same
procedure with which we started.

You should plan to use pg_basebackup --wal-method=stream. If you choose not to,
you should note that the standby database server will not be streaming during the initial
base backup. So, if the base backup is long enough, we might end up with a situation where
replication will never start because the desired starting point is no longer available on the
master. This is the error that you'll get:

FATAL: requested WAL segment 000000010000000000000002 has already been
removed

It's very annoying, and there's no way out of it—you need to start over. So, start with a very
high value of wal_keep_segments. Don't guess this randomly; set it to the available disk
space on pg_wal divided by 16 MB, or less if it is a shared disk. If you still get that error,
then you need to increase wal_keep_segments and try again, possibly also using
techniques to speed up the base backup, which were discussed in Chapter 11, Backup and
Recovery.

If you can't set wal_keep_segments high enough, there is an alternative. You must
configure a third server or storage pool with increased disk storage capacity, which you can
use as an archive. The master will need to have an archive_command that places files on
the archive server, rather than the dummy command shown in the preceding procedure, in
addition to parameter settings to allow streaming to take place. The standby will need to
retrieve files from the archive using restore_command, as well as streaming using
primary_conninfo. Thus, both the master and standby have two modes for sending and
receiving, and they can switch between them should failures occur. This is the typical
configuration for large databases. Note that this means that the WAL data will be copied
twice: once to the archive and once directly to the standby. Two copies are more expensive,
but they are also more robust.

Setting up streaming replication security
Streaming replication is at least as secure as normal user connections to PostgreSQL.

Replication and Upgrades Chapter 12

[507]

Replication uses standard libpq connections, so we have all the normal mechanisms for
authentication and SSL support, and all the firewall rules are similar.

Replication must be specifically enabled on both the sender and standby sides. Cascading
replication does not require any additional security.

When performing a base backup, the pg_basebackup, pg_receivewal, and
pg_recvlogical utilities will use the same type of libpq connections as a running,
streaming standby. You can use other forms of base backup, such as rsync, though you'll
need to set up the security configuration manually.

Standbys are identical copies of the master, so all users exist on all nodes
with identical passwords. All of the data is identical (eventually), and all
the permissions are the same too. If you wish to control access more
closely, then you'll need different pg_hba.conf rules on each server to
control this. Obviously, if your config files differ between nodes, then
failover will be slightly more dramatic, unless you've given that some
prior thought.

Getting ready
Identify or create a user/role to be used solely for replication. Decide what form of
authentication will be used. If you are going across data centers or the wider internet, take
this very seriously.

How to do it…
On the master, perform these steps:

Enable replication by setting a specific host access rule in pg_hba.conf1.
Give the selected replication user/role the REPLICATION and LOGIN attributes:2.

ALTER ROLE replogin REPLICATION;

Alternatively, create it using this command:3.

CREATE ROLE replogin REPLICATION LOGIN;

Replication and Upgrades Chapter 12

[508]

On the standby, perform these steps:

Request replication by setting primary_conninfo in recovery.conf.1.
If you are using SSL connections, use sslmode=verify-full.2.
Enable per-server rules, if any, for this server in pg_hba.conf.3.

How it works…
Streaming replication connects to a virtual database called replication. We do this
because the WAL data contains changes to objects in all databases, so in a way, we aren't
just connecting to one database—we are connecting to all of them.

Streaming replication connects similarly to a normal user, except that instead of a normal
user process, we are given a WALSender process.

You can set a connection limit on the number of replication connections in two ways:

At the role level, you can do it by issuing the following command:

ALTER ROLE replogin CONNECTION LIMIT 2;

By limiting the overall number of WALSender processes via the
max_wal_senders parameter

Always allow one more connection than you think is required to allow for disconnections
and reconnections.

There's more…
You may notice that the WALSender process may hit 100% CPU if you use SSL with
compression enabled and write lots of data, or generate a large WAL volume from things
such as DDL or vacuuming. You can disable compression on fast networks when you aren't
paying per-bandwidth charges by using sslcompression=0 in the connection string
specified for primary_conninfo. Note that security can be compromised if you use
compression, since the data stream is easier to attack.

Replication and Upgrades Chapter 12

[509]

Hot standby and read scalability
Hot standby (or read replicas) is the name for the PostgreSQL feature that allows us to
connect to a standby node and execute read-only queries. Most importantly, hot standby
allows us to run queries while the standby is being continuously updated through either
file-based or streaming replication.

Hot standby allows you to offload large or long-running queries or parts of your read-only
workload to the standby nodes. Should you need to switch over or failover to the standby
node, your queries will keep executing during the promotion process to avoid any
interruption of service.

You can add additional hot standby nodes to scale the read-only workload. There is no
hard limit on the number of standby nodes, as long as you ensure that enough server
resources are available and parameters are set correctly—10, 20, or more nodes are easily
possible.

There are two main capabilities provided by a hot standby node. The first is that the
standby node provides a secondary node in case the primary node fails. The second
capability is that we can run queries on that node. In some cases, these two aspects can
come into conflict with each other and can result in queries being cancelled. We need to
decide the importance we attach to each capability ahead of time so that we can prioritize
between them.

In most cases, the role of standby will take priority. Queries are good, but it's OK to cancel
them to ensure that we have a viable standby. If we have more than one hot standby node,
it may be possible to have one node nominated as standby and others dedicated to serving
queries, without any regard for their need to act as standbys.

Standby nodes are started and stopped using the same server commands as master servers,
which were covered in earlier chapters.

Getting ready
Hot standby is usable with the following:

File-based replication
Streaming replication
While performing a point-in-time recovery
When using a permanently frozen standby

Replication and Upgrades Chapter 12

[510]

For the first two replication mechanisms, you will need to configure replication as
described in earlier recipes. In addition, you will need to configure the following
parameters:

On the master, set the following in postgresql.conf:

wal_level = 'replica' # PostgreSQL 9.6 and above, else hot_standby

On the standby, set the following in postgresql.conf:

hot_standby = on

Both of those settings are now the defaults in PostgreSQL 11. In earlier versions, you will
need to make these changes. You will need to do a clean restart of the database server on
the master. Then, wait a few seconds and restart the standby for those changes to take
effect. If you restart the standby too quickly, it will still keep reading the older transaction
log data and fail to start. It will give a log message saying you need to enable hot standby,
so be patient. You only need to configure this once, not every time you restart. See the
Delaying, pausing, and synchronizing replication recipe to work out how to wait for actions on
the master to arrive on the standby.

A permanently frozen standby can be created by specific settings in the recovery.conf
file. Neither restore_command nor primary_conninfo should be set, in the case of
standby_mode = on. In this mode, the server will start, but will always remain at the
exact state of the database, as it was when the pg_stop_backup() function completed.

Another point to note is that during the initial catch-up period, the replication delay will be
much higher than we would normally expect it to be. You are advised to set hot_standby
= off for the initial period immediately following the creation of the standby only. User
connections during that initial period may use system resources or cause conflicts that
could extend the catch-up delay. When the standby is fully caught up with the primary,
then we can set hot_standby = on and restart, or simply prevent user access via
pg_hba.conf until the standby catches up.

How to do it…
On the standby node, changes from the master are read from the transaction log and
applied to the standby database. Hot standby works by emulating running transactions
from the master so that queries on the standby have the visibility information they
need to respect MVCC. This makes the hot standby mode particularly suitable for serving a
large workload of short or fast SELECT queries. If the workload is consistently short, then
few conflicts will delay the standby and the server will run smoothly.

Replication and Upgrades Chapter 12

[511]

Queries that run on the standby node see a version of the database that is slightly behind
the primary node. Eventually, we describe this as being consistent. How long is eventually?
That time is exactly the replication delay plus the apply delay, as discussed in the
Replication concepts section. You may also request that standby servers delay applying
changes. See the Delaying, pausing, and synchronizing replication recipe later on in this
chapter for more information.

Resource contention (CPU, I/O, and so on) may increase apply delay. If the server is busy
applying changes from the master, then you will have fewer resources to use for queries.
This means that if there are no changes arriving, then you'll get more query throughput. If
there are predictable changes in the write workload on the master, then you may need to
throttle back your query workload on the standby when they occur.

Replication apply may also generate conflicts with running queries. Conflicts may cause the
replay to pause, and eventually queries on the standby may be canceled or disconnected.
There are three main types of conflicts that can occur between the master and queries on
the standby, which are as follows:

Locks such as access exclusive locks
Cleanup records
Other special cases

If cancellations do occur, they will throw either error or fatal-level errors. These will be
marked with SQLSTATE 40001 SERIALIZATION FAILURE. This could be trapped by an
application, and then the SQL can be resubmitted.

You can monitor the number of conflicts that occur in two places. The total number of
conflicts in each database can be seen using this query:

SELECT datname, conflicts FROM pg_stat_database;

You can drill down further to look at the types of conflict using the following query:

SELECT datname, confl_tablespace, confl_lock, confl_snapshot,
confl_bufferpin, confl_deadlock
FROM pg_stat_database_conflicts;

Tablespace conflicts are the easiest to understand. If you try to drop a tablespace that
someone is still using, then you're going to get a conflict. Don't do that!

Replication and Upgrades Chapter 12

[512]

Lock conflicts are also easy to understand. If you wish to run a command on the master,
such as ALTER TABLE ... DROP COLUMN, then you must lock the table first to prevent all
types of access. The lock request is sent to the standby server as well, which will then cancel
standby queries that are currently accessing that table after a configurable delay.

On high-availability systems, making DDL changes to tables that cause long periods of
locking on the master can be difficult. You may want the tables on the standby to stay
available for reads during the period in which the changes are being made on the master.
To do that, temporarily set these parameters on the standby: max_standby_streaming
delay = -1 and max_standby_archive_delay = -1. Then, reload the server. As soon
as the first lock record is seen on the standby, all further changes will be held. Once the
locks on the master are released, you can reset the original parameter values on the
standby, which will then allow the changes to be made there.

Setting the max_standby_streaming_delay and max_standby_archive_delay
parameters to -1 is very timid and may not be useful for normal running if the standby is
intended to provide high availability. No user query will ever be canceled if it conflicts with
applying changes. It will cause the apply process to wait indefinitely. As a result, the apply
delay can increase significantly over time, depending on the frequency and duration of
queries and the frequency of conflicts. To work out an appropriate setting for these
parameters, you need to understand more about the other types of conflict, though there is
also a simple way to avoid this problem entirely.

Snapshot conflicts require some understanding of the internal workings of MVCC, which
many people find confusing. To avoid snapshot conflicts, you should set
hot_standby_feedback = on in the standby's postgresql.conf file.

In some cases, this could cause table bloat on the master, so it is not set by default. If you
don't wish to set hot_standby_feedback = on, then you have further options to
consider. You can set an upper limit on the acceptable apply delay caused by conflicts by
controlling two similar parameters: max_standby_streaming_delay and
max_standby_archive_delay. As a last resort, you can also provide some protection
against cancelled queries by setting vacuum_defer_cleanup_age to a value higher than 0.
This parameter is fairly hard to set accurately, though I would suggest starting with a value
of 1000 and then tune upwards. A vague and inaccurate assumption would be to say that
each 1000 will be approximately 1 second of additional delay. This is probably helpful
more often than it is wrong. Other conflict types (bufferpin, deadlocks, and so on) are
possible, but they are rare.

Replication and Upgrades Chapter 12

[513]

If you want a completely static standby database with no further changes applied, then you
can do this by stopping the server, modifying recovery.conf so that neither
restore_command nor primary_conninfo are set but standby_mode is on, and then
restarting the server. You can come back out of this mode, but only if the archive contains
the required WAL files to catch up. Otherwise, you will need to reconfigure the standby
from a base backup again.

If you attempt to run a non-read-only query, then you will receive an error marked with
SQLSTATE 25006 READ ONLY TRANSACTION. This could be used to redirect SQL to the
master, where it can execute successfully.

How it works…
Changes made by a transaction on the master will not be visible until the commit is applied
onto the standby. So, for example, we have a master and a standby with a replication delay
of 4 seconds between them. A long-running transaction may write changes to the master for
1 hour. How long does it take before those changes are visible on the standby? With hot
standby, the answer is 4 seconds after the commit on the master. This is because the
changes made during the transaction on the master are streamed while the transaction is
still in progress, and in most cases, they are already applied on the standby when the
commit record arrives.

You may also wish to use the remote_apply mode; see the Delaying, pausing, and
synchronizing replication recipe later on in this chapter.

Hot standby can also be used when running a point-in-time recovery, so the WAL records
that are applied to the database need not arrive immediately from a live database server.
We can just use file-based recovery in that case, not streaming replication.

Finally, query performance has been dramatically improved in hot standby over time, so
it's a good idea to upgrade for that reason alone.

Managing streaming replication
Replication is great, provided that it works. Replication works well if it's understood, and it
works even better if it's tested.

Replication and Upgrades Chapter 12

[514]

Getting ready
You need to have a plan for the objectives for each individual server in the cluster. Which
standby server will be the failover target?

How to do it…
Switchover is a controlled switch from the master to the standby. If performed correctly,
there will be no data loss. To be safe, simply shut down the master node cleanly, using
either the smart or fast shutdown modes. Do not use the immediate mode shutdown
because you will almost certainly lose data that way.

Failover is a forced switch from the master node to a standby because of the loss of the
master. So, in that case, there is no action to perform on the master; we presume it is not
there anymore.

Next, we need to promote one of the standby nodes to be the new master. A standby node
can be triggered into becoming a master node in one of two ways:

pg_ctl promote

Suppose you originally specified a trigger_file parameter like this:

trigger_file = '/tmp/postgresql.trigger.5432'

Then, you can create the trigger file by executing this:

touch /tmp/postgresql.trigger.5432

The trigger_file will be deleted when the transition is complete.

Note that the trigger file has nothing to do whatsoever with a trigger-based replication.
The trigger filename can be anything you like. We use a suffix of 5432 to ensure that we
trigger only one server if there are multiple PostgreSQL servers operating on the same
system.

The standby will become the master only once it has fully caught up. If you haven't been
monitoring replication, this could take some time.

Replication and Upgrades Chapter 12

[515]

In versions before PostgreSQL 9.3, switching from standby to master may take some time
while the database performs an immediate checkpoint, at least with database servers with
large caches and high rates of changes being replicated from the master. From PostgreSQL
9.3 onwards, we can switch from the standby to the master very quickly, and then perform
a smooth background checkpoint. There may still be significant I/O as writes begin on the
new master.

Once the ex-standby becomes a master, it will begin to operate all normal functions,
including archiving files, if configured. Be careful and verify that you have all the correct
settings for when this node begins to operate as a master.

It is likely that the settings will be different from those on the original master from which
they were copied.

Note that I refer to this new server as a master, not the master. It is up to you to ensure that
the previous master doesn't continue to operate a situation known as split-brain. You must
be careful to ensure that the previous master stays down.

Management of complex failover situations is not provided with PostgreSQL, nor is
automated failover. Situations can be quite complex with multiple nodes, and clusterware
is used in many cases to manage this.

The role of the recovery_end_command is to clean up at the end of the switchover or
failover process. You do not need to remove the trigger file explicitly, as was
recommended in previous releases.

There's more…
When following a switchover from one node to another, it is common to think of
performing a switchover back to the old master server, which is sometimes called failback
or switchback.

Once a standby has become a master, it cannot go back to being a standby again. So, with
log replication, there is no explicit switchback operation. This is a surprising situation for
many people and there is a repeated question, but it is quick to work around. Once you
have performed a switchover, all you need to do is the following:

Reconfigure the old master node again, repeating the same process as before to
set up a standby node
Switchover from the current to the old master node

Replication and Upgrades Chapter 12

[516]

The important part here is that if we perform the first step without deleting the files on the
old master, it allows rsync to go much faster. When no files are present on the destination,
rsync just performs a copy. When similarly named files are present on the destination,
then rsync will compare the files and send only the changes. So, the rsync we perform on
a switchback operation performs much less data transfer than in the original copy. It is
likely that this will be enhanced in later releases of PostgreSQL. There are also ways to
avoid this, as shown in the repmgr utility, which will be discussed later.

The pg_rewind utility has been developed as a way to perform an automated switchback
operation. It performs a much faster switchback when there is a large database with few
changes to apply. To allow correct operation, this program can only run on a server that
was previously configured with the wal_log_hints = on parameter.

Using that parameter can cause more I/O on large databases, so while it improves
performance for switchback, it has a considerable overhead for normal running. If you
think you would like to run pg_rewind, then make sure you work out how it behaves
ahead of time. Trying to run it for the first time in a stress situation with a down server is a
bad idea.

If all goes wrong, then please remember that pg_resetwal is not your friend. It is
specifically designed to remove WAL files, destroying your data changes in the process.
Always back up WAL files before using it.

See also
Clusterware may provide additional features, such as automated failover, monitoring, or
ease of management of replication:

The repmgr utility is designed to manage PostgreSQL replication and failover
This is discussed in more detail in the Using repmgr recipe
The pgpool library is designed to allow session pooling and routing of requests
to standby nodes

Using repmgr
As we stated previously, replication is great, provided that it works. It works well if it's
understood, and it works even better if it's tested. This is a great reason to use the repmgr
utility.

Replication and Upgrades Chapter 12

[517]

repmgr 4.0 is an open source tool that was designed specifically for PostgreSQL replication.
To get additional information about repmgr, visit http://www.repmgr.org/.

The repmgr utility provides a command-line interface and a management process
(daemon) that's used to monitor and manage PostgreSQL servers involved in replication.
The repmgr utility easily supports more than two nodes, with automatic failover detection.

Getting ready
Install the repmgr utility from binary packages on each PostgreSQL node.

Set up replication security and network access between nodes according to the Setting up
streaming replication security recipe.

How to do it…
The repmgr utility provides a set of single command-line actions that perform all the
required activities on one node:

To start a new cluster with repmgr with the current node as its primary, use the1.
following command:

repmgr primary register

To add an existing standby to the cluster with repmgr, use the following2.
command:

repmgr standby register

Use the following command to request repmgr to create a new standby for you3.
by copying node1. This will fail if you specify an existing data directory:

repmgr standby clone node1 -D /path/of_new_data_directory

To reuse an old master as a standby, use the rejoin command:4.

repmgr node rejoin -d 'host=node2 user=repmgr'

To switch from one primary to another one, run this command on the standby5.
that you want to make a primary:

repmgr standby switchover

http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/
http://www.repmgr.org/

Replication and Upgrades Chapter 12

[518]

To promote a standby to be the new primary, use the following command:6.

repmgr standby promote

To request a standby to follow a new primary, use the following command:7.

repmgr standby follow

Check the status of each registered node in the cluster, like this:8.

repmgr cluster show

Request a cleanup of monitoring data, as follows. This is relevant only if --9.
monitoring-history is used:

repmgr cluster cleanup

Create a witness server for use with auto-failover voting, like this:10.

repmgr witness create

The preceding commands are presented in a simplified form. Each command also takes one
of these options:

--verbose: This is useful when exploring new features
-f: This specifies the path to the repmgr.conf file

For each node, create a repmgr.conf file containing at least the following parameters.
Note that the node_id and node_name parameters need to be different on each node:

node_id=2
node_name=beta
conninfo='host=beta user=repmgr'
data_directory=/var/lib/pgsql/11/data

Once all the nodes are registered, you can start the repmgr daemon on each node, like this:

repmgrd -d -f /var/lib/pgsql/repmgr/repmgr.conf &

If you would like the daemon to generate monitoring information for that node, you should
set monitoring_history=yes in the repmgr.conf file.

Monitoring data can be accessed using this:

repmgr=# select * from repmgr.replication_status;
-[RECORD 1]-------------+------------------------------
primary_node_id | 1

Replication and Upgrades Chapter 12

[519]

standby_node_id | 2
standby_name | node2
node_type | standby
active | t
last_monitor_time | 2017-08-24 16:28:41.260478+09
last_wal_primary_location | 0/6D57A00
last_wal_standby_location | 0/5000000
replication_lag | 29 MB
replication_time_lag | 00:00:11.736163
apply_lag | 15 MB
communication_time_lag | 00:00:01.365643

How it works…
Repmgr 4 works with PostgreSQL 9.3+ and PostgreSQL 10 and later versions. The repmgr
supports the latest features of PostgreSQL, such as cascading, synchronous replication, and
replication slots. It uses pg_basebackup, allowing you to clone from a standby. The use of
pg_basebackup also removes the need for rsync and key exchange between servers. Also,
cascaded standby nodes no longer need to re-follow.

There's more…
The default behavior for the repmgr utility is manual failover.

The repmgr utility also supports automatic failover capabilities. It can automatically detect
failures of other nodes, and then decide which server should become the new master by
voting among all of the still-available standby nodes. The repmgr utility supports a witness
server to ensure that there are an odd number of voters in order to get a clear winner in any
decision.

Using replication slots
Replication slots allow you to define your replication architecture explicitly. They also
allow you to track details of nodes even when they are disconnected. Replication slots work
with both PSR and LSR, though they operate slightly differently.

Replication and Upgrades Chapter 12

[520]

Replication slots ensure that data required by a downstream node persists until the node
receives it. They are crash-safe, so if a connection is lost, the slot still continues to exist. By
tracking data on downstream nodes, we avoid these problems:

When a standby disconnects, the feedback data provided by
hot_standby_feedback is lost. When the standby reconnects, it may be sent
cleanup records that result in query conflicts. Replication slots remember the
standby's xmin value even when disconnected, ensuring that cleanup conflicts
can be avoided.
When a standby disconnects, the knowledge of which WAL files were required is
lost. When the standby reconnects, we may have discarded the required WAL
files, requiring us to regenerate the downstream node completely (assuming that
this is possible). Replication slots ensure that nodes retain the WAL files needed
by all downstream nodes.

Replication slots are required by LSR and for any other use of logical decoding. Replication
slots are optional with PSR.

Getting ready
This recipe assumes that you have already set up replication according to the earlier recipes
so that wal_level, max_wal_senders, and the other parameters are set.

A replication slot represents one link between two nodes. At any time, each slot can
support one connection. If you draw a diagram of your replication architecture, then each
connecting line is one slot. Each slot must have a unique name. The slot name must contain
only lowercase letters, numbers, and underscores.

As we discussed previously, each node should have a unique name. So, a suggestion would
be to construct the slot name from the two node names that it links. For various reasons,
there may be a need for multiple slots between two nodes, so additional information is also
required for uniqueness. For two servers called alpha and beta, an example of a slot name
would be alpha_beta_1.

For LSR, each slot refers to a single database rather than the whole server. In that case, slot
names could also include database names.

Replication and Upgrades Chapter 12

[521]

How to do it…
Set max_replication_slots > 0 on each sending node. This change requires1.
a restart, though the default of 10 is usually enough. Set the value to at least one
more than the number of planned slots:

max_replication_slots = 2

For PSR slots, you first have to create the slot on the sending node, like this:2.

SELECT (pg_create_physical_replication_slot
('alpha_beta_1', true)).wal_position;
wal_position

 0/5000060

Monitor it in use by using the following code: 3.

SELECT * FROM pg_replication_slots;

In the recovery.conf file in the data directory on the standby, set4.
the primary_slot_name parameter using the unique name that you assigned
earlier:

primary_slot_name = 'alpha_beta_1'

Slots can be removed using the following query:

SELECT pg_drop_physical_replication_slot('alpha_beta_1');

There's more…
If all of your replication connections use slots, then there is no need to set
the wal_keep_segments parameter.

Replication slots can be used to support applications where downstream nodes are
disconnected for extended periods of time. Replication slots prevent the removal of WAL
files, which are needed by disconnected nodes. Therefore, it is important to be careful that
WAL files don't build up, causing out of disk space errors due to physical replication slots
being created with no currently connected standby.

Replication and Upgrades Chapter 12

[522]

See also
See the Logical replication recipe for more details on using slots with LSR.

Monitoring replication
Monitoring the status and progress of your replication is essential. We'll start by looking at
the server status and then query the progress of replication.

Getting ready
You'll need to start by checking the state of your server(s).

Check whether a server is up using pg_isready or another program that uses the
PQping() API call. You'll get one of the following responses:

PQPING_OK (return code 0): The server is running and appears to be
accepting connections.
PQPING_REJECT (return code 1): The server is running, but is in a state that
disallows connections (startup, shutdown, or crash recovery) or a standby that is
not enabled with hot standby.
PQPING_NO_RESPONSE (return code 2): The server could not be contacted.
This might indicate that the server is not running, there is something wrong with
the given connection parameters (for example, wrong port number), or there is a
network connectivity problem (for example, a firewall blocking the connection
request).
PQPING_NO_ATTEMPT (return code 3): No attempt was made to contact the
server, for example, invalid parameters.

We don't differentiate between a master and a standby, though this may
change in later releases. Neither do we say whether a server is accepting
write transactions or only read-only transactions (a standby or a master
connection in read-only mode).

You can find out whether a server is a master or a standby by connecting and executing this
query:

SELECT pg_is_in_recovery();

Replication and Upgrades Chapter 12

[523]

There are also two other states that may be important for backup and replication: paused
and in-exclusive-backup. The paused state doesn't affect user queries, but replication will
not progress at all when paused. Only one exclusive backup may occur at any one time.

You can also check whether replay is paused by executing this query:

SELECT pg_is_wal_replay_paused();

If you want to check whether a server is in exclusive backup mode, execute the following
query:

SELECT pg_is_in_backup();

There is no supported function that shows whether a nonexclusive backup is in progress,
though there isn't as much to worry about if there is. If you care about that, make sure
that you set the application_name of the backup program so that it shows up in the
session status output of pg_stat_activity, as discussed in Chapter 8, Monitoring and
Diagnosis.

How to do it…
The rest of this recipe assumes that you have enabled hot_standby. This is not an absolute
requirement, but it makes things much, much easier.

Both repmgr and pgpool provide replication monitoring facilities. Munin plugins are
available for graphing replication and apply delay.

Replication works by processing the WAL transaction log on other servers. You can think
of WAL as a single, serialized stream of messages. Each message in the WAL is identified
by an 8-byte integer known as a log sequence number (LSN). For historical reasons, we
show this as two separate hex numbers; for example, the LSN value X is shown as
XXXX/YYYY.

You can compare any two LSNs using pg_wal_lsn_diff(). In some places, prior to
PostgreSQL 10, an LSN was referred to as a location, a term that's no longer in use.

To understand how to monitor progress, you need to understand a little more about
replication as a transport mechanism. The stream of messages flows through the system
like water through a pipe. You can work out how much progress has been made by
measuring the LSN at different points in the pipe. You can also check for blockages in the
pipe by measuring the relative progress between points.

Replication and Upgrades Chapter 12

[524]

New WAL records are inserted into the WAL files on the master. The current insert LSN
can be found using this query:

SELECT pg_current_wal_insert_lsn();

However, WAL records are not replicated until they have been written and synced to the
WAL files on the master. The LSN of the most recent WAL write is given by this query on
the master:

SELECT pg_current_wal_lsn();

Once written, WAL records are then sent to the standby. The recent status can be found by
running this query on the standby (this and the later functions return NULL on a master):

SELECT pg_last_wal_receive_lsn();

Once WAL records have been received, they are written to WAL files on the standby. When
the standby has written those records, they can then be applied to it. The LSN of the most
recent apply is found using this standby query:

SELECT pg_last_wal_replay_lsn();

Remember that there will always be timing differences if you run status queries on multiple
nodes. What we really need is to see all of the information on one node. A view called
pg_stat_replication provides the information that we need:

SELECT pid, application_name /* or other unique key */
,pg_current_wal_insert_lsn() /* WAL Insert lsn */
,sent_lsn /* WALSender lsn */
,write_lsn /* WALReceiver write lsn */
,flush_lsn /* WALReceiver flush lsn */
,replay_lsn /* Standby apply lsn */
,backend_start /* Backend start */
FROM pg_stat_replication;
-[RECORD 1]-------------------+------------------------------ pid |
16496
application_name | pg_basebackup pg_current_wal_insert_lsn |
0/80000D0
sent_lsn |
write_lsn |
flush_lsn |
replay_lsn |
backend_start | 2017-01-27 15:25:42.988149+00
-[RECORD 2]-------------------+-------------------pid
16497
application_name | pg_basebackup pg_current_wal_insert_lsn |
0/80000D0

Replication and Upgrades Chapter 12

[525]

sent_lsn | 0/80000D0
write_lsn | 0/8000000
flush_lsn | 0/8000000
replay_lsn |
backend_start | 2017-01-27 15:25:43.18958+00

Each row in this view represents one replication connection. The preceding snippet shows
the output from a pg_basebackup that is using --wal-method=stream. The first
connection that's shown is the base backup, while the second session is streaming WAL
changes. Note that the replay_lsn is NULL, indicating that this is not a standby.

Standby nodes send regular status messages to let the sender know how far it has
progressed. If you run this query on the master, you'll be able to see all the directly
connected standbys. If you run this query on a standby, you'll see values representing any
cascaded standbys, but nothing about the master or any of the other standbys connected to
the master. Note that because the data has been sent from a remote node, it is very likely
that processing will have progressed beyond the point being reported, but we don't know
that for certain. That's just physics. Welcome to the world of distributed systems!

In PostgreSQL 11, replication delay times are provided directly using sampled message
timings to provide the most accurate viewpoint of current delay times. Use this query:

SELECT pid, application_name /* or other unique key */
 ,write_lag, flush_lag, replay_lag
 FROM pg_stat_replication;

Another view called pg_stat_wal_receiver provides information about the standby that
we may be interested in; this view returns zero rows on the
master. pg_stat_wal_receiver contains connection information to allow you to connect
to the master server.

There's more…
The pg_stat_replication view shows only the currently connected nodes. If a node is
supposed to be connected but it isn't, then there is no record of it at all, anywhere. If you
don't have a list of the nodes that are supposed to be connected, then you'll just miss it.

Replication and Upgrades Chapter 12

[526]

Replication slots give you a way to define which connections are supposed to be present. If
you have defined a slot and it is currently connected, then you will get one row in
pg_stat_replication for the connection and one row in pg_replication_slots for
the corresponding slot. To find out which slots don't have current connections, you can run
this query:

SELECT slot_name, database, age(xmin), age(catalog_xmin)
 FROM pg_replication_slots
 WHERE NOT active;

To find the details of the currently connected slots, run something like the following:

SELECT slot_name
 FROM pg_replication_slots
 JOIN pg_stat_replication ON pid = active_pid;

Performance and synchronous replication
We usually refer to synchronous replication as simply sync rep. Sync rep allows us to offer
a confirmation to the user that a transaction has been committed and fully replicated on at
least one standby server. To do that, we must wait for the transaction changes to be sent to
at least one standby, and then have that feedback returned to the master.

The additional time taken for the message's round trip will add elapsed time for write
transactions, which increases in proportion to the distance between servers. PostgreSQL
offers a choice to the user as to what balance they would like between durability and
response time.

Getting ready
The user application must be connected to a master to issue transactions that write data.
The default level of durability is defined by the synchronous_commit parameter. That
parameter is user-settable, so it can be set for different applications, sessions, or even
individual transactions. For now, ensure that the user application is using this level:

SET synchronous_commit = on;

We must decide which standbys should take over from the master in the event of a failover.
We do this by setting a parameter called synchronous_standby_names.

Replication and Upgrades Chapter 12

[527]

You will need to configure at least three nodes to use sync rep correctly.

How to do it...
Make sure that you have set the application_name on each standby node. Decide the
order of servers to be listed in the synchronous_standby_names parameter. Note that the
standbys named must be directly attached standby nodes or else their names will be
ignored. Synchronous replication is not possible for cascaded nodes, though cascaded
standbys may be connected downstream. An example for a simple four-node config of
nodeA (master), nodeB, nodeC, and nodeD (standbys) would be set on nodeA, as follows:

synchronous_standby_names = 'nodeB, nodeC, nodeD'

If you want to receive replies from the first two of the nodes in a list, then we would specify
this using the following special syntax:

synchronous_standby_names = '2 (nodeB, nodeC, nodeD)'

If you want to receive replies from any two nodes, known as quorum commit, then use the
following:

synchronous_standby_names = 'any 2 (nodeB, nodeC, nodeD)'

Set synchronous_standby_names on all of the nodes, not just the master.

You can see the sync_state of connected standbys by using this query on the master:

 SELECT
 application_name
 ,state /* startup, backup, catchup or streaming */
 ,sync_priority /* 0, 1 or more */
 ,sync_state /* async, sync or potential */
 FROM pg_stat_replication
 ORDER BY sync_priority;

There are a few columns here with similar names, so be careful not to confuse them.

Replication and Upgrades Chapter 12

[528]

The sync_state column is just a human-readable form of sync_priority.
When sync_state is async, the sync_priority value will be zero (0). Standby nodes
that are mentioned in the synchronous_standby_names parameter will have a nonzero
priority that corresponds to the order in which they are listed. The standby node with a
priority of one (1) will be listed as having a sync_state value of sync. We refer to this
node as the sync standby. Other standby nodes configured to provide feedback are shown
with a sync_state value of potential and a sync_priority value of more than 1.

If a server is listed in the synchronous_standby_names parameter, but is not currently
connected, then it will not be shown at all by the preceding query, so it is possible that the
node is shown with a lower actual priority value than the stated ordering in the parameter.
Setting wal_receiver_status_interval to 0 on the standby will disable status
messages completely, and the node will show as an async node, even if it is named in the
synchronous_standby_names parameter. You may wish to do this when you are
completely certain that a standby will never need to be a failover target, such as a test
server.

The state for each server is shown as one of startup, catchup, or streaming. When
another node connects, it will first show as startup, though only briefly before it moves to
catchup. Once the node has caught up with the master, it will move to streaming, and
only then will sync_priority be set to a nonzero value.

Catch-up typically occurs quickly after a disconnection or reconnection, such as when a
standby node is restarted. When performing an initial base backup, the server will show as
backup. After this, it will stay for an extended period at catchup. The delay at this point
will vary according to the size of the database, so it could be a long period. Bear this in
mind when configuring the sync rep.

When a new standby node moves to the streaming mode, you'll see a message like this in
the master node log:

LOG standby $APPLICATION_NAME is now the synchronous
standby with priority N

Replication and Upgrades Chapter 12

[529]

How it works…
Standby servers send feedback messages that describe the LSN of the latest transaction they
have processed. Transactions committing on the master will wait until they receive
feedback saying that their transaction has been processed. If there are no standbys available
for sending feedback, then the transactions on the master will wait for standbys, possibly
for a very long time. That is why we say that you must have at least three servers to
sensibly use sync rep. It probably occurs to you that you could run with just two servers.
You can, but such a configuration does not offer any transaction guarantees; it just appears
to. Many people are confused on that point, but please don't listen to them!

Sync rep increases the elapsed time of write transactions (on the master). This can reduce
performance of applications from a user perspective. The server itself will spend more time
waiting than before, which may increase the required number of concurrently active
sessions.

Remember that when using sync rep, the overall system is still eventually consistent.
Transactions committing on the master are visible first on the standby, and a brief moment
later those changes will be visible on the master (yes, standby, and then master). This
means that an application that issues a write transaction on the master followed by a read
transaction on the sync standby will be guaranteed to see its own changes.

You can increase performance somewhat by setting the synchronous_commit parameter
to remote_write, though you will lose data if both master and standby crashes. You can
also set the synchronous_commit parameter to remote_apply when you want to ensure
that all changes are committed to the synchronous standbys and the master before we
confirm back to the user. However, this is not the same thing as synchronous visibility—the
changes become visible on the different standbys at different times.

There's more…
There is a small window of uncertainty for any transaction that is in progress just at the
point at which the master goes down. This can be handled within the application by
checking the return code following a commit operation, rather than just assuming that it
has completed successfully, as developers often do.

If the commit fails, it is possible that the server committed the transaction successfully, but
was unable to communicate that to the client; however, we don't know for certain.
Postgres-BDR resolves this problem, but unfortunately, PostgreSQL does not yet do that. A
workaround to resolve that uncertainty is to recheck a unique aspect of the transaction,
such as reconfirming the existence of a user identifier that was inserted.

Replication and Upgrades Chapter 12

[530]

If such an object identifier doesn't exist, we can create a table for this purpose:

CREATE TABLE TransactionCheck
 (TxnId SERIAL PRIMARY KEY);

During the transaction, we insert a row into that table using this query:

INSERT INTO TransactionCheck DEFAULT VALUES RETURNING TxnId;

Then, if the commit appears to fail, we can later reread this value to confirm the transaction
state as committed or aborted.

Delaying, pausing, and synchronizing
replication
Some advanced features and thoughts for replication are covered here.

Getting ready
If you have multiple standby servers, you may want to have one or more servers operating
in a delayed apply state, for example, 1 hour behind the master. This can be useful to help
recover from user errors such as mistaken transactions or dropped tables.

How to do it…
Normally, a standby will apply changes as soon as possible. When you set the
recovery_min_apply_delay parameter in recovery.conf, the application of commit
records will be delayed by the specified duration. Note that only commit records are
delayed, so you may receive hot standby cancellations when using this feature. You can
prevent that by setting hot_standby_feedback to on, but use this with caution, since it
can cause significant bloat on a busy master if recovery_min_apply_delay is large.

If something bad happens, then hit the Pause button.

Hot standby allows you to pause and resume a replay of change:

To pause the replay, issue this query:1.

SELECT pg_wal_replay_pause();

Replication and Upgrades Chapter 12

[531]

Once paused, all queries will receive the same snapshot, allowing lengthy
repeated analyses of the database, or retrieval of a dropped table.

To resume (un-pause) processing, use this query:2.

SELECT pg_wal_replay_resume();

Be careful not to promote a delayed standby. If your delayed standby is the last server
available, you should reset recovery_min_apply_delay, then restart the server, and
allow it to catch up before issuing a promote action.

There's more…
A standby is an exact copy of the master. But how do you synchronize things so that the
query results you get from a standby are guaranteed to be the same as those you'd get from
the master? Well, that in itself is not possible. It's just the physics of an eventually consistent
system. We need it to be eventually consistent because otherwise, the synchronization
would become a performance bottleneck.

What we can do is synchronize two requests on different servers, for example, if we wish to
issue a write on the master and then later issue a read from a standby. Such a case is
automatically handled by synchronous replication. If we aren't using sync rep, then we can
wait for the standby to catch up with an action on the master, remembering that the master
will have moved on by the time we've done this. To perform the wait, you need to do the
following:

On the master, perform an action that writes WAL. Just for testing purposes—not1.
for real usage—we can issue a request like this:

SELECT pg_create_restore_point('my action name')

On the master, commit the transaction using commit; with any setting other than2.
synchronous_commit = off.
On the master, find the current write LSN using this query:3.

SELECT pg_current_wal_write_lsn();

On the standby, execute the following query repeatedly until the LSN value4.
returned is equal to or higher than the LSN from the master:

SELECT pg_last_wal_replay_lsn();

Replication and Upgrades Chapter 12

[532]

The following function performs a wait:

CREATE OR REPLACE FUNCTION wait_for_lsn(lsn pg_lsn)
RETURNS VOID
LANGUAGE plpgsql
AS $$
BEGIN
 LOOP
 IF pg_last_wal_replay_lsn() IS NULL OR
 pg_last_wal_replay_lsn() >= lsn THEN
 RETURN;
 END IF;
 PERFORM pg_sleep(0.1); /* 100ms */
 END LOOP;
END $$;

This isn't ideal, since it can be cancelled while waiting. Later releases may contain better
solutions.

See also
Logical replication allows us to control the flow of data in various ways. For
pglogical, use these commands:

SELECT alter_subscription_disable();
SELECT alter_subscription_enable();

We can also create a subscription with a parameter of apply_delay
For PostgreSQL 11 subscriptions, use these commands:

ALTER SUBSCRIPTION mysub DISABLE;
ALTER SUBSCRIPTION mysub ENABLE;

Logical replication
Logical replication allows us to stream logical data changes between two nodes. By logical,
we mean streaming changes to data without referring to specific physical attributes such as
a block number and row ID.

Replication and Upgrades Chapter 12

[533]

The main benefits of logical replication are as follows:

Performance is roughly two times better than that of the best trigger-based
mechanisms
Selective replication is supported, so we don't need to replicate the entire
database (only available with pglogical at present)
Replication can occur between different major releases, which can allow a zero-
downtime upgrade

PostgreSQL 9.4 onwards provides a feature called logical decoding. This allows you to
stream a set of changes out of a master server. This allows a master to become a sending
node in logical replication. The receiving node requires a logical replication plugin to allow
replication between two nodes.

Previously, we referred to physical replication as streaming replication. Now, we have to
modify our descriptions so that we can refer to PSR and LSR. In terms of security, network
data transfer, and general management, the two modes are very similar. Concepts that are
used to monitor PSR can also be used to monitor LSR.

Since the target systems are fully writable masters in their own right, we can use the full
power of PostgreSQL without restrictions. We can use temporary tables, triggers, different
user accounts, and GRANT permissions differently. We can also define indexes differently,
collect statistics differently, and run VACUUM on different schedules.

As a result, when calling nodes, since sending and receiving nodes isn't enough, LSR works
on a publish/subscribe model, so we refer to the nodes as publishers and subscribers.

LSR works on a per-database level, not a whole-server level like PSR. One publishing node
can feed multiple subscriber nodes without incurring additional disk write overhead.

PostgreSQL 10 contains native logical replication between servers for PostgreSQL 10 and
above. Another option is the more flexible pglogical utility, which can send and receive
data from PostgreSQL 9.4 and above
(https://2ndquadrant.com/en/resources/pglogical/).

pglogical 2.2 allows you to perform the following actions:

Full database replication
Selective replication of subsets of tables using replication sets
Selective replication of table rows at either the publisher or subscriber side
Upgrades between major versions (see later recipe)
Data forwarding to Postgres-XL or Postgres-BDR

https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/
https://2ndquadrant.com/en/resources/pglogical/

Replication and Upgrades Chapter 12

[534]

Getting ready
To use pglogical, the publisher and subscriber must be running PostgreSQL 9.4 or higher,
and you must install the pglogical extension on both nodes.

The procedure is as follows:

Identify all the nodes that will work together as parts of your replication1.
architecture.
Each LSR link can replicate changes from a single database. If you have multiple2.
databases in your PostgreSQL server, you will need one LSR link per database
(not counting template0 and template1).
Each LSR link will use one connection and one slot. Set the3.
max_replication_slots and max_connections parameters to match those
requirements.
Each LSR link requires one WAL sender on the publisher. Set max_wal_senders4.
to match this requirement.
Each LSR link requires one apply process on the subscriber. Set5.
max_worker_processes to match this requirement.
On each node, take all of the following steps:6.

CREATE EXTENSION pglogical;

If using PostgreSQL 9.4, then also install the following:7.

CREATE EXTENSION pglogical_origin;

Any user-installed data types must be installed on both nodes.8.
Add this to postgresql.conf shared_preload_libraries = 'pglogical'9.
--add and to any existing list.
Set this parameter in postgresql.conf:10.

 wal_level = 'logical'

On each database, declare the node to pglogical:11.

SELECT pglogical.create_node(
 node_name := 'nodeA',
 dsn := 'host=nodeA dbname=postgres');

Replication and Upgrades Chapter 12

[535]

An example of a postgresql.conf file on the source node for the preceding steps looks
like this:

Record data for Logical replication
wal_level = 'logical'
Load the pglogical extension
shared_preload_libraries = 'pglogical'
Allow replication slot creation (we need just one but it
does not hurt to have more)
max_replication_slots = 10
Allow streaming replication (we need one for slot and
one for basebackup but again, it does not hurt to have more)
max_wal_senders = 10
max_worker_processes = 10

Logical replication supports selective replication, which means that you don't need to
specify all the tables in the database. Identify the tables to be replicated. Define replication
sets that correspond to groups of tables that should be replicated together. Ensure that all
the transactions that touch any table in the set touch only a subset of the set, or the whole
set.

Tables that will be replicated may need some preparatory steps as well. To allow logical
replication to apply UPDATE and DELETE commands correctly on the target node, we need
to define how we search for unique rows. This is known as replica identity. By default, the
replica identity will be the primary key of a table, so you need not take any action if you
have already defined primary keys on your tables. In some cases, you may need to define
the replica identity explicitly by using a command like this:

ALTER TABLE mytable REPLICA IDENTITY USING INDEX myuniquecol_idx;

Tables about the publisher and subscriber must have the same names and be in the same
schema. Tables must also have the same columns with the same data types in each column.
Tables must have the same PRIMARY KEY on both nodes. CHECK, NOT NULL, and UNIQUE
constraints must be the same or weaker (more permissive) on the subscriber.

Logical replication also supports filtered replication, which means that only certain actions
are replicated on the target node; for example, we can specify that INSERT commands are
replicated while DELETE commands are filtered away. We can also specify a subset of the
rows to be sent from the publisher or applied on the subscriber. This allows logical
replication to support a greater range of data movement applications than was previously
possible with trigger replication.

Replication requires superuser access for the roles providing replication.

Replication and Upgrades Chapter 12

[536]

How to do it…
Let's look at a few different examples of how to use logical replication:

To publish changes from all tables on a postgres database on nodeA, use the1.
following:

SELECT pglogical.replication_set_add_all_tables(
 set_name := 'default',
 schema_names := ARRAY['public'],
 true);

Then, issue the following command on nodeB:

SELECT pglogical.create_subscription(
 subscription_name := 'my_subscription_name',
 provide_dsn := 'host=nodeA dbname=postgres'
);

Publish changes for TableX on the MyApp database on nodeA by using the2.
following:

SELECT pglogical.create_replication_set(
 set_name := 'SmallSet');
SELECT pglogical.replication_set_add_table(
 set_name := 'SmallSet',
 relation := 'TableX');

Then, immediately copy all table data and subscribe to changes for TableX:

SELECT pglogical.create_subscription(
 subscription_name :=
'SmallSet_subscription',
 replication_sets := ARRAY['SmallSet'],
 provide_dsn := 'host=nodeA dbname=postgres'
);

Publish changes for rows on TableY where status=7 on the MyApp database on3.
nodeA, and add this into the existing replication set. Then, immediately
synchronize the data to all subscribing nodes:

SELECT pglogical.replication_set_add_table(
 set_name := 'SmallSet',
 relation := 'TableY',
 row_filter := 'status = 7',
 synchronize_data = true);

Replication and Upgrades Chapter 12

[537]

How it works…
Logical decoding is very efficient because it reuses the transaction log data (WAL) that was
already being written for crash safety. Triggers are not used at all for this form of
replication. Physical WAL records are translated into logical changes, which are then sent
to the receiving node. Only real data changes are sent; no records are generated from
changes to indexes, cleanup records from VACUUM, and so on. So, bandwidth
requirements are somewhat reduced, depending on the exact application.

Changes are discarded if the top-level transaction aborts (save points and other
subtransactions are supported normally). Changes are applied in the order of the
transactions that have been committed, so replication never breaks because it sees an
inconsistent sequence of activities, which can also occur with other cruder replication
techniques such as statement-based replication.

On the receiving side, changes are applied using direct database calls, leading to a very
efficient mechanism. SQL is not re-executed, so volatile functions in the original SQL don't
produce any surprises. For example, let's say you make an update like this:

UPDATE table
SET
 col1 = col1 + random()
,col2 = col2 + random()
WHERE key = value

Then, the final calculated values of col1 and col2 are sent, instead of repeating the
execution of the functions when we apply the changes.

Triggers are fired on the subscribing node, so if you wish to filter the rows that are applied
on the subscriber, you can define BEFORE ROW triggers that block or filter rows as you wish.

Logical replication will work even if you update one or more columns of the key (or any
other replica identity), since it will detect that situation and send the old values of the
columns with the changed row values. Statements that write many rows get turned into a
stream of single row changes.

Locks taken at table-level (LOCK) or row-level (SELECT ... FOR...) are not replicated,
nor are SET or NOTIFY commands.

Logical replication doesn't suffer from cancellations of queries on the apply node in the way
hot standby does. There isn't any need for a feature such as hot_standby_feedback.

Replication and Upgrades Chapter 12

[538]

Both the publishing and subscribing nodes are masters, so technically it would be possible
for writes (INSERT, UPDATE, and DELETE) and/or row-level locks (SELECT ... FOR...) to
be made on the apply-side database. As a result, it is possible that local changes could lock
out, slow down, or interfere with the application of changes from the source node. It is up
to the user to enforce restrictions to ensure that this does not occur. You can do this by
having a user role defined specifically for replication and then using REVOKE on all access
apart from the SELECT privilege to replicated tables, rather than the user role applying the
changes.

Data can be read on the apply side while changes are being made. That is just normal, and
it's the beautiful power of PostgreSQL's MVCC feature.

The use of replication slots means that if the network drops, or if one of the nodes is offline,
we can pick up the replication again from the precise point that we stopped.

There's more…
LSR can work alongside PSR. There are no conflicting parameters; just ensure that all
requirements are met for both PSR and LSR.

With LSR and pglogical, neither DDL nor sequences are replicated; only the data changes
(DML) are sent. Only the full version of Postgres-BDR provides these features at present.
Support for the replication of TRUNCATE commands has been added in Postgres 11.

Logical replication is one-way only, so if you want multi-master replication, see
the Bidirectional Replication recipe. Logical replication provides cascaded replication.

See also
In PostgreSQL 11, some aspects of LSR have been included with the core server. The same
idea of publish and subscribe has been included among commands, allowing these to be
dumped and restored between servers.

Let's look at the same examples we looked at earlier:

To publish changes from all tables on a postgres database on nodeA, use the1.
following:

CREATE PUBLICATION pub_nodeA_postgres_all
 FOR ALL TABLES;

Replication and Upgrades Chapter 12

[539]

Then, immediately copy all table data and then subscribe to changes from the
default replication set on the nodeA database postgres by issuing the following
command on nodeB:

CREATE SUBSCRIPTION sub_nodeA_postgres_all
CONNECTION 'conninfo'
PUBLICATION pub_nodeA_postgres_all;

Publish changes for TableX on the MyApp database on nodeA by using the2.
following:

CREATE PUBLICATION pub_nodeA_postgres_tablex
 FOR TABLE TableX;

Then, immediately copy all table data and then subscribe to changes for TableX:

CREATE SUBSCRIPTION sub_nodeA_postgres_tablex
CONNECTION 'conninfo'
PUBLICATION pub_nodeA_postgres_tablex;

Publishing a subset of DML operations is possible, though it isn't yet possible to filter rows.

Creating a PUBLICATION requires CREATE privilege on the current database. Creating a
SUBSCRIPTION object will, by default, enable replication and have it start immediately,
though it is often convenient to define these first with the option WITH (enabled = off)
and then re-enable them later using ALTER SUBSCRIPTION. Subscriptions use normal user
access security, so there is no need to enable replication via pg_hba.conf.

It is also possible to override the synchronous_commit parameter and demand that the
server provides synchronous replication.

Bidirectional replication
Bidirectional replication (Postgres-BDR) is a project that's used to allow multi-master
replication with PostgreSQL. There is a range of possible architectures. The first use case we
support is all-nodes-to-all-nodes. Postgres-BDR will eventually support a range of complex
architectures, which is discussed later.

Postgres-BDR aims for eventual inclusion within core PostgreSQL, though knowing that is
a long and rigorous process. It also aims to provide working software solutions.

Replication and Upgrades Chapter 12

[540]

Postgres-BDR aims to allow the nodes of the cluster to be distributed physically, allowing
worldwide access to data and allowing for disaster recovery. Each Postgres-BDR master
node runs individual transactions; there is no globally distributed transaction manager.
Postgres-BDR includes replication of data changes and data definition language (DDL)
changes. New tables are added automatically, ensuring that managing BDR is a low-
maintenance overhead for applications.

Postgres-BDR also provides global sequences, if you wish to have a sequence that works
across a distributed system. Normal local sequences are not replicated.

The key advantage of Postgres-BDR is that you can segregate your write workload across
multiple nodes by application, user group, or geographical proximity. Each node can be
configured differently, yet all work together to provide access to the same data. Some
examples of use cases for this are as follows:

Social media applications, where users need fast access to their local server, yet
the whole database needs a single database view to cater for links and
interconnections.
Distributed businesses, where orders are taken by phone in one location and by
websites in another location. Then, they are fulfilled via several other locations.
Multinational companies that need fast access to data from many locations, yet
wish to see a single, common view of their data.

Postgres-BDR builds upon the basic technology of logical replication, enhancing it in
various ways. We refer heavily to the previous recipe, Logical replication.

Getting ready
Currently, Postgres-BDR can be deployed in the all-to-all architecture, which has been
tested on clusters of up to 99 master nodes. Each of those nodes is a normal, fully
functioning PostgreSQL server that can perform both reads and writes.

Postgres-BDR connects directly between each node, forming a mesh of connections.
Changes flow directly to other nodes in constant time, no matter how many nodes are in
use. This is quite different from circular replication, which is used by other database
management systems (DBMS).

All Postgres-BDR nodes should have pg_hba.conf definitions to allow paths between each
node. It would be easier to have these settings the same on all nodes, but that is not
required.

Replication and Upgrades Chapter 12

[541]

Each node requires an LSR link to all other nodes for each replicated database. So, an 8-
node Postgres-BDR cluster will require seven LSR links per node. Ensure that the
parameters are configured to allow for this and any possible future expansion. The
parameters should be the same on all nodes to avoid confusion. Remember that these
changes require a restart.

Postgres-BDR nodes also require the configuring of the mechanism for conflict detection:

track_commit_timestamps = on

Postgres-BDR 1 requires a modified version of PostgreSQL 9.4. Postgres-BDR 2 is available
only as an interim measure as an extension for PostgreSQL 9.6. Postgres-BDR 3 is available
as an extension for PostgreSQL 10 and 11. For the latest info, please
consult https://www.2ndquadrant.com/en/resources/bdr/.

Future versions of PostgreSQL may contain multi-master replication, though this will not
be until at least PostgreSQL 13 as we go to press.

How to do it…
To create a new node, we take a copy of one of the databases on the source nodes. This can
be accomplished using either a physical base backup or a logical base backup. A physical
copy includes all databases on the source node, so this mechanism is most suitable where
there is only one active database on that node.

Command specifications are subject to change. Check out https:/ /www. 2ndquadrant. com/
en/resources/bdr/ for the latest details on them.

How it works...
Postgres-BDR optimistically assumes that changes on one node do not conflict with
changes on other nodes. Any conflicts are detected and then resolved automatically using a
predictable last update wins strategy, though custom conflict handlers are supported to
allow more precise definition for particular applications.

Applications that regularly cause conflicts won't run very well on Postgres-BDR. Having
said that, such applications would also suffer from lock waits and resource contention on a
normal database; the effects will be slightly amplified by the distributed nature of Postgres-
BDR, but only the existing problems are amplified. Applications that are properly designed
to be scalable and contention-free will work well on Postgres-BDR.

https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/
https://www.2ndquadrant.com/en/resources/bdr/

Replication and Upgrades Chapter 12

[542]

Postgres-BDR replicates changes at the row level, though work is under way to apply
changes at column-level and in a conflict-free manner. The current mechanism has some
implications for applications:

Suppose we perform two simultaneous updates on different nodes, like this:

UPDATE foo SET col1 = col1 + 1 WHERE key = value;

Then, in the event of a conflict, we will keep only one of the changes (the last
change). What we might like in this case is to make the changes additive. This
requires a custom conflict handler.
Two updates that change different columns on different nodes will still cause
replication conflicts.

Postgres-BDR1 and Postgres-BDR2 only support post-commit conflict resolution, though

Postgres-BDR3 also supports eager replication, meaning any issues are resolved before

commit.

Postgres-BDR provides tools to diagnose and correct contention problems. Conflicts are
logged so that they can be identified and removed at the application level. You can log
either the conflicting statement or the entire conflicting transaction. Optionally, they can be
also saved in a table for easier analysis.

There's more…
If a master node fails, you can fail over to either logical or physical standby nodes. Other
master nodes continue processing normally—there is no wait for failover, nor is there the
need for complex voting algorithms to identify the best new master. Failed master nodes
will need to rejoin the cluster.

Archiving transaction log data
PSR can send transaction log data to a remote node, even if the node is not a full
PostgreSQL server. This can be useful for archiving copies of transaction log data for
various purposes.

Replication and Upgrades Chapter 12

[543]

PostgreSQL includes two client tools to stream data from the server to the client. The tools
are designed using a pull model; that is, you run the tools on the node you wish the data to
be saved on:

pg_receivewal archives physical transaction log data (WAL files). This utility
produces a straight copy of the original WAL files. Replication slots are
recommended when using this tool.
pg_recvlogical archives the results of the logical decoding of transaction log
data. This utility produces a copy of the transformed data rather than physical
WAL. Replication slots are required for this tool. You will need to use that with a
logical decoding plugin.

Getting ready
This recipe assumes that you have already set up replication according to the earlier recipes
so that wal_level, max_wal_senders, and other parameters have been set. Remember
that for
pg_recvlogical, you must set wal_level to logical.

This recipe is a different way of archiving WAL files than using archive_command, so you
will likely want to unset that parameter if you use this recipe.

You will need to configure security just as you did for replication. So, you will need a
PostgreSQL connection string, just as before.

Decide where you want to put the data on the client. Remember that WAL files look the
same for each server, so you need to put them in a directory with a useful name so that you
don't confuse files from different servers. You don't need to do this step for normal
replication because streaming replication normally copies the files to the downstream
node's pg_wal directory.

How to do it…
To archive a physical WAL from a server called alpha, follow these steps:

If you decide to use replication slots, then create a slot using Steps 1 to Step 3 of1.
the Using replication slots recipe.
Execute the tool on the client:2.

pg_receivewal -D /pgarchive/alpha -d $MYCONNECTIONSTRING &

Replication and Upgrades Chapter 12

[544]

If you're using slots, also use the --slot=slotname parameter on the command3.
line.

If the connection from the client tool to the server is lost, the default behavior is to loop
indefinitely while trying to reestablish a connection. If you want the client tool to exit if the
connection is lost, then specify the -n or --no-loop options.

The pg_recvlogical utility requires some form of logical decoding plugin, so look at the
instructions for the plugin you are using to find out how to use that.

There's more…
While playing with this feature for the first time, try the --verbose option.

For more detail on logical decoding plugins, we refer to the Logical replication recipe, earlier
in this chapter.

Replication monitoring will show pg_receivewal and pg_recvlogical in exactly the
same way as it shows other connected nodes, so there is no additional monitoring required.
The default application_name is the same as the name of the tool, so you may want to set
that parameter to something more meaningful to you.

With pg_receivewal and pg_recvlogical, you can use the --create-slot and --
drop-slot options to control replication slots.

You can archive WAL files using synchronous replication by specifying pg_receivewal -
-synchronous. This causes a disk flush (fsync) on the client so that WAL data is robustly
saved to disk. It then passes status information back to the server to acknowledge that the
data is safe (regardless of the setting of the -s parameter). The faster and more dangerous
alternative is pg_receivewal –no-sync.

See also
If you want to browse the content of the WAL files, you'll need the pg_waldump
program, which is an additional server-side utility

Replication and Upgrades Chapter 12

[545]

Upgrading minor releases
Minor release upgrades are released regularly by all software developers, and PostgreSQL
has had its share of corrections. When a minor release occurs, we bump the last number,
usually by one. So, the first release of a major release such as 11 is 11.0. The first set of bug
fixes is 11.1, then 11.2, and so on.

The PostgreSQL Community releases new bug fixes quarterly. If you want bug fixes more
frequently than that, you will need to subscribe to a PostgreSQL support company. This
recipe is about moving from a minor release to a minor release.

Getting ready
First, get hold of the new release, by downloading either the source or fresh binaries.

How to do it…
In most cases, PostgreSQL aims for minor releases to be simple upgrades. We put in great
efforts to keep the on-disk format the same for both data/index files and transaction log
(WAL) files, but this isn't always the case; some files can change.

The upgrade process is as follows:

Read the release notes to see whether there are any special actions that need to be1.
taken for this particular release. Make sure that you consider the steps that
are required by all extensions that you have installed.
If you have professional support, talk to your support vendor to see whether2.
additional safety checks over and above the upgrade instructions are required or
recommended. Also, verify that the target release is fully supported by your
vendor on your hardware, OS, and OS release level; it may not be, yet.
Apply any special actions or checks; for example, if the WAL format has3.
changed, then you may need to reconfigure log-based replication following the
upgrade. You may need to scan tables, rebuild indexes, or perform some other
actions. Not every release has such actions, but watch closely for them because if
they exist, then they are important.
If you are using replication, test the upgrade by disconnecting one of your4.
standby servers from the master.

Replication and Upgrades Chapter 12

[546]

Follow the instructions for your OS distribution and binary packager to complete5.
the upgrade. These can vary considerably.
Start up the database server being used for this test, apply any post-upgrade6.
special actions, and check that things are working for you.
Repeat Steps 4 to 6 for other standby servers.7.
Repeat Steps 4 to 6 for the primary server.8.

How it works…
Minor upgrades mostly affect the binary executable files, so it should be a simple matter of
replacing those files and restarting, but please check.

There's more…
When you restart the database server, the contents of the buffer cache will be
lost. The pg_prewarm module provides a convenient way to load relation data into the
PostgreSQL buffer cache.

You can install the pg_prewarm extension that's provided by default as follows:

postgres=# CREATE EXTENSION pg_prewarm;
CREATE EXTENSION

You can perform pre-warming for any relation:

postgres=# select pg_prewarm('job_status');
 pg_prewarm

 1

The return value is the number of blocks that have been pre-warmed.

Replication and Upgrades Chapter 12

[547]

Major upgrades in-place
PostgreSQL provides an additional supplied program, called pg_upgrade, which allows
you to migrate between major releases, such as from 9.2 to 9.6; alternatively, you can
upgrade straight to the latest server version. These upgrades are performed in-place,
meaning that we upgrade our database without moving to a new system. That does sound
good, but pg_upgrade has a few things that you may wish to consider as potential
negatives, which are as follows:

The database server must be shut down while the upgrade takes place.
Your system must be large enough to hold two copies of the database server:
old and new copies. If it's not, then you have to use the link option of
pg_upgrade, or use the Major upgrades online recipe later. If you use the link
option on pg_upgrade, then there is no pg_downgrade utility. The only option
in that case is a restore from backup, and that means extended unavailability
while you restore.
If you copy the database, then the upgrade time will be proportional to the size
of the database.
The pg_upgrade utility does not validate all your additional add-in modules,
so you will need to set up a test server and confirm that these work, ahead of
performing the main upgrade.

The pg_upgrade utility supports versions from PostgreSQL 8.4 onwards and allows you to
go straight from your current release to the latest release in one hop.

Getting ready
Find out the size of your database (using the How much disk space does a database use? recipe
in Chapter 2, Exploring the Database). If the database is large or you have an important
requirement for availability, you should consider making the major upgrade using
replication tools as well. Then, check out the next recipe.

How to do it…
Read the release notes for the new server version to which you are migrating,1.
including all of the intervening releases. Pay attention to the incompatibilities
section carefully; PostgreSQL changes from release to release. Assume this will
take some hours.

Replication and Upgrades Chapter 12

[548]

Set up a test server with the old software release on it. Restore one of your2.
backups on it. Upgrade that system to the new release to verify that there are no
conflicts from software dependencies. Test your application. Make sure that you
identify and test each add-in PostgreSQL module you were using to confirm that
it still works at the new release level.
Back up your production server. Prepare for the worst; hope for the best!3.
Most importantly, work out who you will call if things go badly, and exactly how4.
to restore from that backup you just took.
Install new versions of all the required software on the production server and5.
create a new database server.
Don't disable security during the upgrade. Your security team will do backflips if6.
they hear about this. Keep your job!
Now, go and do that backup. Don't skip this step; it isn't optional. Check whether7.
the backup is actually readable, accessible, and complete.
Shut down the database servers.8.
Run pg_upgrade -v and then run any required post-upgrade scripts. Make sure9.
that you check whether any were required.
Start up the new database server and immediately run a server-wide ANALYZE10.
operation using vacuumdb -analyze-in-stages.
Run through your tests to check whether it worked or you need to start11.
performing the contingency plan.
If all is OK, re-enable wide access to the database server. Restart the applications.12.
Don't delete your old server directory if you used the link method. The old data13.
directory still contains the data for the new database server. It's confusing! So
don't get caught by this.

How it works…
The pg_upgrade utility works by creating a new set of database catalog tables, and then
creating the old objects again in the new tables using the same identifiers as before.

The pg_upgrade utility works easily because the data block format hasn't changed
between some releases. Since we can't (always) see the future, make sure you read the
release notes.

Replication and Upgrades Chapter 12

[549]

Major upgrades online
Upgrading between major releases is hard, and it should be deferred until you have some
good reasons and sufficient time to get it right.

You can use replication tools to minimize the downtime required for an upgrade, so we
refer to this recipe as an online upgrade.

How to do it...
The following general steps should be followed, allowing at least a month for the complete
process to ensure that everything is tested and everybody understands the implications:

Set up a new release of the software on a new test system.1.
Take a standalone backup from the main system and copy it to the test system.2.
Test the applications extensively against the new release on the test system.3.

When everything works and performs correctly, then do the following:

Set up a connection pooler to the main database (it may be there already).1.
Set up pglogical for all tables from the old to new database servers. Make sure2.
that you wait until all the initial copy tasks have completed for all tables.

Retest the application extensively against the new release on live data. Then, when we're
ready for the final cut-over, we can do the following:

Pause the connection pool.1.
Switch the config of the pool over to the new system, then reload2.
Resume the connection pool (so that it now accesses a new server).3.

Downtime for the application is the length of time to these last three steps.

Replication and Upgrades Chapter 12

[550]

How it works...
The preceding recipe allows online upgrades with zero data loss because of the use of the
clean switchover process. There's no need for lengthy downtime during the upgrade, and
there's much reduced risk in comparison with an in-place upgrade. It works best with new
hardware, and is a good way to upgrade the hardware or change the disk layout at the
same time.

This procedure is also very useful for those cases where binary compatibility is not
possible, such as changing server encoding, or migrating the database to a different
operating system or architecture, where the on-disk format will change as a result of low-
level differences, such as endianness and alignment.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering PostgreSQL 11 - Second Edition
Hans-Jürgen Schönig

ISBN: 9781789537819

Get to grips with advanced PostgreSQL 11 features and SQL functions
Make use of the indexing features in PostgreSQL and fine-tune the performance
of your queries
Work with stored procedures and manage backup and recovery
Master replication and failover techniques
Troubleshoot your PostgreSQL instance for solutions to common and not-so-
common problems
Perform database migration from MySQL and Oracle to PostgreSQL with ease

https://www.packtpub.com/big-data-and-business-intelligence/mastering-postgresql-11-second-edition

Other Books You May Enjoy

[552]

Learning PostgreSQL 11 - Third Edition
Salahadin Juba, Andrey Volkov

ISBN: 9781789535464

Understand the basics of relational databases, relational algebra, and data
modeling
Install a PostgreSQL server, create a database, and implement your data model
Create tables and views, define indexes and stored procedures, and implement
triggers
Make use of advanced data types such as Arrays, hstore, and JSONB
Connect your Python applications to PostgreSQL and work with data efficiently
Identify bottlenecks to enhance reliability and performance of database
applications

https://www.packtpub.com/big-data-and-business-intelligence/learning-postgresql-11-third-edition

Other Books You May Enjoy

[553]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access control list (ACL) 279
ACID properties 233
actions
 performing, on tables 256, 257, 258, 260, 261,

262

anonymous code block 260
application-level replication 494
apply delay 490
asymmetric cryptography 230
asynchronous replication 490
atomicity 233
auto-freezing
 avoiding 356, 358
automatic database maintenance
 controlling 350, 351, 353, 355, 356
autonomous transactions 285
average tuple density 71
AXLE project
 reference link 15

B
background worker processes
 reference link 331
backup performance
 improving 460, 463
backups
 planning 429, 431
 validating 481, 482, 483, 484
Barman
 about 468
 features 479, 480
 global commands 473
 global options 472
 local recovery 476
 remote recovery 476

 server commands 473
 server options 472
 URL 467
 used, for performing hot physical backups 466,

467, 468, 471, 472, 473, 475
 used, for performing recovery 475, 476, 478,

480

base backup 490
Berkeley Software Distribution (BSD) 15
Bi-Directional Replication (BDR)
 about 492, 539, 541, 542
 advantages 540
 working 541
biggest tables
 searching 67, 68
bloat
 causing, issues removing 358, 359, 360
bloated tables
 fixing 365, 367, 368, 369, 370
 identifying 365, 367, 368, 369, 370
bucardo package 488
bug
 investigating 340, 342
 reporting 340, 342
bulk data changes
 making, server-side procedures with transactions

used 179, 180, 181
business intelligence 487

C
cascading 488
certificate authority (CA) 220
checkpoints 427
cluster 487
clustered parallel databases 492
columns uniqueness
 without indexes 159

[555]

columns
 adding, on table 263, 264, 265
 data type, changing 266, 267, 268, 270
 definition, enforcing 146, 148, 149
 name, enforcing 146, 148, 149
 removing, on table 263, 264, 265
Common Table Expressions (CTEs)
 reference link 404
complex SQL queries
 materialized views, using 405
 set-returning functions, using 406
 simplifying 399, 400, 404
computer connection
 checking 317, 318
conditional psql script
 writing 243
configuration settings
 searching 87
connection pool
 setting up 133, 134, 135, 136, 137
connection service file
 using 41
 working 42
connections
 preventing 119, 120, 121
constraint
 adding, without checking existing rows 377, 379
contrib
 about 314
 reference link 98
Coordinated Universal Time (UTC) 495
covering indexes 408
crash recovery
 about 426, 428, 429
 controlling 426, 428, 429
 working 428
cross_tab query 400
current configuration settings
 searching 86, 88
custom format 433

D
Data Definition Language (DDL) 233
data directory 50, 109
data loss 491

Data Manipulation Language (DML) 300
data type, column
 changing 266, 267, 268, 270
data type
 definition, changing 270, 271, 272, 273
data
 loading, from flat files 175, 176, 178, 179
 loading, from spreadsheet 172, 173, 174, 175
 sampling 169
 sampling, randomly 168, 170, 171
database access
 audit log, managing 211, 212
 auditing 208
 data changes, auditing 212, 213
 SQL, auditing 209, 210
 table access, auditing 210, 211
database cluster 19
Database File Layout
 reference link 333
database object definitions
 backups 436, 437
database objects
 name, selecting 141, 142, 143, 144
database physical storage
 reference link 341
database replication 487
database server files
 locating 50, 51, 52, 53
database server
 about 487
 message log, locating 54, 55, 56
 restarting 117, 118, 119
 starting 108, 109, 110, 111
 stopping 112, 113
 stopping, in emergency 114
 working 111, 112
database system identifier
 locating 57, 58
database
 disk space, measuring 64, 65
 extensions, listing 75, 76
 listing, on database server 58, 60, 61
 logical backup 431, 432, 433, 434, 435
 logical recovery 450
 logical recovery, from custom dump with

[556]

pg_dump -F c 447
 logical recovery, from script dump created by

pg_dump -F p 448
 logical recovery, from script dump created by

pg_dumpall 448
 physical recovery 448, 450
 planning 82, 83, 84
 recovery, performing 447, 450, 451
 tables, counting 62, 63, 64
Daylight Saving Time (DST) 495
debugging_info function
 writing, for developers 207
default privileges 189
differential backup
 about 463, 464, 465
 restoring 463, 464, 465
disk space
 usage, by temporary data 333, 335
dropped/damaged database
 logical recovery, from custom dump -F c 459
 logical recovery, from script dump created by

pg_dump 459
 logical recovery, from script dump created by

pg_dumpall 459
 physical recovery 460
 recovery, performing 458
dropped/damaged table
 logical recovery, from custom dump taken with

pg_dump -F c 455
 logical recovery, from script dump 457
 physical recovery 457
 recovery, performing 455, 458
duplicate data
 identifying 150, 152, 154, 155
 removing 150, 152, 154, 155
duplicate indexes 159
duplicate rows
 preventing 155, 156, 157, 158
dynamic scripting 260

E
equal probability of selection (EPS) 171
equivalently extensions 75
EXPLAIN SQL command
 reference link 394

extensions 101
external module
 adding, to PostgreSQL 97, 98
external username
 mapping, to database roles 225, 226
Extra Packages Enterprise Linux (EPEL) 467
extrapolation 71

F
failback 515
failed connection
 troubleshooting 42, 43, 44
failover 491
features, PostgreSQL 10
 robustness 11
features, PostgreSQL 11
 commercial support 14
 concurrency 13
 extensions 12
 NoSQL data models 13
 performance 13
 popularity 14
 research and development funding 15
 robustness 11
 scalability 13
 security 11
 SQL data models 13
 user friendly 12
file-based replication
 setting up 496, 497, 498, 499
Filesystem Hierarchy Standard (FHS) 52
Foreign Data Wrapper infrastructure 285
foreign databases
 objects, accessing 295, 296, 297, 298
Free Space Map (FSM) 68
FreeBSD 111
freezing 356
frozen transaction ID 356
function side-effects 285

G
genetic query optimization (GEQO) 404
Geographical Information System (GIS) 12
Global Transaction Manager (GTM) 492
graphical administration tools

[557]

 using 23, 24, 25
 working 27
Graphite’s Carbon 311

H
Heap-Only Tuples (HOT) 366, 410
heavy users, temporary tables
 actions for 363, 364
host 19
host-based authentication (HBA) 120
hot physical backup
 about 437, 438, 439, 441, 442
 performing, with Barman 466, 467, 468, 471,

472, 473, 475
 setting up, with continuous archiving 443, 444,

445, 446
 working 441
hot standby 13, 451, 488, 509, 510, 512, 513

I
Icinga tools 312
in-doubt prepared transaction
 detecting 328
incremental backup
 about 463, 464, 465
 restoring 463, 464, 465
index-only scan 69, 408
indexes
 fixing 365, 367, 368, 369, 370
 identifying 365, 367, 368, 369, 370
 maintaining 373, 374, 375, 376
information schema 63
Initialization Fork 68
installed extensions
 managing 102, 104, 106
installed module
 using 101, 102
Internet Assigned Numbers Authority (IANA)
 about 108
 reference link 19
IP address range allocation 160, 161

J
Java Transaction API (JTA) 360

L
latency 490
lesser attributes 187
Lightweight Directory Access Protocol (LDAP)
 about 41
 client, setting up 217
 integrating with 216
 replacement, for User Name Map feature 218
log file errors
 summary, producing 342, 344, 345
Log Sequence Number (LSN) 453, 465, 523
logical backup 461
logical decoding 489
logical log streaming replication (LLSR) 489
logical recovery 450
logical replication
 about 532, 535
 benefits 533
 using 537, 538
 working 537
logical restore 461
logical streaming replication (LSR) 489, 495

M
macOS 111
maintenance
 planning 383, 384
man-in-the-middle (MITM) 221
massively parallel databases 492
massively parallel processing (MPP) 418
master 488, 515
materialized views
 about 308, 403, 405
 reference link 406
 using 306, 307, 308
 working 308
minor releases
 upgrading 545
modules
 about 75
 installing, from PGXN 99
 installing, from source code 100
 installing, with software installer 98, 99
multimaster replication 492

[558]

multinode architecture
 about 491
 loosely coupled database clusters 492
 tightly coupled database clusters 491
multiple schema
 using 126, 127, 128, 129
multiple servers
 accessing, with host 138, 139
 accessing, with port 138, 139
 executing, on system 131, 132, 133
multitenancy
 about 125
 design, deciding 125, 126
Multiversion Concurrency Control (MVCC) 10, 69,

113, 339, 365
Munin 311

N
Nagios 312
namespace 437
nested transaction style 235
network users
 access, enabling 20, 21, 22, 23
NOLOGIN users
 forcing, for disconnection 201

O
object dependencies 77, 78, 79
Object Relational Mappers (ORMs) 397
object-relational database management system

(ORDBMS) 46
objects
 handling, with quoted names 144, 145, 146
old prepared transactions
 removing 360, 361, 362, 363
OmniDB
 about 28, 116
 URL 28
 used, for viewing real-time 314, 316
 using 28, 29, 30, 31, 32, 33
 using, for DBA tasks 251, 252, 253, 254, 255
ON_ERROR_STOP variable 239
Online Transaction Processing (OLTP) 320
online upgrade 549
OpenSSL library

 reference link 231
Operating System (OS) 494
Optimal Flexible Architecture (OFA) 52
optimistic locking
 using 421, 422
OS-level replication 494
Out-Of-Memory (OOM) 95

P
page corruptions
 avoiding 356, 358
parallel copy 480
parallel query
 using 415, 416, 417, 418
parameter file
 updating 90, 91, 92, 93
parameter
 setting, for particular groups of users 93
parameters
 at non-default settings, checking 88, 89, 90
 setting, for particular groups of users 94
partial index 157, 408, 414
password authentication
 changing 38, 39
password
 hardcoding, avoiding 39, 40
performance issues
 reference link 423
 reporting 423
performance mailing list
 reference link 423
performance replication 526, 528, 529, 530
permission group 192
Personally Identifiable Information (PII) 211
pg_hint_plan
 reference link 415
pg_stat* views
 reference link 396
 regular statics, collecting 394, 395, 396
pg_stat_activity
 reference link 317
pg_stat_database
 reference link 335
pg_upgrade
 about 547

[559]

 working 548
pgAdmin 4 23
pgAdmin
 used, for viewing real-time 314, 315
 using, for DBA tasks 246, 247, 248, 249, 250,

251

 working 27
pgBadger 343
PgBouncer
 about 133
 reference link 218
pgcrypto
 reference link 231
pgfincore extension
 reference link 119
pgFouine 343
pglogical
 about 533
 reference link 533
 using 534, 535
PGXN
 references 98
physical backup 461
physical log streaming replication (PLSR) 489
physical recovery 450
physical restore 461
Physical Streaming Replication (PSR) 489, 495
pipeline parallelism 463
pivot query 400
PL/Proxy tool 294
Point-in-time recovery (PITR)
 about 11, 429, 451, 452, 453, 454
 working 452
PostGIS
 reference link 98
Postgres 10
PostgreSQL 10
 reference link 81
PostgreSQL 11
 about 9
 features 9, 10
 obtaining 15, 16
 URL, for downloading 16
 working 16
PostgreSQL databases

 objects, accessing 285, 287, 288, 289, 291,
292, 293, 294

PostgreSQL error codes
 URL 246
PostgreSQL Extension Network (PGXN) 295
PostgreSQL Flexible Architecture (PFA) 52
PostgreSQL Foreign Data Wrapper 285
PostgreSQL information
 generic monitoring tools, information finding 313
 providing, to monitoring tools 312, 313
PostgreSQL security
 references 12
PostgreSQL server
 connecting to 17, 18
 parameters, connecting 17
 working 19, 20
PostgreSQL software
 reference link 33
PostgreSQL superuser
 about 186, 187
 attributes, limitation 187
 privileges, adding 186
 privileges, removing 186
 super-like attributes 187
PostgreSQL, additional modules
 reference link 77
PostgreSQL, client authentication
 reference link 44
PostgreSQL, professional services
 reference link 14
PostgreSQL, run-time statistics
 reference link 322
PostgreSQL, versioning policy
 reference link 49
PostgreSQL
 about 46
 external module, adding 96, 97, 98
 libraries, loading 101
 version 47, 48
 working 48
postmaster 107
prefix ranges 161
primary 488
private database
 granting, to users 129, 130, 131

[560]

programs
 parameters, changing 84, 85, 86
Prometheus 311
psql error
 investigating 244, 245, 246
psql query tool
 about 33
 using 34
 working 36, 37
psql script
 writing, on first error 238, 239
psql scripting tool
 about 33
 using 34, 36
 working 37
psql utility
 reference link 319
psql variables
 query output, placing 241, 242, 243
 using 240, 241
public-key cryptography 230

Q
queries execution
 catching 320
 checking 319, 320
 watching 321
 watching, from ps 321
queries
 blocking 324, 325
 checking, as active 322, 323
 checking, as blocked 322, 323
 executing, in psql 318
 forcing, for index usage 412, 413, 414, 415
 index, avoiding 410, 412
 issues 338, 339, 340
 performance, slowing down 336, 337
 real-time performance, analyzing 346, 347
 speeding up 407
 speeding up, by increasing work_mem 407
 speeding up, by partitioning time series 409
 speeding up, by setting fillfactor on table 410
 speeding up, with indexes considerations 407,

409

 speeding up, with TABLESAMPLE view 409

 speeding, by rewriting schema 410
quick and dirty approach 260
quorum commit 527

R
range of time 161
read scalability 509, 510, 511, 512, 513
reading the fine manual (RTFM)
 about 81, 82
 using 81
 working 82
Recovery Point Objective (RPO) 431, 474
recovery server 457
REDO operations 480
reference data management 487
Referential Integrity 77
regular statistics
 collecting, from pg_stat* views 394, 395, 396
relay 488
remote users
 access, enabling 20, 21, 22, 23
Replication (computing)
 reference link 493
replication best practices 494, 496
replication concepts
 about 486
 basic architecture 487
 clustered parallel databases 492
 data loss 491
 database replication 487
 history 488
 massively parallel databases 492
 multimaster replication 492
 multinode architecture 491
 other approaches 494
 practical aspects 489, 490
 scalability tools 493
 scope 488
 single-master replication 491
replication delay 490
replication sets 490
replication slots
 using 519, 520, 521
replication
 delaying 530, 532

[561]

 monitoring 522, 523, 525, 526
 pausing 530, 532
 synchronizing 530, 532
repmgr
 URL 517
 using 516, 518, 519
reporting systems 487
restore performance
 improving 460, 463
retention policies 444
returned number of rows
 reducing 396, 397, 398
Round Robin Database Tool (RRDtool) 311
Row Level Security (RLS) 185, 196

S
Salted Challenge Response Authentication

Mechanism (SCRAM) 11
scalability tools 493
schema-level privileges
 using 275
schema
 about 437
 adding 273, 275
 objects, moving between 276
 removing 274, 275
script
 writing 233, 234, 235, 236, 237
selective replication 490
sensitive data
 encrypting 226, 227, 228, 230, 231
sequential scan 69
server configuration checklist 94, 95, 96
server configuration files
 reloading 115, 116
server uptime 49, 50
server version
 selecting 47, 48
service unit 109
session
 backend, killing from command line 328
 backend, termination 326
 killing 325
 query, cancelling 326
 statement_timeout, used to clean up queries 327

 transaction queries, killing 327
set-returning function 406
shared_buffers configuration parameter
 reference link 392
Simple Network Management Protocol (SNMP)

312

single-master replication 491
slow SQL statements
 finding 387, 389
snapshot export feature 433
Solaris 111
split-brain 515
SQL statements
 finding 389
SQL
 CPU power, lacking issue 393
 disk I/O capacity, lacking issue 393
 EXPLAIN options 393
 locking issues 393
 performance, testing 389, 391, 392
SSL certificates
 client certificate, using for database user

selection 224
 duplicate SSL connection attempts, avoiding 223
 multiple client certificates, using 223
 used, for authentication 221, 222, 223
 working 222
SSL key and certificates
 reference link 224
SSL
 key and certificates, obtaining 220
 reference link 224
 server authenticity, verifying 221
 used, for database connection 218, 219
 using, with client setup 220
staging server 457
Standard Generalized Markup Language (SGML)

82

static scripting 257
statistics collection package 396
streaming replication
 about 488
 managing 513, 514, 515, 516
 security, setting up 506, 507, 508
 setting up 500, 501, 502, 503, 506

[562]

 working 504
switchover 491
sync standby 528
synchronous replication 490, 526, 528, 529, 530

T
table
 counting, in database 62, 63, 64
 disk space, measuring 65, 66, 67
 last usage, knowing 331, 333
 number of rows, estimating 70, 71, 72, 73
 quick-and-dirty way 330
 rows, counting 68, 69, 70
 size, computing without locks 73
tablespace
 adding 277, 278, 280
 objects, moving between 282, 283, 284
 pg_xlog, putting on separate device 281
 removing 277, 278, 280
 tablespace-level tuning 281
template databases 60
temporary file
 usage, finding 336
 usage, logging 336
test data generator
 reference link 168
test data
 generating 164, 166, 168
The Oversized-Attribute Storage Technique

(TOAST) 67, 354
The PostgreSQL License (TPL) 15
time series tables
 creating 418, 419, 420
transaction isolation
 reference link 422
transaction log data
 archiving 542, 544
transaction manager (TM) 360
two-phase commit (2PC) 328

U
Uniform Resource Identifier (URI) 18
unique set of key columns
 searching 162, 163, 164
unused indexes

 finding 379, 380
unwanted indexes
 removing 381, 382, 383
updatable views
 about 298, 299, 300, 302, 303
 example 305
 working 304, 305
upgrades
 major upgrades 547
 minor releases 545
 online upgrades 549
usage changes, table
 detecting 329, 330
 detecting, by collecting usage statistics 330
 detecting, with quick-and-dirty way 330
user access
 granting, to all objects in schema 193
 granting, to schema 192
 granting, to specific columns 193, 194, 195
 granting, to specific rows 195, 196, 197, 198
 granting, to table 192
 revoking, to table 187, 188, 189, 190
user and role management
 database creation scripts 190
 default search path 190
 views, securing 191
user connection
 checking 316, 317
user role
 administrators 185
 end users 185
user
 attributes, not inheriting 216
 creating 198, 199
 limited superuser powers, granting to specific

user 204, 205, 206, 207
 logged in user, identifying 214, 215, 216
 number of concurrent connections, limiting 201
 preventing, from temporary connection 200, 201
 private database, granting 129, 130, 131
 pushing, off system 122, 123, 124
 removing, without dropping data 202, 203
 restricting, to one session each 121, 122
 restricting, to session 122
 secure password, verifying 203, 204

V
vacuum
 monitoring 370, 371, 372, 373
 tuning 370, 371, 372, 373
virtual private network (VPN) 218
Visibility Map (VM) 68

W
Write-Ahead Log (WAL) 54, 427, 489

Z
Zabbix 312

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: First Steps
	Introducing PostgreSQL 11
	What makes PostgreSQL different?
	Robustness
	Security
	Ease of use
	Extensibility
	Performance and concurrency
	Scalability
	SQL and NoSQL data models
	Popularity
	Commercial support
	Research and development funding

	Getting PostgreSQL
	How to do it...
	How it works...
	There's more…

	Connecting to the PostgreSQL server
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Enabling access for network/remote users
	How to do it…
	How it works…
	There's more…
	See also

	Using graphical administration tools
	How to do it…
	How it works…

	OmniDB
	How to do it…
	See also

	Using the psql query and scripting tool
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Changing your password securely
	How to do it…
	How it works…

	Avoiding hardcoding your password
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using a connection service file
	How to do it…
	How it works…

	Troubleshooting a failed connection
	How to do it…
	There's more…

	Chapter 2: Exploring the Database
	What type of server is this?
	How to do it…
	There's more...

	What version is the server?
	How to do it…
	How it works…
	There's more…

	What is the server uptime?
	How to do it…
	How it works...
	See also

	Locating the database server files
	Getting ready
	How to do it...
	How it works...
	There's more…

	Locating the database server's message log
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Locating the database's system identifier
	Getting ready
	How to do it…
	How it works…

	Listing databases on the database server
	How to do it…
	How it works...
	There's more...

	How many tables are there in a database?
	How to do it...
	How it works…
	There's more…

	How much disk space does a database use?
	How to do it...
	How it works...

	How much disk space does a table use?
	How to do it…
	How it works…
	There's more…

	Which are my biggest tables?
	How to do it...
	How it works…

	How many rows are there in a table?
	How to do it…
	How it works...

	Quickly estimating the number of rows in a table
	How to do it…
	How it works…
	There's more…

	Listing extensions in this database
	How to do it…
	How it works…
	There's more…
	See also

	Understanding object dependencies
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 3: Configuration
	Reading the fine manual
	How to do it…
	How it works…
	There's more…

	Planning a new database
	Getting ready
	How to do it…
	How it works…
	There's more…

	Changing parameters in your programs
	How to do it…
	How it works…
	There's more…

	Finding the current configuration settings
	How to do it…
	How it works…

	Which parameters are at non-default settings?
	How to do it…
	How it works...
	There's more...

	Updating the parameter file
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting parameters for particular groups of users
	How to do it…
	How it works…

	The basic server configuration checklist
	Getting ready
	How to do it…
	There's more…

	Adding an external module to PostgreSQL
	Getting ready
	How to do it…
	Installing modules using a software installer
	Installing modules from PGXN
	Installing modules from source code

	How it works...

	Using an installed module
	Getting ready
	How to do it…
	How it works...

	Managing installed extensions
	How to do it…
	How it works…
	There's more…

	Chapter 4: Server Control
	Introduction
	Starting the database server manually
	Getting ready
	How to do it…
	How it works…

	Stopping the server safely and quickly
	How to do it…
	How it works…
	See also

	Stopping the server in an emergency
	How to do it…
	How it works…

	Reloading the server configuration files
	How to do it…
	How it works…
	There's more…

	Restarting the server quickly
	How to do it…
	There's more…

	Preventing new connections
	How to do it…
	How it works…

	Restricting users to only one session each
	How to do it…
	How it works…

	Pushing users off the system
	How to do it…
	How it works…

	Deciding on a design for multitenancy
	How to do it…
	How it works…

	Using multiple schemas
	Getting ready
	How to do it…
	How it works…

	Giving users their own private database
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Running multiple servers on one system
	Getting ready
	How to do it…
	How it works…

	Setting up a connection pool
	Getting ready
	How to do it…
	How it works…
	There's more…

	Accessing multiple servers using the same host and port
	Getting ready
	How to do it…
	There's more…

	Chapter 5: Tables and Data
	Choosing good names for database objects
	Getting ready
	How to do it…
	There's more…

	Handling objects with quoted names
	Getting ready
	How to do it...
	How it works…
	There's more…

	Enforcing the same name and definition for columns
	Getting ready
	How to do it...
	How it works…
	There's more…

	Identifying and removing duplicates
	Getting ready
	How to do it…
	How it works…
	There's more…

	Preventing duplicate rows
	Getting ready
	How to do it…
	How it works…
	There's more...
	Duplicate indexes
	Uniqueness without indexes
	Real-world example – IP address range allocation
	Real-world example – range of time
	Real-world example – prefix ranges

	Finding a unique key for a set of data
	Getting ready
	How to do it…
	How it works…

	Generating test data
	How to do it...
	How it works…
	There's more…
	See also

	Randomly sampling data
	How to do it…
	How it works...

	Loading data from a spreadsheet
	Getting ready
	How to do it...
	How it works...
	There's more...

	Loading data from flat files
	Getting ready
	How to do it...
	How it works…
	There's more…

	Making bulk data changes using server-side procedures with transactions
	How to do it…
	There's more…

	Chapter 6: Security
	Introduction
	Typical user role

	The PostgreSQL superuser
	How to do it…
	How it works…
	There's more…
	Other superuser-like attributes
	Attributes are never inherited

	See also

	Revoking user access to a table
	Getting ready
	How to do it…
	How it works…
	There's more…
	Database creation scripts
	Default search path
	Securing views

	Granting user access to a table
	Getting ready
	How to do it…
	How it works...
	There's more…

	Granting user access to specific columns
	Getting ready
	How to do it…
	How it works…
	There's more…

	Granting user access to specific rows
	Getting ready
	How to do it…
	How it works…
	There's more...

	Creating a new user
	Getting ready
	How to do it...
	How it works…
	There's more…

	Temporarily preventing a user from connecting
	Getting ready
	How to do it…
	How it works...
	There's more…
	Limiting the number of concurrent connections by a user
	Forcing NOLOGIN users to disconnect

	Removing a user without dropping their data
	Getting ready
	How to do it…
	How it works…

	Checking whether all users have a secure password
	How to do it…
	How it works…

	Giving limited superuser powers to specific users
	Getting ready
	How to do it…
	How it works…
	There's more…
	Writing a debugging_info function for developers

	Auditing database access
	Getting ready
	Auditing SQL
	Auditing table access
	Managing the audit log
	Auditing data changes

	Always knowing which user is logged in
	Getting ready
	How to do it…
	How it works…
	There's more…
	Not inheriting user attributes

	Integrating with LDAP
	Getting ready
	How to do it…
	How it works…
	There's more…
	Setting up the client to use LDAP
	Replacement for the User Name Map feature

	See also

	Connecting using SSL
	Getting ready
	How to do it…
	How it works…
	There's more…
	Getting the SSL key and certificate
	Setting up a client to use SSL
	Checking server authenticity

	Using SSL certificates to authenticate
	Getting ready
	How to do it…
	How it works…
	There's more…
	Avoiding duplicate SSL connection attempts
	Using multiple client certificates
	Using the client certificate to select the database user

	See also

	Mapping external usernames to database roles
	Getting ready
	How to do it…
	How it works…
	There's more…

	Encrypting sensitive data
	Getting ready
	How to do it…
	How it works…
	There's more…
	For really sensitive data
	For really, really, really sensitive data

	See also

	Chapter 7: Database Administration
	Writing a script that either succeeds entirely or fails entirely
	How to do it…
	How it works…
	There's more…

	Writing a psql script that exits on the first error
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using psql variables
	Getting ready
	How to do it…
	How it works…
	There's more…

	Placing query output into psql variables
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing a conditional psql script
	Getting ready
	How to do it…
	How it works…
	There's more…

	Investigating a psql error
	Getting ready
	How to do it…
	There's more…

	Using pgAdmin for DBA tasks
	Getting ready
	How to do it…
	How it works...
	There's more

	Using OmniDB for DBA tasks
	Getting ready
	How to do it...
	How it works
	There's more...

	Performing actions on many tables
	Getting ready
	How to do it…
	How it works…
	There's more…

	Adding/removing columns on a table
	How to do it…
	How it works…
	There's more…

	Changing the data type of a column
	Getting ready
	How to do it…
	How it works…
	There's more…

	Changing the definition of a data type
	Getting ready
	How to do it…
	How it works…
	There's more…

	Adding/removing schemas
	How to do it…
	There's more…
	Using schema-level privileges

	Moving objects between schemas
	How to do it…
	How it works…
	There's more…

	Adding/removing tablespaces
	Getting ready
	How to do it…
	How it works…
	There's more…
	Putting pg_wal on a separate device
	Tablespace-level tuning

	Moving objects between tablespaces
	Getting ready
	How to do it…
	How it works…
	There's more…

	Accessing objects in other PostgreSQL databases
	Getting ready
	How to do it…
	How it works…
	There's more…

	Accessing objects in other foreign databases
	Getting ready
	How to do it…
	How it works…
	There's more…

	Updatable views
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using materialized views
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 8: Monitoring and Diagnosis
	Introduction
	Providing PostgreSQL information to monitoring tools
	Finding more information about generic monitoring tools

	Real-time viewing using pgAdmin or OmniDB
	Getting ready
	How to do it…
	Using pgAdmin
	Using OmniDB

	Checking whether a user is connected
	Getting ready
	How to do it…
	How it works…
	There's more…

	Checking whether a computer is connected
	How to do it…
	There's more…

	Repeatedly executing a query in psql
	How to do it…
	There's more…

	Checking which queries are running
	Getting ready
	How to do it…
	How it works…
	There's more…
	Catching queries that only run for a few milliseconds
	Watching the longest queries
	Watching queries from ps

	See also

	Checking which queries are active or blocked
	Getting ready
	How to do it…
	How it works…
	There's more…

	Knowing who is blocking a query
	Getting ready
	How to do it…
	How it works…

	Killing a specific session
	How to do it…
	How it works…
	There's more…
	Try to cancel the query first
	What if the backend won't terminate?
	Using statement_timeout to clean up queries that take too long to run
	Killing idle in-transaction queries
	Killing the backend from the command line

	Detecting an in-doubt prepared transaction
	How to do it…

	Knowing whether anybody is using a specific table
	Getting ready
	How to do it…
	How it works…
	There's more...
	The quick-and-dirty way
	Collecting daily usage statistics

	Knowing when a table was last used
	Getting ready
	How to do it…
	How it works...
	There's more…

	Usage of disk space by temporary data
	Getting ready
	How to do it…
	How it works…
	There's more…
	Finding out whether a temporary file is in use anymore
	Logging temporary file usage

	Understanding why queries slow down
	Getting ready
	How to do it…
	How it works…
	There's more…
	Do queries return significantly more data than they did earlier?
	Do queries also run slowly when they run alone?
	Is the second run of the same query also slow?
	Table and index bloat

	See also

	Investigating and reporting a bug
	Getting ready
	How to do it…
	How it works…

	Producing a daily summary of log file errors
	Getting ready
	How to do it…
	How it works…
	There's more…

	Analyzing the real-time performance of your queries
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 9: Regular Maintenance
	Controlling automatic database maintenance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Avoiding auto-freezing and page corruptions
	How to do it…

	Removing issues that cause bloat
	Getting ready
	How to do it…
	How it works…
	There's more…

	Removing old prepared transactions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Actions for heavy users of temporary tables
	How to do it…
	How it works…

	Identifying and fixing bloated tables and indexes
	Getting ready
	How to do it…
	How it works…
	There's more…

	Monitoring and tuning a vacuum
	Getting ready
	How to do it…
	How it works…
	There's more…

	Maintaining indexes
	Getting ready
	How to do it…
	How it works…
	There's more…

	Adding a constraint without checking existing rows
	Getting ready
	How to do it…
	How it works…

	Finding unused indexes
	How to do it…
	How it works…

	Carefully removing unwanted indexes
	Getting ready
	How to do it…
	How it works…

	Planning maintenance
	How to do it…
	How it works…
	There's more…

	Chapter 10: Performance and Concurrency
	Finding slow SQL statements
	Getting ready
	How to do it…
	How it works…
	There's more…

	Finding out what makes SQL slow
	Getting ready
	How to do it…
	There's more…
	Not enough CPU power or disk I/O capacity for the current load
	Locking problems
	EXPLAIN options

	See also

	Collect regular statistics from pg_stat* views
	Getting ready
	How to do it…
	How it works…
	There's more…
	Another statistics collection package

	Reducing the number of rows returned
	How to do it…
	There's more…

	Simplifying complex SQL queries
	Getting ready
	How to do it…
	There's more…
	Using materialized views (long-living temporary tables)
	Using set-returning functions for some parts of queries

	Speeding up queries without rewriting them
	How to do it…
	Increasing work_mem
	More ideas with indexes

	There's more…
	Time series partitioning
	Using a TABLESAMPLE view
	In case of many updates, set fillfactor on the table
	Rewriting the schema – a more radical approach

	Discovering why a query is not using an index
	Getting ready
	How to do it…
	How it works…
	There's more…

	Forcing a query to use an index
	Getting ready
	How to do it…
	There's more…
	There's more

	Using parallel query
	How to do it…
	How it works…
	There's more…

	Creating time series tables
	How to do it…
	How it works…
	There's more…

	Using optimistic locking
	How to do it…
	How it works…
	There's more…

	Reporting performance problems
	How to do it…
	There's more…

	Chapter 11: Backup and Recovery
	Understanding and controlling crash recovery
	How to do it…
	How it works…
	There's more…

	Planning backups
	How to do it…

	Hot logical backups of one database
	How to do it…
	How it works…
	There's more…
	See also

	Hot logical backups of all databases
	How to do it…
	How it works…
	See also

	Backups of database object definitions
	How to do it…
	There's more…

	Standalone hot physical database backup
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Hot physical backup and continuous archiving
	Getting ready
	How to do it…
	How it works…

	Recovery of all databases
	Getting ready
	How to do it…
	Logical – from custom dump taken with pg_dump -F c
	Logical – from the script dump created by pg_dump -F p
	Logical – from the script dump created by pg_dumpall
	Physical

	How it works…
	There's more…
	See also

	Recovery to a point in time
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Recovery of a dropped/damaged table
	How to do it…
	Logical – from custom dump taken with pg_dump -F c
	Logical – from the script dump
	Physical

	How it works…
	See also

	Recovery of a dropped/damaged database
	How to do it…
	Logical – from the custom dump -F c
	Logical – from the script dump created by pg_dump
	Logical – from the script dump created by pg_dumpall
	Physical

	Improving performance of backup/recovery
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Incremental/differential backup and restore
	How to do it…
	How it works…
	There's more…

	Hot physical backups with Barman
	Getting ready
	How to do it…
	How it works…
	There's more…

	Recovery with Barman
	Getting ready
	How to do it…
	How it works…
	There's more…

	Validating backups
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 12: Replication and Upgrades
	Replication concepts
	Topics
	Basic concepts
	History and scope
	Practical aspects
	Data loss
	Single-master replication
	Multinode architectures
	Clustered or massively parallel databases
	Multimaster replication
	Scalability tools
	Other approaches to replication

	Replication best practices
	Getting ready
	How to do it…
	There's more…

	Setting up file-based replication – deprecated
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up streaming replication
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting up streaming replication security
	Getting ready
	How to do it…
	How it works…
	There's more…

	Hot standby and read scalability
	Getting ready
	How to do it…
	How it works…

	Managing streaming replication
	Getting ready
	How to do it…
	There's more…
	See also

	Using repmgr
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using replication slots
	Getting ready
	How to do it…
	There's more…
	See also

	Monitoring replication
	Getting ready
	How to do it…
	There's more…

	Performance and synchronous replication
	Getting ready
	How to do it...
	How it works…
	There's more…

	Delaying, pausing, and synchronizing replication
	Getting ready
	How to do it…
	There's more…
	See also

	Logical replication
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Bidirectional replication
	Getting ready
	How to do it…
	How it works...
	There's more…

	Archiving transaction log data
	Getting ready
	How to do it…
	There's more…
	See also

	Upgrading minor releases
	Getting ready
	How to do it…
	How it works…
	There's more…

	Major upgrades in-place
	Getting ready
	How to do it…
	How it works…

	Major upgrades online
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

