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Abstract—JavaScript is becoming the de-facto programming
language of the Web. Large-scale web applications (web apps)
written in Javascript are commonplace nowadays, with big
technology players (e.g., Google, Facebook) using it in their core
flagship products. Today, it is common practice to reuse existing
JavaScript code, usually in the form of third-party libraries and
frameworks. If on one side this practice helps in speeding up
development time, on the other side it comes with the risk of
bringing dead code, i.e., JavaScript code which is never executed,
but still downloaded from the network and parsed in the browser.
This overhead can negatively impact the overall performance and
energy consumption of the web app.

In this paper we present Lacuna, an approach for JavaScript
dead code elimination, where existing JavaScript analysis tech-
niques are applied in combination. The proposed approach
supports both static and dynamic analyses, it is extensible, and
independent of the specificities of the used JavaScript analysis
techniques. Lacuna can be applied to any JavaScript code base,
without imposing any constraints to the developer, e.g., on her
coding style or on the use of some specific JavaScript feature
(e.g., modules).

Lacuna has been evaluated on a suite of 29 publicly-available
web apps, composed of 15,946 JavaScript functions, and built
with different JavaScript frameworks (e.g., Angular, Vue.js,
jQuery). Despite being a prototype, Lacuna obtained promising
results in terms of analysis execution time and precision.

I. INTRODUCTION

Web application frontends are built using a combination of
HTML, CSS, and JavaScript. In the last years, the browser
has evolved into a fully-fledged software platform (e.g., with
JavaScript APIs for geolocation, camera, microphone) [1].
This evolution is leading to a proliferation of third-party li-
braries and frameworks, ranging from Model-View-Controller
(MVC) frameworks, efficient DOM manipulators, UI kits, etc.
[2][3]. Today they are even used when developing mobile
apps [4, 5]. This is confirmed by the emergence of even web-
sites dedicated to cataloging the large amount of JavaScript
frameworks and libraries available to developers [6].

Frameworks increase developers productivity via code reuse
and are commonly well tested and maintained. However, they
also come with a cost: not every single functionality of a
JavaScript framework is usually used by a web app including
it. The unused functionalities of the included frameworks
are never executed at run-time; the code implementing those
unused functionalities is known as dead code [7]. Besides
the obvious cost of increased file size (and network transfer
time), there is an additional hidden cost to dead code: despite
JavaScript dead code never being executed at run-time, it is
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still parsed by the JavaScript engine. This parsing overhead
can take a significant portion of the complete interpretation
time [8]. The costs for downloading and parsing dead code
can negatively contribute to the loading time and energy
consumption of web apps. A recent survey among almost
9,300 JavaScript developers rated code splitting and dead code
elimination as the highest-rated requested features [9].

While some approaches have been developed to minimize
this overhead (e.g., lazy parsing [10] and script stream-
ing [11]), dead code identification and elimination is still
an open problem. Currently available solutions either (i)
impose a certain coding style to developers, banning certain
code structures (e.g., object reflection), or (ii) require specific
constructs of the JavaScript specification. An example of
the latter is the use of modules, which allow developers to
declaratively specify self-contained namespaces in JavaScript
and to conditionally load them when needed. While modules
are certainly useful in terms of maintainability and code reuse,
most web apps today have not been built with modules in
mind. Also, at the time of writing, only Google Chrome and
Safari support JavaScript modules'.

In this paper we present Lacuna, an approach for automat-
ically eliminating JavaScript dead code from web apps. At
the core of Lacuna lies the construction of a call graph G,
of the web app w being analysed; G,, is uni-directed and
represents JavaScript functions as nodes and the caller-callee
relationship between functions as edges. In this context, dead
code elimination consists in the removal of all the (potentially
connected) components in GG, that are isolated from the node
representing the global scope of the web app. The unique
characteristic of Lacuna is its ability to build and iteratively
refine G, by integrating different program analysis techniques,
each of them with potentially its own support for specific
aspects of the JavaScript language. Lacuna supports any kind
of program analyses (both static and dynamic), provided that
they are aimed at building a call graph of the JavaScript code
being analysed. Lacuna iteratively refines its own represen-
tation of G,, by suitably integrating it with the call graph
produced by each analysis technique. Lacuna is extensible
and independent from the used program analysis techniques,
allowing developers and researchers to build the combination
of analyses which best fits their own needs. Finally, Lacuna
can be applied to any JavaScript-based web app, without

Thttp://caniuse.com/#feat=es6-module
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imposing any constraints to the developer, e.g., on coding style
(use of reflection or objects self-inspection) or imposing the
use of specific JavaScript features (e.g., modules).

The main contributions of this paper are the following:

o the definition of an extensible approach for JavaScript
dead code elimination, without imposing restrictions on
the coding style of developers;

« an implementation of the proposed approach in Node.js;

o three extensions of the approach leveraging existing
JavaScript analyzers;

e an evaluation of the proposed approach based on a
publicly-available dataset of 29 web apps;

« a complete replication package containing the web apps
used in the evaluation, raw data, and analysis scripts.

The target audience of this paper is web app developers
and researchers. Web developers are the natural stakeholders
of Lacuna since they can directly use the current implemen-
tation of Lacuna for removing dead code from their web
apps, thus making their products more lightweight in terms
of, e.g., network usage, loading time, energy consumption.
Researchers can use Lacuna as a means for assessing their
analysis techniques for JavaScript dead code elimination, and
for quickly comparing the performance of their techniques
with respect to other analyses already integrated in Lacuna.

In the remainder of this paper, Section II presents ba-
sic concepts and the challenges of JavaScript dead code
elimination. Section III presents the proposed approach and
Section IV gives implementation details. Section V describes
the empirical evaluation of our approach, and in Section VI
we discuss related work. Section VII closes the paper.

II. BACKGROUND

In this section we set the context of this paper by discussing
the main challenges related to the analysis of JavaScript code
(Section II-A), and existing tools and techniques.

A. The Challenges of JavaScript Analysis

Due to the dynamic nature of JavaScript, it is hard to
completely and correctly analyze its source code [12]. The
following section highlights several language features that are
challenging from the perspective of JavaScript analysis tools,
with a special emphasis on those issues which make call graph
analysis for JavaScript especially difficult.

1) Dynamic access of objects properties: In JavaScript it is
possible to dynamically access the properties of objects. This
is a particularly hard problem for static analyzers, because it
requires the interpretation of the run-time context of the code
being analysed [13].

i function get (mom, unit) {
return mom.isValid () ?

3 mom._d[’get’” + (mom._isUTC ? "UTC’
+ unit]() : NaN;
o}

Listing 1. Dynamic property access (from the Chart.js framework)

I!)

As an example, Listing 1 shows a fragment of a existing
JavaScript framework (Chart.js?). Here, the get function
defined in line 1 takes as input two variables (i.e., mom and
unit) and returns the value of mom if it is valid (line 2);
if mom is valid (line 3), a property in mom._d (a Date
object) is dynamically accessed by name, depending on the
value of mom._1isUTC property (i.e. ' getUTCMonth’ or
"getMonth’). In this case the problem is due to the fact that
the name of the function to be called (e.g., getUTCMonth ())
is crafted at run-time and depends on the specific value of
mom._isUTC at run-time.

Dynamic object properties are challenging for static analysis
techniques, because determining what function will be called
depends on the value of mom at run-time.

2) Context binding: Context binding allows developers to
assign an arbitrary object to the this keyword value, using
the call, apply or bind functions®. Dynamic context is
often exploited in JavaScript frameworks since it gives great
flexibility to developers, e.g., for functional programming or
for defining variadic functions (i.e., functions accepting a
variable number of arguments).

1 _.after = function(times, func) {
2 return function () {
if (——times < 1) {
return func.apply (this,

}

4 arguments) ;

5

6 }s

7 ;

8 var isBlockedUser = _.after (3, function () {

9 console.log (’'Wrong password for 3 times.’);

10 b

Listing 2. Context binding (from the underscore.js library)

Listing 2 shows an example from the well-known un-
derscore.js* library. Here, the _ variable represents the root
object of the library. The after function in lines 1-7 allows
developers to obtain a function func in such a way that it is
executed only on and after the t imes-th call. At the core of
the after function lies a call to the apply function (line 4),
where func is correctly called independently of its execution
context (this and the passed arguments). In lines 8-10 of
the listing the after function is applied on a function which
just prints a message in the console after it has been called 3
times.

Similarly to the dynamic access of objects properties, dy-
namic context binding is a challenge for static analysis tools
since it requires the knowledge of both the run-time context
and the scope of the object it is binding onto.

3) Run-time input uncertainty: While dynamic analysis
does not suffer from the issues presented above, it may suffer
from run-time input uncertainty. Specifically, not only do many
web apps require user input, but the run-time execution flow is
dependent on this input. Login screens or prompting for user
input are typical cases of run-time input uncertainty. In this

Zhttp://www.chartjs.org

3http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Operators/this

“http://underscorejs.org
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context, the challenge is that, while it might be possible for
an analyzer to deal with simple events (e.g., check whether
a button is clicked), it is difficult to check every possible
event combination, especially considering that some events
may depend on the user’s device (e.g., a tap on a specific
coordinate of the display).

4) Eval and the Function constructor: The eval function
and Function constructor take a string as input and execute
it as JavaScript code at run-time. Albeit some progress has
been made on analyzing [14] and automatically transforming
[15] these constructs, their usage is still hard to analyze,
mainly because the code string can be dynamically built.

5) Dynamic script injection: Due to the ability for
JavaScript to access the DOM, it is possible to dynamically
inject and execute script tags into the DOM in order to
programmatically control what to execute and when. Listing 3
shows an example of dynamic script injection, where an empty
script tagis created (line 1), linked to an external JavaScript
file (line 2), and finally injected into the head of the DOM.

i var stNode = document.createElement("script");

> sNode.src = "path-to-script.js";
3 document. head.appendChild (sNode) ;

Listing 3. Example of dynamic script injection

JavaScript libraries, such as the widely-used requireJS, use
this technique to load script files dynamically, ensuring they
are loaded in the order provided by the developer. Since in
those cases the injected JavaScript code is dynamically loaded,
program analysis techniques can struggle with its correct
identification.

6) Timers: JavaScript provides APIs for setting time-
outs or for repeatedly calling functions over time (e.g., the
setTimeout and setInterval functions). These func-
tions are part of the standard APIs provided by modern
browsers and may be a challenge for both static and dynamic
analyses. If we consider a web app that triggers a function to
display a popup (e.g., for showing a subscribe to a newsletter
lightbox) after several minutes of browsing, a dynamic an-
alyzer would have to wait for the timer to be triggered for
correctly identifying the function called by the timer.

B. Existing Dead Code Elimination Tools

rollup.js is an ES6 module bundler that excludes unused
modules and performs dead code elimination using a process
known as tree-shaking [16]. Similarly, Webpack (an asset
bundler) also supports tree-shaking [17]. This is an effective
way of (partial) dead code elimination, but requires the devel-
oper to use ES6 modules which are not widely supported at
the time of writing [18]. Another issue is that it requires the
developer to meticulously write import and export statements,
because otherwise unused functions might still be imported.
For libraries and frameworks, this makes users dependent on
the authors to provide correct export calls.

The Google Closure Compiler is a tool that aims to make
JavaScript code run faster. It analyses the source code, removes
dead code and rewrites it to a more optimal form [19]. It sup-
ports multiple compilation levels, ranging from minification to

complete code transformations. While the Closure Compiler
has some impressive results for dead code elimination, it
also has a drawback. The simple optimization level does not
remove unused functions at all. The advanced optimization
level does remove unused functions, but requires a specific
coding style’.

C. Building Call Graphs for JavaScript

At the core of Lacuna lies the construction of the call graph
of the JavaScript code of the web app under analysis. A call
graph is a special kind of control-flow graph where each node
represents a function and each edge represents a function call
[20]. The complete call graph of a program might contain
nodes that are never reached (i.e., functions that are never
called at run-time). As an example, consider Listing 4, the
functions a and b are reachable, but c is not.

i function a() {

b(O);

4 function b() {

s b0

6}

7 // dead function

s function c() {

o a();

10

noa();

Listing 4. Example of dead function (c)

A visual representation of the call graph for the listing above
is shown in Figure 1. Traversing this graph from the starting
node (in the case of JavaScript, the global scope), and marking
the visited nodes, will result in a list of all functions that are
called when executing the code in the listing. In this example,
when performing dead code elimination, function ¢ would be
removed, as it is unreachable when traversing the call graph.
This removal operation will save the time and resources used
by the browser for downloading and parsing the ¢ function.

Fig. 1. Visual representation of the call graph of Listing 4

<global>

Unfortunately, due to the challenges introduced in Sec-
tion II-A, finding a correct and complete call graph is ex-
tremely difficult today. The intuition behind Lacuna is that
combining different types of analyses can lead to more precise
results. For instance, Listing 5 contains a long timeout defini-
tion (line 5) and dynamic context binding (lines 12-14), which
are challenging for dynamic and static analysis techniques,
respectively.

Shttps://developers.google.com/closure/compiler/docs/limitations
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1 var object = {
2 property: "default",
method: function () {
4 var prop = this.property;
5 setTimeout(f, 1000 x 60 *x 5);
¢ )

}s
s function f(){
9 console.log(prop);

0}

11 // dynamic context binding
2 object[’method’ ].apply ({

13 property: "overwritten"
43

Listing 5. Example of code with issues for different analysis types

In this case, the isolated execution of static and dynamic
analyses would report only an incomplete call graph. Specifi-
cally, dynamic analysis would not identify the execution of
the function f. Instead, static analysis would not identify
the execution of the function in the obj.method because
the inner function is not reachable from the global scope.
However, when combining the (partial) call graphs of the
two analyses, it is possible to obtain a complete call graph
since each type of analysis contributes to different parts of the
overall call graph.

D. Existing JavaScript Analysis Tools

Currently several tools for analyzing and inspecting
JavaScript source code are available. In the following we give
an overview of the most used JavaScript source code analysis
tools. JSAI is a static JavaScript analyzer. It constructs an
intermediate form, known as notJS, based on the abstract
syntax tree of the web app being analysed [21].

A similar tool is TAJS, which statically infers type informa-
tion and call graphs for JavaScript [22]. An implementation
written in Java is available®.

WALA is a static analysis framework for Java and
JavaScript [23]. Similarly to JSAI, WALA builds an intermedi-
ate form of the JavaScript code being analysed. WALA allows
for pointer analysis and call graph construction.

JSFlow is a JavaScript interpreter for tracking information
flow and is written in JavaScript [3].

Esprima’ is a JavaScript parser written in JavaScript. It
produces a syntax tree for a given JavaScript file, which can be
easily traversed. While Esprima does not provide any analysis
on its own, it is a useful tool for retrieving lexical information
of the JavaScript code of a given web app (e.g., for retrieving
function definition locations).

A static analyzer has been developed based on an approach
utilizing point analysis [24]. It makes use of Esprima, and
builds an approximate call graph, ignoring dynamic properties
and context binding.

It is important to note that our approach can take advantage
of these tools. Indeed, instead of competing with them, we
aim at combining multiple analyzers in order to leverage their
strengths and complement their weaknesses.

Shttps://github.com/cs-au-dk/TAJS
7http://esprima.org

III. THE APPROACH

In this section we use a purposefully-simple web app as
running example for describing each phase of Lacuna. The
HTML code of the web app just includes the example. js
script in Listing 6. it defines the a, b, and c functions (lines
1-14) and calls a in line 15. When called, function a starts a
6-seconds timeout (lines 2-4), and function b prints a message
in the browser console when the timeout is triggered (lines 3
and 7). In this example, functions a and b are alive, whereas
function ¢ is dead code. As shown in Figure 2, Lacuna is
composed of three main phases, namely: Parsing, Analysis,
and Elimination.

1 function a(){

2 setTimeout (function (){
3 b();

. }. 6000);

¢ function b(){
7 console.log(’6 seconds have passed’);
s}

9 function c(){
10 console.log(’ function ¢ has been called’);

11 / *

12 Other potentially heavy statements

13 * /

\4}
5 a.call();

Listing 6. Running example - example. js

A. Parsing

This phase takes as input the source code of the web app
being analyzed (w in Figure 2). It is important to note that w
is the only input needed by Lacuna, making it applicable in
the context of a wide spectrum of projects, independently of
the used development process or company-specific practices.

Firstly (step @ in the figure), Lacuna identifies all the
JavaScript code within w by including (i) all the JavaScript
code defined in-line in the HTML code in w, (ii) all JavaScript
files referenced by the HTML code in w by means of the
<script> tag, and (iii) all the JavaScript files in w. Once
all the JavaScript code related to w has been identified, Lacuna
parses it into an internal representation of all its statements in
order to ease subsequent steps. This part is realized using the
Esprima parser.

In step , all function definitions within w are retrieved
(including anonymous and inline functions), and we instantiate
an initial call graph G containing a node for each identified
function declaration. Additionally, a starting node representing
the JavaScript global scope is included in Gy in order to be
able to consider also all those functions directly called from
the global scope of the web app.

The Gy call graph of our running example contains five
nodes, namely: the global node, one node for each a, b, and ¢
functions, and one node for the inline function defined in the
setTimeout call. G does not contain any edge in this phase,
they will be considered in the next phase.
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Parsing Gn Analysis Elimination
Fig. 2. Overview of our approach.
B. Analysis iterate over all the call graphs G ...G,, produced by the n

By taking as input the G call graph, this phase will produce
as output a call graph G, with the same nodes as G and the
edges representing the caller-callee relationship between the
JavaScript functions of w. Specifically, an edge e;; between
the node ¢ and the node j in G, represents the fact that the
JavaScript function ¢ is able to call the JavaScript function
j in w. Due to the highly dynamic and event-based nature
of Javascript (see Section II), the identification of the e;;
edges in G, is difficult. As of today there is no technique
for building correct and complete call graphs for JavaScript
without imposing any constraints to developers or making
strong assumptions on the usage of the language, e.g., having
a complete test suite or prohibiting the use of reflection.

The key idea of this phase is to embrace this inherent limit
of the JavaScript language, and to include different analysis
techniques and merge their corresponding outputs. This allows
us to leverage the strengths of existing analysis techniques,
while potentially mitigating the issues they may have with
certain constructs of JavaScript. Lacuna is independent of the
internal assumptions and techniques applied in each included
analysis technique and can execute all of them in parallel. It is
important to note that an included analysis technique = can be
of any kind, either dynamic or static, since Lacuna executes it
as a black-box component. Here, the only assumption is that
each analysis technique x adheres to the interfaces provided
by Lacuna, meaning that it has to take as input Gy and the
source code of w (step @), and builds its own call graph G.
In Section IV we will show that it is relatively straightforward
to wrap already existing analysis tools (e.g., WALA [23]) in
order to include them into Lacuna.

Step merges the call graph G, produced by each
analysis technique z into a final call graph G,,. G, has the
same definition of Gy: a node for each JavaScript function
in w and an edge e;; for each call to j from the body of a
function ¢ in w. In addition, in G,, edges are labelled with
the identifier of the analysis technique which discovered it.
In order to take into account the fact that multiple analysis
techniques can identify the same function call as executed,
each edge in GG, can have multiple labels.

More in details, the strategy we apply in step @ is the
following: (i) each node in Gj is replicated into G,,, (ii) we

analysis techniques included in Lacuna and for each G, in
G1...G, we add all its edges into GG, (iii) when adding an
edge e;; produced by a technique z, if e;; is already in G,
then we just add the label z to e;;.

| dynamic

example.js@88-102 declaration:c

example. js@0-65 declaration:a

nativecalls

example.js@28-55 expression

static

example.js@67-86 declaration:b

Fig. 3. Running example - G,. Format of node labels: sourcefile@s-e
type[:name], where s and e are the start and end character positions of
the function definition in sourcefile, type can be either declaration or
expression, and name is its name.

Figure 3 shows the merged call graph GG, of our running
example after running the three analysis techniques included in
the current implementation of Lacuna (they will be explained
in detail in Section IV), namely: static, dynamic and native-
calls. Here, the dynamic analysis identified the call from the
global scope to the function a, nativecalls identified the call
from a to the inline function defined in lines 2-4 in Listing 5
(by considering the call to setTimeout as a direct function call),
and the static analysis identified the call from the body of
the previous function definition to b. No analysis technique
identified any call to function ¢, so it is unreachable from
global because it has no incoming edges at all.Interestingly,
we can notice that each analysis technique contributes only
partially to the overall call graph G,,. Indeed, when used in
isolation, they could have brought to potentially incomplete
call graphs (e.g., the calls to the inline function and » have not
been identified by dynamic analysis alone). In Lacuna we aim
at leveraging the complementarity of existing program analysis
techniques for JavaScript in order to build a call graph as
precise as possible from the dead code elimination perspective.
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C. Elimination

Once all analysis techniques have been executed and the
complete GG, is available, the elimination phase identifies
all the nodes in G,, representing dead code (step ). We
consider dead code each node i in G, — {global} which is
unreachable from the global node (i.e., there is no sequence
of adjacent nodes starting from global and ending to ¢). These
nodes represent JavaScript functions that are not called by
any other function (or from the global scope) according to
all the different analysis techniques applied in the previous
phase. We consider the global node as always alive since in
JavaScript the global scope is always present and executed in
a web app running in the browser®. By referring to Figure 3,
in our running example the only node which is (i) different
from the global one and (ii) unreachable from the global node
is the one corresponding to the ¢ function.

In step ( 6 ), Lacuna reconsiders the source code of the input
web app w and removes the JavaScript functions correspond-
ing to isolated nodes in GG,,. In the current implementation of
Lacuna we perform this operation by removing the body of
each JavaScript function to be removed; the rationale for this
choice is that in many cases function declarations are used as
expressions in JavaScript and are used in various contexts in
which just removing the function declaration would end up in
run-time errors in the browser. For example, by referring to
Listing 6, removing the function declaration in line 2 could
have resulted in a run-time error when calling the setTimeout()
function, which is expecting exactly two parameters (the first
one for the function to be called, and the second one for the
delay in milliseconds).

After the execution of step @, the dead-code-free w’
produced by Lacuna is the same JavaScript code in Listing 6,
where the body of the ¢ function has been removed completely.

IV. IMPLEMENTATION

We developed Lacuna as a Node.js application composed of
30,474 lines of JavaScript code. The Lacuna implementation
can be run as a command-line tool, making it easy to include
into a continuous integration/build system. It takes as input
the path of the web app to be analyzed and makes an in-
place update of its source code files by removing the identified
JavaScript dead code. The Lacuna tool is also able to (visually)
output both G,, and G), call graphs. An example of a call
graph produced by Lacuna is shown in Figure 4. Edges are
marked with the name of the analysis technique that detected
them, and have a progressive colour (red to green) based on
the number of analysis techniques identifying them.

A. Realized Extensions

The following gives an overview of the analysis techniques
we already included in the current implementation of Lacuna.
We developed those extensions with two purposes in mind: (i)
to provide examples about how to extend Lacuna and (ii) to
use them in empirically evaluation of Lacuna (see Section V).

8http://www.w3schools.com/js/js_function_invocation.asp

<base caller node>

wala_full, static, dynamic

script.js@189-259 declaration:a

nativecalls

script.js@216-249 expression

wala_full, static ~ wala_full, static

script.js@0-187 declaration:B script.js@75-185 expression

static wala_full, static

script.js@261-288 declaration:e script.js@134-163 expression

Fig. 4. Example Lacuna function graph output for a trivial JavaScript file.

wala_full, static

nativecalls

1) Dynamic analyzer: We implemented a minimalistic dy-
namic analyzer for web apps. Firstly, it instruments w by
adding logging statements at the beginning of the body of
every function definition in w (including anonymous and inline
functions). Then, it runs the web app in a headless browser
(namely, PhantomJS?), collects the logging information, and
builds the call graph according to the functions executed at
run-time.

2) Static analyzer: We implemented a basic static analyzer
which relies on the implementation'® of the field-based call
graph construction tool discussed in Section II-D. In addi-
tion, we extended such implementation by considering also
native JavaScript functions (i.e., Array.prototype.map
or Function.prototype.call) when building the call
graph.

3) WALA-based extensions: We wrapped the well-known
WALA analysis tool and produced two different extensions:
wala_single and wala_full. They both use WALA as back-
end; wala_single analyzes JavaScript files one by one, whereas
wala_full considers the web app as a whole. wala_single
has a relatively short execution time because it considers
each JavaScript file in isolation, whereas wala_full considers
function calls across different JavaScript files.

B. Assumptions and Limitations

Due to the prototypal stage of Lacuna, we made the
following assumptions when implementing it.

Like most existing JavaScript analysis tools, our implemen-
tation of Lacuna assumes that the web app w is correct, i.e.,
it does not produce errors at run-time, and it does not contain
broken links or missing functions. This is not always the
case in real-world web apps. Introducing error handling for
these cases would greatly increase the stability of the current
implementation of Lacuna and allow us to perform a more in-
depth experimentation with real-world web apps. This activity
is already planned as part of future work.

“http://phantomjs.org
10http://github.com/abort/javascript-call-graph
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The extension for dynamic analysis is quite minimalistic.
While this has its merits, it is lacking some more thorough
analysis, as it cannot cope with all JavaScript events (e.g. long
setTimeout functions). Also, it neglects events coming from
user interaction (e.g., clicking on a button), which in turn may
trigger the execution of JavaScript functions listening to them.

Our WALA-based extensions inherit one of the most known
limitations of WALA: they require a very long time for com-
pleting the analysis [25]. Analysis time with WALA greatly
increases with the size and number of functions in JavaScript
files in w. This means that those extensions cannot be used
for arbitrary applications within reasonable time.

Our current implementation assumes that w has only one
initial HTML page (its index.html file). Of course, w may
contain multiple HTML pages, but they are currently discarded
by Lacuna. We can refine the parsing phase of Lacuna to
search and analyze all HTML files in w, this assumption has
been made due to time/resource constraints only.

V. EVALUATION

In this section we report the design and the results of an
experiment we performed for evaluating the current implemen-
tation of Lacuna. To allow easy replication and verification of
the experiment, we provide interested researchers a complete
replication package!'. It includes the source code of the
current implementation of Lacuna, the source code of the web
apps we consider as subjects of the experiment (before and
after dead code removal), the raw data of the experiment, and
the R scripts for analysing obtained results.

A. Experiment Design

The goal of this experiment is to empirically evaluate the
following aspects of Lacuna: (i) its overall performance in
terms of execution time and (ii) its accuracy in identifying
and removing JavaScript dead code.

In order to achieve this goal in an objective and replicable
manner we planned our experiment by following well-known
guidelines on empirical software engineering [? 26]. In the
following we report how we designed the experiment.
Research questions. The above-mentioned goal has been
refined into the following research questions:

RQ1 - What is the execution time of Lacuna when performing
different types of analysis techniques?
RQ2 - What is the accuracy of Lacuna when performing
different types of analysis techniques?

To answer these questions, we executed the current im-
plementation of Lacuna on a set of web apps developed
with different JavaScript frameworks. Since Lacuna can apply
different types of analysis techniques, it is expected that
combining the analyses will result in higher execution times
and, more importantly, in an improvement in terms of accuracy
in JavaScript dead code elimination.

Subjects selection. For this experiment we considered 29 web
apps belonging to the TodoMVC'? project. The TodoMVC

http://github.com/NielsGrootObbink?tab=repositories
Zhttp://todomve.com

project hosts different implementations of the same web app,
where different JavaScript frameworks and coding practices
are applied. The realized app is a simple to-do list manager,
which provides the following features to the user: (i) to add a
todo item, (ii) to remove a todo item, (iii) to edit an already
existing todo item, and (iii) to mark a todo item as completed.
The main goal of the TodoMVC project is to enable prac-
titioners to study and compare MV* (Model-View-Anything)
JavaScript frameworks through source-code inspection of the
same web app, developed by experienced web developers
employing their favourite JavaScript frameworks [27].

TABLE I
SUBJECTS OF THE EXPERIMENT

Web app All functions  Alive Dead Best F-score
ampersand 774 385 389 0.68
angularjs-require 127 71 56 0.63
backbone 950 400 550 0.73
canjs 1105 577 528 0.68
canjs-require 128 67 61 0.59
closure 591 291 300 0.66
dijon 834 356 478 0.74
dojo 1074 591 483 0.60
elm 965 310 655 0.82
enyo-backbone 20 7 13 0.77
exoskeleton 256 176 80 0.46
gwt 45 21 24 0.65
jquery 869 376 493 0.73
js-of-ocaml 1352 366 986 0.86
jsblocks 885 433 452 0.68
knockoutjs 560 315 245 0.58
knockoutjs-require 128 67 61 0.57
mithril 136 70 66 0.74
olives 533 227 306 0.75
puremvc 229 143 86 0.55
ractive 932 569 363 0.60
serenadejs 400 254 146 0.53
somajs 342 208 134 0.58
somajs-require 128 71 57 0.58
spine 999 456 543 0.69
troopjs-require 130 71 59 0.54
typescript-backbone 1243 455 788 0.75
vanilla-es6 80 53 27 0.56
vanillajs 131 107 24 0.37
Mean 549.8 258.3 291.4 0.64

We selected the web apps provided in the TodoMVC project
as subjects of our study because: (i) they can be considered as
real-world web modern apps, (ii) they make use of a highly
heterogenous set of JavaScript frameworks (e.g. Backbone.js,
jQuery, Angular, Bootstrap), and (iii) their relatively small size
(both in terms of provided features and source code) allowed
us to straightforwardly execute and profile them during the
experiment. The web apps in the TodoMVC project can be
considered as representative of real-world web apps since they
(1) include many common JavaScript coding patterns (e.g.,
event handlers, local data storage, internal state management,
front-end rendering), (ii) similar to what happens in many
software companies, they must comply with a rigorous set of
requirements, HTML/CSS templates, coding styles, and other
specifications [27], and (iii) their code is of high quality since
they are included in the TodoMVC catalog only if they pass
a first review by the TodoMVC project leaders and a second
review by the open-source community [27].
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In Table I we report the 29 web apps we considered in
this experiment (in the table each web app is identified by a
mnemonic name of the main JavaScript frameworks it uses). In
order to keep the execution of the experiment under control,
we excluded those web apps in the TodoMVC catalog that
could not be served in our own web servers (e.g., those
depending on external services like Firebase'?), and those
developed using languages different from JavaScript (e.g.,
React, Dart, Scala.js).

As can be seen in the All functions column of the table,
our dataset is quite heterogenous in terms of number of
JavaScript functions, with a range between 20 (enyo-backbone)
1352 functions (js-of-ocaml), average=549.9 (median=553),
standard deviation=421.78, and coefficient of variation=76.7%.
Variables. In this experiment, the only independent variable
represents the type of analysis technique used for building the
call graphs. This variable is used for answering both RQI
and RQ2 and can have three treatments: static, dynamic, and
hybrid. The first two treatments correspond to the static and
dynamic analyzers discussed in Section IV, whereas the latter
represents their usage in combination (i.e., static analysis +
dynamic analysis). We also explored the possibility of using
our WALA-based extension, but its extremely long execution
time prevented us from using it in this experiment [25].

Concerning RQI1, the dependent variable is the
execution time in milliseconds of the current implementation
of Lacuna. These values are directly produced by Lacuna
at each run. Concerning RQ2, we borrow the precision and
recall metrics from the field of information retrieval [28]. In
our experiment, the precision P, of an analysis technique a
when analyzing a web app w is defined as:

_|dead,(w) N dead(w)]
Falw) = |dead, (w)]

Where dead,(w) is the set of functions identified as dead by
the analysis technique a and dead;(w) is the set of true dead
functions in w. Intuitively, precision deals with false positives,
it can be seen as the fraction of JavaScript functions identified
as dead by the analysis o that are true dead functions.

Differently, the recall R, of an analysis technique a when
analyzing a web app w is defined as:

(D

_ |deadq(w) N dead;(w)]
N |dead; (w)]

Recall deals with false negatives, and it is defined as the
fraction of JavaScript functions identified as dead by the
current analysis, over the total amount of true dead functions
contained in the web app. In order to have a single mea-
sure for representing the accuracy of Lacuna, we also use
the F' — score, which is a combined metric defined as the
harmonic mean of precision and recall [28].

Experiment execution. Firstly, we obtained ground truth
values by computing true dead and alive functions of each
web app in our dataset. Specifically, for each of the 29 web

R, (w) ()

Bhttp:/firebase.google.com

apps in our dataset, we firstly obtained its total number of
JavaScript functions by analyzing its source code with the
Esprima JavaScript parser and counting all the occurrences
of function definition expressions. Then, we identified true
alive functions by (i) programmatically inserting log calls in
every JavaScript function identified in the previous step, (ii)
executing all the features of the web app by manually using
all its functionalities (this is possible since in the TodoMVC
catalog, apps functionalities are always the same and limited
in number), and (iii) collecting the logged function calls at the
end of the manual execution. Finally, we considered as true
dead functions all those functions that have not been identified
as true alive functions. The last two columns of Table I show
the true alive and dead functions of the web apps considered
in this experiment, respectively.

Secondly, for each type of analysis (i.e., static, dynamic,
and hybrid), we performed the following steps: (i) we ran
the Lacuna tool on each web app in our dataset, (ii) we
extracted its execution time from the logs produced by the
Lacuna tool itself, and (iii) we computed its precision and
recall by applying formulas (1) and (2) on the results produced
by Lacuna and the baseline values.

The whole experiment has been performed on a Linux
laptop with 8GB RAM, an Intel Core i7-4710HQ Processor,
and Node.js version 7.5.0.

B. Experiment Results

1) Execution time (RQI): The average execution time of
Lacuna is 51.19 seconds (median = 60.95), with a mini-
mum of 0.3 seconds for enyo_backbone and a maximum of
159.39 seconds for canjs. The main reason for this differ-
ence lies in the different sizes of the considered web apps,
where enyo_backbone is composed of 20 JavaScript functions,
whereas canjs is composed of 1105 functions. We noticed this
trend for all the types of analysis (i.e., static, dynamic, and
hybrid).
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Fig. 5. Execution time of Lacuna depending on the used analysis techniques
(black bar = median, diamond = average).

Figure 5 shows the breakdown of the execution times of La-
cuna, depending on the applied type of analysis technique. The
type of performed analysis is clearly impacting the execution
time of Lacuna. Indeed, the execution time of Lacuna when
applying dynamic analysis (average=64.23s, median=61.45s,
SD=51.11s) only is far higher than its execution time when
applying static analysis only (average=14.36s, median=2.17s,
SD=26.72s). This difference is mainly due to the fact that the
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dynamic analysis has to load the whole web app, whereas the
static analysis parses the HTML and JavaScript code directly
from their files. Moreover, the execution time of Lacuna
with static analysis can be considered as an upper bound of
the execution time of the parsing and elimination phases of
Lacuna (see Figure 2); so, the obtained results are also a good
indication of the fact that our implementation of the parsing
and elimination phases is quite efficient in terms of execution
time.

Finally, we can also notice that the execution time of Lacuna
when performing both static and dynamic analysis (i.e., the
hybrid case) inherits the execution times of both the types of
analyses, i.e., the execution times sum up. This is expected
since, even if the approach has been designed for supporting
analyses techniques independence, the current implementation
of Lacuna executes them in sequence. We are planning to
support parallelism in the next release.

Results (RQ1). In average, the execution time of Lacuna
is below 1 minute. It can depend on the size of the input
web app w and on the type of used analysis techniques.
The parsing and elimination phases of Lacuna are quite
efficient in terms of execution time.

2) Accuracy (RQ2): The average F-score of Lacuna is
0.53 (median = 0.51, SD = 0.14). We recall here that the
F-score metric ranges between 0 and 1 and represents the
trade-off between precision and recall [28]. This result is quite
promising and shows the viability of our approach. In the
following we will zoom into the accuracy of each analysis
type (i.e., static, dynamic, hybrid).
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Fig. 6. F-score of Lacuna for each analysis technique.

Figure 6 shows the distribution of the F-score achieved
by Lacuna for each analysis technique. The results of the
experiment show that Lacuna tends to be more accurate when
applying dynamic analysis (average = 0.64, median = 0.62, SD
= 0.10), rather than when it uses the static (average = 0.49,
median = 0.47, SD = 0.12) and hybrid ones (average = 0.47,
median = 0.43, SD = 0.12). This result is quite surprising since
intuitively one may expect that a combination of the analyses
(i.e., the hybrid case) leads to better overall accuracy. In order
to better investigate on this result, we analyze the precision
and recall of Lacuna in isolation. Figure 7 shows its precision
and recall for each type of analysis.

Here we can notice that the precision of Lacuna (red
boxplots) is quite high and stable when using different types
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Fig. 7. Precision and Recall of Lacuna for each analysis technique.

of analysis. Lacuna had an average (median) of 0.57 (0.59),
0.56 (0.58), and 0.63 (0.65) for dynamic, static, and the
hybrid analyses, respectively. In this case, the hybrid analysis
technique performed even better than the others. This result is
expected since static and dynamic analyses build call graphs
differently, and in the merging phase Lacuna merges them in
such a way to minimize the number of functions identified as
dead; it may be more probable that the functions still identified
as dead after the merge step are true positives.

1 Controller.prototype.showActive = function () {

var self = this;
self .model.read ({ completed: false }, function
(data) {
4 self.view.render (' showEntries’, data);
s s

6 };

Listing 7. Example of function from the vanillajs web app.

As an example, the vanillajs is one of the web apps where
hybrid analysis performed better in terms of precision. Listing
7 shows a function (lines 3-5), where static analysis failed
and dynamic analysis succeeded in determining its liveness.
Indeed, the dynamic analysis considered this code as alive
because it is executed when the app is loaded in the browser,
whereas static analysis failed to identify it because of context
binding (var self = this in line 2).

When looking at the recall of Lacuna (green boxplots), we
can notice that it ranges from very high values for dynamic
analysis (average = 0.77, mean = 0.77), to much lower values
for static (average = 0.49, mean = 0.44) and hybrid analyses
(average = 0.40, mean = 0.34). After a manual inspection of
the analysed web apps, the high level of recall for dynamic
analysis is mainly due to two main reasons. Firstly, many web
apps in our dataset import third-party libraries usually contain-
ing a high number of JavaScript functions (e.g., jQuery), but
they use a very small part of those libraries; dynamic analysis
correctly identified unused functions as dead. Secondly, the
business logic of the considered web apps is quite minimal
(it has just to manage a list of to-do items); this is reflected
in a low number of app-specific JavaScript functions which
may not be executed during dynamic analysis. The latter point
explains also why the recall of static analysis is low.

Even if the low recall achieved when using hybrid analysis
may seem surprising, it is an expected result and it is a direct
consequence of how Lacuna merges the call graphs of the
performed analyses. Specifically, the merging of all the call
graphs G1, G2, G3 produced by the 3 analysis techniques is

410



incremental, meaning that the combined call graph G, always
contains more edges with respect to the single call graphs
(1, G2, G3. Having more edges means that potentially less
functions are isolated in the final G,,, resulting in a lower
number of (potentially alive) dead JavaScript functions.

In other words, our experiment proved that the combination
of the analyses techniques improves the precision of Lacuna
(— less false positives), whereas it is detrimental from the
recall point of view (— more false negatives). As future work,
we will extend the merging step so that it will consider the
families of dynamic and static analyses in different ways in
order to better exploit their specific characteristics. As an
example, if an edge e;; is identified during dynamic analysis,
we can consider the function j as 100% alive; differently, if
e;; is identified during static analysis, then the function j is
alive only with a certain degree of confidence.

Results (RQ?2). The overall accuracy of Lacuna is promis-
ing, and there is still room for improvement. Precision
is quite high and stable (60%), and it improves when
combining analyses techniques. Differently, recall (55%)
is very high for dynamic analysis (77%); it drops when
considering static analysis (49%) and its combination with
dynamic analysis (hybrid, 40%).

VI. RELATED WORK

While there has been considerable interest in static analysis
of Javascript programs (specially in the security area), at the
time of writing we found no research focused on removal of
dead code at the function level from arbitrary web apps.

Guarnieri et al. propose Gatekeeper, a hybrid analysis
system for soundly enforcing security and reliability policies
for JavaScript programs [29]. It employs code instrumentation
to detect the presence of runtime code introduction in the
program under analysis and then rewrites it to a form that
can be handled by a static analysis engine. Gatekeeper cannot
be applied to any existing JavaScript program as, even after
code rewriting, it is not able to handle all the constructs of the
language and focuses instead on providing a sound analysis
of a subset of it named Javascripts, e.

Wei et al. propose blended taint analysis, an approach that
combines static and dynamic analysis to detect data integrity
violations that can make web applications not secure [30].
Blended taint analysis involves human interaction, as a web
tester has to manually interact with the application during the
dynamic analysis phase in order to collect execution traces.
Traces are next leveraged by a static analyzer to build and
perform taint-analysis on a control flow graph of the applica-
tion under analysis. The approach also assumes the presence
of a test suite providing program coverage information.

Similarly, Tripp et al. combined black-box testing and static
analysis to detect JavaScript security vulnerabilities [31]. Their
approach relies on web crawler to collect webpages, complete
with code that is dynamically loaded or generated. Their work
as been implemented as the JSA analysis tool inside the IBM

AppScan suite and evaluated on a collection of 675 real-world
websites. Unlike our approach, theirs requires a suite of client-
side tests to properly combine the dynamic analysis with the
static one.

JSNose is an automated metric-based approach to detect
JavaScript code smells in web applications [32]. Dead code
elimination is one of the 13 code smells detected by JSNose.
To detect dead code inside the application under analysis,
JSNose relies on execution traces collected during exploration
via an automated crawler. While JSNose combines the results
of static and dynamic analysis for the detection of many
code smells, it does not for dead code and simply reports
every block of code unreachable by the dynamic or the static
analysis as possible dead code. This leads to a high number
of false positives.

VII. CONCLUSIONS AND FUTURE WORK

We presented Lacuna, an approach for removing dead
code from JavaScript web applications by combining exist-
ing program analysis techniques. Lacuna is extensible, and
any program analysis technique that builds a call graph of
JavaScript source code can be straightforwardly integrated in
its analysis pipeline.

We evaluated Lacuna on a dataset of 29 publicly available
web apps, composed of a total of 15,946 JavaScript functions,
and developed by professional web developers. The results
of the performed evaluation show that the execution time of
Lacuna is reasonable, making it a good candidate for being
integrated in real-world build systems. We also discovered that
the combination of multiple analysis techniques via Lacuna
increases its precision compared to using a single analysis
technique in isolation.

As future work, we plan integrating additional analysis
techniques and tools to increase the overall effectiveness of
Lacuna. To this aim, a more in-depth experimentation will be
performed to better understand the impact of additional analy-
sis techniques on the overall accuracy of Lacuna. ES6 modules
are currently not supported by Lacuna, mainly because we
want to focus on those JavaScript constructs that are widely
supported by todays browsers. When ES6 modules will start
to be widely supported, we will support them in Lacuna and
take advantage of the concept of module in JavaScript when
combining call graphs. Many unit testing frameworks exist
for JavaScript (e.g., QUnit, Mocha, Jasmine), which allow
developers to write test suites for verifying their JavaScript
code base from a functional perspective. We plan to integrate
the information extracted from (unit) tests with Lacuna to
increase its accuracy in dead code identification.

Finally, we will devise techniques for improving the preci-
sion of Lacuna, even if we will need to trade off recall. Indeed,
having a false negative in Lacuna means that we will miss a
chance for optimization because a true dead function will not
be eliminated. Differently, a false positive will cause Lacuna
to eliminate an alive function, actually injecting a bug into the
analysed web app.
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