
Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

GPU Programming Made
Easy with CuPy
Bernardo Abreu Figueiredo

Konstantinos Iliakis

Acknowledgements: Simon Albright, Helga Timko, Heiko Damerau

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Outline

● Why GPUs? Why CuPy?
● Two real-world use cases
● Live Demo
● CuPy features and capabilities
● Speedup results for the presented use cases
● How to access CERN resources

2

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

● Originally (80s-90s) built for graphics,
called Video Graphics Arrays/ Adapters
(VGAs)

● In 2007, Nvidia introduces CUDA to
facilitate general-purpose application
development

● Combination of computing-capacity and
cost-efficiency dominant platform
for general-purpose acceleration

● Nowadays: Widespread applicability
in every computing domain

Why GPUs?

3

1999: World’s first GPU
GeForce 256

2007: Initial CUDA
release

2008-2016: CPU- GPU,
peak performance
comparison [1]

Present: Widespread
Adoption of GPUs

G
FL

O
P

/s
ec

[1] https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

End of Year

10²

10⁴

2008 2016

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

GPU Challenges

1. GPUs are throughput oriented devices:
○ GPUs implement SIMD: Single operation on multiple data points simultaneously
○ Massive multi-threading and widely vectorized execution units

2. Cumbersome programming model:
○ Implicit parallelism: Every code line executed by multiple threads
○ Limited debugging tools

3. Performance bottlenecks: Can negate potential performance gains
○ Data transfers
○ Memory management
○ Thread divergence

4

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Zoo of GPU Programming Solutions

5

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Why CuPy?

● Beginner friendly:
○ Requires minimal knowledge of GPU programming

model and architecture
○ Easy-to-install (pip, conda)

● Flexibility and applicability:
○ Drop-in replacement for NumPy & SciPy (equivalent API)

■ Complete list:
https://docs.cupy.dev/en/stable/reference/comparison.html

○ Multiple ways to implement GPU kernels
○ NVIDIA + AMD platforms

● Efficiency:
○ Most modern features, optimized libraries
○ Extremely low-overhead
○ Low-level support

6

I

https://docs.cupy.dev/en/stable/reference/comparison.html

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

● Phase space describes state of a physical system
● Analogous to pendulum motion

○ Described by angle and angular velocity (change in angle)

Use Case: Synchrotron Motion

7

Angle

Angular velocity

φ
φ φ φ

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24 8

Tracking particles
Use Case: Synchrotron Motion

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Use Case: Synchrotron Motion

● Distribution of macroparticles in phase space
○ Given in phase and energy (or equivalent) coordinates

● Can be described by alternating kick and drift
○ Kick affects energy coordinates (Particle traversing RF station)
○ Drift affects phase coordinates (Trajectory bent by magnetic field)

● Calculation does not depend on other particles
○ Highly parallelizable

9

Particle Phase Energy

1 -1 0

2 0.2 0.8

Particle Phase Energy

1 -1 0+0.05

2 0.2 0.8-0.02

Particle Phase Energy

1 -1+0.04 0+0.05

2 0.2-0.06 0.8-0.02

Kick Drift

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Use Case: Beam Longitudinal Dynamics (BLonD) Code

● Particle tracking simulator, specializes on the longitudinal plane (δτ, δE)
● Modular structure, can simulate a wide range of conditions

○ Energy regimes (MeV to TeV)
○ Particle types (electron, proton, muon, …)
○ Actively used for PSB, PS, SPS, LHC, FCC, Muon Collider, etc

● Indispensable tool for:
○ Efficient operation
○ Accelerator upgrades
○ Future projects

● Written in Python, with accelerated backends (C++, Numba, CuPy, MPI)
● Well documented and benchmarked, recently PRAB Editor’s Suggestion [1]

10

[1] H. Timko et al. ”Beam longitudinal dynamics simulation studies”, https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.114602

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Use Case: BLonD Applications (simple)

Example simulation of a bunch undergoing
oscillations at injection

Here, the tracking can be completely
parallelized

11

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Use Case: BLonD Applications (more complicated)

12

LHC controlled
emittance blow-up
by injection of RF
phase noise

LHC Injection errors correction
with beam feedbacks: phase-loop
(top) and synchro-loop (bottom)

PS-to-SPS transfer with
RF manipulations:
bunch splittings, bunch
shortening and rotation.

2

1 3

Source: https://blond.web.cern.ch/applications

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Use Case: Longitudinal Phase Space Tomography

● Goal: Reconstruct the distribution of a particle bunch in longitudinal phase
space

● Analogous to medical Tomography
○ Breathing patient [2]
○ Bunch rotating in phase space

● Input:
○ Accelerator and beam parameters
○ Measured (or generated) 1D bunch profiles

● Output:
○ Reconstructed 2D phase space distribution

13

Rotating bunch in phase space in the PSB [1]

[1] https://tomograp.web.cern.ch [2] A. Biguri et al. “A General Method for Motion Compensation in X-ray Computed Tomography”, https://iopscience.iop.org/article/10.1088/1361-6560/aa7675

https://tomograp.web.cern.ch

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Two main parts of the application
1. Tracking

○ Generate a distribution of particles
○ Track particles for a number of turns (based on applying

equations of motion)
○ Store the phase/time and energy coordinates of the particles
○ Massively parallelizable

2. Tomography reconstruction
○ Initialize weights for particles based on their coordinates
○ Reconstruct a profile based on initial weights
○ Iteratively adjust both weights and reconstructed profile until

convergence (based on difference)
○ Partly parallelizable

Use Case: Longitudinal Tomography

14

Measured and reconstructed profile

Iterative reconstruction

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

How can BLonD and Tomography profit from GPUs?

15

● Computationally intensive
○ Tracking: trigonometric, exponential, etc
○ FFTs: Forward and backward FFTs
○ Linear algebra: Array and vector operations

● Data parallel, mostly dependency-free
● Large input sets

○ Number of simulated particles: 1 Million - 1 Billion
● Infrequent need for CPU-GPU memory transfers

○ Apart from periodic need for plotting/data storage, all other operations are GPU-accelerated

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Interactive Session

● https://gitlab.cern.ch/beams-and-rf-training/icsc-2024-cupy
● First steps with CuPy

○ Creating CuPy arrays
○ Timing basic CuPy array operations

16

● When considering doing work on GPU, keep four things in mind
○ Input size: Large enough to keep GPU cores busy?
○ Arithmetic Intensity: Is the computation heavy enough?
○ Data type length: Is highest precision necessary or can it be reduced to achieve a

better performance?
○ Memory transfer: Do we have to copy lots of data? Is there a way to keep them on

one device to minimize transfers?
● There is no one-size-fits-all solution

○ Profile your code to see which device performs the best

https://gitlab.cern.ch/beams-and-rf-training/icsc-2024-cupy

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Features: Supported functions

Complete list here: https://docs.cupy.dev/en/stable/reference/comparison.html
● Includes NumPy and SciPy routines
● CuPy behaves like a drop-in replacement for NumPy/SciPy
● NumPy and CuPy can be used interchangeably

17

import numpy as np
import cupy as cp

for xp in [np, cp]:
x = xp.arange(10)
W = xp.ones((10, 5))
y = xp.dot(x, W)
print(y)

https://docs.cupy.dev/en/stable/reference/comparison.html

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Features: Drop-in replacement for NumPy

CuPy Arrays - Almost identical interface with NumPy arrays

18

import numpy as np
import cupy as cp

Supports all array creation routines, like zeros, ones, empty, etc
dev_a = cp.arange(10, dtype=int)
dev_b = cp.array([1, 2, 3, 4])
print(type(dev_a)) ## Output: <class 'cupy.ndarray'>

Can be printed out of the box, though this results in device to host memory copying
%time print(dev_a) ## Output: [...] Wall time: 2 ms

a = np.arange(10, dtype=int)
%time print(a) ## Output: [...] Wall time: 223 µs

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Features: Drop-in replacement for NumPy

19

strided with start stop index
print(dev_a[1:-1:2])
using list of indices to gather
print(dev_a[[0,2,4]])
or with boolean list
print(dev_a[dev_a % 3 == 0])

Easy to transfer arrays between device and the host
a = np.arange(0, 20, 2)
dev_a = cp.asarray(a)

GPU/CPU agnostic code also works with CuPy
xp = cp.get_array_module(dev_a) # Returns cupy if any array is on the GPU, otherwise numpy
y = xp.sin(dev_a) + xp.cos(dev_a)

To get an array back to the host is simple:
b = cp.asnumpy(dev_a)
c = dev_a.get()
print(type(b), type(c))

Cupy can (in exceptions) operate solely on numpy arrays
print(cp.allclose(b, c))

CuPy also supports all sorts of indexing CuPy interoperable with NumPy arrays

CuPy allows to write CPU/GPU agnostic code

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Flexibility for expressing and launching GPU kernels

20

1. Supported Numpy functions:

Bonus: Fuse operations in a
single kernel

2. Templated kernels for
element-wise operations and
reductions.

3. With “raw” CUDA code

Automatic number of threads
definition

Automatic number of threads
definition - Manual number of threads definition

- Also supports loading pre-compiled
kernels

Just a random compute intensive function
def saxpy_trig(x, y, a):
 return cp.exp(a * cp.sin(x) + cp.cos(y))

res = saxpy_trig(dev_x, dev_y, 0.5)

@cp.fuse(kernel_name=‘saxpy_trig_fused’)
def saxpy_trig_fused(x, y, a):
 return cp.exp(a * cp.sin(x) + cp.cos(y))

res = saxpy_trig_fused(dev_x, dev_y, 0.5)

saxpy_trig_elemwise = cp.ElementwiseKernel(
 ‘float32 x, float32 y, float32 a’, # Input Types
 ‘float32 z’, # Output Types
 ‘z = exp(a * sin(x) + cos(y))’, # Operation
 ‘saxpy_trig_elemwise’ # Kernel name
)

res = saxpy_trig_elemwise(dev_x, dev_y, 0.5)

saxpy_trig_raw = cp.RawKernel(r```
#include <cupy/complex.cuh>
extern “C” __global__
void saxpy_trig_raw(const float* x, const float* y,
 float a, float*z, int n)
{
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 if (tid < n)
 z[tid] = exp(a * sin(x[tid]) + cos(y[tid]));

}
‘’’, ‘saxpy_trig_raw’)

res = saxpy_trig_raw(args=(dev_x, dev_y, 0.5,
 dev_out, len(dev_x)),
 grid=((len(dev_x)+1023)//1024,),
 block=(1024,))

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Features: Access CUDA API

Exploring the available device and its attributes

21

import cupy as cp
device = cp.cuda.Device()
device.use()

print('Using device: ', cp.cuda.runtime.getDeviceProperties(device)['name'])
Output: Using device: b’Tesla T4’

attributes = device.attributes
properties = cp.cuda.runtime.getDeviceProperties(device)
print('Number of multiprocessors:', attributes['MultiProcessorCount'])
Output: Number of multiprocessors: 40

print('Global memory size (GB):', properties['totalGlobalMem'] / (1024**3))
Output: Global memory size (GB): 14.58062744140625

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Features: Access CUDA API to time functions

CUDA events to time GPU kernels

22

It is trickier to time GPU kernels, because they behave asynchronously w.r.t the host
def benchmark(func, args, n_repeat=10, n_warmup=1):
 import cupy as cp
 gpu_start = cp.cuda.Event()
 gpu_end = cp.cuda.Event()
 for i in range(n_warmup):
 out = func(*args)

 gpu_start.record()
 for i in range(n_repeat):
 out = func(*args)

 gpu_end.record()
 gpu_end.synchronize()
 t_gpu = cp.cuda.get_elapsed_time(gpu_start, gpu_end)
 print('Average GPU time (ms): ', t_gpu / n_repeat)

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Advanced Features: Streams

● Concurrency through pipelining
● Overlap memory transfers with kernel executions

23

Memcpy (D2H)

H2D-1 K1 D2H-1

Time

Sequential:

Concurrent:

Memcpy (H2D) Kernel Exec

H2D-2 K2 D2H-2
H2D-3 K3 D2H-3

TimeH2D: Host to Device, D2H: Device to host

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Advanced Features: Streams

24

import cupy as cp
import numpy as np

rand = cp.random.RandomState(seed=1)
streams = []

for i in range(10):
streams.append(cp.cuda.Stream()) # Create the streams

y_cpu = np.random.normal(size=(2**24, 1)) # Create one random matrix in CPU

for stream in streams: # Iterate over streams and execute operations asynchronously
with stream:

 x = rand.normal(size=(1, 2**24)) # Create other random matrix on GPU
 y = cp.asarray(y_cpu) # Transfer CPU matrix to GPU
 z = cp.matmul(x, y) # Multiply matrices

for stream in streams:
stream.synchronize() Overlapping execution!

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Advanced Features: Memory Pool

● Memory allocations (on the GPU) can be
costly

● Memory pool: Software managed GPU
memory region

● Instead of deallocating memory: Keeping it
for future use

● Caches allocated memory blocks
● Reduce cost of alloc/free

25

Introduction to Efficient Computing, A. Nowak, tCSC-22

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

GPU Models used at CERN

26

Model Tesla T4 V100 A100

Generation Turing (2019) Volta (2018) Ampere (2020)

Transistors 13.6 billion 21.1 billion 54.2 billion

RAM 16 GB 32 GB 40 GB

Bandwidth 320 GB/s 900 GB/s 1555 GB/s

Cores 40 80 108

Peak FP32 Perf. 8.1 TFLOPS 15.7 TFLOPS 19.5 TFLOPS

Peak FP64 Perf. 0.25 TFLOPS* 7.8 TFLOPS 9.7 TFLOPS

TFLOPS = 1012 floating-point operations per second
* Estimated value, not given in documentation

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Results of using GPU for Longitudinal Tomography

● Initially: Python and C++/OpenMP
● Now: Python, choice between C++/OpenMP and CuPy with raw CUDA

kernels
● Tracking and reconstruction more than 25x faster on GPU
● Impact stronger with 32-bit floats (single precision)
● Side effects: Better performance outside of CUDA kernels (using CuPy

functions instead of NumPy functions)

27

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

GPU Benchmarks for Longitudinal Tomography

28

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy BLonD Speedup

Over two-orders of magnitude speedup in three real-world test-cases. Baseline: Intel Xeon Silver 4216

29

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Getting Started with CuPy

● Requirements:
○ NVIDIA CUDA GPU
○ CUDA Toolkit v11.2 or higher
○ Python 3.9 or higher

● Easy installation with pip or conda:
○ conda install -c conda-forge cupy
○ pip install cupy

● More information: https://docs.cupy.dev/en/stable/install.html

30

https://docs.cupy.dev/en/stable/install.html

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Accessing Resources Interactively

● Notebooks (GUI):
○ Swan (Need to request access)

■ https://swan-k8s.cern.ch
■ Equipped with T4 GPUs

● Scripts & command line interface
○ LXPLUS Service

■ Equipped with T4 GPUs
■ ssh address: [user]@lxplus-gpu.cern.ch

31

https://swan-k8s.cern.ch/

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Accessing Resources in Batch mode

● Submit jobs:
condor_submit -i
condor.sub

● Available GPU models:
○ A100
○ V100
○ T4

● Better for longer runs
● More information at:

https://batchdocs.web.cern.ch/

32

####################
File: condor.sub
HTCondor submit file
####################

Define executable script
executable = condor.sh

Define output/ error files
output = output.txt
error = error.txt
log = log.txt

Request 1 GPU
request_gpus = 1

Optionally, specify GPU model name
requirements = regexp("A100", TARGET.GPUs_DeviceName)

+MaxRuntime = 3600

queue

#!/bin/bash

####################
File: condor.sh
Simple executable script
####################

source $USER/.bashrc

python my_script.py

https://batchdocs.web.cern.ch/

Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Key Takeaways

● GPUs offer massive computing capacity
○ Harvesting it can be tedious

● High-level libraries can simplify GPU development
● CuPy: A good first step to start with GPU programming

○ User-friendliness
○ Flexibility
○ Performance, low-level support

● Impressive real-world speedup
○ BLonD: 20-100x faster
○ Tomography: 6-20x faster

● Easy to get started
○ Plenty of resources at CERN
○ Interactive and batch access

33

