Do Now:

Please answer the following questions...

Multiple Choice

For Exercises 1-4, choose the correct letter.

1. Which is the most precise name of this figure?

A parallelogram

© rectangle

rhombus

square

- 2. Which of the following conditions or set of conditions must be met for a parallelogram to be a rectangle?
 - Diagonals are perpendicular.
 - Diagonals are congruent.
 - (H) All sides are congruent.
 - The length of a diagonal is equal to the length of a side.
- **3.** Which of the following conditions or set of conditions is sufficient for a parallelogram to be a square?
 - Diagonals are perpendicular and diagonals are congruent.
 - B Diagonals are congruent.
 - All sides are congruent.
 - The length of a diagonal is equal to the length of a side.

I can
 verify and use properties of trapezoids and kites.

6-6 Trapezoids and Kites

- trapezoid quadrilateral with exactly one pair of parallel sides
- base the parallel sides of a trapezoid
- legs- nonparallel sides
- base angles two angles that share a base of a trapezoid.

• isosceles trapezoid - trapezoid with legs that are

congruent.

** Angle R and Angle T are also supplementary!

Problem 1 Finding Angle Measures in Trapezoids

CDEF is an isosceles trapezoid and $m \angle C = 65$. What are $m \angle D$, $m \angle E$, and $m \angle F$?

- **Got lt?** 1. a. In the diagram, PQRS is an isosceles trapezoid and $m \angle R = 106$. What are $m \angle P$, $m \angle Q$, and $m \angle S$?
 - **b. Reasoning** In Problem 1, if *CDEF* were not an isosceles trapezoid, would $\angle C$ and $\angle D$ still be supplementary? Explain.

Algebra Find the value of the variable in each isosceles trapezoid.

28.

30.

Theorem 6-20

Theorem

If a quadrilateral is an isosceles trapezoid, then its diagonals are congruent.

If . . .

ABCD is an isosceles trapezoid

Then . . .

 $\overline{AC} \cong \overline{BD}$

You will prove Theorem 6-20 in Exercise 54.

 Midsegment - segment that joins the midpoints of its legs It has the following two properties....

Theorem 6-21 Trapezoid Midsegment Theorem

Theorem

If a quadrilateral is a trapezoid, then

- (1) the midsegment is parallel to the bases, and
- (2) the length of the midsegment is half the sum of the lengths of the bases.

If . . .

TRAP is a trapezoid with midsegment \overline{MN}

Then . . .

- (1) $\overline{MN} \parallel \overline{TP}, \overline{MN} \parallel \overline{RA}$, and
- $(2) MN = \frac{1}{2} \Big(TP + RA \Big)$

You will prove Theorem 6-21 in Lesson 6-9.

Problem 3 Usi

Problem 3 Using the Midsegment of a Trapezoid

Algebra \overline{QR} is the midsegment of trapezoid *LMNP*. What is x?

$$X+2=\frac{1}{2}(4x-10+8)$$

 $X+2=\frac{1}{2}(4x-2)$
 $X+2=\frac{1}{2}(4x-2)$
 $X+2=\frac{1}{2}(4x-2)$
 $X+2=\frac{1}{2}(4x-2)$
 $X=\frac{1}{2}(4x-10+8)$

Got lt? 3. a. Algebra \overline{MN} is the midsegment of trapezoid *PQRS*. What is x? What is MN?

$$2x+11 = \frac{1}{2}(10+8x-12)$$

$$2x+11 = \frac{1}{2}(-2+8x)$$

$$2x+11 = -1+4x$$

$$-2x$$

$$-2x$$

$$11 = -1+2x$$

$$12 = 2x$$

$$(x=6)$$

15.
$$Ax - 1D$$

$$2x + 1$$

$$x - 15$$

See Pro

$$\frac{2}{3x} = \frac{1}{2}(x+3+12)$$

$$\frac{2}{3x} = \frac{1}{2}(x+15) \cdot 2$$

$$6x = x+15$$

$$5x = 15$$

$$\begin{array}{c} 2 \\ (3x = \frac{1}{2}(x+3+12)) \\ 3x+5 = \frac{1}{2}(4+7x+4) \\ 2 \cdot 3x = \frac{1}{2}(x+15) \cdot 2 \\ 6x = x+15 \\ 5x = 15 \\ \hline (x+10=8+7x) \\ \hline (x=3) \\ \hline (x=3) \\ \end{array}$$

• kite - a quadrilateral with two pairs of consecutive sides congruent and no opposite sides congruent.

Quadrilateral *DEFG* is a kite. What are $m \angle 1$, $m \angle 2$, and $m \angle 3$?

Got It? 4. Quadrilateral *KLMN* is a kite. What are $m \angle 1$, $m \angle 2$, and $m \angle 3$?

Homework:

WB 6-6 #1-17, 20-30