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Abstract.

The purpose of this project was to investigate the origins and history of Finite Abelian
Group Theory. We will also provide a proof to the Fundamental Theorem of Finite Abelian
Groups. The beginnings of Finite Abelian Group Theory can be traced back to the 18th
century and followed through to the early 20th century. In this work, we will discuss many
well-known mathematicians, such as Lagrange and Gauss, and their connections to finite
abelian group theory. This work will also provide an in-depth proof to the Fundamental
Theorem of Finite Abelian Groups. This theorem is a structure theorem, which provides
a structure that all finite abelian groups share. The proof to the Fundamental Theorem of
Finite Abelian Groups relies on four main results. Throughout the proof, we will discuss
the shared structure of finite abelian groups and develop a process to attain this structure.

1. Brief History of Group Theory

The development of finite abelian group theory occurred mostly over a hundred year pe-
riod beginning in the late 18th century. During this time, mathematics saw a return of the
axiomatic way of thinking, an increase in rigor across the field, and a greater degree of ab-
straction in mathematics. Many of the early properties of groups were discovered by happen
stance as they were stumbled upon during studies of di↵erent mathematical disciplines. We
will discuss several mathematicians and there contributions to finite abelian group theory.
It is important to note that many of the following results were not presented in a group
theoretic context, but these results relate directly to finite abelian groups theory.

One of the first mathematicians to work with group theoretic concepts was Joseph-Louise
Lagrange (1736-1813). Some of Lagrange’s most notable works were on the study of polyno-
mials and their roots. In his article “Reflexions sur la resolution algebrique des equations”
(1770), Lagrange discussed both theoretical questions, such as the nature and existence of
roots and practical procedures for finding roots. Lagrange showed the usefulness of permuta-
tions of a polynomial’s roots for solving the polynomial. In one result, Lagrange stated that
if a polynomial of n variables has its variables permuted in n! ways, the number of di↵erent
polynomials that are obtained is always a factor of n! [Kle86]. This result is the source of
what is now referred to as Lagrange’s Theorem, a very important result in group theory.
Lagrange was the first person to connect the permutations of a polynomial’s roots with a
solution to an equation. Although Lagrange did not specifically work with permutations in
a group theoretic sense, his ideas can be seen as some of the founding ideas of permutation
groups and group theory.
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Carl Fredrich Gauss’ (1777-1855) results in Number Theory played an influential role
in the development of finite abelian group theory. In Gauss’ “Disquisitiones Arithmeti-
cae” (1801), he presented a summary of the Number Theory results that preceded him and
suggested new areas to study in the field. The theory of finite abelian groups may have
been developed from the “Disquisitiones Arithmeticae”. Gauss writes in a Number Theory
context, but establishes many important properties of abelian groups without using group
terminology. In the “Disquisitiones Arithmeticae” Gauss works with the additive group of
integers modulo n, the multiplicative group of integers modulo n relatively prime to n, the
group of equivalence classes of binary quadratic forms, and the group of mth roots of unity
[DDP10]. Although he is working towards results in Number Theory, he treats the integers
he works with as groups. Working with the non-zero integers modulo p Gauss proves the
integers modulo p are all a power of a single element i.e. the group Z⇤

p is cyclic. Further
more, he also showed the number of generators of Z⇤

p is equal to �(p � 1) and make refer-
ences to the order of elements, indirectly [Kle07]. He uses these results to prove Fermat’s
little theorem. He also shows the converse of Lagrange’s Theorem, by stating if there exists
an integer x such that x|(p � 1) then there exists an element in Z⇤

p that has an order of x
[Kle86]. Although Gauss worked with di↵erent types of groups, he did not verify common
group properties between the groups, nor did he fully grasp the concept of an abstract group.
Still his results were pivotal in the development of finite abelian groups.

The work of Lagrange on permutations influenced other mathematicians such as Paolo
Ru�ni (1765-1822) and Niels Abel (1802-1829). Both Ru�ni and Abel proved the unsolv-
ability of the quintic independent from one another. Their results were directly influenced
by Lagrange’s work. In the process of proving this result, the two mathematicians developed
a considerable amount of permutation group theory [Caj91].

Evariste Galois (1811-1832) also worked with permutations and is considered by many
to be the founder of permutation group theory [Kle86]. Galois was the first to use the term
group, and to him it was a collection of permutations closed under multiplication. He rec-
ognized that important parts of an algebraic equation were closely related to properties of a
group that is uniquely related to the equation. Galois definition for the group of an equation
was:

“Let an equation be given whose m roots are a, b, c, ... There will always be a group
of permutations of letters a, b, c, ... which has the following properties:

1.) That every function of the roots, invariant under the substitution of that group, is
rationally known, [i.e., is a rational function of the coe�cients and any adjoined quantities].
2.) Conversely, that every function of the roots, which can be expressed rationally, is invari-
ant under these substitutions” [Kle07].

In Galois description of this process, he invents the concept of a normal subgroup and uses
the normal subgroup for many of his results. Galois work was published in 1846 although
it was completed in 1830, as it took time for the mathematicians of the day to understand
the material [DDP10]. Galois assisted in the advancement in finite abelian group theory
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by leaving many new theorems related to group theory unproved. This in turn challenged
mathematicians to prove his results and ultimately help to advance group theory.

Augustin-Louis Cauchy (1789-1857) was another major contributor to permutation groups.
He was the first to consider permutation groups as their own subject of study rather than as
just a useful tool to solve polynomial equations. In Cauchy’s 1815 publication, he fails to give
a name for sets of permutations closed under multiplication, but recognizes the importance
of them. He does manage to give the name, divisuer indicatif, to the number of elements in
one of these closed sets. In his 1844 publication, Cauchy defines a group of permutations as
follows:

“Given one or more substitutions involving some or all of the elements x, y, z... I call
the products, of these substitutions, by themselves or by any other, in any order, derived
substitutions. The given substitutions, together with the derived ones, form what I call a
system of conjugate substitutions” [Kle86].

Cauchy also proves a very important theorem for finite abelian groups. If a prime p
divides the order of a group, then there exists a subgroup of order p [Kle07]. This theorem
was stated by Galois but given without proof. It should be noted that these results were
presented in the context of permutation groups, not in the context of groups as they are
used today.

The culmination of the development of permutation group theory was Marie Ennemond
Camille Jordan’s (1838-1922) “Trait des substitutions et des equations algebraique” (1870).
The aim of this publication was to investigate the possible applications for permutations in
all the fields of mathematics. In the “Trait des substitutions et des equations algebraique”
Jordan synthesized the work of Cauchy and Galois. Jordan was able to introduce many
fundamental concepts in group theory, such as isomorphisms and homomorphisms for sub-
stitution groups [Kle86]. Jordan’s work was a building block for group theory and a major
development for permutation group theory.

The major contributor to abelian groups was number theory although the major con-
tributions remained implicit until the late 19th century. While studying the units in an
algebraic number field in 1846 Johann Peter Gustav Lejeune Dirichlet (1805-1859) was able
to establish the group of these units is a direct product of a finite cyclic group and a free
abelian group of finite rank [Kle07]. However, this result was presented in a strictly number
theoretic sense, but in group terminology translates as stated above.

The first abstract definition of a group was given by Arthur Cayley (1821-1895) in his
paper“On the theory of groups, as depending on the symbolic equation ✓n = 1”, published in
1854. Cayley’s definition is as follows:

“A set of symbols 1,↵, �, ... all of them di↵erent, and such that the product of any two of
them (no matter what order), or the product of any one of them into itself, belongs to that
set, is said to be a group. These symbols are not in general convertible [commutative],but are
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associative. It follows that if the the entire group is multiplied by any one of the symbols,
either as a further or nearer factor, [i.e., on the left or on the right] the e↵ect is simply to
reproduce the group” [Kle86].

In his paper he gives examples of groups and investigates all groups of orders four and
six, and he also determines there is only one group of a given prime order. Cayley’s abstract
view of mathematics was received well initially, it took another two or three decades before
this abstract point of view was accepted.

The work of Cayley influenced mathematician Heinrich Martin Weber (1842-1913). In
1882 Weber presented the following definition for a finite group:

“A system G of arbitrary elements ✓1, ✓2, ..., ✓h is called a group of degree h if it satis-
fies the following conditions:

(1) By some rule which is designated as composition or multiplication, from any two
elements of the same system one derives a new element of the same system. In
symbols ✓r✓s = ✓t.

(2) It is always true that (✓r✓s)✓t = ✓r(✓s✓t) = ✓r✓s✓t.
(3) From ✓✓r = ✓✓s or from ✓r✓ = ✓s✓ it follows that ✓r = ✓s” [Kle07].

Another major contributor to finite abelian group theory, and the the main contributor to
the Fundamental Theorem of Finite Abelian groups was Leopold Kronecker (1823-1891). His
(1870) paper, “Auseinandersetzung einiger Eigenshaften der Klassenzahl idealer complexer
Zahlen” implicitly introduces fundamental definitions and theorems for finite abelian groups.
The paper’s discussion is on algebraic number theory, but Kronecker takes a very abstract
approach in his writing. He defined an arbitrary set of elements and defined an operation
on them satisfying certain laws. His construction is listed below:

“Let ✓
0
, ✓

00
, ✓

000
, ... be finitely many elements such that with any two of them, we can

associate a third by means of a definite procedure. Thus, if f denotes the procedure and
✓
0
, ✓

00
are two (possibly equal) elements, then there exists a ✓

000
equal to f(✓

0
, ✓

00
). Further-

more f(✓
0
, ✓

00
) = f(✓

00
, ✓

0
) , f(✓

0
, f(✓

00
, ✓

000
)) = f(f(✓

0
, ✓

00
), ✓

000
), and if ✓

00
is di↵erent from ✓

000

then f(✓
0
, ✓

00
) is di↵erent from f(✓

0
, ✓

000
). Once this is assumed, we can replace the operation

f(✓
0
, ✓

00
) by multiplication ✓

0 · ✓00
provided that instead of equality we employ equivalences.

Thus using the usual equivalence symbol ”⇠”, we define the equivalence ✓
0 · ✓00 ⇠ ✓

000
by

means of the equation f(✓
0
, ✓

00
) = ✓

000
” [Kle86].

Notice that we take these same properties as axioms of finite abelian group in today’s
time. Kronecker was attempting to work out the laws of combination magnitudes. In his at-
tempts, he managed to implicitly define a finite abelian group. His definition was as follows:
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(1) “If ✓ is any “element” of the set under discussion, then ✓k = 1 for some positive
integer k. If k is the smallest such then ✓ is said to “belong to k” [i.e., is of order k].
If ✓ belongs to k and ✓m = 1, then k divides m.

(2) If an element ✓ belongs to k, then every divisor of k has an element belonging to it.
(3) If ✓ and ✓0 belong to k and k0 respectively, and k and k0 are relatively prime, then

✓✓0 belongs to kk0.
(4) There exists a ”fundamental system” of elements ✓1, ✓2, ✓3,... such that the expression

✓h1
1 ✓h2

2 ✓h3
3 · ·· (hi = 1, 2, 3, ..., ni) represents each element of the given set of elements

just once. The numbers n1, n2, n3, ... to which, respectively, ✓1, ✓2, ✓3, ... belong, are
such that each is divisible by its successor; the product n1n2n3 · ·· is equal to the
totality of elements of the set” [Kle86].

Although the above implicit definition is not directly applied to finite abelian groups, it
can be interpreted as of The Fundamental Theorem of Finite Abelian Groups. Kronecker ap-
plied his results to number theoretic topics, but he acknowledged the benefits of the abstract
method of thinking he used. His results would allow other mathematicians to formulate the
field of abelian group theory.

Kronecker,s discoveries were formulated into explicit group theory results by Ferdinand
Georg Frobenius (1849-1917) and L. Stickelberger in their paper, “On Groups of Commut-
ing Elements” (1879) [Kle07]. Frobenius and Stickelberger not only developed Kronecker’s
work, they related the results to other mathematician’s results such as Gauss’ and Galois’. In
this paper, Frobenius and Stickelberger provide a group theoretic proof of The Fundamental
Theorem of Finite Abelian Groups, and formulate finite abelian group theory in line with
views of modern mathematicians.

2. The Fundamental Theorem for Finite Abelian Groups

We will now discuss the Fundamental Theorem of Finite Abelian Groups. In this section
we will provide several concepts necessary to the proof of this theorem.

Theorem 2.1. The Fundamental Theorem for Finite Abelian Groups

Let G be an abelian group of order n � 1 and let the unique factorization of n into distinct
prime powers be :

n = p↵1
1 p↵2

2 · · · p↵k
k , with ↵i � 1.

Then

(1) G ⇠= A1 ⇥ A2 ⇥ · · ·⇥ Ak, where |Ai| = p↵i
i

(2) for each A 2 {A1, A2, ..., Ak} with |A| = p↵,

A ⇠= Zp�1 ⇥ Zp�2 ⇥ · · ·⇥ Zp�t
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with �1 � �2 � · · · � �t � 1 and �1 + �2 + · · ·+ �t = ↵ (where t and �1, ..., �t depend
on i)

(3) the decomposition in (1) and (2) is unique i.e. if G ⇠= B1 ⇥ B2 ⇥ · · · ⇥ Bm with
|Bi| = p↵i

i for all i, then Bi
⇠= Ai and Bi and Ai have the same invariant factors.

Notice the above theorem outlines a process for decomposing a group G into a direct
product of cyclic groups. The proof of this theorem relies on four results, which are discussed
below.

Proposition 2.2. The Recognition Theorem for Direct Products

Suppose G is a group with subgroups H and K such that:

(1) H and K are normal in G, and
(2) H \K = 1.

Then HK ⇠= H ⇥K.

In order to represent G as a direct product of cyclic groups, we need to be able to split
the group into several pieces. The Recognition Theorem for Direct Products provides us
with the necessary criteria for splitting. We will now begin the process of decomposition of
a group G. The following Theorem is the first step of this decomposition.

Theorem 2.3. The Primary Decomposition Theorem for Finite Abelian Groups

Let G be an abelian group of order n � 1 and let the unique factorization of n into distinct
prime powers be :

n = p↵1
1 p↵2

2 · · · p↵k
k .

Then

G ⇠= A1 ⇥ A2 ⇥ · · ·⇥ Ak

where |Ai| = p↵i
i .

The Primary Decomposition Theorem uses the Fundamental Theorem of Arithmetic to
represent the order of a group as a product of primes. The group can then be represented
as a direct product of Abelian p-groups, each with prime power order.

Lemma 2.4. Let E be an elementary abelian p-group. That is, for all x 2 E, we have
xp = 1. For all x 2 E, there exists M ✓ E such that E = M ⇥ hxi.

Proof.

Let E be an elementary abelian p-group. Let x 2 E. For the trivial case, if x = 1, let
M = E. Otherwise let M be a subgroup of E of maximal order, subject to the condition
that x 62 M . Suppose, for purposes of contradiction, that [E : M ] 6= p. Let Ē = E/M . Note
that Ē is elementary abelian as for all xM 2 Ē we see that:
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(xM)p = xpM

= (1)M

= M.

Since [E : M ] 6= p, there exists a ȳ 2 Ē � hx̄i. Note that hȳi is elementary abelian as for all
yjM 2 hȳi:

(yjM)p = yjpM

= (1)M

= M.

Therefore |yM | = p. Suppose x̄ 2 hȳi. Therefore xM = (yM)j, with j 2 N, and j < p.
Recall the following result:

Let a, n 2 Z with gcd(a, n) = 1. Then there exist b 2 Z such that ab ⌘ 1 (mod n).

Therefore since p is prime gcd(j, p) = 1 and there exists k 2 Z with 1 < k < p such
that kj ⌘ 1 (mod p). Now we can obtain:

(xM)k = ((yM)j)k

= (yM)jk

= (yM)1

= yM.

Since we chose ȳ 2 Ē � hx̄i, from above we also have x̄ 62 hȳi.
To show hȳi is a subgroup of E, let Z = {z 2 E|zM 2 hȳi}. Then for each z 2 E,

(zM)p = zpM

= (1)M

= M.

Thus M is an element of hȳi. Let z1, z2 2 Z, then z1 = ykM and z2 = yjM for some k, j 2 Z.
Observe the following:

(z1M)(z2M) = ykMyjM

= ykyjMM (as E is abelian.)

= ykyjM (as MM = M .)

= yk+jM

= ylM.
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As ȳ is cyclic ylM 2 hȳi. Therefore ȳ is closed under the group operation. Since |hȳi| = p
for every yjM 2 hȳi, there exists ykM 2 hȳi with k = p� j such that yjMykM = yk+jM =
ypM = M . Therefore hȳi contains inverses and is a subgroup of E. As Z contains M , Z
contains hyi, and Z does not contain hxi since we chose ȳ 2 Ē � hx̄i, we have a subgroup
of E larger than M contradicting the maximality of M . Thus [E : M ] = p. Since M was
chosen such that hxi 62 M then hxi \M = 1 and E = Mhxi. By the recognition theorem of
direct products E = M ⇥ hxi.

⇤
We will now work on the abelian p-groups. Our goal is to show these abelian p-groups

are a direct product of cyclic groups. The above Lemma provides a strategy for splitting o↵
cyclic pieces.

Lemma 2.5. If A is an abelian p-group then A is the direct product of cyclic groups.

Proof.

Let A be an abelian p-group, i.e. for every x 2 A we obtain xp↵ = 1 for some prime p
and some ↵ � 1. Define a mapping � : A ! A such that �(x) = xp. Note as A is abelian, �
is a homomorphism as for every x, y 2 A:

�(xy) = (xy)p

= xpyp

= �(x)�(y)

Denote the kernel of � by K. By definition K = {x 2 A|xp = 1}. Note that if xi 2 A
then |xi| = p↵i . Therefore for each xi 2 A the elements that map to the identity are

{xp↵�1

i , x2p↵�1

i , x3p↵�1

i , ..., x
(p�1)p↵�1

i , x
(p)p↵�1

i }. Thus we obtain K = hxp↵i�1

i i.

Denote the image of � by H. Note that if xi 2 A then xp
i 2 H. Therefore since hxii =

{xi, x
2
i , x

3
i , ..., x

p↵�2
i , xp↵�1

i }, we obtain:

hxiip = {xp
i , x

2p
i , x3p

i , ..., xp↵�1

i , xp↵�1+p
i , xp↵�1+2p

i , ..., xp↵�2p
i , xp↵�p

i } 2 H.

Observe H is a subgroup of A consisting of pth powers.

Since K = {xp↵�1

i , x2p↵�1

i , x3p↵�1

i , ..., x
(p�1)p↵�1

i , x
(p)p↵�1

i }, we obtain |K| = p. Thus for each
x 2 K we have xp = 1. Therefore K is elementary abelian.

Consider A/H. Note for each xi 2 A we have xp
i 2 H, therefore if xiH 2 A/H then

xp
iH = xp

iH = hiH = H. Thus A/H is elementary abelian. Observe |A : H| = |K|.

We will now proceed with induction on H. Let h1 2 H be an element of maximal order.
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Let H1 be a subgroup of H of maximal order subject to the condition that hh1i \ H1 = 1.
Suppose that hh1iH1 6= H. Choose hh2i ⇢ H such that h2 62 hh1i. Suppose hk

2 2 hh1i then
hk
2 = hj

1. Since hh2i is cyclic then there exists l 2 Z such that kl = 1. Observe:

(hk
2)

l = (hj
1)

l =) hkl
2 = hjl

1

=) h2 = hl
1

Since hh1i is cyclic hl
1 2 hh1i. Since we chose h2 such that h2 62 hh1i then hh2i \ hh1i.

Continuing this process we can obtain a subgroup H1 of H such that hh1iH1 = H. Since H1

was chosen such that hh1i \H1 = 1, the recognition theorem of direct products tells us that
H = hh1i ⇥H1. With induction in mind, if we continue this process on H1, we can obtain:

H = hh1i ⇥ hh2i ⇥ hh3i ⇥ · · ·⇥ hhri with r � 1.

Note that for i = 1, 2, 3, ..., r, the cyclic group hhii has order of p↵ with ↵ � 1. Since hhii is
cyclic and hhii has order p↵i , then hhii ⇠= Zp↵i . Therefore,

H = hh1i ⇥ hh2i ⇥ hh3i ⇥ · · ·⇥ hhri
⇠= Zp↵1 ⇥ Zp↵2 ⇥ Zp↵3 ⇥ · · ·⇥ Zp↵r .

By definition of �, there exist elements ai 2 A such that api 2 hi for 1  i  r. Let
A0 = hg1, g2, g3, ..., gri. Since hh1i \ hh2i \ hh3i \ · · · \ hhri = 1 and for each hgii 2 A0 we
have hgiip = hhii then hg1i \ hg2i \ hg3i \ ... \ hgri = 1. Thus by the recognition theorem of
direct products,

A0 = hg1i ⇥ hg2i ⇥ hg3i ⇥ · · ·⇥ hgri.

Consider A0/H. By properties of quotients A0/H = hg1iH ⇥ hg2iH ⇥ hg3iH ⇥ ...⇥ hgriH.

Note that for each hgii ⇢ A0, hgpi i ⇢ H. Therefore hgiipH = hgpi iH = H. Thus A0/H

is elementary abelian of rank r. For each hi 2 H we obtain hi \ K = hhp↵i�1

i i. Note

|hp↵i�1

i | = p, therefore H \K = hhp↵1�1

1 i ⇥ hhp↵2�1

2 i ⇥ hhp↵3�1

3 i ⇥ ...⇥ hhp↵r�1

r i.

If K is contained in H, then |K| = |K \ H| = pr = |A0 : H| = |A : H|. Therefore
A0 = A and the theorem is proved. Assume therefore that K is not a subgroup of H.
We will use the bar notation again to denote the passage to the quotient group A/H. Let
x 2 K � H. As x 2 K the order of x is p. Observe x 62 H then |x̄| = p. Since A/H = Ā
is elementary abelian we can use our initial result on elementary abelian p-groups to pick
a subgroup M̄ of Ā such that Ā = M̄ ⇥ hx̄i. If M is the complete pre-image in A of M̄ ,
and since x has order p and hxi \ M = 1, by the recognition theorem of direct products
A = hxi ⇥M . Proceeding with induction on M , we obtain A is the direct product of cyclic
groups.

⇤
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The uniqueness of the decomposition of a finite abelian group can be proved by the pth

power map as well. From the results above, the Fundamental Theorem of Finite abelian
groups is proved [DF04].

Example 2.6. The following is a simple example of the use of the Fundamental Theorem of
Finite Abelian Groups. Let G be an abelian group of order 162. Using the Fundamental
Theorem of Arithmetic we observe 162 = 2 · 34. From Fundamental Theorem of Finite
Abelian Groups G is isomorphic to one of the following groups:

(1) G ⇠= Z162.
(2) G ⇠= Z54 ⇥ Z3.
(3) G ⇠= Z18 ⇥ Z9.
(4) G ⇠= Z18 ⇥ Z3 ⇥ Z3.
(5) G ⇠= Z6 ⇥ Z3 ⇥ Z3 ⇥ Z3.

3. The Fundamental Theorem of Finitely Generated Abelian Groups

The Fundamental Theorem of Finite Abelian Groups directly applies to a more general the-
orem, which accounts for infinite cases as well as finite cases.

Definition 3.1.

(1) A group G is finitely generated if there is a finite subset A of G such that G = hAi.
(2) For each r 2 Z with r � 0, let Zr = Z⇥Z⇥ · · ·⇥Z be the direct product of r copies

of the group Z, where Z0 = 1. The group Zr is called the free abelian group of rank r.

Theorem 3.2. The Fundamental Theorem of Finitely Generated Abelian Groups
Let G be a finitely generated abelian group. Then,

(1)

G ⇠= Zr ⇥ Zn1 ⇥ Zn2 ⇥ · · ·⇥ Zns ,

for some integers r, n1, n2, ..., ns satisfying the following conditions:
• r � 0 and nj � 2 for all j, and
• ni+1|ni for 1  i  s� 1.

(2) The expression in (1) is unique: if G ⇠= Zt ⇥ Zm1 ⇥ Zm2 ⇥ · · · ⇥ Zmu, where t and
m1,m2, . . . ,mu satisfy the two conditions in (1), then t = r, u = s, and mi = ni for
all i.
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