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Preface

This draft textbook is extracted from lecture notes from a class which I have taught (unfor-
tunately online, but this gave me an opportunity to write more detailed notes) during the
Fall 2020 semester, with an extra pass during the class I taught in the Spring 2021 semester.

The goal of the class (and thus of this textbook) is to present old and recent results in
learning theory, for the most widely-used learning architectures. This class is geared towards
theory-oriented students as well as students who want to acquire a basic mathematical
understanding of algorithms used throughout machine learning and associated fields that
are large users of learning methods such as computer vision or natural language processing.

A particular effort will be made to prove many results from first principles, while
keeping the exposition as simple as possible. This will naturally lead to a choice of key results
that show-case in simple but relevant instances the important concepts in learning theory.
Some general results will also be presented without proofs. Of course the concept of first
principles is subjective, and I will assume a good knowledge of linear algebra, probability
theory and differential calculus.

Moreover, I will focus on the part of learning theory that does not exist outside of
algorithms that can be run in practice, and thus all algorithmic frameworks described in this
book are routinely used. For most learning methods, some simple illustrative experiments
are presented, with the plan to have accompanying code (Matlab, Julia, and Python) so
that students can see for themselves that the algorithms are simple and effective in synthetic
experiments.

Note that this is not an introductory textbook on machine learning. There are already
several good ones in several languages (Alpaydin, 2020; Azencott, 2019).

The choice of topics is arbitrary (and thus personal). Many important algorithmic frame-
works are forgotten (e.g., reinforcement learning, unsupervised learning, etc.). Suggestions
of extra themes are welcome! A few additional chapters are currently being written such as:

• Ensemble learning

• Bandit optimization
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• Probabilistic methods

• Structured prediction

Book organization. The book is organized in three main parts: introduction, core part,
and special topics. Readers are encouraged to read the first two parts to gain a full under-
standing of the main concepts.

All chapters start with a summary of the main concepts and results that will be covered.

Sections or exercises which are more advanced are denoted by �, ��, or ���. Comments
or suggestions are most welcome and should be sent to francis.bach@inria.fr.

Many topics are not covered, and many more are not covered in much depth. There
are many good textbooks on learning theory that go deeper or wider (Mohri et al., 2018;
Shalev-Shwartz and Ben-David, 2014; Christmann and Steinwart, 2008).

This is still work in progress. In particular, there are still a lot of typos, probably some
mistakes, and almost surely places where more details are needed; readers are most welcome
to report them to me (and then get credit for it). I am convinced that simpler mathematical
arguments are possible in many places in the book. If you are aware of elegant and simple
ideas that I have overlooked, please let me know.

Mathematical notations. Throughout the textbook, I will try to provide unified nota-
tions:

• Random variables: given a set X, we will use the lower-case notation for a random
variable with values in X, as well for its observations. Probability distributions will
be denoted dµ or dp and expectations as Ef(x) =

∫
X
f(x)dp(x). This is slightly

ambiguous, but will not cause major problems (and is standard in research papers).

• Norms on Rd: we will consider the usual ℓp-norms on Rd, defined through ‖x‖pp =∑d
i=1 |xi|p for p ∈ [1,∞), with ‖x‖∞ = maxi∈{1,...,d} |xi|.

• For a symmetric matrix A ∈ Rn×n, A < 0 means that A is positive semi-definite (that
is, all of its eigenvalues are non-negative), and for two symmetric matrices A and B,
A < B means that A−B < 0.

• For a differentiable function f : Rd → R, its gradient at x is denoted f ′(x) ∈ R
d, and

if it is twice differentiable, it Hessian is denoted f ′′(x) ∈ Rd×d.

Acknowledgements. These class notes have been adapted from the notes of many col-
leagues I have the pleasure to work with, in particular Lénäıc Chizat, Pierre Gaillard,
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Chapter 1

Mathematical preliminaries

Chapter summary

- Linear algebra: a bag of tricks to avoid lengthy and faulty computations.
- Concentration inequalities: for n independent random variables, the deviation between
the empirical average and the expectation is of order O(1/

√
n). What is in the big O?

The mathematical analysis and design of machine learning algorithms require a set of
specialized tools beyond classic linear algebra, differential calculus and probability. In this
chapter, I will review these non-elementary mathematical tools that will be used throughout
the book: first linear algebra tricks, then concentration inequalities. The chapter can be
safely skipped since relevant results will be referenced when needed.

1.1 Linear algebra and differentiable calculus

In this section, we review basic linear algebra and differential calculus results that will be
used throughout the book. Using these may usually greatly simplify computations. As much
as possible, matrix notations will be used.

3



4 CHAPTER 1. MATHEMATICAL PRELIMINARIES

1.1.1 Minimization of quadratic forms

Given a positive definite matrix A ∈ Rn×n and a vector b ∈ Rn, then minimization of
quadratic forms with linear terms can be done in closed form as:

inf
x∈Rn

1

2
x⊤Ax− b⊤x = −1

2
b⊤A−1b,

with minimizer x∗ = A−1b. If A was not invertible (simply positive semi-definite) and b as
not in the column space of A, then the infimum would be −∞.

Note that this result is often used in various forms, such as

b⊤x 6
1

2
b⊤A−1b+

1

2
x⊤Ax with equality if and only if b = Ax.

This form is exactly Fenchel-Young inequality for quadratic forms (see Chapter 5), and is

often used in one dimension in the form ab 6 a2

2η
+ ηb2

2
, for a well chosen η > 0.

1.1.2 Inverting a 2× 2 matrix

Solving small systems happens frequently, as well as inverting small matrices. This can be

easily done in two dimensions. Let M =

(
a b
c d

)
be a 2× 2 matrix. If ad− bc 6= 0, then we

may invert it as follows

M−1 =
1

ad− bc

(
d −b
−c a

)
.

This can be simply checked by multiplying the two matrices or by using Cramer’s rule,1 and
can be generalized to matrices defined by blocks, as we present next.

1.1.3 Inverting matrices defined by blocks (+ matrix inversion

lemma)

The example above may be generalized to matrices of the form M =

(
A B
C D

)
, with blocks

of consistent sizes (note that A and D have to be square matrices). The inverse of M may
be obtained by applying directly Gaussian elimination done in block form. Given the two

matrices M =

(
A B
C D

)
and N =

(
I 0
0 I

)
, we may linearly combine lines (with the same

coefficients for the two matrices). Once M has been tranformed to the identity matrices, N
has been transformed to the inverse of M .

1https://en.wikipedia.org/wiki/Cramer%27s_rule

https://en.wikipedia.org/wiki/Cramer%27s_rule


1.1. LINEAR ALGEBRA AND DIFFERENTIABLE CALCULUS 5

We first make the assumption that A is invertible, we use the notation (M/A) = D −
CA−1B for the Schur complement of the block A, and also assume that (M/A) is invertible.
We thus get by Gaussian elimination, referring to Li, i = 1, 2 as the two blocks of lines, so

that for the first matrix M =

(
L1

L2

)
:

Original matrices:

(
A B
C D

) (
I 0
0 I

)

L2 ← L2 − CA−1L1 :

(
A B
0 (M/A)

) (
I 0

−CA−1 I

)

L2 ← (M/A)−1L2 :

(
A B
0 I

) (
I 0

−(M/A)−1CA−1 (M/A)−1

)

L1 ← L1 −BL2 :

(
A 0
0 I

) (
I +B(M/A)−1CA−1 −B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)

L1 ← A−1L1 :

(
I 0
0 I

) (
A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
.

This shows that

M−1 =

(
A B
C D

)−1

=

(
A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
. (1.1)

Moreover, by doing the same operations but by putting to zero first the upper-right block,
and assuming D and (M/D) = A−BD−1C are invertible, we obtain:

M−1 =

(
A B
C D

)−1

=

(
(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 +D−1C(M/D)−1BD−1

)
. (1.2)

By identifying the upper-left and lower-right blocks in Eq. (1.1) and Eq. (1.2), we obtain the
identities:

(
A− BD−1C

)−1
= A−1 + A−1B(D − CA−1B)−1CA−1

(
D − CA−1B

)−1
= D−1 +D−1C(A− BD−1C)−1BD−1,

which are often referred to as the matrix inversion lemma. These are particularly interesting
when the blocks A and D have very different sizes, as the inverse of a large matrix may be
obtained from the inverse of a small matrix.

The lemma is often applied when C = B⊤, A = I and D = −I, which leads to

(I +BB⊤)−1 = I − B(I +B⊤B)−1B⊤,

and, once right-multiplied by B, this leads to the compact formula (which is easier to rederive
and remember):

(I +BB⊤)−1B = B(I +B⊤B)−1.

These equalities are commonly used both for theoretical and algorithmic purposes.
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Exercise 1.1 (�) Show that we can “diagonalize” by blocks the matrices M and M−1 as:

M =

(
A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 (M/A)

)(
I A−1B
0 I

)

M−1 =

(
A B
C D

)−1

=

(
I −A−1B
0 I

)(
A−1 0

0 (M/A)−1

)(
I 0

−CA−1 I

)
.

Conditional covariance matrices for Gaussian vectors (�). The identities above can
be used to compute conditional means and covariance matrices for Gaussian vectors. If we

have a Gaussian vector

(
x
y

)
with x ∈ Rm and y ∈ Rn, with mean vector defined by block as

µ =

(
µx

µy

)
, and covariance matrix Σ =

(
Σxx Σxy

Σyx Σyy

)
< 0 (defined with blocks of appropriate

sizes), then the joint density p(x, y) of (x, y) is proportional to

exp
(
− 1

2

(
x− µx

y − µy

)⊤(
Σxx Σxy

Σyx Σyy

)−1(
x− µx

y − µy

))
.

By writing it as the product of a function of x and of a function of (x, y), we can get that x
is Gaussian with mean µx and covariance matrix Σx, and that given x, y is Gaussian with
mean µy|x = µy + ΣyxΣ−1

xx (x− µx) and covariance matrix Σy|x = Σyy − ΣyxΣ−1
xxΣxy.

Exercise 1.2 (�) Prove the identities µy|x = µy + ΣyxΣ−1
xx (x − µx) and covariance matrix

Σy|x = Σyy − ΣyxΣ−1
xx Σxy.

1.1.4 Differential calculus

Throughout the book, we will compute gradients and Hessians of functions, in almost all
cases in matrix notations. Here are some classical examples:

• Quadratic forms: assuming A = A⊤, with f(x) = 1
2
x⊤Ax − b⊤x, f ′(x) = Ax − b,

f ′′(x) = A. If A is not symmetric, then f ′(x) = 1
2
(A+ A⊤)x and f ′′(x) = 1

2
(A + A⊤).

• Least-squares: f(w) = 1
2
‖y −Xw‖22, f ′(w) = X⊤(Xw − y), f ′′(w) = X⊤X .

1.2 Concentration inequalities

All results presented in this textbook rely on the simple probabilistic assumption that data
are independently and identically distributed (i.i.d.). The main tool is then to relate empirical
averages to expectations.
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The key (very classical) insight behind probabilistic inequalities used in machine learning
is that when you have n independent zero-mean random variables, the natural “magnitude”
of their average is 1/

√
n times smaller than their average magnitude. The simplest instance

of this phenomenon is that if Z1, . . . , Zn ∈ R are independent and identically distributed
with variance σ2 = E(Z − E[Z])2, then

var
(1

n

n∑

i=1

Zi

)
=

1

n2

n∑

i=1

var(Zi) =
σ2

n
.

△! Be careful with error measures or magnitudes: some are squared, some are not.
Therefore, the 1/

√
n becomes 1/n after taking the square (this is trivial but typi-

cally leads to confusions).

The equality above can be interpreted as

E

[ 1

n

n∑

i=1

Zi − E[Z]
]2

=
σ2

n
,

which provides the simplest proof of the law of large numbers when variances exist, and
also highlights the convergence in squared mean (and therefore in probability, using Markov

inequality P

(
1
n

∑n
i=1 Zi − EZ

)2
> ε
)
6 σ2

nε
) of the random variable 1

n

∑n
i=1 Zi to a constant.

In order to characterize the deviations in a finer way, there are two classical tools: the
central limit theorem, which states that 1

n

∑n
i=1 Zi is approximately normal with mean E[Z]

and variance σ2/n. This is an asymptotic statement (formally
√
n
(

1
n

∑n
i=1 Zi − E[Z]

)
con-

verges in distribution to a normal law with mean zero and variance σ2). Although it gives
the right scaling in n, in this textbook, we will look mostly at non-asymptotic results that
quantify the deviation for any n.

△! In what follows, we will always provide versions of inequalities for averages of
random variables (some authors equivalently consider sums).

△! Homogeneity: for all non-asymptotic bounds with non-normalized data, it is crucial
to make sure the bounds are “dimensionally homogeneous”.
See https://en.wikipedia.org/wiki/Dimensional_analysis.

Before describing various concentration inequalities, let us recall the classical union
bound : given events indexed by f ∈ F (which can have a countably infinite number of
elements), we have:

P

( ⋃

f∈F
Af

)
6
∑

f∈F
P(Af).

https://en.wikipedia.org/wiki/Dimensional_analysis
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It has (among many other uses in machine learning) a direct application in upper-bounding
the tail probability of the supremum of random variables:

P

(
sup
f∈F

Zf > t
)

= P

( ⋃

f∈F
{Zf > t}

)
6
∑

f∈F
P(Zf > t).

We will only cover the most useful inequalities for machine learning. For more advanced
inequalities, see, e.g., Boucheron et al. (2013); Vershynin (2018).

1.2.1 Hoeffding’s inequality

The simplest concentration inequality considers bounded real-valued random variables.

Proposition 1.1 (Hoeffding’s inequality) If Z1, . . . , Zn are independent random vari-
ables such that Zi ∈ [0, 1] almost surely, then, for any t > 0,

P

(1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi] > t
)
6 exp(−2nt2). (1.3)

Proof The proof uses standard convexity arguments and is divided in two parts.

(1) Lemma: If Z ∈ [0, 1] almost surely, then E
[

exp(s(Z − E[Z]))
]
6 exp(s2/8).

Proof: we can simply compute the first two derivatives of ϕ : s 7→ log(E
[

exp(s(Z −
E[Z]))

]
), which is a “log-sum-exp” function, often referred to as the cumulant generat-

ing function. We have (readers familiar with probability distributions from exponential
families will recognize the usual derivatives of log-partition functions):

ϕ′(s) =
E
(
(Z − E[Z])es(Z−E[Z])

)

E
(
es(Z−E[Z])

)

ϕ′′(s) =
E
(
(Z − E[Z])2es(Z−E[Z])

)

E
(
es(Z−E[Z])

) −
[E
(
(Z − E[Z])es(Z−E[Z])

)

E
(
es(Z−E[Z])

)
]2
.

We thus get ϕ(0) = ϕ′(0) = 0 and ϕ′′(s) is the variance of some random variable Z̃ ∈
[0, 1], with distribution proportional to es(z−E[Z])dµ(z) where dµ(z) is the distribution
of Z. We can thus bound the variance of Z̃ as

var(Z̃) = inf
µ∈[0,1]

E(Z̃−µ)2 6 E(Z̃−1/2)2 =
1

4
E(2Z̃−1)2 6

1

4
since 2Z̃−1 ∈ [−1, 1] almost surely.

Thus, by Taylor’s formula, ϕ(s) 6 s2

8
.
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(2) We recall Markov’s inequality for any non-negative random variable X and a > 0,
which states P(X > a) 6 1

a
EX . For any t > 0, and denoting Z̄ = 1

n

∑n
i=1 Zi:

P
(
Z̄ − E[Z̄ ] > t

)
= P

(
exp(s(Z̄ − E[Z̄])) > exp(st))

)
by monotonicity of the exponential,

6 exp(−st)E
[

exp(s(Z̄ − E[Z̄]))
]

using Markov’s inequality,

6 exp(−st)
n∏

i=1

E
[

exp
( s
n

(Zi − E[Zi])
)]

by independence,

6 exp(−st)
n∏

i=1

exp
( s2
n2
/8
)

= exp
(
− st+

s2

8n

)
, using the lemma above,

which is minimized for s = 4nt. We then get the result.

Note the difference with the central limit theorem, which states that when n goes to infinity,
the probability in Eq. (1.3) is asymptotically equivalent to

1√
2πσ2/n

∫ ∞

t

exp
(
− nz2

2σ2

)
dz which can be shown to be less than exp

(
− nt2

2σ2

)
,

where σ2 = limn→+∞
1
n

∑n
i=1 var(Zi). The central limit theorem is more precise (as it involves

the variance of Zi’s), but is asymptotic. Bernstein inequalities (see Section 1.2.3) will be in
between as they use the variance and an almost sure bound.

Extensions. By just applying the inequality to Zi’s and 1 − Zi’s and using the union
bound, we get the following corollary.

Corollary 1.1 (Two-sided Hoeffding’s inequality) If Z1, . . . , Zn are independent ran-
dom variables such that Zi ∈ [0, 1] almost surely, then, for any t > 0,

P
(∣∣∣ 1
n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]
∣∣∣ > t

)
6 2 exp(−2nt2).

We can make the following observations:

• Hoeffding’s inequality can be extended to the assumption that Zi ∈ [a, b] almost surely,
leading to

P

(∣∣∣ 1
n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]
∣∣∣ > t

)
6 2 exp(−2nt2/(a− b)2).
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• Such an inequality is often used “in the other direction”, that is, starting from the
probability and deriving t from it as follows. For any δ ∈ (0, 1), with probability
greater than 1− δ, we have:

∣∣∣ 1
n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]
∣∣∣ < |a− b|√

2n

√
log
(2

δ

)
.

Note the dependence in n as 1/
√
n and the logarithmic dependence in δ (which corre-

sponds to the exponential tail bound in t).

• When Zi ∈ [ai, bi] almost surely, with potentially different ai’s and bi’s, the probability
upper-bound can be replaced by 2 exp(−2nt2/c2), where c2 = 1

n

∑n
i=1(bi − ai)2.

• The result extends to martingales with essentially the same proof, leading to Azuma’s
inequality. See https://en.wikipedia.org/wiki/Azuma%27s_inequality.

• Hoeffding’s inequality is often applied to so-called “sub-Gaussian” random variables,
that is, variables X for which

∀s ∈ R, E
[

exp(s[X − E[X ])
]
6 exp(

τ 2s2

2
),

which is exactly what we used in the proof. In other words, a random variable with
values in [a, b] is sub-Gaussian with constant τ 2 = (b−a)2/4, and for these sub-Gaussian
variables, we have similar concentration inequalities (see next exercise).

• Exercise 1.3 If Z1, . . . , Zn are independent random variables which are sub-Gaussian

with constant τ 2, then, for any t > 0, P
(∣∣∣ 1n

∑n
i=1 Zi− 1

n

∑n
i=1 E[Zi]

∣∣∣ > t
)
6 2 exp(−nt2

2τ2
).

1.2.2 MacDiarmid’s inequality

Given n independent random variables, it may be useful to concentrate other quantities than
their average. What is needed is that the function of these random variables has “bounded
variation”.

Proposition 1.2 (MacDiarmid’s inequality) Let Z1, . . . , Zn be independent random vari-
ables (in any measurable space Z), and f : Zn → R a function of “bounded variation”, that
is, such that for all i, and all z1, . . . , zn, z

′
i ∈ Z, we have

|f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| 6 c.

Then
P

(∣∣f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)
∣∣ > t

)
6 2 exp(−2t2/(nc2)).

https://en.wikipedia.org/wiki/Azuma%27s_inequality
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Proof (�) The proof generalizes Hoeffding’s inequality, which corresponds to f(z) =
1
n

∑n
i=1 zi of the one-sided inequality, and we will only consider

P
(
f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn) > t

)
6 exp(−2t2/(nc2)),

which is sufficient to get the two-sided bound.

We simply introduce the random variables, for i ∈ {1, . . . , n}:

Vi = E(f(Z1, . . . , Zn)|Z1, . . . , Zi)− E(f(Z1, . . . , Zn)|Z1, . . . , Zi−1).

We have E(Vi|Z1, . . . , Zi−1) = 0, |Vi| 6 c almost surely, and f(Z1, . . . , Zn)−Ef(Z1, . . . , Zn) =∑n
i=1 Vi. Using the exact same argument as in part (1) of the proof of Hoeffding’s inequal-

ity, we get for any s > 0, E
(
esV i|Z1, . . . , Zi−1) 6 es

2c2/8, and we can obtain a proof with
the same steps as part (2) of Hoeffding’s inequality by being careful with conditioning.
See Boucheron et al. (2013) for details.

This inequality will be used to provide high-probability bounds on the estimation error
in empirical risk minimization in Section 4.4.1.

Exercise 1.4 Use MacDiarmid’s inequality to prove a Hoeffding-type bound for vectors, that
is, if Z1, . . . , Zn are independent centered vectors such that ‖Zi‖2 6 c almost surely, then
with probability greater than 1− δ, we have

∥∥∥ 1

n

n∑

i=1

Zi

∥∥∥
2
6

c√
n

(
1 +

√
2 log

2

δ

)
.

1.2.3 Bernstein’s inequality (�)

As mentioned earlier, Hoeffding’s inequality only uses an almost sure bound, but not explic-
itly the variance, like the central limit theorem is using (but only with an asymptotic result).
Bernstein’s inequality allows to use the variance to get a finer result.

Proposition 1.3 (Bernstein’s inequality) Let Z1, . . . , Zn be n independent random vari-
ables such that |Zi| 6 c almost surely and E(Zi) = 0. Then

P

(∣∣∣ 1
n

n∑

i=1

Zi

∣∣∣ > t
)
6 2 exp

(
− nt2

2σ2 + 2ct/3

)
, (1.4)

where σ2 = 1
n

∑n
i=1 var(Zi). Moreover, with probability greater than 1− δ, we have:

∣∣∣ 1
n

n∑

i=1

Zi

∣∣∣ 6
√

2σ2 log(1/δ)

n
+

2c log(1/δ)

3n
.
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Proof The proof is also divided in two parts.

(a) Lemma: if |Z| 6 c almost surely, E[Z] = 0, and E[Z2] = σ2, then for any s > 0, we

have E[esZ ] 6 exp
(

σ2

c2
(esc − 1− sc)

)
.

Proof: using the power series expansion of the exponential, we get:

E[esZ ] = 1 + E[sZ] +
∞∑

k=2

sk

k!
E[Zk] = 1 +

∞∑

k=2

sk

k!
E[Zk] because Z has zero mean,

6 1 +

∞∑

k=2

sk

k!
E[|Z|k−2|Z|2] 6 1 +

∞∑

k=2

sk

k!
ck−2σ2 = 1 +

σ2

c2
(
esc − 1− sc

)
.

Using the bound 1 + α 6 eα, this leads to the desired result.

(b) With σ2
i = var(Zi), we have:

P

(1

n

n∑

i=1

Zi > t
)

= P

(
exp(s

n∑

i=1

Zi) > exp(nst)
)

by monotonicity of the exponential,

6 E
[

exp(s

n∑

i=1

Zi)
]
e−nst using Markov’s inequality,

6 e−nst
n∏

i=1

exp
(σ2

i

c2
(esc − 1− sc)

)
= e−nst exp

(nσ2

c2
(esc − 1− sc)

)
,

using the lemma above. Thus, by choosing s = 1
c

log(1 + tc/σ2), we get a bound equal

to exp
(
− nσ2

c2
h(ct/σ2)

)
, with h(α) = (1 + α) log(1 + α) − α > α2

2+2α/3
, which leads

to the first inequality. The second inequality can be obtained by standard algebra.
See Boucheron et al. (2013) for details.

Note here that we get the same dependence as for the central limit theorem for small devi-
ations t (and a strict improvement on Hoeffding because the variance is essentially bounded
by the squared diameter of the support), while for large t, the dependence in t is worse than
Hoeffding’s inequality.

Beyond zero mean random variables. Bernstein’s inequality can also be applied when
the random variables Zi do not have zero mean. Then Eq. (1.4) is replaced by

P

(∣∣∣ 1
n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]
∣∣∣ > t

)
6 2 exp

(
− nt2

2σ2 + 2ct/3

)

.

Exercise 1.5 (�) Prove the inequality above.
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1.2.4 Expectation of the maximum

Concentration inequalities bound the deviation from the expectation. Often, computing the
expectation is the tricky part, in particular for maxima of random variables. In a nutshell,
taking the maximum of n bounded random variable leads to an extra factor of

√
logn. Note

here that we do not impose independence. We will consider other tools such as Rademacher
complexities in Section 4.5.

△! This logarithmic factor appears many times in this textbook and can often be traced
back to the expectation of a maximum.

△! The variables do not need to be independent.

Proposition 1.4 (Expectation of the maximum) If Z1, . . . , Zn are (potentially depen-
dent) random variables which are sub-Gaussian with constant τ 2, then

E[max{Z1 − E[Z1], . . . , Zn − E[Zn]}] 6
√

2τ 2 logn.

Proof We have:

E[max{Z1 − E[Z1], . . . , Zn − E[Zn]}]

6
1

t
logE[etmax{Z1−E[Z1],...,Zn−E[Zn]}] by Jensen’s inequality,

=
1

t
logE[max{et(Z1−E[Z1]), . . . , et(Zn−E[Zn])}]

6
1

t
logE[et(Z1−E[Z1]) + · · ·+ et(Zn−E[Zn])] bounding the max by the sum,

6
1

t
log(neτ

2t2/2) =
logn

t
+ τ 2

t

2
=
√

2τ 2 log n with t = τ−1
√

2 logn,

using the definition of sub-Gaussianity in Section 1.2.1.

1.2.5 Concentration inequalities for matrices (��)

It turns out the concentration inequalities that have been shown in this chapter apply equally
well to matrices with the positive semi-definite order. The following bounds are adapted
from Tropp (2012) and presented without proofs. λmax(M) denote the largest eigenvalue of
the symmetric matrix M , while ‖M‖op denotes the largest singular value of a potentially
rectangular matrix M .
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Proposition 1.5 (Matrix Hoeffding bound) (Tropp, 2012, Theorem 1.3) Given n
independent symmetric matrices Mi ∈ R

d×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0,
M2

i 4 C2
i almost surely. Then for all t > 0,

P

(
λmax

(1

n

n∑

i=1

Mi

)
> t
)
6 d · exp

(
− nt2

8σ2

)
,

for σ2 = λmax

(
1
n

∑n
i=1C

2
i

)
.

Proposition 1.6 (Matrix Bernstein bound) (Tropp, 2012, Theorem 1.4) Given n
independent symmetric matrices Mi ∈ Rd×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0,
λmax(Mi) 6 c almost surely. Then for all t > 0,

P

(
λmax

(1

n

n∑

i=1

Mi

)
> t
)
6 d · exp

(
− nt2/2

σ2 + ct/3

)
,

for σ2 = λmax

(
1
n

∑n
i=1M

2
i

)
.

We can make the following observations:

• Note the similarity with the corresponding bound for scalar random variables when
d = 1.

• These bounds apply as well to rectangular matrices Mi ∈ Rd1×d2 by considering
the so-called Jordan-Wielandt matrices, which are the symmetric matrices M̃i =(

0 Mi

M⊤
i 0

)
∈ R(d1+d2)×(d1+d2), whose eigenvalues are plus and minus the singular values

of Mi (Stewart and Sun, 1990, Theorem 4.2). For the Hoeffding bound, if ‖Mi‖op 6 c

almost surely for all i ∈ {1, . . . , n}, then P
(
‖ 1
n

∑n
i=1Mi‖op > t) 6 (d1+d2)·exp

(
− nt2

8c2

)
,

while the Bernstein bound leads to P
(
‖ 1
n

∑n
i=1Mi‖op > t) 6 (d1 + d2) · exp

(
− nt2/2

σ2+ct/3

)

with σ2 = max
{
λmax

(
1
n

∑n
i=1M

⊤
i Mi

)
, λmax

(
1
n

∑n
i=1MiM

⊤
i

)}
.

• MacDiarmid’s inequality can also be extended (Tropp, 2012, Corollary 7.5).



Chapter 2

Introduction to supervised learning

Chapter summary

- Decision theory (loss, risk, optimal predictors): what is the optimal prediction and
performance given infinite data and infinite computational resources?
- Statistical learning theory: when is an algorithm “consistent”?
- No free lunch theorems: learning is impossible without making assumptions.

2.1 From training data to predictions

Main goal. Given some observations (xi, yi) ∈ X × Y, i = 1, . . . , n, of inputs/outputs,
features/labels, covariates/responses (which are referred to as the training data), the main
goal of supervised learning is to predict a new y ∈ Y given a new previously unseen x ∈ X.
The unobserved data are usually referred to as the testing data.

△! There are few fundamental differences between machine learning and the branch of
statistics dealing with regression and its various extensions, in particular when it comes to
providing theoretical guarantees. The focus on algorithms and computational scalability is
arguably stronger within machine learning (but also present in statistics), while the focus
on models and their interpretability beyond their predictive performance is more prominent
within statistics (but also present in machine learning).

Examples. Supervised learning is used in many areas of science, engineering, and industry.
There are thus many examples where X and Y can be very diverse:

15
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• Inputs x ∈ X: they can be images, sounds, videos, text, proteins, sequence of DNA
bases, web pages, social network activity, sensors from industry, financial time series,
etc. The set X may thus have a variety of structures that can be leveraged. All learning
methods that we present in this textbook will use at one point a vector space represen-
tation of inputs, either by building an explicit mapping from X to a vector space (such
as Rd), or implicitly by using a notion of pairwise dissimilarity or similarity between
pairs of inputs. The choice of these representations are highly domain dependent,
though we note that (a) common topologies are encountered in many diverse areas
(such as sequences, two-dimensional or three-dimensional objects) and thus common
tools are used, and (b) learning these representations is an active area of research (see
discussion in Chapter 7 and Chapter 9).

In this textbook, we will mostly consider that the inputs are d-dimensional vectors,
with d potentially very large (that is, up to 106 or 109).

• Outputs y ∈ Y: the most classical examples are binary labels Y = {0, 1}, multicat-
egory classification problems with Y = {1, . . . , k}, and classical regression with real
responses/outputs Y = R. These will be the main examples we treat in most of the
book. Note however that most of the concepts extend to the more general structured
prediction set-up, where more general structured outputs (e.g., graph prediction, vi-
sual scene analysis, source separation) can be considered (see Nowak-Vila et al. (2019,
2020) and the many references therein).

Why is it difficult? Supervised learning is difficult (and thus interesting) for a variety of
reasons:

• The label y may not be a deterministic function of x: given x ∈ X, the outputs are
noisy, as y = f(x) ”+” ε, e.g., with (potentially non-additive) noise ε due to diverging
views between labellers, or dependence on random external unobserved quantities (that
is y = f(x, z), z random).

• The prediction function f may be quite complex, highly non-linear when X is a vector
space, and even hard to define when X is not a vector space.

• Only a few x’s are observed: we thus need interpolation and potentially extrapolation
(see below for an illustration for X = Y = R), and therefore overfitting (predicting well
on the training data but not as well on the testing data) is always a possibility.
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training data

testing data
interpolation

extrapolation

x

y

• The input space X may be very large, that is, with high dimension when this is a
vector space. This leads to both computational issues (scalability) and statistical
issues (generalization to unseen data). One usually refers to this problem as the curse
of dimensionality.

• There may be a weak link between training and testing distributions.

• The criterion for performance is not always well defined.

Main formalization. Most modern theoretical analyses of supervised learning rely on a
probabilistic formulation, that is, we see (xi, yi) as a realization of random variables, and
the criterion is to minimize the expectation of some “performance” measure with respect to
the distribution of the test data. The main assumption is that the random variables (xi, yi)
are independent and identically distributed (i.i.d.) with the same distribution as the testing
distribution. In this course, we will ignore the potential mismatch between train and test
distributions (although this is an important research topic as in most applications training
data are not i.i.d. from the same distribution as the test data).

A machine learning algorithm A is then a function that goes from a dataset, i.e., an
element of (X × Y)n, to a function from X to Y. In other words, the output of a machine
learning algorithm is itself an algorithm!

Practical performance evaluation. In practice, we do not have access to the test dis-
tribution, but samples from it. In most cases, the data given to the machine learning user
are split into three parts:

• the training set, on which learning models will be estimated,

• the validation set, to estimate hyperparameters (all learning techniques have some),
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• the testing set, to evaluate the performance of the final model (formally, the test set
can only be used once!)

training validation testing

available data

Cross-validation is often preferred to use a maximal amount of training data, and reduce
the variability of the validation procedure: the available data are divided in k folds (typically
k = 5 or 10), and all models are estimated k times, each time choosing a different fold as
validation data (pink data below), and averaging the k obtained error measures. Cross-
validation can be applied to any learning methods, and its detailed theoretical analysis is an
active area of research (see, Arlot and Celisse, 2010, and the many references therein).

testingavailable data

“Debugging” a machine learning implementation is often an art: on top of commonly
found bugs, the learning method may not predict well enough on testing data. This is where
theory can be useful, to understand when a method is supposed to work or not.

2.2 Decision theory

Main question. In this section, we tackle the following question: What is the optimal
performance, regardless of the finiteness of the training data? In other words, if we have
a perfect knowledge of the underlying probability distribution of the data, what should be
done? We will thus introduce the concept of loss function, risk, and “Bayes” predictor.

We consider a fixed (testing) distribution dpx,y(x, y) on X×Y, with marginal distribution
dpx(x) on X. Note that we make no assumptions at this point on the input space X.
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△! We will almost always use the overloaded notation dp, to denote dpx,y and dpx, where
the context can always make the definition unambiguous. For example, when f : X → R

and g : X× Y→ R, we have Ef(x) =
∫
X
f(x)dp(x) and Eg(x, y) =

∫
X×Y

g(x, y)dp(x, y).

△! We ignore on purpose measurability issues.

2.2.1 Loss functions

We consider a loss function ℓ : Y× Y→ R (often R+), where ℓ(y, z) is the loss of predicting
z while the true label is y.

△! Some authors swap y and z in the definition above.

△! Some related research communities (e.g., economics) use the concept of “utility”, which
is then maximized.

The loss function is only concerned with the output space Y. The main examples are:

• Binary classification: Y = {0, 1} (or often Y = {−1, 1}, or, less often, when seen as
a subcase of the loss below, Y = {1, 2}), and ℓ(y, z) = 1y 6=z (“0-1” loss), that is, 0 if y
is equal to z (no mistake), and 1 otherwise (mistake).

△! It is very common to mix the two conventions Y = {0, 1} and Y = {−1, 1}.

• Multicategory classification: Y = {1, . . . , k}, and ℓ(y, z) = 1y 6=z (“0-1” loss).

• Regression: Y = R and ℓ(y, z) = (y − z)2 (square loss). The absolute loss ℓ(y, z) =
|y−z| is often used for “robust” estimation (since the penalty for large errors is smaller).

• Structured prediction: while this textbook focuses primarily on the examples above,
there are many practical problems where Y is more complicated, with associated algo-
rithms and theoretical results. For examples, when Y = {0, 1}k (leading to multi-label
classification), the Hamming loss ℓ(y, z) =

∑k
j=1 1yj 6=zj is commonly used; also ranking

problems involve losses on permutations. See, e.g., many examples in Nowak et al.
(2019) and references therein.

Throughout the textbook, we will assume that the loss function is given to us. Note
that in practice, the loss function is imposed by the final user, as this is the way models will
be evaluated. Clearly, a single real number may not be enough to characterize the entire
prediction behavior (think of binary classification, with the two types of errors, false positives
and false negatives, where the concept of “ROC curve” is commonly used to characterize the
two types of errors), but for simplicity, we will stick to a single loss function ℓ.
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2.2.2 Risks

Given the loss function ℓ : Y × Y → R, we can define the expected risk (also referred to as
generalization performance, or testing error) of a function f : X→ Y, as the expectation of
the loss function between the output y and the prediction f(x).

Definition 2.1 (Expected risk) Given a function f : X→ Y, a loss function ℓ : Y× Y→
R, and a distribution dp(x, y), the expected risk of a prediction function f : X→ Y is defined
as:

R(f) = E

[
ℓ(y, f(x))

]
=

∫

X×Y

ℓ(y, f(x))dp(x, y).

The risk depends on the distribution dp = dpx,y on (x, y). We sometimes use the notation
Rdp(f) to make it explicit. The expected risk is the main performance criterion we will use
in this textbook.

△!
Be careful with the randomness, or lack thereof ,of f : when performing learning
from data, f will depend on the random training data and not on the testing data,
and thus R(f) is typically random because of the dependence on the training data.
However, as a function on functions, the risk R is deterministic.

Note that sometimes, we consider random predictions, that is for any x, we output a
distribution on y, and then the risk is taken as the expectation over the randomness of the
outputs.

Averaging the loss on the training data defines the empirical risk, or training error.

Definition 2.2 (Empirical risk) Given a function f : X→ Y, a loss function ℓ : Y×Y→
R, and data (xi, yi) ∈ X × Y, i = 1, . . . , n, the empirical risk of a prediction function
f : X→ Y is defined as:

R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi)).

Note that R̂ is a random function on functions (and is often applied to random functions,
with dependent randomness as both will depend on the training data).

Special cases. For the classical losses defined earlier, the risks have a specific formulations:

• Binary classification: Y = {0, 1} (or often Y = {−1, 1}), and ℓ(y, z) = 1y 6=z (“0-1”
loss). We can express the risk as R(f) = P(f(x) 6= y). This is simply the probability



2.2. DECISION THEORY 21

of making a mistake on the testing data, while the empirical risk is the proportion of
mistake on the training data.

△! In practice, the accuracy, which is one minus the error rate is sometimes reported.

• Multi-category classification: Y = {1, . . . , k}, and ℓ(y, z) = 1y 6=z (“0-1” loss). We
can also express the risk as R(f) = P(f(x) 6= y). This is also the probability of making
a mistake.

• Regression: Y = R and ℓ(y, z) = (y − z)2 (square loss). The risk is then R(f) =
E
[
(y − f(x))2

]
.

2.2.3 Bayes risk and Bayes predictor

Now that we have defined the performance criterion for supervised learning (the expected
risk), the main question we tackle here is: what is the best prediction function f (regardless
of the data)?

Using the conditional expectation and its associated law of total expectation, we have

R(f) = E

[
ℓ(y, f(x))

]
= E

[
E(ℓ(y, f(x))|x)

]
,

which we can rewrite

R(f) = Ex′∼dp(x′)

[
E(ℓ(y, f(x))|x = x′)

]
=

∫

X

(
E(ℓ(y, f(x))|x = x′)

)
dp(x′).

△! In order to make the distinction between the random variable x and a value it may take,
we use the notation x′.

Given the conditional distribution given any x′ ∈ X, that is y|x = x′, we can define the
conditional risk for any z ∈ Y (it is a deterministic function):

r(z|x′) = E(ℓ(y, z)|x = x′),

which leads to

R(f) = E(r(f(x)|x)) = Ex′∼dp(x′)

[
r(f(x′)|x′)

]
=

∫

X

r(f(x′)|x′)dp(x′).

A minimizer of R(f) can be obtained by considering for any x′ ∈ X, the function value f(x′)
to be equal to a minimizer z ∈ Y of r(z|x′) = E(ℓ(y, z)|x = x′). We can therefore consider
all x′ as being treated independently. This leads to the following propositions.
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Proposition 2.1 (Bayes predictor and Bayes risk) The expected risk is minimized at
a Bayes predictor f ∗ : X → Y satisfying for all x′ ∈ X, f ∗(x′) ∈ arg minz∈Y E(ℓ(y, z)|x =
x′) = arg minz∈Y r(z|x′). The Bayes risk R∗ is the risk of all Bayes predictors and is equal to

R∗ = Ex′∼dpx(x′) inf
z∈Y

E(ℓ(y, z)|x = x′).

Note that (a) the Bayes predictor is not always unique, but that all lead to the same Bayes
risk (for example in binary classification when P(y = 1|x) = 1/2), and (b) that the Bayes
risk is usually non zero (unless the dependence between x and y is deterministic). Given a
supervised learning problem, the Bayes risk is the optimal performance; we define the excess
risk as the deviation with respect to the optimal risk.

Definition 2.3 (Excess risk) The excess risk of a function f : X→ Y is equal to R(f)−R∗

(it is always non-negative).

Therefore, machine learning is “trivial”: given the distribution y|x for any x, the optimal
predictor is known. The difficulty will be that this distribution is unknown.

Special cases. For our usual set of losses, we can compute the Bayes predictors:

• Binary classification: the Bayes predictor for Y = {0, 1} and ℓ(y, z) = 1y 6=z is such
that

f ∗(x′) ∈ arg min
z∈{0,1}

P(y 6= z|x = x′) = arg min
z∈{0,1}

1− P(y = z|x = x′)

= arg max
z∈{0,1}

P(y = z|x = x′).

The optimal classifier will select the most likely class given x′. Denoting η(x′) = P(y =
1|x = x′), then, if η(x′) > 1/2, f ∗(x′) = 1, while if η(x′) < 1/2, f ∗(x′) = 0. What
happens for η(x′) = 1/2 is irrelevant.

The Bayes risk is then equal to R∗ = E
[

min{η(x), 1− η(x)}
]
, which in general strictly

positive (unless η(x) ∈ {0, 1} almost surely, that is, y is a deterministic function of x).

This extends directly to multiple categories Y = {1, . . . , k}, for k > 2, where we have
f ∗(x′) ∈ arg max

i∈{1,...,k}
P(y = i|x = x′).

△! These Bayes predictors and risks are only valid for the 0-1 loss. Less symmetric
losses are very common in applications (e.g., for spam detection), and would lead to
different formulas (see exercise below).
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• Regression: the Bayes predictor for Y = R and ℓ(y, z) = (y − z)2 is such that

f ∗(x′) ∈ arg min
z∈R

E
[
(y − z)2|x = x′

]

= arg min
z∈R

{
E
[
(y − E(y|x = x′))2|x = x′

]
+ (z − E(y|x = x′))2

}
.

This leads to the conditional expectation f ∗(x′) = E(y|x = x′).

Exercise 2.1 What is the Bayes predictor for regression with the absolute loss ℓ(y, z) =
|y − z|?

Exercise 2.2 (�) We consider a random prediction rule where we predict from the proba-
bility distribution of y given x = x′. When is this achieving the Bayes risk?

2.3 Learning from data

The decision theory framework outlined in the previous section gives a test performance
criterion and optimal predictors, but it depends on the full knowledge of the test distribution
dp(x, y). We now briefly review how we can obtain good prediction functions from training
data, that is data sampled i.i.d. from the same distribution.

There are two main classes of prediction algorithms that will be studied in this textbook:

(1) Local averaging (Chapter 6).

(2) Empirical risk minimization (Chapters 3, 4, 7, 8, 9).

Note that there are prediction algorithms that do not fit exactly into one of these two
categories, such as boosting or ensemble classifiers.

2.3.1 Local averaging

The goal here is to try to approximate/emulate the Bayes predictor, e.g., f ∗(x′) = E(y|x =
x′) for least-squares regression, from empirical data. This is done often by explicit/implicit
estimation of the conditional distribution by local averaging (k-nearest neighbors, which is
used as the main example for this chapter, Nadaraya Watson, decision trees). We briefly
outline here the main properties for one instance of these algorithms; see Chapter 6 for
details.
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k-nearest-neighbor classification. Given n observations (x1, y1), . . . , (xn, yn) where X is
a metric space and Y ∈ {0, 1}, a new point xtest is classified by a majority vote among the
k-nearest neighbors of xtest.

Below, we consider the 3-nearest-neighbor classifier on a particular testing point (which
will be predicted as 1).

Class 0

Class 1

Testing point

• Pros: (a) no optimization or training, (b) often easy to implement, (c) can get very
good performance in low dimensions (in particular for non-linear dependences between
x and y).

• Cons: (a) slow at query time: must pass through all training data at each testing
point (there are algorithmic tools to reduce complexity, see Chapter 6), (b) bad for
high-dimensional data (curse of dimensionality, more on this in Chapter 6), (c) the
choice of local distance function is crucial, (d) the choice of “width” parameters (or k)
has to be performed.

• Plot of training error and testing errors as a function of k for a typical problem. When k
is too large, there is underfitting (the learned function is too close to a constant, which
is too simple), while for k too small, there is overfitting (there is a strong discrepancy
between the testing and training errors).

k

Errors

1 n

test

train

underfitting

overfitting

• Exercise 2.3 How would the curve move when n increases (assuming the same balance
between classes)?
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2.3.2 Empirical risk minimization

Consider a parameterized family of prediction functions fθ : X→ Y for θ ∈ Θ and minimize
the empirical risk with respect to θ ∈ Θ:

R̂(fθ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)).

This defines an estimator θ̂ ∈ arg minθ∈Θ R̂(fθ), and thus a function fθ̂ : X→ Y.

The most classical example is linear least-squares regression (studied at length in Chap-
ter 3), where we minimize

1

n

n∑

i=1

(yi − θ⊤ϕ(xi))
2,

where f is linear in some feature vector ϕ(x) ∈ R
d (no need for X to be a vector space).

The vector ϕ(x) can be quite large (or even implicit, like in kernel methods, see Chapter 7).
Other examples include neural networks (Chapter 9).

• Pros: (a) can be relatively easy to optimize when the optimization formulation is not
convex (e.g., least-squares with simple derivation and numerical algebra, see Chap-
ter 3), many algorithms available (mostly based on gradient descent, see Chapter 5),
(b) can be applied in any dimension (if a reasonable feature vector is available).

• Cons: (a) can be relatively hard to optimize (e.g., neural networks), (b) need a good
feature vector for linear methods, (c) dependence on parameters can be complex (e.g.,
neural networks), (d) need some capacity control to avoid overfitting, (e) how to param-
eterize functions with values in {0, 1} (see Chapter 4 for the use of convex surrogates)?

Risk decomposition. The material in this section will be studied further in more details
in Chapter 4.

• Risk decomposition in estimation error + approximation error: given any θ̂ ∈ Θ, we
can write the excess risk of fθ̂ as:

R(fθ̂)−R∗ =
{
R(fθ̂)− inf

θ′∈Θ
R(fθ′)

}
+
{

inf
θ′∈Θ

R(fθ′)−R∗
}

= estimation error + approximation error

The approximation error does not depend on the chosen fθ̂ and depends only on the
class of functions parameterized by θ ∈ Θ. It is thus always a deterministic function,
which characterizes the modelling assumptions made by the models. When Θ grows,
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the approximation error goes down, to zero if arbitrary functions can be approximated
arbitrary well by the functions fθ. It is also independent of n.

The estimation error is typically random, because the function fθ̂ is random. It is
typically decreasing in n, and usually goes up when Θ grows.

Overall the typical error curves look like this:

“size” of Θ

Errors

test

train

overfittingunderfitting

• Typically, we will see in later chapters that the estimation error is often decomposed
as, for θ′ a minimizer on Θ of the expected risk R(fθ′):

{
R(fθ̂)−R(fθ′)

}
=

{
R(fθ̂)− R̂(fθ̂)

}
+
{
R̂(fθ̂)− R̂(fθ′)

}
+
{
R̂(fθ′)− R(fθ′)

}

6 2 sup
θ∈Θ

∣∣∣R̂(fθ)−R(fθ)
∣∣∣ + empirical optimization error,

with the “empirical optimization error” being
{
R̂(fθ̂)−R̂(fθ′)

}
. The uniform deviation

grows with the “size” of Θ, and usually decays with n. See more details in Chapter 4.

Capacity control. In order to avoid overfitting, we need to make sure that the set of
allowed functions is not too large, by typically reducing the number of parameters, or by
restricting the norm of predictors (thus by reducing the “size” of Θ): this typically leads to
constrained optimization, and allows for risk decompositions as done above.

Capacity control can also be done by regularization, that is, by minimizing

R̂(fθ) + λΩ(θ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)) + λΩ(θ),

where Ω(θ) controls the complexity of fθ. The main example is ridge regression:

min
θ∈Rd

1

n

n∑

i=1

(yi − θ⊤ϕ(xi))
2 + λ‖θ‖22.
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Figure 2.1: Polynomial regression with increasing orders. Plots of estimated functions, with
training and testing errors.

This is often easier for optimization, but harder to analyze (see Chapter 4 and Chapter 5).

△! There is a difference between parameters (e.g., θ) learned on the training data and
hyperparameters (e.g., λ) learned on the validation data.

Examples of approximations by polynomials in one-dimensional regression. We
consider (x, y) ∈ R×R, with prediction functions which are polynomials of order k, from k =
0 (constant functions) to k = 14. For each k, the model has k + 1 parameters. The training
error (using square loss) is minimized with n = 20 observations. The data were generated
as a quadratic function plus some independent additive noise. As shown in Figure 2.1 and
Figure 2.2, the training error is monotonically decreasing in k, while the testing error goes
down and then up.
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Figure 2.2: Polynomial regression with increasing orders. Plots of training and testing errors
with error bars (obtained from 32 replications).

2.4 Statistical learning theory

The goal of learning theory is to provide some guarantees of performance on unseen data.
A common assumption is that the data Dn(dp) = {(x1, y1), . . . , (xn, yn)} is obtained as
independent and identically distributed (i.i.d.) observations from some unknown distribution
dp from a family P.

An algorithm A is a mapping from Dn(dp) (for any n) to a function from X to Y. The
risk depends on the probability distribution dp ∈ P, as Rdp(f). The goal is to find A such
that the risk

Rdp(A(Dn(dp)))− R∗
dp

is small, where R∗
dp is the Bayes risk, assuming Dn(dp) is sampled from dp, but without

knowing which dp ∈ P is considered. Moreover, the risk is random because Dn is random.

2.4.1 Measures of performance

There are several ways of dealing with the randomness to obtain a criterion.

• Expected error : we measure performance as

E

[
Rdp(A(Dn(dp)))

]
,

where the expectation is with respect to the training data.

An algorithm A is called consistent in expectation for the distribution dp, if

E

[
Rdp(A(Dn(dp)))

]
− R∗

dp
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goes to zero when n tends to infinity. In this course, we will use primarily this notion
of consistency.

• “Probably approximately correct” (PAC) learning : for a given δ ∈ (0, 1) and ε > 0:

P

([
Rdp(A(Dn(dp)))− R∗

dp

]
6 ε
)
> 1− δ.

The crux is to find ε which is as small as possible (typically as a function of δ). The
notion of PAC consistency corresponds, for any ε > 0 to have such an inequality for
each n, and a sequence δn that tends to zero.

2.4.2 Notions of consistency over classes of problems

An algorithm is called universally consistent (in expectation) if for all distributions dp = dpx,y
on (x, y) the algorithm A is consistent in expectation for the distribution dp.

△! Be careful with the order of quantifiers: the speed of convergence will depend on dp.
See the no-free lunch theorem section below to highlight the fact that having a rate which
is uniform over all distributions is hopeless.

Most often, we want to study uniform consistency within a class P of distributions satis-
fying some regularity properties (e.g., the inputs live in a compact space, or the dependence
between y and x is at most of some complexity). We thus aim at finding an algorithm A

such that

sup
dp∈P

E

[
Rdp(A(Dn(dp)))

]
−R∗

dp

is as small as possible. The so-called “minimax risk” is equal to

inf
A

sup
dp∈P

E

[
Rdp(A(Dn(dp)))

]
− R∗

dp.

This is typically a function of the sample size n and of properties of X, Y and the allowed set
of problems P (e.g., dimension of X, number of parameters). In order to compute estimates
of the minimax risk, several techniques exist:

• Upper-bounding the optimal performance: one given algorithm with a convergence
proof provides an upper-bound.

• Lower-bounding the optimal performance: in some setups, it is possible to show that
the infimum over all algorithms is greater than a certain quantity. Machine learners
are happy when upper-bounds and lower-bounds match (up to constant factors).
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Non-asymptotic vs. asymptotic analysis. The analysis can be “non-asymptotic”, with
an upper-bound with explicit dependence on all quantities; the bound is then valid for all n,
even if sometimes vacuous (e.g., a bound greater than 1 for a loss uniformly bounded by 1).

The analysis can also be “asymptotic”, where for examples n goes to infinity and limits
are taken (alternatively, several quantities can be made to grow simultaneously).

△! What (arguably) matters most here is the dependence of these rates on the problem,
not the choice of “in expectation” vs. in “high probability”, or “asymptotic” vs.
“non-asymptotic”, as long as the problem parameters explicitly appear.

2.5 No free lunch theorems (�)

Although it may be tempting to define the optimal learning algorithm that works optimally
for all distributions, this is impossible. In other words, learning is not possible without
assumptions. See (Devroye et al., 1996, Chapter 7) for details.

The following theorem shows that for any algorithm, for a fixed n, there is a data distri-
bution that makes the algorithm useless.

Theorem 2.1 (no free lunch - fixed n) Consider the binary classification with 0−1 loss,
with X infinite. Let P denote the set of all probability distributions on X × {0, 1}. For any
n > 0 and learning algorithm A,

sup
dp∈P

E

[
Rdp(A(Dn(dp)))

]
− R∗

dp > 1/2.

Proof (��) Let k be a positive integer. Without loss of generality, we can assume that
N ⊂ X. The main ideas of the proof are (a) to construct a probability distribution supported
on k elements in N, where k is large compared to n (which is fixed), and to show that
the knowledge of n labels does not imply doing well on all k elements, and (b) to choose
parameters of this distribution (the vector r below) by comparing to a performance obtained
by random parameters.

Given r ∈ {0, 1}k, we define the joint distribution dp on (x, y) such that P(x = j, y =
rj) = 1/k for j ∈ {1, . . . , k}; that is, for x, we choose one of the first k elements uniformly
at random, and then y is selected deterministically as y = rx. Thus the Bayes risk is zero
(because there is a deterministic relationship): R∗

dp = 0.

Denoting f̂Dn = A(Dn(dp)) the classifier, and S(r) = E

[
Rdp(f̂Dn)

]
the expected risk,

we want to maximize S(r) with respect to r ∈ {0, 1}k; the maximum is greater than the
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expectation of S(r) for any distribution dq on r, in particular the uniform distribution (each
rj being an independent unbiased Bernoulli variable). Then

max
r∈{0,1}k

S(r) > Er∼dq(r)S(r)

= P(f̂Dn(x) 6= y) = P(f̂Dn(x) 6= rx),

because x is almost surely in {1, . . . , k} and y = rx almost surely. Note that we take
expectations with respect to x1, . . . , xn, x, and r (all being independent from each other).

Then, we get, using that Dn(dp) = {x1, rx1, . . . , xn, rxn}:

Er∼dq(r)S(r) = E

[
P
(
f̂Dn(x) 6= rx

∣∣x1, . . . , xn, rx1, . . . , rxn

)]
by the law of total expectation,

> E

[
P
(
f̂Dn(x) 6= rx & x /∈ {x1, . . . , xn}

∣∣x1, . . . , xn, rx1, . . . , rxn

)]

by monotonicity of probabilities,

= E

[1

2
P
(
x /∈ {x1, . . . , xn}

∣∣x1, . . . , xn, rx1, . . . , rxn

)]
,

because P
(
f̂Dn(x) 6= rx

∣∣x /∈ {x1, . . . , xn}, x1, . . . , xn, rx1, . . . , rxn

)
= 1/2 (the label x = rx has

the same probability of being 0 or 1, given that it was not observed). Thus,

Er∼dq(r)S(r) >
1

2
P
(
x /∈ {x1, . . . , xn}

)
=

1

2
E

[ n∏

i=1

P(xi 6= x|x)
]

=
1

2

(
1− 1/k

)n
.

Given n, we can let k tend to infinity to conclude.

A caveat is that the hard distribution may depend on n (and, from the proof, it takes k
values, with k tending to infinity). The following theorem is given without proof and is much
“stronger” (Devroye et al., 1996, Theorem 7.2), as it more convincingly shows that learning
can be arbitrarily slow without assumption (note that the earlier one is not a corollary of
the later one).

Theorem 2.2 (no free lunch - sequence of errors) Consider the binary classification
with 0 − 1 loss, with X infinite. Let P denote the set of all probability distributions on
X×{0, 1}. For any decreasing sequence an tending to zero and such that a1 6 1/16, for any
learning algorithm A, there exists dp ∈ P, such that for all n > 1:

E

[
Rdp(A(Dn(dp)))

]
− R∗

dp > an.
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2.6 Quest for adaptivity

As seen in the previous section, no method can be universal and achieve a good convergence
rate on all problems. However, such negative results consider classes of problems which are
arbitrarily large. In this textbook, we will consider reduced set of learning problems, by
considering X = Rd and putting restrictions on the target function f ∗ based on smoothness
and/or dependence on an unknown low-dimensional projection. That is, the most general set
of functions will be the set of Lipschitz-continuous functions, for which the optimal rate will
be essentially proportional to O(n−1/d), typical of the curse of dimensionality. No method
can beat this, not k-nearest-neighbors, not kernel methods, not even neural networks.

When the target function is in fact smoother, that is, with all derivatives up to order m
bounded, then we will see that kernel methods and neural networks, with the proper choice
of regularization parameter, will lead to the optimal rate of O(n−m/d).

When the target function moreover depends only on a k-dimensional linear projection,
neural networks (if the optimization problem is solved correctly) will have the extra ability
of leading to rate of the form O(n−m/k) instead of O(n−m/d), which is not the case for kernel
methods.

Note that another form of adaptivity, which is often considered, is to situations where
the input data lie on a submanifold of Rd (e.g., an affine subspace), where for most methods
presented in this textbook, adaptivity is obtained.

See more details in https://francisbach.com/quest-for-adaptivity/ for more de-
tails.

https://francisbach.com/quest-for-adaptivity/


Chapter 3

Linear least-squares regression

Chapter summary

- Ordinary least-squares estimator: least-squares regression with linearly parameterized
predictors leads to a linear system of size d (the number of predictors).
- Guarantees in the fixed design settings: when the inputs are assumed deterministic and
d > n, the excess risk is equal to σ2d/n.
- Ridge regression: with ℓ2-regularization, excess risk bounds become dimension independent
and allow high-dimensional feature vectors where d > n.
- Guarantees in the random design setting: although they are harder to show, they have a
similar form.
- Lower bound of performance: under well-specification, the rate σ2d/n is unimprovable.

3.1 Introduction

In this chapter, we introduce and analyze linear least-squares regression, a tool that can be
traced back to Legendre (1805) and Gauss (1809)—see https://en.wikipedia.org/wiki/Least_squares#The
for an interesting discussion and the claim that Gauss knew about it already in 1795.

Why should we study linear least-squares regression? Hasn’t there been any progress
since 1805? A few reasons:

• It already captures many of the concepts in learning theory, such as the bias-variance
trade-off, as well as the dependence of generalization performance on the underlying
dimension of the problem, or on dimension-less quantities.

33

https://en.wikipedia.org/wiki/Least_squares#The_method
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• Because of its simplicity, many results can be easily derived without the need for
complicated mathematics (simple linear algebra for the simplest results).

• Using non-linear features, it can be extended to arbitrary non-linear predictions (see
kernel methods in Chapter 7).

In subsequent chapters, we will extend many of these results beyond least-squares.

3.2 Least-squares framework

We recall the goal of supervised machine learning from Chapter 2: given some observations
(xi, yi) ∈ X × Y, i = 1, . . . , n, of inputs/outputs, features/variables (training data), given a
new x ∈ X, predict y ∈ Y (testing data) with a regression function f such that y ≈ f(x).
We assume that Y is a subset of R and we use the square loss ℓ(y, z) = (y − z)2, for which
we know from the previous chapter, that the optimal predictor is f ∗(x) = E(y|x).

In this chapter, we consider empirical risk minimization. We choose a parameterized
family of prediction functions fθ : X→ Y for θ ∈ Θ and minimize the empirical risk

1

n

n∑

i=1

(yi − fθ(xi))2,

leading to the estimator θ̂ ∈ arg min 1
n

∑n
i=1(yi−fθ(xi))2. Note that in most cases, the Bayes

predictor f ∗ does not belong to the class of functions {fθ, θ ∈ Θ}, that is, the model is said
misspecified.

Least-squares regression can be carried out with parameterizations of the function fθ
which may be non-linear in the parameter θ. In this chapter, we will consider only situations
where fθ(x) is linear in θ, which is thus assumed to live in a vector space, and which we take
to be Rd for simplicity.

△! Being linear in x or linear θ is different!

While we assume linearity in the parameter θ, nothing forces fθ(x) to be linear in the
input x. In fact, even the concept of linearity may be meaningless if X is not a vector space.
Through the Riesz representation theorem, for any x ∈ X, there exists a vector in Rd, which
we denote ϕ(x), such that

fθ(x) = ϕ(x)⊤θ.

The vector ϕ(x) ∈ Rd is typically called the feature vector, which we assume to be known
(in other words, it is given to us and can be computed explicitly when needed). We thus
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consider minimizing

R̂(θ) :=
1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ)2. (3.1)

When X ⊂ Rd, we can make the extra assumptions that fθ is an affine function, which

could be obtained through ϕ(x) =

(
x

1

)
∈ R

d+1. Other classical assumptions are ϕ(x)

composed of monomials. We will see in Chapter 7 (kernel methods) that we can consider
infinite-dimensional features.

Matrix notation. The cost function above in Eq. (3.1) can be rewritten in matrix nota-
tions. Let y = (y1, . . . , yn)⊤ ∈ Rn be the vector of outputs (sometimes called the response
vector), and Φ ∈ Rn×d the matrix of inputs, which rows are ϕ(xi)

⊤. It is called the design
matrix or data matrix. In these notations, the empirical risk is

R̂(θ) =
1

n
‖y − Φθ‖22, (3.2)

where ‖α‖22 =
∑d

j=1 α
2
j is the squared ℓ2-norm of α.

△! It is sometimes tempting at first to avoid matrix notations. We strongly advise against
it as it leads to long and error-prone formulas.

3.3 Ordinary least-squares (OLS) estimator

We make the assumption that the matrix Φ ∈ Rn×d has full column rank (i.e., the rank of
Φ is d). In particular, the problem is said “over-determined”, and we must have d 6 n.
Equivalently, we assume that Φ⊤Φ ∈ Rd×d is invertible.

Definition 3.1 When Φ has full column rank, the minimizer of Eq. (3.2) is unique and
called the ordinary least-squares (OLS) estimator.

3.3.1 Closed-form solution

Since the objective function is quadratic, the gradient will be linear and zeroing it will lead
to a closed-form solution.

Proposition 3.1 When Φ has full column rank, the OLS estimator exists and is unique. It
is given by

θ̂ = (Φ⊤Φ)−1Φ⊤y.
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Denote the (non-centered1) empirical covariance matrix by Σ̂ := 1
n
Φ⊤Φ ∈ Rd×d; we have

θ̂ = 1
n
Σ̂−1Φ⊤y.

Proof Since the function R̂ is coercive (i.e., going to infinity at infinity) and continuous,
it admits at least a minimizer. Moreover, it is differentiable, so a minimizer θ̂ must satisfy
R̂′(θ̂) = 0. For all θ ∈ Rd, we have

R̂(θ) =
1

n

(
‖y‖22 − 2θ⊤Φ⊤y + θ⊤Φ⊤Φθ

)
and R̂′(θ) =

2

n

(
Φ⊤Φθ − Φ⊤y

)
.

The condition R̂′(θ̂) = 0 gives the so-called normal equations :

Φ⊤Φθ̂ = Φ⊤y.

The normal equations have a unique solution θ̂ = (Φ⊤Φ)−1Φ⊤y. This shows the uniqueness

of the minimizer of R̂ as well as its closed-form expression.

Another way to show uniqueness of the minimizer is by showing that R̂ is strongly convex
since R̂′′(θ) = 2Σ̂ for all θ ∈ Rd (convexity will be studied in Chapter 5).

△! For readers worried about carrying a factor of two in the gradients, we will use an
additional factor 1/2 in chapters on optimization (e.g., Chapter 5).

3.3.2 Geometric interpretation

Proposition 3.2 The vector of predictions Φθ̂ = Φ(Φ⊤Φ)−1Φ⊤y is the orthogonal projection
of y ∈ R

n onto im(Φ) ⊂ R
n, the column space of Φ.

Proof Let us show that P := Φ(Φ⊤Φ)−1Φ⊤ ∈ Rn×n is the orthogonal projection on im(Φ).
For any a ∈ Rd, it holds PΦa = Φ(Φ⊤Φ)−1Φ⊤Φa = Φa, so Pu = u for all u ∈ im(Φ). Also,
since im(Φ)⊥ = null(Φ⊤), Pu′ = 0 for all u′ ∈ im(Φ)⊥. These properties characterize the
orthogonal projection on im(Φ).

Thus we can interpret the OLS estimation as doing the following (see below for an illustra-
tion):

1. compute ȳ the projection of y on the image of Φ,

2. solve the linear system Φθ = ȳ which has a unique solution.

1The “centered” covariance matrix would be 1

n

∑n

i=1
[ϕ(xi)−µ][ϕ(xi)−µ]⊤ where µ = 1

n

∑n

i=1
ϕ(xi) ∈ Rd

is the empirical mean, while we consider Σ̂ = 1

n

∑n

i=1
ϕ(xi)ϕ(xi)

⊤.
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im(Φ)
0

y

ȳ

3.3.3 Numerical resolution

While the closed-form θ̂ = (Φ⊤Φ)−1Φ⊤y is convenient for analysis, inverting Φ⊤Φ is some-
times unstable and has a large computational cost when d is large. The following methods
are usually preferred.

QR factorization. The QR decomposition factorizes the matrix Φ as Φ = QR where
Q ∈ Rn×d has orthonormal columns and R ∈ Rd×d is upper triangular (see Golub and Loan,
1996). Computing a QR decomposition is faster and more stable than inverting a matrix.
One has

(Φ⊤Φ)θ̂ = Φ⊤y ⇔ R⊤Q⊤QRθ̂ = R⊤Q⊤y ⇔ R⊤Rθ̂ = R⊤Q⊤y ⇔ Rθ̂ = Q⊤y.

It only remains to solve a triangular linear system which is easy. The overall running
time complexity remains O(d3). The conjugate gradient algorithm can also be used (see
Golub and Loan, 1996, for details).

Gradient descent. We can completely bypass the need of matrix inversion or factorization
using gradient descent. It consists in approximately minimizing R̂ by taking an initial point
θ0 ∈ Rd and iteratively going towards the minimizer by following the opposite of the gradient

θk+1 = θk − γR̂′(θk) for k > 0,

where γ > 0 is the step-size. When these iterates converge, it is towards the OLS estimator
since a fixed-point θ satisfies R̂′(θ) = 0. We will study such algorithms in Chapter 5, with
running-time complexities going up to linear in d.
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3.4 Statistical analysis of OLS

We now prove guarantees on the performance of the OLS estimator. There are two settings
of analysis for least-squares:

• Random design. In this setting, both the input and the output are random. This is
the classical setting of supervised machine learning, where the goal is generalization to
unseen data (as in last chapter). Since it is bit more complicated, it will be done after
the fixed design setting.

• Fixed design. In this setting, we assume that the input data (x1, . . . , xn) are not random
and we are interested in obtaining a small prediction error on those input points only.
Alternatively, this can be seen as a prediction problem where the input distribution
dp(x) is the empirical distribution of (x1, . . . , xn).

Our goal is thus to minimize the fixed design risk (where thus Φ is deterministic):

R(θ) = Ey

[
1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ)2

]
= Ey

[
1

n
‖y − Φθ‖22

]
. (3.3)

This assumption allows a complete analysis with basic linear algebra. It is justified in
some settings, e.g., when the input is a fixed grid, but is otherwise just a simplifying
assumption. It can also be understood as learning the optimal vector Φθ∗ ∈ Rn of best
predictions instead of a function.

In the fixed design setting, no attempts are made to generalize to unseen input points
x, and we want to estimate well a label vector y resampled from the same distribution
as the observed y. The risk in Eq. (3.3) is often called the in-sample prediction error.

We will first consider below the fixed design setting, where the celebrated rate σ2d/n will
appear naturally.

Relationship to maximum likelihood estimation. If, in the fixed design setting, we
make the stronger assumption that the noise is Gaussian with mean zero and variance σ2,
i.e., εi = yi − ϕ(xi)

⊤θ∗ ∼ N(0, σ2), then the least mean-squares estimator of θ∗ coincides
with the maximum likelihood estimator (where Φ is assumed fixed). Indeed, the density /
likelihood of y is, using independence and the density of the normal distribution:

p(y|θ, σ2) =

n∏

i=1

1√
2πσ2

exp
(
− (yi − ϕ(xi)

⊤θ)2/(2σ2)
)
.

Taking the logarithm and removing constants, the maximum likelihood estimator (θ̃, σ̃2)
minimizes

1

2σ2

n∑

i=1

(yi − ϕ(xi)
⊤θ)2 +

n

2
log(σ2).
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We immediately see that θ̃ = θ̂, that is, OLS corresponds to maximum likelihood.

△! While maximum likelihood under a Gaussian model provides an interesting interpreta-
tion, the Gaussian assumption is not needed for the forthcoming analysis.

Exercise 3.1 What is σ̃2 the maximum likelihood of σ2?

3.5 Fixed design setting

We now assume that Φ is deterministic, and as before, we assume that Σ̂ = 1
n
Φ⊤Φ is

invertible. Any kind of guarantee requires assumptions about how the data are generated.
We assume that:

• there exists a vector θ∗ ∈ Rd such that the relationship between input and output is
for i ∈ {1, . . . , n}

yi = ϕ(xi)
⊤θ∗ + εi. (3.4)

• For all i ∈ {1, . . . , n}, εi are independent of expectation E[εi] = 0 and variance E[ε2i ] =
σ2.

The vector ε ∈ Rn accounts for variabilities in the output which are due to unobserved
factors or to noise. The “homoscedasticity” assumption above, where the noise variances
are uniform, is made for simplicity (and allows for the later bound σ2d/n bound to be an
equality). Note that to prove upper-bounds in performance, we could also only assume that
E[ε2i ] 6 σ2 for each i ∈ {1, . . . , n}. The noise variance σ2 is the expected squared error
between the observations yi and the model ϕ(xi)

⊤θ∗.

x

y

ϕ(x)⊤θ∗

σ

△! In Eq. (3.4), we assume the model is well-specified, that is the target function is a linear
function of ϕ(x). In general, an additional approximation error is incurred because of the
use of a missspecified model (see Chapter 4).

Denoting by R∗ the minimum value of R(θ) = Ey

[
1
n
‖y − Φθ‖22

]
over Rd, the following

proposition shows that it is attained at θ∗, and that is is equal to σ2.
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Proposition 3.3 (Risk decomposition for OLS - fixed design) Under the linear model
and fixed design assumptions above, for any θ ∈ R

d, we have R∗ = σ2 and

R(θ)−R∗ = ‖θ − θ∗‖2Σ̂,

where Σ̂ := 1
n
Φ⊤Φ is the input covariance matrix and ‖θ‖2

Σ̂
:= θ⊤Σ̂θ. If θ̂ is now a random

variable (such as an estimator of θ∗), then

E[R(θ̂)]−R∗ = ‖E[θ̂]− θ∗‖2Σ̂︸ ︷︷ ︸
Bias

+E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]

︸ ︷︷ ︸
Variance

.

Proof We have, using y = Φθ∗ + ε, with E[ε] = 0 and E[‖ε‖22] = nσ2:

R(θ) = Ey

[
1

n
‖y − Φθ‖22

]
= Eε

[
1

n
‖Φθ∗ + ε− Φθ‖22

]

=
1

n
Ey

[
‖Φ(θ∗ − θ)‖22 + ‖ε‖22 + 2

[
Φ(θ∗ − θ)

]⊤
ε
]

= σ2 +
1

n
(θ − θ∗)⊤Φ⊤Φ(θ − θ∗).

Since Σ̂ = 1
n
Φ⊤Φ is invertible, this shows that θ∗ is the unique global minimizer of R(θ), and

that the minimum value R∗ is equal to σ2. This shows the first claim.

Now if θ is random, we perform the usual bias/variance decomposition:

E[R(θ̂)]− R∗ = E

[
‖θ̂ − E[θ̂] + E[θ̂]− θ∗‖2Σ̂

]

= E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]
+ 2E

[
(θ̂ − E[θ̂])⊤Σ̂(E[θ̂]− θ∗)

]
+ E

[
‖E[θ̂]− θ∗‖2Σ̂

]

= E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]
+ 0 + ‖E[θ̂]− θ∗‖2Σ̂.

(NB: this is also a simple application of E‖z− a‖2M = ‖Ez − a‖2M +E‖z −E[z]‖2M to a = θ∗,

M = Σ̂ and z = θ̂).

Note that the quantity ‖ · ‖Σ̂ is called the Mahalanobis distance norm (it is a “true” norm

whenever Σ̂ is positive definite). It is the norm on the parameter space induced by the input
data.

3.5.1 Statistical properties of the OLS estimator

We can now analyze the properties of the OLS estimator, which has a closed form θ̂ =
(Φ⊤Φ)−1Φ⊤y = Σ̂−1( 1

n
Φ⊤y), with the model y = Φθ∗ + ε. The only randomness comes from

ε and we thus need to compute expectation of linear and quadratic forms in ε.
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Proposition 3.4 (Estimation properties of OLS) The OLS estimator θ̂ has the follow-
ing properties:

1. it is unbiased, that is, E[θ̂] = θ∗,

2. its variance is Var(θ̂) = E

[
(θ̂−θ∗)(θ̂−θ∗)⊤

]
= σ2

n
Σ̂−1; Σ̂−1 is often called the precision

matrix.

Proof

1. Since E[y] = Φθ∗, we have directly E[θ̂] = (Φ⊤Φ)−1Φ⊤Φθ∗ = θ∗.

2. It follows that θ̂ − θ∗ = (Φ⊤Φ)−1Φ⊤(Φθ∗ + ε) − θ∗ = (Φ⊤Φ)−1Φ⊤ε. Thus, using that
E[εε⊤] = σ2I, we get

var(θ̂) = E

[
(Φ⊤Φ)−1Φ⊤εε⊤Φ(Φ⊤Φ)−1

]
= σ2(Φ⊤Φ)−1(Φ⊤Φ)(Φ⊤Φ)−1 = σ2(Φ⊤Φ)−1 =

σ2

n
Σ̂−1.

We can now put back the expression of the variance in the risk.

Proposition 3.5 (Risk of OLS) The excess risk of the OLS estimator is equal to

E

[
R(θ̂)

]
− R∗ =

σ2d

n
. (3.5)

Proof Note here that the expectation is over ε only as we are in the fixed design setting.
Using the risk decomposition of Proposition 3.3 and the fact that E[θ̂] = θ∗, we have

E

[
R(θ̂)

]
− R∗ = E‖θ̂ − θ∗‖2Σ̂.

We have: E

[
R(θ̂)

]
− R∗ = tr[var(θ̂)Σ̂] = σ2

n
tr(I) = σ2d

n
.

We can also give a direct proof. Using the identity θ̂ − θ∗ = (Φ⊤Φ)−1Φ⊤ε, we get

E[R(θ̂)]−R∗ = E‖(Φ⊤Φ)−1Φ⊤ε‖2
Σ̂

=
1

n
E

[
ε⊤Φ(Φ⊤Φ)−1Φ⊤Φ(Φ⊤Φ)−1Φ⊤ε

]

=
1

n
E

[
ε⊤Φ(Φ⊤Φ)−1Φ⊤ε

]

=
1

n
E

[
ε⊤Pε

]
=

1

n
E

[
tr(Pεε⊤)

]
=
σ2

n
tr(P ) =

σ2d

n
,
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where we used that P = Φ(Φ⊤Φ)−1Φ⊤ is the orthogonal projection on im(Φ), which is d-
dimensional.

We can make the following observations:

• △! In the fixed design setting, the expectation over ε appears twice: (1) in the definition
of the risk of some θ in Eq. (3.3), and when taking expectation over the data in Eq. (3.5).

• Exercise 3.2 Show that the expected empirical risk E[R̂(θ̂)] is equal to E[R̂(θ̂)] =
n−d
n
σ2. In particular, when n > d, deduce that an unbiased estimator of the noise

variance σ2 is given by
‖Y−Φθ̂‖22

n−d
.

• In the exercise above, we have an expression of the expected training error, which is
equal to n−d

n
σ2 = σ2− d

n
σ2, while the expected testing error is σ2+ d

n
σ2. We thus see that

in context of least-squares, the training error underestimates (in expectation) the test-
ing error by a factor of 2σ2d/n, which characterizes the amount of overfitting. This dif-
fererence can be used to perform model selection (see https://en.wikipedia.org/wiki/Mallows%27s_

• In the fixed design setting, OLS thus leads to unbiased estimation, with an excess risk
of σ2d/n.

• On the positive side, the math is very simple, and as we will show below, the obtained
convergence rate is optimal.

• On the negative side, for the excess risk being small compared to σ2, we need d/n to
be small, which seems to exclude high-dimensional problems where d is closed to n (let
alone problems where d > n or d much larger than n). Regularization (ridge in this
chapter or ℓ1 in Chapter 8) will come to the rescue.

• This is only for the fixed design setting. We consider the random design setting below,
which is a bit more involved mathematically, mostly because of the presence of Σ̂−1

which does not cancel anymore (leading to the term Σ̂−1Σ).

3.5.2 Experiments

To illustrate the σ2d/n bound, we consider polynomial regression in one dimension, with
x ∈ R, ϕ(x) = (1, x, x2, . . . , xk)⊤ ∈ Rk+1, so d = k + 1. The inputs are sampled from the
uniform distribution in [−1, 1], while the optimal regression function is a degree 2 polynomial
(blue curve in Figure 3.1). Gaussian noise is added to generate the outputs (black crosses
below). The ordinary least-squares estimator is plotted in red, for various values of n, from
n = 10 to n = 1000, for k = 5.

https://en.wikipedia.org/wiki/Mallows%27s_Cp
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Figure 3.1: Polynomial regression with varying number of observations.

We can now plot in Figure 3.2 the expected excess risk as a function of n, estimated by
32 replications of the experiment, together with the bound. In the right plot, we consider
the random design setting (generalization error), while in the left plot we consider the fixed
design setting (in-sample error). Notice the closeness of the bound for all n for the fixed
design (as predicted by our bounds), while this is only true for n large enough in the random
design setting.

3.6 Ridge least-squares regression

Least-squares in high dimensions. When d/n approaches 1, we are essentially mem-
orizing the observations yi (that is, for example when d = n and Ψ is a square invertible
matrix, θ = Φ−1y leads to y = Φθ, that is, ordinary least-squares will lead to a perfect
fit, which is typically not good for generalization to unseen data). Also when d > n, then
Φ⊤Φ is not invertible and the normal equations admit a linear subspace of solutions. These
behaviors of OLS in high dimension (d large) are often undesirable.

Several solutions exist to fix these issues. The most common is to regularize the least-
squares objective, either by adding an ℓ1-penalty ‖θ‖1 to the empirical risk (leading to
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Figure 3.2: Convergence rate for polynomial regression with error bars (obtained from 32
replications by adding/subtracting standard deviations), plotted in logarithmic scale, with
fixed design (left plot) and random design (right plot). The large error bars for small n in
the right plot are due to the lower error bar being negative before taking the logarithm.

“Lasso” regression, see Chapter 8) or ‖θ‖22 (leading to ridge regression, as done in this
chapter and also Chapter 7).

Definition 3.2 (Ridge least-squares regression) For a regularization parameter λ > 0,
we define the ridge least-squares estimator θ̂λ as the minimizer of

min
θ∈Rd

1

n
‖y − Φθ‖22 + λ‖θ‖22.

The ridge regression estimator can be obtained in closed form

Proposition 3.6 We recall that Σ̂ = 1
n
Φ⊤Φ ∈ Rd×d. We have

θ̂λ =
1

n
(Σ̂ + λI)−1Φ⊤y.

Proof As for proof of Proposition 3.1, we can compute the gradient of the objective func-
tion, which is equal to 2

n

(
Φ⊤Φθ − Φ⊤y

)
+ 2λθ. Setting it to zero leads to the estimator.

As for the OLS estimator, we can analyze the statistical properties of this estimator under
the linear model and fixed design assumptions. See Chapter 7 for an analysis for random
design and potentially infinite-dimensional features.
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Proposition 3.7 Under the linear model assumption (and for the fixed design setting), the
ridge least-squares estimator θ̂λ = 1

n
Σ−1

λ Φ⊤y has the following excess risk

E

[
R(θ̂λ)

]
− R∗ = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ +

σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
.

Proof We use the risk decomposition of Proposition 3.3 into a bias term B and a variance
term V . Since we have E[θ̂λ] = 1

n
(Σ̂ + λI)−1Φ⊤Φθ∗ = (Σ̂ + λI)−1Σ̂θ∗ = θ∗ − λ(Σ̂ + λI)−1θ∗,

it follows

B = ‖E[θ̂λ]− θ∗‖2Σ̂
= λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗.

For the variance term, using the fact that E[εε⊤] = σ2I, we have

V = E

[
‖θ̂λ − E[θ̂λ]‖2

Σ̂

]
= E

[∥∥∥ 1

n
(Σ̂ + λI)−1Φ⊤ε

∥∥∥
2

Σ̂

]
= E

[ 1

n2
tr
(
ε⊤Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1Φ⊤ε

) ]

= E

[ 1

n2
tr
(

Φ⊤εε⊤Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1
) ]

=
σ2

n
tr
(

Σ̂(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1
)
.

The proposition follows by summing the bias and variance terms.

We can make the following observations:

• The result above is also a bias / variance decomposition with the bias term equal to

B = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗, and the variance term equal to V = σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
.

• The bias term is increasing in λ and equal to zero for λ = 0 if Σ̂ is invertible, while
when λ goes to infinity, the bias goes to θ⊤∗ Σ̂θ∗. It is independent of n and plays the
role of the approximation error in the risk decomposition.

• The variance term is decreasing in λ, and equal to σ2d/n for λ = 0 is Σ̂ is invertible,
and converging to zero when λ goes to infinity. It depends on n and plays the role of
the estimation error in the risk decomposition.

• The quantity tr
[
Σ̂2(Σ̂ + λI)−2

]
is often called the “degrees of freedom”, and is often

considered as an implicit number of parameters. It can be expressed as

d∑

j=1

λ2j
(λj + λ)2

,

where (λj)j∈{1,...,d} are the eigenvalues of Σ̂. This quantity will be very important in
the analysis of kernel methods in Chapter 7.

• Observe how this converges to the OLS estimator (when it is defined) as λ→ 0.

• In most cases, λ = 0 is not the optimal choice, that is biased estimation (with controlled
bias) is preferable to unbiased estimation.
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Figure 3.3: Bias/variance trade-offs for ridge regression.

3.6.1 Experiments

With the same polynomial regression set-up as above, with k = 10, we can plot the various
quantities above as a function of λ. We can see the monotonicity of bias and variance with
respect to λ as well as the presence of an optimal choice of λ. See Figure 3.3.

3.6.2 Choice of λ

Based on the expression for the risk, we can tune the regularization parameter λ to obtain
a potentially better bound than with the OLS (which corresponds to λ = 0 and the excess
risk σ2d/n).

Proposition 3.8 (choice of regularization parameter) With the choice λ∗ =
σ
√

tr(Σ̂)

‖θ∗‖2
√
n
,

we have

E

[
R(θ̂λ∗)

]
− R∗ 6

σ

√
tr(Σ̂)‖θ∗‖2√

n
.

Proof We have, using the fact that the eigenvalues of (Σ̂ + λI)−2λΣ̂ are less than 1/2
(which is a simple consequence of (µ + λ)−2µλ 6 1/2 ⇔ (µ + λ)2 > 2λµ for all eigenvalues

µ of Σ̂):

B = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ = λθ⊤∗ (Σ̂ + λI)−2λΣ̂θ∗ 6
λ

2
‖θ∗‖22.

Similarly, we have V =
σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
=
σ2

λn
tr
[
Σ̂λΣ̂(Σ̂ + λI)−2

]
6
σ2 tr Σ̂

2λn
. Plugging

in λ∗ (which was chosen to minimize the upper bound on B + V ) gives the result.

We can make the following observations:
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• Observe that if we write R = maxi∈{1,...,n} ‖ϕ(xi)‖2, then we have

tr(Σ̂) =
∑

j>1

Σ̂jj =
1

n

n∑

i=1

∑

j>1

ϕ(xi)
2
j =

1

n

n∑

i=1

‖ϕ(xi)‖22 6 R2.

Thus in the excess risk bound, the dimension d plays no role and it could even be infinite
(given that R and ‖θ∗‖2 remain finite). This type of bounds are called dimension-free
bounds.

△! The number of parameters is not the only way to measure the generalization ca-
pabilities of a learning method.

• Comparing this bound with that of the OLS estimator, we see that it converges slower
to 0 as a function of n (from n−1 to n−1/2) but it has a milder dependence on the
noise (from σ2 to σ). The presence of a “fast” rate in O(n−1) with a potentially large
constant, and of “slow” rate O(n−1/2) with a smaller constant will appear several times
in this course.

△! Depending on n and the constants, the “fast” rate result is not always the best.

• The value of λ∗ involves quantities which we typically do not know in practice (such
as σ and ‖θ∗‖2). This is still useful to highlight the existence of some λ with good
predictions (which can be found by cross-validation).

• Note here that the choice of λ∗ =
σ
√

tr(Σ̂)

‖θ∗‖2
√
n

is optimizing the upper-bound λ
2
‖θ∗‖22+ σ2 tr Σ̂

2λn
,

and is thus typically not optimal for the true expected risk.

• △! Check homogeneity!

Choosing λ in practice. The regularization λ is an example of a hyper-parameter. This
term refers broadly to any quantity that influences the behavior of a machine learning algo-
rithm and that is left to choose by the practitioner. While theory often offers guidelines and
qualitative understanding on how to best chose the hyper-parameters, their precise numeri-
cal value depends on quantities which are often difficult to know or even guess. In practice,
we typically resort to validation and cross-validation.

Exercise 3.3 Compute the expected risk of the estimator obtained by regularizing by θ⊤Λθ,
where Λ ∈ R

d×d is a positive definite matrix.
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3.7 Lower-bound (�)

In order to show a lower bound in the fixed design setting, we will consider only Gaussian
noise, that is, ε has a joint Gaussian distribution with mean zero and covariance matrix σ2I
(adding an extra assumption can only make the lower bound smaller). We follow the elegant
and simple proof technique outlined by Mourtada (2019).

The only uncertainty in the model is the location of θ∗. In order to make the dependence
on θ∗ explicit, we denote by Rθ∗(θ) the excess risk (in the previous chapter, we were using
the notation Rdp to make the dependence on the distribution explicit), which is equal to

Rθ∗(θ) = ‖θ − θ∗‖2Σ̂.

Our goal is to lower bound

sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)),

over all functions A from Rn to Rd (these functions are allowed to depend on the observed
deterministic quantities such as Φ). Indeed, algorithms take y = Φθ∗ + ε ∈ Rn as an input
and output a vector of parameters in Rd.

The main idea, which is classical in the Bayesian analysis of learning algorithms, is to
lower bound the supremum by the expectation with respect to some probability on θ∗, called
the prior distribution in Bayesian statistics. That is, we have, for any algorithm / estimator
A:

sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)) > E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)). (3.6)

Here, we choose the normal distribution with mean 0 and covariance matrix σ2

λn
I as a prior

distribution, since this will lead to closed-form computations.

Using the expression of the excess risk (and ignoring the additive constant σ2 = R∗), we
thus get the lower bound

E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖A(Φθ∗ + ε)− θ∗‖2Σ̂,

which we need to minimize with respect to A. By making θ∗ random, we now have a joint
Gaussian distribution for (θ∗, ε). The joint distribution of (θ∗, y) = (θ∗,Φθ∗ + ε) is also
Gaussian with mean zero and covariance matrix

( σ2

λn
I σ2

λn
Φ⊤

σ2

λn
Φ σ2

λn
ΦΦ⊤ + σ2I

)
=
σ2

λn

(
I Φ⊤

Φ ΦΦ⊤ + nλI

)
.
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We need to perform a similar operation as for computing the Bayes predictor in Chapter 2.
This will be done by conditioning on y, by writing

E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖A(Φθ∗ + ε)− θ∗‖2Σ̂ = E(θ∗,y)‖A(y)− θ∗‖2Σ̂

=

∫

Rn

(∫

Rd

‖A(y)− θ∗‖2Σ̂dp(θ∗|y)
)
dp(y).

Thus, for each y, the optimal A(y) has to minimize
∫
Rd ‖A(y) − θ∗‖2Σ̂dp(θ∗|y), which is

exactly the posterior mean of θ∗ given y. Indeed, the vector that minimizes the expected
squared deviation is the expectation (exactly like when we computed the Bayes predictor for
regression), here applied to the distribution dp(θ∗|y).

Since the joint distribution of (θ∗, y) is Gaussian with known parameters, we could use
classical results about conditioning for Gaussian vectors (see Section 1.1.3), but we can
also use the property that for Gaussian variables, the posterior mean given y is equal to
the posterior mode given y, that is, it can be obtained by maximizing the log-likelihood
log p(θ∗, y) with respect to θ∗. Up to constants and using independence of ε and θ∗, this
log-likelihood is

− 1

2σ2
‖ε‖2 − λn

2σ2
‖θ∗‖22 = − 1

2σ2
‖y − Φθ∗‖2 −

λn

2σ2
‖θ∗‖22,

which is exactly (up to a sign and a constant) the ridge regression cost function. Thus, we
have: A∗(y) = (Φ⊤Φ + nλI)−1Φ⊤y, which is exactly the ridge regression estimator θ̂λ, and
we can compute the corresponding optimal risk, to get:

inf
A

sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε))− R∗

> inf
A

E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε))− R∗ using Eq. (3.6),

= E
θ∗∼N(0, σ

2

λn
I)

Eε∼N(0,σ2I)Rθ∗(A∗(Φθ∗ + ε))−R∗ using the reasoning above,

= E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖A∗(Φθ∗ + ε)− θ∗‖2Σ̂ using the expression of the risk,

= E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖(Φ⊤Φ + nλI)−1Φ⊤(Φθ∗ + ε)− θ∗‖2Σ̂ using the closed-form expression,

= E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖(Φ⊤Φ + nλI)−1Φ⊤ε− nλ(Φ⊤Φ + nλI)−1θ∗‖2Σ̂

= E
θ∗∼N(0, σ

2

λn
I)
‖ − nλ(Φ⊤Φ + nλI)−1θ∗‖2Σ̂ + Eε∼N(0,σ2I)‖(Φ⊤Φ + nλI)−1Φ⊤ε‖2

Σ̂
by independence,

=
σ2

nλ
(nλ)2

1

n2
tr
[
(Σ̂ + λI)−2Σ̂

]
+
σ2

n
tr
(
Σ̂ + λI)−2Σ̂2

]

=
σ2

n
tr
[
(Σ̂ + λI)−1Σ̂

]
.

This risk tends to σ2d
n

when λ tends to zero. This such shows that

inf
A

sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)) >
σ2d

n
.
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This gives us a lower-bound on performance, which exactly matches the upper-bound
obtained by OLS. In the general non least-squares case, such results are significantly harder
to show. See Chapter 4 and Chapter 7.

3.8 Random design analysis

In this section, we consider the regular random design setting, that is, both x and y are
considered random, and each pair (xi, yi) is assumed independent and identically distributed
from a distribution dp(x, y). Our goal is to show that the bound on the the excess risk that
we have shown for the fixed design setting, namely σ2d/n, is still valid. We will make the
following assumptions regarding the joint distribution dp(x, y), transposed from the fixed
design setting to the random design setting:

• there exists a vector θ∗ ∈ Rd such that the relationship between input and output is

y = ϕ(x)⊤θ∗ + ε.

• the noise ε ∈ R is independent from x, and E[ε] = 0 and with variance E[ε2] = σ2.

With the assumption above, E(y|x) = ϕ(x)⊤θ∗, and thus, we perform empirical risk mini-
mization where our class of functions includes the Bayes predictor, a situation that is often
referred to as the well-specified setting. The risk also has a simple expression:

Proposition 3.9 (Excess risk for random design least-squares regression) Under the
linear model above, for any θ ∈ Rd, the excess risk is equal to:

R(θ)− R∗ = ‖θ − θ∗‖2Σ
where Σ := E[ϕ(x)ϕ(x)⊤] is the (non-centered) covariance matrix, and R∗ = σ2.

Proof We have:

R(θ) = E
[
(y − θ⊤ϕ(x))2

]

= E
[
(ϕ(x)⊤θ∗ + ε− θ⊤ϕ(x))2

]

= E
[
(ϕ(x)⊤θ∗ − θ⊤ϕ(x))2

]
+ E

[
ε2
]

= (θ − θ∗)⊤Σ(θ − θ∗) + σ2,

which leads to the desired result.

Note that the only difference with the fixed design setting is the replacement of Σ̂ by Σ. We
can now express the risk of the OLS estimator.
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Proposition 3.10 Under the linear model above, assuming Σ̂ is invertible, the expected
excess risk of the OLS estimator is equal to

σ2

n
E
[

tr(ΣΣ̂−1)
]
.

Proof Since the OLS estimator is equal to θ̂ = 1
n
Σ̂−1Φ⊤y = 1

n
Σ̂−1Φ⊤(Φθ∗ + ε) = θ∗ +

1
n
Σ̂−1Φ⊤ε, we have:

E[R(θ̂)]− R∗ = E
[( 1

n
Σ̂−1Φ⊤ε

)⊤
Σ
( 1

n
Σ̂−1Φ⊤ε

)]

= E
[

tr
(
Σ
( 1

n
Σ̂−1Φ⊤ε

)(1

n
Σ̂−1Φ⊤ε

)⊤)]
=

1

n2
E
[

tr
(
ΣΣ̂−1Φ⊤εε⊤ΦΣ̂−1

)]

=
1

n2
E
[

tr
(
ΣΣ̂−1Φ⊤

E[εε⊤]ΦΣ̂−1
)]

= E

[σ2

n2
tr
(
ΣΣ̂−1Φ⊤ΦΣ̂−1

)]

= E

[σ2

n
tr(ΣΣ̂−1)

]
.

Thus, to compute the expected risk of the OLS estimator, we need to compute E
[

tr(ΣΣ̂−1)
]
.

One difficulty here is the potential non-invertibility of Σ̂. Under simple assumptions (e.g.,

ϕ(x) has a density on R
d), as soon as n > d, Σ̂ is almost surely invertible, however its

smallest eigenvalue can be very small. Extra assumptions are then needed to control it (see,
e.g., Mourtada, 2019, Section 3).

Exercise 3.4 Show that for the random design setting with the same assumptions as Prop. 3.10,
the expected risk of the ridge regression estimator is

E
[
R(θ̂λ)− R∗] = λ2E

[
θ⊤∗ (Σ̂ + λI)−1Σ(Σ̂ + λI)−1θ∗ +

σ2

n
tr
[
(Σ̂ + λI)−2Σ̂Σ

]]
.

3.8.1 Gaussian designs

If we assume that ϕ(x) is normally distributed with mean 0 and covariance matrix Σ, then
we can directly compute the desired expectation, by first considering z = Σ−1/2ϕ(x), which
has a standard normal distribution (that is, with mean zero and identity covariance matrix),

with the corresponding normalized design matrix Z ∈ Rn×d, and compute E
[

tr(ΣΣ̂−1)
]

=
nE
[

tr(Z⊤Z)−1
]
.

Note that E[Z⊤Z] = nI, and by convexity of the function M 7→ tr(M−1) on the cone
of positive definite matrices, and using Jensen’s inequality, we see that E

[
tr(Z⊤Z)−1

]
> d

n
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(here we have not used the Gaussian assumption). However, this bound is in the incorrect
direction (this happens a lot with Jensen’s inequality).

It turns out that for Gaussians, the matrix (Z⊤Z)−1 has a specific distribution, called
the inverse Wishart distribution,2 with an expectation that can be computed exactly as
E[(Z⊤Z)−1] = 1

n−d−1
I. Thus, we have: E

[
tr(Z⊤Z)−1

]
= d

n−d−1
if n > d+ 1, thus leading to

the expected excess risk of

σ2d

n− d− 1
=
σ2d

n

1

1− (d+ 1)/n
.

See Breiman and Freedman (1983) for further details. Note here that for Gaussian designs,
the expected risk is exactly equal to the expression above, and that later in this course, we
will only consider upper-bounds.

Overall, we see that in the Gaussian case, we have an explicit non-asymptotic bound on
the risk, which is equivalent to σ2d/n when n goes to infinity.

3.8.2 General designs (��)

In this last more technical section, we highlight how the Gaussian assumption can be avoided.
The main idea is to show that with high probability, the lowest eigenvalue of Σ−1/2Σ̂Σ−1/2

is larger than some 1 − t, for some t ∈ (0, 1). Since the excess risk is σ2

n
tr(ΣΣ̂−1), this

immediately shows that with high probability, the excess risk is less than σ2d
n

1
1−t

.

In order to obtain such results, more refined concentration inequalities are needed, such
as described by Tropp (2012), Hsu et al. (2012), Oliveira (2013), and Lecué and Mendelson
(2016). The sharpest known results for least-squares regression are shown by Mourtada
(2019).

Matrix concentration inequality. We will use the matrix Bernstein bound, adapted
from (Tropp, 2012, Theorem 1.4), already discussed in Section 1.2.5 and recalled here.

Proposition 3.11 (Matrix Bernstein bound) Given n independent symmetric matrices
Mi ∈ Rd×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0, λmax(Mi) 6 b almost surely. Then
for all t > 0,

P

(
λmax

( 1

n

n∑

i=1

Mi

)
> t
))

6 d · exp
(
− nt2/2

τ 2 + bt/3

)
,

for τ 2 = λmax

(
1
n

∑n
i=1M

2
i

)
.

2See https://en.wikipedia.org/wiki/Inverse-Wishart_distribution.

https://en.wikipedia.org/wiki/Inverse-Wishart_distribution
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Application to re-scaled covariance matrices. We can now prove the following propo-
sition that will give the desired high-probability bound for the excess risk, with one extra
assumption.

Proposition 3.12 Given Σ = E[ϕ(x)ϕ(x)⊤] ∈ Rd×d, and i.i.d. observations ϕ(x1), . . . , ϕ(xn),
assume that

λmax

(
E

[
ϕ(x)⊤Σ−1ϕ(x)ϕ(x)ϕ(x)⊤

])
4 ρdΣ. (3.7)

For δ ∈ (0, 1), if n > 8ρd log d
δ
, then with probability greater than 1− δ

Σ−1/2Σ̂Σ−1/2 < (1− t)I. (3.8)

Before giving the proof, note that from the discussion earlier, the bound in Eq. (3.8) leads to
an excess risk less than σ2d

n
1

1−t
. Moreover, without surprise, the bound is non vacuous only

for n > d.

Regarding the extra assumption in Eq. (3.7), it can be interpreted as follows. We consider
the random vector z = Σ−1/2ϕ(x) ∈ Rd, which is such that E[zz⊤] = I and E[‖z‖22] = d. The
assumption in Eq. (3.7) is then equivalent to

λmax

(
E

[
‖z‖2zz⊤

])
6 ρd.

A sufficient condition is that almost surely ‖z‖22 6 ρd, that is, ϕ(x)⊤Σ−1ϕ(x) 6 ρd. More-
over, for a Gaussian distribution with zero mean for z, one can check as an exercise that
ρ = (1 + 2/d).

Proof We consider the random symmetric matrixMi = I−ziz⊤i , which is such that EMi = 0,

λmax(Mi) 6 1 almost surely, and E[M2
i ] = E

[
‖zi‖2ziz⊤i

]
− I with largest eigenvalue less than

ρd. We thus have for any t > 0,

P

(
λmax(I −

1

n
Z⊤Z) > t

)
6 d · exp

(
− nt2/2

ρd+ t/3

)
.

Thus, if t is such that nt2

2ρd+2t/3
> log d

δ
, then, with probability greater than 1−δ, we have I−

Σ−1/2Σ̂Σ−1/2 4 tI, that is, the desired result Σ−1/2Σ̂Σ−1/2 < (1−t)I. We have used the order
between symmetric matrices, defined as A < B ⇔ B 4 A⇔ A− B positive semi-definite.

This is possible when t >
√

2ρd
n

log d
δ

+ 2
3n

log d
δ
. The bound is non-vacuous only when

t < 1, that is, it is sufficient to impose 2
3n

log d
δ
< 1/2 and

√
2ρd
n

log d
δ
< 1/2, which is

equivalent to n > 4
3

log d
δ
, and n > 8ρd log d

δ
. Given that we always ρ > 1, only the second

constraint is necessary.
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Part II

Generalization bounds for learning
algorithms
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Chapter 4

Empirical risk minimization

Chapter summary

-Convexification of the risk: for binary classification, optimal predictions can be achieved
with convex surrogates.
-Risk decomposition: the risk can be decomposed into the sum of the approximation error
and the estimation error.
-Rademacher complexity: To study estimation errors and compute expected uniform
deviations, Rademacher complexities are a very flexible and powerful tool.
-Relationship with asymptotic statistics: classical asymptotic results provide a finer picture
of the behavior of empirical risk minimization at they provide asymptotic limits of perfor-
mance as a well-defined constant times 1/n, but they do not characterize small-sample effects.

As outlined in Chapter 2, given a joint distribution dp(x, y), and n independent and
identically distributed observations from dp(x, y), our goal is to learn a function f : X→ Y

with minimum risk R(f) = E[ℓ(y, f(x))], or equivalently minimum excess risk:

R(f)− R∗ = R(f)− inf
g measurable

R(g).

In this chapter we will consider methods based on empirical risk minimization. Before looking
at the necessary probabilistic tools, we will first show how problems where the output space
is not a vector space, such as binary classification with Y = {−1, 1}, can be reformulated
with so-called convex surrogates of loss functions.

57
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4.1 Convexification of the risk

In this section, for simplicity, we focus on binary classification where Y = {−1, 1} with the
0-1 loss, but many of the concepts extend to the more general structured prediction set-up
(see Nowak-Vila et al., 2019, 2020, and the many references therein).

As our goal is to estimate a binary-valued function, the first idea that comes into mind
is to minimize the empirical risk over a hypothesis space of binary-valued functions (or
equivalently, space of subsets of X). However, this approach leads to a combinatorial problem
which can be computationally intractable and moreover, it is not clear how to control the
capacity (i.e., how to regularize) for these type of hypothesis spaces. Learning a real-valued
function instead through the framework of convex surrogates simplifies and overcomes this
problem as it convexifies the problem and classical penalty-based regularization techniques
can be used for theoretical analysis (this chapter) and for algorithms (Chapter 5).

Instead of learning f : X→ {−1, 1}, we will thus learn a function g : X→ R and define
f(x) = sign(g(x)) where

sign(a) =

{
1 if a > 0
−1 if a < 0.

Note here, that the value at 0 could also be chosen to be −1. Within our context, this
corresponds, for maximally ambiguous observations, to choose one of the two labels which
are equally likely (and thus equally bad in expectation, with a 50% chance of being incorrect).

The risk of the function f = sign ◦ g, still denoted R(g) (△! slight overloading R(g) =
R(sign ◦ g)), is then equal to:

R(g) = P(sign(g(x)) 6= y) = E(1sign(g(x))6=y) = E(1yg(x)<0) = EΦ0−1(yg(x)),

where Φ0−1 : R→ R, with Φ0−1(u) = 1u<0 is called the “margin-based” 0-1 loss function or
simply the 0-1 loss function.

△! Note the slightly overloaded notation above where the 0-1 loss function is defined on R,
compared to the 0-1 loss function from Chapter 2 which is defined on {−1, 1} × {−1, 1}.

In practice, for empirical risk minimization, we then minimize with respect to g : X→ R

the corresponding empirical risk 1
n

∑n
i=1 Φ0−1(yig(xi)). The function Φ0−1 is not continuous

(and thus also non-convex) and leads to difficult optimization problems.

4.1.1 Convex surrogates

A key concept in machine learning is the use of convex surrogates, where we replace Φ0−1

by another function Φ with better numerical properties (all will be convex). See classical
examples in Figure 4.1.
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Figure 4.1: Classical convex surrogates for binary classification with the 0-1 loss.

Instead of minimizing the classical risk R(g) or its empirical version, one then minimizes
the Φ-risk (and its empirical version) defined as

RΦ(g) = E[Φ(yg(x))].

In this context, the function g is sometimes called the score function.

The key question is: does it make sense to simply convexify the problem? In other words,
does it lead to good predictions for the 0-1 loss?

Classical examples. We first review the main examples used in practice:

• Quadratic loss: Φ(u) = (u− 1)2, leading to, since y2 = 1: Φ(yg(x)) = (y − g(x))2 =
(g(x)− y)2. We get back least-squares, and we simply ignore the fact that the labels
have to belong to {−1, 1}, and take the sign of g(x) for the prediction. Note the
overpenalization for positive value of yg(x), that will not be present for the other
losses below (which are non-increasing).

• Logistic loss: Φ(u) = log(1 + e−u), leading to

Φ(yg(x)) = log(1 + e−yg(x)) = − log
( 1

1 + e−yg(x)

)
= − log(σ(yg(x)),

where: σ(v) = 1
1+e−v is the sigmoid function. Note the link with maximum likelihood

estimation, where we define the model through

P(y = 1|x) = σ(f(x)) and P(y = −1|x) = σ(−f(x)) = 1− σ(f(x)).

The risk is then the negative conditional log-likelhood E[− log p(y|x)]. It is also often
called the cross-entropy loss (see https://en.wikipedia.org/wiki/Logistic_regression
for details).

https://en.wikipedia.org/wiki/Logistic_regression
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• Hinge loss: Φ(u) = max(1 − u, 0). With linear predictors, this leads to the support
vector machine, and yf(x) is often called the “margin” in this context. This loss has a
geometric interpretation (see section below). See also https://en.wikipedia.org/wiki/Support_vec

for details.

• Squared hinge loss: Φ(u) = max(1 − u, 0)2. This is a smooth counterpart to the
regular hinge loss.

4.1.2 Geometric interpretation of the support vector machine (�)

In this section, we provide a geometrical (and historical perspective) on the hinge loss,
to highlight the reason why it leads to a learning architecture called the “support vector
machine” (SVM). We consider n observations (xi, yi) ∈ R

d × {−1, 1}, for i = 1, . . . , n.

Separable data. We first assume that the data are separable by an affine hyperplance,
that is, there exist w ∈ R

d and b ∈ R such that for all i ∈ {1, . . . , n}, yi(w⊤xi + b) > 0.
Among the infinitely many separating hyperplanes, we aim at selecting the one for which
the closest point from the dataset is farthest.

w
⊤
x + b = 0

The distance from xi to the hyperplane {x ∈ Rd, w⊤x+ b = 0} is equal to |w⊤xi+b|
‖w‖2 , and

thus, this minimal distance is

min
i∈{1,...,n}

yi(w
⊤xi + b)

‖w‖2
,

and we thus aim at maximizing this quantity. Because of the invariance by rescaling (that is,
we can multiply w and b by the same scalar constant without modifying the affine separator),
this problem is equivalent to the following problem

min
w∈Rd, b∈R

1

2
‖w‖22 such that ∀i ∈ {1, . . . , n}, yi(w⊤xi + b) > 1. (4.1)

https://en.wikipedia.org/wiki/Support_vector_machine
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General data. When data may not be separated by an hyperplane, then we can introduce
so-called “slack variables” ξi > 0, i = 1, . . . , n, allowing the constraint yi(w

⊤xi + b) > 1 to
be not satisfied, by introducing instead the constraint yi(w

⊤xi + b) > 1 − ξi. The overall
amount of slack is then minimized, leading to the following problem (with C > 0)

min
w∈Rd, b∈R, ξ∈Rn

1

2
‖w‖22+C

n∑

i=1

ξi such that ∀i ∈ {1, . . . , n}, yi(w⊤xi+b) > 1−ξi and ξi > 0.

(4.2)
With λ = 1

nC
, the problem above is equivalent to

min
w∈Rd, b∈R

1

n

n∑

i=1

(1− yi(w⊤xi + b))+ +
λ

2
‖w‖22,

which is exactly an ℓ2-regularized empirical risk minimization with the hinge loss, for the
prediction function f(x) = w⊤x + b.

Lagrange dual and “support vectors” (�). The problem in Eq. (4.2) is a linearly
constrained convex optimization problem, and can be analyzed using Lagrangian dual-
ity (Boyd and Vandenberghe, 2004). We consider non-negative Lagrange multipliers αi and
βi, i ∈ {1, . . . , n}, and the following Lagrangian:

L(w, b, ξ, α, β) =
1

2
‖w‖22 + C

n∑

i=1

ξi −
n∑

i=1

αi

(
yi(w

⊤xi + b)− 1 + ξi
)
−

n∑

i=1

βiξi.

Minimizing with respect to ξ ∈ Rn leads to the constraints ∀i ∈ {1, . . . , n}, αi + βi = C,
while minimizing with respect to b leads to the constraint

∑n
i=1 yiαi = 0. Finally, minimizing

with respect to w can be done in closed form as w =
∑n

i=1 αiyixi. Overall, this leads to the
dual optimization problem:

max
α∈Rn

n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjx
⊤
i xj such that

n∑

i=1

yiαi = 0 and ∀i ∈ {1, . . . , n}, αi ∈ [0, C].

(4.3)
As we will show in Chapter 7 for all ℓ2-regularized learning problems with linear predictors,
the optimization problem only depends on the dot-products x⊤i xj , i, j = 1 . . . , n, and the
optimal predictor can be written as a linear combination of input data points xi, i = 1, . . . , n.
Moreover, for optimal primal and dual variables, the “complementary slackness” conditions
for linear inequality constraints lead to αi

(
yi(w

⊤xi + b) − 1 + ξi
)

= 0 and (C − αi)ξi = 0.
This implies that αi = 0 as soon as yi(w

⊤xi + b) < 1, and thus many of the αi are equal to
zero, and the optimal predictor is a linear combination of only a few of the data points xi’s
which are then called “support vectors”.
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4.1.3 Conditional Φ-risk and classification calibration (�)

△!
Most of the convex surrogates are upper-bounds on the 0-1 loss and all can be
made so with rescaling. Using this as the sole justification of the good performance
of a convex surrogate is a misleading justification, with the exception of problems
with almost surely zero loss for the Bayes (i.e., optimal) predictor (which is only
possible when the Bayes risk is zero).

If we denote η(x) = P(y = 1|x) ∈ [0, 1], then we have, E[y|x] = 2η(x) − 1, and, as seen
in Chapter 2:

R(g) = E[Φ0−1(yg(x))] = E[E(1(g(x))6=y)|x)] > E[min(η(x), 1− η(x))] = R∗,

and one best classifier is f ∗(x) = sign(2η(x)− 1). Note that there are many potential other
functions g(x) than 2η(x)−1 so that f ∗(x) = sign(g(x)) is optimal. The first (minor) reason
is the arbitrary choice of prediction for η(x) = 1/2. The other reason is that g(x) simply has
to have the same sign as 2η(x)− 1, which leads to many possibilities beyond 2η(x)− 1.

In order to study the impact of using the Φ-risk, we first look at the conditional risk, for
a given x (as for the 0-1 loss, the function g that will minimize the Φ-risk can be determined
by looking at each x separately).

Definition 4.1 (conditional Φ-risk) Let g : X→ R, we define the conditional Φ-risk as

E[Φ(yg(x))|x] = η(x)Φ(g(x)) + (1− η(x))Φ(−g(x)) which we denote Cη(x)(g(x)),

with

Cη(α) = ηΦ(α) + (1− η)Φ(−α).

The least we can expect from a convex surrogate is that in the population case, where all
x’s decouple, the optimal g(x) obtained by minimizing the conditional Φ-risk exactly leads
to the same prediction as the Bayes predictor (at least when this prediction is unique). In
other words, since the prediction is sign(g(x)), we want that for any η ∈ [0, 1]:

(positive optimal prediction) η > 1/2 ⇔ arg min
α∈R

Cη(α) ⊂ R
∗
+ (4.4)

(negative optimal prediction) η < 1/2 ⇔ arg min
α∈R

Cη(α) ⊂ R
∗
−. (4.5)

A function Φ that satisfies these two statements is said classification-calibrated, or simply
calibrated. It turns out that when Φ is convex, a simple sufficient and necessary condition is
available:
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Proposition 4.1 (Bartlett et al., 2006) let Φ : R → R convex. Φ calibrated ⇔ Φ is differ-
entiable at 0 and Φ′(0) < 0.

Proof Since Φ is convex, so is Cη for any η ∈ [0, 1], and thus we simply consider left and
right derivatives at zero to obtain conditions about location of minimizers, with the two
possibilities below (minimizer in R∗

+ if and only if the right derivative at zero is strictly
negative, and minimizer in R∗

− if and only if the left derivative at zero is strictly positive):

α

Cη(α)

α

Cη(α)

arg min
α∈R

Cη(α) ⊂ R
∗
+ ⇔ (Cη)+(0)′ = ηΦ′

+(0)− (1− η)Φ′
−(0) < 0 (4.6)

arg min
α∈R

Cη(α) ⊂ R
∗
− ⇔ (Cη)−(0)′ = ηΦ′

−(0)− (1− η)Φ′
+(0) > 0. (4.7)

(a) Assume Φ is calibrated. By letting η tend to 1/2+ in Eq. (4.6), this leads to (C1/2)+(0)′ =
1
2

[
Φ′

+(0)−Φ′
−(0)

]
6 0. Since Φ is convex, we always have Φ′

+(0)−Φ′
−(0) > 0. Thus the

left and right derivatives are equal, which implies that Φ is differentiable at 0. Then
C ′

η(0) = (2η − 1)Φ′(0), and from Eq. (4.4) and Eq. (4.6), we need to have Φ′(0) < 0.

(b) Assume Φ is differentiable at 0 and Φ′(0) < 0, then C ′
η(0) = (2η − 1)Φ′(0); Eq. (4.4)

and Eq. (4.5) are then direct consequences of Eq. (4.6) and Eq. (4.7).

Note that the proposition above excludes the convex surrogate u 7→ (−u)+ = max{−u, 0},
which is not differentiable at zero.

We now assume that Φ is calibrated and convex, that is, Φ is convex, Φ differentiable at
0, and Φ′(0) < 0.

4.1.4 Relationship between risk and Φ-risk (��)

Now that we know that for any x ∈ X, minimizing Cη(x)(g(x)) with respect to g(x) leads
to the optimal prediction through sign(g(x)), we would like to make sure that an explicit
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control of the excess Φ-risk (which we aim to do with empirical risk minimization using tools
from later sections) leads to an explicit control of the original excess risk. In other words, we
are looking for a monotonic function H : R+ → R+ such that R(g)−R∗ ≤ H

[
RΦ(g)−R∗

Φ

]
,

where R∗
Φ is the minimum possible Φ-risk. The function H is often called the calibration

function.

△!
As opposed to the least-squares regression case, where the loss function used for
testing is directly the one used within empirical risk minimization, there are two
notions here: the testing error R(g), which is obtained after thresholding at zero
the function g, and the quantity RΦ(g), which is sometimes called the testing loss.

We first start with a simple lemma expressing the excess risk, as well as an upper bound
(adapted from Theorem 2.2 from Devroye et al. (1996)), that we will need for comparison
inequalities below:

Lemma 4.1 For any function g : X→ R, and for a Bayes predictor g∗:

R(g)− R(g∗) = E[1g(x)g∗(x)<0 · |2η(x)− 1|].
Moreover, we have R(g)− R(g∗) 6 E[|2η(x)− 1− g(x)|].

Proof We express the excess risk as:

R(g)−R(g∗) = E[E[1sign(g(x))6=y − 1sign(g∗)(x)6=y|x]] by definition of the 0-1 loss.

For any given x ∈ X, we can look at the two possible cases for the signs of η(x)− 1/2 and
g(x) that lead to different predictions for g and g∗, namely (a) η(x) > 1/2 and g(x) < 0,
and (b) η(x) < 1/2 and g(x) > 0 (equality cases are irrelevant). For the first case the
expectation with respect to y is η(x) − (1 − η(x)) = 2η(x) − 1, while for the second case,
we get 1 − 2η(x). By combining these two cases into the condition g(x)g∗(x) < 0 and the
condional expectation |2η(x)− 1|, we get the first result.

For the second result, we simply use the fact that if g(x)g∗(x) < 0, then, by splitting the
cases in two (the first one being η(x) > 1/2 and g(x) < 0, the second one being η(x) < 1/2
and g(x) > 0), we get |2η(x)− 1| 6 |2η(x)− 1− g(x)|, and thus the second result.

Note that for any function b : R → R that preserves the sign (that is b(R∗
+) ⊂ R∗

+ and
b(R∗

−) ⊂ R∗
−), we have R(g)−R(g∗) 6 E[|2η(x)− 1− b(g(x))|].

We see that the excess risk is the expectation of a quantity |2η(x)−1)| ·1g(x)g∗(x)<0, which
is equal to 0 if the classification is the same as the Bayes predictor and equal to |2η(x)− 1|
otherwise. The excess conditional Φ-risk is the quantity

η(x)Φ(g(x)) + (1− η(x))Φ(−g(x))− inf
α

{
η(x)Φ(α) + (1− η(x))Φ(−α)

}
,
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which, as a function of g(x), is the deviation between a convex function (of g(x)) and its
minimum value. We simply need to relate it to the quantity |2η(x)− 1)| · 1g(x)g∗(x)<0 above
for any x ∈ X and take expectations.

Bartlett et al. (2006) proposes a general framework. We will only consider the hinge loss
and smooth losses for simplicity.

• For the hinge loss 12Φ(α) = (1 − α)+ = max{1 − α, 0}, we can easily compute the
minimizer of the conditional Φ-risk (which leads to the minimizer of the Φ-risk). Indeed,
we need to minimize η(x)(1 − α)+ + (1 − η(x))(1 + α)+, which is a piecewise affine
function with kinks at −1 and 1, with a minimizer attained at u = 1 for η(x) > 1/2
(see below), and symmetrically at u = −1 for η(x) < 1/2, with a minimum conditional
Φ-risk equal to 2 min{1 − η(x), η(x)}. The two excess risks are plotted below for the
hinge loss and the 0-1 loss, for η(x) > 1/2, showing pictorially that the conditional
excess Φ-risk is greater than the excess risk.

α

Cη(α)

1−1 α

Cη(α)

1−1

hinge loss
0-1 loss

η

1− η

α

excess conditional risks

1−1

This leads to the calibration function H(σ) = σ for the hinge loss.

Note that when the Bayes risk is zero, that is, η(x) ∈ {0, 1} almost surely, then using
the fact that the hinge loss is an upper-bound on the 0− 1 loss is enough to show that
the excess risk is less than the excess Φ-risk (indeed, the two optimal risks R∗ and R∗

Φ

are equal to zero).

• We consider smooth losses of the form (up to additive and multiplicative constants)
Φ(v) = a(v) − v, where a(v) = 1

2
v2 for the quadratic loss, a(v) = 2 log(ev/2 + e−v/2)

for the logistic loss. We assume that a is even, a(0) = 0, a is β-smooth (that is, as
defined in Chapter 5, a′′(v) 6 β for all v ∈ R). This implies1 that for all v ∈ R,

1Using the Fenchel conjugate a∗ : R → R which is 1/(2β)-strongly convex (see Chapter 5), we have:
a(v)−αv−infw∈R

{
a(w)−αw

}
= a(v)−αv+a∗(α) = a∗(α)−a∗(a′(v))−(α−a′(v))(a∗)′(a(v)) > 1

2β
|α−a′(v)|2,

where a∗ is the Fenchel conjugate of a (Boyd and Vandenberghe, 2004).
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a(v)− αv − infw∈R
{
a(w)− αw

}
> 1

2β
|α− a′(v)|2, leading to:

RΦ(g)−R∗
Φ = E

[
a(g(x))− (2η(x)− 1)g(x)− inf

w∈R

{
a(w)− (2η(x)− 1)w

}]

>
1

2β
E
[
|2η(x)− 1− a′(g(x))

∣∣2] by the property above,

>
1

2β

(
E
[
|2η(x)− 1− a′(g(x))

∣∣])2 by Jensen’s inequality,

=
1

2β

(
R(g)− R∗)2 using Lemma 4.1.

This leads to the calibration function H(σ) =
√
σ for the square loss and H(σ) =

√
2σ

for the logistic loss.

Exercise 4.1 (�) Show that the function a∗ satisfies a∗
(
R(g)−R∗) 6 RΦ(g)− R∗

Φ for any
function g : X→ R.

We can make the following observations:

• For the (non-smooth) hinge loss, the calibration function is identity, so if the excess
Φ-risk goes to zero at a certain rate, the excess risk goes to zero at the same rate,
whereas for smooth losses, the upper-bound only ensures a (worse) rate with a square
root. Therefore, when going from the excess Φ-risk to the excess risk, that is, after
thresholding the function g at zero, the observed rates may be worse.

• Note that the noiseless case where η(x) ∈ {0, 1} (zero Bayes risk) leads to stronger
calibration function, as well as a series of intermediate “low-noise” conditions (see
Bartlett et al., 2006, for details).

Impact on approximation errors (�). for the same classification problem, several
convex surrogates can be used. While the Bayes classifier is always the same, that is,
f ∗(x) = sign(2η(x) − 1), the minimizer of the testing Φ-risk will be different. For exam-
ple, for the hinge loss, the minimizer g(x) is exactly sign(2η(x)− 1), while for losses of the
form like above Φ(v) = a(v)− v, we have a′(g(x)) = 2η(x)− 1, and thus for the square loss
g(x) = 2η(x) − 1, while for the logistic loss, one can check that g(x) = atanh(2η(x) − 1)
(hyperbolic arc tangent). See example below, with X = R and Gaussian class conditional
densities.



4.2. RISK MINIMIZATION DECOMPOSITION 67

-5 0 5
0

0.1

0.2

0.3

0.4
class conditional densities

class 1

class -1

-5 0 5
-4

-2

0

2

4
optimal scores

2 (x) - 1

sign( 2 (x) - 1 )

atanh( 2 (x) - 1 )

The choice of surrogates will have an impact since to attain the minimal Φ-risk, different
assumptions are needed on the class of functions used for empirical risk minimization, that
is, sign(2η(x)− 1) has to be in the class of functions we use (for the hinge loss), or 2η(x)− 1
for the square loss, or atanh(2η(x)− 1) for the logistic loss.

Exercise 4.2 For the logistic loss, show that for data generated as x|y = 1 and x|y = −1
Gaussians with the same covariance matrix, the function g(x) minimizing the expected logistic
loss is affine in x (this model is often referred to as linear discriminant analysis).

4.2 Risk minimization decomposition

We consider a family F of prediction functions f : X→ Y. Empirical risk minimization aims
at finding

f̂ ∈ arg min
f∈F

R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi)).

We can decompose the risk as follows into two terms:

R(f̂)−R∗ =
{
R(f̂)− inf

f ′∈F
R(f ′)}+

{
inf
f ′∈F

R(f ′)−R∗
}

= estimation error + approximation error

A classical example is the situation where the family of functions is parameterized by a
subset of Rd, that is, F = {fθ, θ ∈ Θ}, for Θ ⊂ Rd. This includes neural networks (Chapter 9)
and the simplest case of linear models of the form fθ(x) = θ⊤ϕ(x), for a certain feature
vector ϕ(x) (such as in Chapter 3). We will use linear models with Lipschitz-continuous loss
functions as a motivating example, most often with constraints or penalties on the ℓ2-norm
‖θ‖2.

We now turn separately to the approximation and estimation errors.
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4.3 Approximation error

Bounding the approximation error corresponds to bounding inf
f∈F

R(f)− R∗ and requires as-

sumptions on the Bayes predictor (sometimes also called the “target function”) f ∗ (and
hence on the testing distribution) to achieve non-trivial learning rates.

In this section, we will focus on F = {fθ, θ ∈ Θ}, for Θ ⊂ Rd (we will consider infinite-
dimensions in Chapter 7) and convex Lipschitz-continuous losses, assuming that θ∗ is the
minimizer of R(fθ) over θ ∈ Rd (typically, it does not belong to Θ). This implies that the
approximation error decomposes into

inf
θ∈Θ

R(fθ)−R∗ =
(

inf
θ∈Θ

R(fθ)− inf
θ∈Rd

R(fθ)
)

+
(

inf
θ∈Rd

R(fθ)− R∗
)
.

• The second term infθ∈Rd R(fθ)−R∗ is the incompressible approximation error coming
from the chosen set of models fθ.

• The function θ 7→ R(fθ) − infθ∈Rd R(fθ) is a positive function on Rd, which can be
typically upperbounded by a certain norm (or its square) Ω(θ − θ∗), and we can see
the first term above infθ∈Θ R(fθ)− infθ∈Rd R(fθ) as a “distance” between θ∗ and Θ.

For example, if the loss which is considered is G-Lipschitz-continuous with respect to
the second variable (which is possible for regression or when using a convex surrogate
for binary classification as presented in Section 4.1), we have,

R(fθ)−R(fθ′) = E
[
ℓ(y, fθ(x))− ℓ(y, fθ′(x))

]
6 GE

[
|fθ(x)− fθ′(x)|

]
,

and thus this second part of the approximation error is upper bounded by G times
the distance between fθ∗ and F = {fθ, θ ∈ Θ}, for a particular distance d(θ, θ′) =
E
[
|fθ(x)− fθ′(x)|

]
.

Θ

θ∗

A classical example will be fθ(x) = θ⊤ϕ(x), and Θ = {θ ∈ Rd, ‖θ‖2 6 D}, leading
to the upper bound GE

[
‖ϕ(x)‖2

]
(‖θ∗‖2 − D)+, which is equal to zero if ‖θ∗‖2 6 D

(well-specified model).

• Exercise 4.3 Perform the same computation for the ℓ1-norm on Θ.
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4.4 Estimation error

We will consider general techniques and apply them to linear models with bounded ℓ2-norm
by D, and G-Lipschitz-losses for illustration.

The estimation error is often decomposed using g ∈ arg ming∈F R(g) the minimizer of the

expected risk for our class of models and f̂ ∈ arg minf∈F R̂(f) the minimizer of the empirical
risk:

R(f̂)− inf
f∈F

R(f) = R(f̂)−R(g) =
{
R(f̂)− R̂(f̂)

}
+
{
R̂(f̂)− R̂(g)

}
+
{
R̂(g)− R(g)

}

6 sup
f∈F

{
R(f)− R̂(f)

}
+
{
R̂(f̂)− R̂(g)

}
+ sup

f∈F

{
R̂(f)−R(f)

}

6 sup
f∈F

{
R(f)− R̂(f)

}
+ 0 + sup

f∈F

{
R̂(f)− R(f)

}
by definition of f̂ .

This is often further upper-bounded by 2 supf∈F

∣∣∣R̂(f)−R(f)
∣∣∣. We can make the following

observations:

• When f̂ is not the global minimizer of R̂ but simply satisfies R̂(f̂) 6 inff∈F R̂(f) + ε,
then the optimization error ε has to be added to the bound above (see more details in
Chapter 5).

• The uniform deviation grows with the “size” of F, and usually decays with n. See
examples below.

• A key issue is that we need a uniform control for all f ∈ F: with a single f , we could
apply any concentration inequality to the random variable ℓ(y, f(x)) to obtain a bound
in O(1/

√
n); however, when controlling the maximal deviations over many functions

f , there is always a small chance that one of these deviations get large. We thus need
an explicit control of this phenomenon, which we now tackle, by first showing that we
can focus on the expectation alone.

4.4.1 Application of MacDiarmid’s inequality

Let H(z1, . . . , zn) = supf∈F

{
R(f) − R̂(f)

}
, where the random variables zi = (xi, yi) are

independent and identically distributed, and R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)). We let ℓ∞ denote

the maximal absolute value of the loss functions for all (x, y) in the support of the data
generating distribution and f ∈ F.

When changing a single zi ∈ X× Y into z′i ∈ X× Y, the deviation in H is almost surely
at most 2

n
ℓ∞.
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Thus, applying Mac Diarmid inequality (see Section 1.2.2 in Chapter 1), with probability
greater than 1− δ, we have:

H(z1, . . . , zn)− E[H(z1, . . . , zn)] 6
ℓ∞
√

2√
n

√
log

1

δ
.

We thus only need to bound the expectation of supf∈F

{
R(f)−R̂(f)

}
and of supf∈F

{
R̂(f)−

R(f)
}

(which will typically have the same bound), and add on top of it ℓ∞
√
2√

n

√
log 1

δ
.

We now provide a series of bounds to bound these expectations, from simple to more
refined, culminating in Rademacher complexities in Section 4.5.

4.4.2 Easy case I: quadratic functions

We will show what happens with a quadratic loss function and an ℓ2-ball constraint. We
remember that in this case ℓ(y, θ⊤ϕ(x)) = (y − θ⊤ϕ(x))2. From that we get

R̂(f)−R(f) = θ⊤
(1

n

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ − E

[
ϕ(x)ϕ(x)⊤

])
θ

−2θ⊤
(1

n

n∑

i=1

yiϕ(xi)− E
[
yϕ(x)

])
+
( 1

n

n∑

i=1

y2i − E
[
y2
])
.

Hence, the supremum can be upper bounded in closed form as

sup
‖θ‖26D

|R(f)− R̂(f)| 6 D2
∥∥ 1

n

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ − E

[
ϕ(x)ϕ(x)⊤

]∥∥
op

+2D
∥∥ 1

n

n∑

i=1

yiϕ(xi)− E
[
yϕ(x)

]∥∥
2

+
∣∣ 1
n

n∑

i=1

y2i − E
[
y2
]∣∣,

where ‖M‖op is the operator norm of the matrix M defined as ‖M‖op = sup‖u‖2=1 ‖Mu‖2.
Thus, in order to get a uniform bound, we simply need to upper-bound the three non-

uniform expectations of deviations, and thus of order O(1/
√
n), and we get an overall uniform

deviation bound. This particular case gives the impression that it should be possible to get
such a rate in O(1/

√
n) for other types of losses than the quadratic loss. However, closed

form calculations are not possible, so we need to introduce new tools.

Exercise 4.4 (�) Provide an explicit bound on sup‖θ‖26D |R(f)−R̂(f)| above, and compare it
to the use of Rademacher complexities in Section 4.5. Concentration of averages of matrices
from Section 1.2.5 can be used.

△! Note that from now on, in the sections below, we do not require the loss to be convex.
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4.4.3 Easy case II: Finite number of models

We assume in this section that the loss functions are bounded between −ℓ∞ and ℓ∞, using
the upper-bound 2 supf∈F

∣∣R̂(f)− R(f)
∣∣ on the estimation error, and the union bound:

P

(
R(f̂)− inf

f∈F
R(f) > t

)
6 P

(
2 sup

f∈F

∣∣R̂(f)− R(f)
∣∣ > t

)
6
∑

f∈F
P

(
2
∣∣R̂(f)− R(f)

∣∣ > t
)
.

We have, for f ∈ F fixed, R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(yi)), and we can apply Hoeffding’s inequality

from Section 1.2.1 to bound each P

(
2
∣∣R̂(f)− R(f)

∣∣ > t
)

, leading to

P

(
R(f̂)− inf

f∈F
R(f) > t

)
6

∑

f∈F
2 exp(−nt2/2ℓ2∞) = 2|F| exp(−nt2/2ℓ2∞).

Thus, by setting δ = 2|F| exp(−nt2/2ℓ2∞), and finding the corresponding t, with probability
greater than 1− δ, we get:

R(f̂)− R(f) 6
2ℓ∞√
n

√
log

2|F|
δ

=
2ℓ∞√
n

√
log(|F|) + log

2

δ
6 2ℓ∞

√
log(|F|)

n
+

2ℓ∞√
n

√
log

2

δ
.

Exercise 4.5 (�) In terms of expectation, we get (using the proof of the max of random
variables from Section 1.2.4 in Chapter 2, which applies because bounded random variables
are sub-Gaussian):

E
[
R(f̂)− inf

f∈F
R(f)

]
6 2E

[
sup
f∈F

∣∣∣R̂(f)−R(f)
∣∣∣
]
6 ℓ∞

√
2 log(|F|)

n
.

Thus, according to the bound, when the logarithm of the number of models is small
compared to n, learning is possible. This is a first generic control of the uniform deviations.

△! Note that this is only an upper-bound and learning is possible with infinitely many
models (which is the most classical scenario). See below.

4.4.4 Beyond finite number models through covering numbers (�)

The simple idea behind covering numbers is to deal with function spaces with infinitely many
elements by approximating them through a finite number of elements. This is often referred
to as an “ε-net argument.”

We first need to assume that the risks R and R̂ are regular, for example, that they are
G-Lipschitz-continuous with respect to some distance d on F.
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Covering numbers. We assume there exists m = m(ε) elements f1, . . . , fm such that for
any f ∈ F, ∃i ∈ {1, . . . , n} such that d(f, fi) 6 ε. The minimal possible number m(ε) is the
covering number of F at precision ε. See an example below in two dimensions of a covering
with Euclidean balls.

The covering number m(ε) is a non-increasing function of ε. Typically, m(ε) grows with ε as
a power ε−d when ε→ 0, where d is the underlying dimension. Indeed, for the ℓ∞-metric, if
(in a certain parameterization) F is included in a ball of radius c in the ℓ∞-ball of dimension
d, it can be easily covered by (c/ε)d cubes of length 2ε. See below.

2ε

2c

Given that all norms are equivalent in dimension d, we get the same dependence in d for
all bounded subsets of a finite-dimensional vector space.

For some sets (e.g., all Lipschitz-continuous functions in d dimensions) logm(ε) grows
faster, for example as ε−d. See, e.g., Wainwright (2019).
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ε-net argument. Given a cover of F, for all f ∈ F, and with (fi)i∈{1,...,m(ε) the associated
cover elements,

∣∣R̂(f)− R(f)
∣∣ 6

∣∣R̂(f)− R̂(fi)
∣∣+
∣∣R̂(fi)−R(fi)

∣∣+
∣∣R(fi)− R(f)

∣∣

6 2Gε+ sup
i∈{1,...,m(ε)}

∣∣R̂(fi)−R(fi)
∣∣.

This implies that, using bounds on the expectation of the maximum (Section 1.2.4), which
apply because bounded random variables are sub-Gaussian (with the sub-Gaussianity pa-
rameter proportional to the almost sure bound):

E

[
sup
f∈F

∣∣∣R̂(f)− R(f)
∣∣∣
]
6 2Gε+ E

[
sup

i∈{1,...,m(ε)}

∣∣∣R̂(fi)− R(fi)
∣∣∣
]
6 2Gε+ ℓ∞

√
2 log(2m(ε)))

n
.

Therefore, if m(ε) ∼ ε−d, ignoring constants, we need to balance ε+
√
d log(1/ε)/n, which

leads to, with a choice of ε proportional to 1/
√
n, to a rate proportional

√
(d/n) log(n), a

rate essentially proportional to
√
d/n. Unfortunately, this often leads to a non-optimal

dependence on dimension.

One very powerful tool that avoids these undesired dependences on dimension is Rademacher
complexities (Boucheron et al., 2005) or Gaussian complexities (Bartlett and Mendelson,
2002). In this chapter, we will focus on Rademacher complexity.

4.5 Rademacher complexity

We consider n independent and identically distributed random variables z1, . . . , zn ∈ Z, and
a class H of functions from Z to R. In our context, the space of functions is related to the
learning problem as: H = {(x, y) 7→ ℓ(y, f(x)), f ∈ F}.

Our goal in this section is to provide an upper-bound on supf∈F R(f) − R̂(f), which
happens to be equal to

sup
h∈H

E[h(z)]− 1

n

n∑

i=1

h(zi),

where E[h(z)] denotes the expectation with respect to a variable having the same distribution
as all zi’s.

We denote D = {z1, . . . , zn} the data. We define the Rademacher complexity of the class
of functions H from Z to R:

Rn(H) = Eε,D

(
sup
h∈H

1

n

n∑

i=1

εih(zi)
)
, (4.8)
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where ε ∈ Rn is a vector of independent Rademacher random variable (that is taking values
−1 or 1 with equal probabilities), which is also independent of D. It is a deterministic
quantity that only depends on n and H.

In words, the Rademacher complexity is equal to the expectation of the maximal dot-
product between values of a function h at the observations zi and random labels. It is a
measure of the “capacity” of the set of functions H. We will see later that it can be computed
in many interesting cases and leads to interesting and powerful bounds.

4.5.1 Symmetrization

First, we relate it to the uniform deviation through a general “symmetrization” property,
which shows that the Rademacher complexity directly controls the expected uniform devia-
tion.

Proposition 4.2 (symmetrization) Given the Rademacher complexity of H defined in
Eq. (4.8), we have:

E

[
sup
h∈H

(
1

n

n∑

i=1

h(zi)− E[h(z)]

)]
6 2Rn(H) and E

[
sup
h∈H

(
E[h(z)] − 1

n

n∑

i=1

h(zi)

)]
6 2Rn(H).

Proof (�) Let D′ = {z′1, . . . , z′n} be an independent copy of the data D = {z1, . . . , zn}. Let
(εi)i∈{1,...,n} be i.i.d. Rademacher random variables, which are also independent of D and D′.
Using that for all i in {1, . . . , n}, E[h(z′i)|D] = E[h(z)], we have:

E

[
sup
h∈H

(
E[h(z)] − 1

n

n∑

i=1

h(zi)

)]
= E

[
sup
h∈H

(
1

n

n∑

i=1

E[h(z′i)|D]− 1

n

n∑

i=1

h(zi)

)]

= E

[
sup
h∈H

(
1

n

n∑

i=1

E [h(z′i)− h(zi)|D]

)]
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by definition of the independent copy D′. Then

E

[
sup
h∈H

(
E[h(z)] − 1

n

n∑

i=1

h(zi)

)]
6 E

[
E

(
sup
h∈H

(
1

n

n∑

i=1

[h(z′i)− h(zi)]

) ∣∣∣∣D
)]

using that the supremum of the expectation is less than expectation of the supremum

= E

[
sup
h∈H

(
1

n

n∑

i=1

[h(z′i)− h(zi)]

)]
by the towering law of expectation

= E

[
sup
h∈H

(
1

n

n∑

i=1

εi (h(z′i)− h(zi))

)]
by symmetry of the law of εi,

6 E

[
sup
h∈H

(
1

n

n∑

i=1

εi (h(zi))

)]
+ E

[
sup
h∈H

(
1

n

n∑

i=1

εi (−h(zi))

)]

= 2E

[
sup
h∈H

(
1

n

n∑

i=1

εih(zi)

)]
= 2Rn(H).

The reasoning is essentially identical for E
[
suph∈H

(
1
n

∑n
i=1 h(zi)− E[h(z)]

)]
6 2Rn(H).

Exercise 4.6 If H is finite, and so that, for all h ∈ H and almost all z, |h(z)| 6 ℓ∞,
compute an upperbound on Rn(H) and relate it to Section 4.4.3.

4.5.2 Lipschitz-continuous losses

A particularly appealing property in our context is the following property, sometimes called
the “contraction principle,” using a simple proof from (Meir and Zhang, 2003, Lemma 5).

Proposition 4.3 (Contraction principle - Lipschitz-continuous functions) Given any
functions b, ai : Θ → R (no assumption) and ϕi : R → R any 1-Lipschitz-functions, for
i = 1, . . . , n, we have, for ε ∈ Rn a vector of independent Rademacher random variables:

Eε

[
sup
θ∈Θ

b(θ) +
n∑

i=1

εiϕi(ai(θ))

]
6 Eε

[
sup
θ∈Θ

b(θ) +
n∑

i=1

εiai(θ)

]
.

Proof (�) We consider a proof by induction on n. The case n = 0 is trivial, and we show

how to go from n > 0 to n+ 1. We thus consider Eε1,...,εn+1

[
sup
θ∈Θ

b(θ) +
n+1∑

i=1

εiϕi(ai(θ))

]
and
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compute the expectation with respect to εn+1 explicitly, by considering the two potential
values with probability 1/2:

Eε1,...,εn+1

[
sup
θ∈Θ

b(θ) +

n+1∑

i=1

εiϕi(ai(θ))

]

=
1

2
Eε1,...,εn

[
sup
θ∈Θ

b(θ)+
n∑

i=1

εiϕi(ai(θ)) + ϕn+1(an+1(θ))

]
+

1

2
Eε1,...,εn

[
sup
θ∈Θ

b(θ)+
n∑

i=1

εiϕi(ai(θ))− ϕn+1(an+1(θ))

= Eε1,...,εn

[
sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+

n∑

i=1

εi
ϕi(ai(θ)) + ϕi(ai(θ

′))

2
+
ϕn+1(an+1(θ))− ϕn+1(an+1(θ

′))

2

]
,

by assembling the term together. By taking the supremum over (θ, θ′) and (θ′, θ), we get

Eε1,...,εn

[
sup

θ,θ′∈Θ

b(θ) + b(θ′)

2
+

n∑

i=1

εi
ϕi(ai(θ)) + ϕi(ai(θ

′))

2
+
|ϕn+1(an+1(θ))− ϕn+1(an+1(θ

′))|
2

]

6 Eε1,...,εn

[
sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+

n∑

i=1

εi
ϕi(ai(θ)) + ϕi(ai(θ

′))

2
+
|an+1(θ)− an+1(θ

′)|
2

]
,

using Lipschitz-continuity. We can redo the exact same sequence of equalities with ϕn+1

being the identity, to obtain that the last expression above is equal to

Eε1,...,εnEεn+1

[
sup
θ∈Θ

b(θ) + εn+1an+1(θ) +

n∑

i=1

εiϕi(ai(θ))

]

6 Eε1,...,εn,εn+1

[
sup
θ∈Θ

b(θ) + εn+1an+1(θ) +
n∑

i=1

εiai(θ)

]
by the induction hypothesis,

which leads to the desired result.

We can apply the contraction principle above to supervised learning situations where
ui 7→ ℓ(yi, ui) is G-Lipschitz-continuous for all i almost surely (which is possible for regression
or when using a convex surrogate for binary classification as presented in Section 4.1), leading
to:

Eε

(
sup
f∈F

1

n

n∑

i=1

εiℓ(yi, f(xi))
∣∣ D
)

6 G · Eε

(
sup
f∈F

1

n

n∑

i=1

εif(xi)
∣∣ D
)

by the contraction principle,

which leads to
Rn(H) 6 G ·Rn(F). (4.9)

Thus the Rademacher complexity of the class of prediction functions controls the uniform
deviations of the empirical risk. We now consider simple examples.
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4.5.3 Ball-constrained linear predictions

We now assume that F = {fθ(x) = θ⊤ϕ(x), Ω(θ) 6 D} where Ω is a norm on Rd. We denote
by Φ ∈ Rn×d the design matrix. We have

Rn(F) = E

[
sup

Ω(θ)6D

(
1

n

n∑

i=1

εiθ
⊤ϕ(xi)

)]
= E

[
sup

Ω(θ)6D

1

n
ε⊤Φθ

]

=
D

n
E

[
Ω∗(Φ⊤ε)

]
,

where Ω∗(u) = supΩ(θ)61 u
⊤θ is the dual norm of Ω. For example, when Ω is the ℓp-norm,

with p ∈ [1,∞], then Ω∗ is the ℓq-norm, where q is such that 1
p

+ 1
q

= 1, e.g., ‖ · ‖∗2 = ‖ · ‖2,
‖ · ‖∗1 = ‖ · ‖∞, and ‖ · ‖∗∞ = ‖ · ‖1. For more details, see Boyd and Vandenberghe (2004).

Thus, computing Rademacher complexities is equivalent to computing expectation of
norms. When Ω = ‖ · ‖2, we get:

Rn(F) =
D

n
E
[
‖Φ⊤ε‖2

]

6
D

n

√
E [‖Φ⊤ε‖22] by Jensen’s inequality,

=
D

n

√
E [tr[Φ⊤εε⊤Φ]]

=
D

n

√
E [tr[Φ⊤Φ]] using that E[εε⊤] = I,

=
D

n

√√√√
n∑

i=1

E(Φ⊤Φ)i =
D

n

√√√√
n∑

i=1

E‖ϕ(xi)‖22 =
D√
n

√
E‖ϕ(x)‖22. (4.10)

We thus obtain a dimension-independent Rademacher complexity that we can use in the
summary below.

Exercise 4.7 Upper-bound the Rademacher complexity for Ω = ‖ · ‖1.

4.5.4 Putting things together (linear predictions)

With all the elements above, we can now propose the following general result (where no
convexity of the loss function is assumed).

Proposition 4.4 (Estimation error) Assume a G-Lipschitz-continuous loss function, lin-
ear prediction functions with F = {fθ(x) = θ⊤ϕ(x), ‖θ‖2 6 D}, where E‖ϕ(x)‖22 6 R2. Let
f̂ = fθ̂ ∈ F be the minimizer of the empirical risk, then:

E
[
R(fθ̂)

]
6 inf

‖θ‖26D
R(fθ) +

2GRD√
n

.
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Proof Using Prop. 4.2, Eq. (4.9) and Eq. (4.10), we get the desired result.

If we assume that there exists a minimizer θ∗ of R(fθ) over Rd, the approximation error is
upper-bounded by

inf
‖θ‖26D

R(fθ)−R(fθ∗) 6 G inf
‖θ‖26D

E
[
|fθ(x)− fθ∗(x)|

]

= G inf
‖θ‖26D

E
[
|ϕ(x)⊤(θ − θ∗)|

]

6 G inf
‖θ‖26D

‖θ − θ∗‖2E
[
‖ϕ(x)‖22

]
6 GR inf

‖θ‖26D
‖θ − θ∗‖2.

This leads to

E
[
R(fθ̂)

]
− R(fθ∗) 6 GR inf

‖θ‖26D
‖θ − θ∗‖2 +

2GRD√
n

= GR(‖θ∗‖2 −D)+ +
2GRD√

n
.

We see that for D = ‖θ∗‖2, we obtain the bound 2GR‖θ∗‖2√
n

, but this setting requires to

know ‖θ∗‖2 which is not possible in practice. If D is too large, the estimation error gets
larger (overfitting), while if D is too small, the approximation error can quickly kick in (with
a value that does not go to zero when n tends to infinity), leading to underfitting.

Exercise 4.8 We consider a learning problem with 1-Lipschitz-continuous loss (with respect
to the second variable), with a function class fθ(x) = θ⊤ϕ(x), with ‖θ‖1 6 D, and ϕ : X→ Rd

with ‖ϕ(x)‖∞ almost surely less than R. Given the expected risk R(fθ) and the empirical

risk R̂(fθ). Compute an upper-bound of

E

[
sup

‖θ‖161

|R(fθ)− R̂(fθ)|
]
.

4.5.5 From constrained to regularized estimation (�)

In practice, it is preferable to penalize by the norm Ω(θ) = ‖θ‖2 instead of constraining (the
main reasons being that the hyperparameter is easier to find and the optimization is easier).

For simplicity, we only consider the ℓ2-norm in this section.

We now denote θ̂λ the minimizer of

R̂(fθ) +
λ

2
‖θ‖22. (4.11)

If the loss is always positive, then

λ

2
‖θ̂λ‖22 6 R̂(fθ̂λ) +

λ

2
‖θ̂λ‖22 6 R̂(f0),
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leading to a bound ‖θ̂λ‖2 = O(1/
√
λ). Thus, with D = O(1/

√
λ) in the bound above, this

leads to a deviation of O(1/
√
λn), which is not optimal.

We now cite without proof an interesting stronger result using the strong convexity of
the squared ℓ2-norm.

Proposition 4.5 (Fast rates for regularized objectives (Sridharan et al., 2009)) Assume
a G-Lipschitz-continuous convex loss function, linear prediction functions with F = {fθ(x) =
θ⊤ϕ(x), ‖θ‖2 6 D}, where E‖ϕ(x)‖22 6 R2. Let θ̂λ ∈ Rd be the minimizer of the regularized
empirical risk in Eq. (4.11), then:

E
[
R(fθ̂λ)

]
6 inf

θ∈Rd

{
R(fθ) +

λ

2
‖θ‖22

}
+

32G2R2

λn
.

Note that we obtain a “fast rate” in O(R2/(λn)), which has a better dependence in n,
but depends on λ, which can be very small in practice. One classical choice of λ that we
have seen in Chapter 3 also applies here, as λ ∝ GR√

n‖θ∗‖ , leading to the slow rate

E
[
R(fθ̂λ)

]
6 R(fθ∗) +O

(GR√
n
‖θ∗‖2

)
.

This is a result similar to the one obtained in Chapter 3, but now for all Lipschitz-continuous
losses.

Extensions and improvements. When dealing with binary classification, or more gen-
erally discrete outputs, further analysis can be carried through, with potentially different
convergence rates for the convex surrogate which is used and the original loss function
(i.e., after thresholding, where sometimes exponential rates can be obtained). This is of-
ten done under so-called “low noise” conditions (see, e.g., Koltchinskii and Beznosova, 2005;
Audibert and Tsybakov, 2007).

There are other ways of obtaining generic generalization bounds like presented in this
section, such as PAC-Bayesian analysis (Catoni, 2007; Zhang, 2006) or stability-based argu-
ments (Bousquet and Elisseeff, 2002).

4.6 Relationship with asymptotic statistics (�)

In this last section, we will relate the non-asymptotic analysis presented in this chapter to
results from asymptotic statistics (see the comprehensive book by Van der Vaart (2000),
which presents this large literature).
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To make this concrete, we will assume that we have a set of models F = {fθ : X→ R, θ ∈
R

d} parameterized by a vector θ ∈ R
d, and we consider the empirical risk and expected risks

(with a slight overloading of notations):

R(θ) = R(fθ) = E
[
ℓ(y, fθ(x))

]
and R̂(θ) = R̂(fθ) =

1

n

n∑

i=1

ℓ(yi, fθ(xi)).

We assume that we have a loss function ℓ : Y × R → R (such as for regression or any of
the convex surrogates for classification), which is sufficiently differentiable with respect to
the second variable, so that results from Van der Vaart (2000) apply (e.g., Theorems 5.21 or
5.41 on “M-estimation”, which cover empirical risk minimization). In this section, we will
only report their final result and provide an intuitive justification.

We assume that θ∗ ∈ Rd is a minimizer of R(θ), and that the Hessian R′′(θ∗) is positive-
definite (it has to be positive semi-definite as θ∗ is a minimizer, we assume invertibility on
top of it).

We let θ̂n be a minimizer of R̂. Since R′(θ∗) = 0, and R̂′(θ∗) = 1
n

∑n
i=1

∂ℓ(y,fθ(x))
∂θ

, by the

law of large numbers, R̂′(θ∗) tends to R′(θ∗) = 0 (e.g., almost surely), and we should thus

expect that θ̂n (which is defined through R̂′(θ̂n) = 0) tends to θ∗ (all these statements can
be made rigorous, see Van der Vaart (2000)).

Then, a Taylor expansion of R̂′ around θ∗ leads to

0 = R̂′(θ̂n) ≈ R̂′(θ∗) + R̂′′(θ∗)(θ̂n − θ∗).

By the law or large numbers, R̂′′(θ∗) tends to H(θ∗) = R′′(θ∗) when n tends to infinity, and
thus we obtain:

θ̂n − θ∗ ≈ R′′(θ∗)
−1R̂′(θ∗) = H(θ∗)

−1R̂′(θ∗).

Moreover, R̂′(θ∗) is the average of n i.i.d. random vectors and by the central limit theorem, it

is asymptotically normal with mean zero and covariance matrix
1

n
E

[(∂ℓ(y, fθ(x))

∂θ

)(∂ℓ(y, fθ(x))

∂θ

)⊤∣∣
θ=θ∗

]
=

1

n
G(θ∗). Therefore, we (intuitively) obtain that θ̂n is asymptotically normal with mean θ∗

and covariance matrix
1

n
H(θ∗)

−1G(θ∗)H(θ∗)
−1.

This asymptotic result has the nice consequence that:

E
[
‖θ̂n − θ∗‖22

]
∼ 1

n
tr
[
H(θ∗)

−1G(θ∗)H(θ∗)
−1
]

E
[
R(θ̂n)−R(θ∗)

]
∼ 1

n
tr
[
H(θ∗)

−1G(θ∗)
]
.

For example, for well specified linear regression (like analyzed in Chapter 3), it turns out
that we have G(θ∗) = σ2H(θ∗) (proof left as an exercise), and thus we recover the rate σ2d/n.



4.6. RELATIONSHIP WITH ASYMPTOTIC STATISTICS (�) 81

Benefits of the asymptotic analysis. As shown above, the asymptotic analysis gives
a precise picture of the asymptotic behavior of empirical risk minimization. Much more
than simply providing an upper-bound on E

[
R(θ̂n) − R(θ∗)

]
, it gives also a limit normal

distribution for θ̂n, and a fast rate as O(1/n). Moreover, because we have limits, we can
compare limits between various learning algorithms and claim (asymptotic) superiority or
inferiority of one method over another, which comparing upper-bounds cannot achieve.

Pitfalls of the asymptotic analysis. The main drawback of this analysis is that it
is... asymptotic. That is, n tends to infinity and it is not possible to tell without further
analysis when the asymptotic behavior will kick in. Sometimes, this is for reasonably small n,
sometimes for large n. Further asymptotic expansions can be carried out, but small sample
effects are hard to characterize, in particular when the underlying dimension d gets large.

Bridging the gap. Studying the validity of the asymptotic expansion described above can
be done in several ways. See, e.g., Ostrovskii and Bach (2021) (and references therein) for
finite-dimensional models, and Chapter 7 for results similar to σ2d/n when the dimension of
the feature space gets infinite.
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Chapter 5

Optimization for machine learning

Chapter summary

-Gradient descent: the workhorse first-order algorithm for optimization, which converges
exponentially fast for well-conditioned convex problems.
-Stochastic gradient descent (SGD): the workhorse first-order algorithm for large scale
machine learning, which converges as 1/t or 1/

√
t, where t is the number of iterations.

-Generalization bounds through stochastic gradient descent: with only a single pass on the
data, there is no risk of overfitting and we obtain generalization bounds for unseen data.
-Variance reduction: when minimizing strongly-convex finite sums, this class of algorithms
is exponentially convergent while having a small iteration complexity.

In this chapter, we present optimization algorithms based on gradient descent and analyze
their performance, mostly on convex functions. We will consider generic algorithms that have
applications beyond machine learning, and algorithms dedicated to machine learning (such
as stochastic gradient methods). See Nesterov (2018); Bubeck (2015) for further details.

5.1 Optimization in machine learning

In supervised machine learning, we are given n i.i.d. samples (xi, yi), i = 1, . . . , n of a couple
of random variables (x, y) on X × Y and the goal is to find a predictor f : X → R with a
small risk

R(f) := E[ℓ(y, f(x))]

where ℓ : Y×R→ R is a loss function. This loss is typically convex in the second argument
(see Chapter 4), which is thus considered as a weak assumption.

83
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In the empirical risk minimization approach described in Chapter 4, we choose the
predictor by minimizing the empirical risk over a parameterized set of predictors, poten-
tially with regularization. For a parameterization {fθ}θ∈Rd and a regularizer Ω : Rd → R

(e.g., Ω(θ) = ‖θ‖22 or Ω(θ) = ‖θ‖1), this requires to minimize

F (θ) :=
1

n

n∑

i=1

ℓ(yi, fθ(xi)) + Ω(θ). (5.1)

In optimization, the function F : Rd → R is called the objective function.

In general, the minimizer has no closed form. Even when it has one (e.g., linear predictor
and square loss in Chapter 3), it could be expensive to compute for large problems. We thus
resort to iterative algorithms.

Accuracy of iterative algorithms. Solving optimization problems to high accuracy is
computationally expensive, and the goal is not to minimize the training objective, but the
error on unseen data.

Then, which accuracy is satisfying in machine learning? If the algorithm returns θ̂ and
θ∗ ∈ arg minθ R(fθ), we have the risk decomposition (where the approximation error due to
the use of a specific set of models fθ, θ ∈ Θ is ignored):

R(fθ̂)− inf
θ∈Rd

R(fθ) =
{
R(fθ̂)− R̂(fθ̂)

}

︸ ︷︷ ︸
6 estimation error

+
{
R̂(fθ̂)− R̂(fθ∗)

}

︸ ︷︷ ︸
6 optimization error

+
{
R̂(fθ∗)− R(fθ∗)

}

︸ ︷︷ ︸
6 estimation error

.

It is thus sufficient to reach an optimization accuracy of the order of the estimation error
(usually of the order O(1/

√
n) or O(1/n), see Chapter 3 and Chapter 4).

In this chapter, we will first look at the minimization without focusing on machine learn-
ing problems (Section 5.2), with both smooth and non-smooth objective functions. We will
then look at stochastic gradient descent in Section 5.4, which can be used to obtain bounds
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on both the training risk and the testing risk. We then briefly present variance reduction in
Section 5.4.2.

△!
θ∗ may mean different things in optimization and machine learning: minimizer
of the regularized empirical risk, or minimizer of the expected risk. For the sake
of clarity, we will use the notation η∗ for the minimizer of empirical (potentially
regularized) risk, that is, when we look at optimization problems, and θ∗ for the
minimizer of the expected risk, that is, when we look at statistical problems.

△! Sometimes, we mention solving a problem with high precision. This corresponds
to a low optimization error.

5.2 Gradient descent

Suppose we want to solve, for a function F : Rd → R, the optimization problem

min
θ∈Rd

F (θ).

We assume that we are given access to certain “oracles”: the k-th-order oracle corresponds
to the access to: θ 7→ (F (θ), F ′(θ), . . . , F (k)(θ)), that is all partial derivatives up to order k.
All algorithms will call these oracles and thus their computational complexity will depend
directly on the complexity of this oracle. For example, for least-squares with a design matrix
in Rn×d, computing a single gradient of the empirical risk costs O(nd).

In this section, for the algorithms and proofs, we do not assume that the function F is
the regularized empirical risk, but this situation will be our motivating example throughout.
We will study the following first-order algorithm.

Algorithm 5.1 (Gradient descent (GD)) Pick θ0 ∈ R
d and for t > 1, let

θt = θt−1 − γtF ′(θt−1),

for a well (potentially adaptively) chosen step-size sequence (γt)t>1.

For machine learning problems where the empirical risk is minimized, computing the
gradient F ′(θt−1) requires computing all gradients of θ 7→ ℓ(yi, fθ(xi)), and averaging them.

There are many ways to choose the step-size γt, either constant, either decaying, either
through a line search (see, e.g., https://en.wikipedia.org/wiki/Line_search). In prac-
tice, using some form of line search is strongly advantageous and is implemented in most

https://en.wikipedia.org/wiki/Line_search
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applications. In this chapter, since we want to focus on the simplest algorithms and proofs,
we will focus on step-sizes that depend explicitly on problem constants, and sometimes on
the iteration number. When gradients are not available, gradient estimates may be built
from function values (see, e.g., Nesterov and Spokoiny, 2017).

We first start with the simplest example, namely quadratic convex functions.

5.2.1 Simplest analysis: ordinary least-squares

We start with a case where the analysis is explicit: ordinary least squares (see Chapter 3
for the statistical analysis). Let Φ ∈ Rn×d be the design matrix and y ∈ Rn the vector of
responses. Least-squares estimation amounts to finding a minimizer η∗ of

F (θ) =
1

2n
‖Φθ − y‖22.

△! A factor of 1
2

has been added compared to Chapter 3 to get nicer looking gradients.

The gradient of F is F ′(θ) = 1
n
Φ⊤(Φθ − y) = 1

n
Φ⊤Φθ − 1

n
Φ⊤y. Thus, denoting H =

1
n
Φ⊤Φ ∈ Rd×d the Hessian matrix (equal for θ), minimizers η∗ are characterized by

Hη∗ =
1

n
Φ⊤y.

Since 1
n
Φ⊤y ∈ Rd is in the column space of H , there is always a minimizer, but unless H is

invertible, the minimizer is not unique. But all minimizers η∗ have the same function value
F (η∗), and we have, from a simple exact Taylor expansion (and using F ′(η∗) = 0):

F (θ)− F (η∗) = F ′(η∗)
⊤(θ − η∗) +

1

2
(θ − η∗)⊤H(θ − η∗) =

1

2
(θ − η∗)⊤H(θ − η∗).

Two quantities will be important in the following developments, the largest eigenvalue L
and the smallest eigenvalue µ of the Hessian matrix H . As a consequence of convexity of
the objective, we have 0 6 µ 6 L. We denote by κ = L

µ
> 1 the condition number.

Note that for least-squares, µ is the lowest eigenvalue of the non-centered empirical
covariance matrix and that it is zero as soon as d > n, and, in most cases, very small.
When adding a regularizer λ

2
‖θ‖22 (like in ridge regression), then µ > λ (but then λ typically

decreases with n, often between 1√
n

and 1
n
, see Chapter 7 for more details).

Closed-form expression. Gradient descent iterates with fixed step-size γt = γ can be
computed in closed form:

θt = θt−1 − γF ′(θt−1) = θt−1 − γ
[1

n
Φ⊤(Φθt−1 − y)

]
= θt−1 − γH(θt−1 − η∗),
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leading to
θt − η∗ = θt−1 − η∗ − γH(θt−1 − η∗) = (I − γH)(θt−1 − η∗),

that is, we have a linear recursion, and we can unroll the recursion, and now write

θt − η∗ = (I − γH)t(θ0 − η∗).

We can now look at various measures of performance:

‖θt − η∗‖22 = (θ0 − η∗)⊤(I − γH)2t(θ0 − η∗)

F (θt)− F (η∗) =
1

2
(θ0 − η∗)⊤(I − γH)2tH(θ0 − η∗).

The two optimization performance measures differ by the presence of the Hessian matrix H
in the measure based on function values.

Convergence in distance to minimizer. If we hope to have ‖θt − η∗‖22 going to zero,
we need to have a single minimizer η∗, and thus H has to be invertible, that is µ > 0. Given
the form of ‖θt − η∗‖22, we simply need to bound the eigenvalues of (I − γH)2t.

The eigenvalues of (I − γH)2t are exactly (1− γλ)2t for λ an eigenvalue of H (which are
all in the interval [µ, L]). Thus all the eigenvalues of (I − γH)2t have magnitude less than

(
max
λ∈[µ,L]

|1− γλ|
)2t
.

We can then have several strategies for choosing the step-size γ:

• Optimal choice: one can check that minimizing maxλ∈[µ,L] |1 − γλ| is done by setting
γ = 2/(µ + L), with an optimal value equal to κ−1

κ+1
= 1 − 2

κ+1
∈ (0, 1). See geometric

“proof” below.

γ1/L 1/µ

max{|1− γL|, |1− γµ|}

|1− γµ|

|1− γL|

2/(L+ µ)

• Choice independent of µ: with the simpler (slightly smaller) choice γ = 1/L, we get
maxλ∈[µ,L] |1− γλ| = (1− µ

L
) = (1− 1

κ
), which is only sligthly larger than the value for

the optimal choice.
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With the weaker choice γ = 1/L, we get:

‖θt − η∗‖22 6
(

1− 1

κ

)2t
‖θ0 − η∗‖22,

which is often referred to as exponential, geometric, or also linear convergence.

△! The denomination “linear” is sometimes confusing and corresponds to a number of sig-
nificant digits that grows linearly with the number of iterations.

We can further bound
(

1− 1
κ

)2t
6 exp(−1/κ)2t = exp(−2t/κ), and thus the characteristic

time of convergence is of order κ. We will often make the calculation ε = exp(−2t/κ)⇔ t =
κ
2

log 1
ε
. Thus, for a relative reduction of squared distance to optimum of ε, we need at most

t = κ
2

log 1
ε

iterations.

For κ = +∞, the result remains true, but simply says that for all minimizers ‖θt−η∗‖22 6
‖θ0 − η∗‖22, which is a good sign (the algorithm does not move away from minimizers) but
not indicative of any form of convergence. We will need to use a different criterion.

Convergence in function values. Using the same step-size γ = 1/L as above, and using
the upper-bound on eigenvalues of (I − γH)2t, we get

F (θt)− F (η∗) 6
(

1− 1

κ

)2t
[F (θ0)− F (η∗)] 6 exp(−2t/κ)[F (θ0)− F (η∗)] (5.2)

When κ <∞ (that is, µ > 0), then we also obtain linear convergence for this criterion, but
when κ =∞, this is non-informative.

In order to obtain a convergence rate, we will need to bound the eigenvalues of (I−γH)2tH
instead of (I − γH)2t. The key difference is that for eigenvalues λ of H which are close to
zero (1 − γλ)2t does not have a strong contracting effect, but they count less as they are
multiplied by λ in the bound.

We can make this trade-off precise, for γ 6 1/L, as

∣∣λ(1− γλ)2t
∣∣ 6 λ exp(−γλ)2t = λ exp(−2tγλ)

=
1

2tγ
2tγλ exp(−2tγλ) 6

1

2tγ
sup
α>0

α exp(−α) =
1

2etγ
6

1

4tγ
,

where we used that αe−α is maximized over R+ at α = 1 (as the derivative is e−α(1− α)).

This leads to

F (θt)− F (η∗) 6
1

4tγ
‖θ0 − η∗‖22. (5.3)

We can make the following observations:
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• △! The convergence results in exp(−t/κ) in Eq. (5.2) for invertible Hessians or 1/t in
general in Eq. (5.3) are only upper-bounds! It is good to understand the gap between
the bounds and the actual performance, as this is possible for quadratic objective
functions.

For the exponentially convergent case, the lowest eigenvalue µ dictates the rate for
all eigenvalues. So if the eigenvalues are well-spread (or if only one eigenvalue is very
small), there can be quite a strong discrepancy between the bound and the actual
behavior.

For the rate in 1/t, the bound in eigenvalues is tight when tγλ is of order 1, namely
when λ is of order 1/(tγ). Thus, in order to see an O(1/t) convergence rate in practice,
we need to have sufficiently many small eigenvalues, and as t grows, we often go to a
local linear convergence phase where the smallest non zero eigenvalue of H kicks in.
See simulations and exercise below.

Exercise 5.1 Let µ+ be the smallest non-zero eigenvalue of H. Show that gradient
descent is linearly convergence with the contracting rate (1− µ+/L).

• From errors to number of iterations: the bound in Eq. (5.2) says that after t steps, the
reduction in suboptimality in function values is multiplied by ε = exp(−2t/κ). This
can be reinterpretated as a need of t = κ

2
log 1

ε
iterations to reach a relative error ε.

• Can an algorithm having the same access to oracles of F do better?

If we have access to matrix-vector products with the matrix Φ, then the conjugate gra-
dient algorithm can be used with convergence rates in exp(−t/√κ) and 1/t2 (see Golub and Loan
(1996)). With only access to gradients of F (which is a bit weaker) Nesterov accelera-
tion (see below) will also lead to the same convergence rates, which are then optimal
(for a sense to be defined later).

• Can we extend beyond least-squares? The convergence results above will generalize to
convex functions (see Section 5.2.2), but with less direct proofs. Non-convex objectives
are discussed in Section 5.2.6.

Experiments. We consider two quadratic optimization problems in dimension d = 1000,
with two different decays of eigenvalues (λk) for the Hessian matrix H , one as 1/k (in blue
below) and one in 1/k2 (in red below), and for which we plot the performance for function
values, both in semi-logarithm plots (left) and full-logarithm plots (right). For slow decays
(blue), we see the linear convergence kicking in, while for fast decays (red), the rates in 1/t
dominate.
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5.2.2 Convex functions and their properties

We now wish to analyze GD (and later its stochastic version SGD) in a broader setting. We
will always assume convexity, although these algorithms are also used (and can sometimes
also be analyzed) when this assumption does not hold (see Section 5.2.6). In other words,
convexity is most often used for the analysis, not to define the algorithm.

Definition 5.1 (Convex function) A differentiable function F : Rd → R is said convex
if and only if

F (η) > F (θ) + F ′(θ)⊤(η − θ), ∀η, θ ∈ R
d. (5.4)

This corresponds to the function F being above its tangent at θ, as illustrated below.

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)

If f is twice-differentiable, this is equivalent to requiring F ′′(x) < 0, ∀x ∈ Rd; here
< denotes the semidefinite partial ordering—also called Loewner order—characterized by
A < B ⇔ A−B is positive semidefinite, see Boyd and Vandenberghe (2004); Bhatia (2009).
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An important consequence that we will use a lot in this chapter is, for all θ ∈ Rd (and
using η = η∗)

F (η∗) > F (θ) + F ′(θ)⊤(η∗ − θ) ⇔ F (θ)− F (η∗) 6 F ′(θ)⊤(θ − η∗), (5.5)

that is the distance to optimum in function values is upperbounded by a function of the
gradient.

A more general definition of convexity is that ∀x, y ∈ Rd and α ∈ [0, 1],

F (αη + (1− α)θ) 6 αF (η) + (1− α)F (θ),

which generalizes to the usual Jensen’s inequality.

Proposition 5.1 (Jensen’s inequality) If F : Rd → R is convex and µ is a probability
measure on R

d, then

F
(∫

θdµ(θ)
)
6

∫
F (θ)dµ(θ).

In words: “the image of the average is smaller than the average of the images”.

The class of convex functions satisfies the following stability properties (proofs left as an
exercise), for more properties on convex functions, see Boyd and Vandenberghe (2004):

• If (Fj)j∈{1,...,m} are convex and (αj)j∈{1,...,m} are nonnegative, then
∑m

j=1 αjFj is convex.

• If F : Rd → R is convex and A : Rd′ → R
d is linear then F ◦ A : Rd′ → R is convex.

Classical machine learning example. Problems of the form in Eq. (5.1) are convex if
the loss ℓ is convex in the second variable, fθ(x) is linear in θ, and Ω is convex.

Global optimality from local information. It is also worth emphasizing on the follow-
ing property (immediate from the definition).

Proposition 5.2 Assume that F : Rd → R is convex and differentiable. Then η∗ ∈ Rd is a
global minimizer of F if and only if

F ′(η∗) = 0.

This implies that for convex functions, we only need to look for stationary points. This is
not the case for potentially non-convex functions. For example, in one dimension below, all
red points are stationary points which are not the global minimum (which is in green).



92 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

θ

The situation is even more complex in higher dimensions. Note that without convexity
assumptions, optimization of Lipschitz-continuous functions will need exponential time in
dimension in the worst case (see Section 11.2.2).

Exercise 5.2 Identify all stationary points in the function in R2 depicted below.
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5.2.3 Analysis of GD for strongly convex and smooth functions

The analysis of optimization algorithms requires assumptions on the objective functions,
like the ones introduced in this section. From these assumptions, additional properties are
derived (typically inequalities), and then most convergence proofs look for a “Lyapunov
function” (sometimes called a potential function) that goes down along the iterations. More
precisely, if V : Rd 7→ R+ is such that V (θt) 6 (1 − α)V (θt−1), then V (θt) 6 (1 − α)tV (θ0)
and we obtain linear convergence. The art is then to find the appropriate Lyapunov function.

We first consider an assumption allowing exponential convergence rates.
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Definition 5.2 (Strong convexity) A differentiable function F is said µ-strongly convex,
with µ > 0, if and only if

F (η) > F (θ) + F ′(θ)⊤(η − θ) +
µ

2
‖η − θ‖22, ∀η, θ ∈ R

d.

The function F is strongly-convex if and only if the function F is strictly above its tangent
and the difference is at least quadratic in the distance to the point where the two coincide.
This notably allows to define quadratic lower bounds on F . See below.

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)

F (θ) + F ′(θ)⊤(η − θ) + µ
2‖η − θ‖22

For twice differentiable functions, this is equivalent to F ′′ < µI (see Nesterov, 2018).

Strong convexity through regularization. When an objective function F is convex,
then F + µ

2
‖ · ‖22 is µ-strongly convex (proof left as an exercise). In practice, in machine

learning problems, with linear models, so that the empirical risk is convex, strong convexity
most often comes from the regularizer (and thus µ decays with n), leading to condition
numbers that grow with n.

Lojasiewicz inequality. Strong convexity implies that F admits a unique minimizer η∗,
which is characterized by F ′(η∗) = 0. Moreover, this guarantees that the gradient is large
when a point is far from optimality:

Lemma 5.1 (Lojasiewicz inequality) If F is differentiable and µ-strongly convex with
unique minimizer η∗, then we have:

‖F ′(θ)‖22 > 2µ(F (θ)− F (η∗)), ∀θ ∈ R
d.

Proof The right-hand side in Definition 5.2 is strongly convex in η and minimized with
η̃ = θ − 1

µ
F ′(θ). Plugging this value into the bound and taking η = η∗ in the left-hand side



94 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

we get

F (η∗) > F (θ)− 1

µ
‖F ′(θ)‖22 +

1

2µ
‖F ′(θ)‖22 = F (θ)− 1

2µ
‖F ′(θ)‖22.

The conclusion follows by rearranging.

In order to obtain exponential convergence rates, strong-convexity is typically associated
with smoothness, which we now define.

Definition 5.3 (Smoothness) A differentiable function F is said L-smooth if and only if

|F (η)− F (θ)− F ′(θ)⊤(η − θ)| 6 L

2
‖θ − η‖2, ∀θ, η ∈ R

d. (5.6)

This is equivalent to F having a L-Lipschitz-continuous gradient, i.e., ‖F ′(θ) − F ′(η)‖22 6

L2‖θ − η‖22, ∀θ, η ∈ Rd. For twice differentiable functions, this is equivalent to −LI 4

F ′′(θ) 4 LI (see Nesterov, 2018).

Note that when F is convex and L-smooth, we have a quadratic upper-bound which
is tight at any given point (strong convexity implies the corresponding lower bound). See
below.

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)

F (θ) + F ′(θ)⊤(η − θ) + L
2‖η − θ‖22

When a function is both smooth and strongly convex, we denote by κ = L/µ > 1 its
condition number. See examples below of level sets of functions with varying condition
numbers: the condition number impacts the shapes of the level sets.
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(small κ = L/µ) (large κ = L/µ)

The performance of gradient descent will depend on this condition number (see steepest
descent below, that is, gradient descent with exact line search): with small condition number
(left), we get fast convergence, while for a large condition number (right), we get oscillations.

(small κ = L/µ) (large κ = L/µ)

For machine learning problems, for linear predictions and smooth losses (square or logis-
tic), we have smooth problems. If we use a squared ℓ2-regularizer µ

2
‖·‖22 , we get a µ-strongly

convex problem. Note that when using regularization, as explained in Chapters 3 and 4, the
value of µ decays with n, typically between 1/n and 1/

√
n, leading to condition numbers

between
√
n and n.

In this context, gradient descent on the empirical risk, is often called a “batch” technique,
because all the data points are accessed at every iteration.

In the next theorem, we show that gradient descent converges exponentially for such
smooth and strongly-convex problems.

Theorem 5.1 (Convergence of GD for smooth strongly-convex functions) Assume
that F is L-smooth and µ-strongly convex. Choosing γt = 1/L, the iterates (θt)t>0 of GD on
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F satisfy

F (θt)− F (η∗) 6
(
1− µ

L

)t
(F (θ0)− F (η∗)) 6 exp(−tµ/L)(F (θ0)− F (η∗)).

Proof By the smoothness inequality in Eq. (5.6) applied to θt−1 and θt−1−F ′(θt−1)/L, we
have the following descent property, with γt = 1/L,

F (θt) = F (θt−1−F ′(θt−1)/L) 6 F (θt−1) + F ′(θt−1)
⊤(−F ′(θt−1)/L) +

L

2
‖−F ′(θt−1)/L‖22

= F (θt−1)−
1

L
‖F ′(θt−1)‖22 +

1

2L
‖F ′(θt−1)‖22.

Rearranging, we get

F (θt)− F (η∗) 6 (F (θt−1)− F (η∗))−
1

2L
‖F ′(θt−1)‖22.

Using Lemma 5.1, it follows

F (θt)− F (η∗) 6 (1− µ/L)(F (θt−1)− F (η∗)) 6 exp(−µ/L)(F (θt−1)− F (η∗)).

We conclude by a recursion.

We can make the following observations:

• As mentioned before, we necessarily have µ 6 L; the ratio κ := L/µ is called the
condition number.

• If we only assume that the function is smooth and convex (not strongly convex), then
GD with constant step-size γ = 1/L also converges when a minimizer exists, but at a
slower rate in O(1/t). See Section 5.2.4 below.

• Choosing the step-size only requires an upper bound L on the smoothness constant (in
case it is over-estimated, the convergence rate only degrades slightly).

Exercise 5.3 Compute all constants for ℓ2-regularized logistic regression.

Adaptivity. Note that gradient descent is adaptive to strong convexity: the exact same
algorithm applies to both strongly convex and convex cases, and the two bounds apply. This 
adaptivity is important in practice, as often, locally around the global optimum, the strong
convexity constant converges to the minimal eigenvalue of the Hessian at η∗, which can very 
significantly larger than µ (the global constant).
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Fenchel conjugate (�). Given some convex function F : Rd → R, an important tool is the
Fenchel conjugate F ∗ defined as F ∗(α) = supθ∈Rd α⊤θ − F (θ). This is crucial when dealing
with convex duality (which we will not cover in this chapter); see Boyd and Vandenberghe
(2004) for details.

5.2.4 Analysis of GD for convex and smooth functions (�)

In order to obtain the 1/t convergence rate without strong-convexity, we will need an extra
property of convex smooth functions, sometimes called “co-coercivity”. This is an instance
of inequalities that we need to use to circumvent the lack of closed form for iterations.

Proposition 5.3 (co-coercivity) If F is a convex L-smooth function on R
d, then for all

θ, η ∈ Rd, we have:

1

L
‖F ′(θ)− F ′(η)‖22 6

[
F ′(θ)− F ′(η)

]⊤
(θ − η).

Moreover, we have: F (θ) > F (η) + F ′(η)⊤(θ − η) + 1
2L
‖F ′(θ)− F ′(η)‖2.

Proof We will show the second inequality, which implies the first one by applying it twice
with η and θ swapped, and summing them.

• Define H(θ) = F (θ) − θ⊤F ′(η). The function H : R
d → R is convex with global

minimum at η, since H ′(θ) = F ′(θ) − F ′(η), which is equal to zero for θ = η. The
function H is also L-smooth.

• We can apply the definition of smoothness: H(η) 6 H(θ− 1
L
H ′(θ)) 6 H(θ)+H ′(θ)⊤(− 1

L
H ′(θ))+

L
2
‖− 1

L
H ′(θ)‖22, which is thus less than H(θ)− 1

2L
‖H ′(θ)‖22.

• This leads to F (η)− η⊤F ′(η) 6 F (θ)− θ⊤F ′(η)− 1
2L
‖F ′(θ)− F ′(η)‖22, which leads to

the desired inequality by shuffling terms.

We can now state the following convergence result for gradient descent with potentially no
strong-convexity. Up to constants, we obtain the same rate as for quadratic functions in
Eq. (5.3).

Theorem 5.2 (Convergence of GD for smooth convex functions) Assume that F is
L-smooth and convex, with a global minimizer η∗. Choosing γt = 1/L, the iterates (θt)t>0 of
GD on F satisfy

F (θt)− F (η∗) 6
L

2t
‖θ0 − η∗‖22.
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Proof Following Bansal and Gupta (2019), the Lyapunov function that we will choose is

Vt(θt) = t[F (θt)− F (η∗)] +
L

2
‖θt − η∗‖22,

and our goal is to show that it decays along iterations. We can split the difference in
Lyapunov functions in three terms (each with its own color):

Vt(θt)− Vt−1(θt−1) = t[F (θt)− F (θt−1)] + F (θt−1)− F (η∗) +
L

2
‖θt − η∗‖22 −

L

2
‖θt−1 − η∗‖22.

In order to bound it, we use:

• We use F (θt)− F (θt−1) 6 − 1
2L
‖F ′(θt−1)‖22 like in the proof of Theorem 5.1.

• We use F (θt−1)− F (η∗) 6 F ′(θt−1)
⊤(θt−1 − η∗), as a consequence of convexity (func-

tion above the tangent at θt−1), as in Eq. (5.5).

• We get L
2
‖θt − η∗‖22 − L

2
‖θt−1 − η∗‖22 = −Lγ(θt−1 − η∗)⊤F ′(θt−1) + Lγ2

2
‖F ′(θt−1)‖22 by ex-

panding the square.

This leads to, with the step-size γ = 1/L:

Vt(θt)− Vt−1(θt−1) 6 t
[
− 1

2L
‖F ′(θt−1)‖22

]
+ F ′(θt−1)

⊤(θt−1 − η∗)−Lγ(θt−1 − η∗)⊤F ′(θt−1) +
Lγ2

2
‖F ′(θt−

= −t− 1

2L
‖F ′(θt−1)‖22 6 0,

which leads to

t[F (θt)− F (η∗)] 6 Vt(θt) 6 V0(θ0) =
L

2
‖θ0 − η∗‖22,

and thus F (θt)− F (η∗) 6
L
2t
‖θ0 − η∗‖22.

The proof above is on purpose mysterious: the choice of Lyapunov function seems
arbitrary at first, but all inequalities lead to nice cancellations. These proofs are some-
times hard to design. For an interesting line of work trying to automate these proofs, see
https://francisbach.com/computer-aided-analyses/.

5.2.5 Beyond gradient descent (�)

While gradient descent is the simplest algorithm with a simple analysis, there are multiple
extensions that we will only briefly mention (see more details by Nesterov, 2004, 2007):

https://francisbach.com/computer-aided-analyses/
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Nesterov acceleration. For convex functions, a simple modification of gradient descent
allows to obtain better convergence rates. The algorithm is as follows, and is based on
updating the following iterates:

θt = ηt−1 −
1

L
F ′(ηt−1)

ηt = θt +
t− 1

t+ 2
(θt − θt−1).

This simple modification dates back to Nesterov in 1983, and leads to the following conver-

gence rate F (θt)− F (η∗) 6
2L‖θ0−η∗‖2

(t+1)2
.

For strongly convex functions, the algorithm has a similar form as for convex functions,
but with all coefficients which are independent from t:

θt = ηt−1 −
1

L
g′(ηt−1)

ηt = θt +
1−

√
µ/L

1 +
√
µ/L

(θt − θt−1),

and the convergence rate is F (θt)−F (η∗) 6 L‖θ0 − η∗‖2(1−
√
µ/L)t, that is the characteristic

time to convergence goes from κ to
√
κ. If κ is large (typically of order

√
n or n for machine

learning), the gains are substantial. In practice, this leads to significant improvements.

Moreover, the last two rates are known to be optimal for the considered problems: for
algorithms that access gradient and combine them linearly to select a new query point, it
is not possible to have better dimension-independent rates. See Nesterov (2007) for more
details.

Newton method. Given θt−1, the Newton method minimizes the second-order Taylor
expansion around θt−1:

F (θt−1) + F ′(θt−1)
⊤(θ − θt−1) +

1

2
(θ − θt−1)

⊤F ′′(θt−1)
⊤(θ − θt−1),

which leads to θt = θt−1−F ′′(θt−1)
−1F ′(θt−1), which is an expensive iteration, as the running-

time complexity is O(d3) in general to solve the linear system. It leads to local quadratic
convergence: If ‖θt−1 − θ∗‖ small enough, for some constant C, we have (C‖θt − θ∗‖) =
(C‖θt−1− θ∗‖)2. See Boyd and Vandenberghe (2004) for more details, and for conditions for
global convergence.

Note that for machine learning problems, quadratic convergence may be an overkill com-
pared to the computational complexity of each iteration, since cost functions are averages of
n terms and naturally have some uncertainty of order O(1/

√
n).
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Proximal gradient descent (�). Many optimization problems are said “composite”, that
is, the objective function F is the sum of a smooth function G and a non-smooth function
H (such as a norm). It turns out that a simple modification of gradient descent allows to
benefit from the fast convergence rates of smooth optimization (compared to the slower rates
for non-smooth optimization that would obtain from the subgradient method in the next
section).

For this, we need to first see gradient descent as a proximal method. Indeed, one may see
the iteration θt = θt−1 − 1

L
G′(θt−1), as

θt = arg min
θ∈Rd

G(θt−1) + (θ − θt−1)
⊤G′(θt−1) +

L

2
‖θ − θt−1‖22,

where, for a L-smooth function G, the objective function above is an upper-bound of G(θ)
which is tight at θt−1.

While this reformulation does not bring much for gradient descent, we can extend this
to the composite problem, and consider the iteration

θt = arg min
θ∈Rd

G(θt−1) + (θ − θt−1)
⊤G′(θt−1) +

L

2
‖θ − θt−1‖22 +H(θ),

where H is left as is. It turns out that the convergence rates for G + H are the same as
smooth optimization, with potential acceleration (Nesterov, 2007; Beck and Teboulle, 2009).

The crux is to be able to compute the step above, that is minimize with respect to θ
functions of the form L

2
‖θ − η‖22 + H(θ). When H is the indicator function of a convex set

(which is equal to 0 inside the set, and +∞ otherwise), we get projected gradient descent.
When H is the ℓ1-norm, that is H = λ‖ · ‖1, this can be shown to be soft-thresholding step,
as for each coordinate θi = (|ηi| − λ/L)+

ηi
|ηi| (proof left as an exercise).

5.2.6 Non-convex objective functions (�)

For smooth potentially non convex objective functions, the best one can hope for is to
converge to a stationary point θ such that F ′(θ) = 0. The proof below provides the weaker
result that at least one iterate has a small gradient. Indeed, using the same Taylor expansion
as the convex case (which is still valid), we get

F (θt) 6 F (θt−1)−
1

2L
‖F ′(θt−1)‖22,

leading to, summing the inequalities above for all iterations between 1 and t, we get:

1

2Lt

t∑

s=1

‖F ′(θs−1)‖22 6
F (θ0)− F (η∗)

t
.

Thus there has to be one s in {0, . . . , t − 1} for which ‖F ′(θs)‖22 6 O(1/t). Note that this
does not imply that any of the iterates is close to a stationary point.
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5.3 Gradient methods on non-smooth problems

We now relax our assumptions and only require Lipschitz continuity, in addition to convexity.
The rates will be slower, but the extension to stochastic gradients easier.

Definition 5.4 (Lipschitz-continuous function) A function F : Rd → R is said B-
Lipschitz-continuous if and only if

|F (η)− F (θ)| 6 B‖η − θ‖2, ∀θ, η ∈ R
d.

Exercise 5.4 Show that if F is differentiable, this is equivalent to the assumption ‖F ′(θ)‖2 6
B, ∀θ ∈ Rd. Without additional assumptions, this setting is usually referred to as non-
smooth optimization.

From gradients to subgradients. We can apply non-smooth optimization to objec-
tive functions which are not differentiable (such as the hinge loss). For convex Lipschitz-
continuous objectives, the function is almost everywhere differentiable. In points where it is
not, then one can define the set of slopes of lower-bounding tangents as the subdifferential,
and any element of it as a subgradient. The gradient descent iteration is then meant as
using any subgradient instead of F ′(θt−1). The method is then referred to as the subgradient
method (it is not a descent method anymore, that is, the function values may go up once in
a while).

Convergence rate of the subgradient method. We can prove convergence of the gra-
dient descent algorithm, now with a decaying step-size, and a slower rate than for smooth
functions.

Theorem 5.3 (Convergence of the subgradient method) Assume that F is convex,
B-Lipschitz-continuous, and admits a minimizer η∗ that satisfies ‖η∗−θ0‖2 6 D. By choosing
γt = D

B
√
t
then the iterates (θt)t>0 of GD on F satisfy

min
06s6t−1

F (θs)− F (η∗) 6 DB
2 + log(t)

2
√
t

.

Proof We look at how θt approaches η∗, that is, we try to use ‖θt − η∗‖22 as a Lyapunov
function. We have:

‖θt − η∗‖22 = ‖θt−1 − γtF ′(θt−1)− η∗‖22 = ‖θt−1 − η∗‖22 − 2γtF
′(θt−1)

⊤(θt−1 − η∗) + γ2t ‖F ′(θt−1)‖22.
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Combining this with the convexity inequality F (θt−1) − F (η∗) 6 F ′(θt−1)
⊤(θt−1 − η∗) from

Eq. (5.5), it follows (also using the boundedness of gradients):

‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 − 2γt[F (θt−1)− F (η∗)] + γ2tB
2.

and thus, by isolating the distance to optimum in function values:

γt(F (θt−1)− F (η∗)) 6
1

2

(
‖θt−1 − η∗‖22 − ‖θt − η∗‖22

)
+

1

2
γ2tB

2. (5.7)

It is sufficient to sum these inequalities to get, for any η∗ ∈ Rd,

1∑t
s=1 γs

t∑

s=1

γs (F (θs−1)− F (η∗)) 6
‖θ0 − η∗‖22
2
∑t

s=1 γs
+ B2

∑t
s=1 γ

2
s

2
∑t

s=1 γs
.

The left-hand side is larger than min06s6t−1(F (θs)−F (η∗)) (trivially) and than F (θ̄t)−F (η∗)
where θ̄t = (

∑t
s=1 γsθs−1)/(

∑t
s=1 γs) by Jensen’s inequality.

The upper bound goes to 0 if
∑t

s=1 γs goes to∞ (to forget the initial condition, sometimes
called the “bias”) and γt → 0 (to decrease the “variance” term). Let us choose γs = τ/

√
s

for some τ > 0. By using the series-integral comparisons below, we get the bound

min
06s6t−1

(F (θs)− F (η∗)) 6
1

2
√
t

(
D2τ + τB2(1 + log(t))

)
.

We choose τ = D/B (which is suggested by optimizing the previous bound when log(t) = 0)
which leads to the result. In the proof, we used the following series-integral comparisons for
decreasing functions:

t∑

s=1

1√
s
>

t∑

s=1

1√
t

=
√
t

and

t∑

s=1

1

s
6 1 +

t∑

s=2

1

s
6 1 +

∫ t

1

ds

s
= 1 + log(t).

The proof scheme above is very flexible. It can be extended in the following directions:

• There is no need to know in advance an upper-bound D on the distance to optimum,

we then get with the same step-size γt = D
B
√
t

a rate of the form
BD

2
√
t

(‖θ0 − η∗‖22
D2

+

(1 + log(t))
)

.

• The algorithm applies to constrained minimization over a convex set, by inserting a
projection step at each iteration (the proof, which is using the contractivity of orthog-
onal projections, is essentially the same).
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• The algorithm applies to non-differentiable convex and Lipschitz objective functions
(using sub-gradients, i.e. any vector satisfying Eq. (5.4) in place of F ′(θt));

• The algorithm can be applied to “non-Euclidean geometries”, where we consider bounds
on the iterates or the gradient with different quantities. This can be done using the
“mirror descent” descent framework, and for instance can be applied to obtain multi-
plicative updates (see, e.g., Juditsky and Nemirovski, 2011a,b)).

• Often the uniformly averaged iterate is used, as 1
t

∑t−1
s=0 θs. Convergence rates (without

the log t factor) can be obtained using Abel summation formula
(see https://francisbach.com/integration-by-parts-abel-transformation/).

• Stochastic gradients can be used, as presented below (one interpretation is that the
subgradient method is so slow that it is robust to noisy gradients).

Exercise 5.5 Compute all constants for ℓ2-regularized logistic regression.

5.4 Convergence rate of stochastic gradient descent

(SGD)

For machine learning problems, where F (θ) = 1
n

∑n
i=1 ℓ(yi, fθ(xi)) + Ω(θ), at each iteration,

the gradient descent algorithm requires to compute a “full” gradient F ′(θt−1) which could be
costly as it requires accessing the entire data set. An alternative is to instead only compute
unbiased stochastic estimations of the gradient gt(θt−1), i.e., such that E[gt(θt−1)|θt−1] =
F ′(θt−1), which could be much faster to compute.

△! Note that we need to condition over θt−1 because θt−1 encapsulates all the randomness
due to past iterations, and we only require “fresh” randomness at time t.

△! Somewhat surprisingly, this unbiasedness does not need to be coupled with a vanishing
variance: while there are always errors in the gradient, the use of a decreasing step-size will
ensure convergence. If the noise in the gradient is not unbiased, then we only get convergence
if the noise magnitudes go to zero.

This leads to the following algorithm.

Algorithm 5.2 (Stochastic gradient descent (SGD)) Choose a step-size sequence (γt)t>0,
pick θ0 ∈ Rd and for t > 1, let

θt = θt−1 − γtgt(θt−1).

https://francisbach.com/integration-by-parts-abel-transformation/
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SGD in machine learning. There are two ways to use SGD for supervised machine
learning:

(1) Empirical risk minimization: If F (θ) = 1
n

∑n
i=1 ℓ(yi, fθ(xi)) then at iteration t we

can choose uniformly at random i(t) ∈ {1, . . . , n} and define gt as the gradient of
θ 7→ ℓ(yi(t), fθ(xi(t))). There exists “mini-batch” variants where at each iteration, the
gradient is averaged over a random subset of the indices (we then reduce the variance
of the gradient estimate, but we use more gradients, and thus more running time). We
then converge to a minimizer η∗ of the empirical risk.

Note here that since we sample with replacement, a given function will be selected
several times.

(2) Expected risk minimization: If F (θ) = E[ℓ(y, fθ(x))] then at iteration t we can
take a fresh sample (xt, yt) and define gt as the gradient of θ 7→ ℓ(yt, fθ(xt)), for which,
if we swap the orders of expectation and differentiation, we get the unbiasedness. Note
here that to preserve the unbiasedness, only a single pass is allowed (otherwise, this
would create dependencies that would break it).

Here, we directly minimize the (generalization) risk. The counterpart is that if we only
have n samples, then we can only run n SGD iterations, and when n grows, the iterates
will converge to a minimizer θ∗ of the expected risk.

Note that in practice, multiple passes over the data (that is, using each observation
multiple times) lead to better performance. In order to avoid overfitting, either a
regularization term is added to the empirical risk, or the SGD algorithm is stopped
before its convergence, which is referred to as regularization by “early stopping”.

We can study the two situations above using the latter one, by considering the empirical
risk as the expectation with respect to the empirical distribution of the data.

△! Stochastic gradient descent is not a descent method: the function values often go
up.

Under the same usual assumptions on the objective functions, we now study SGD, with
the following extra assumptions:

• (H1) unbiased gradient: E[gt(θt−1)|θt−1] = F ′(θt−1), ∀t,

• (H2) bounded gradient: ‖gt(θt−1)‖22 6 B2, ∀t almost surely

Assumption (H2) could be replaced by other regularity conditions (e.g., Lipschitz-continuous
gradients). Assumption (H1) is crucial, and is often obtained by considering independent
functions gt, for which we have, E[gt(·)] = F ′(·).
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Theorem 5.4 (Convergence of SGD) Assume that F is convex, B-Lipschitz and admits
a minimizer θ∗ that satisfies ‖θ∗ − θ0‖2 6 D. Assume that the stochastic gradients satisfy
(H1-2). Then, choosing γt = (D/B)/

√
t, the iterates (θt)t>0 of SGD on F satisfy

E

[
F (θ̄t)− F (θ∗)

]
6 DB

2 + log(t)

2
√
t

.

where θ̄t = (
∑t

s=1 γsθs−1)/(
∑t

s=1 γs).

Proof We follow essentially the same proof as in the deterministic case, adding some
expectations at well chosen places. We have:

E

[
‖θt − θ∗‖22

]
= E

[
‖θt−1 − γtgt(θt−1)− θ∗‖22

]

= E

[
‖θt−1 − θ∗‖22

]
− 2γtE

[
gt(θt−1)

⊤(θt−1 − θ∗)
]

+ γ2tE
[
‖gt(θt−1)‖22

]
.

We can then compute the expectation of the middle term as:

E

[
gt(θt−1)

⊤(θt−1 − θ∗)
]

= E

[
E

[
gt(θt−1)

⊤(θt−1 − θ∗)
∣∣∣θt−1

]]

= E

[
E

[
gt(θt−1)

∣∣∣θt−1

]⊤
(θt−1 − θ∗)

]
= E

[
F ′(θt−1)

⊤(θt−1 − θ∗)
]
.

This leads to

E

[
‖θt − θ∗‖22

]
6 E

[
‖θt−1 − θ∗‖22

]
− 2γtE

[
F ′(θt−1)

⊤(θt−1 − θ∗)
]

+ γ2tB
2.

Thus, combining with the convexity inequality F (θt−1)− F (θ∗) 6 F ′(θt−1)
⊤(θt−1 − θ∗) from

Eq. (5.5), we get

γtE[F (θt−1)− F (θ∗)] 6
1

2

(
E
[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+

1

2
γ2tB

2. (5.8)

Except for the expectations, this is the same bound as Eq. (5.7) so we can conclude as in
the proof of Theorem 5.3. We state our bound in terms of the average iterates because the
cost of finding the best iterate could be high in comparison to that of evaluating a stochastic
gradient.

We can make the following observations:

• Averaging of iterates is often performed after a certain number of iterations (e.g., one
pass over the data when doing multiple passes): this speeds up the algorithms by
forgetting initial conditions faster.

• Many authors consider the projected version of the algorithm where after the gradient
step, we orthogonally project onto the ball of radius D and center θ0. The bound is
then exactly the same.
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• The result that we obtain, when applied to single pass SGD, is a generalization bound,
that is, after the n iterations, we have an excess risk proportional to 1/

√
n, correspond-

ing to the excess risk compared to the best predictor fθ.

This is to be compared to using results from Chapter 4 (uniform deviation bounds)
and non-stochastic gradient descent. It turns out that the estimation error due to
having n observations is exactly the same as the generalization bound obtained by
SGD (see Section 4.5.4 in Chapter 4), but we need to add on top the optimization
error proportional to 1/

√
t (with the same constants). The bounds match if t = n,

that is, we run n iterations of gradient descent on the empirical risk. This leads to a
running time complexity of O(tnd) = O(n2d) instead of O(nd) using SGD, hence the
strong gains in using SGD.

• The bound in O(BD/
√
t) is optimal for this class of problem. That is, as shown

for example by Agarwal et al. (2009), among all algorithms that can query stochastic
gradients, having a better convergence rate (up to some constants) is impossible.

• As opposed to the deterministic case, the use of smoothness does not lead to signifi-
cantly better results.

SGD or gradient descent on the empirical risk? As seen above, the number of it-
erations to reach a given precision will be larger for stochastic gradient descent, but with
a complexity which is typically n times faster. Thus, for high precision, that is low values
of F (θ) − F (η∗) (which is not needed for machine learning), the number of iterations of
SGD may become prohibitively large, and deterministic full gradient descent could be pre-
ferred. However, for low precision and large n, SGD is the method of choice (see also recent
improvements in Section 5.4.2).

5.4.1 Strongly convex problems (�)

We consider the regularized problem G(θ) = F (θ) + µ
2
‖θ‖22, with the same assumption as

above, and started at θ0 = 0. The SGD iteration is then:

θt = θt−1 − γt
[
gt(θt−1) + µθt−1

]
. (5.9)

We then have an improved convergence rate in O(1/t) with a different decay for the step-size.

Theorem 5.5 (Convergence of SGD for strongly-convex problems) Assume that F
is convex, B-Lipschitz and that F+ µ

2
‖·‖22 admits a (necessary unique) minimizer θ∗. Assume

that the stochastic gradient g satisfies (H1-2). Then, choosing γt = 1/(µt), the iterates (θt)t>0

of SGD from Eq. (5.9) satisfy

E

[
G(θ̄t)−G(θ∗)

]
6

2B2(1 + log t)

µt
,
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where θ̄t = 1
t

∑t
s=1 θs−1.

Proof The beginning of the proof is essentially the same as for convex problems, leading
to (with the new terms in blue):

E

[
‖θt − θ∗‖22

]
= E

[
‖θt−1 − γt(gt(θt−1)+µθt−1)− θ∗‖22

]

= E

[
‖θt−1 − θ∗‖22

]
− 2γtE

[
(gt(θt−1)+µθt−1)

⊤(θt−1 − θ∗)
]

+ γ2tE
[
‖gt(θt−1)+µθt−1‖22

]
.

From the iterations, we see that θt = (1−γtµ)θt−1+γtµ
[
− 1

µ
gt(θt−1)

]
is a convex combination

of gradients divided by −µ, and thus ‖gt(θt−1) + µθt−1‖22 is always less than 4B2. Thus

E

[
‖θt − θ∗‖22

]
6 E

[
‖θt−1 − θ∗‖22

]
− 2γtE

[
F ′(θt−1)

⊤(θt−1 − θ∗)
]

+ 4γ2tB
2.

Therefore, combining with the strong convexity inequality G(θt−1)−G(θ∗)+
µ
2
‖θt−1 − θ∗‖22 6

G′(θt−1)
⊤(θt−1 − θ∗) it follows

γtE[G(θt−1)−G(θ∗)] 6
1

2

(
(1−γtµ)E‖θt−1 − θ∗‖2 − E‖θt − θ∗‖2

)
+ 2γ2tB

2,

and thus, now using the specific step-size choice:

E[G(θt−1)−G(θ∗)] 6
1

2

(
(γ−1

t − µ)E‖θt−1 − θ∗‖2 − γ−1
t E‖θt − θ∗‖2

)
+ 2γtB

2,

=
1

2

(
µ(t− 1)E‖θt−1 − θ∗‖2 − µtE‖θt − θ∗‖2

)
+

2B2

µt
.

Thus, we get a telescoping sum: summing between all indices between 1 and t, and using
the bound

∑t
s=1

1
s
6 1 + log t, we get the desired result.

We can make the following observations:

• For smooth problems, we can show a similar bound of the form O(κ/t). For quadratic
problems, constant step-sizes can be used with averaging, leading to improved conver-
gence rates (Bach and Moulines, 2013).

• The bound in O(B2/µt) is optimal for this class of problems. That is, as shown
for example by Agarwal et al. (2009), among all algorithms that can query stochastic
gradients, having a better convergence rate (up to some constants) is impossible.

• We note that for the same regularized problem, we could use a step size proportion to
DB/

√
t and obtain a bound proportional to DB/

√
t, which looks worse than B2/(µt),

but can in fact be better when µ is very small.

Note also the loss of adaptivity: the step-size now depends on the difficulty of the
problem (this was not the case for deterministic gradient descent). See experiments
below for illustrations.
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△! Check homogeneity of the constants.

Exercise 5.6 With the same assumptions as Theorem 5.5, show that with the step-size

γt = 2
µ(t+1)

, and with θ̄t = 2
t(t+1)

∑t
s=1 sθs−1, we have: E

[
G(θ̄t)−G(θ∗)

]
6

2B2

µ(t+ 1)
.

Experiments. We consider a simple binary classification problem with linear predictors
and features with ℓ2-norm bounded by R. We consider the hinge loss with a squared ℓ2-
regularizer µ

2
‖ · ‖22. We measure the excess training objective. We consider two values of

µ, and compare the two step-sizes γt = 1/(R2
√
t) and γt = 1/(µt). We see that for large

enough µ, the strongly-convex step-size is better. This is not the case for small µ.
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The experiments above highlight the danger of a step-size equal to 1/(µt). In practice,
it is often preferable to use γt = 1

B2
√
t+µt

.
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5.4.2 Variance reduction (�)

We consider a finite sum F (θ) = 1
n

∑n
i=1 fi(θ), where each fi is R2-smooth (for example

logistic regression with features bounded by R in ℓ2-norm), and which is such that F is
µ-strongly convex (for example by adding µ

2
‖θ‖22 to each fi, or by benefitting from the strong

convexity of the sum). We denote by κ = R2/µ the condition number of the problem.

Using SGD, the convergence rate has been shown to be O(κ/t) in Section 5.4.1, with
iterations of complexity O(d), while for GD, the convergence rates is O(exp(−t/κ)) (see
Section 5.2.3), but each iteration has complexity O(nd). We now present a result allowing
to get exponential convergence with an iteration cost which is O(d).

The idea is to use a form of variance reduction, which is made possible by keeping in
memory past gradients. We denote by z

(t)
i ∈ R

d the version of gradient i stored at time t.

The SAGA algorithm (Defazio et al., 2014), which combines the earlier algorithms SAG (Schmidt et al.,
2017) and SVRG (Johnson and Zhang, 2013; Zhang et al., 2013), works as follows: at every
iteration, an index i(t) is selected uniformly at random in {1, . . . , n}, and we perform the
iteration

θt = θt−1 − γ
[
f ′
i(t)(θt−1) +

1

n

n∑

i=1

z
(t−1)
i − z(t−1)

i(t)

]
,

with z
(t)
i(t) = f ′

i(t)(θt−1) and all others z
(t)
i left unchanged (i.e., the same as z

(t−1)
i ). In words,

we add to the update with the stochastic gradient f ′
i(t)(θt−1) the term 1

n

∑n
i=1 z

(t−1)
i − z(t−1)

i(t) ,

which has zero expectation with respect to i(t). Thus, since the expectation of f ′
i(t)(θt−1)

with respect to i(t) is equal to the full gradient F ′(θ), the update is unbiased like for regular
SGD. The goal is to reduce its variance.

The idea behind variance reduction is that if the random variable z
(t−1)
i(t) (only considering

the source of randomness coming from i(t)) is positively correlated with f ′
i(t)(θt−1), then the

variance is reduced, and larger step-sizes can be used.

As the algorithm converges, then z
(t)
i converges to f ′

i(η∗), and then the update tends to
have zero variance, and thus a constant step-size allows to obtain convergence. The key is
then to show simultaneously that θt converges to η∗ and that z

(t)
i converge to f ′

i(η∗) for all i,
all at the same speed.

Theorem 5.6 (Convergence of SAGA) If initializing with z
(0)
i = f ′

i(θ0), we have, for
the choice of step-size γ = 1

4R2 :

E
[
‖θt − η∗‖22

]
6

(
1−min

{ 1

3n
,

3µ

16R2

})t(
1 +

n

4

)
‖θ0 − η∗‖22.

Proof (��) The proof consists in finding a Lyapunov function that decays along iterations.
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Step 1. We first try our “usual” Lyapunov function, making the differences ‖z(t)i −f ′
i(η∗)‖22

appear, with the update θt = θt−1 − γωt, with ωt =
[
f ′
i(t)(θt−1) + 1

n

∑n
i=1 z

(t−1)
i − z(t−1)

i(t)

]
,

‖θt − η∗‖22 = ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤ωt + γ2
∥∥ωt

∥∥2
2

by expanding the square,

Ei(t)‖θt − η∗‖22 = ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤F ′(θt−1)

+γ2Ei(t)

∥∥f ′
i(t)(θt−1) +

1

n

n∑

i=1

z
(t−1)
i − z(t−1)

i(t)

∥∥2
2

using the unbiasedness of the stochastic gradient,

6 ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤F ′(θt−1) + 2γ2Ei(t)

∥∥f ′
i(t)(θt−1)− f ′

i(t)(η∗)
∥∥2
2

+2γ2Ei(t)

∥∥f ′
i(t)(η∗)− z

(t−1)
i(t) +

1

n

n∑

i=1

z
(t−1)
i

∥∥2
2

using ‖a+ b‖22 6 2‖a‖22 + 2‖b‖22.

In order to bound Ei(t)

∥∥f ′
i(t)(θt−1)− f ′

i(t)(η∗)
∥∥2
2
, we use co-coercivity of all functions fi, to

get:

Ei(t)

∥∥f ′
i(t)(θt−1)− f ′

i(t)(η∗)
∥∥2
2

=
1

n

n∑

i=1

∥∥f ′
i(θt−1)− f ′

i(η∗)
∥∥2
2

6
1

n

n∑

i=1

R2[f ′
i(θt−1)− f ′

i(η∗)]
⊤(θt−1 − θ∗)

6 R2F ′(θt−1)
⊤(θt−1 − η∗) since

n∑

i=1

f ′
i(η∗) = 0. (5.10)

In order to bound Ei(t)

∥∥f ′
i(t)(η∗)− z

(t−1)
i(t) + 1

n

∑n
i=1 z

(t−1)
i

∥∥2
2
, we can simply use the identity

Ei(t)‖Z − Ei(t)Z‖22 6 Ei(t)‖Z‖22. We thus get

Ei(t)‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤F ′(θt−1) + 2γ2R2(θt−1 − η∗)⊤F ′(θt−1)

+2γ2
1

n

n∑

i=1

∥∥f ′
i(η∗)− z

(t−1)
i

∥∥2
2
,

6‖θt−1 − η∗‖22 − 2γ(1− γR2)(θt−1 − η∗)⊤F ′(θt−1) + 2
γ2

n

n∑

i=1

∥∥f ′
i(η∗)− z

(t−1)
i

∥∥2
2
.

Step 2. We see the term
∑n

i=1

∥∥f ′
i(η∗)−z

(t−1)
i

∥∥2
2

appearing, so we try to study how it varies

across iterations. We have, by definition of the updates of the vectors z
(t)
i :

n∑

i=1

∥∥f ′
i(η∗)− z

(t)
i

∥∥2
2

=
n∑

i=1

∥∥f ′
i(η∗)− z

(t−1)
i

∥∥2
2
−
∥∥f ′

i(t)(η∗)− z
(t−1)
i(t)

∥∥2
2

+
∥∥f ′

i(t)(η∗)− f ′
i(t)(θt−1)

∥∥2
2
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Taking expectations with respect to i(t), we get

Ei(t)

[ n∑

i=1

∥∥f ′
i(η∗)− z

(t)
i

∥∥2
2

]
=

(
1− 1

n

) n∑

i=1

∥∥f ′
i(η∗)− z

(t−1)
i

∥∥2
2

+
1

n

n∑

i=1

∥∥f ′
i(η∗)− f ′

i(θt−1)
∥∥2
2

6
(
1− 1

n

) n∑

i=1

∥∥f ′
i(η∗)− z

(t−1)
i

∥∥2
2

+R2(θt−1 − η∗)⊤F ′(θt−1),

where we use the bound in Eq. (5.10). Thus, for a positive number ∆ to be chosen later,

Ei(t)

[
‖θt − η∗‖22 + ∆

n∑

i=1

∥∥f ′
i(η∗)− z

(t)
i

∥∥2
2

]
6 ‖θt−1 − η∗‖22 − 2γ(1− γR2 − R2∆

2γ
)(θt−1 − η∗)⊤F ′(θt−1)

+
[
2
γ2

n∆
+ (1− 1/n)

]
∆

n∑

i=1

∥∥f ′
i(η∗)− z

(t−1)
i

∥∥2
2
.

With ∆ = 3γ2 and γ = 1
4R2 , we get 1 − γR2 − R2∆

2γ
= 3

8
. Moreover, using the identity

(θt−1 − η∗)⊤F ′(θt−1) > µ‖θt−1 − η∗‖22 as a consequence of strong convexity, we then get:

Ei(t)

[
‖θt − η∗‖22 + ∆

n∑

i=1

∥∥f ′
i(η∗)− z

(t)
i

∥∥2
2

]
6

(
1−min

{ 1

3n
,

3µ

16R2

})[
‖θt−1 − η∗‖22

+∆
n∑

i=1

∥∥f ′
i(η∗)− z

(t−1)
i

∥∥2
2

]
.

Thus

E
[
‖θt − η∗‖22

]
6

(
1−min

{ 1

3n
,

3µ

16R2

})t[
‖θ0 − η∗‖22 +

3

16R4

n∑

i=1

∥∥f ′
i(η∗)− z

(0)
i

∥∥2
2

]
.

If initializing with z
(0)
i = f ′

i(θ0), we get the desired bound by using the Lipschitz-continuity
of each f ′

i .

We can make the following observations:

• The contraction rate after one iteration is
(

1 − min{ 1

3n
,

3µ

16R2
}
)

6 exp
(

min
{
−

1

3n
,

3µ

16R2

})
. Thus, after an “effective pass” over the data, that is, n iterations, the

contracting rate is exp
(

min
{
− 1

3
,

3µn

16R2

})
. It is only an effective pass, because after

we sample n indices with replacement, we will not see all functions.

In order to have a contracting effect of ε, that is, having ‖θt−η∗‖22 6 ε‖θ0−η∗‖22, we need

to have exp
(
tmin

{
− 1

3n
,

3µ

16R2

})
n 6 ε, which is equivalent to t > max

{
3n,

16R2

3µ

}
log

n

ε
.
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It just suffices to have t >
(
3n + 16R2

3µ

)
log n

ε
, and thus the running time complexity is

equal to d times the minimal number, that is

d
(

3n +
16R2

3µ

)
log

n

ε
.

This to be contrasted with batch gradient descent with step-size γ = 1/R2 (which is
the simplest step-size that can be computed easily), whose complexity is

dn
R2

µ
log

n

ε
.

We replace the product of n and condition number R2

µ
by a sum, which is significant

where κ is large.

• Multiple extensions of this result are available, such as a rate for non-strongly-convex
functions, adaptivity to strong-convexity, proximal extensions, acceleration. It is
also worth mentioning that the need to store past gradients can be alleviated (see
Gower et al., 2020, for more details).

• Note that these fast algorithms allow to get very small optimization errors, and that
the best testing risks will typically obtained after a few (10 to 100) passes.

Experiments. We consider ℓ2-regularized logistic regression and we compare GD, SGD
and SAGA, all with their corresponding step-sizes coming from the theoretical analysis, with
two values of n (left: small, right: large). We see that for early iterations, SGD dominates
GD, while for larger numbers of iterations, GD is faster. This last effect is not seen for large
numbers of observations (right). In the two cases, SAGA gets to machine precision after 50
effective passes over the data.
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5.5 Conclusion

We can now provide a summary of convergence rates below, with the main rates that we
have seen in this chapter (and some that we have not seen). We separate between convex and
strongly convex, and between smooth and non-smooth, as well as between deterministic and
stochastic methods. Below, L is the smoothness constant, µ the strong convexity constant,
B the Lipschitz constant and D the distance to optimum at initialization.

convex strongly convex

nonsmooth deterministic: BD/
√
t deterministic: B2/(tµ)

stochastic: BD/
√
t stochastic: B2/(tµ)

smooth deterministic: LD2/t2 deterministic: exp(−t
√
µ/L)

stochastic: LD2/
√
t stochastic: L/(tµ)

finite sum: n/t finite sum: exp(−min{1/n, µ/L}t)

Note that many important themes in optimization have been ignored, such as Frank-Wolfe
methods (presented in Chapter 9), coordinate descent, duality. See Nesterov (2018); Bubeck
(2015) for further details. See also Chapter 7 and Chapter 9 for optimization methods for
kernel methods and neural networks.
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Chapter 6

Local averaging methods

Chapter summary

-“Linear” estimators: These are estimators that are based on assigning weight functions
to each observation so that each observation can vote for its label with the corresponding
weight.
-Partitioning estimates: the input space is cut into non-overlapping cells and the predictor
is piecewise-constant.
-Nadaraya-Watson estimators (a.k.a. kernel regression): each observation assigns a weight
proportional to its distance in input space.
-k-nearest-neighbors: each observation assigns an equal weight to its k nearest neighbors.
-Consistency: All of these methods can provably learn complex non-linear functions with a
convergence rate of the form O(n−2/(d+2)), where d is the underlying dimension, leading to
the curse of dimensionality.

6.1 Introduction

Like in most of this textbook, we are being given a training set: observations (xi, yi) ∈ X×Y,
i = 1, . . . , n, of inputs/outputs, features/variables are assumed independent and identically
distributed (i.i.d.) random variables with common distribution dp(x, y). We consider a fixed
(testing) distribution dp on X × Y and a loss function ℓ : Y × Y → R; ℓ(y, z) is the loss of
predicting z while the true label is y.

115
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Our goal is to minimize the risk, or generalization performance of a prediction function
f : X→ Y:

R(f) = E
[
ℓ(y, f(x))

]
.

△! Like in the rest of the book, we assume that the testing distribution is the same as the
training distribution.

△! Be careful with the randomness or lack thereof of f : The estimator f̂ we will use depends

on the training data and not on the testing data, and thus R(f̂) is random because of the
dependence on the training data.

As seen in Chapter 2, the two classical cases are:

• Binary classification: Y = {0, 1} (or often Y = {−1, 1}), and ℓ(y, z) = 1y 6=z (“0-1”
loss).
Then R(f) = P(f(x) 6= y).

• Regression: Y = R and ℓ(y, z) = (y − z)2 (square loss). Then R(f) = E(y − f(x))2.

As seen in Chapter 2, minimizing the expected risk leads to an optimal “target function,”
called the Bayes predictor f ∗ ∈ arg minR(f) = E

[
ℓ(y, f(x))

]
.

Proposition 6.1 (Bayes predictor) The risk is minimized at a Bayes predictor f ∗ : X→
Y satisfying for all x ∈ X, f ∗(x) ∈ arg minz∈Y E(ℓ(y, z)|x). The Bayes risk R∗ is the risk of
all Bayes predictors and is equal to

R∗ = Ex∼dp(x) inf
z∈Y

E(ℓ(y, z)|x) = Ex∼dp(x) inf
z∈Y

Ey∼dp(y|x)(ℓ(y, z)|x).

Note that (a) the Bayes predictor is not unique, but that all Bayes predictors lead to
the same Bayes risk, and (b) that the Bayes risk is usually non zero (unless the dependence
between x and y is deterministic). The goal of supervised machine learning is thus to estimate
f ∗, knowing only the training data D = {(x1, y1), . . . , (xn, yn)} and the loss ℓ, with the goal
of minimizing the risk or the excess risk R(f)− R∗. We have the following special cases:

• For binary classification: Y = {0, 1} and ℓ(y, z) = 1y 6=z, the Bayes predictor is equal to
f ∗(x) ∈ arg max

i∈{0,1}
P(y = i|x). This extends naturally to multi-category classification

with the Bayes predictor f ∗(x) ∈ arg max
i∈{1,...,k}

P(y = i|x).

• For regression: Y = R and ℓ(y, z) = (y − z)2, the Bayes predictor is f ∗(x) = E(y|x).

Moreover, we have R(f)− R∗ =

∫

X

(f(x)− f ∗(x))2dp(x) = ‖f − f ∗‖2L2(dp(x))
.
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In Chapter 3 and Chapter 4, we explored methods based on empirical risk minimization
(and we will as well in Chapter 7 and Chapter 9). In this chapter, we focus on local averaging
methods.

6.2 Local averaging methods

In local averaging methods, we aim at approximating the target function f ∗ directly without
any form of optimization. This will be done by approximating the conditional distribution

dp(y|x) of y given x, by some dp̂(y|x). We then replace f ∗(x) ∈ arg min
z∈Y

∫

Y

ℓ(y, z)dp(y|x) by

f̂(x) ∈ arg min
z∈Y

∫

Y

ℓ(y, z)dp̂(y|x). These are often called “plug-in” estimators.

In the usual cases, this leads to the following predictions:

• For classification with the 0-1 loss: f̂(x) ∈ arg max
j∈{1,...,k}

P̂(y = j|x).

• For regression with the square loss: f̂(x) =

∫

Y

y dp̂(y|x).

6.2.1 Linear estimators

In this chapter we will consider “linear” estimators, where the conditional distribution is of
the form

dp̂(y|x) =

n∑

i=1

ŵi(x)δyi(y),

where δyi is the Dirac probability distribution at yi (putting a unit mass at yi), and the
weight functions ŵi : X → R, i = 1, . . . , n, depends on the input data only (for simplicity)
and satisfy (almost surely in x):

∀x ∈ X, ∀i{1, . . . , n}, ŵi(x) > 0, and

n∑

i=1

ŵi(x) = 1.

These conditions ensure that for all x ∈ X, dp̂(y|x) is a probability distribution.

△! Some references allow for the weights not to sum to 1.

For our running examples, this leads to the following predictions:

• For classification: f̂(x) ∈ arg max
j∈{1,...,k}

n∑

i=1

ŵi(x)1yi=j , that is, each observation (xi, yi)

votes for its label with weight ŵi(x).
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Figure 6.1: Weights of linear estimators in d = 1 dimension for the three types of local aver-
aging estimators. The n = 8 weight functions x 7→ ŵi(x) are plotted with the observations
in black.

• For regression: Y = R: f̂(x) =

n∑

i=1

ŵi(x)yi. This is why the terminology “linear

estimators” is sometimes used, since, as a function of the response vector in R
n, the

estimator is linear (note that this is the case as well for kernel ridge regression in
Chapter 7).

Construction of weight functions. In most cases, for any i, the weight function ŵi(x)
is close to 1 for training points xi which are close to x. We now show three classical ways
of building them: (1) partition estimators, (2) Nearest-neighbors, and (3) Nadaraya-Watson
estimator (a.k.a. kernel regression). See examples in Figure 6.1.

6.2.2 Partition estimators

If X =
⋃

j∈J
Aj is a partition (such that for all j, j′ ∈ J , Aj ∩ Aj′ = ∅) of X with a countable

index set J (which we will assume finite for simplicity), then we can consider for any x ∈ X

the corresponding element A(x) of the partition (that is, A(x) is the unique Aj , j ∈ J , such
that x ∈ Aj), and define

ŵi(x) =
1xi∈A(x)∑n

i′=1 1xi′∈A(x)

, (6.1)

with the convention that if no training data point lies in A(x), then ŵi(x) is equal to 1/n
for each i ∈ {1, . . . , n}. This implies that each wi is piecewise constant with respect to the
partition, that is, for any non-empty cell Aj (that is for which at least one observation falls
in Aj), for any x ∈ Aj, the vectors (wi(x))i∈{1,...,n} has weights equal to 1/nAj

for i ∈ Aj

(where nAj
is the number of training points in the set Aj), and 0 otherwise.
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Equivalence with least-squares regression. When applied to regression where the es-
timator is f̂(x) =

∑n
i=1 ŵi(x)yi, then using a partition estimators can be seen as a least-

squares estimator with feature vector ϕ(x) = (1x∈Aj
)j∈J ∈ RJ . Indeed, from training data

(x1, y1), . . . , (xn, yn), as shown in Chapter 3, we need to find the weight vector θ̂ through the
normal equations

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ θ =

n∑

i=1

yiϕ(xi).

It turns out that the matrix nΣ̂ =
∑n

i=1 ϕ(xi)ϕ(xi)
⊤ is diagonal where for each j ∈ J , nΣ̂jj

is equal to nAj
the number of data points lying in cell Aj. This implies that for a non-empty

cell Aj , θj is the average of all yi’s for xi’s lying in Aj. Thus, for all x ∈ Aj , the prediction
is exactly θj , as obtained from weights in Eq. (6.1). For empty cells, θj is not determined.
Among the many OLS estimators, we select the one for which the variance of the vector

θ is smallest, that is
∑

j∈J
(
θj − 1

|J |
∑

j′∈J θ
′
j

)2
is smallest. A short calculation shows that

this exactly leads to θj = 1
n

∑n
i=1 yi for these empty cells, which corresponds to our chosen

convention.

△! Other conventions exist (such as all zero weights when no data point lies in A(x)).

This equivalence with least-squares estimation with a diagonal (empirical or not) non-
centered covariance matrix makes it attractive for theoretical purposes.

Choice of partitions. There are two standard applications of partition estimators:

• Fixed partitions: for example, when X = [0, 1]d, then we consider cubes of length h,
with |J | = h−d (see example below in d = 2 dimension with |J | = 25). Note here
that the computation time for each x ∈ X is not necessarily proportional to |J |, but
to n (by simply considering the bins where the data lie). This estimator is sometimes
called a “regressogram”. We need then to choose the bandwidth h (see analysis in
Section 6.3.1). See Figure 6.2 for an illustration in one-dimension.

A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

A16

A21

A17

A22

A18

A23

A19

A24

A20

A25

A1

• Decision trees: for data in a hypercube, we can recursively partition it by selecting a
variable to split leading to a maximum reduction in errors when defining the partition-
ing estimate (see more details in https://en.wikipedia.org/wiki/Decision_tree_learning).

https://en.wikipedia.org/wiki/Decision_tree_learning 
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Note here that the partition depends on the labels (so the analysis below does not ap-
ply, unless the partitioning is learned on a different data than the one used for the
estimation).
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Figure 6.2: Regressograms in d = 1 dimension, with three values of |J | (the number of sets
in the partition). We can observe both underfitting (|J | too small), or overfitting (|J | too
large). Note that the target function f ∗ is piecewise affine, and that on the affine parts, the
estimator is far from linear, that is, the estimator cannot take advantage of extra-regularity
(see Section 6.5 for more details).

6.2.3 Nearest-neighbors

Given an integer k > 1, and a distance d on X, for any x ∈ X, we can order the n observations
so that

d(xi1(x), x) 6 d(xi2(x), x) 6 · · · 6 d(xin(x), x),

where {i1(x), . . . , in(x)} = {1, . . . , n}, and ties are broken randomly1 (that is, by sampling
priorities randomly for each i once for all x ∈ X). We then define

ŵi(x) = 1/k if i ∈ {i1(x), . . . , ik(x)}, and 0 otherwise.

Given a new input x ∈ Rd, the nearest neighbor predictor looks at the k nearest points
xi in the data set {(x1, y1), . . . , (xn, yn)} and predicts a majority vote among them (for
classification) or simply the averaged response (for regression). The number of nearest
neighbors is the hyperparameter which needs to be estimated (typically by cross-validation),
see Section 6.3.2 for an analysis. See a one-dimensional example in Figure 6.3.

1Other conventions share the weights among all ties.
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x

xi1(x)

xi2(x)

xi3(x)

xi4(x)

Algorithms. Given a test point x ∈ X, the naive algorithm looks at all training data points
for computing the predicted response, thus the complexity is O(nd) per test point in Rd.
When n is large, this is costly in time and memory. There exists indexing techniques for (po-
tentially approximate) nearest-neighbor search, such as “k-d-trees”, with typically a logarith-
mic complexity in n (but with some additional compiling time) (see https://en.wikipedia.org/wiki/K-d_tre

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

y

k = 1

target

k-nn

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

y

k = 10

target

k-nn

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

y

k = 40

target

k-nn

Figure 6.3: k-nearest neighbor regression in d = 1 dimension, with three values of k (the
number of neighbors). We can observe both underfitting (k too large), or overfitting (k too
small).

6.2.4 Nadaraya-Watson estimator a.k.a. kernel regression (�)

Given a “kernel” function K : X× X→ R+, which is pointwise non-negative, we define

ŵi(x) =
k(x, xi)∑n

i′=1 k(x, xi′)
,

with the convention that if k(x, xi) = 0 for all i ∈ {1, . . . , n}, then ŵi(x) is equal to 1/n
for each i. In most cases where X ⊂ R

d, we take k(x, x′) = h−dq
(
1
h
(x − x′)

)
for a certain

https://en.wikipedia.org/wiki/K-d_tree
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function q : Rd → R+ that has large values around 0, and h > 0 a “bandwidth” parameter
to be selected (see analysis in Section 6.3.3). If we assume that q is integrable with integral
equal to one, then k(·, x′) is a probability density with mass around x′, which gets more
concentrated as h goes to zero. See illustration below for the two typical windows.

qh, h small

x

qh, h large

Box kernel

qh, h small

x

qh, h large

Gaussian kernel

Typical examples are:

• Box kernel: q(x) = 1‖x‖261. See below for an illustration in d = 2 dimensions.

x h

• Gaussian kernel q(x) = e−‖x‖2/2, where we use the fact it is non-negative pointwise (as
opposed to positive-definiteness in Chapter 7, see https://francisbach.com/cursed-kernels/).
See a one-dimensional experiment in Figure 6.4.

In terms of algorithms, with a naive algorithm, for every test point, all the input data
have to be considered, that is, a complexity proportional to n. The same techniques used
for efficient k-nearest-neighbor search (e.g., k-d-trees) can be applied here as well.

https://francisbach.com/cursed-kernels/
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Figure 6.4: Nadaraya-Watson regression in d = 1 dimension, with three values of h (the
bandwidth), for the Gaussian kernel. We can observe both underfitting (h too large), or
overfitting (h too small).

6.3 Generic “simplest” consistency analysis

We consider for simplicity the regression case. For classification, calibration techniques
such as those used in Chapter 4 can be used (with then a square root calibration func-
tion on top of the least-squares excess risk), but better rates can be obtained directly
(see, e.g., Chen and Shah, 2018; Biau and Devroye, 2015; Audibert and Tsybakov, 2007;
Chaudhuri and Dasgupta, 2014).

We make the following generic assumptions:

(H1) Bounded noise: There exists σ > 0 such that |y − E(y|x)|2 6 σ2 almost surely.

(H2) Regular target function: The target function f ∗(x) = E(y|x) is B-Lipschitz-continuous
with respect to a distance d. For weaker assumptions, see Section 6.4.

We have, with the target function f ∗(x) = E(y|x), at a test point x ∈ X (and using that the
weights wi(x) sum to one):

f̂(x)− f ∗(x) =

n∑

i=1

yiŵi(x)− E(y|x)

=

n∑

i=1

ŵi(x)
[
yi − E(yi|xi)

]
+

n∑

i=1

ŵi(x)
[
E(yi|xi)− E(y|x)

]

=
n∑

i=1

ŵi(x)
[
yi − E(yi|xi)

]
+

n∑

i=1

ŵi(x)
[
f ∗(xi)− f ∗(x)

]
.
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Given x1, . . . , xn (and because we have assumed the weight functions do not depend on
the labels), the left term has zero expectation, while the right term is deterministic. We thus
have, using the independence of all (xi, yi), i = 1, . . . , n, and for x fixed:

E
[
(f̂(x)− f ∗(x))2

∣∣x1, . . . , xn
]

= (E(f̂(x)
∣∣x1, . . . , xn)− f ∗(x))2 + var

[
f̂(x)

∣∣x1, . . . , xn
]

=
[ n∑

i=1

ŵi(x)
[
f ∗(xi)− f ∗(x)

]]2
+

n∑

i=1

ŵi(x)2E
[(
yi − E(yi|xi)

)2∣∣xi
]

= bias + variance,

with a “bias” term which is zero if f ∗ is constant, and a “variance” term which is zero, when
y is a deterministic function of x. We can further bound as:

E
[
(f̂(x)− f ∗(x))2

∣∣x1, . . . , xn
]

6

[ n∑

i=1

ŵi(x)
∣∣f ∗(xi)− f ∗(x)

∣∣
]2

+ σ2
n∑

i=1

ŵi(x)2 using (H1), (6.2)

6

[ n∑

i=1

ŵi(x)Bd(xi, x)
]]2

+ σ2

n∑

i=1

ŵi(x)2 using (H2),

6 B2
n∑

i=1

ŵi(x)d(xi, x)2 + σ2
n∑

i=1

ŵi(x)2 using Jensen’s inequality.

We then have for the expected excess risk:

∫

X

E[(f̂(x)− f ∗(x))2]dp(x) 6 B2

∫

X

E

[ n∑

i=1

ŵi(x)d(xi, x)2
]
dp(x) + σ2

n∑

i=1

∫

X

E[ŵi(x)2]dp(x).

(6.3)

△! The expectation is with respect to the training data. The expectation with respect to
the testing point x is kept as an integral to avoid confusions.

This upper bound can be divided into:

• A variance term σ2
n∑

i=1

∫

X

E[ŵi(x)2]dp(x), that depends on the noise on top of the

optimal predictions. Since the weights sum to one, we can write
∑n

i=1 E[ŵi(x)2] =∑n
i=1 E[(ŵi(x) − 1/n)2] + 2/n − 1/n2, that is, up to vanishing constant, the variance

term measures the deviation to uniform weights.

• A bias term B2

∫

X

E

[ n∑

i=1

ŵi(x)d(xi, x)2
]
dp(x), which depends on the regularity of the

target function.

This leads to two conditions: both variance and bias have to go to zero when n grows, and
this corresponds to two simple quantities on the weights. For the variance, the worst case
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scenario is that ŵi(x)2 ≈ ŵi(x), that is, weights are putting all the mass into a single label
(usually different for different testing point), thus leading to overfitting. For the bias, the
worst case scenario is that weights are uniform (leading to underfitting).

In the following, we will specialize it for X a subset of Rd, with a density dp(x) with some
minor regularity properties (all will have compact suppport, that is, X compact), where we
show that a proper setting of the hyperparameters leads to “good” predictions. This will be
done for all three cases of local averaging methods.

We look at universal consistency in Section 6.4.

6.3.1 Fixed partition

For the partitioning estimate defined in Section 6.2.2, we can prove the following convergence
rate.

Proposition 6.2 (Convergence rate for partition estimates) Assume bounded noise
(H1) and a Lipschitz-continuous target function (H2), and a partition X =

⋃
j∈J Aj; then

for the partitioning estimate f̂ , we have:

∫

X

E[(f̂(x)− f ∗(x))2]dp(x) 6
(
8σ2 +

B2

2
diam(X)2

) |J |
n

+B2 max
j∈J

diam(Aj)
2. (6.4)

Optimal trade-off between bias and variance. Before we look at the proof (which
is based on Eq. (6.3)), we can look at the consequence of the bound in Eq. (6.4). We

need to balance the terms (up to constants) maxj∈J diam(Aj)
2 and |J |

n
. In the simplest

situation of the unit-cube [0, 1]d, with |J | = h−d cubes of length h, we get |J |
n
∝ 1

nhd and

maxj∈J diam(Aj)
2 ∝ h2, which, with h ∝ n−1/(2+d) to make them equal, leads to a rate

proportional to n−2/(2+d). As shown by Györfi et al. (2006), this rate is optimal for estimation
of Lipschitz-continuous functions.

While optimal, this is a very slow rate, and a typical example of the curse of dimen-
sionality. For this rate to be small, n has to be exponentially large in dimension. This is
unavoidable with so little regularity (only bounded first-order derivatives). In Chapter 7
(and also in Section 6.5), we show how to leverage smoothness to get significantly improved
bounds. In Chapter 8, we will leverage dependence on a small number of variables.

Experiments. For the problem shown in Section 6.2, we plot below training and testing
errors averaged over 32 replications (with error bard showing the standard deviations), where
we clearly see the trade-off in the choice of |J |.
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Proof of Proposition 6.2 (�) We consider an element Aj of the partition with at least
one observation in it (a non-empty cell). Then for x ∈ Aj , and i among the indices of the
points lying in Aj , ŵi(x) = 1/nAj

where nAj
∈ {1, . . . , n} is the number of data points lying

in Aj.

Variance. From Eq. (6.3), the variance term is bounded from above by σ2 times
n∑

i=1

ŵi(x)2 = nAj

1

n2
Aj

=
1

nAj

.

If Aj contains no input observations, then all weights are equal to 1/n and this sum is equal
to n× 1

n2 = 1/n for all x ∈ Aj. Thus, we get
∫

X

E
[ n∑

i=1

ŵi(x)2
]
dp(x) =

∫

X

E
[∑

j∈J
1x∈Aj

E

[ 1

nAj

1nAj
>0 +

1

n
1nAj

=0

]
dp(x)

=
∑

j∈J
P(Aj)E

[ 1

nAj

1nAj
>0 +

1

n
1nAj

=0

]
.

Intuitively, by the law of large numbers, nAj
/n tends to P(Aj), so the variance term is

expected to be of the order σ2
∑

j∈J P(Aj)
1

nP(Aj)
= σ2 |J |

n
, which is to be expected as this is

essentially equivalent to least-squares regression with features (1x∈Aj
)j∈J .

More formally, we have P(nAj
= 0) = (1− P(Aj))

n, and, using Bernstein’s inequality for
the random variables 1xi∈Aj

, which have mean and variance upper bounded by P(Aj), we

have: P

(
nAj

n
6 P(Aj)− 1

2
P(Aj)

)
6 exp

(
− nP(Aj)2/4

2P(Aj)+2(P(Aj )/2)/3

)
6 exp(−nP(Aj)/10) 6 5

nP(Aj)
,

leading to a bound
∑

j∈J
P(Aj)E

[ 1

nAj

1nAj
>0 +

1

n
1nAj

=0

]
6

∑

j∈J
P(Aj)E

[
P(
nAj

n
6 P(Aj)/2) +

2

nP(Aj)
+

1

n
P(nAj

= 0)
]

6
∑

j∈J
P(Aj)E

[ 5

nP(Aj)
+

2

nP(Aj)
+

1

nP(Aj)

]
6

8|J |
n
.
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Bias. We have, for x ∈ Aj and a non-empty cell,
n∑

i=1

ŵi(x)d(x, xi)
2 6 diam(Aj)

2,

with
∑n

i=1 ŵi(x)d(x, xi)
2 = 1

n

∑n
i=1 d(x, xi)

2 6 diam(X)2 for empty-cells. Thus, separating
the cases nAj

= 0 and nAj
> 0:

∫

X

E
[ n∑

i=1

ŵi(x)d(x, xi)
2
]
dp(x) 6

∑

j∈J
P(Aj)E

[
diam(Aj)

21nAj
>0 + 1nAj

=0diam(X)2
]

6
∑

j∈J
P(Aj)

[
diam(Aj)

2 + (1− P(Aj))
ndiam(X)2

]

=
∑

j∈J
P(Aj)diam(Aj)

2 +
∑

j∈J
P(Aj)(1− P(Aj))

n × diam(X)2

6
∑

j∈J
P(Aj)diam(Aj)

2 +
∑

j∈J
P(Aj)

1

2nP(Aj)
× diam(X)2

=
∑

j∈J
P(Aj)diam(Aj)

2 +
1

2

|J |
n
× diam(X)2,

which leads to the desired term.

6.3.2 k-nearest neighbor

Here, we immediately have
∑n

i=1 ŵi(x)2 = 1
k
, so the variance term will go down as soon as

k tends to infinity. For the bias term, the needed term
n∑

i=1

ŵi(x)d(xi, x)2 is equal to the

average of the squared distances between x and its k-nearest neighbors within {x1, . . . , xn},
and this is less than the expected distance to the k-nearest neighbor, for which the two
following lemmas (taken from (Biau and Devroye, 2015, Theorem 2.4)) give an estimate for
the ℓ∞-distance, and thus for all distances by equivalence of norms on R

d.

Lemma 6.1 (distance to nearest neighbor) Consider a probability distribution with com-
pact support in X ⊂ R

d. Consider n + 1 points x1, . . . , xn, xn+1 sampled i.i.d. from X.
Then the expected squared ℓ∞-distance between xn+1 and its first-nearest-neighbor is less

than 4diam(X)2

n2/d for d > 2, and less than 2
n
diam(X)2 for d = 1.

Proof By symmetry we aim at computing 1
n+1

∑n+1
i=1 E

[
‖xi−x(i)‖2∞

]
, where x(i) is a nearest

neighbor of xi among the other n points. Denoting by Ri = ‖xi − x(i)‖∞, then the sets
Bi = {x ∈ R

d, ‖x− xi‖∞ < Ri

2
} are disjoint.
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Moreover, their union has diameter less than diam(X) + diam(X) = 2diam(X). Thus by

comparing volumes, we have:
∑n+1

i=1 R
d
i 6

(
2diam(X)

)d
. Therefore, by Jensen’s inequality,

for d > 2,
( 1

n + 1

n+1∑

i=1

R2
i

)d/2
6

1

n + 1

n+1∑

i=1

(Ri)
d 6

2ddiam(X)d

n + 1
,

leading to the desired result. For d = 1, we simply have
(

1
n+1

∑n+1
i=1 R

2
i

)
6 diam(X)

(
1

n+1

∑n+1
i=1 Ri

)
6

2
n+1

diam(X)2.

Lemma 6.2 (distance to k-nearest-neighbor) Let k > 1. Consider a probability distri-
bution with compact support in X ⊂ Rd. Consider n+1 points x1, . . . , xn, xn+1 sampled i.i.d.
from X. Then the expected squared ℓ∞-distance between xn+1 and its k-nearest-neighbor is

less than 8diam(X)2
(

2k
n

)2/d
for d > 2, and less than 2k

n
diam(X)2 for d = 1.

Proof Without loss of generality, we assume 2k 6 n (otherwise, the bound is trivial).
We can then divide randomly (and independently) the n first points into 2k sets of size
approximately n

2k
. We denote xj(k) a 1-nearest neighbor of xn+1 within the j-th set. The

squared distance from xn+1 to the k-nearest neighbor among all first n points is less than the
k-th smallest of the distances ‖xn+1 − xj(k)‖2∞, j ∈ {1, . . . , 2k}, because we take a k-nearest

neighbor over a smaller set. This k-th smallest distance is less than 1
k

∑2k
j=1 ‖xn+1 − xj(k)‖2∞

(this is a general fact that the k-smallest element among non-negative p elements, is less
than their sum divided by p− k).

Thus, using the lemma above, we get that the desired averaged distance is less than

1

k

2k∑

j=1

4
diam(X)2

( n
2k

)2/d
= 8

diam(X)2

n2/d
(2k)2/d.
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A similar argument can be extended to d = 1.

Putting things together, we get the following result for the consistency of k-nearest-neighbors.

Proposition 6.3 (Convergence rate for k-nearest-neighbors) Assume bounded noise
(H1) and a Lipschitz-continuous target function (H2). Then for the k-nearest-neighbor esti-
mate f̂ with the ℓ∞-norm, we have, for d > 2:

∫

X

E[(f̂(x)− f ∗(x))2]dp(x) 6
σ2

k
+ 8B2diam(X)2

(2k

n

)2/d
. (6.5)

Balancing the two terms above is obtained with k ∝ n2/(2+d), and we obtain the same result
as for the other local averaging schemes. See more details by Chen and Shah (2018) and
Biau and Devroye (2015).

Exercise 6.1 Show that if the Bayes rate is 0 (that is, σ = 0), then 1-nearest-neighbor is
consistent.

Experiments. For the problem shown in Section 6.2, below, we plot training and testing
errors averaged over 32 replications (with error bar showing the standard deviations), where
we clearly see the trade-off in the choice of k.
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6.3.3 Kernel regression (Nadaraya-Watson) (�)

In this section, we assume that X = Rd, and for simplicity, we assume that dp(x) has a
density p with respect to the Lebesgue measure. We also assume that k(x, x′) = qh(x−x′) =
h−dq( 1

h
(x − x′)) for a probability density q : Rd → R+. The function qh is also a density,
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which is the density of hz when z has density q(z) (it is thus gets more concentrated around
0 as h tends to zero). With these notations, the weights can be written:

ŵi(x) =
qh(x− xi)∑n
j=1 qh(x− xj)

.

Smoothing by convolution. When performing kernel smoothing, quantities like 1
n

∑n
i=1 qh(x−

xi)g(xi) naturally appear. When the number n of observations goes to infinity, by the law

of large numbers, it tends almost surely to

∫

Rd

qh(x − z)g(z)p(z)dz, which is exactly the

convolution between the function qh and the function x 7→ p(x)g(x), which we can denote
(pg) ∗ qh(x). The function qh is a probability density that is putting all most its weights at
range of values which are of order h, e.g., for kernels like the Gaussian kernel or the box
kernel. Thus convolution will smooth the function pg by averaging values which are at range
h. Thus, when h goes to zero, it converges to the function pg itself. See an example below
for g = 1.

x

p(x)

smoothed(p)(x)

Note that for this limit to hold, we need to make sure the factors in n and hd are present.

We can now look at the generalization bound from Eq. (6.3) and see how it applies to
kernel regression. We now consider the ℓ2-distance for simplicity, and consider the variance
and bias terms separately, first with an asymptotic result and then a formal result.

Variance term. We have, for a fixed x ∈ X:

n

n∑

i=1

ŵi(x)2 =
1
n

∑n
i=1 qh(x− xi)2(

1
n

∑n
i=1 qh(x− xi)

)2 .

Using the law of large numbers and the smoothing reasoning above, this sum n
∑n

i=1 ŵi(x)2

is converging almost surely to

∫
Rd qh(x− z)2p(z)dz

( ∫
Rd qh(x− z)p(z)dz

)2 =
q2h ∗ p(x)

(qh ∗ p(x))2
.
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When h tends to zero, then the denominator above (qh ∗ p(x))2 tends to p(x)2 because the
bandwidth of the smoothing goes to zero. The numerator above corresponds to the smooth-

ing of p by the density x 7→ qh(x)
2

∫
Rd

qh(u)2du
, and is thus equivalent asymptotically equivalent to

p(x)
∫
Rd qh(u)2du = p(x)h−d

∫
Rd q(u)2du.

Overall, when n tends to infinity, and h tends to zero, we get:

n∑

i=1

ŵi(x)2 ∼ 1

nhd
1

p(x)

∫

Rd

q(u)2du,

and thus ∫

X

[ n∑

i=1

ŵi(x)2
]
p(x)dx ∼ 1

nhd
vol(supp(dp))

∫

Rd

q(u)2du.

Bias. With the same intuitive reasoning, we get, when n tends to infinity:

n∑

i=1

ŵi(x)d(xi, x)2 →
∫
Rd qh(x− z)‖x− z‖22p(z)dz∫

Rd qh(x− z)p(z)dz .

The denominator has the same shape as for the variance term and tends to p(x) when h
tends to zero. With the change of variable u = 1

h
(x−z), the numerator is equal to

∫
Rd qh(x−

z)‖x−z‖22p(z)dz = h2
∫
Rd q(u)‖u‖22p(x−uh)du, which is equivalent to h2p(x)

∫
Rd q(u)‖u‖22du

when h tends to zero. Overall, when n tends to infinity, and h tends to zero, we get:

∫

X

[ n∑

i=1

ŵi(x)d(xi, x)2
]
p(x)dx ∼ h2

∫

Rd

q(u)‖u‖22du.

Therefore, overall we gate an asymptotic bound proportional to (up to constants depending
on q):

σ2

nhd
+B2h2,

leading to the same upper-bound as for partitioning estimates, by setting h ∝ n−1/(d+2).

Formal reasoning (��). We can make the informal reasoning above more formal using
concentration inequalities, leading to non-asymptotic bounds of the same nature (simply
more complicated), that make explicit the joint dependence on n and h. We will prove the
following result:

Proposition 6.4 (Convergence rate for Nadaraya-Watson estimation) Assume bounded
noise (H1) and a Lipschitz-continuous target function (H2), and a function q : R

d → R
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such that
∫
Rd q(z)dz = 1, and ‖q‖∞ = supz∈Rd q(z) is finite. We also assume that p(x) ∈

[pmin, pmax] for all x ∈ X. Then for the Nadaraya-Watson estimate f̂ , we have:

∫

X

E[(f̂ (x)− f ∗(x))2]dp(x) 6
4‖q‖∞
pmin

2σ2 +Bdiam(X)2

nhd
+ 2h2 · pmax

pmin

∫

Rd

q(u)‖u‖22du. (6.6)

Before giving the proof, we note that the optimal bandwidth parameter is indeed proportional
to h ∝ n−1/(d+2), with an overall excess risk proportional to n−2/(d+2).

Proof of Proposition 6.4 (�) In order to deal with the denominator in the definition of
the weights, we can first use Bernstein’s inequality, applied to the random variables qh(x−xi)
which is almost surely in [0, h−d‖q‖∞], to bound

P
( 1

n

n∑

i=1

qh(x− xi) 6 E[qh(x− z)]− ε
)
6 exp

(
− nε2

2E[q2h(x− z)] + 2‖q‖∞h−dε/3

)
.

We get with ε = 1
2
E[qh(x− z)], using E[q2h(x− z)] 6 ‖q‖∞h−dE[qh(x− z)]:

P
(
A(x)

)
6 exp

(
−

n
4
(E[qh(x− z)])2

2E[q2h(x− z)] + E[qh(x− z)]h−d‖q‖∞/3
)

6 exp
(
−

n
4
E[qh(x− z)]

(7/3)h−d‖q‖∞

)
6

‖q‖∞
nhdE[qh(x− z)] ×

1

e

28

3
6

4‖q‖∞
nhdE[qh(x− z)] ,

where A(x) is the event A = { 1
n

∑n
i=1 qh(x− xi) 6 1

2
E[qh(x− z)]}. We can now bound bias

and variance.

Variance. For a fixed x ∈ X, we get

E

[ n∑

i=1

ŵi(x)2
]

= E

[
1A(x)

n∑

i=1

ŵi(x)2
]

+ E

[
1A(x)c

n∑

i=1

ŵi(x)2
]

6 P(A(x)) +
4

(
nE[qh(x− z)]

)2E
[ n∑

i=1

q(
1

h
(x− xi))2

]

6
4‖q‖∞

nhdE[qh(x− z)] +
4E
[
qh(x− z)2

]

n
[
Eqh(x− z)

]2 6
8‖q‖∞

nhdE[qh(x− z)] .

Moreover, we have E[qh(x− z)] =
∫
Rd dp(x− hu)q(u)du = p ∗ qh(x). This leads to an overall

bound on the variance term as

∫

X

E

[ n∑

i=1

ŵi(x)2
]
p(x)dx 6

8‖q‖∞
nhd

∫

X

p(x)

p ∗ qh(x)
dx.
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Bias term. We have a similar reasoning for the bias term. Indeed, we get for a given
x ∈ X:

E

[ n∑

i=1

ŵi(x)‖x− xi‖22
]

= E

[
1A(x)

n∑

i=1

ŵi(x)‖x− xi‖22
]

+ E

[
1A(x)c

n∑

i=1

ŵi(x)‖x− xi‖22
]

6 P(A(x)) · diam(X)2 +
2

nE[qh(x− z)] · nE[qh(x− z)‖x − z‖22]

6
4‖q‖∞

nhdqh ∗ p(x)
· diam(X)2 +

2h2

qh ∗ p(x)
·
∫

Rd

q(u)‖u‖22p(x− uh)du.

This leads to an overall bound on the bias term as

∫

X

E

[ n∑

i=1

ŵi(x)‖x − xi‖22
]
p(x)dx 6

4‖q‖∞
nhd

∫

X

p(x)

p ∗ qh(x)
dx · diam(X)2 + h2

∫

X

2p(x)

qh ∗ p(x)
·
( ∫

Rd

q(u)‖u‖22p(x− uh)du
)
dx.

Putting things together, and using p(x) ∈ [pmin, pmax], such that p ∗ qh(x) > pmin, we get

∫

X

E[(f̂(x)− f ∗(x))2]dp(x) 6
4‖q‖∞
pmin

2σ2 +Bdiam(X)2

nhd
+ 2h2 · pmax

pmin

∫

Rd

q(u)‖u‖22du.

Experiments. For the problem shown in Section 6.2, below, we plot training and testing
errors averaged over 32 replications (and with error bars showing standard deviations), where
we clearly see the trade-off in the choice of h.
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6.4 Universal consistency (�)

Above, we have required the following conditions on the weights:

•

∫

X

E

[ n∑

i=1

ŵi(x)d(xi, x)2
]
dp(x) → 0 when n tends to infinity, to ensure that the bias

goes to zero.

•

∫

X

n∑

i=1

E[ŵi(x)2]dp(x) → 0 when n tends to infinity, to ensure that the variance goes

to zero.

This was enough to show consistency when the target function is Lipschitz-continuous in Rd.
This also led to a precise rate of convergence (which turned out to be optimal).

In order to show universal consistency, that is consistency for any square-integrable func-
tions, we need an extra (technical) assumption, which was first outlined in Stone’s theo-
rem (Stone, 1977), namely that there exists c > 0 such that for any non-negative integrable
function h : X→ R, then

∫

X

n∑

i=1

E
[
ŵi(x)h(xi)

]
dp(x) 6 c ·

∫

X

h(x)dp(x). (6.7)

Below, h will be the squared deviation between two functions.

△! Above, we only take the expectation with respect to the training data, while we use the
integral notation to take the expectation with respect to the training distribution.

Then for any ε > 0, and for any f ∗ ∈ L2(dp(x)), we can find a function g which is
B(ε)-Lipschitz-continuous and such that ‖f ∗ − g‖L2(dp(x)) 6 ε, because the set of Lipschitz-
continuous functions is dense in L2(dp(x)) (see, e.g., Ambrosio et al., 2013))
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Then we have, for a given x ∈ X:

E

([ n∑

i=1

ŵi(x)
[
f ∗(xi)− f ∗(x)

]]2)

6 E

([ n∑

i=1

ŵi(x)
(∣∣f ∗(xi)− g(xi)

∣∣+
∣∣g(xi)− g(x)

∣∣+
∣∣g(x)− f ∗(x)

∣∣
]2)

6 3E
([ n∑

i=1

ŵi(x)
∣∣f ∗(xi)− g(xi)

∣∣
]2)

+ 3E
([ n∑

i=1

ŵi(x)
∣∣g(xi)− g(x)

∣∣
]2)

+ 3E
([ n∑

i=1

ŵi(x)
∣∣g(x)− f ∗(x)

∣∣
]

using the inequality (a+ b+ c)2 6 3a2 + 3b2 + 3c2,

6 3E
([ n∑

i=1

ŵi(x)
∣∣f ∗(xi)− g(xi)

∣∣
]2)

+ 3E
([ n∑

i=1

ŵi(x)B(ε)d(x, xi)
]2)

+ 3E
(∣∣g(x)− f ∗(x)

∣∣2
)

since weights sum to one, and g is Lipschitz-continuous,

6 3E
[ n∑

i=1

ŵi(x)
∣∣f ∗(xi)− g(xi)

∣∣2
]

+ 3B(ε)2E
( n∑

i=1

ŵi(x)d(x, xi)
2
)

+ 3E
(∣∣g(x)− f ∗(x)

∣∣2
)

using Jensen’s inequality on the second term,

6 3c · E
[∣∣f ∗(x)− g(x)

∣∣2]+ 3B(ε)2E
( n∑

i=1

ŵi(x)d(x, xi)
2
)

+ 3E
(∣∣g(x)− f ∗(x)

∣∣2
)

using Eq. (6.7).

We can now integrate with respect to x, to get
∫

X

E

([ n∑

i=1

ŵi(x)
[
f ∗(xi)−f ∗(x)

]]2)
dp(x) 6 3c·ε2+3B(ε)2

∫

X

E

( n∑

i=1

ŵi(x)d(x, xi)
2
)
dp(x)+3ε2.

(6.8)

Proving universal consistency. We can then combine the bound above (which gives a
bound on the bias) with Eq. (6.2), starting from:
∫

X

E
[
(f̂(x)− f ∗(x))2

]
dp(x) 6

∫

X

E

([ n∑

i=1

ŵi(x)
∣∣f ∗(xi)− f ∗(x)

∣∣
]2)

dp(x) + σ2

∫

X

E
[ n∑

i=1

ŵi(x)2
]
dp(x),

which is the sum of a bias term and a variance term, and for which, together with Eq. (6.8),
we can use the same tools for consistency as for Eq. (6.3).

In order to prove universal consistency, we fix a certain ε, from which we obtain some

B(ε). For such aB(ε), we know how to obtain an overall termB(ε)2
∫
X
E

(∑n
i=1 ŵi(x)d(x, xi)

2
)
dp(x)+

σ2
∫
X
E
[∑n

i=1 ŵi(x)2
]
dp(x), for a well chosen hyperparameter and number of observations n

(see previous sections). Thus, if the extra condition in Eq. (6.7) is satisfied, these three
methods are universally consistent.

We can now look at the three cases:
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• Partitioning: We have then c = 2, and we get universal consistency. Indeed, we have:

n∑

i=1

E
[
ŵi(x)f(xi)

]
=

∑

j∈J

n∑

i=1

E
[
ŵi(x)1x∈Aj

f(xi)
]

=
∑

j∈J
E

(
1x∈Aj

[
1nAj

>0
1

nAj

∑

i∈Bj

f(xi) + 1nAj
=0

1

n

n∑

i=1

f(xi)
)

6
∑

j∈J
E

(
1x∈Aj

[
E[f(z)|z ∈ Aj] + 1x∈Aj

1

n

n∑

i=1

f(xi)
)

6 2E[f(x)].

• Kernel regression: it can be shown using the same type of techniques outlined for
consistency for Lipschitz-continuous functions.

• k-nearest neighbor: the condition in Eq. (6.7) is not easy to show, and is often referred
to as Stone’s lemma. See (Biau and Devroye, 2015, Lemma 10.7).

6.5 Adaptivity (��)

As shown above, all local averaging techniques achieve the same performance on Lipschitz-
continuous functions, which is a bad unavoidable performance when d grows (curse of di-
mensionality). Moreover, higher smoothness of the target function does not seem to be easy
to leverage.

Positive definite kernel methods will provide simple ways in Chapter 7, as well as neural
networks in Chapter 9. Among local averaging techniques, there are ways to do it. For
example, using locally linear regression, where one solves for any test point x,

inf
β1∈Rd, β0∈R

n∑

i=1

ŵi(x)(yi − β⊤
1 x− β0)2.

(note that the regular regressogram corresponds to setting β1 = 0 above). In other words
we solve

inf
β1∈Rd, β0∈R

∫

Y

(y − β⊤
1 x− β0)2dp̂(y|x).

The running time is now O(nd2) per testing point as we have to solve a linear least-squares
(see Chapter 3), but the performance (both empirical and theoretical (Tsybakov, 2008))
improves. See an example with the regressogram weights below.
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Figure 6.5: Locally linear regression
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Chapter 7

Kernel methods

Chapter summary

-Kernels and representer theorems: learning with infinite-dimensional linear models can be
done in time that depend on the number of observations by using a kernel function.
-Kernels on Rd: such models include polynomials and classical Sobolev spaces (functions
with square-integrable partial derivatives).
-Algorithms: convex optimization algorithms can be applied with theoretical guarantees
and many dedicated developments to avoid the quadratic complexity of computing the
kernel matrix.
-Analysis of well-specified models: When the target function is in the associated function
space, learning can be done with rates that are independent of dimension.
-Analysis of mis-specified models: if the target is not in the the RKHS, the curse of
dimensionality cannot be avoided in the worst case situations of few existing derivatives
of the target function, but the methods are adaptive to any amount of intermediate
smoothness.
-Sharp analysis of ridge regression: for the square loss, a more involded analysis leads to
optimal rates in a variety of situations in R

d.

In this chapter, we consider positive-definite kernel methods. For more details, see Schölkopf and Smola
(2001); Shawe-Taylor and Cristianini (2004); Christmann and Steinwart (2008).

139
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7.1 Introduction

In this chapter, we study empirical risk minimization for linear models, that is, prediction
functions fθ : X → R which are linear in their parameters θ, that is, of the form fθ(x) =
〈θ, ϕ(x)〉H, where ϕ : X → H and H is a Hilbert space (essentially a Euclidean space with
potentially infinite dimension), and θ ∈ H. We will often use the notation 〈θ, ϕ(x)〉 in this
chapter instead of 〈θ, ϕ(x)〉H when this is not ambiguous.

The key difference with Chapter 3 on least-squares estimation is that, (1) we are not
restricted to the square loss (although many of the same concepts with play a role, in par-
ticular the analysis of ridge regression), and (2), we will explicitly allow infinite-dimensional
models, thus extending the dimension-free bounds from Chapter 3. The notion of kernel
k(x, y) = 〈ϕ(x), ϕ(y)〉H will be particularly fruitful.

Why is this relevant? The study of infinite-dimensional linear methods is important for
several reasons:

• Understanding linear models in finite but very large input dimensions requires tools
from infinite-dimensional analysis.

• Kernel methods lead to simple and stable algorithms, with theoretical guarantees,
and adaptivity to smoothness of the target function (as opposed to local averaging
techniques). They can be applied in high dimensions, with good practical performance
(note that for supervised learning problems with many observations in domains such
as computer vision and natural language processing, they do not achieve the state of
the art anymore, which is achieved by neural networks presented in Chapter 9).

• They can be easily applied when input observations are not vectors.

• They are useful to understand other models such as neural networks (see Chapter 9).

△! The type of kernel we consider here is different from the ones in Chapter 6. The
ones here are “positive definite;” the ones from Chapter 6 are “non-negative”. See
more details in https://francisbach.com/cursed-kernels/.

7.2 Representer theorem

Dealing with infinite-dimensional models seems impossible at first because algorithms cannot
be run in infinite dimensions. In this section, we show how the kernel function plays a crucial
role to achieve lower-dimensional algorithms.

https://francisbach.com/cursed-kernels/
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As a motivation, we consider the optimization problem coming from machine learning
with linear models, with data (xi, yi) ∈ X× Y, i = 1, . . . , n:

min
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈ϕ(xi), θ〉) +
λ

2
‖θ‖2, (7.1)

assuming the loss function ℓ is already from Y×R → R and not from Y×Y→ R (e.g., hinge
loss, logistic loss or least-squares, see Chapter 4).

The key property of the objective function in Eq. (7.1) is that it accesses the input
observations x1, . . . , xn ∈ X, only through dot-products 〈θ, ϕ(xi)〉, i = 1, . . . , n, and that we
penalize using the Hilbert norm ‖θ‖. The following theorem is crucial and has a particularly
simple proof.

Theorem 7.1 (Representer theorem (Kimeldorf and Wahba, 1971)) Let ϕ : X →
H. Let (x1, . . . , xn) ∈ Xn, and assume that the functional Ψ : Rn+1 → R is strictly increasing
with respect to the last variable, then the infimum of Ψ(〈θ, ϕ(x1)〉, · · · , 〈θ, ϕ(xn)〉, ‖θ‖2) can
be obtained by restricting to a vector θ of the form

θ =

n∑

i=1

αiϕ(xi),

with α ∈ Rn.

Proof Let θ ∈ H, and HD =
{ n∑

i=1

αiϕ(xi), α ∈ R
n
}
⊂ H, the linear span of the feature

vectors. Let θD ∈ HD and θ⊥ ∈ H⊥
D be such that θ = θD+θ⊥, a decomposition which is using

the Hilbertian structure of H. Then ∀i ∈ {1, . . . , n}, 〈θ, ϕ(xi)〉 = 〈θD, ϕ(xi)〉 + 〈θ⊥, ϕ(xi)〉
with 〈θ⊥, ϕ(xi)〉 = 0.

HD

0

θ

θD

From Pythagorean theorem, we get: ‖θ‖2 = ‖θD‖2 + ‖θ⊥‖2. Therefore we have:

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2) = Ψ(〈θD, ϕ(x1)〉, . . . , 〈θD, ϕ(xn)〉, ‖θD‖2 + ‖θ⊥‖2)
> Ψ(〈θD, ϕ(x1)〉, . . . , 〈θD, ϕ(xn)〉, ‖θD‖2).
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Thus

inf
θ∈H

Ψ(〈θ, ϕ(x1)〉, · · · , 〈θ, ϕ(xn)〉, ‖θ‖2) = inf
θ∈HD

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2),

which is exactly the desired result.

This implies that the minimizer of Eq. (7.1) can be found among the vectors of the form
θ =

∑n
i=1 αiϕ(xi):

Corollary 7.1 (Representer theorem for supervised learning) For λ > 0,

inf
θ∈H

1

n

∑
ℓ(yi, 〈θ, ϕ(xi)〉)+

λ

2
‖θ‖2 = inf

α∈Rn

1

n

∑
ℓ(yi, 〈θ, ϕ(xi)〉)+

λ

2
‖θ‖2 such that θ =

n∑

i=1

αiϕ(xi).

It is important to note that there is no assumption on the loss function ℓ. In particular
no convexity is assumed. This is to be contrasted to the use of duality in Section 7.4, where
convexity will play a major role and similar α’s will be defined (but with some notable
differences).

Given Corollary 7.1, we can reformulate the learning problem. We will need the kernel
function k which is the dot product between feature vectors:

k(x, x′) = 〈ϕ(x), ϕ(x′)〉.

We have:

∀j ∈ {1, . . . , n}, 〈θ, ϕ(xj)〉 =
n∑

i=1

αik(xi, xj) = (Kα)j

where K ∈ Rn×n is the kernel matrix, such that Kij = 〈ϕ(xi), ϕ(xj)〉 = k(xi, xj), and

‖θ‖2 =
n∑

i=1

n∑

j=1

αiαj〈ϕ(xi), ϕ(xj)〉 =
n∑

i=1

n∑

j=1

αiαjKij = α⊤Kα.

We can then write:

inf
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈θ, ϕ(xi)〉) +
λ

2
‖θ‖2 = inf

α∈Rn

1

n

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα.

For a test point x ∈ X, we have f(x) =
n∑

i=1

αik(x, xi).

Thus, the input observations are summarized in the kernel matrix and the kernel function,
regardless of the dimension of H. Moreover, computing the feature vector ϕ(x) explicitly is
never needed! This is the kernel trick. The kernel trick allows to:
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• replace H by Rn; this is interesting computationally when the dimension of H is very
large (see more details in Section 7.4),

• separate the representation problem (design of kernels on a set X) and algorithms and
analysis (which only use the kernel matrix K); this is interesting because a wide range
of kernels can be defined for many data types (see more details in Section 7.3).

7.3 Kernels

In the section above, we have introduced the kernel function k : X × X → R as obtained
from a dot product k(x, x′) = 〈ϕ(x), ϕ(x′)〉. The associated kernel matrix is then a matrix of
dot-products (often called a “Gram matrix”), and is thus symmetric positive semi-definite,
that is, all of its eigenvalues are non-negative, or ∀α ∈ Rn, α⊤Kα > 0. It turns out that
this simple property is enough to impose the existence of a feature function.

△! If H = Rd, and Φ ∈ Rn×d is the matrix of features (design matrix in the context of
regression) with i-th row composed of ϕ(xi), then K = ΦΦ⊤ ∈ R

n×n is the kernel matrix,
while 1

n
Φ⊤Φ ∈ Rd×d is the empirical covariance matrix.

Definition 7.1 a function k : X × X → R is a positive definite kernel if and only if all
kernel matrices are symmetric positive semi-definite.

The important following theorem that dated back to Aronszajn (1950), with an elegant
constructive proof. Note the total absence of assumptions on the set X.

Theorem 7.2 ((Aronszajn, 1950)) k is a positive definite kernel if and only if there exists
a Hilbert space H, and a function ϕ : X→ H such that ∀x, x′, k(x, x′) = 〈ϕ(x), ϕ(x′)〉H.

Partial proof One direction is straightforward. For the other direction we consider a
positive-definite kernel, and we will construct explicitly a space of functions from X to R

with a dot-product. We define the set H′ ⊂ RX as the set of linear combinations of kernel
functions

∑n
i=1 αik(·, xi) for any integer n, any set of n points and any α ∈ Rn. This is a

vector space, on which we can define a dot-product through

〈 n∑

i=1

αik(·, xi),
m∑

j=1

βjk(·, x′j)
〉

=

n∑

i=1

m∑

j=1

αiβjk(xi, x
′
j). (7.2)

One can check that this is a well-defined function on H′×H′ (the value does not depend on
the chosen representation as linear combination of kernel functions), that it is a dot-product
on H′ (indeed, in Eq. (7.2) above, when α = β and the x’s and the y’s are the same, we get a
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positive number because of the positivity of the kernel k), which satisfies the two properties
for any f ∈ H′, x, x′ ∈ X:

〈k(·, x), f〉 = f(x) and 〈k(·, x), k(·, x′)〉 = k(x, x′).

These are called reproducing properties, and corresponds to an explicit construction ϕ(x) =
k(·, x).

The space H′ is called “pre-Hilbertian”, because it is not complete. It can be “com-
pleted” into a Hilbert space H with the same reproducing property. See Aronszajn (1950);
Berlinet and Thomas-Agnan (2004) for more details.

We can make the following observations:

• H is called the “feature space,” and ϕ the “feature map,” that goes from the “input
space” X to the feature space H.

• No assumption is needed about the input space X, and no regularity assumption is
needed for k. Up to isomorphisms, the feature map and space happen to be unique.
The particular space of functions, we built is called the reproducing kernel Hilbert space
(RKHS), associated to H, for which ϕ(x) = k(·, x).

• A classical intuitive interpretation of the identity 〈k(·, x), f〉 = f(x) is that the function
evaluation is the dot-product with a function (this in fact another characterization).
If L2(R

d) was an RKHS, this would mean that there exists a function k : X × X→ R

such that
∫
Rd k(x, x′)f(x′)dx′ = f(x). In other words, k(x, x′)dx′ would be a Dirac

measure at x, which is impossible (as Dirac measures have no density with respect
to the Lebesgue measure). Thus L2(R

d) is a Hilbert space that is too large to be an
RKHS.

• Given a positive-definite kernel k, we can thus associate it to some feature map ϕ such
that k(x, y) = 〈ϕ(x), ϕ(y)〉H, but also to a space of functions on X with a given norm,
either directly through the RKHS above, or by looking at all functions fθ of the form
fθ(x) = 〈θ, ϕ(x)〉H, with a regularization term ‖θ‖2H.

△! From now on, we will denote elements of the Hilbert space H through the notation
f ∈ H to highlight the fact that we are considering a space of functions from X to R,
except for optimization algorithms in Section 7.4, where will use the notation 〈θ, ϕ(x)〉H
instead of f(x).

Kernels = features and functions. A positive-definite kernel thus defines a feature map
and a space of functions. Sometimes, the feature map is easy to find, sometimes it is not.
In the next section, we will look at the main examples, and describe the associated spaces
of functions (and the corresponding norms).
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Exercise 7.1 The sum and (pointwise) product of kernels are kernels. What are their as-
sociated feature spaces and feature maps?

We now look at different ways of building the kernels, by starting first from the feature
vector (e.g., linear kernels), from the kernel and explicit feature map (polynomial kernel),
from the norm (translation-invariant kernel on [0, 1]), or from the kernel without explicit
features (translation-invariant kernel on Rd).

7.3.1 Linear and polynomial kernels

We start with the most obvious kernels on X = Rd, for which feature maps are easily found.

Linear kernel. k(x, x′) = x⊤x′. It corresponds to linear functions fθ(x) = θ⊤x, with an
ℓ2-penalty ‖θ‖22. The kernel trick can be useful when the input data have huge dimension d,
but are quite sparse (many zeros), such as in text processing, so that the dot-product x⊤x′

can be computed in time o(d).

Polynomial kernel. for r a postive integer, the kernel k(x, x′) = (x⊤x′)r can be expanded
as (with the binomial theorem1):

k(x, x′) =
( d∑

i=1

xix
′
i

)r
=

∑

α1+···+αd=r

(
r

α1, . . . , αd

)
(x1x

′
1)

α1 · · · (xdx′d)αd

︸ ︷︷ ︸
(x

α1
1 ···xαd

d )((x′
1)

α1 ···(x′

d)
αd )

,

where the sum is over all non-negative integer vectors (α1, . . . , αd). We have an explicit

feature map: ϕ(x) =
((

r
α1,...,αd

) 1
2xα1

1 · · ·xαd
d

)
α1+···+αd=r

, and the set of functions is the set of

homogeneous polynomials on Rd, which has dimension
(
d+r−1

r

)
.

When d and r grows, the dimension of the feature space grows as dr, an explicit repre-
sentation is not desirable, and the kernel trick can be advantageous. Note however, that the
associated norm (which penalizes coefficients of the polynomials), is hard to interpret (as a
small change in a single high-order coefficient can lead to significant changes).

Exercise 7.2 Show that the kernels k(x, y) = (1 +x⊤y)r corresponds to the set of all mono-
mials xα1

1 · · ·xαd
d such that α1 + · · ·+ αd 6 r.

1https://en.wikipedia.org/wiki/Binomial_theorem

https://en.wikipedia.org/wiki/Binomial_theorem
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7.3.2 Translation-invariant kernels on [0, 1]

We consider X = [0, 1], and kernels of the form k(x, x′) = q(x − x′) with a function q :
[0, 1] → R, which is 1-periodic. We will show how they emerge from penalties on the
Fourier coefficients of functions. We will use the fact that squared integrable functions

which are 1-periodic can be expanded in Fourier series, that is, q(x) =
∑

m∈Z
e2imπxq̂m, with

q̂m =

∫ 1

0

q(x)e−2imπxdx, for m ∈ Z.

When presenting translation-invariant kernels, we can choose to start from the kernel or
from the associated squared norm. In this section, we start from the squared norm, while in
the next one, we start from the kernel.

Given a 1-periodic function f decomposed into its Fourier series f(x) =
∑

m∈Z e
2imπxf̂m,

we consider the penalty ∑

m∈Z
cm|f̂m|2,

with c ∈ R
Z

+; this penalty can be interpreted through a feature map and a standard Euclidean

norm. Indeed, it corresponds to the feature vector ϕ(x)m =
e2imπx

√
cm

, and θ ∈ CZ, such that

θm = f̂m
√
cm (we can easily consider complex-valued features instead of real-valued features

if Hermitian dot-products are considered), so that f(x) = 〈θ, ϕ(x)〉 and
∑

m∈Z |θm|2 is equal

to the norm
∑

m∈Z cm|f̂m|2.
Thus the associated kernel is

k(x, x′) =
∑

m∈Z
ϕ(x)mϕ(x)∗m =

∑

m∈Z

e2imπx

√
cm

e−2imπx′

√
cm

=
∑

m∈Z

1

cm
e2imπ(x−y) = q(x− x′).

What we showed above is that any penalty of the form
∑

m∈Z cm|f̂m|2 defines a squared
RKHS norm as soon as cm is positive and

∑
m∈Z

1
cm

is finite. The kernel function is then
of the form k(x, y) = q(x− y) with q being 1-periodic, and such that the Fourier series has
non-negative real values q̂m = c−1

m .

Penalization of derivatives. For certain penalties based on c, there is a natural link with
penalties on derivatives, as, if f is s-times differentiable with squared integrable derivative,
we have f (s)(x) =

∑
m∈Z(2imπ)se2imπxf̂m, and thus, from Parseval’s theorem:

∫ 1

0

|f (s)(x)|2dx = (2π)2s
∑

m∈Z
m2s|f̂m|2.



7.3. KERNELS 147

In this chapter we will consider penalizing such derivatives, leading to Sobolev spaces on
[0, 1]. The following examples are often considered:

• Bernoulli polynomials: we can consider c0 = (2π)−2s and cm = |m|2s for m 6= 0, for

which the associated norm is ‖f‖2H =
1

(2π)2s

∫ 1

0

|f (s)(x)|2dx +
1

(2π)2s

(∫ 1

0

|f(x)|2dx
)

.

The corresponding kernel k(x, x′) can then be written as

k(x, x′) =
∑

m∈Z
c−1
m e2imπ(x−x′) = (2π)2s +

∑

m>1

2 cos[2πm(x− x′)]
m2s

.

In order to have an expression for q in closed form we notice that if we define {x} =
x − ⌊x⌋ ∈ [0, 1) the fractional part of x, the function x 7→ {x} has (by integration by

part) an m-th Fourier coefficient equal to
∫ 1

0
e−2imπxxdx = i

2mπ
. Similarly, the s-th

power of {x} has similarly an m-th Fourier coefficient which is an order s polynomial
in m−1. This implies that k(x, x′) has to be an order s polynomial in {x− x′}.
For s = 1, we have k(x, x) = (2π)2 + 2

∑
m>1m

−2 = (2π)2 + π2/3; moreover by using

the Fourier series expansion {t} = 1
2
− 1

2π

∑
m>1

2 sin[2πmt]
m

, and integrating, we get

k(x, x′) = 2π2{x− x′}2 − 2π2{x− x′}+ π2/3 + (2π)2.

For s > 1, we have the closed-form expression k(x, x′) = (2π)2s+(−1)s−1 (2π)
2s

(2s)!
B2s({x−

x′}), where B2s the (2s)-th Bernoulli polynomial2, from which we can “check” the
computation above since B2(t) = t2 − t+ 1/6.

• Periodic exponential kernel: we can consider cm = 1 + α2|m|2, for which we

have also a closed-form formula, with the penalty ‖f‖2H =
α2

(2π)2

∫ 1

0

|f (s)(x)|2dx +
∫ 1

0

|f(x)|2dx.

Exercise 7.3 (���) Give a closed-form for the kernel k(x, x′) =
∑

m∈Z

e2imπ(x−x′)

1 + α2|m|2 .

Hint: use the Cauchy residue formula (see https: // francisbach. com/ cauchy-residue-formula/

These kernels are mostly used for their simplicity and their explicit feature map, which
are simpler than the kernels which are most used below (with similar links with Sobolev
spaces). Note also, that for the uniform distribution on [0, 1], the Fourier basis will be an
orthogonal eigenbasis of the covariance operator with eigenvalues c−1

m (see Section 7.6.5).

We saw that for the kernel q(x− x′) with Fourier series q̂m for q, the associated norm is∑
m∈Z

|f̂m|2
q̂m

. We now extend this to Fourier transforms (instead of Fourier series).

2See https://en.wikipedia.org/wiki/Bernoulli_polynomials.

https://francisbach.com/cauchy-residue-formula/
https://en.wikipedia.org/wiki/Bernoulli_polynomials
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7.3.3 Translation-invariant kernels on R
d

We consider X = R
d, and a kernel of the form k(x, x′) = q(x−x′) with a function q : Rd → R.

The following theorem gives conditions under which we obtain a positive definite kernel.

Theorem 7.3 (Böchner (Reed and Simon, 1978)) The kernel k is positive definite if
and only if q is the Fourier transform of a non-negative Borel measure. As a consequence,
if q ∈ L1(dx) and its Fourier transform only has non-negative real values, then k is positive
definite.

Partial proof We only give the proof of the consequence, which is the only one that we
need. Since q is integrable, q̂(ω) =

∫
Rd e

−iω⊤xq(x)dx is defined on Rd and continuous, and
we have through the inverse Fourier transform formula:

q(x− x′) =
1

(2π)d

∫

Rd

q̂(ω)ei(x−x′)⊤ωdω.

Let x1, . . . , xn ∈ Rd, let α1, . . . , αn ∈ R. We have:

n∑

s,j=1

αsαjk(xs, xj) =

n∑

s,j=1

αsαjq(xs − xj) =
1

(2π)d

n∑

s,j=1

αsαj

∫

Rd

eiω
⊤(xs−xj)q̂(ω)dω

=
1

(2π)d

∫

Rd

( n∑

s,j=1

αsαje
iω⊤xs(eiω

⊤xj )∗
)
q̂(ω)dω

=
1

(2π)d

∫

Rd

∣∣∣
n∑

s=1

αse
iω⊤xs

∣∣∣
2

q̂(ω)dω > 0,

which shows the positive-definiteness.

Construction of the associated norm. We give an intuitive (non-rigorous) reasoning:
if q is in L1(dx), then q̂(ω) exists and, we have an explicit representation as

k(x, x′) =
1

(2π)d

∫

Rd

〈√
q̂(ω)eiω

⊤x,
√
q̂(ω)eiω

⊤x′〉dω =

∫

Rd

〈
ϕ(x)ω, ϕ(x′)ω〉dω,

which is of the form 〈ϕ(x), ϕ(y)〉, with ϕ(x)ω = 1
(2π)d/2

√
q̂(ω)eiω

⊤x. If we consider f(x) =∫

Rd

ϕ(x)ωθωdω = 〈ϕ(x), θ〉, then θω = 1
(2π)d/2

f̂(ω)/
√
q̂(ω), and the squared norm of θ is equal
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to
1

(2π)d

∫

Rd

|f̂(w)|2
q̂(ω)

dω, where f̂ denotes the Fourier transform of f . Therefore, the norm of

a function f ∈ H is ((for a formal proof, see Schölkopf and Smola, 2001):

‖f‖2H =
1

(2π)d

∫

Rd

|f̂(w)|2
q̂(ω)

dω.

Note the similarity with the penalty for the kernel on [0, 1] (see more similarity below).

Link with derivatives. When f has partial derivatives, then the Fourier transform of ∂f
∂xj

is equal to iωj times the Fourier transform of f . This leads to, using Parseval’s theorem,
1

(2π)d

∫

Rd

|ωj|2|f̂(w)|2dω =

∫

Rd

∣∣ ∂f
∂xj

(x)
∣∣2dx, which extends to higher order derivatives:

1

(2π)d

∫

Rd

|ωα1
1 · · ·ωαd

d |2|f̂(w)|2dω =

∫

Rd

∣∣ ∂αf

∂xα1
1 · · ·∂xαd

d

(x)
∣∣2dx.

This will allow us to find corresponding norms, by expanding q̂(ω)−1 as sums of monomials.
We now consider the main classical examples.

Exponential kernel. This is the kernel q(x − x′) = exp(−α‖x − x′‖2), for which the

Fourier transform can be computed as q̂(ω) = 2dπ(d−1)/2Γ((d + 1)/2)
α

(α2 + ‖ω‖22)(d+1)/2
.

See (Williams and Rasmussen, 2006, page 84). Thus, q̂(ω)−1 is a sum of monomials, and
looking at their orders, we see that the corresponding RKHS norm is penalizing all deriva-
tives up to total order (d+ 1)/2, that is for all α ∈ Nd such that α1 + · · ·+ αd = (d+ 1)/2,
which is a Sobolev space (fractional for d even).

In particular, for d = 1, we have q̂(ω) = 2α
α2+ω2 , and thus

‖f‖2H =
1

2π

∫

R

|f̂(w)|2
q̂(ω)

dω =
α

2

1

2π

∫

R

|f̂(ω)|2dω+
1

2α

1

2π

∫

R

|ωf̂(ω)|2dω =
α

2

∫

R

|f(x)|2dx+
1

2α

∫

R

|f ′(x)|2dx,

and we recover the Sobolev space of functions with squared-integrable derivatives.

Gaussian kernel. This is the kernel q(x− x′) = exp(−α‖x− x′‖2), for which the Fourier

transform can be computed as q̂(ω) =
(
π
α

)d/2
exp(−‖ω‖22/(4α)). By expanding q̂(ω)−1

through its power series as q̂(ω)−1 =
(π
α

)d/2 ∞∑

s=0

(−1)s
‖ω‖2s2

(4α)ss!
, this corresponds to an RKHS

norm which is penalizing all derivatives. Note that all members of this RKHS are infinitely
differentiable, and thus much smoother than functions coming from the exponential kernel
(the RKHS is smaller).
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Matern kernels. More generally, one can define a series of kernels so that q̂(ω) ∝ 1

(α2 + ‖ω‖22)s
for s > d/2, to ensure integrability of the Fourier transform. These so-called Matern kernels
all correspond to Sobolev spaces of order s. See (Williams and Rasmussen, 2006, page 84).
A key fact is that to be an RKHS, a Sobolev space has to have many derivatives when d
grows; in particular, having only first-order derivatives (s = 1) only leads to an RKHS for
d = 1.

For s = d+3
2

, we have k(x, x′) ∝ (1+
√

3α‖x−x′‖2) exp(−
√

3α‖x−x′‖2), and for s = d+5
2

,

we have k(x, x′) ∝ (1 +
√

5α‖x− x′‖2 + 5
3
α2‖x− x′‖22) exp(−

√
5α‖x− x′‖2). General values

s also lead to closed-form formulas (through Bessel functions).

Density in L2(dx). For all the kernels below, the set H is dense in L2(dx), meaning that
all functions in L2(dx) can be approached (with respect to their corresponding norm) by a
function in H. This is made quantitative in Section 7.5.2.

△! In this chapter, we will consider two spaces of integrable functions, with respect to
the Lebesgue measure dx (which is not a probability measure), which we denote L2(dx),
and with respect to the probability measure of the input data, which we denote L2(dp(x)).
If dp

dx
(x) is uniformly bounded, then L2(dx) ⊂ L2(dp(x)); more precisely, ‖f‖L2(dp(x)) 6∥∥ dp

dx

∥∥1/2
∞ ‖f‖L2(dx).

but the converse is not true, simply because being an element of L2(dx) imposes a zero
limit at infinity, which being an element of L2(dp(x)) does not impose.

Examples of members of RKHS. Below, we sampled n = 10 random points in [−1, 1]
with 10 random responses, and we look for the function f ∈ H such that f(xi) = yi for
all i ∈ {1 . . . , n} and with minimum norm. Given the representer theorem, we can write
f(x) =

∑n
i=1 αik(x, xi), and the interpolation condition implies that Kα = y, and thus

y = K−1α.

We consider several kernels below, going from close to piecewise affine interpolation to
infinitely differentiable functions (for the Gaussian kernel).
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7.3.4 Beyond (�)

While the theoretical analysis of kernel methods focuses a lot on kernels on R
d and their

link with differentiability properties of the target function, kernels can be applied to a wide
variety of problems, with various input types. We give below classical examples ((see more
details by Shawe-Taylor and Cristianini, 2004).

• Set of subsets of a given set V : for example, the function k defined as k(A,B) = |A∩B|
|A∪B|

is a positive definite kernel.

• Text documents / web pages: with the usual “bag of words” assumption, we represent
a text document or a web page by considering a vocabulary of “words” (this could be
group of letters, single original words, or groups of words), and counting the number
of occurrences of this word in the corresponding document. This gives a typically
a high-dimensional feature vector ϕ(x) (with dimension the size of the vocabulary).
Using linear functions on this feature provide a cheap and stable predictors on such
data types (better models that take into account the word order can be obtained, such
as neural networks, at the expense of significantly more computational resources). See,
e.g., Joulin et al. (2017) for examples.

• Sequences: given some finite alphabet A, we consider the set X of finite sequences in A

with arbitrary length. A classical infinite-dimensional feature space is indexed by X it-
self, and for y ∈ X, ϕ(x)y is equal to 1 is y is a subsequence of x (we could also count the
number of times the subsequence y appears in x, or we could add a weight that depend
on y, e.g., to penalize longer subsequences). This kernel has an infinite-dimensional
feature space, but for two sequences x and x′, we can enumerate all subsequences of
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x and x′ and compare them in polynomial time (there exist much faster algorithms,
see Gusfield (1997)). These kernels have many applications in bioinformatics.

The same techniques can be extended to more general combinatorial objects such as
trees, graphs (see Shawe-Taylor and Cristianini, 2004).

• Images: before neural networks took over in the years 2010s with the use of large
amounts of data, several kernels were designed for images, with often a “bag-of-words”
assumption that provides for free invariance by translation. The key is what to consider
as “words”, i.e., presence of certain local patterns in the image, as well as the regions
under which this assumption is made. See Zhang et al. (2007) for details.

7.4 Algorithms

In this section, we briefly mention algorithms aimed at solving

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2H, (7.3)

for ℓ being convex with respect to its second variable. We assume that for all i ∈ {1, . . . , n},
k(xi, xi) = ‖ϕ(xi)‖2 6 R2.

Representer theorem. We can directly apply the representer theorem and try to solve

min
α∈Rn

1

n

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα,

which is a convex optimization problem.

In the special case of the square loss (ridge regression), this leads to

min
α∈Rn

1

2n
‖y −Kα‖22 +

λ

2
α⊤Kα,

and setting the gradient to zero, we get (K2 + nλK)α = Ky, with a solution α = (K +
nλI)−1y.

However, in general (for the square loss and beyond), it is a ill-conditioned optimization
problem because K has often very small eigenvalues (more on this later), and when the
loss is smooth, the Hessians are equal to 1

n
K Diag(h)K + λK, where h ∈ Rn is a vector of

second-order derivatives of ℓ, so that the Hessians are ill-conditioned.
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A better alternative is to first compute a square root of K as K = ΦΦ⊤, where Φ ∈ Rn×m,
and m the rank of K, and solve

min
β∈Rm

1

n

n∑

i=1

ℓ(yi, (Φβ)i) +
λ

2
‖β‖22,

with β = Φ⊤α. Note that this corresponds to an explicit feature space representation (that
is, the rows of Φ corresponds to features in Rn for the corresponding data point). For ridge
regression, the Hessian of the objective function is then equal to 1

n
Φ⊤Φ + λI, which is well-

conditioned because its lowest eigenvalue is greater than λ and is thus directly controlled by
regularization.

Computing a square root can be done in several ways (through Cholesky decomposition
or SVD) (Golub and Loan, 1996), in running time O(m2n).

Column sampling. Approximate square roots are a very useful tool, and among various
algorithms, approximating K ∈ R

n×n from a subset of its columns can be done as K ≈
K(V, I)K(I, I)−1K(I, V ), where K(A,B) is the sub-matrix of K obtained by taking rows
from the set A ⊂ {1, . . . , n} and columns from B ⊂ {1, . . . , n}, and V = {1, . . . , n}. See
below for an illustration when I = {1, . . . , m} and a partition of the kernel matrix.

K(I, I)

K(J, I) K(J, J)

K(I, J)

This corresponds to an approximate square root Φ = K(V, I)K(I, I)−1/2 ∈ Rn×m, with
m = |I|, and it can be computed in time O(m2n) (computing the entire kernel matrix is not
even needed). Then, the complexity is typically O(m2n) instead of O(n3) (e.g., when using
matrix inversion for ridge regression, for faster algorithms, see below), and is thus linear in
n.

Exercise 7.4 (�) Show that this corresponds to approximating optimally each ϕ(xj), j /∈ I,
by a linear combination of ϕ(xi), i ∈ I.

This approximation technique, often called “Nyström approximation,” can be analyzed
when the columns are chosen randomly (Rudi et al., 2015).
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Random features. Some kernels have a special form that leads to specific approximation
schemes, that is,

k(x, x′) =

∫

V

ϕ(x, v)ϕ(x′, v)dµ(v),

where dµ is a probability distribution on some space V and ϕ(x, v) ∈ R. We can then
approximate the expectation by an empirical average

k̂(x, x′) =
1

m

m∑

i=1

ϕ(x, vi)ϕ(x′, vi),

where the vi’s are sampled i.i.d. from dµ. We can thus use an explicit feature representation
ϕ̂(x) = ( 1√

m
ϕ(x, vi))i∈{1,...,m}, and solve

min
β∈Rm

1

n

n∑

i=1

ℓ(yi, ϕ̂(xi)
⊤β) +

λ

2
‖β‖22.

For this scheme to makes sense, the number m of random features has to be significantly
smaller than n, which is often sufficient in practice (see an analysis by Rudi and Rosasco,
2017).

△! Note that dimension reduction is performed independently of the input data (that is the
random feature functions ϕ(·, vi) are selected before the data are observed, as opposed to
column sampling which is a data-dependent dimension reduction scheme.

The two classical examples are:

• Translation-invariant kernels: k(x, y) = q(x − y) =
1

(2π)d

∫

Rd

q̂(ω)eiω
⊤(x−y)dω, for

which we can take ϕ(x, ω) =
√
q(0)eiω

⊤x ∈ C, where ω is sampled from the distribu-

tion with density 1
(2π)d

q(ω)
q(0)

, which is a Gaussian distribution for the Gaussian kernel.

Alternatively, one can use a real-valued feature (instead of a complex-valued one) by
using

√
2 cos(ω⊤x + b) with b sampled uniformly in [0, 2π] (Rahimi and Recht, 2008).

• Neural networks with random weights: we can start from an expectation, for
which the sampled features are classical, e.g., ϕ(x, v) = σ(v⊤x) for some function
σ : R → R. For the “rectified linear unit”, that is, σ(α) = max{0, α}, and for v

sampled uniformly on the sphere, we have k(x, x′) = ‖x‖2‖x′‖2
2(d+1)π

[
(π − η) cos η + sin η

]
,

where cos η = x⊤x′

‖x‖2·‖x′‖2 (Le Roux and Bengio, 2007). Therefore, we can view a neural
network with a large number of hidden neurons, with input weights which are random
and not optimized as a kernel method. See a thorough discussion in Chapter 9.
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Dual algorithms (�). For the next two algorithms, we go back to the notation f(x) =
〈ϕ(x), θ〉 with θ ∈ H because it is more adapted (and is a direct infinite-dimensional extension
of the algorithms from Chapter 5). To solve minθ∈H

1
n

∑n
i=1 ℓ(yi, 〈ϕ(xi), θ〉) + λ

2
‖θ‖2, for a

loss which is convex with respect to the second variable, we can derive a Lagrange dual in
the following way (for an introduction to Lagrange duality, see Boyd and Vandenberghe,
2004). We start by reformulating the problem as a constrained problem:

min
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈ϕ(xi), θ〉) +
λ

2
‖θ‖2

= min
θ∈H, u∈Rn

1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖θ‖2 such that ∀i ∈ {1, . . . , n}, 〈ϕ(xi), θ〉 = ui

By Lagrange duality, this is equal to

max
α∈Rn

min
θ∈H, u∈Rn

1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖θ‖2 + λ

n∑

i=1

αi

(
ui − 〈ϕ(xi), θ〉

)

= max
α∈Rn

{ 1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui) + nλαiui]} + min

θ∈H

{λ
2
‖θ‖2 − λ

n∑

i=1

αi〈ϕ(xi), θ〉
}}

by reordering,

= max
α∈Rn

1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui) + nλαiui} −

1

2λ

∥∥∥
n∑

i=1

αiϕ(xi)
∥∥∥
2

with θ =
n∑

i=1

αiϕ(xi),

= max
α∈Rn

1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui) + nλαiui} −

1

2λ
α⊤Kα,

with θ =
n∑

i=1

αiϕ(xi) at optimum. Since the functions αi 7→ minui∈R
{
ℓ(yi, ui) + nλαiui} are

concave (as minima of affine functions), this is a concave maximization problem.

Note the similarity with the representer theorem (existence of α ∈ Rn such that θ =∑n
i=1 αiϕ(xi)) and the dissimilarity (one is a minimization problem, one is maximization

problem). Moreover, when the loss is smooth, one can show that the function minui∈R
{
ℓ(yi, ui)+

nλαiui} is a strongly concave function, and thus relatively easy to optimize (in other words,
the associated condition numbers are smaller),

Exercise 7.5 (a) For ridge regression, compute the dual problem and compare the condition
number of the primal problem and the condition number of the primal problem; (b) compare
the two formulations to using normal equations as in Chapter 3, and relate the two using the
matrix inversion lemma (ΦΦ⊤ + nλI)−1Φ = Φ(Φ⊤Φ + nλI)−1.
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SGD (�). When minimizing an expectation

min
θ∈H

E
[
ℓ(y, 〈ϕ(x), θ〉)

]
+
λ

2
‖θ‖2

as in Chapter 5, the stochastic gradient algorithm leads to the recursion

θt = θt−1 − γt
[
ℓ′(yt, 〈ϕ(xt), θt−1〉)ϕ(xt) + λθt−1

]
,

where (xt, yt) is an i.i.d. sample from the distribution defining the expectation, and ℓ′ is the
derivative with respect to the second variable.

When initializing at θ0 = 0, θt is a linear combination of all ϕ(xi), i = 1, . . . , t, and thus
we can write

θt =
t∑

i=1

α
(t)
i ϕ(xi),

with α(0) = 0, and the recursion in α as

α
(t)
i = (1− γtλ)α

(t−1)
i for i ∈ {1, . . . , t− 1}, and α

(t)
t = −γtℓ′

(
yt, ,

t−1∑

i=1

α
(t−1)
i k(xt, xi)

)
.

The complexity after t iterations is O(t2) kernel evaluations. The convergences rates from
Chapter 5 apply. More precisely, if the loss is G-Lipschitz continuous, then, for F (θ) =
E
[
ℓ(y, 〈ϕ(x), θ〉)

]
+ λ

2
‖θ‖2, we have, for the averaged iterate θt,

E
[
F (θ̄t)

]
− inf

θ∈H
F (θ) 6

G2R2

λt
.

△!
When doing a single pass with t = n, then F (θ) is the regularized expected risk,

and we obtain a generalization bound, leading to E
[
R(fθ̄t)

]
6
G2R2

λn
+ inf

f∈H

{
R(f)+

λ

2
‖f‖2H

}
. These bounds are similar than the ones below (which assume a regular-

ized empirical risk minimizer is available).

“Kernelization” of linear algorithms. Beyond supervised learning, many unsupervised
learning algorithms can be “kernelized”, such as principal component analysis or canonical
correlation analysis. See Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)
for details.
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7.5 Generalization guarantees - Lipschitz-continuous

losses

In this section, we consider a G-Lipschitz-continuous loss function, and consider a minimizer
f̂
(c)
D of the constrained problem

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) such that ‖f‖H 6 D, (7.4)

and the unique minimizer f̂
(r)
λ of the regularized problem

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2H. (7.5)

We denote by R(f) = E
[
ℓ(y, f(x))

]
the expected risk, and by f ∗ one of its minimizers (which

we assume to be square integrable). We assume k(x, x) 6 R2 almost surely.

We can first relate the excess risk to the L2-norm of f − f∗, as

R(f)− R(f ∗) 6 E[|ℓ(y, f(x))− ℓ(y, f ∗(x))|] 6 GE[|f(x)− f ∗(x)|]
6 G

√
E[|f(x)− f ∗(x)|2] = G‖f − f ∗‖L2(dp(x)),

that is, the excess risk is dominated by the L2(dp(x))-norm of f − f ∗. For X = Rd,
and probability measures with bounded density with respect to the Lebesgue measure, we

had shown that ‖f‖L2(dp(x)) 6
∥∥ dp
dx

∥∥1/2
∞ ‖f‖L2(dx), so we can replace G‖f − f ∗‖L2(dp(x)) by

G
∥∥ dp
dx

∥∥1/2
∞ ‖f − f

∗‖L2(dx).

7.5.1 Risk decomposition

Constrained problem. Dimension-free results from Chapter 4 (Prop. 4.4), based on
Rademacher complexities immediately apply, and we obtain that the estimation error is
bounded from above by 2GDR√

n
, leading to:

E
[
R(f̂

(c)
D )
]
− R(f ∗) 6

2GDR√
n

+G inf
‖f‖H6D

‖f − f ∗‖L2(dp(x)),

(the first term is the estimation error, the second term is the approximation error).
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In order to find the optimal D (to balance estimation and approximation error), we can
minimize the bound with respect to D, leading to, using Lagrange duality:

inf
D>0

2GRD√
n

+ G inf
‖f‖H6D

‖f − f ∗‖L2(dp)

= inf
D>0

2GBD√
n

+G sup
λ>0

inf
f∈H
‖f − f ∗‖L2(dp(x)) +

√
λ(‖f‖H −D) using duality,

6 sup
λ>0

inf
D>0

GD
[ 2R√

n
−
√
λ
]

+ 2G
√

inf
f∈H

{
‖f − f ∗‖2L2(dp(x))

+ λ‖f‖2
H

}
using a + b 6 2

√
a2 + b2,

= sup
λ>0

G
√

inf
f∈H

{
‖f − f ∗‖2L2(dp(x))

+ λ‖f‖2H
}

such that
√
λ 6

2R√
n

by solving with respect to D,

6 2G

√
inf
f∈H

{
‖f − f ∗‖2L2(dp(x))

+
4R2

n
‖f‖2

H

}
with λ∗ =

4R2

n
.

Note that the value λ∗ = 4R2

n
is a priori not a regularization parameter to be used in an

algorithm that would lead to the rate we are going to describe below. From such a λ∗, and
the corresponding optimal f , the suggested D is ‖f‖H (as shown below, a good regularization
parameter to achieve this bound is proportional to 1/

√
n)).

Overall, we need to undertand how the deterministic quantity

A(λ, f ∗) = inf
f∈H

{
‖f − f ∗‖2L2(dp(x))

+ λ‖f‖2H
}

goes to zero when λ goes to zero. A few situations are possible:

• If the target function f ∗ happens to be in H, then A(λ, f ∗) = λ‖f ∗‖2H, and thus it
tends to zero as O(λ). This is the best case scenario, and requires that the target
function is sufficiently regular (with at least d/2 derivatives for X = Rd). Then, using
it with λ = 4R2

n
above, the overall excess risk goes to zero as O(1/

√
n).

• The target function f ∗ is not in H, but can be approached arbitrary closely in L2(dp(x))-
norm by a function in H; in other words, f ∗ is in the closure of H in L2(dp(x)). In this
situation, then A(λ, f ∗) goes to zero as λ goes to zero, but without an explicit rate if
no further assumptions are made.

For X = Rd, and dp(x) with a bounded density with respect to the Lebesgue measure,
and for the translation-invariant kernels from Section 7.3.3, this closure includes all of
L2(dx), so this case includes most potential functions. See Section 7.5.2 for explicit
rates.

• Otherwise, denoting ΠH̄(f ∗) the orthogonal projection in L2(dp(x)) of f ∗ on the closure
of H, by Pythagoreas theorem, A(λ, f ∗) = A(λ,ΠH̄(f ∗)) + ‖f ∗−ΠH̄(f ∗)‖2L2(dp(x))

, that
is, there is an incompressible error due to a choice of function space which is not large
enough.



7.5. GENERALIZATION GUARANTEES - LIPSCHITZ-CONTINUOUS LOSSES 159

Regularized problem (�). For the regularized problem, we can use the bound from
Chapter 4:

E
[
R(f̂

(r)
λ )
]
−R(f ∗) 6

32G2R2

λn
+ inf

f∈H

{
G‖f − f ∗‖L2(dp(x)) +

λ

2
‖f‖2H

}
.

We can now minimize the bound with respect to λ as λ∗ = 8RG√
n

, to obtain the bound:

G inf
f∈H

{
‖f − f ∗‖L2(dp(x)) +

8R√
n
‖f‖H

}
6 2G

√
inf
f∈H

{
‖f − f ∗‖2L2(dp)

+
64R2

n
‖f‖2H

}
,

which is the same bound as for constrained problem, but on a more commonly used optimiza-
tion problem in practice. This also suggests to use a regularization parameter proportional
to R2/n.

7.5.2 Approximation error for translation-invariant kernels on R
d

We first start with the analysis of the approximation error of kernel methods for translation
invariant kernels. Given a distribution dp(x), the goal is to compute

A(λ, f ∗) = inf
f∈H
‖f − f ∗‖2L2(dp(x)) + λ‖f‖2H,

where f ∗ is the target function (e.g., the minimizer of the test risk), which we assume
squared-integrable. If A(λ, f ∗) tends to zero when λ tends to zero for any fixed f ∗, then
kernel-based supervised learning leads to universally consistent algorithms.

We assume that ‖f − f ∗‖2L2(dp(x))
6 C‖f − f ∗‖2L2(dx)

(e.g., with C = ‖dp/dx‖∞ where

dp/dx is the density of dp(x)). Moreover, for simplicity, we assume that ‖f ∗‖L2(dx) is finite
(that is, f ∗ is not allowed to explode at infinity). We now give bounds on

Ã(λ, f ∗) = inf
f∈H
‖f − f ∗‖2L2(dx)

+ λ‖f‖2H,

Remember from Section 7.5.1 that if f ∗ ∈ H (best case scenario), then Ã(λ, f ∗) = λ‖f ∗‖2H.

Explicit approximation. We have, for translation-invariant kernels, ‖f‖2H =
1

(2π)d

∫

Rd

|f̂(ω)|2
q̂(ω)

dω,

and thus

Ã(λ, f ∗) = inf
f̂∈L2(dω)

1

(2π)d

∫

Rd

[
|f̂(ω)− f̂ ∗(ω)|2 + λ

|f̂(ω)|2
q̂(ω)

]
dω.
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The optimization can be performed independently for each ω, and this is a quadratic problem,

setting the derivative with respect to f̂(ω) to zero leads to 0 = 2(f̂(ω) − f̂ ∗(ω)) + 2λ f̂(ω)
q̂(ω)

,

and thus f̂λ(ω) = f̂∗(ω)
1+λq̂(ω)−1 . In terms of objective function, we get:

Ã(λ, f ∗) =
1

(2π)d

∫

Rd

[
|f̂ ∗(ω)|2

(
1− 1

1 + λq̂(ω)−1

)]
dω =

1

(2π)d

∫

Rd

[
|f̂ ∗(ω)|2 λ

q̂(ω) + λ

]
dω.

When λ goes to zero, we see that for each ω, f̂λ(ω) tends to f̂(ω). By the dominated

convergence theorem, Ã(λ, f ∗) goes to zero, when λ goes to zero.

Without further assumptions it is not possible to obtain a rate of convergence (otherwise
the no-free lunch theorem from Chapter 2 would be invalidated). However, this is possible
when assuming regularity properties for f ∗.

Sobolev spaces (�). If we assume that

1

(2π)d

∫

Rd

(1 + ‖ω‖22)t|f̂ ∗(ω)|2dω (7.6)

is finite for some t > 0, that is, for f ∗ with squared integrable partial derivatives up to order
t, then we can further bound:

Ã(λ, f ∗) 6
1

(2π)d

∫

Rd

(1 + ‖ω‖22)t|f̂ ∗(ω)|2dω × sup
ω∈Rd

{ λ

q̂(ω) + λ

1

(1 + ‖ω‖22)t
}
.

If we now assume q̂(ω) ∝ (1 + ‖ω‖22)−s (Matern kernels), with s > d/2 to get an RKHS,

then with t > s, f ∗ ∈ H, and have Ã(λ, f ∗) = λ‖f ∗‖2H. With t < s, that is the function is
not inside the RKHS H, then we get a bound proportional to (using a+ b > at/sb1−t/s):

sup
ω∈Rd

{ λ

q̂(ω) + λ

1

(1 + ‖ω‖22)t
}
6 sup

ω∈Rd

{ λ

q̂(ω)t/sλ1−t/s

1

(1 + ‖ω‖22)t
}

= O(λt/s).

Exercise 7.6 (�) Find an upper-bound of Ã(λ, f ∗) for the same assumption on f ∗ but with
the Gaussian kernel.

△! There are two regularities: t > 0 for the target function, and s > d/2 for the kernel.
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Putting things together. Thus, for Lipschitz-continuous losses and target functions that

satisfy Eq. (7.6), we get an expected excess risk of the order

√
Ã(R2/n, f ∗) = O(

1

nt/(2s)
),

when t 6 s. For example, when t = 1, that is only first order derivative are assumed
to be squared integrable, then for s = d/2 + 1/2 (exponential kernel), we obtain a rate of
O( 1

n1/(d+1)) ), which is similar to the rate obtained with local averaging techniques in Chapter 6
(note here that we are in Lipschitz-loss set-up, which leads to worse rates, see square loss
in Section 7.6). Thus kernel methods do not escape the curse of dimensionality (which is
unavoidable anyway). However, with the proper choice of regularization parameter, they
can benefit from extra smoothness of the target function: in the very favorable case, where
f ∗ ∈ H, that is t > s, then we obtain a dimension independent rate of 1/

√
n. In intermediate

scenarios, the rates are in between. This is why kernel methods are said to be adaptive to
the smoothness of the target function.

Approximation bounds (�). In some analysis set-ups (such as those explored in Chap-
ter 9), it is required to approximate some f∗ up to ε with the minimum possible RKHS norm.
This can be done as follows.

A bound on the quantity A(λ, f ∗) = inff∈H
{
‖f − f ∗‖2L2(dp(x))

+ λ‖f‖2H
}

of the form cλα

for α ∈ (0, 1) leads to the following bound:

inf
f∈H
‖f‖2H such that ‖f − f ∗‖L2(dp(x)) 6 ε

= inf
f∈H

sup
µ>0
‖f‖2H + µ(‖f − f ∗‖2L2(dp(x))

− ε2) using Lagrangian duality,

= sup
µ>0

µA(µ−1, f ∗)− µε2 6 sup
µ>0

µcµ−α − µε2.

The optimal µ is such that (1−α)cµ−α = ε2, leading to an approximation bound proportional
to ε2(1−1/α) = ε−2(1−α)/α.

Applied to α = t/s like before, this leads to an RKHS norm proportional to ε−(1−α)/α to
get an error less than ‖f−f ∗‖L2(dx). So where t = 1 (single derivative for the target function),
and s > d/2 (for the Sobolev kernel), we get a norm of the order ε−(1/α−1) = ε−(s−1) > ε−d/2+1,
which explodes exponentially in dimension, which is another way of formulating the curse of
dimensionality.

7.6 Theoretical analysis of ridge regression (��)

In this section, we provide finer results for ridge regression used within kernel methods.
Compared to the analysis performed in Section 3.6, there are three difficulties:
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(1) we go from fixed design to random design: this will require finer probabilistic arguments
(similar to the ones in Section 3.8.2),

(2) we need to go infinite-dimensional: in terms of notations, this will mean not using
transposes of matrices, but dot-products, which is a minor modification,

(3) the infimum of the expected risk over linear functions parameterized by θ ∈ H may
not be attained by an element of H, but by an element of its closure in L2(dp(x)). This
is important, as this allows to access a potentially large set of functions, and requires
more care.

7.6.1 Kernel ridge regression

Beyond fixed-design finite-dimensional analysis. In Chapter 3, we considered ridge
regression in the fixed design setting (where the input data are assumed deterministic) and a
finite-dimensional feature space H, and obtained in Prop. 3.7 the following exact expression
of the excess risk of the ridge regression estimator θ̂λ, assuming yi = 〈θ∗, ϕ(xi)〉+ εi, with εi
independent from xi, and where E[ε2i ] = σ2:

E
[
(θ̂λ − θ∗)⊤Σ̂(θ̂λ − θ∗)

]
= λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ +

σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
. (7.7)

For the random design assumption (which is the usual machine learning setting), we first need
to obtain a value for the expected risk. Moreover, in order to apply to infinite dimensional H
where the minimizer has potentially infinite norm, we need to replace the matrix notation.

Modeling assumptions. We assume that

yi = f∗(xi) + εi,

with for simplicity E(εi|xi) = 0, and E(ε2i |xi) 6 σ2 almost surely, for some target function
f∗ ∈ L2(dp(x)), so that f ∗(x) = E[y|x] is exactly the conditional expectation of y|x. More-
over, for simplicity we will assume that ‖f∗‖∞ is bounded, that is the target function is
uniformly bounded.

△! The target function f ∗ may not be in H. All dot-products will always be in H,
while for norms we will specify the corresponding space.

We thus consider the optimization problem:

min
f∈H

1

n

n∑

i=1

(yi − f(xi))
2 + λ‖f‖2H, (7.8)
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with solution found with algorithms in Section 7.4. We have, with Σ̂ = 1
n

∑n
i=1 ϕ(xi)⊗ϕ(xi)

a self-adjoint operator from H to H (the empirical covariance operator), a cost function
equal to

1

n

n∑

i=1

y2i + 〈f, Σ̂f〉 − 2
〈1

n

n∑

i=1

yiϕ(xi), f
〉

+ λ‖f‖2H,

leading to the minimizer f̂λ of Eq. (7.8) equal to:

f̂λ = (Σ̂ + λI)−1 1

n

n∑

i=1

yiϕ(xi) = (Σ̂ + λI)−1 1

n

n∑

i=1

f ∗(xi)ϕ(xi) + (Σ̂ + λI)−1 1

n

n∑

i=1

εiϕ(xi).

We can now compute the excess risk equal to E
[
‖f̂λ − f ∗‖2L2(dp(x))

]
as (and using that

E(εi|xi) = 0):

E
[
‖f̂λ − f ∗‖2L2(dp(x))

]

= E

[∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

εiϕ(xi)
∥∥2
L2(dp(x))

]
+ E

[∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

f ∗(xi)ϕ(xi)− f ∗∥∥2
L2(dp(x))

]
.

The first term is the usual variance term (that depends on the noise on top of the optimal
predictions), while the second is the bias term (which depends on the regularity of the target
function). Before developing the probabilistic argument, we give simplified upper-bounds of
the two terms.

On top of the non-centered empirical covariance operator Σ̂ = 1
n

∑n
i=1 ϕ(xi)⊗ ϕ(xi), we

will need its expectation, the covariance operator (from H to H)

Σ = E

[
ϕ(x)⊗ ϕ(x)

]

for the corresponding distribution of the xi’s. A key property is that for g ∈ H,

‖g‖2L2(dp(x))
=

∫

X

g(x)2dp(x) =

∫

X

〈g, ϕ(x)〉2dp(x) =

∫

X

〈g, ϕ(x)⊗ϕ(x)g〉dp(x) = 〈g,Σg〉 = ‖Σ1/2g‖2H.

Variance term. Starting from variance = E

[∥∥(Σ̂ + λI)−1 1
n

∑n
i=1 εiϕ(xi)

∥∥2
L2(dp(x))

]
, the vari-

ance term is less than (first using independence and zero means of the variables εi):

E

[∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

εiϕ(xi)
∥∥2
L2(dp(x))

]
=

1

n2

n∑

i=1

E

[
tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1ε2iϕ(xi)⊗ ϕ(xi)

)]

6
σ2

n
E
[

tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂

)]
using E(ε2i |xi) 6 σ2),

6
σ2

n
E

[
tr
(
(Σ̂ + λI)−1Σ

)]
using (Σ̂ + λI)−1Σ̂ 4 I. (7.9)
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This will be the main expression we will bound later. We note that the quantity above, before
the expectation is almost surely less than σ2

n
R2

λ
. This will be useful for the probabilistic

argument.

Bias term. We first assume that f∗ ∈ H, that is, the model is well-specified. Then, writing
f∗(xi) = 〈f∗, ϕ(xi)〉 (which is possible because f∗ ∈ H), the bias term is equal to

bias = E

[∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

〈f∗, ϕ(xi)〉ϕ(xi)− f ∗∥∥2
L2(dp(x))

]

= E

[∥∥(Σ̂ + λI)−1Σ̂f ∗ − f ∗∥∥2
L2(dp(x))

]

= E

[∥∥λΣ1/2(Σ̂ + λI)−1f ∗∥∥2
H

]
= λ2E

[
〈f∗, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1f ∗〉

]
. (7.10)

This will be the main expression we will bound later. Note that the expression above is
only valid for f∗ ∈ H. We note that the quantity above, before the expectation is almost
surely less than 2‖f∗‖2L2(dp(x))

+ 2‖(Σ̂ + λI)−1Σ̂f ∗‖2L2(dp(x))
6 2‖f∗‖2L2(dp(x))

+ 2R2

λ
‖Σ̂1/2f∗‖2H 6

2‖f∗‖2L2(dp(x))
+ 2R2

λ
‖f∗‖2L∞(dp(x)) 6 2(1 + R2

λ
)‖f∗‖2L∞(dp(x)). This will be useful for the proba-

bilistic argument.

Given the expression of the expected variance in Eq. (7.9) and of the expected bias in
Eq. (7.10), we notice that both the empirical and expected covariance operators appear, and
that it would be important to replace the empirical one by the expected one. This is possible
if λ is large enough, which we now show. Then we will bound the two terms separately and
show how balancing them leads to interesting learning bounds.

7.6.2 Relationship between covariance operators

We first start with the following lemma relating Σ̂ = 1
n

∑n
i=1 ϕ(xi) ⊗ ϕ(xi) and Σ =

E
[
ϕ(x)⊗ ϕ(x)

]
, which are the non-centered empirical and population covariance operators.

This concentration result relies on a dimension-independent version of matrix concentration
inequalities presented in Section 1.2.5, which applies to operators (Minsker, 2017, Eq. (3.9)).

It will allow to replace Σ̂ by Σ in many inequalities.

Lemma 7.1 (Concentration for covariance operators) If ‖ϕ(x)‖ 6 R almost surely,

then for n > 5R2

λ
, with probability greater than 1−14 tr

[
(Σ+λI)−1Σ

]
exp

(
− 2nλ

R2

)
, we have

− 1

2
I 4 (Σ + λI)−1/2(Σ− Σ̂)(Σ + λI)−1/2 4

1

2
I. (7.11)
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Proof Let Mi = 1
n
(Σ + λI)−1/2(ϕ(xi) ⊗ ϕ(xi) − Σ)(Σ + λI)−1/2 be a self-adjoint operator

from H to H. We have E[Mi] = 0, ‖Mi‖op 6 R2

λn
(by using Mi 4 1

n
(Σ + λI)−1/2ϕ(xi) ⊗

ϕ(xi)(Σ + λI)−1/2 and Mi < − 1
n
(Σ + λI)−1/2Σ(Σ + λI)−1/2), and

E[M2
i ] =

1

n2
(Σ + λI)−1/2

E
[
ϕ(xi)⊗ ϕ(xi)(Σ + λI)−1ϕ(xi)⊗ ϕ(xi)

]
(Σ + λI)−1/2 − 1

n2
(Σ + λI)−2Σ2

4
1

n2

R2

λ
(Σ + λI)−1Σ, by using 〈ϕ(xi), (Σ + λI)−1ϕ(xi)〉 6

R2

λ
.

Thus trE[M2
i ] 6 1

n2
R2

λ
tr
[
(Σ + λI)−1Σ

]
, and E[M2

i ] 4 1
n2

R2

λ
I. Using the bound from

(Minsker, 2017, Eq. (3.9)), we get that

P

(∥∥(Σ + λI)−1/2(Σ− Σ̂)(Σ + λI)−1/2
∥∥
op
> t
)

= P

(∥∥∥
n∑

i=1

Mi

∥∥∥
op
> t)

6 14 tr
[
(Σ + λI)−1Σ

]
exp

(
− t2/2

R2

nλ
(1 + t/3)

,
)

if t2 > R2

λn
(1 + t/3). With t = 1/2, it is sufficient that n > 5R2

λ
> R2

λ
1+1/6
1/4

, and δ 6

14 tr
[
(Σ + λI)−1Σ

]
exp

(
− 2nλ

R2

)
. This leads to the desired result. Note that this provides

also an interesting result when t is smaller, but we will not use it, since we want to obtain a
result in expectation (but we could use it for results in high probability).

The inequality in Eq. (7.11) has some interesting consequences. First (Σ + λI)−1/2(Σ −
Σ̂)(Σ + λI)−1/2 6 tI leads to (Σ − Σ̂) 4 t(Σ + λI), and thus, (1 − t)(Σ − Σ̂) 4 t(Σ̂ + λI),

which leads to (Σ̂ + λI)−1/2(Σ− Σ̂)(Σ̂ + λI)−1/2 6 t
1−t
I and also Σ̂ + λI < (1− t)(Σ + λI).

7.6.3 Analysis for well-specified problems

In this section, we assume that f∗ ∈ H. We have the following result for the excess risk.

Proposition 7.1 (Convergence rate for kernel ridge regression - well-specified model)
Assume i.i.d. data (xi, yi) ∈ X× R, for i = 1, . . . , n, and yi = f∗(xi) + εi, with E(εi|xi) = 0
and E(ε2i |xi) 6 σ2, and f∗ ∈ H. Assume ‖ϕ(x)‖2 6 R almost surely and λ 6 R2. Then, if
n > 5R2

λ

(
1 + log R2

λ

)
, we have:

E
[
R(f̂λ)−R∗] 6 16

σ2

n
tr
[
(Σ + λI)−1Σ

]
+16λ〈f∗, (Σ + λI)−1Σf∗〉+

24

n2
‖f∗‖2L∞(dp(x)). (7.12)

This is to be contrasted with Eq. (7.7): we obtain a similar result with Σ̂ replaced by Σ, but
with some extra constants and an additional negligible term.



166 CHAPTER 7. KERNEL METHODS

Proof for the variance term. (��) We can bound the variance term from Eq. (7.9),

using the event A =
{
− 1

2
I 4 (Σ + λI)−1/2(Σ− Σ̂)(Σ + λI)−1/2 4 1

2
I
}

from Lemma 7.1:

variance =
σ2

n
E

[
tr
[
(Σ̂ + λI)−1Σ

]]

6
σ2

n
E

[
1A tr

[
(Σ̂ + λI)−1Σ

]]
+
σ2

n
E

[
1Ac tr

[
(Σ̂ + λI)−1Σ

]]

6 2
σ2

n
E

[
tr
[
(Σ + λI)−1Σ

]]
+
σ2

n
P(Ac)E

[
tr
[
(Σ + λI)−1Σ

]]

6 2
σ2

n
tr
[
(Σ + λI)−1Σ

]
+
σ2

n

R2

λ
14 tr

[
(Σ + λI)−1Σ

]
exp

(
− 2nλ

R2

)

= 2
σ2

n
tr
[
(Σ + λI)−1Σ

](
1 + 7

R2

λ
exp

(
− 2nλ

R2

))
.

We thus need that exp
(
2nλ
R2

)
> R2

λ
, that is, n > R2

2λ
log R2

λ
(which we have), to get the desired

variance term less than 16
σ2

n
tr
[
(Σ + λI)−1Σ

]
.

Proof for the bias term. (��) We start from Eq. (7.10):

bias 6 λ2E
[
〈f∗, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1f ∗〉

]
= E

[∥∥Σ1/2((Σ̂ + λI)−1Σ̂f∗ − f∗)‖2
]
.

We can now introduce fλ = (Σ + λI)−1Σf∗ the smoothing of f∗ (which is a deterministic
function), and bound

bias

6 2E
[∥∥Σ1/2((Σ̂ + λI)−1Σ̂f∗ − fλ)‖2H

]
+ 2E

[∥∥Σ1/2(fλ − f∗)‖2H
]

= 2E
[∥∥Σ1/2((Σ̂ + λI)−1Σ̂f∗ − fλ)‖2H

]
+ 2E

[∥∥λΣ1/2(Σ + λI)−1f∗‖2H
]

6 4E
[∥∥Σ1/2(Σ̂ + λI)−1Σ̂(f∗ − fλ)‖2H

]
+ 4E

[∥∥Σ1/2(Σ̂(Σ̂ + λI)−1 − I)fλ‖2H
]

+ 2E
[∥∥λΣ1/2(Σ + λI)−1f∗‖2H

]

The third term is simply

2λ2〈f∗,Σ(Σ + λI)−2f∗〉 6 2λ〈f∗,Σ(Σ + λI)−1f∗〉. (7.13)

For the second term, we have

4E
[∥∥Σ1/2(Σ̂(Σ̂ + λI)−1 − I)fλ‖2H

]
= 4E

[∥∥λΣ1/2(Σ̂ + λI)−1fλ‖2H
]

6 4λ2E
[∥∥Σ1/2(Σ + λI)−1/2(Σ + λI)1/2(Σ̂ + λI)−1/2(Σ̂ + λI)−1/2fλ‖2H

]

6 4λE
[∥∥(Σ + λI)1/2(Σ̂ + λI)−1/2‖2op

]
‖fλ‖2H

= 4E
[∥∥(Σ + λI)1/2(Σ̂ + λI)−1/2‖2op

]
× λ〈f∗, (Σ + λI)−2Σ2f∗〉. (7.14)
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For the first term, we have:

4E
[∥∥Σ1/2(Σ̂ + λI)−1Σ̂(f∗ − fλ)‖2

]

6 4E
[∥∥Σ1/2(Σ + λI)−1/2(Σ + λI)1/2(Σ̂ + λI)−1(Σ + λI)1/2(Σ + λI)−1/2Σ̂(f∗ − fλ)‖2

]

6 4E
[∥∥(Σ + λI)1/2(Σ̂ + λI)−1(Σ + λI)1/2‖2op · ‖(Σ + λI)−1/2Σ̂(f∗ − fλ)‖2

]
. (7.15)

We can apply the same reasoning as for the variance term and introduce the event A, which
leads to a bound (when A is true, from Eq. (7.13), Eq. (7.14) and Eq. (7.15)):

2λ〈f∗,Σ(Σ + λI)−1f∗〉+ 8λ〈f∗, (Σ + λI)−2Σ2f∗〉+ 16E
[
‖(Σ + λI)−1/2Σ̂(f∗ − fλ)‖2

]
.

For the last term 16E
[
‖(Σ + λI)−1/2Σ̂(f∗ − fλ)‖2

]
above, we can use

E[Σ̂(Σ + λI)−1Σ̂] =
1

n2

n∑

i,j=1

E
[
ϕ(xi)⊗ ϕ(xi)(Σ + λI)−1ϕ(xj)⊗ ϕ(xij)

]

=
1

n2

n∑

i 6=j

Σ(Σ + λI)−1Σ +
1

n2

n∑

i=1

E
[
ϕ(xi)⊗ ϕ(xi)(Σ + λI)−1ϕ(xi)⊗ ϕ(xi)

]

4 Σ(Σ + λI)−1Σ +
R2

n
Σ,

to get the bound

10λ〈f∗, (Σ + λI)−1Σf∗〉+ 16
[
λ2〈f∗, (Σ + λI)−3Σ2f∗〉+

λR2

n
〈f∗, (Σ + λI)−2Σf∗〉

]

6 λ〈f∗, (Σ + λI)−1Σf∗〉
(

10 + 16
R2

λn

)
6 16λ〈f∗, (Σ + λI)−1Σf∗〉 using the constraint on n.

We can now compute the term coming from P(Ac), which is less than

4
R2

λ
‖f∗‖2L∞(dp(x)) × 14

R2

λ
exp

(
− 2nλ

R2

)
= 4

R2

λ
‖f∗‖2L∞(dp(x)) × 14

R2

λ
exp

(
− 4nλ

5R2
− 6nλ

5R2

)

6 4
R2

λ
‖f∗‖2L∞(dp(x)) × 14

R2

λ

( λ
R2

)4(5R2

6nλ

)2
max

α
α2e−α

6
24

n2
‖f∗‖2L∞(dp(x)).

Before analyzing the last proposition, and balancing bias and variance, we show how this
can be applied beyond well-specified models.
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7.6.4 Analysis beyond well-specified problems

In the bound in Eq. (7.12), the only term that requires potentially that f∗ ∈ H is the bias
term 16λ〈f∗, (Σ + λI)−1Σf∗〉. The key to an extension to all potential functions f∗ is the
following simple lemma.

Lemma 7.2 Given the covariance operator Σ and any function f∗ ∈ H, then

λ〈f∗, (Σ + λI)−1Σf∗〉 = inf
f∈H

{
‖f − f ∗‖2L2(dp(x)) + λ‖f‖2

}
.

Proof The optimization problem above can we written as inff∈H

{
‖Σ1/2(f−f ∗)‖2+λ‖f‖2

}
,

with solution f = (Σ+λI)−1Σf∗ and we can simply put back the value in the objective func-
tion to get the desired result.

Target function in the closure of H. By using a limiting argument, this shows we can
extend Prop. 7.1 to the general case of f ∗ ∈ L2(dp(x)), but in the closure of H in L2(dp(x))
(because all functions in the closure can be approached by a function in H). For translation-
invariant kernels in Rd (which are dense in L2(dx)), this will allow to estimate any target
function. We will also give below a more general result when f∗ is not in the closure of H.

Proposition 7.2 (Convergence rate for kernel ridge regression - mis-specified model)
Assume i.i.d. data (xi, yi) ∈ X× R, for i = 1, . . . , n, and yi = f∗(xi) + εi, with E(εi|xi) = 0
and E(ε2i |xi) 6 σ2, and f∗ in the closure of H. Assume ‖ϕ(x)‖2 6 R almost surely and
λ 6 R2. Then, if n > 5R2

λ

(
1 + log R2

λ

)
, we have:

E
[
R(f̂λ)−R∗] 6 16

σ2

n
tr
[
(Σ + λI)−1Σ

]
+16 inf

f∈H

{
‖f − f ∗‖2L2(dp(x))

+ λ‖f‖2
}

+
24

n2
‖f∗‖2L∞(dp(x)).

(7.16)

△! Be careful with homogeneity.

General case. if f∗ is not in the closure, we denote by fH
∗ the projection of f∗ for the

L2(dp(x))-norm onto the closure of H. The result from Eq. (7.16) has to be updated to

E
[
R(f̂λ)−R(fH

∗ )
]
6 16

σ2

n
tr
[
(Σ + λI)−1Σ

]
+16 inf

f∈H

{
‖f − fH

∗ ‖2L2(dp(x))
+ λ‖f‖2

}
+

24

n2
‖f∗‖2L∞(dp(x)).

Since for f ∈ H, by Pythagorean theorem, ‖f−f∗‖2L2(dp(x))
= ‖f−fH

∗ ‖2L2(dp(x))
+R(fH

∗ )−R∗,

the equation above implies Eq. (7.16), which remains true in all situations.



7.6. THEORETICAL ANALYSIS OF RIDGE REGRESSION (��) 169

7.6.5 Balancing bias and variance (��)

We can now balance the bias and variance term in the following upper-bound on the expected
excess risk, valid if n > 5R2

λ
(1 + log R2

λ
):

16
σ2

n
tr
[
(Σ + λI)−1Σ

]
+ 16 inf

f∈H

{
‖f − f ∗‖2L2(dp(x))

+ λ‖f‖2
}
,

plus negligible terms.

For this section, we will assume that X = Rd, and that the target function belongs to a
Sobolev kernel of order t > 0, while the RKHS is a Sobolev space of order s > d/2.

We have seen in Section 7.5.2 that the bias term is of order λt/s when s > t. For the
variance term, we need to study the so-called “degrees of freedom”.

Degrees of freedom. This is the quantity tr
[
Σ(Σ+λI)−1

]
, which is decreasing in λ, from

+∞ for λ = 0 to 0 for λ = +∞. If we know that the eigenvalues (λm)m>0 of the covariance
operator satisfy

λm 6 C(m+ 1)−α,

for α > 1, then one has:

tr
[
Σ(Σ + λI)−1

]
=

∑

m>0

λm
λm + λ

6
∑

m>0

1

1 + λC−1(m + 1)α
6

∫ ∞

0

1

1 + λC−1tα

6

∫ ∞

0

λ−1/αC1/α 1

α
u1/α−1 du

1 + u
with the change of variable u = λC−1tα,

6 O(λ−1/α).

It turns out that if dp(x) has a bounded density with respect to the Lebesgue measure,
then for our chosen Sobolev space, we have α = 2s/d (see, e.g., (Harchaoui et al., 2008,
Appendix D)).

Balancing terms (Sobolev spaces). We thus need to balance λt/s with 1
n
λ−1/α, leading

to an optimal λ proportional to n−(1/α+t/s)−1
, and a rate proportional to

1

nαt/(αt+s)
. This rate

is only achievable through our analysis when the bound n > 5R2

λ
(1 + log R2

λ
) is true, that is,

up to logarithmic terms, λ > R2/n, thus,
1

α
+
t

s
> 1.

For α = 2s/d, we obtain the rate
1

n2t/(2t+d)
, which is valid as long as d

2
+ t > s > t. We

can make the following observations:
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• Except for the constraint d
2

+ t > s > t, the upper-bound on the rate obtained after
optimizing over λ does not depend on the kernel.

• We obtain some form of adaptivity, that is, the rate improves with the regularity of the

target function, from the slow rate
1

n2/(2+d)
when t = 1 (recovering the same rate as

for local averaging methods in Chapter 6, and can only be achieved when s 6 d/2 + 1,

e.g., with the exponential kernel), to the rate
1

n2s/(2s+d)
when t = s, the rate is then

always better than 1/
√
n because of the constraint s > d/2.

• In order to allow for regularization parameters λ which are less than 1/n, other as-
sumptions are needed. See, e.g., Pillaud-Vivien et al. (2018) and references therein.

7.7 Experiments

We consider one-dimensional problems to highlight the adaptivity of kernel methods to the
regularity of the target function, with one smooth target and one non-smooth target, and
three kernels: exponential kernel corresponding to the Sobolev space of order 1 (top), Matern
kernel corresponding to the Sobolev space of order 3 (middle), and Gaussian kernel (bottom).
In the right plots, dotted lines are affine fits to the log-log learning curves. The regularization
parameter for ridge regression is selected to minimize expected risk, and learning curves are
obtained by averaging over 20 replications.
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We observe adaptivity for the three kernels: learning is possible even with irregular
function, and the rates are better for the smooth target function. We also note that for
kernels with smaller feature spaces (Matern and Gaussian), the performance on the non-
smooth target function is worse than for the large feature space (exponential kernel). As
highlighted by Bach (2013), this drop in performance is mostly due to a numerical issue (the
eigenvalues of the kernel matrice decay exponentially fast, and finite precision arithmetic
prevents the use of regularization parameters which are too small).
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Chapter 8

Sparse methods

Chapter summary

-ℓ0 penalty: For linear regression, if the optimal predictor has k non-zeros, then we can
replace the rate σ2d/n by σ2k log(d)/n with an ℓ0-penalty on the square loss (which is
computationally hard).
-ℓ1 penalty: With few assumptions, we can get a slow rate proportional to

√
log(d)/n with

an ℓ1-penalty and efficient algorithms, while fast rates require very strong assumptions on
the design matrix.

8.1 Introduction

In previous chapters, we have seen the strong effect of the dimensionality of the input space
X on the generalization performance of supervised learning methods, in two settings:

• When the target function f ∗ was only assumed to be Lipschitz-continuous on X =
Rd, we saw that the excess risk for k-nearest-neigbors, Nadaraya-Watson estimation
(Chapter 6), or positive kernel methods (Chapter 7), was scaling as n−2/(d+2).

• When the target function is linear in some features ϕ(x) ∈ R
d, then the excess risk

was scaling as d/n.

In these two situations, when d is large (of course much larger in the linear case), efficient
learning is not possible in general.

173
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In order to improve upon these rates, we study two techniques in this course. The first one
is regularization, e.g., by the ℓ2-norm, that allows to obtain dimension-independent bounds
that cannot improve over the bounds above in the worst-case, but are typically adaptive to
additional regularity (see Chapter 3 and Chapter 7).

In this chapter, we consider another framework, namely variable selection, whose aim is
to build predictors that depend only on a small number of variables. The key difficulty is
that the identity of the selected variables is not known in advance.

In practice, variable selection is used in mainly two ways:

• The original set of features is already large (for example in text of web data).

• Given some input x ∈ X, a large-dimensional feature vector ϕ(x) is built where features
are added that could potentially help predicting the response, but from which we expect
only a small number to be relevant.

△! If no good predictor with small number of active variables exists, these methods
are not supposed to work better.

In this chapter, we focus on linear methods, where we assume that we have a feature
vector ϕ(x) ∈ Rd, and we aim to minimize

E[ℓ(y, ϕ(x)⊤θ)]

with respect to θ ∈ Rd, for some loss function ℓ : Y× R→ R. We will consider two variable
selection techniques, namely the penalization by ‖θ‖0 the number of non-zeros in θ (often
called abusively the “ℓ0-norm”), or the ℓ1-norm.

Main focus on least-squares. These two types of penalties can be applied to all losses,
but in this chapter, for simplicity we will mostly consider the square loss, and in most cases,
the fixed design setting (see the classical set-up in Chapter 3), and assume that we have n
observations (xi, yi) ∈ X× Y, such that there exists θ∗ ∈ Rd for which for i ∈ {1, . . . , n},

yi = ϕ(xi)
⊤θ∗ + εi,

where xi is assumed deterministic, and εi has zero mean and variance σ2 (we also assume
independence from xi, and sometimes stronger regulariry, such as bounded almost surely, or
Gaussian). The goal is then to find θ ∈ R

d, such that

1

n
‖Φ(θ − θ∗)‖22 = (θ − θ∗)⊤Σ̂(θ − θ∗)

is as small as possible, where Φ ∈ Rn×d is the design matrix and Σ̂ = 1
n
Φ⊤Φ the non-centered

empirical covariance matrix. We recall from Chapter 3 that for the ordinary least-squares
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estimator, the expectation of this excess risk is less than σ2d/n. This is the best possible
performance if we make no assumption on θ∗. In this chapter, we assume that θ∗ is sparse,
that is, only a few of its components are non-zero, or in other words, ‖θ∗‖0 = k is small
compared to d.

8.1.1 Dedicated proof technique for constrained least-squares

In this chapter, we consider a more refined proof technique1 that can extend to constrained
versions of least-squares (while our technique in Chapter 3 heavily relies on having a closed
form for the estimator, which is not possible in constrained or regularized cases except in
few instances, such as ridge regression).

We denote by θ̂ a minimizer of 1
n
‖y − Φθ‖22 with the constraint that θ ∈ Θ. If θ∗ ∈ Θ,

then we have, by optimality of θ̂:

‖y − Φθ̂‖22 6 ‖y − Φθ∗‖22.

By expanding with y = Φθ∗ + ε, we get ‖ε − Φ(θ̂ − θ∗)‖22 6 ‖ε‖22, leading to, by expanding
the norms:

‖ε‖22 − 2ε⊤Φ(θ̂ − θ∗) + ‖Φ(θ̂ − θ∗)‖22 6 ‖ε‖22,
and thus

‖Φ(θ̂ − θ∗)‖22 6 2ε⊤Φ(θ̂ − θ∗).
We can write it as

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · ε⊤
( Φ(θ̂ − θ∗)
‖Φ(θ̂ − θ∗)‖2

)
.

This reformulation is difficult to deal with because θ̂ also appears on the right side of the
equation. Like done for upper-bounding estimation errors in Chapter 4, we can maximize
with respect to θ ∈ Θ, which leads to

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · sup
θ∈Θ

ε⊤
( Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

)
,

and finally

‖Φ(θ̂ − θ∗)‖22 6 4 sup
θ∈Θ

[
ε⊤
( Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

)]2
. (8.1)

This inequality is true almost surely, and we can take expectation (with respect to ε) to
obtain bounds. Therefore, in this chapter, we will compute expectations of maxima of
quadratic forms in ε.

1Taken from Philippe Rigollet’s lecture notes, see http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf.
See also Rigollet and Tsybakov (2007) for an example of application.

http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf
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For example, when Θ = Rd (no constraints), we get, by taking z =
Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

, with

ΠΦ = Πim(Φ) the orthogonal projector on the image space im(Φ):

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 4E

[
sup

z∈im(Φ),‖z‖2=1

[
ε⊤z
]2]

.

By a simple geometric argument (see below)

im(Φ)

ε

Πim(Φ)ε

we have

sup
z∈im(Φ),‖z‖2=1

[
ε⊤z
]2

= sup
z∈im(Φ),‖z‖2=1

[
(ΠΦε)

⊤z+(ε−ΠΦε)
⊤z
]2

= sup
z∈im(Φ),‖z‖2=1

[
(ΠΦε)

⊤z
]2

= ‖ΠΦε‖2,

leading to

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 4E

[
‖ΠΦε‖2

]
= 4σ2

E tr(Π2
Φ) = 4σ2rank(Φ).

We thus, get up to a constant 4, the excess risk as σ2d/n, which is worse than the direct
computation from Chapter 3, but allows extensions to more complex situations.

This reasoning also allows to get high probability bounds by adding assumptions on the
noise ε. Finally, this also extends to penalized problems (see Section 8.2.2).

8.1.2 Probabilistic and combinatorial lemmas

We start with two small probabilistic lemmas:

Lemma 8.1 If z ∈ Rn is normally distributed with mean 0 and covariance matrix σ2I, then,
if s < 1

2σ2 , E
[
es‖z‖

2
2

]
= (1− 2σ2s)−n/2.

Proof We have, for σ = 1 (from which we can derive the result for all σ), and s < 1/2
(using independence among the components of z):

E
[
es‖z‖

2
2
]

= E
[
es

∑n
i=1 z

2
i
]

=

n∏

i=1

E
[
esz

2
i
]

=
1

(2π)n/2

n∏

i=1

∫ ∞

−∞
e(s−

1
2
)z2i dzi

=
1

(2π)n/2

n∏

i=1

√
2π
(
1− 2s)−1/2 = (1− 2s)−n/2.
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Lemma 8.2 Let u1, . . . , um be m random variables which are potentially dependent, and
s > 0, v > 0 such that for each i ∈ {1, . . . , m}, E

[
esui
]
6 v. Then, E

[
max{u1, . . . , um}

]
6

1
s

log(mv).

Proof Following the reasoning from Section 1.2.4 in Chapter 1, for any s ∈ R,

E
[

max{u1, . . . , um}
]
6

1

s
log
( m∑

i=1

E
[
esui
])

6
1

s
log(mv).

The previous two lemmas can be combined to upper-bound the expectation of squared norms
of Gaussian random variables: if z1, . . . , zm ∈ R

n are centered (that is, zero-mean) Gaussian
random vectors which are potentially dependent, but for which the covariance matrix of zi
has eigenvalues less than σ2, we have for s = 1

4σ2 , and Lemma 8.1, E[es‖z‖
2
2 ] 6 2n/2, and from

Lemma 8.2,

E[max{‖z1‖22, . . . , ‖zm‖22}] 6 4σ2 log(m2n/2) = 2nσ2 log(2) + 4σ2 log(m),

which is to be compared to the expectation of each argument of the max, which is less than
σ2n. We pay an additive factor proportional to σ2 log(m). This will be applied to m ∝ dk,
leading to the extra term in σ2k log(d) for methods based on the ℓ0-penalty. The term in dk

comes from the following lemma.

Lemma 8.3 Let d > 0 and k ∈ {1, . . . , d}. Then log
(
d
k

)
6 k(1 + log d

k
).

Proof By recursion on k, the inequality is trivial for k = 1, and if
(

d
k−1

)
6
(

ed
k−1

)k−1
, then

(
d

k

)
=

(
d

k − 1

)
d− k
k

6
( ed

k − 1

)k−1 d

k
6
(ed
k

)k−1
(1 +

1

k − 1
)k−1 d

k
6
(ed
k

)k−1
e
d

k
=
(ed
k

)k
,

where we use for α > 0, (1 + 1
α

)α = exp(α log(1 + α)) 6 exp(1) = e.

We now consider two types of variable selection frameworks, one based on ℓ0-penalties,
one based on ℓ1-penalties.
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8.2 Variable selection by ℓ0 penalty

In this section, we assume that the target vector θ∗ has k non-zero components, that is,
‖θ∗‖0 = k. We denote by A = supp(θ∗) the “support” of θ∗, that is, the subset of {1, . . . , d}
composed of j such that (θ∗)j 6= 0. We have |A| = k.

Price of adaptivity. If we knew the set A, then we could simply perform least-squares
with the design matrix ΦA ∈ Rn×|A|, where ΦB denotes the sub-matrix of Φ obtained by
keeping only the columns from B, with an excess risk proportional to σ2k/n (this is what
we called the “oracle” in Section 8.4). Thus, as long as k is small compared to n, we can
estimate θ∗ correctly, regardless of the potentially large value of d.

However, we do not know A in advance, and we have to estimate it. We will see that

this will lead to an extra factor of log
(d
k

)
6 log d, due to the potentially large number of

models with k variables.

8.2.1 Assuming k is known

We start by assuming that the cardinality k is known in advance, and we consider Gaussian
noise for simplicity (this extends to sub-Gaussian noise as well, see note below).

Proposition 8.1 (Model selection - known k) Assume y = Φθ∗ + ε, with ε ∈ R
n a

vector with independent Gaussian components of zero mean and variance σ2, with ‖θ∗‖0 6 k,
for k 6 d/2. Let θ̂ be the minimizer of ‖y − Φθ‖22 with the constraint that ‖θ‖0 6 k. Then,
the (fixed design) excess risk is:

E
[
(θ̂ − θ∗)⊤Σ̂(θ̂ − θ∗)

]
= E

[1

n
‖Φ(θ̂ − θ∗)‖22

]
6 32σ2 k

n

(
log
(d
k

)
+ 1
)
.
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Proof Starting from Eq. (8.1), we see that for any θ such that ‖θ‖0 6 k, we have ‖θ−θ∗‖0 6
2k, and thus we have, from Section 8.1.1:

‖Φ(θ̂ − θ∗)‖22 6 4 sup
θ∈Rd,‖θ‖06k

[
ε⊤
( Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

)]2
from Eq. (8.1),

6 4 sup
θ∈Rd,‖θ−θ∗‖062k

[
ε⊤
( Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

)]2
from the discussion above,

= 4 sup
B⊂{1,...,n}, |B|62k

sup
supp(θ−θ∗)=B

[
ε⊤
( Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

)]2
by separating by supports,

6 4 sup
B⊂{1,...,n}, |B|62k

sup
z∈im(ΦB),‖z‖2=1

[
ε⊤z
]2

6 4 sup
B⊂{1,...,n}, |B|62k

‖ΠΦB
ε‖2 using the same argument as in Section 8.1.1,

6 4 sup
B⊂{1,...,n}, |B|=2k

‖ΠΦB
ε‖2,

because ‖ΠΦB
ε‖2 is non-decreasing in B.

The random variable ‖ΠΦB
ε‖2 has an expectation which is less than 2k, given that there

are

(
d

2k

)
6

(ed
2k

)2k
sets B of cardinality 2k (bound from Lemma 8.3), we should expect,

with concentration inequalities from Section 8.1.2, that we pay a price of log
(

ed
2k

)2k
≈ k log d

k
.

We will make this reasoning formal.

Indeed, ΠΦB
ε is normally distributed with isotropic covariance matrix of dimension |B| 6

2k, and thus we have for sσ2 < 1/2 small enough, from Lemma 8.1:

E
[
es‖ΠΦB

ε‖2] 6 (1− 2σ2s)−k.

Thus, with s = 1/(4σ2), for which (1− 2σ2s)−k = 2k, we get, from Lemma 8.2:

E
[
‖Φ(θ̂−θ∗)‖22

]
6 16σ2 log

(( d

2k

)
2k
)
6 16σ2 log

((ed
2k

)2k
2k
)

= 16σ2

(
2k log

(d
k

)
+(2−log 2)k

)
.

This leads to the desired result.

We can make the following observations:

• The result extends beyond Gaussian noise, that is, for all sub-Gaussian εi, for which
E[esεi] 6 es

2τ2 for all s > 0 (for some τ > 0), or, equivalently P(|εi| > t) = O(e−ct2) for
some c > 0.

• The result extends if the minimisation is only done approximately.

• This result is not improvable by any algorithm (polynomial time or not), see, e.g.,
(Giraud, 2014, Theorem 2.3).
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Algorithms. In terms of algorithms, essentially all subsets of size k have to be looked at
for exact minimization, with a cost proportional to O(dk), which is a problem when k gets
large. There are however two simple algorithms that come with guarantees when such fast
rates are available for ℓ1-regularization (see Section 8.3.3).

• Greedy algorithm: starting from the empty set, variables are added one by one
that maximizing the resulting cost reduction. This is often referred to as orthogonal
matching pursuit.

• Iterative sorting: Starting from θ0 = 0, the iterative algorithm goes as follows at
iteration t; the upper bound (based on the L-smoothness of the quadratic loss, with
L = λmax(

1
n
Φ⊤Φ), see Chapter 5):

1

n
‖y − Φθt−1‖22 −

2

n
(y − Φθt−1)

⊤Φ(θ − θt−1) + λmax(
1

n
Φ⊤Φ)‖θ − θt−1‖22

on the cost function 1
n
‖y − Φθ‖22 is built and minimized with respect to ‖θ‖0 6 k

to obtain θt, which is done (checked as an exercise) by computing the unconstrained

minimizer θt−1 +
1

λmax(
1
n
Φ⊤Φ)

1

n
Φ⊤(y−Φθt−1), and selecting the k largest components.

8.2.2 Estimating k (�)

In practice, regardless of the computational cost, one also needs to estimate k. A classical
idea to consider penalized least-squares and minimize

1

n
‖y − Φθ‖22 + λ‖θ‖0. (8.2)

This is known to be a hard problem to solve, which essentially requires to look at all 2d

subsets. For a well chosen λ, this (almost) leads to the same performance as if k were
known.

Proposition 8.2 (Model selection - ℓ0-penalty) Assume y = Φθ∗ + ε, with ε ∈ Rn a
vector with independent Gaussian components of zero mean and variance σ2, with ‖θ∗‖0 6 k.
Let θ̂ be the minimizer of Eq. (8.2). Then, for λ = 2σ2

n
(3 + 2 log d), we have:

E
[1

n
‖Φ(θ̂ − θ∗)‖22

]
6

16σ2k

n
(3 + 2 log d) +

5σ2

n
.

Proof We follow the same proof technique than in Section 8.1.1, but now for regularized
problems. We have by optimality of θ̂:

‖y − Φθ̂‖22 + nλ‖θ̂‖0 6 ‖y − Φθ∗‖22 + nλ‖θ∗‖0,
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which leads to, using the inequality 2ab 6 2a2 + 1
2
b2:

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · ε⊤
( Φ(θ̂ − θ∗)
‖Φ(θ̂ − θ∗)‖2

)
+ nλ‖θ∗‖0 − nλ‖θ̂‖0

6 2
(
ε⊤
( Φ(θ̂ − θ∗)
‖Φ(θ̂ − θ∗)‖2

))2
+

1

2
‖Φ(θ̂ − θ∗)‖22 + nλ‖θ∗‖0 − nλ‖θ̂‖0,

leading to, by taking the supremum over θ ∈ Rd:

‖Φ(θ̂ − θ∗)‖22 6 sup
θ∈Rd

{
4
(
ε⊤
( Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

))2
+ 2nλ‖θ∗‖0 − 2nλ‖θ‖0

}
.

We then take the supremum by layers, as sup
θ∈Rd

= sup
k′∈{1,...,d}

sup
|B|=k′

sup
supp(θ)=B

, that is, and using

the same derivations as for Prop. 8.1 (A is the support of θ∗):

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 E

[
sup

k′∈{1,...,d}
sup
|B|=k′

sup
supp(θ)=B

{
4
(
ε⊤
( Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

))2
+ 2nλ‖θ∗‖0 − 2nλk′

}]2

6 4E

[
sup

k′∈{1,...,d}
sup
|B|=k′

{
‖ΠΦA∪B

ε‖2 +
nλ

2
‖θ∗‖0 −

nλ

2
k′
}]2

.

We thus get with the same reasoning as in Section 8.2.1 (based on the probabilistic lemmas
from Section 8.1.2):

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 16σ2 log

( d∑

k′=1

(
d

2k′

)
22k′ exp(

n

2

λ

σ2
‖θ∗‖0 −

n

2

λ

σ2
k′)
)

6 8nλ‖θ∗‖0 + 16σ2 log
( d∑

k′=1

(
d

2k′

)
22k′ exp(−n

2

λ

σ2
k′)
)

6 8nλ‖θ∗‖0 + 16σ2 log
( d∑

k′=1

( ed
2k′
)2k′

22k′ exp(−n
2

λ

σ2
k′)
)

6 8nλ‖θ∗‖0 + 16σ2 log
( d∑

k′=1

(
exp(k′(2 log(d) + 2− n

2

λ

σ2
)
)
.

We thus simply impose that 2 log(d) + 2− n
2

λ
σ2 6 − log 2, to get

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 8nλ‖θ∗‖0 + 16σ2 log(2).

We can thus choose: λ = 2σ2

n
(3 + 2 log d) > 2σ2

n
(2 + log 2), and get the desired result.

We can make the following observations:
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• The penalty proportional to ‖θ‖0 log d is often referred to as the “BIC penalty”.

• Note that we need to know σ2 in advance, which can be a problem in practice. See
Giraud et al. (2012) for more details and alternative formulations.

• The three most important aspects are that: (1) the bound does not require any as-
sumption on the design matrix Φ, (2) that we observe a positive high-dimensional
phenomenon, where d only appears as log d

n
, but (3) only exponential-time algorithms

are possible for solving the problem with guarantees (see algorithms below).

Exercise 8.1 (�) With a penalty proportional to ‖θ‖0 log d
‖θ0‖ , show the same bound than

for k known.

Algorithms. We can extend the two algorithms from Section 8.2.1 for the penalized case:

• Forward-backward algorithm to minimize a function of a set B: Starting from
the empty set B = ∅, at every step of the algorithm, one tries both a forward algorithm
(adding a node to B) and a backward algorithm (removing a node from B), and only
perform a step if it decreases the overall cost function.

• Iterative hard-thresholding: compared to the constrained case, we minimize

1

n
‖y − Φθt−1‖22 −

2

n
(y − Φθt−1)

⊤Φ(θ − θt−1) + λmax(
1

n
Φ⊤Φ)‖θ − θt−1‖22 + λ‖θ‖0,

which can also be computed in closed form (by iterative hard thresholding). That is,

with θt = θt−1 +
1

λmax(Φ⊤Φ)
Φ⊤(y − Φθt−1), all components (θt)j such that |(θt)j |2 >

λ
1
n
λmax(Φ⊤Φ)

, are left unchanged and all others are set to zero. Indeed, for one-dimensional

problems, the minimizer of |θ − y|2 + λ1θ 6=0 is θ∗λ(y) = 0 if |y|2 6 λ and θ∗λ(y) = y oth-
erwise (see below).

y

θ
∗
λ
(y)

√
λ

−
√
λ
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This is referred to as “iterative hard thresholding” (while for the ℓ1-norm, this will be
iterative soft thresholding), because, a component is either kept intact or set exactly
to zero, leading to a discontinuous behavior.

8.3 High-dimensional estimation through ℓ1-regularization

We now consider a computationally efficient alternative to ℓ0-penalties, namely using ℓ1-
penalties, by minimizing, for the square loss:

1

2n
‖y − Φθ‖22 + λ‖θ‖1. (8.3)

This is a convex optimization problem on which algorithms from Chapter 5 can be applied
(see instances below). It is often referred to as the “Lasso” problem, for “least absolute
shrinkage and selection operator”.

8.3.1 Intuition and algorithms

Sparsity-inducing effect. As opposed to the squared ℓ2-norm used in ridge regression,
the ℓ1-norm is non differentiable, and its non-differentiability is not limited to θ = 0, but
in many other points. To see this, we can look at the ℓ1-ball and its different geometry
compared to the ℓ2-ball. This is directly relevant to situations where we constrain the value
of the norm instead of penalizing by it.

θ1

θ2

θ1

θ2

As shown above, where we represent the level set of a potential loss function, the solution
of the minimization of the loss subject to the ℓ1-constraint (in green), is obtained when level
sets are “tangent” to the constraint set. In the right part, this is obtained in a point away
from the axes, but on the left part, this is achieved at one of the corners of the ℓ1-ball, which
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are points where one of the components of θ is equal to zero. Such corners are attractive
and thus typically lead to sparse solutions.

One-dimensional problem. Another classical way to understand the sparsity-inducing
effect is to consider the one-dimensional problem:

min
θ∈R

F (θ) =
1

2
(y − θ)2 + λ|θ|.

Since F is strongly-convex, it has a unique minimizer θ∗λ(y). For λ = 0 (no regularization),
we have θ∗0(y) = y, while for λ > 0, by computing left and right derivatives at zero (to be
done as an exercise), one can check that θ∗λ(y) = 0 if |y| 6 λ, and θ∗λ(y) = y−λ for y > λ, and
θ∗λ(y) = y + λ for y < −λ, which can be put all together as θ∗λ(y) = max{|y| − λ, 0} sign(y),
which is depicted below. This referred to as iterative soft thresholding (this will be useful
for proximal methods below).

y

θ
∗
λ
(y)

λ

−λ

Note that the minimizer is either sent to zero, or shrunk towards zero.

Optimization algorithms. We can adapt algorithms from Chapter 5 to the problem in
Eq. (8.3).

• Iterative soft-thresholding: We can apply proximal methods to the objective func-
tion of the form F (θ)+λ‖θ‖1 for F (θ) = 1

2n
‖y−Φθ‖22, for which F ′(θ) = − 1

n
Φ⊤(y−Φθ).

The plain (non-accelerated) proximal method recursion is

θt = arg min
θ∈Rd

F (θt−1) + F ′(θt−1)
⊤(θ − θt−1) +

L

2
‖θ − θt−1‖22 + λ‖θ‖1,

with L = λmax(
1
n
Φ⊤Φ). This leads to (θt)j = max{|(ηt)j| − λ, 0} sign((ηt)j), for ηt =

θt−1− 1
L
F ′(θt−1). This simple algorithm can also be accelerated. The convergence rate

then depends on invertibility of 1
n
Φ⊤Φ.
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• Coordinate descent: Although the ℓ1-norm is a non-differentiable function, coordi-
nate descent can be applied (because the ℓ1-norm is “separable”). At each iteration, we
select a coordinate to update (at random or by cycling), and optimize with respect to
this coordinate, which is a one-dimensional problem which can be solved in closed form.
The convergence properties are similar to proximal methods (Fercoq and Richtárik,
2015).

η-trick. The non-differentiability of the ℓ1-norm may also be treated through the simple
identity:

|θj| = inf
ηj>0

θ2j
2ηj

+
ηj
2
,

where the minimizer is attained at ηj = |θj |. See below an example in one dimension, with
|θ| and several quadratic upper bounds.

-4 -2 0 2 4
0

1

2

3

4
| |

2/(2 )+ /2

This leads to the reformulation of Eq. (8.3) as

inf
θ∈Rd

1

2n
‖y − Φθ‖22 + λ‖θ‖1 = inf

η∈Rd
+

inf
θ∈Rd

1

2n
‖y − Φθ‖22 +

λ

2

d∑

j=1

θ2j
2ηj

+
λ

2

d∑

j=1

ηj ,

and alternating optimization algorithms can be used: (a) minimizing with respect to η when
θ is fixed can be done in closed form as ηj = |θj|, while minimizing with respect to θ when η
is fixed is a quadratic optimization problem which can be solved by a linear system. See more
details in https://francisbach.com/the-%ce%b7-trick-or-the-effectiveness-of-reweighted-least-

Optimality conditions (�). In order to study the estimator defined by Eq. (8.3), it is
often necessary to characterize when a certain θ is optimal or not, that is, to derive optimality
conditions.

Since the objective function H(θ) = F (θ) + λ‖θ‖1 is not differentiable, we need other
tools than having the gradient equal to zero. The gradient looks only at d directions (along

https://francisbach.com/the-%ce%b7-trick-or-the-effectiveness-of-reweighted-least-squares/
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the coordinate axis), while, in the non-smooth context, we need to look at all directions,
that is, for all ∆ ∈ R

d, we need that the directional derivative

∂H(θ,∆) = lim
ε→0

1

ε

[
H(θ + ε∆)−H(θ)

]
,

is non-negative. That is, we need to go up in all directions. When H is differentiable at θ,
then ∂H(θ,∆) = H ′(θ)⊤∆, and the positivity for all ∆ is equivalent to H ′(θ) = 0.

For H(θ) = F (θ) + λ‖θ‖1, we have:

∂H(θ,∆) = F ′(θ)⊤∆ + λ
∑

j, θj 6=0

sign(θj)∆j + λ
∑

j, θj=0

|∆j|.

It is separable in ∆j , j = 1, . . . , d, and it is non-negative for all j, if and only if, all components
that depend on ∆j are non-negative.

When θj 6= 0, then this requires F ′(θ)j +λ sign(θj) = 0, while when θj = 0, then we need
F ′(θ)j∆j + λ|∆j | > 0 for all ∆j, which is equivalent to |F ′(θ)j | 6 λ. This leads to the set of
conditions:

{
F ′(θ)j + λ sign(θj) = 0, ∀j ∈ {1, . . . , d} such that θj 6= 0,
|F ′(θ)j| 6 λ, ∀j ∈ {1, . . . , d} such that θj = 0.

See Giraud (2014) for more details.

Homotopy method (��). We assume for simplicity that Φ⊤Φ is invertible so that the
minimizer θ(λ) is unique, Given a certain sign pattern for θ, optimality conditions are all
convex in λ and thus define an interval in λ where the sign is constant. Given the sign, then
the solution θ(λ) is affine in λ, leading to a piecewise affine function in λ (see an example of
a regularization path below).
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If we know the break points in λ and the associated signs, then we can compute all
solutions for all λ. This is the source of the homotopy algorithm for Eq. (8.3), which starts
with large λ and builds the path of solutions by computing break points one by one. See
more details by Osborne et al. (2000).

8.3.2 Slow rates

We first consider an analysis based on simple tools and with no assumptions on the design
matrix Φ. We will see that we can deal with high-dimensional inference problems where d
can be large, but it will be rates in 1/

√
n and not 1/n, hence the denomination “slow”.

We study the penalization by a general norm Ω : Rd → R with dual norm Ω∗ defined as
Ω∗(z) = supΩ(θ)61 z

⊤θ. We thus denote by θ̂ a minimizer of

1

2n
‖y − Φθ‖22 + λΩ(θ). (8.4)

We first start by a lemma characterizing the excess risk in two situations: (a) where λ is
large enough, and (b) in the general case.

Lemma 8.4 Let θ̂ be a minimizer of Eq. (8.4).

(a) If Ω∗(Φ⊤ε) 6 nλ
2
, then we have Ω(θ̂) 6 3Ω(θ∗) and 1

n
‖Φ(θ̂ − θ∗)‖22 6 3λΩ(θ∗).

(b) In all cases, 1
n
‖Φ(θ̂ − θ∗)‖22 6 4

n
‖ε‖22 + 4λΩ(θ∗).

Proof We have, like in Section 8.1.1, by optimality of θ̂ for Eq. (8.4):

‖Φ(θ̂ − θ∗)‖22 6 2ε⊤Φ(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂).

Then, with the dual norm Ω∗(z) = supΩ(θ)61 z
⊤θ, assuming that Ω∗(Φ⊤ε) 6 nλ

2
, and using

the triangle inequality:

‖Φ(θ̂ − θ∗)‖22 6 2Ω∗(Φ⊤ε)Ω(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂)

6 nλΩ(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂)

6 nλΩ(θ̂) + nλΩ(θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂) 6 3nλΩ(θ∗)− nλΩ(θ̂).

This implies that Ω(θ̂) 6 3Ω(θ∗) and 1
n
‖Φ(θ̂ − θ∗)‖22 6 3λΩ(θ∗).

We also have a general bound through:

‖Φ(θ̂ − θ∗)‖22 6 2‖ε‖2‖Φ(θ̂ − θ∗)‖2 + 2nλΩ(θ∗),
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which leads to, using the identity 2ab 6 1
2
a2 + 2b2,

‖Φ(θ̂ − θ∗)‖22 6
1

2
‖Φ(θ̂ − θ∗)‖22 + 2‖ε‖22 + 2nλΩ(θ∗),

which leads to the desired bound.

We can now use the lemma above to compute the excess risk of the Lasso, for which Ω = ‖·‖1
and Ω∗(Φ⊤ε) = ‖Φ⊤ε‖∞. The key is to note that since ‖Φ⊤ε‖∞ is a maximum of 2d terms
that scales as

√
n, according to Section 1.2.4, its maximum scales as

√
n log(d), and we will

apply the lemma above when λ is larger than
√

log d
n

. We denote by ‖Σ̂‖∞ the largest element

of the matrix Σ̂ in absolute value.

Proposition 8.3 (Lasso - slow rate) Assume y = Φθ∗ + ε, with ε ∈ Rn a vector with
independent Gaussian components of zero mean and variance σ2. Let θ̂ be the minimizer of

Eq. (8.3). Then, for λ = 4σ
√

log(dn)
n

√
‖Σ̂‖∞, we have:

E
[ 1

n
‖Φ(θ̂ − θ∗)‖22

]
6 28σ

√
log(dn)

n

√
‖Σ̂‖∞‖θ∗‖1 +

24

n
σ2.

Proof For each j, the random variable (Φ⊤ε)j is Gaussian with mean zero and variance

nσ2Σ̂jj. Thus, we get from the union bound and from the fact that for a standard Gaussian
variable z, P(|z| > t) 6 2 exp(−t2/2):

P
(
‖Φ⊤ε‖∞ >

nλ

2

)
6

d∑

j=1

P
(
|Φ⊤ε|j >

nλ

2

)
6 2

d∑

j=1

exp
(
− nλ2

8σ2Σ̂jj

)
6 2d exp

(
− nλ2

8σ2‖Σ̂‖∞
)

= δ.

Thus, with probability greater than 1 − δ, we can apply the first part of Lemma 8.4, and
thus the error is less than 3λ‖θ∗‖1. This would be the end of the proof if a high-probability
result was desired. For a result in expectation, we need also the second part.

Overall, we get, denoting A the event A =
{

Ω∗(Φ⊤ε) 6
nλ

2

}
, and the previous lemma:

E
[
‖Φ(θ̂ − θ∗)‖22

]
= E

[
1A‖Φ(θ̂ − θ∗)‖22

]
+ E

[
1Ac‖Φ(θ̂ − θ∗)‖22

]

6 3nλ‖θ∗‖1 + E
[
1Ac

(
4‖ε‖22 + 4nλ‖θ∗‖1

)]

Using Cauchy-Schwarz inequality, this leads to

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 7nλ‖θ∗‖1 + 4P(Ac)1/2

(
E
[
‖ε‖42

])1/2
.
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With Gaussian noise, we have:
√

E
[
‖ε‖42

]
6 3nσ2, leading to:

1

n
E
[
‖Φ(θ̂ − θ∗)‖22

]
6 7λ‖θ∗‖1 + 24dσ2 exp

(
− nλ2

16σ2‖Σ̂‖∞
)
.

With nλ2

16σ2‖Σ̂‖∞
= log(dn), we get

1

n
E
[
‖Φ(θ̂ − θ∗)‖22

]
6 7λ‖θ∗‖1 +

24

n
σ2 6 28σ

√
log(dn)

n

√
‖Σ̂‖∞‖θ∗‖1 +

24

n
σ2.

△! Check homogeneity!

We already observe some high-dimensional phenomenon with the term
√

log d
n

, where n can

be much larger than d (if of course we assume that the optimal predictor θ∗ is sparse).

Exercise 8.2 (�) Using Rademacher complexities from Chapter 4, show a similar slow rate
for ℓ1-constrained optimization with Lipschitz-continuous losses.

8.3.3 Fast rates (�)

We now consider conditions to obtain a fast rate with leading term proportional to σ2 k log d
n

,
which is the same as for ℓ0-penalty, but with tractable algorithms. This will come with extra
(very) strong conditions on the design matrix Φ.

We start with a simple (but crucial) lemma, characterizing the solution of Eq. (8.3) in
terms of the support A of θ∗.

Lemma 8.5 Let θ̂ be a minimizer of Eq. (8.4). Assume ‖Φ⊤ε‖∞ 6 nλ
2
. If ∆ = θ̂− θ∗, then

‖∆Ac‖1 6 3‖∆A‖1 and ‖Φ∆‖22 6 3nλ‖∆A‖1.

Proof We have, like in previous proofs, with ∆ = θ̂ − θ∗, and A the support of θ∗:

‖Φ∆‖22 6 2ε⊤Φ∆ + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1.

Then, assuming that ‖Φ⊤ε‖∞ 6 nλ
2

,

‖Φ∆‖22 6 2‖Φ⊤ε‖∞‖∆‖1 + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1
‖Φ∆‖22 6 nλ‖∆‖1 + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1.
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We then use, by using the decomposability of the ℓ1-norm and the triangle inequality:

‖θ∗‖1−‖θ̂‖1 = ‖(θ∗)A‖1−‖θ∗+∆‖1 = ‖(θ∗)A‖1 − ‖(θ∗ + ∆)A‖1−‖∆Ac‖1 6 ‖∆A‖1−‖∆Ac‖1,

to get

‖Φ∆‖22 6 nλ‖∆‖1 + 2nλ(‖θ∗‖1 − ‖θ̂‖1) 6 nλ‖∆‖1 + 2nλ(‖∆A‖1 − ‖∆Ac‖1)
6 nλ(‖∆A‖1 + ‖∆Ac‖1) + 2nλ(‖∆A‖1 − ‖∆Ac‖1) = 3nλ‖∆A‖1 − nλ‖∆Ac‖1.

This leads to ‖∆Ac‖1 6 3‖∆A‖1 and the other desired inequality.

We can now add an extra assumption that will make the proof go through, namely

1

n
‖Φ∆‖22 > κ‖∆A‖22 (8.5)

for all ∆ that satisfies the condition ‖∆Ac‖1 6 3‖∆A‖1. This is called the “restrictive
eigenvalue property”, because if the smallest eigenvalue of 1

n
Φ⊤Φ is greater than κ, the

condition is satisfied (but this is only possible if n > d). The relevance of this assumption is
discussed in Section 8.3.4.

This leads to the following proposition.

Proposition 8.4 (Lasso - fast rate) Assume y = Φθ∗ + ε, with ε ∈ Rn a vector with
independent Gaussian components of zero mean and variance σ2. Let θ̂ be the minimizer of

Eq. (8.3). Then, for λ = 4σ
√

log(dn)
n

√
‖Σ̂‖∞, we have, if Eq. (8.5) is satisfied:

E
[1

n
‖Φ(θ̂ − θ∗)‖22

]
6

144|A|σ2‖Σ̂‖∞
κ

log(dn)

n
+

24

n
σ2 +

32

dn2
‖θ∗‖1σ

√
log(dn)

n

√
‖Σ̂‖∞.

Proof (�) We have, when λ is large enough, and by application of Lemma 8.5, and using
Eq. (8.5):

‖∆A‖1 6 |A|1/2‖∆A‖2 6
|A|1/2√
nκ
‖Φ∆‖2 6

|A|1/2√
nκ

√
3nλ‖∆A‖1,

which leads to ‖∆A‖1 6
3|A|λ
κ

. We then get 1
n
‖Φ∆‖22 6

9|A|λ2

κ
, and we can reuse the same

reasoning as for the slow rate, to get

E
[ 1

n
‖Φ∆‖22

]
6

9|A|λ2
κ

+ 8dλ‖θ∗‖1 exp
(
− nλ2

8σ2‖Σ̂‖∞
)

+
24

n
σ2

6
9|A|λ2
κ

+ 8dλ‖θ∗‖1
1

d2n2
+

24

n
σ2

6
144|A|σ2‖Σ̂‖∞

κ

log(dn)

n
+

24

n
σ2 +

32

dn2
‖θ∗‖1σ

√
log(dn)

n

√
‖Σ̂‖∞.
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The dominant part of the rate is proportional to σ2k log d
n

, which is a fast rate, but depends
crucially on a very strong assumption.

8.3.4 Zoo of conditions (��)

Conditions to obtain fast rates are plentyful: they all assume that there is low-correlation
among predictors, which is rarely the case in practice (in particular, if there are two features
which are equal, they are never satisfied).

Restricted eigenvalue property (REP). The most direct condition is the so-called
restricted eigenvalue property (REP), which is exactly Eq. (8.5), with the supremum taken
over the unknown set A of cardinality less than k:

inf
|A|6k

inf
‖∆Ac‖163‖∆A‖1

‖Φ∆‖22
n‖∆A‖22

> κ > 0.

Mutual incoherence condition. A simpler one to check, but weaker, is the mutual
incoherence condition:

sup
i 6=j
|Σ̂ij| 6

minj∈{1,...,d} Σ̂jj

14k
, (8.6)

which states that all cross-correlation coefficients are small (pure decorrelation would set
them to zero).

This is weaker than the REP condition above. Indeed, by expanding, we have:

‖Φ∆‖22 = ‖ΦA∆A+ΦAc∆Ac‖22 = ‖ΦA∆A‖22+2∆⊤
AΦ⊤

AΦAc∆Ac+‖ΦAc∆Ac‖22 > ‖ΦA∆A‖22+2∆⊤
AΦ⊤

AΦAc∆Ac .

Moreover, we have:

∆⊤
AΣ̂AA∆A = ∆⊤

A Diag(diag(Σ̂AA))∆A+∆⊤
A(Σ̂AA−Diag(diag(Σ̂AA))∆A > min

j∈{1,...,d}
Σ̂jj

(
‖∆A‖22−

1

14k
‖∆A‖21

)
,

and

|∆⊤
AΦ⊤

AΦAc∆Ac| 6 minj∈{1,...,d} Σ̂jj

14k
‖∆Ac‖1‖∆A‖1 6

3 minj∈{1,...,d} Σ̂jj

14k
‖∆A‖21.

This leads to 1
n
‖Φ∆‖22 > minj∈{1,...,d} Σ̂jj

(
‖∆A‖22 − 7

14k
‖∆A‖21

)
> minj∈{1,...,d} Σ̂jj

(
‖∆A‖22 −

7k
14k
‖∆A‖22

)
, thus leading to κ = minj∈{1,...,d} Σ̂jj/2 for the REP condition.
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Restricted isometry property. One of the earlier conditions was the restricted isometry
property: all eigenvalues of submatrices of Σ̂ of size less than 2k, are between 1−δ and 1+ δ
for δ small enough. See Giraud (2014); Wainwright (2019) for details.

Gaussian designs (�). It is not obvious that the conditions above are non-trivial (that
is, there may exist no matrix with good sizes d and n for k large enough). In order for
our results to be non-trivial, we need that k log d

n
is small but not too small. We show in

this paragraph that when sampling from Gaussian distributions, then assumptions above
are satisfied. This is a first step towards a random design assumption.

Theorem 8.1 ((Wainwright, 2019), Theorem 7.16) If sampling ϕ(x) from a Gaussian

with mean zero and covariance matrix Σ, then with probability greater than 1− e−n/32

1−e−n/32 , the

REP property is satisfied with κ = c1
2
λmin(Σ) as soon as k log d

n
6 c1

8c2

λmin(Σ)
‖Σ‖∞ , with c1 = 1/8

and c2 = 50.

The theorem above is hard to prove, the following exercise proposes to prove a weaker
result, showing that the guarantees for the maximal cardinality k of the support has to be
smaller.

Exercise 8.3 (���) If sampling ϕ(x) from a Gaussian with mean zero and covariance

matrix identity, then with large probability, for n greater than a constant times k2
log d

n
, then

mutual incoherence property in Eq. (8.6) is satisfied.

Model selection and irrepresentable condition (�). Given that the Lasso aims at
performing variable selection, it is natural to study its capacity to find the support of θ∗, that
is, the set of non-zero variables. It turns out that it also depends on some conditions on the
design matrix, which are stronger than the REP conditions, and called the “ irrepresentable
condition”, and also valid for Gaussian random matrices with similar scalings between n, d
and k. See Giraud (2014); Wainwright (2019) for details.

△!
Algorithmic and theoretical tools are similar to “compressed sensing”, where the
design matrix represents a set of measurements, which can be chosen by the
user/theoretician. In this context, sampling from i.i.d. Gaussians make sense. For
machine learning and statistics, the design matrix is the data, and comes as it is,
often with strong correlations.
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8.4 Experiments

In this section, we perform a simple experiment on Gaussian design matrices, where all
entries in Φ ∈ Rn×d are sampled independently from a standard Gaussian distribution, with
n = 64, and varying d. Then θ∗ is taken to be zero except on k = 4 components where it
is randomly equal to −1 or 1. We consider σ =

√
k (to have a signal to noise ratio that

remains constant when k varies). We perform 128 replications. For each method and each
value of its hyperparameter, we averaged the test risk over the 128 replications and report
the minimum value (with respect to the hyperparameter). We compare the following three
methods:

• Ridge regression: penalty by λ‖θ‖22.

• Lasso regression: penalty by λ‖θ‖1.

• Orthogonal matching pursuit (greedy forward method), with hyperparameter k (the
number of included variables).

We compare two situations: (1) non-rotated data (exactly the model above), and (2)
rotated data, where we replace Φ by ΦR and θ∗ by R⊤θ∗, where R is a rotation matrix.
For the rotated data, we do not expect sparse solutions, and hence sparse methods are
not expected to work better than ridge regression (and OMP performs significantly worse
because once the support is chosen, there is no regularization). Note that the two curves for
ridge regression are exactly the same (as expected from rotation invariance of the ℓ2-norm).
The oracle performance corresponds to the estimator where the true support is given.
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△! Sparse methods make assumptions regarding the best predictor. Like all assump-
tions, when this assumed prior knowledge is not correct, the method does not
perform better.
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8.5 Extensions

Sparse methods are more general than the ℓ1-norm, and can be extended in a number of
ways:

• Group penalties: in many cases, {1, . . . , d} is partitioned in to m subsets A1, . . . , Am,
and the goal is to consider “group sparsity”, that is, if we select one variable within a
group Aj , the entire group should be selected. Such behavior can be obtained using
the penalty

∑m
i=1 ‖θAi

‖2 or
∑m

i=1 ‖θAi
‖∞. See, e.g., Giraud (2014) for details.

• Structured sparsity: it is also possible to favor other specific patterns for the selected
variables, such as blocks, trees, etc. See Bach et al. (2012b) for details.

• Nuclear norm: when learning on matrices, a natural form of sparsity is for a matrix
to have low rank. This can be achieved by penalizing by the sum of singular values of
a matrix, which is a norm called the nuclear norm or the trace norm. See Bach (2008)
and references therein.

• Multiple kernel learning: the group penalty can be extended when the groups have
an infinite dimension and ℓ2-norms are replaced by RKHS norms defined in Chapter 7.
This becomes a tool to learn the kernel matrix from data. See Bach et al. (2012a) for
details.

• Elastic net: often, when both effects of the ℓ1-norm (sparsity) and of the squared
ℓ2-norm (strong-convexity) are desired, we can sum the two, which is referred to as the
“elastic net” penalty.

• Concave penalization and debiasing: in order to obtain a sparsity-inducing effect,
the penalty in the ℓ1-norm has to be quite large, such as in 1/

√
n, which often creates

a strong bias in the estimation once the support is selected. There are several ways
on debiasing the Lasso, an elegant one being to use a “concave” penalty. That is, we
use

∑d
i=1 a(|θi|) where a is a concave increasing function on R+, such as a(u) = uα for

α ∈ (0, 1). This leads to a non-convex optimization problem, where iterative weighted
ℓ1-minimization provides natural algorithms (see Mairal et al., 2014, and references
therein).



Chapter 9

Neural networks

Chapter summary

- Single hidden layer neural networks: Using combinations of simple affine functions with
additional non-linearity.
- Estimation error: the number of parameters is not the driver of the estimation error, the
norms of the various weights play an important role.
- Approximation properties and universality: for the “ReLU” activation function, the
approximation properties can be characterized and are superior to kernel methods because
they are adaptive to linear structures.

9.1 Introduction

In supervised learning, the main focus has been on methods to learn from n observations
(xi, yi), i = 1, . . . , n, with xi ∈ X (input space) and yi ∈ Y (output/label space). As presented
in Chapter 4, a large class of methods relies on minimizing a regularized empirical risk with
respect to a function f : X→ R where the following cost function is minimized:

1

n

n∑

i=1

ℓ(yi, f(xi)) + Ω(f),

where ℓ : Y×R→ R is a loss function, and Ω(f) is a regularization term. Typical examples
were:

• Regression: Y = R and ℓ(yi, f(xi)) = 1
2
(yi − f(xi))

2.

195
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• Classification: Y = {−1, 1} and ℓ(yi, f(xi)) = Φ(yif(xi))) where Φ is convex, e.g.,
Φ(u) = max{1 − u, 0} (hinge loss leading to the support vector machine) or Φ(u) =
log(1 + exp(−u)) (leading to logistic regression).

The class of functions we have considered so far were (with their “pros” and “cons”):

• Linear functions in some explicit features: given a feature map ϕ : X → Rd,
we consider f(x) = θ⊤ϕ(x), with parameters θ ∈ Rd, as analyzed in Chapter 3 (for
least-squares) and Chapter 4.

( ) Pros: Simple to implement, convex optimization with gradient descent algorithms,
with running time omplexity in O(nd), and theoretical guarantees.
( ) Cons: Only applies to linear functions on explicit (and fixed feature spaces), so
they can underfit the data.

• Linear functions in some implicit features through kernel methods: the fea-
ture map can have arbitrarily large dimension, that is, ϕ(x) ∈ H where H is a Hilbert
space, accessed through a kernel k(x, x′) = 〈ϕ(x), ϕ(x′)〉H, as presented in Chapter 7.

( ) Pros: Non-linear flexible predictions, simple to implement, convex optimization
algorithms with strong guarantees. Provides adapticty to regularity of the target func-
tion.
( ) Cons: Running-time complexity up to O(n2). May still suffer from the curse of
dimensionality for non-smooth target functions.

The goal of this chapter is to explore another class of functions for non-linear predictions,
namely neural networks, that come with additional benefits, such as more “adaptivity for
linear structures”, but comes with some potential drawbacks, such as a harder optimization
problem.

9.2 Single hidden layer neural network

We consider X = Rd and the set of functions that can be written as

f(x) =
m∑

j=1

ηjσ(w⊤
j x + bj), (9.1)

where wj ∈ R, bj ∈ R and ηj ∈ R, j = 1, . . . , m, and σ is an activation function. This is
often represented as a graph (see below).
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f(x) =
m∑

j=1

ηjσ(w
⊤

j x+ bj)x

w, b

η

The activation function is typically from one of the following examples (see plot below):

• sigmoid σ(u) = 1
1+e−u ,

• step σ(u) = 1u>0,

• rectified linear unit (ReLU) σ(u) = (u)+ = max{u, 0},

• hyperbolic tangent σ(u) = tanh(u) = eu−e−u

eu+e−u .

-4 -2 0 2 4
-2

-1

0

1

2

sigmoid

step

ReLU

tanh



198 CHAPTER 9. NEURAL NETWORKS

The function f is defined as the linear combination of m functions x 7→ σ(w⊤
j x+ bj), which

are the “hidden neurons”.

△! The constant terms bj are sometimes referred to as “biases”, which is unfortunate
in a statistical context.

△! Do not get confused by the name “neural network” and its biological inspiration.
This inspiration is not a proper justification of its behavior on machine learning
problems.

△!
Following standard practice, we are not adding a non-linearity for the last layer;
note that if we were to use an additional sigmoid activation and using the cross-
entropy loss for binary classification, we would exactly be using the logistic loss on
the output without an extra activation function.

As any method based on empirical risk minimization, we have to study the three classical
aspects: (1) optimization (convergence properties of algorithms for minimizing the risk), (2)
estimation error (effect of having a finite amount of data on the prediction performance),
and (3) approximation error (effect of having a finite number of parameters).

9.2.1 Optimization

In order to find parameters θ = {(ηj), (wj), (bj)} ∈ Rm(d+2), empirical risk minimization can
be applied and the following optimization problem has to be solved:

min
θ∈Rm(d+2)

1

n

n∑

i=1

ℓ
(
yi,

m∑

j=1

ηjσ(w⊤
j xi + bj)

)
.

△! Note that in the true objective is to perform well on unseen data, and the optimization
problem is just a mean to an end. See Chapter 4 and Chapter 5.

This is a non-convex optimization problem where the gradient descent algorithms from
Chapter 5 can be applied without guarantees (see Section 9.5 for recent results on providing
some qualitative global convergence guarantees when m is large). Sometimes regularization
is added on the parameters.

While stochastic gradient descent remains an algorithm of choice, several tricks have
been observed to lead to better stability and performance: specific step-size decay schedules,
momentum, batch-normalization, etc. But overall, the objective function is non-convex, and
it remains difficult to understand why gradient-based methods perform well in practice (some
elements are presented in Section 9.5).
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See https://playground.tensorflow.org/ for a nice interactive illustration.

9.2.2 Estimation error

In order to study the estimation error, we will consider that the parameters of the network
are constrained, that is, Ω(θ) 6 D for a certain norm Ω that we will define below. We
can then compute the Rademacher complexity of the associated class F of function we just
defined, using tools from Chapter 4 (Section 4.5).

We consider an ℓ1-bound ‖η‖1 6 Dη, as this will be our main tool for approximation
theory in later sections.

We have, by definition of the Rademacher complexity Rn(F) of F, and taking expectations
with respect to the data (xi, yi), i = 1, . . . , n (which is assumed i.i.d.) and the independent
Rademacher random variables εi ∈ {−1, 1}:

Rn(F) = E

[
sup

θ∈Rm(d+2)

1

n

n∑

i=1

εiℓ(yi, fθ(xi))
]
.

Assuming the loss is almost surely Gℓ-Lipschitz-continuous with respect to the second vari-
able, using Proposition 4.3 from Chapter 4 that allows to get rid of the loss, we get the
bound:

Rn(F) 6 Gℓ E

[
sup

θ∈Rm(d+2)

1

n

n∑

i=1

εifθ(xi)
]

= Gℓ E

[
sup

θ∈Rm(d+2)

1

n

n∑

i=1

m∑

j=1

ηjεiσ(w⊤
j xi + bj)

]
.

Using the ℓ1-constraint on η and using sup‖η‖16Dη
z⊤η = Dη‖z‖∞, we can directly maximize

with respect to η, leading to (note that another ℓp-constraint on η would be harder to deal
with):

Rn(F) 6 Gℓ E

[
sup

(w,b)∈Rm(d+1)

sup
s∈{−1,1}

sup
j∈{1,...,m}

Dηs
1

n

n∑

i=1

εiσ(w⊤
j xi + bj)

]
.

Assuming the activation function σ isGσ-Lipschitz continuous, we get, again using Propo-
sition 4.3 from Chapter 4 :

Rn(F) 6 GℓDηGσ E

[
sup

(w,b)∈Rm(d+1)

sup
j∈{1,...,m}

sup
s∈{−1,1}

s
{
w⊤

j

(1

n

n∑

i=1

εixi

)
+ bj

(1

n

n∑

i=1

εi

)}]
.

If we assume that we bound Θ(wj, bj) 6 Dw,b, for each j ∈ {1, . . . , m}, we get, with the

usual definition of the dual norm Θ∗(u, v) = supΘ(w,b)61

(
w
b

)⊤(u
v

)
:

Rn(F) 6 GℓDηGσDw,b E

[
Θ∗
(1

n

n∑

i=1

εixi,
1

n

n∑

i=1

εi

)]
.

https://playground.tensorflow.org/
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Using Θ(w, b) = max{‖w‖2, |b|/
√
E‖x‖22}, with Θ∗(u, v) = ‖u‖2 + |v|

√
E‖x‖22, we get, using

Jensen’s inequality (of the form E[Z] 6
√

E[Z2]):

E

[
Θ∗
(1

n

n∑

i=1

εixi,
1

n

n∑

i=1

εi

)]
= E

[∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

]
+
√

E‖x‖22 E
[∣∣ 1
n

n∑

i=1

εi
∣∣]

6

√√√√E

[∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

2

]
+
√

E‖x‖22

√√√√E
[∣∣1
n

n∑

i=1

εi
∣∣2].

Then using independence of all εi and their zero means, we get

E

[
Θ∗
(1

n

n∑

i=1

εixi,
1

n

n∑

i=1

εi

)]
6 2

√
E‖x‖22
n

.

Thus, we get the following proposition, with a bound proportional to 1/
√
n with no explicit

dependence in the number of parameters.

Proposition 9.1 Let F be the class of functions (y, x) 7→ ℓ(y, f(x)) where f is a neural net-
work defined in Eq. (9.1), with the constraint that ‖η‖1 6 Dη, max{‖wj‖2, |bj|/

√
E‖x‖22} 6

Dw,b for all j ∈ {1, . . . , m}. If the loss function is Gℓ-Lipschitz-continuous and the activation
function σ is Gσ-Lipschitz-continuous, the Rademacher complexity is upperbounded as

Rn(F) 6 2GℓGσDw,bDη

√
E‖x‖22√
n

.

The proposition above allows to bound the estimation error for neural networks, as the
maximal deviation between expected risk and empirical risk over all potential networks with
bounded parameters is bounded in expectation by twice the Rademacher complexity above.

For the ReLU activation function, where Gσ = 1, this will be combined with a study of
the approximation properties in Section 9.3.

△! The number of parameters is irrelevant!!!!!!
What counts is the overall norm of the weights.

△! Check homogeneity.

When the norm of weights is not explicitly penalized or constrained, we will see in
Chapter 10 some recent results showing how optimization algorithms add an implicit regu-
larization that leads to provable generalization in over-parameterized neural networks (that
is, networks with many hidden units).
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Exercise 9.1 (�) Provide the bound for Ω(w, b) = max{‖w‖1, |b|/ sup ‖x‖∞}, where sup ‖x‖∞
denotes the supremum of ‖x‖∞ over all x in the support of its distribution.

9.3 Approximation properties of single-hidden layer neu-

ral networks

As seen above, the estimation error grows as ‖η‖1√
n

, and is independent of the number m of
neurons. Two important questions will be tackled in this section:

• What is the associated approximation error so that we can derive generalization bounds?

• What will be the number of neurons required to reach such a behavior?

For this, we need to understand the space of functions that neural networks span, and
how they relate to smoothness properties of the function. We first draw a link with kernel
methods from Chapter 7.

In this chapter, we focus primarily on the ReLU activation function, noting that universal
approximation results exist as soon as σ is not a polynomial (Leshno et al., 1993).

9.3.1 Link with kernel methods

Learning features and kernels. A one-hidden layer neural network corresponds to a
linear classifier with feature vector of dimension m

ϕ(x)j =
1√
m
σ(w⊤

j x + bj)

parameterized by all weights wj , bj, with kernel

k̂(x, x′) =
1

m

m∑

j=1

σ(w⊤
j x + bj)σ(w⊤

j x
′ + bj).

This corresponds to penalizing the output weights ηj, j ∈ {1, . . . , m}, by m
∑m

j=1 η
2
j , and

keeping the input weights (wj, bj) fixed, for j = 1, . . . , m. Thus, neural networks can be
seen as learning from data a feature representations ϕ(x) (with parameters {(wj), (bj)}),
and thus, equivalently a kernel function.
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Random input weights. With random independent and identically distributed weights
wj ∈ R

d and bj ∈ R, when m tends to infinity (a set-up often referred to as the “over-
parameterized” set-up), by the law of large numbers, we get

k̂(x, x′)→ k(x, x′) = E

[
σ(w⊤x + b)σ(w⊤x′ + b)

]
.

Therefore, infinite width networks where input weights are random and only output weights
are learned are in fact kernel methods in disguise (Neal, 1995; Rahimi and Recht, 2008).

This kernel can be computed in closed form for simple activations and distributions of
weights (Cho and Saul, 2009; Bach, 2017), and thus the same regularization properties may
be achieved with algorithms from Chapter 7 (which are based on convex optimization, and
thus come with guarantees). Note that as shown in Section 7.4, a common strategy for
kernels defined as expectations is to use the a random feature approximation k̂(x, x′), that
is, here, use explicitly the neural network representation.

△! The kernel approximation corresponds to input weights wj, bj sampled randomly
and held fixed. Only the output weights ηj are optimized.

Exercise 9.2 For
(

w
b/R

)
uniform on the sphere, and for the ReLU activation, compute the

associated kernel as a function of the cosine between the vectors
(
x
R

)
and

(
x′

R

)
.

Integral representations of functions in the RKHS. When using a slightly different
normalization and writing instead f(x) = 1

m

∑m
i=1 η̃jσ(w⊤

j x+bj), with η̃j = mηj , the penalty
becomes 1

m

∑m
j=1 η̃

2
j , and expressions of the form

1

m

m∑

j=1

η̃jF (wj, bj)

can be seen (by the law of large numbers) as the integral
∫

Rd+1

F (w, b)η(w, b)dτ(w, b)

where (w, b) 7→ η(w, b) is a function such that η̃j = η(wj, bj), and dτ(w, b) is the probability
measure on Rd+1 generating the weights (wj, bj).

Thus, when m tends to infinity, we can represent any function f within the RKHS

associated to k(x, x′) =

∫

Rd+1

σ(w⊤x + b)σ(w⊤x′ + b)dτ(w, b) as

f(x) =

∫

Rd+1

η(w, b)σ(w⊤x + b)dτ(w, b),
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where η : Rd+1 → R is chosen as to minimize
∫

Rd+1

|η(w, b)|2dτ(w, b),

the minimum value being equal to the squared RKHS norm of f .

We assume the support of dτ is compact (bounded and closed). Then the minimum
achievable norm is exactly the squared RKHS norm of f , which we denote as γ2(f)2. We
denote by H2 this RKHS, that is, the set of functions f such that γ2(f) is finite. See (Bach,
2017, Section 2.3) for more details.

△! Because Dirac measures are not square integrable, the function x 7→ σ(w⊤x + b),
that is, a single neuron, is typically not in the RKHS, which is typically composed
of smooth functions. See examples below.

9.3.2 From L2-norms to L1-norms

Another function space can be defined, where

f(x) =

∫

Rd+1

η(w, b)σ(w⊤x + b)dτ(w, b),

where η is chosen as to minimize
∫

Rd+1

|η(w, b)|dτ(w, b),

and dτ(w, b) is a probability measure on Rd+1. The only difference with the squared RKHS
norm above is that we consider the L1-norm instead of the squared L2-norm of η (with
respect to the probability measure dτ). The minimum achievable norm is a specific norm of
f , which we denote as γ1(f).

Note that typically, the infimum over all η is not achieved, as, because we use L1-norms
and the measures dµ(w, b) = η(w, b)dτ(w, b) can span all measures dµ(w, b) with finite total

variation

∫

Rd+1

|dµ(η, b)| =
∫

Rd+1

|η(w, b)|dτ(w, b), we can reformulate the integral represen-

tation of f as

f(x) =

∫

Rd+1

σ(w⊤x + b)dµ(w, b),

with dµ a non-negative measure such that the total variation

∫

Rd+1

|dµ(η, b)| is minimized.

The norm γ1 is often referred to as the variation norm (see Bach, 2017, and references
therein). We denote by H1 the set of functions f such that γ1(f) is finite. We have the
following properties (see Table 9.1 for a summary):
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H2 H1

Hilbert space Banach space∣∣∣∣γ2(f)2 = inf

∫

Rd+1

|η(w, b)|2dτ(w, b)

∣∣∣∣γ1(f) = inf

∫

Rd+1

|η(w, b)|dτ(w, b)

such that

∣∣∣∣f(x)=

∫

Rd+1

η(w, b)σ(w⊤x + b)dτ(w, b) such that

∣∣∣∣f(x)=

∫

Rd+1

η(w, b)σ(w⊤x+ b)dτ(w, b)

Smooth functions Potentially non-smooth functions
Single neurons /∈ H2 Single neurons ∈ H1

Table 9.1: Summary of properties of the norms γ1 and γ2.

• Because of Jensen’s inequality, we have γ1(f) 6 γ2(f), and thus H2 ⊂ H1, that is the
space H1 contains many more functions.

• △! A single neuron is in H1 with γ1-norm less than one, as the mass of a Dirac is equal
to one.

Goals. In this chapter, to describe more precisely the spaces of functions H1 and H2, we
will consider measures supported on the set

{
(w, b), ‖w‖2 = 1, |b| 6 R} for R such that

almost surely ‖x‖2 6 R, and σ(u) = max{u, 0} = (u)+ the ReLU activation function, which
leads to a reasonably simple analysis.

First, with the assumptions above, if f(x) =
∑m

j=1 ηj(w
⊤
j x + bj)+, for neurons such that

(wj, bj) ∈
{

(w, b), ‖w‖2 = 1, |b| 6 R} for all j ∈ {1, . . . , m}, then γ1(f) 6 ‖η‖1, and
γ2(f) =∞.

We will show in Section 9.3.5 how the norm γ1 controls the number of neurons needed
to approximate a function from H1, but we now study which functions have finite γ1-norm
and how functions outside of H1 can be approximated by functions in H1.

9.3.3 Variation norm in one dimension

The ReLU activation function is specific and leads to simple approximation properties in the
interval [−R,R] for functions g : [−R,R]→ R. We start by piecewise affine functions, which,
given the shape of the ReLU activation should be easy to approximate (and immediately
lead to an universal approximation results as all “reasonable” functions can be approximated
by piecewise affine functions). See more details by Breiman (1993); Barron and Klusowski
(2018).

Piecewise affine functions. We first assume that g(0) = 0.
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We consider a continuous piecewise affine function on [−R,R] with knots at each aj = j
m
R

for j ∈ [−m,m] ∩ Z, so that on [aj , aj+1], g is affine with slope vj, for j ∈ {−m,m+ 1}.

0 = a0 am = Ra1 aj aj+1 am−1

vj−1x+ ◦

vjx+ ◦

v0x+ ◦

Since g(0) = 0, we can directly approximate on [0, R], by first starting to fit the function
on [a0, a1] = [0, 1

m
], as ĝ0(x) = v0(x− a0)+. For x > a0, this approximation has slope v0. In

order to be correct it on [a1, a2] (while not modifying the function on [a0, a1], we consider
ĝ1(x) = ĝ0(x) + (v1 − v0)(x− a1)+, which is now exact on [a0, a2], we can pursue recursively
by considering, for j ∈ {1, . . . , m− 1}

ĝj(x) = ĝj−1(x) + (vj − vj−1)(x− aj)+,

which is equal to g(x) for x ∈ [a0, aj+1]. We can thus represent g(x) on [0, R] exactly with
ĝm−1(x), which itself is zero on [−R, 0]. We have

ĝm−1(x) = v0(x− a0)+ +
m∑

j=1

(vj − vj−1)(x− aj)+,

and thus, by construction of the norm γ1, we have γ1(ĝm−1) 6 |v0| +
∑m−1

j=1 |vj − vj−1|.
On the set [−R, 0], we can obtain the same type of approximation with γ1-norm less than
|v−1|+

∑m
j=2 |v−j − v−j+1|.

Therefore by summing these two approximations and by the triangular inequality, overall,
we get:

γ1(g) 6 |v0|+
m−1∑

j=1

|vj − vj−1|+ |v−1|+
m∑

j=2

|v−j − v−j+1|.

In order to consider functions g without the constraint g(0) = 0, we notice that the
constant function has norm γ(1) 6 1

R
, by using, for x ∈ [−R,R], 2R = (x+R)++(−x+R)+,
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and we apply the result above to g(x)− g(0) (which is zero at zero), thus leading to

γ1(g) 6
|g(0)|
R

+ |v0|+
m−1∑

j=1

|vj − vj−1|+ |v−1|+
m∑

j=2

|v−j − v−j+1|

6
|g(0)|
R

+ |v0 + v−1|+
m−1∑

j=−m+1

|vj − vj−1|, using |v0|+ |v−1| 6 |v0 + v−1|+ |v0 − v−1|.

We can then use that g is piecewise-affine with knots at each aj, to get vj = m
R

(g( j+1
m
R) −

g( j
m
R)), and thus:

γ1(g) 6
|g(0)|
R

+
m

R
|g(

R

m
)− g(−R

m
)|+ m

R

m−1∑

j=−m+1

∣∣g(
j + 1

m
R)− 2g(

j

m
R) + g(

j − 1

m
R)
∣∣.

Twice continuously differentiable functions. We consider a twice differentiable func-
tion g on [−R,R], it is then the limit of its piecewise interpolation (see illustration below).

−R = a
−m am = Ra

−m+1 aj aj+1 am−1

Thus, when m tends to infinity, m
R
|g(R

m
) − g(−R

m
)| tends to 2|g′(0)| while

∣∣g( j+1
m
R) −

2g( j
m
R) + g( j−1

m
R)
∣∣ is asymptotically equivalent to

∣∣g(
j

m
R) +

R

m
g′(

j

m
R) +

1

2

R2

m2
g′′(

j

m
R)−2g(

j

m
R)+g(

j

m
R)− R

m
g′(

j

m
R) +

1

2

R2

m2
g′′(

j

m
R)
∣∣ ∼ |R

2

m2
g′′(

j

m
R)|,

and thus we get:

γ1(g) 6 lim sup
m→+∞

|g(0)|
R

+ 2|g′(0)|+ R

m

m−1∑

j=−m+1

|g′′( j
m
R)|,

which thus leads to using approximations of integral by Riemannian sums:

γ1(g) 6
|g(0)|
R

+ 2|g′(0)|+
∫ R

−R

|g′′(x)|dx.
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In order to allow an extension for non-continuously differentiable functions at 0, we can
further use that

|g′(0)| 6 |g′(y)|+
∫ y

0

|g′′(x)|dx 6 |g′(y)|+
∫ R

0

|g′′(x)|dx for any y ∈ [0, R],

leading to |g′(0)| 6
1

R

∫ R

0

|g′(y)|dy +

∫ R

0

|g′′(x)|dx by integration,

and |g′(0)| 6
1

2R

∫ R

−R

|g′(x)|dx+
1

2

∫ R

−R

|g′′(x)|dx by symmetry.

Overall, we get the expression

γ1(g) 6 γ̃1(g) =
|g(0)|
R

+
1

R

∫ R

−R

|g′(x)|dx+ 2

∫ R

−R

|g′′(x)|dx, (9.2)

which shows that if the number of neurons is allowed to grow then the ℓ1-norm of the weights
remain bounded by the quantity above to exactly represent the function g.

This can be extended to continuous functions which are only twice differentiable almost
everywhere with integrable first and second-order derivatives; thus H̃1 ⊂ H1 (which corre-
sponds to the norm γ̃1 defined above). Since this space is dense in L2 (see more general
argument below in higher dimension), we obtain that neural networks are universal approx-
imators.

RKHS norm γ2 in one dimension (��). In one dimension, with w uniform on the unit
sphere, that is, w ∈ {−1, 1}, and with b uniform on [−R,R], we have the following kernel

k(x, x′) =
1

4R

∫ R

−R

(
(x− b)+(x′ − b)+ + (−x− b)+(−x′ − b)+

)
db.

Using the same reasoning as the end of Section 9.3.1, we can get an upper-bound on γ2(f)
by decomposing f as

f(x) =

∫ R

−R

η+(b)(x− b)+
db

4R
+

∫ R

−R

η−(b)(−x− b)+
db

4R
,

with γ2(f)2 6

∫ R

−R

η+(b)2
db

4R
+

∫ R

−R

η−(b)2
db

4R
.

By using Taylor expansion with integral remainder, we get, for any twice differentiable
function f on [−R,R], such that f(0) = f ′(0) = 0,

f(x) =

∫ R

0

f ′′(b)(x− b)+db+

∫ R

0

f ′′(−b)(−x − b)+db.
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Thus, for this function, γ2(f)2 6 4R

∫ R

−R

f ′′(b)2db. We can now use

∫ R

−R

(x− b)+ − (−x− b)+
2R

db =

∫ R

−R

(x− b)+ − (b− x)+
2R

db =

∫ R

−R

x

2R
db = x

to get that that γ2(x 7→ x)2 6 4, and use

∫ R

−R

[
(x−b)++(−x−b)+

]
db =

∫ x

−R

(x−b)db+
∫ −x

−R

(−x−b)db =
(x−R)2

2
+

(x +R)2

2
= x2+R2,

to get that γ2(x 7→ x2 +R2)2 6 16R2.

Thus by considering f̃(x) = f(x)− f ′(0)x− f(0)
R2 (x2 +R2), we have:

γ2(f) 6

√
4R

∫ R

−R

f̃ ′′(b)2db+ 2|f ′(0)|+ |f(0)|
R

=

√
4R

∫ R

−R

|f ′′(b)− 2f(0)/R2|2db+ 2|f ′(0)|+ |f(0)|
R

6

√
4R

∫ R

−R

|f ′′(b)|2db+

√
4R

∫ R

−R

|2f(0)/R2|2db+ 2|f ′(0)|+ |f(0)|
R

=

√
4R

∫ R

−R

|f ′′(b)|2db+ 4
√

2
|f(0)|
R

+ 2|f ′(0)|+ |f(0)|
R

,

leading to the upper-bound

γ2(g)2 6 γ̃2(g)2 = 36
f(0)2

R2
+ 16f ′(0)2 + 16R

∫ R

−R

f ′′(x)2dx. (9.3)

The main difference with γ̃1 is that the second-derivative is penalized by an L2-norm and
not by and L1-norm, and that this L2-norm can be infinite when the L1-norm is finite, the
classical example being for the hidden neuron functions (x− b)+. Note that we only derive
an upper-bound on γ2, but similar lower bounds could also be derived.

△! The RKHS is combining infinitely many hidden neuron functions (x− b)+, none of them
are inside the RKHS,

△! This smoothness penalty does not allow the ReLU to be part of the RKHS. However, this
is still an universal penalty (as the set of functions with squared integrable second derivative
is dense in L2).
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9.3.4 Variation norm in arbitrary dimension

If we assume that f is continuous on the ball of center zero and radius R, then the Fourier

transform f̂(ω) =

∫

Rd

f(x)e−iω⊤xdx is defined everywhere, and we can write

f(x) =
1

(2π)d

∫

Rd

f̂(ω)eiω
⊤xdω.

In order to compute an upper-bound on γ1(f), it suffices to upper-bound for each ω ∈ Rd,
γ1(x 7→ eiω

⊤x), which is easy because we have the representation from Section 9.3.3 and
Eq. (9.2) applied to g : u 7→ eiu‖ω‖2 : for u ∈ [−R,R],

eiu‖ω‖2 =

∫ R

−R

η+(b)(u− b)+db+

∫ R

−R

η−(b)(−u− b)+db,

with

∫ R

−R

|η+(b)|db+
∫ R

−R

|η−(b)|db 6 |g(0)|
R

+
1

R

∫ R

−R

|g′(x)|dx+2

∫ R

−R

|g′′(x)|dx =
1

R
+2‖ω‖2+

4R‖ω‖22 (which is the norm defined in Eq. (9.2)). We can thefore decompose

eiω
⊤x = ei(x

⊤ω/‖ω‖2)‖ω2‖2 =

∫ R

−R

η+(b)(x⊤(ω/‖ω‖2)− b)+db+

∫ R

−R

η−(b)(x⊤(−ω/‖ω‖2)− b)+db,

with weights being in the correct constraint set (unit norm for w’s and |b| 6 R, leading to

γ1(x 7→ eiω
⊤x) 6 γ̃1(x 7→ eiω

⊤x) 6
1

R
+ 2‖ω‖2 + 4R‖ω‖22 =

1

R
(1 + 2R‖ω‖2)2.

Thus, we obtain

γ1(f) 6
1

(2π)d
1

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)dω.

Given a function f : Rd → R,

∫

Rd

|f̂(ω)|dω is a measure of smoothness of f , and so γ1(f)

being finite imposes that f and all second-order derivatives of f have this form of smoothness.
See Klusowski and Barron (2018) for more details and below for a relationship with Sobolev
spaces.

Precise rates of approximation (�). In this section, we will relate the space H1 to
Sobolev spaces, by considering s > d/2 (to make sure the integral below exists), and bounding
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using Cauchy-Schwarz inequality:

γ1(f) 6
1

(2π)d
1

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)dω

=
1

(2π)d
1

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)1+s/2 dω

(1 + 2R2‖ω‖22)s/2

6
1

(2π)d
1

R

√∫

Rd

|f̂(ω)|2(1 + 2R2‖ω‖22)2+sdω

√∫

Rd

dω

(1 + 2R2‖ω‖22)s
,

which is a constant times
√∫

Rd |f̂(ω)|2(1 + 2R2‖ω‖22)2+sdω, which is exactly the Sobolev

norm from Chapter 7 , with s+ 2 derivatives (which is an RKHS).

Thus, all approximation properties from Chapter 7 apply. See Chapter 7 for precise rates.
Note however, that, using this reasoning, if we start from a Lipschitz-continuous function
then to approximate it up to L2(dx)-norm ε requires a γ1-norm exploding as ε−(s+1) >

ε−(d/2+1) (as obtained at the end of Section 7.5.2 of Chapter 7). Thus, in the generic situation
where no particular directions are preferred, using H1 (neural networks) is not really more
advantageous than using kernel methods (such as functions in H2). This changes drastically
when such linear structures are present, as we show below.

Adaptivity to linear structures (�). We consider a target function f that depends
only a r-dimensional projection of the data, that is, f is of the form f(x) = g(V ⊤x), where
V ∈ Rd×r is full rank and has all singular values less than 1, and g : Rr → R. Without loss
of generality we can assume that V is a rotation matrix. Then if γ1(g) is finite, it can be
written as

g(z) =

∫

Rr+1

(w⊤z + b)+dµ(w, b),

with dµ supported on {(w, b) ∈ Rr+1, ‖w‖2 = 1, |b| 6 R}, and γ1(g) =

∫

Rr+1

|dµ(w, b)|. We

then have:

f(x) = g(V ⊤x) =

∫

Rr+1

((V w)⊤x + b)+dµ(w, b),

leading to γ1(f) 6

∫

Rr+1

|dµ(w, b)| = γ1(g) (because ‖V w‖2 = 1). Thus the approximation

properties of g translate to f , and thus we pay only the price of these r dimensions and not
of all d variables, without the need to know V in advance. For example, (a) if g has more
than r/2 + 2 squared integrable derivatives, then γ1(g) and thus γ1(f) is finite, or (b) if g
is Lipschitz-continuous, then both g and f can be approached in L2(dx) with error ε with a
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function with γ1-norm of order ε−(r/2+1), thus escaping the curse of dimensionality. See Bach
(2017) for more details.

△! Kernel methods do not have such adaptivity. In other words, using the ℓ2-norm
instead of the ℓ1-norm on the output weights, leads to worse performance.

9.3.5 From the variation norm to a finite number of neurons

Given a measure dµ on Rd, and a function g : Rd → R such that γ1(g) is finite, we would
like to find a set of m neurons (wj, bj) ∈ V ⊂ Rd+1 (which is the compact support of all
measures that we consider), such that the associated function defined through

f(x) =

m∑

j=1

ηjσ(w⊤
j x+ bj)

is close to g.

If the input weights are fixed, then the bound on γ1(g) translates to a bound ‖η‖1 6 γ1(g).
The set of such functions f is the convex hull of functions sjγ1(g)σ(w⊤

j x+bj), for sj ∈ {−1, 1}.
Thus, we are faced with the problem of approximating an elements of a convex hull as an
explicit linear combination of extreme points, if possible with as few extreme points as
possible.

In finite dimension, Carathéodory’s theorem tells that the number of such extreme points
can be taken to be equal to the dimension, to get an exact representation. In our case of
infinite dimensions, we need an approximate version of Carathéodory’s theorem. It turns
out that we can create a “fake” optimization problem of minimizing ming∈H1 ‖f − g‖2L2(dx)

such that γ1(f) 6 γ1(g), whose solution is f = g, with an algorithm that constructs an
approximate solution from extreme points. This will be achieved by the Frank-Wolfe algo-
rithm (a.k.a. conditional gradient algorithm). This algorithm is applicable more generally,
for more details, see Jaggi (2013); Bach (2015).

Frank-Wolfe algorithm. We thus make a detour by considering an algorithm defined in
a Hilbert space H, such that K is a bounded convex set, and J a convex smooth function
from H to R, that is such that there exists a gradient function J ′ : H→ H such that for all
elements f, g of H:

J(g) + 〈J ′(g), h− g〉H 6 J(f) 6 J(g) + 〈J ′(g), h− g〉H +
L

2
‖h− g‖2H.

The goal is to minimize J on the bounded convex set K, with an algorithm that only requires
to access the set K through a “linear minimization” oracle (i.e., through maximizing linear
functions), as opposed to the projection oracle that we required in Chapter 5.
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We consider the following recursive algorithm, started from a vector f0 ∈ K:

f̄t ∈ arg min
f∈K

〈J ′(ft−1), f − ft−1〉H,

ft =
t− 1

t+ 1
ft−1 +

2

t+ 1
f̄t = ft−1 +

2

t+ 1
(f̄t − ft−1).

K

−J ′(ft−1)

ft−1

f̄t = argmin
f∈K

〈J ′(ft−1), f − ft−1〉

ft

Because f̄t is obtained by mininimizing a linear function on a bounded convex set, we can
restrict the minimizer f̄t to be extreme points of K, so that, ft is the convex combination of
t such extreme points f̄1, . . . , f̄t (note that the first point f0 disappears). We now show that

J(ft)− inf
f∈K

J(f) 6
2L

t + 1
diamH(K)2.

Proof of convergence rate (�). This is simply obtained by using smoothness:

J(ft) 6 J(ft−1) + 〈J ′(ft−1), ft − ft−1〉H +
L

2
‖ft − ft−1‖2H

= J(ft−1) +
2

t+ 1
〈J ′(ft−1), f̄t − ft−1〉H +

4

(t+ 1)2
L

2
‖f̄t − ft−1‖2H

6 J(ft−1) +
2

t+ 1
min
f∈K

〈J ′(ft−1), f − ft−1〉H +
4

(t+ 1)2
L

2
diamH(K)2.

By convexity of J , we have for all f ∈ K, J(f) > J(ft−1) + 〈J ′(ft−1), f − ft−1〉H, leading to
inff∈K J(f) > J(ft−1) + inff∈K〈J ′(ft−1), f − ft−1〉H. Thus, we get

J(ft)− inf
f∈K

J(f) 6
[
J(ft−1)− inf

f∈K
J(f)

]t− 1

t + 1
+

4

(t + 1)2
L

2
diamH(K)2, leading to

t(t + 1)
[
J(ft)− inf

f∈K
J(f)

]
6 (t− 1)t

[
J(ft−1)− inf

f∈K
J(f)

]
+ 2LdiamH(K)2

6 2LtdiamH(K)2 by using a telescoping sum,

and thus J(ft)− inf
f∈K

J(f) 6
2L

t+ 1
diamH(K)2, as claimed earlier.
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Application to approximate representations with a finite number of neurons.
We can apply this to H = L2(dx) and J(f) = ‖f − g‖2L2(dx)

, leading to L = 2, with

K = {f ∈ L2(dx), γ1(f) 6 γ1(g)} for which the set of extreme points are exactly single
neurons sσ(w⊤ ·+b) scaled by γ1(g), and with an extra sign s ∈ {−1, 1}.

We thus obtain after t steps a representation of f with t neurons for which

‖f − g‖2L2(dx)
6

4Lγ1(g)2

t + 1
sup

(w,b)∈K
‖σ(w⊤ ·+b)‖2L2(dx)

.

Thus, it is sufficient to have t of order O(γ1(g)2/ε2) to achieve ‖f − g‖L2(dx) 6 ε. Therefore
the norm γ1(g) directly controls the approximability of the function g by a finite number of
neurons, and tell us how many neurons should be used for a given target function.

9.4 Experiments

We consider the same experimental set-up as Section 7.7, that is, one-dimensional problems
to highlight the adaptivity of neural netwotks methods to the regularity of the target func-
tion, with smooth targets and non-smooth targets. We consider several values for the number
m of hidden neurons, and we consider a neural network with ReLU activation functions and
an additional global constant term. Training is done by stochastic gradient descent with a
small constant step-size and a random initialization.
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Note that for small m, while a neural network with the same number of hidden neurons
could fit the data better, optimization is not successful (that is, SGD gets trapped in a bad
local minimum).

9.5 Global convergence of gradient descent for infinite

widths (��)

In this section, we will provide intuitive arguments of the proof of global convergence of
gradient descent algorithms for one-hidden layer when the number of hidden neurons is
infinite (without any convergence rates, hence it is only a “qualitative” result). Precise
results with all regularity assumptions are described by Chizat and Bach (2018).

The goal of this section is to explain the empirical observation already made in Section 9.4
that gradient descent can be trapped in local minima. We show an additional experiment
below for the same one-dimensional set-up, where we compare several runs of stochastic
gradient descent (SGD) where observations are only seen once (so no overfitting is possible)
and with random initializations. We show the estimated predictors, as well as the testing
errors for problems with zero label noise (that is, the Bayes rate is zero), with 10 different
initializations.



9.6. EXTENSIONS 215

We see that when m = 5 (which is sufficient to attain zero testing errors), small er-
rors are never achieved. With m = 20 neurons, then SGD finds the optimal predictor for
most restarts. When m = 100, all restarts have the desired behaviors. In this section, we
essentially show that this is true for m = +∞.

See https://francisbach.com/gradient-descent-neural-networks-global-convergence/.

9.6 Extensions

The fully-connected single-hidden layer neural networks is far from what is being used in
practice. Indeed, state-of-the-art performance is typically achieved with the following exten-
sions:

• Going deep with multiple layers: The most simple form of deep neural networks is
a multilayer fully-connected neural network. Ignoring the constant terms for simplicity,
it is of the form f(x(0)) = y(L) with input x(0) and output y(L) given:

y(k) = (W (k))⊤x(k−1)

x(k) = σ(y(k)),

where W (ℓ) is the matrix of weights for layer k. For these models, obtaining simple
and powerful theoretical results is still an active area of research. See, e.g., Lu et al.
(2020); Ma et al. (2020).

https://francisbach.com/gradient-descent-neural-networks-global-convergence/
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• Convolutional neural networks: In order to be able to tackle data of large size
and to improve performances, it is important to leverage the prior knowledge about
the structure of the typical data to process. For instance, for signal, images or videos,
it is important to take into account the translation invariance (up to boundary issues)
of the domain. This is done by constraining the linear operators involved in the linear
part of neural networks to respect some form of translation invariance, and thus to use
convolutions. See Goodfellow et al. (2016) for details.
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Chapter 10

Implicit bias of gradient descent

Chapter summary

- Implicit regularization of gradient descent: for linear models, when there are several
minimizers, gradient descent techniques tend to converge to the one with minimum
Euclidean norm.
- Double descent: for unregularized models learned with gradient descent techniques, when
the number of parameters grows, the perfomance can exhibit a second descent after the test
error blows up after the number of parameters goes beyond the number of observations.
- Global convergence of gradient descent for two-layer neural networks: in the infinite width
limit, gradient descent exhibits some globally convergent behavior for a non-convex problem.

In this chapter, we will cover three recent topics within learning theory, all partially
related to high-dimensional models (such as neural networks) in the “over-parameterized”
regime, where the number of parameters is larger than the number of observations.

△! The number of parameters is not what characterizes in general the generalization
capabilities of regularized learning methods.

10.1 Implicit bias of gradient descent

Given an optimization problem whose aim is to minimize some function F (θ) over some
θ ∈ R

d, if there is a unique global minimizer θ∗, then the goal of optimization algorithms is

219
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to find this minimizer, that is, we want that the t-th iterate θt converges to that θ∗. When
there are multiple minimizers (thus for a function which cannot be strongly convex), we
showed only that F (θt)− infθ∈Rd F (θ) is converging to zero (and only if a minimizer exists,
see Chapter 5).

With some extra assumptions, we can show that the algorithm is converging to one of the
multiple minimizers of F (note that when F is convex, this set is also convex). But which
one? This is what is referred to as the implicit regularization properties of optimization
algorithms, and here gradient descent and its variants.

This is interesting in machine learning because, when F (θ) is the empirical loss on n
observations, and d is much larger than n, and no regularization is used, there are multiple
minimizers, and an arbitrary empirical risk minimizer is not expected to work well on unseen
data. A classical solution is to use explicit regularization (e.g., ℓ2-norms like in Chapter 3
and Chapter 7, or ℓ1-norms like in Chapter 8). In this section, we show that optimization
algorithms have a similar regularizing effect. In a nutshell, gradient descent usually leads
to minimum ℓ2-norm solutions. This shows that the chosen empirical risk minimizer is not
arbitrary.

This will be explicitly shown for the quadratic loss, and partially only for the logistic
loss. These results will be used in subsequent sections.

10.1.1 Least-squares

We consider F (θ) = 1
2n
‖y − Φθ‖22, with Φ ∈ Rn×d such that d > n and (for simplicity)

ΦΦ⊤ ∈ Rn×n invertible (this is the kernel matrix). There are thus infinitely many (a whole
affine subspace) solutions such that y = Φθ, since the column space of Φ is the entire space

Rn and θ has dimension d > n. We apply gradient descent with step-size γ 6
1

λmax(
1
n
Φ⊤Φ)

=

1

λmax(
1
n
ΦΦ⊤)

starting from θ0 = 0. Thus, for any θ solution of y = Φθ, we have, as shown in

Chapter 5:

θt − θ =
(
I − γ

n
Φ⊤Φ

)t
(θ0 − θ) = −

(
I − γ

n
Φ⊤Φ)tθ,

leading to

θt =
[
I −

(
I − γ

n
Φ⊤Φ

)t]
θ.

Note that it is not entirely obvious that the formula above is independent of the choice of θ
(but it is).

If Φ = U Diag(s)V ⊤ is the SVD decomposition of Φ, where U ∈ Rn×n is orthonormal, and
V ∈ Rd×n has orthonormal columns and s ∈ (R∗

+)n, we can take θ = V Diag(s)−1U⊤y as one
of the solutions (since then Φθ = U Diag(s)V ⊤V Diag(s)−1U⊤y = U Diag(s) Diag(s)−1U⊤y =
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UU⊤y = y) and get:
θt = V Diag((1− (1− γs2i /n)t)s−1

i )U⊤y.

Since each si > 0, and γ 6 n
maxi s2i

, we have

0 6 (1− (1− γs2i /n)t)s−1
i 6 s−1

i (1− (1− γmin
i
s2i /n)t),

and thus
∥∥θt − V Diag(s)−1U⊤y

∥∥
2
6 (1− γmin

i
s2i /n)t‖V Diag(s)−1U⊤y

∥∥
2
.

We thus get linear convergence to V Diag(s)−1U⊤y, which happens to be the minimum ℓ2-
norm solution, because all solutions to y = Φθ can be written as V Diag(s)−1U⊤y plus a
vector which is orthogonal to the column space of V .

Moreover, with γ = n
maxi s2i

(largest allowed step-size), we get a rate of
(

1− γ mini s2i
maxi s2i

)t
.

Lojasiewicz’s inequality (�). It turns out that linear convergence here can be shown
directly for any L-smooth function, for which we have the so-called Lojasiewicz’s inequality:

∀θ ∈ R
d, F (θ)− F (θ∗) 6

1

2µ
‖F ′(θ)‖22, (10.1)

for some µ > 0.

We have seen in Chapter 5 that this is a consequence of µ-strong-convexity, but this can
be satisfied without strong convexity. For example, for any least-squares example, we have,
for any minimizer θ∗:

‖F ′(θ)‖22 = ‖ 1

n
Φ⊤Φ(θ−θ∗)‖22 =

1

n2
(θ−θ∗)⊤Φ⊤ΦΦ⊤Φ(θ−θ∗) >

λ+min(ΦΦ⊤)

n2
(θ−θ∗)⊤Φ⊤Φ(θ−θ∗),

where λ+min(ΦΦ⊤) = λ+min(Φ
⊤Φ) is the smallest non-zero eigenvalue of ΦΦ⊤ (which is also the

one of Φ⊤Φ). Thus, we have

‖F ′(θ)‖22 >
λ+min(K)

n2
‖Φ(θ − θ∗)‖22 =

2λ+min(K)

n
[F (θ)− F (θ∗)].

Thus, Eq. (10.1) is satisfied with µ = 1
n
λ+min(K), where K = ΦΦ⊤ ∈ Rn×n is the kernel

matrix. Note that this includes also the strongly-convex case since λ+min(Φ⊤Φ) > λmin(Φ⊤Φ).

When Eq. (10.1) is satisfied, we have for the t-th iterate of gradient descent with step-size
γ = 1/L, following the analysis of Chapter 5:

F (θt)− F (θ∗) 6 F (θt−1)− F (θ∗)−
1

2L
‖F ′(θt−1)‖22 6

(
1− µ

L

)[
F (θt−1)− F (θ∗)

]
.

Moreover, we can then show that the iterates xt are also converging to a minimizer of F (see
Bolte et al., 2010; Karimi et al., 2016, for more details).
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Alternative proof. If started at θ0 = 0, gradient descent techniques (stochastic or not)
will always have iterates θt which are linear combinations of row of Φ, that is, of the form
θt = Φ⊤αt for some αt ∈ Rn. This is an alternative algorithmic version of the representer
theorem from Chapter 7.

If the method is converging, then we must have Φθt converging to y (because the standard
squared Euclidean norm is strongly-convex, and Φθ is unique while θ may not be), and thus
ΦΦ⊤αt is converging to y. If K = ΦΦ⊤ is invertible, this means that αt is converging to
K−1y, and thus θt = Φ⊤αt is converging to Φ⊤K−1y.

It turns out that this is exactly the minimum ℓ2-norm solution as, by standard Lagrangian
duality:

inf
θ∈Rd

1

2
‖θ‖22 such that y = Φθ = inf

θ∈Rd
sup
α∈Rn

1

2
‖θ‖22 + α⊤(y − Φθ)

= sup
α∈Rn

α⊤y − 1

2
‖Φ⊤α‖22 with θ = Φ⊤α at optimum,

= sup
α∈Rn

α⊤y − 1

2
α⊤Kα.

The last problem is exactly solved for α = K−1y. Note that in Chapter 7, we used this
formula for function interpolation to compare different RKHSs.

10.1.2 Separable classification

We now consider logistic regression, that is,

F (θ) =
1

n

n∑

i=1

log(1 + exp(−yiϕ(xi)
⊤θ)),

with Φ ∈ Rn×d the design matrix such that d > n and ΦΦ⊤ invertible.

Maximum margin classifier. Since ΦΦ⊤ is invertible, there exists η ∈ Rd of unit norm
such that ∀i ∈ {1, . . . , n}, yiϕ(xi)

⊤η > 0. We denote by η∗ the one such that

min
i∈{1,...,n}

yiϕ(xi)
⊤η
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is maximal (and thus strictly positive). That is, η∗ solves the following problem, which can
be rewritten as, using Lagrange duality:

sup
‖η‖261

min
i∈{1,...,n}

yiϕ(xi)
⊤η = sup

‖η‖261,t∈R
t such that ∀i ∈ {1, . . . , n}, yiϕ(xi)

⊤η > t

= inf
α∈Rn

+

sup
‖η‖261,t∈R

t+
n∑

i=1

αi(yiϕ(xi)
⊤η − t)

= inf
α∈Rn

+

∥∥∥
n∑

i=1

αiyiϕ(xi)
∥∥∥
2

such that

n∑

i=1

αi = 1,

with η ∝ ∑n
i=1 αiyiϕ(xi) at optimum. Moreover, by complementary slackness non-negative

αi is non zero only for i attaining the minimum in mini∈{1,...,n} yiϕ(xi)
⊤η.

Moreover, because of homogeneity, we want mini∈{1,...,n} yiϕ(xi)
⊤η large and ‖η‖2 small,

and we can decide to constrain the first and minimize the second one. In other words, we
can see η∗ as the direction of the solution θ∗ of:

inf
θ∈Rd

1

2
‖θ‖22 such that Diag(y)Φθ > 1n = inf

θ∈Rd
sup
α∈Rn

+

1

2
‖θ‖22 + α⊤(1n −Diag(y)Φθ)

= sup
α∈Rn

+

α⊤1n −
1

2
‖Φ⊤ Diag(y)α‖22 with θ = Φ⊤ Diag(y)α at optimum

Note that above, Diag(y)Φθ > 1n is the compact formulation of ∀i ∈ {1, . . . , n}, yiϕ(xi)
⊤θ >

1.

The θ∗ above is the solution of the separable SVM with vanishing regularization param-

eter, that is, of
1

2
‖θ‖2 + C

n∑

i=1

(1− yiϕ(xi)
⊤θ)+ for C large enough.

θ⊤ϕ(x) = 0
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Divergence and convergence of directions. The function F has an infimum equal to
zero, which is not attained. However, for any sequence θt such that all yiϕ(xi)

⊤θt tend to
infinity, we have F (θt)→ infθ∈Rd F (θ) = 0.

yϕ(x)⊤θ

loss

In such a situation, gradient descent cannot converge to a point, and, to achieve small
values of F , it has to diverge. It turns out that it diverges along a direction, that is,
‖θt‖2 → +∞, with 1

‖θt‖2 θt → η for some η ∈ Rd of unit ℓ2-norm. See Gunasekar et al. (2018)
for a proof. Here, we just show what the vector η is.

The gradient F ′(θ) is equal to F ′(θ) = −1

n

n∑

i=1

exp(−yiϕ(xi)
⊤θ)

1 + exp(−yiϕ(xi)⊤θ)
yiϕ(xi).

Asymptotically, θt will behave as ‖θt‖η, with ‖θt‖2 tending to infinity. Thus, because
we have a sum of exponentials with scale that goes to infinity, the dominant term in F ′(θt)
corresponds to the indices i for which −yiϕ(xi)

⊤η is largest. Moreover, all of these values
have to be negative (indeed we can only attain zero loss for well-classified training data).
We denote by I this set. Thus,

F ′(θt) ∼ −
1

n

∑

i∈I
yi exp(−‖θt‖2yiϕ(xi)

⊤η)ϕ(xi).

Moreover, we must have F ′(θt) along −u to diverge in the direction u, thus u has to be

proportional to a vector
∑

i∈I
αiyiϕ(xi), where α > 0, and αi = 0 as soon as i is not among

the minimizers of yiϕ(xi)
⊤η. This is exactly the optimality condition for η∗ above. Thus

η = η∗.

Overall, we obtain a classifier corresponding to a minimum ℓ2-norm. See examples in two
dimensions below.



10.2. DOUBLE DESCENT 225

-4 -2 0 2 4
-4

-2

0

2

4
t = 1

-4 -2 0 2 4
-4

-2

0

2

4
t = 2

-4 -2 0 2 4
-4

-2

0

2

4
t = 3

-4 -2 0 2 4
-4

-2

0

2

4
t = 4

-4 -2 0 2 4
-4

-2

0

2

4
t = 6

-4 -2 0 2 4
-4

-2

0

2

4
t = 8

-4 -2 0 2 4
-4

-2

0

2

4
t = 11

-4 -2 0 2 4
-4

-2

0

2

4
t = 16

-4 -2 0 2 4
-4

-2

0

2

4
t = 23

-4 -2 0 2 4
-4

-2

0

2

4
t = 32

-4 -2 0 2 4
-4

-2

0

2

4
t = 45

-4 -2 0 2 4
-4

-2

0

2

4
t = 64

-4 -2 0 2 4
-4

-2

0

2

4
t = 91

-4 -2 0 2 4
-4

-2

0

2

4
t = 128

-4 -2 0 2 4
-4

-2

0

2

4
t = 181

-4 -2 0 2 4
-4

-2

0

2

4
t = 256

General result. The result above extends to more general situation beyond linear classi-
fication. See Lyu and Li (2019).

10.2 Double descent

In this section, we consider a recent and interesting phenomenom described in several recent
works (Belkin et al., 2019; Mei and Montanari, 2019; Geiger et al., 2019; Hastie et al., 2019).

10.2.1 The double descent phenomenon

As seen in Chapter 2 and Chapter 4, typical learning curves look like the one below (figure
taken from Belkin et al., 2019):
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under-fitting over-fitting

Typically the “capacity” of the space of functions H is controlled either by the number of
parameters, either by some norms of its parameters. In particular, at the extreme right of
the curve, when there is zero training error, the testing error may be arbitrarily bad, and
the bound that we have used in Chapter 4, such as Rademacher averages for H controlled
by the ℓ2-norm of some parameters (with a bound D), grows as D/

√
n, which can typically

be quite large. These bounds were true for all empirical risk minimizers. In this section we
will focus on a particular one, namely the one obtained by unconstrained gradient descent.

When the model is over-parameterized (in other words, the capacity gets very large), that
is, when the number of parameters is large or the norm constraint allows for exact fitting, a
new phenomenom occurs, where after the test error explodes as the capacity grows, it goes
down again (figure also taken from Belkin et al., 2019):

R
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The goal of this section is to understand why. But before this let’s present some empirical
evidence, from toy examples and research papers.

△! There may be no double descent phenomenon if other empirical risk minimizers
are used (instead of the one obtained by (stochastic) gradient descent).
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10.2.2 Empirical evidence

Toy example with random feature. We consider a random feature models like in Chap-
ter 7 and Chapter 9, with the features (v⊤x)+, for neurons v sampled uniformly on the unit
spheres. We consider n = 200, d = 5 with input data distributed uniformly on the unit

sphere, and we consider y =
(
1
4

+ (v⊤∗ x)2
)−1

+ N(0, σ2), σ = 2, for some random v∗.

We sample m random features v1, . . . , vm uniformly on the sphere, and we learn param-
eters θ ∈ Rm by minimizing

1

n

n∑

i=1

(
yi −

m∑

j=1

θj(v
⊤
j xi)+

)2
+ λ‖θ‖22. (10.2)

Below we report test errors after learning with gradient descent until convergence: (Left)
varying m with λ = 0, (Right) varying λ with m = +∞.
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In the left curve above, the number of random features m is left less than n, as the
test error diverges. But, when this number m is allowed to grow past n, we see the double
descent phenomenon below (the right curve does not move). Similar experiments are shown
by Belkin et al. (2019); Mei and Montanari (2019).
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Neural networks. We consider here a single hidden-layer fully connected network, on
the MNIST dataset of handwritten digits, trained by stochastic gradient descent. As shown
below (figure taken from Belkin et al., 2019)), we see a similar spike in errors around n =
40000 which is the number of training data points.

No phenomenom when using regularization. When an extra regularizer is used, that
is λ 6= 0 in Eq. (10.2), then the double descent phenomenom is reduced (see Mei and Montanari,
2019). In particular, if the regularization parameter λ is adapted for each m, then the phe-
nomenom totally disappears (see Mei and Montanari, 2019, for more details).

10.2.3 Simplest analysis

We consider a Gaussian random variable with mean 0 and covariance matrix identity, with
n obervations x1, . . . , xn, and responses yi = x⊤i θ∗ + εi, with εi normal with mean zero
and variance σ2I. We will compute an exact expectation of the risk of the minimum norm
empirical risk minimizer (as detailed in Section 10.1.1), which is the one gradient descent
converges to. We denote by X ∈ Rn×d the design matrix, and Σ̂ = 1

n
X⊤X the non-centered

covariance matrix, and by K = XX⊤ ∈ R
n×n the kernel matrix.
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The excess risk is R(θ̂) = (θ̂ − θ∗)Σ(θ̂ − θ∗) = ‖θ̂ − θ∗‖22.

Underparameterized regime. In the underparameterized regime, then the minimum
norm empirical risk minimizer is simply the ordinary least-squares estimator, which is unbi-
ased, that is E

[
θ̂
]

= θ∗, and we have an expected excess risk equal to (see the random design
analysis from Chapter 3):

E
[
R(θ̂)

]
=
σ2

n
E
[

tr(ΣΣ̂−1)
]
.

As seen in Chapter 3, the expected risk is equal to

σ2
E
[

tr
(
(X⊤X)−1

)]
,

where X ∈ Rn×d is the associated design matrix. The matrix X⊤X ∈ Rd×d has a Wishart
distribution with n degrees of freedom. It is almost surely invertible if n > d, and is such
that E

[
tr
(
(X⊤X)−1

)]
= d

n−d−1
if n > d + 2. The expectation is infinite for n = d and

n = d+ 1.

Therefore, we have for n > d+ 2:

E
[
R(θ̂)

]
= σ2 d

n− d− 1
.

Overparameterized regime. In the overparameterized regime, when n 6 d, then the
kernel matrix is almost surely invertible, and the minimum ℓ2-norm interpolator θ̂ is equal
to (using the formulas above) θ̂ = X⊤(XX⊤)−1y = X⊤(XX⊤)−1Xθ∗ +X⊤(XX⊤)−1ε. The
expected excess risk decomposes into a bias and a variance term.

The variance term is equal to, since Σ = I,

E
[
ε⊤(XX⊤)−1XΣX⊤(XX⊤)−1ε

]
= σ2

E

[
tr
(
(XX⊤)−1XX⊤(XX⊤)−1

)]
= σ2

E

[
tr
(
(XX⊤)−1

)]
,

which is now a Wishart related expectation with the order of n and d reversed, that is,
σ2 n

d−n−1
for d > n+ 2.

The bias term is equal to

E

[
‖Σ1/2

(
X⊤(XX⊤)−1Xθ∗ − θ∗

)
‖22
]
.

Since Σ = I, then we get a bias term equal to

E

[
θ⊤∗
(
I −X⊤(XX⊤)−1X

)
θ∗

]
.

The matrix X⊤(XX⊤)−1X ∈ Rd×d is the projection matrix on a random subspace of size
n. By rotational invariance of the Gaussian distribution, this random subspace is uniformly
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distributed among all subspaces, and therefore, by rotational invariance, we can replace θ∗
by ‖θ∗‖2ej , that is,

E

[
θ⊤∗ X

⊤(XX⊤)−1Xθ∗
]

= ‖θ∗‖22 · E
[
e⊤j X

⊤(XX⊤)−1ej

]

for any of the d canonical basis vectors ej , j = 1, . . . , d, and thus

E

[
θ⊤∗ X

⊤(XX⊤)−1Xθ∗
]

=
‖θ∗‖22
d

d∑

j=1

E

[
e⊤j X

⊤(XX⊤)−1Xej

]
=
‖θ∗‖22
d

E
[

tr
[
X⊤(XX⊤)−1X

]]
=
‖θ∗‖22n
d

.

Thus the bias term is equal to d−n
d
‖θ∗‖22.

Therefore the overall expected risk is

σ2n

d− n− 1
+ ‖θ∗‖22

d− n
d

.

Summary. We get

if d 6 n− 2, E
[
R(θ̂)

]
= σ2 d

n− d− 1

if d > n+ 2, E
[
R(θ̂)

]
=

σ2n

d− n− 1
+ ‖θ∗‖22

d− n
d

.

This leads to the following picture.

d

excess risks

n

bias

variance

This extends to more general sampling models, see Hastie et al. (2019), and to random
non-linear features Mei and Montanari (2019).
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10.3 Global convergence of gradient descent for two-

layer neural networks

In Section 9.5, arguments were presented, highlighting that gradient descent neural networks
with a single hidden layer and infinite widths could be shown to converge to a global mini-
mum. This was based on (Chizat and Bach, 2018), and taken from https://francisbach.com/gradient-de

When applied to logistic regression, then combining these results with Section 10.1,
we also obtain that in the infinite width limit, we obtain a predictor that interpolates
the data, with a minimum norm, for norms which are exactly the ones obtained in Sec-
tion 9.3(Chizat and Bach, 2020): See https://francisbach.com/gradient-descent-for-wide-two-laye
for more details.

https://francisbach.com/gradient-descent-neural-networks-global-convergence/
https://francisbach.com/gradient-descent-for-wide-two-layer-neural-networks-implicit-bias/
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Chapter 11

Lower bounds on performance

Chapter summary

-Statistical lower bounds: for least-squares regression, the optimal performance of supervised
learning with target functions which are linear in some feature vector, or in Sobolev spaces
on Rd, happens to be achieved by several algorithms presented earlier in the book. The
lower bounds can be obtained through information theory or Bayesian analysis.
-Optimization lower bounds: for the classical problem classes from Chapter 5, hard functions
can be designed so that gradient-descent based algorithms that linearly combine gradients
are shown to be optimal.
-Lower bounds for stochastic gradient descent: The rates proportional to O(1/

√
n) for

convex functions and O(1/nµ) for µ-strongly convex problems are optimal.

In this textbook, we have shown various convergence rates for statistical procedures, when
the number of observations n goes to infinity, and optimization methods, as the number of
iterations k goes to infinity. Most of them were non-asymptotic upper-bounds on the error
measures, with a precise dependence on the problem parameters (e.g., smoothness of the
target function or the objective function).

In this chapter, we are looking at lower-bounds on performance, that is, we aim to show
that for a certain problem class and a certain class of algorithms, the error measures cannot
go to zero too quickly. Lower bounds are useful, in particular when they match upper-
bounds up to constants (we can then claim that we have an “optimal” method). They

233
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sometimes provide hard problems (like for optimization), sometimes not (when they are
based on information theory such as for prediction performance).

△!
Lower bounds will be obtained in a “minimax” setting where we look at the worst-
case performance over the entire problem class. As for upper-bounds, looking at
worst-case performance is by essence pessimistic, and algorithms often behaved
better than their bounds. The key is to identify classes of problems that are not
too large (or the bounds will be very bad), but still contains interesting problems.

11.1 Statistical lower bounds

In this section, our goal is to obtain lower bounds for regression problems in Rd with the
square loss when assuming the target function f ∗ : X→ R (here the conditional expectation
of y given x) is in a particular set, such as:

• linear function of some d-dimensional features, that is, f∗(x) = 〈θ∗, ϕ(x)〉, for θ∗ ∈ R
d,

potentially in a ℓ2-ball, and/or with less than k non-zero elements,

• functions with all partial derivatives up to order s bounded in L2-norm (e.g., Sobolev
spaces).

Since we are looking for lower-bounds, we are free to make extra assumptions (that can
only make the problem simpler) and lower the lower-bounds. For example, we will focus on
Gaussian noise with constant variance σ2 which is independent from x.

We can either consider fixed design assumptions or random designs with the simplest
input distributions (that can only make the problem simpler).

Classification. Lower bounds for classification problems are more delicate and out of scope
(see, e.g., Yang, 1999). We can however get lower-bounds for the convex surrogates which
are typically used (but note that this does not translate to lower-bounds for the 0-1 loss),
see for example Section 11.3 for Lipschitz-continuous loss functions.

11.1.1 Minimax lower bounds

We consider a set of probability distributions indexed by some set Θ (that can be charac-
terizing input distributions, smoothness of the target function). We consider some data D,
generated from this distribution, and we denote Eθ expectations with respect to data coming
from the distribution indexed by θ.
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We consider an estimator A(D) of θ ∈ Θ, with some squared distance d2 between two
elements of Θ, so that d(θ, θ′)2 measures the performance of θ′ when the true estimator is θ.
The performance of A when the data come from θ∗ is

Eθ∗

[
d(θ∗,A(D))2

]
.

The goal is to find an algorithm so that sup
θ∗∈Θ

Eθ∗

[
d(θ∗,A(D))2

]
is as small as possible, and

the lower bound of performance is thus:

inf
A

sup
θ∗∈Θ

Eθ∗

[
d(θ∗,A(D))2

]
. (11.1)

This is often referred to as “minimax” lower bounds.

Since by Markov’s inequality, Eθ∗

[
d(θ∗,A(D))2

]
> APθ∗

(
d(θ∗,A(D))2 > A

)
, it is suffi-

cient to lower bound
inf
A

sup
θ∗∈Θ

Pθ∗

(
d(θ∗,A(D))2 > A

)
,

for some A > 0. This will be useful for techniques based on information theory.

We will see two principles for obtaining statistical minimax lower-bounds:

• Reduction to an hypothesis test: by selecting a finite subset {θ1, . . . , θM} of distri-
butions Θ which is maximally spread, a good estimator leads to a good hypothesis test
that can identify which θj was used to generate the data. We can then use information
theory to lower-bound the probability of error of such a test. This is a very versatile
technique that can deal with most situations, from fixed to random design.

• Bayesian analysis: We can lower bound the supremum for all Θ by any expectation
over a distribution supported on Θ. Once we have an expectation, we can use the same
decision-theoretic argument as the ones we used to compute the Bayes risk is Chapter 4,
e.g., for Hilbertian or Euclidean performance measures, the optimal estimator is the
conditional expectation E[θ∗|D]. The key is then to choose distributions so that it
can be computed in closed form. This approach is less flexible, but the simplest in
situations where it can be applied (fixed design regression on balls, with potentially
sparse assumptions).

11.1.2 Reduction to an hypothesis test

The principle is simple: pack the set Θ with “balls” of some radius 4A, that is find
θ1, . . . , θM ∈ Θ such that

∀i 6= j, d(θi, θj)
2 > 4A, (11.2)

and transform the estimation problem into a hypothesis test, that is, an algorithm going
from the data D to one out of M potential outcomes.
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√

A

Then, because we take the supremum over a smaller set:

sup
θ∗∈Θ

Pθ∗

(
d(θ∗,A(D))2 > A

)
> max

j∈{1,...,M}
Pθj

(
d(θj,A(D))2 > A

)
.

Any algorithm A(D) ∈ Θ gives a test

g(A(D)) = arg min
j∈{1,...,m}

d(θj,A(D)) ∈ {1, . . . , m},

where ties are broken arbitrarily (e.g., by selecting the minimal index). Because of the pack-
ing condition in Eq. (11.2), the performance of A can be lower-bounded by the classification
performance of g ◦A.

Indeed, if, for some j ∈ {1, . . . ,M}, g(A(D)) 6= j, there exists k 6= j, such that
d(θk,A(D)) < d(θj ,A(D)). Moreover, using the triangle inequality for d, we get:

d(θj , θk)
2 6 2

[
d(θj ,A(D))2 + d(A(D), θk)

2
]
,

then,

d(θj,A(D))2 >
1

2
d(θj , θk)

2 − d(A(D), θk)
2

>
1

2
d(θj , θk)

2 − d(A(D), θj)
2 using the optimal k,

which implies d(θj ,A(D))2 > 1
4
d(θj , θk)2 > A. Thus, we have

Pθj

(
d(θj ,A(D))2 > A

)
> Pθj

(
g(A(D)) 6= j

)
,

leading to

inf
A

sup
θ∗∈Θ

Eθ∗

[
d(θ∗,A(D))2

]
> A · inf

g
max

j∈{1,...,M}
Pθj

(
g(D) 6= j

)
> A · inf

g

1

M

M∑

j=1

Pθj

(
g(D) 6= j

)
,

(11.3)
where g is any function from D to {1, . . . ,M}. We have lower-bounded the minimax statis-
tical performance by the minimax performance of an hypothesis test g : D → {1, . . . ,M}.
Information theory can be then used to lower-bound this minimax error. We first provide a
quick review of information theory (see Cover and Thomas, 1999, for more details).
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11.1.3 Information theory

Entropy. Given a random variable y taking finitely many values in Y, its entropy is equal
to

H(y) = −
∑

y′∈Y
P(y = y′) logP(y = y′).

Since P(y = y′) ∈ [0, 1], the entropy is always non-negative. Moreover, using Jensen’s
inequality for the logarithm, we have H(y) =

∑
y′∈Y P(y = y′) log 1

P(y=y′)
6 log

(∑
y′∈Y P(y =

y′) 1
P(y=y′)

)
= log |Y|.

The entropy H(y) represents the uncertainty associated with the random variable y,
going from H(y) = 0 if y is deterministic (that is P(y = y′) = 1 for some y′ ∈ Y), to log |Y|
when y has a uniform distribution.

Joint and conditional entropies. Given two random variables x, y with finitely many
values in X and Y, we can define the joint entropy

H(x, y) = −
∑

x′∈X

∑

y′∈Y
P(x = x′, y = y′) logP(x = x′, y = y′).

It can be decomposed as

H(x, y) = −
∑

x′∈X

∑

y′∈Y
P(y = y′, x = x′) log

[
P(y = y′|x = x′)P(x = x′)

]

= −
∑

x′∈X

∑

y′∈Y
P(y = y′, x = x′) logP(y = y′|x = x′)−

∑

x′∈X

∑

y′∈Y
P(y = y′, x = x′) logP(x = x′)

=
∑

x′∈X
P(x = x′) logH(y|x = x′) +H(x),

where H(y|x = x′) is the entropy of the conditional distribution of y given x = x′. By defining
the conditional entropy H(y|x) as H(y|x) =

∑
x′∈X P(x = x′)H(y|x = x′), we exactly have:

H(x, y) = H(y|x) +H(x).

This leads to a first version of Fano’s inequality, that lower bounds the probability that y 6= ŷ
from the conditional entropy H(y|ŷ), the main idea is that if y remains very uncertain given
ŷ, then the probability that it they are equal cannot be too large.

Proposition 11.1 (Fano’s inequality) If the random variable y and ŷ have values in the
same finite set Y, then

P(ŷ 6= y) >
H(y|ŷ)− log 2

log |Y| .
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Proof Let e = 1y 6=ŷ ∈ {0, 1} be the indicator function of errors, then, by decomposing the
joint entropy through conditional and marginal entropies in the two different ways, we get:

H(e|ŷ) +H(y|e, ŷ) = H(e, y|ŷ) = H(y|ŷ) +H(e|y, ŷ).

We then have H(e|y, ŷ) = 0 (because e is deterministic given y and ŷ), H(e|ŷ) 6 H(e) 6 log 2
(because e ∈ {0, 1}), and H(y|e, ŷ) = P(e = 1)H(y|ŷ, e = 1) + P(e = 0)H(y|ŷ, e = 0) =
P(e = 1)H(y|ŷ, e = 1) + 0 6 P(ŷ 6= y) log |Y|. Expressing P(ŷ 6= y) in function of other
quantities leads to the desired result.

Data processing inequality. A fundamental result in information theory allows to lower
bound conditional entropies where conditional independencies are present. That is, if we
have three random variables x, y, z, such that z and x are conditionally independent given
y, then H(x|z) > H(x|y): in words, the uncertainty of x given z has to be larger than the
uncertainty of x|y, which is “normal” because the statistical dependence between x and z is
entirely through y.

The data processing inequality is simple application of the concavity of the entropy as
a function of the probability mass function; indeed, we have, using that by conditional
independence P(x = x′|z = z′) =

∑
y′∈Y P(x = x′|y = y′)P(y = y′|z = z′):

H(x|z) =
∑

z′∈Z
P(z = z′)H(x|z = z′)

>
∑

z′∈X
P(z = z′)

∑

y′∈Y
P(y = y′|z = z′)H(x|y = y′)

=
∑

y′∈Y
P(y = y′)H(x|y = y′) = H(x|y).

This leads immediately to the following full version of Fano’s inequality:

Proposition 11.2 (Fano’s inequality) If the random variable y and ŷ have values in the
same finite set Y, and if we have a Markov chain y → z → ŷ, then

P(ŷ 6= y) >
H(y|ŷ)− log 2

log |Y| >
H(y|z)− log 2

log |Y| .

We need a last concept from information theory, namely mutual information and Kullback-
Leibler divergence, both discrete-valued random variables, and for continuous-valued random
variables.
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Mutual information. Given two random variables x and y, then we can define their
mutual information as

I(x, y) = H(x)−H(x|y) = H(x) +H(y)−H(x, y) = H(y)−H(y|x).

This can be seen as the reduction of uncertainty in x when observing y. It is symmetric,
always less than log |X| and log |Y|. Moreover, it can be written as:

I(x, y) = H(x) +H(y)−H(x, y)

=
∑

x′∈X

∑

y′∈Y
P(x = x′, y = y′) log

P(x = x′, y = y′)

P(x = x′)P(y = y′)
,

which can be seen as the Kullback-Leibler (KL) divergence between the distribution of (x, y)
and the product of marginals of x and y. Indeed, given two distribution on Z, p and q (which
are non-negative functions on Z that sum to one), then

DKL(p||q) =
∑

x∈Z
p(z) log

p(z)

q(z)
.

The KL divergence is always non-negative by convexity of the function t 7→ t log t, and equal
to zero, if and only if p = q. Moreover, the KL divergence is jointly convex in (p, q). Thus, one
can see the mutual information between the KL divergences between the joint distribution
of (x, y) and the corresponding product of marginals (which is thus non-negative).

From discrete to continuous distributions. Many of the information theory concepts
can be extended to continuous random variables on R

d, by replacing the probability mass
function by the probability density with respect to some base measures. Then many prop-
erties (which were obtained through convex arguments) extend. In particular, the data
processing inequality and Fano’s inequality when z is continuous-valued.

Moreover, the KL divergence between two distributions can be defined as

DKL(dp||dq) = Edp(x) log
dp(x)

dq(x)
.

A short calculation shows that for two normal distributions of means µ1, µ2 and equal co-
variance matrices Σ, the KL divergence is equal to

1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2).

11.1.4 Lower-bound on hypothesis testing based on information
theory

We consider a joint random variable (y,D) distributed as y uniform in {1, . . . ,M}, and,
given y = j, D distributed as the distribution associated with θj . We consider ŷ = g(D).
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This defines a Markov chain: y → D → g(D), that is, even for a randomized test, g(D)
is independent of y given D. The last term in Eq. (11.3) is exactly the probability that
ŷ 6= y. This is exactly what Fano’s inequality from information theory gives us, leading to
the following corollary.

Corollary 11.1 (Fano’s inequality for multiple hypothesis testing) Given M prob-
ability distributions dpj on D, then

inf
g

1

M

M∑

j=1

Pj

(
g(D) 6= j

)
> 1− 1

M2 logM

M∑

j,j′=1

DKL(dpj ||dpj′)−
log 2

logM
.

Proof We consider a joint random variable (y,D) distributed as y uniform in {1, . . . ,M},
and, given y = j, D distributed as the distribution dpj. Starting from Prop. 11.2, we get:

H(y|z) = H(y)− I(y, z) = logM − 1

M

M∑

j=1

DKL(dpj||
1

M

M∑

j′=1

dpj′)

> H(y)− I(y, z) = logM − 1

M2

M∑

j,j′=1

DKL(dpj||dpj′),

by convexity of the Kullback-Leibler divergence.

Using Gaussian noise to compute KL divergences. For regression with Gaussian er-
rors such as yi = fθ(xi)+εi, with ε ∼ N(0, σ2I), then, for fixed designs (all xi’s deterministic),
we exactly get

DKL(dpθj ||dpθj′ ) =
1

2σ2

n∑

i=1

[
fθj (xi)− fθj′ (xi)

]2
=

n

2σ2
d(θj, θj′)

2,

where d(θ, θ′)2 = 1
n

∑n
i=1

[
fθ(xi)− fθ′(xi)

]2
.

For random designs, we consider distributions on (xi, yi)i=1,...,n. If we consider a single
distribution for x, then

DKL(dpθj ||dpθj′ ) =
1

2σ2

∫

X

[
fθj (x)− fθj′ (x)

]2
dp(x) =

1

σ2
‖fθj − fθj′‖

2
L2(dp(x))

=
1

2σ2
d(θj , θj′)

2.

In order to obtain a lower bound with Gaussian noise, we need to find θ1, . . . , θM in Θ such
that:
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•
1

M2

∑M
j,j′=1

n
2σ2d(θ, θ′)2 6 log(M)/4.

• log 2/ logM 6 1/4 (that is M > 16)

• minj 6=k d(θj , θk)
2 > 4A.

Then the minimax lower bound is A/2. Thus, the lower bound is essentially the larget
possible A for a given M such that we can find M points in Θ which are all 2

√
A apart.

There are two main tools to find such packings: (1) a direct volume argument and (2) using
the Varshamov-Gilbert’s lemma. We present them before going over examples.

Volume argument. The following lemma provides the simplest argument.

Lemma 11.1 (Packing ℓ2-balls) Let M be the maximal number of elements of the Eu-
clidean ball of radius 1, which are at least 2ε-apart in ℓ2-norm. Then (2ε)−d 6 M 6

(1 + ε−1)d.

Proof Let θ1, . . . , θM be the corresponding M points.

(a) All balls of center θj and radius ε are disjoint and included in the ball of radius 1 + ε.
Thus, the sum of volumes of the small balls is smaller than the volume of the large balls,
that is, Mεd 6 (1 + ε)d.

(b) Since M is maximal, for any θ such that ‖θ‖2 6 1, there exists a j ∈ {1, . . . ,M}
such that ‖θj − θ‖2 6 2ε (otherwise, we can add a new point to {θ1, . . . , θM} and M is not
maximal). Thus the ball of radius 1 is covered by the M balls of radius θj and radius 2ε.
Thus, by using volumes, we get 1 6M(2ε)d.

Packing with Varshamov-Gilbert lemma. The maximal number of points in the hy-
percube {0, 1}d that are at least d/4-apart in Hamming loss (i.e., ℓ1-distance) is greater than
than exp(d/8).

Lemma 11.2 (Varshamov-Gilbert’s lemma) For any α ∈ (0, 1), there exists a subset A
of the hypercube {0, 1}d such that

(a) for all x, x′ ∈ A such that x 6= x′, ‖x− x′‖1 > (1− α)d
2
,

(b) |A| > exp(dα2/2).
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Proof We consider the largest family satisfying (a). By maximality, the union of ℓ1-ball of
radius (1− α)d

2
includes all of {0, 1}d . Therefore,

2d 6
∑

x∈A

∣∣{y ∈ {0, 1}d, ‖y − x‖1 6 (1− α)
d

2

}∣∣.

Consider a random variable z which is binomial with parameter d and 1/2. Then,

2−d
∣∣{y ∈ {0, 1}d, ‖y − x‖22 = ‖y − x‖1 6 (1− α)

d

2

}∣∣ = P(z 6 (1− α)
d

2
) = P(z > (1 + α)

d

2
).

Using Hoeffding’s inequality, we get P(z > (1+α)d
2
) = P(z−E[z] > α d

2
) 6 exp(−2d(α/2)2) =

exp(−dα2/2). This leads to the result.

11.1.5 Examples

Fixed design linear regression. We consider linear regression with Φ ∈ Rn×d a design
matrix with 1

n
Φ⊤Φ = I (which imposes n > d). We consider the ball Θ = {θ ∈ Rd, ‖θ‖2 6

D}. By rotational invariance of the Gaussian distribution of the noise variable ε, we can
assume that the first d rows are equal to

√
nI and the rest of the rows are equal to zero, and

thus we can assume the model y = θ∗+
1√
n
ε, where ε ∈ Rd with normal distribution with mean

zero and covariance σ2I, and y ∈ Rd. We are thus in the situation where d(θ, θ′)2 = ‖θ−θ′‖22.
In order to find M points in Θ = {θ ∈ Rd, ‖θ‖2 6 D}, we consider the M > exp(d/8)

elements x1, . . . , xM of {0, 1}d from Lemma 11.2, and define θi = β(2xi − 1d). Thus ‖θi‖22 =
β2d, and, for i 6= j,

‖θi − θj‖22 6 4β2d 6 32β2 log(M) and ‖θi − θj‖22 > β2d.

We thus need, β2d 6 D2, and 32β2 log(M) n
2σ2 6

logM
4

, that is, 64β2 n
σ2 6 1. Thus, the

optimal rate is greater than
1

8
β2d >

1

8
min{D2,

σ2d

64n
}.

Therefore, when D2 > σ2d
64n

, we get a lower bound of
σ2d

512n
, which is the upper-bound obtained

in Chapter 3 (note that in Section 3.7 we provided a sharper lower-bound using similar tools
as Section 11.1.6).

The sparse regression setting could be considered as well with the same tool, but the
proof is simpler with the Bayesian arguments from Section 11.1.6. We now turn to the
random design setting.

Exercise 11.1 Use Lemma 11.1 instead of Lemma 11.2 to obtain the same result.
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Random design linear regression. We consider the same model as above, but with
(xi, yi) sampled i.i.d. from a given distribution such that E[ϕ(x)ϕ(x)⊤] = I, so that
d(θ, θ′)2 = ‖θ − θ′‖22. Thus the result above for fixed design regression also applies to the
random design setting.

Non parametric estimation with Hilbert spaces. We consider random design regres-
sion with a fixed distribution for the inputs, with Gaussian independent noise and target
functions which are in certain ellipsoid of L2(dp(x)). That is, we assume that there exists a
compact self adjoint operator T on L2(dp(x)) such that 〈θ, T−1θ〉L2(dp(x)) 6 D2. We denote
by (λm)m>1 the non-increasing sequence of eigenvalues of T , with the associated eigenvectors
ψm in L2(dp(x)).

We consider a certain integer K, then consider M > exp(K/8) elements x1, . . . , xM of
{0, 1}K, We then define θi = β

∑K
m=1(2(xi)m−1)ψm. Then 〈θ, T−1θ〉L2(dp(x)) = β2

∑K
m=1 λ

−1
m 6

Kβ2λ−1
K , and, for i 6= j,

‖θi − θj‖2L2(dp(x)) 6 4β2K 6 32β2 log(M) and ‖θi − θj‖2L2(dp(x)) > β2K.

We thus need, β2K 6 D2λK , and 32β2 log(M) n
2σ2 6

logM
4

, that is, 64β2 n
σ2 6 1. Thus, the

minimax lower bound is greater than

1

8
β2K >

1

8
min{D2λK ,

σ2K

64n
}.

We can now specialized to Sobolev spaces where it can be shown that for compact sup-
ports with piecewise smooth boundaries, then the sum of all L2-norms of partial derivatives
correspond to an operator for which λK > K−α, with α = 2s/d. The lower bound becomes

max
K>1

1

8
min{D2K−α,

σ2K

64n
},

which can be balanced to obtain K ∝
(
nD2

σ2

)1/(1+α)
, leading to lower bound proportional to

D2/(1+α)
(σ2

n

)α/(1+α)
.

For α = 2s/d, we get α/(1 + α) = 2s
2s+d

, and the lower matches the upper-bound obtained
with kernel ridge regression in Chapter 7. It turns out that the lower bound on the minimax
rate for Lipschitz-continuous function is the same as for s = 1 (Tsybakov, 2008, Section 2.6).

11.1.6 Minimax lower bounds through Bayesian analysis

As outlined for least-square in Section 3.7, we can use a Bayesian analysis as follows. We
consider a certain probability distribution dp(θ∗) whose support is included in Θ. Then we
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have:
inf
A

sup
θ∗∈Θ

Eθ∗

[
d(θ∗,A(D))2

]
> inf

A
Edp(θ∗) Eθ∗

[
d(θ∗,A(D))2

]
.

This reasoning is particularly simple when the optimal algorithm A is simple to estimate,
which is the case in particular where d is an Euclidean norm, so that A∗(D) = E

[
θ∗|D

]
. If the

prior dp(θ∗) and the likelihood dp(D|θ∗) are simple enough, then the conditional expectation
can be done in closed form. In Section 3.7, these were all Gaussians, which was possible for
the prior distribution on Θ because Θ was unbounded. When dealing with bounded balls,
we need to use different distributions, as used originally by Donoho and Johnstone (1994).

Least-squares on an Euclidean ball. We consider linear regression with fixed design like
in the previous section (with a bound ‖θ∗‖2 6 D), we corresponds to the model y = θ∗+ 1√

n
ε,

where ε ∈ Rd with normal distribution with mean zero and covariance σ2I, and y, θ∗ ∈ Rd.

We then consider a prior distribution on θ∗ as θ∗ = βx, where x ∈ {−1, 1}d are indepen-
dent Rademacher random variables. We need β2d 6 D2 to be in the correct set. We then
need to compute E[θ∗|y]. The posterior probability of θ∗ is supported on β{−1, 1}n. More-
over, given the independence by component, we can treat each of them separately. Then, by
keeping only terms that depends on the posterior value, we get:

P((θ∗)i = ±β|yi) ∝ exp(− n

2σ2
(yi −±β)2) ∝ exp(± n

σ2
yiβ).

Thus,

E
[
(θ∗)i|yi

]
= β

exp( n
σ2 yiβ)− exp(− n

σ2 yiβ)

exp( n
σ2 yiβ) + exp(− n

σ2 yiβ)
= β

1− exp(−2 n
σ2 yiβ)

1 + exp(−2 n
σ2 yiβ)

= β
[
2sigmoid

(
2
n

σ2
yiβ
)
−1
]
,

where sigmoid(α) = 1/(1 + exp(−α)).

The posterior variance for the i-th component is equal to

E
[(

(θ∗)i − E
[
(θ∗)i|yi

])2]
=

1

2
Eεi

(
β − β

[
2sigmoid

(
2
n

σ2
β(β + εi/

√
n)
)
− 1
])2

+
1

2
Eεi

(
− β − β

[
2sigmoid

(
2
n

σ2
β(−β + εi/

√
n)
)
− 1
])2

= 4β2
Eεi∼N(0,σ2)

[(
sigmoid

(
− 2

n

σ2
β2 + 2

√
n

σ2
βεi)

)2]

= 4β2
Eε̃i∼N(0,1)

[(
sigmoid(−2

n

σ2
β2 + 2

β
√
n

σ
ε̃i)
)2]

We consider the function ψ : α 7→ Eε∼N(0,1)

[(
sigmoid(−2α2 + 2αε)

)2]
. We have ψ(0) = 1/4,

and ψ(α) → 0 when α → +∞, and we have ψ(α) > 1
4
Pε∼N(0,1)(ε > α) > 1

8
exp(−α2), by

using simple Gaussian tail bounds.
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Thus, the posterior variance is greater than

β2d

2
exp(−nβ2/σ2) =

σ2d

n
× β2n

2σ2
exp(−nβ2/σ2),

which is maximized for β2 ∝ σ2/n, and thus if σ2d/n is smaller than D2, we obtain the usual
σ2d/n, while if it is greater then D2, we take β2

2 = D2/d, to obtain the lower bound

D2 exp(−4nD2/(σ2d)) > D2 exp(−4),

which leads to the same bound as the previous section, but with a more direct argument.

Sparse case. In order to deal with the sparse case, we could consider a prior on θ∗ that is
only selecting k non-zero elements out of d, and perform an analysis based on the posterior
probability of θ∗. Following Donoho and Johnstone (1994), it is easier to divide the set of
d variables into k blocks of size d/k (for simplicity we assume that d/k is an integer). We
then consider a prior probability defined independently on each of the k blocks by selecting
one of the d/k variables uniformly at random and setting its value to β, while all others are
set to zero.

In order to compute the posterior probability of θ∗, we can treat each block independently
and sum the posterior variances; we thus consider the first block, composed of d/k variables,
and compute the probability that the selected variable is the j-th one, which is proportional
to

exp(−n/(2σ2)(yj − β)2)
∏

i 6=j

exp(−n/(2σ2)(yi)
2) ∝ exp(nβyj/σ

2).

The conditional expectation of θ∗ then satisfies

E[(θ∗)i|y] = β
exp(nβyi/σ

2)
∑d/k

j=1 exp(nβyj/σ2)
.

In order to compute the posterior variance, we need to sample from the prior θ∗. By sym-
metry, we may consider that θ1 = β. If y1 6 maxj 6=1 yj, then

E[(θ∗)1|y] = β
exp(nβy1/σ

2)
∑d/k

j=1 exp(nβyj/σ2)
6 βt

exp(nβy1/σ
2)

exp(nβy1/σ2) + exp(nβmaxj 6=1 yj/σ2)
6 β/2,

and then the risk is at least (β − E[(θ∗)1|y])2 > β2/4.

In order to lower-bound the probability that y1 6 maxj 6=1 yj We can then consider the
events {y1 6 β} and {β 6 maxj 6=1 yj}. The probability that y1 = β + ε1 is less than β is
greater than 1/2. Moreover,

P
(
{β 6 max

j 6=1
yj}
)
> 1−

(
1− Pt∼N(0,1)(t > β

√
n/σ)

)d/k−1
.
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Thus, the lower bound is greater than

k
β2

4

[
1−

(
1− Pt∼N(0,1)(t > β

√
n/σ)

)d/k−1
]
> k

β2

4

[
1−

(
1− 1

2
exp(−β2n/σ2)

)d/k−1
]
,

using the Gaussian tail bound Pt∼N(0,1)(t > z) > 1
2

exp(−z2). We can then consider β2 =
σ2

n

√
2 log(d/k), leading to a lower bound

σ2k

4n
log(d/k)

[
(1− (1− 1

2
(k/d))d/k−1

]

which is greater than σ2k
8n

log(d/k) if k 6 2d. We obtain the same lower-bound as the upper-
bound for ℓ0-penalty-based methods in Chapter 8.

11.2 Optimization lower bounds

In this section, we consider ways of obtaining lower-bounds of performance for optimization
algorithms. While the statistical lower-bounds from the previous section were not explicitly
giving hard problems, the algorithmic lower bounds of this section will explicitly build such
hard problems.

11.2.1 Convex optimization

In order to obtain computational lower bounds for convex optimization, which is notoriously
hard in general in computer science, we will rely on a very simple model of computation,
that is, we will restrict ourselves to methods that access gradients of the objective function
and combine them linearly to select a new query point.

We follow the results from (Nesterov, 2018, Section 2.1.2) and (Bubeck, 2015, Section
3.5), and assume that we want to minimize a convex function F defined on Rd. The algorithm
starts from θ0 = 0, and can only query points in the span of the observed gradients or some
sub-gradients of F at the previous observed points.

The key is to find functions with the proper regularity properties for which we know that
a few iterations provably lead to suboptimal performance. These functions will only reveal
one new variable at each iteration and after k iterations, can only achieve the minimum on
the first k variables.

Non-smooth functions. We consider the following function, which will be dedicated to
a given number of iterations k:

F (θ) = η max
i∈{1,...,k+1}

θi +
µ

2
‖θ‖22,
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for k < d, and η, µ positive parameters that will be set later.

The subdifferential of F (θ) is equal to

µθ + η · hull({ei, θi = max
i′∈{1,...,k+1}

θi′}),

which is bounded in ℓ2-norm on the ball of radius R, by µR + η (here ei denotes the i-th
basis vector). We consider the oracle where the gradient which is output is µθ + ηei, where
i is the smallest index within maximizers of θi′ .

Starting from θ0 = 0, θ1 is supported on the first variable, and by recursion, after k 6 d
steps of subgradient descent, θk is supported on the first k variables. Since k < d, then
(θk)k+1 = 0, so F (θk) > 0. Minimizing on the span of the first k variables leads to, by

symmetry, θ∗ = κ
∑k+1

i=1 ei, for a certain κ which minimizes ηκ+ (k+1)µ
2

κ2, so that κ = − η
µ(k+1)

,

and thus θ∗ = − η
µ(k+1)

∑k+1
i=1 ei, with value F (θ∗) = − η2

2µ(k+1)
. Thus

F (θk)− F (θ∗) > 0− F (θ∗) =
η2

2µ(k + 1)
,

with ‖θ∗‖22 = η2

µ2(k+1)
.

In order to build a B-Lipschitz-continuous function on a ball of center 0 and radius D,

we can take η = B/2, and D = B/(2µ), and we get a lower bound of
B2

8µk
.

With µ = B
D

1
1+

√
k+1

and η = B
√
k+1

1+
√
k+1

, we also get a B-Lipschitz continuous function,

and we get the lower bound
DB

2(1 +
√
k + 1)

, which is valid as long as k < d.

△! The lower bounds are only valid for k < d, because there exists algorithms which are
linearly convergence in this setting with a constant that depends on d, such as the ellipsoid
method or the center of mass method (see Bubeck, 2015, for details).

Smooth functions. We consider a sequence of quadratic function on Rd. We need that
the gradient for iterates supported on the first i components is supported on the first i + 1
components. We consider the example from (Nesterov, 2018, Section 2.1.2):

Fk(θ) =
L

4

{1

2

[
θ21 + θ2k +

k−1∑

i=1

(θi − θi+1)
2
]
− θ1

}
.

The function Fk is convex, and smooth, with a smoothness constant which is less than L.
Moreover, its global minimizer is attained at θ

(k)
∗ such that (θ

(k)
∗ )i = 1− i

k+1
for i ∈ {1, . . . , k}



248 CHAPTER 11. LOWER BOUNDS ON PERFORMANCE

and 0 otherwise, with an optimal value of Fk(θ
(k)
∗ ) = L

8
−k
k+1

, and with

‖θ(k)∗ ‖22 =
k∑

i=1

(
1− i

k + 1

)2
6
k + 1

3
.

By construction, if θ is supported in the first i components for i < k, then F ′
k(θ) is supported

on the first i+1 components. Thus, the i-th iterate is supported on the the first i components,
and thus the lowest attainable value is Fi(θ

(i)
∗ ).

Given this set of functions, for a given k such that k 6 d−1
2

, and we consider F2k+1, for

which θ
(2k+1)
∗ is the global minimizer with value L

8
−2k−1
2k+2

, while after k iterations, we can only

achieve Fk(θ
(k)
∗ ) = L

8
−k
k+1

. Thus, we have:

F2k+1(θk)− F ∗
2k+1

‖θ0 − θ∗‖22
>
L

8

1
k+1
− 1

2k+2
2k+2
3

>
3L

32

1

(k + 1)2
.

We thus obtain the lower-bounds corresponding to the upper bounds obtained from Nesterov
acceleration.

△! The number of iterations has to be less than half the dimension for the lower bound to
hold.

Smooth strongly-convex functions. Following Nesterov (2018), we consider a function
defined on the space ℓ2 of square-summable sequences as

F (θ) =
L− µ

4

{1

2

[
θ21 +

∞∑

i=1

(θi − θi+1)
2
]
− θ1

}
+
µ

2
‖θ‖22.

This function is L-smooth and µ-strongly convex. Its global minimizer is θ∗ such that

(θ∗)k =
(1−

√
µ/L

1 +
√
µ/L

)k
= qk,

with ‖θ∗‖22 =
∑∞

k=1 q
2k = q2

1−q2
. Moreover, we have:

‖θk − θ∗‖22 >
∞∑

i=k+1

q2i = q2k‖θ∗‖22.

This leads to F (θk)− F∗ >
µ
2
‖θk − θ∗‖22 > q2k‖θ0 − θ∗‖22.

11.2.2 Non-convex optimization

See https://francisbach.com/optimization-is-as-hard-as-approximation/

https://francisbach.com/optimization-is-as-hard-as-approximation/
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11.3 Lower bounds for stochastic gradient descent (�)

We follow the exposition from Agarwal et al. (2012) and consider a function

Fα(θ) =
B

2d

d∑

i=1

{
(
1

2
+ αiδ) ·

∣∣θi +
1

2

∣∣+ (
1

2
− αiδ) ·

∣∣θi −
1

2

∣∣
}
, (11.4)

with α ∈ {−1, 1}d a well chosen vector and δ ∈ (0, 1/4], and B > 0. One element of the sum
is plotted below.

1/2−1/2 θi

(1
2
+ δ)|θi +

1

2
|+ (1

2
− δ)|θi −

1

2
|

The function Fα is convex and Lipschitz-continuous with gradients bounded in L2-norm
by B/

√
d. Moreover, the global minimizer of Fα is θ = −α

2
, with an optimal value equal to

F ∗
α = B

4
(1 − 2δ). That is minimizing Fα on [−1/2, 1/2]d exactly corresponds to finding an

element of the hypercube α. Moreover, it turns out that minimizing it approximately also
lead to identification of α among a set of α’s which are sufficiently different.

Lemma 11.3 If α, β ∈ {−1, 1}d, and Fα(θ)− F ∗
α 6 ε, then Fβ(θ)− F ∗

β > Bδ
2d
‖α− β‖1 − ε.

Proof We have: Fβ(θ)−F ∗
β = Fβ(θ) +Fα(θ)−F ∗

β −F ∗
α + [F ∗

α−Fα(θ)]. We then notice that

Fβ(θ) + Fα(θ)− F ∗
β − F ∗

α =
B

2d

∑

i, αi 6=βi

{∣∣θi +
1

2

∣∣ +
∣∣θi −

1

2

∣∣+ 2δ − 1
}
>
Bδ

2d
‖α− β‖1.

Thus, if we consider M points α(1), . . . , α(M) ∈ {−1, 1}d such that ‖α(i) − α(j)‖1 > d
2

(with
potentially M > exp(d/8) such points from Lemma 11.2), then, if ε < Bδ

4
, minimizing up to

ε exactly identifies which of the functions Fα(i) was being minimized.

Moreover, if θ̂ is random then, denoting A = {α(1), . . . , α(M)},

sup
α∈A

Eα

[
Fα(θ̂)− F ∗

α

]
> ε · sup

α∈A
Pα

(
Fα(θ̂)− F ∗

α > ε
)
> ε · 1

|A|
∑

α∈A
Pα

(
Fα(θ̂)− F ∗

α > ε
)
.
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From an estimate θ̂, we can build a test g(θ̂) ∈ A by selecting the (unique if ε < Bδ
4

) α ∈ A

such that Fα(θ̂)−F ∗
α 6 ε if it exists, and uniformly at random in A otherwise. Therefore, the

minimax performance is greater than ε times the probability of mistake of the best possible
test.

We consider the following stochastic oracle:

(1) pick some coordinate i ∈ {1, . . . , d} uniformly at random,

(2) draw a Bernoulli random variable bi ∈ {0, 1} with parameter 1
2

+ αiδ,

(3) consider F̂ (θ) = cbi
∣∣θi + 1

2

∣∣+ c(1− bi)
∣∣θi − 1

2

∣∣, with gradient

F̂ ′
α(θ) =

B

2

[
bi sign(θi + 1/2) + (1− bi) sign(θi − 1/2)

]
.

The stochastic gradients have ans ℓ2-norm bounded by B. Moreover, observation of the
gradient for θ ∈ [−1/2, 1/2]d reveals the outcome of the Bernoulli random variable bi.

Therefore, after k steps, we can apply Fano’s inequality to the following set-up: the
random variable α ∈ A is uniform, and given α, we sample independently k times, one
variable i in {1, . . . , D} and observe (a potentially noisy version of) a Bernoullli random
variable b, with parameter αi.

We then need to upper bound the mutual information between α and (i, b) and multiply
the result k times because each of the k gradients are sampled independently.

The mutual information can be decomposed as

I(α, (i, b)) = I(α, i) + I(α, b|i) = 0 + EiEα

[
DKL(p(b|i, α)||p(b|i))

]

where p(b|i, α) and p(b|i) denotes the probability distribution of b. Thus

I(α, (i, b)) = EiEα

[
DKL(p(b|i, α)|| 1

|A|
∑

α′∈A
p(b|i, α′))

]

6
1

|A|
∑

α′∈A
EiEα

[
DKL(p(b|i, α)||p(b|i, α′))

]

Since p(b|i, α) is Bernoulli random variable with parameter 1
2

+δ or 1
2
−δ, the KL divergences

above are bounded by the KL between two Bernoulli random variables with the two different
parameters, that is,

I(α, (i, b)) 6 (
1

2
+ δ) log

1
2

+ δ
1
2
− δ + (

1

2
− δ) log

1
2
− δ

1
2

+ δ
= 2δ log

1 + 2δ

1− 2δ

= 2δ log
(

1 +
4δ

1− 2δ
6

8δ2

1− 2δ
6 16δ2 if δ ∈ [0, 1/4].
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Therefore the minimax lower bound is greater than

ε
(

1− 16kδ2 − log 2

logM

)
> ε
(

1− 16kδ2 − log 2

d/8

)
.

Thus, we need 256kδ2 > d, and then Bδ/4 is the lower bound on the rate, so that the lower
bound is

1

16

√
d

k
,

which is the desired lower-bound in O(DB/
√
k) where D is the diameter of the set of θ.

The lower-bound is the same as the upper-bound achieved by stochastic gradient descent in
Chapter 5.

The result above can be extended to strongly-convex problems (Agarwal et al., 2012).
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