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General Mole Balance
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RjdV (4.2)
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General Mole Balance

d

dt

∫
V

cjdV = Q0cj0 − Q1cj1 +

∫
V

RjdV

Equation 4.2 applies to every chemical component in the system, j = 1, 2, . . . , ns ,
including inerts, which do not take place in any reactions.

Assuming component j enters and leaves the volume element only by convection
with the inflow and outflow streams, i.e. neglecting diffusional flux through the
boundary of the volume element due to a concentration gradient.

The diffusional flux will be considered during the development of the material
balance for the packed-bed reactor.
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Rate expressions

To solve the reactor material balance, we require an expression for the production
rates, Rj

Rj =
∑
i

ν ij ri

Therefore we require ri as a function of cj

This is the subject of chemical kinetics, Chapter 5

Here we use common reaction-rate expressions without derivation
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The Batch Reactor

Rj

The batch reactor is assumed well stirred

Let the entire reactor contents be the reactor volume element
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Batch Reactor

d

dt

∫
V

cjdV = Q0cj0 − Q1cj1 +

∫
V

RjdV

Because the reactor is well stirred, the integrals in Equation 4.2 are simple to
evaluate, ∫

VR

cjdV = cjVR

∫
VR

RjdV = RjVR

The inflow and outflow stream flowrates are zero, Q0 = Q1 = 0.

d (cjVR)

dt
= RjVR (4.5)
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Reactor Volume

Equation 4.5 applies whether the reactor volume is constant or changes during the
reaction.

If the reactor volume is constant (liquid-phase reactions)

dcj
dt

= Rj (4.6)

Use Equation 4.5 rather than Equation 4.6 if the reactor volume changes
significantly during the course of the reaction.
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Analytical Solutions for Simple Rate Laws

In general the material balance must be solved numerically.

If the reactor is isothermal, we have few components, the rate expressions are
simple, then analytical solutions of the material balance are possible.

We next examine derive analytical solutions for some classic cases.
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First-order, irreversible

Consider the first-order, irreversible reaction

A
k−→ B, r = kcA

The material balance for a constant-volume reactor gives

dcA
dt

= −kcA (4.8)

Watch the sign!
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First-order, irreversible

We denote the initial concentration of A as cA0,

cA(t) = cA0, t = 0

The solution to the differential equation with this boundary condition is

cA = cA0e
−kt (4.9)
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First-order, irreversible
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First-order, irreversible

The A concentration decreases exponentially from its initial value to zero with
increasing time.

The rate constant determines the shape of this exponential decrease. Rearranging
Equation 4.9 gives

ln(cA/cA0) = −kt
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First-order, irreversible
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One can get an approximate value of the rate constant from the slope of the
straight line.

This procedure is a poor way to determine a rate constant and should be viewed
only as a rough approximation (Chapter 9).
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First-order, irreversible

The B concentration is determined from the A concentration.

1 Solve the material balance for component B,

dcB
dt

= RB = kcA (4.10)

with the initial condition for B, cB(0) = cB0

2 Note that the sum of cA and cB is constant.

d(cA + cB)

dt
= RA + RB = 0

Therefore, cA + cB is a constant.
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First-order, reversible

The value is known at t = 0,

cA + cB = cA0 + cB0

So we have an expression for cB

cB = cA0 + cB0 − cA

cB = cB0 + cA0(1− e−kt) (4.11)
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First-order, reversible

Consider now the same first-order reaction, but assume it is reversible

A
k1−⇀↽−
k−1

B

The reaction rate is r = k1cA − k−1cB .

The material balances for A and B are now

dcA

dt
= −r = −k1cA + k−1cB cA(0) = cA0

dcB

dt
= r = k1cA − k−1cB cB(0) = cB0

Notice that cA + cB = cA0 + cB0 remains constante
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First-order, reversible

Eliminate cB in the material balance for A gives

dcA
dt

= −k1cA + k−1(cA0 + cB0 − cA) (4.13)

How do we want to solve this one?

Particular solution and homogeneous solution (see text)

Laplace transforms (control course)

Separation!
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First-order, reversible

dcA
dt

= acA + b∫ cA

cA0

dcA
acA + b

=

∫ t

0

dt

1

a
ln(acA + b)

∣∣∣∣cA
cA0

= t

cA = cA0e
at − b

a
(1− eat)

Substitute a = −(k1 + k−1), b = k−1(cA0 + cB0)
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First-order, reversible

cA = cA0e
−(k1+k−1)t +

k−1

k1 + k−1
(cA0 + cB0)

[
1− e−(k1+k−1)t

]
(4.15)

The B concentration can be determined by switching the roles of A and B and k1

and k−1 in Reaction 4.12, yielding

cB = cB0e
−(k1+k−1)t +

k1

k1 + k−1
(cA0 + cB0)

[
1− e−(k1+k−1)t

]
(4.16)
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First-order, reversible
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Figure 4.5: First-order, reversible kinetics in a batch reactor, k1 = 1, k−1 = 0.5, cA0 = 1, cB0 = 0.
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Nonzero steady state

For the reversible reaction, the concentration of A does not go to zero.

Taking the limit t −→ ∞ in Equation 4.15 gives

cAs =
k−1

k1 + k−1
(cA0 + cB0)

in which cAs is the steady-state concentration of A.
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Nonzero steady state

Defining K1 = k1/k−1 allows us to rewrite this as

cAs =
1

1 + K1
(cA0 + cB0)

Performing the same calculation for cB gives

cBs =
K1

1 + K1
(cA0 + cB0)
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Second-order, irreversible

Consider the irreversible reaction

A
k−→ B

in which the rate expression is second order, r = kc2
A.

The material balance and initial condition are

dcA
dt

= −kc2
A, cA(0) = cA0 (4.18)

Our first nonlinear differential equation.
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Second-order, irreversible

Separation works here
dcA
c2
A

= −kdt

∫ cA

cA0

dcA
c2
A

= −k
∫ t

0

dt

1

cA0
− 1

cA
= −kt

Solving for cA gives

cA =

(
1

cA0
+ kt

)−1

(4.19)

Check that this solution satisfies the differential equation and initial condition
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Second-order, irreversible
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The second-order reaction decays more slowly to zero than the first-order reaction.
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Another second-order, irreversible

A + B
k−→ C r = kcAcB

The material balance for components A and B are

dcA
dt

= −r = −kcAcB
dcB
dt

= −r = −kcAcB

Subtract B’s material balance from A’s to obtain

d(cA − cB)

dt
= 0
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Another second-order, irreversible

Therefore, cA − cB is constant, and

cB = cA − cA0 + cB0 (4.23)

Substituting this expression into the material balance for A yields

dcA
dt

= −kcA(cA − cA0 + cB0)

This equation also is separable and can be integrated to give (you should work
through these steps),

cA = (cA0 − cB0)

[
1− cB0

cA0
e(cB0−cA0)kt

]−1

, cA0 6= cB0 (4.24)
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Another second-order, irreversible

Component B can be computed from Equation 4.23, or by switching the roles of A
and B in Reaction 4.20, giving

cB = (cB0 − cA0)

[
1− cA0

cB0
e(cA0−cB0)kt

]−1

What about component C? C’s material balance is

dcC
dt

= kcAcB

and therefore, d(cA + cC )/dt = 0. The concentration of C is given by

cC = cA0 − cA + cC0
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Another second-order, irreversible

Notice that if cA0 > cB0 (Excess A), the steady state

cAs = cA0 − cB0

cBs = 0

cCs = cB0 + cC0

For cB0 > cA0 (Excess B), the steady state is

cAs = 0

cBs = cB0 − cA0

cCs = cA0 + cC0
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nth-order, irreversible

The nth-order rate expression r = kcnA
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nth-order, irreversible

A
k−→ B r = kcnA

dcA
dt

= −r = −kcnA

This equation also is separable and can be rearranged to

dcA
cnA

= −kdt

Performing the integration and solving for cA gives

cA =
[
c−n+1
A0 + (n − 1)kt

] 1
−n+1

, n 6= 1
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nth-order, irreversible

We can divide both sides by cA0 to obtain

cA
cA0

= [1 + (n − 1)k0t]
1

−n+1 , n 6= 1 (4.25)

in which
k0 = kcn−1

A0

has units of inverse time.
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nth-order, irreversible
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The larger the value of n, the more slowly the A concentration approaches zero at
large time.
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nth-order, irreversible

Exercise care for n < 1, cA reaches zero in finite time.
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Negative order, inhibition

For n < 0, the rate decreases with increasing reactant concentration; the reactant
inhibits the reaction.
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Negative order, inhibition

Inhibition reactions are not uncommon, but watch out for small concentrations.
Notice the rate becomes unbounded as cA approaches zero, which is not physically
realistic.

When using an ODE solver we may modify the right-hand sides of the material
balance

dcA
dt

=

{
−kcnA, cA > 0

0, cA = 0

Examine the solution carefully if the concentration reaches zero.
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Two reactions in series

Consider the following two irreversible reactions,

A
k1−→ B

B
k2−→ C

Reactant A decomposes to form an intermediate B that can further react to form a
final product C.

Let the reaction rates be given by simple first-order rate expressions in the
corresponding reactants,

r1 = k1cA

r2 = k2cB
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Two reactions in series

The material balances for the three components are

dcA
dt

= RA = −r1 = −k1cA

dcB
dt

= RB = r1 − r2 = k1cA − k2cB

dcC
dt

= RC = r2 = k2cB

The material balance for component A can be solved immediately to give
cA = cA0e

−k1t as before.
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Two reactions in series – B

The material balance for B becomes

dcB
dt

+ k2cB = k1cA0e
−k1t

Oops, not separable, now what?

Either Laplace transform or particular solution, homogeneous equation approach
produces

cB = cB0e
−k2t + cA0

k1

k2 − k1

[
e−k1t − e−k2t

]
, k1 6= k2 (4.30)
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Two reactions in series – C

To determine the C concentration, notice from the material balances that
d(cA + cB + cC )/dt = 0. Therefore, cC is

cC = cA0 + cB0 + cC0 − cA − cB
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Two reactions in series
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Figure 4.11: Two first-order reactions in series in a batch reactor, cA0 = 1, cB0 = cC0 = 0,
k1 = 2, k2 = 1.

41 / 152



Two reactions in parallel

Consider next two parallel reactions of A to two different products, B and C,

A
k1−→ B

A
k2−→ C

Assume the rates of the two irreversible reactions are given by r1 = k1cA and
r2 = k2cA.
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Two reactions in parallel

The material balances for the components are

dcA
dt

= RA = −r1 − r2 = −k1cA − k2cA

dcB
dt

= RB = r1 = k1cA

dcC
dt

= RC = r2 = k2cA
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Two reactions in parallel

The material balance for A can be solved directly to give

cA = cA0e
−(k1+k2)t (4.33)

Substituting cA(t) into B’s material balance gives

dcB
dt

= k1cA0e
−(k1+k2)t

This equation is now separable and can be integrated directly to give

cB = cB0 + cA0
k1

k1 + k2

(
1− e−(k1+k2)t

)
(4.34)
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Two reactions in parallel

Finally, component C can be determined from the condition that cA + cB + cC is
constant or by switching the roles of B and C, and k1 and k2 in Equation 4.34,

cC = cC0 + cA0
k2

k1 + k2

(
1− e−(k1+k2)t

)
(4.35)
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Two reactions in parallel
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Figure 4.12: Two first-order reactions in parallel in a batch reactor, cA0 = 1, cB0 = cC0 = 0,
k1 = 1, k2 = 2.
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Two reactions in parallel

Notice that the two parallel reactions compete for the same reactant, A

The rate constants determine which product is favored

Large values of k1/k2 favor the formation of component B compared to C and vice
versa
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Conversion, Yield, Selectivity

There are several ways to define selectivity, yield and conversion, so be clear about the
definition you choose.

Point selectivity: The point (or instantaneous) selectivity is the ratio of the production rate of
one component to the production rate of another component.

Overall selectivity: The overall selectivity is the ratio of the amount of one component produced
to the amount of another component produced.

Yield: The yield of component j is the fraction of a reactant that is converted into
component j .

Conversion: Conversion is normally defined to be the fraction of a component that has been
converted to products by the reaction network. Conversion has several
definitions and conventions. It is best to state the definition in the context of
the problem being solved.
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The Continuous-Stirred-Tank Reactor (CSTR)

Q

cj

Qf

cjf Rj

Writing the material balance for this reactor gives

d (cjVR)

dt
= Qf cjf − Qcj + RjVR , j = 1, . . . , ns (4.36)
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CSTR – Constant Density

If the reactor volume is constant and the volumetric flowrates of the inflow and
outflow streams are the same, Equation 4.36 reduces to

dcj
dt

=
1

τ
(cjf − cj) + Rj (4.37)

The parameter
τ = VR/Qf

is called the mean residence time of the CSTR.

We refer to this balance as the constant-density case. It is often a good
approximation for liquid-phase reactions.

50 / 152



CSTR – Steady State

The steady state of the CSTR is described by setting the time derivative in
Equation 4.36 to zero,

0 = Qf cjf − Qcj + RjVR (4.38)

Conversion of reactant j is defined for a steady-state CSTR as follows

xj =
Qf cjf − Qcj

Qf cjf
(steady state) (4.39)

One can divide Equation 4.38 through by VR to obtain for the constant-density case

cj = cjf + Rjτ (steady state, constant density) (4.40)
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Transient behavior of the CSTR

Consider a first-order, liquid-phase reaction in an isothermal CSTR

A
k−→ 2B r = kcA

the feed concentration of A is cAf = 2 mol/L, the residence time of the reactor is
τ = 100 min, and the rate constant is k = 0.1 min−1.

1 Find the steady-state concentration of A in the effluent for the given feed.
2 Plot the concentration of A versus time for constant feed concentration cAf = 2 mol/L

if the reactor is initially filled with an inert so cA0 = 0 mol/L.
3 Plot the concentration of A versus time for constant feed concentration cAf = 2 mol/L

if the reactor is initially filled with feed so cA0 = 2 mol/L.
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Transient CSTR Solution. Part 1

Liquid phase: assume the fluid density is constant.

cA = cAf + RAτ

Substituting the production rate RA = −kcA and solving for cA gives the
steady-state concentration

cAs =
cAf

1 + kτ

Substituting in the numerical values gives

cAs =
2 mol/L

1 + (0.1 min−1)(100 min)
= 0.182 mol/L
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Parts 2 and 3

dcA
dt

=
1

τ
(cAf − cA)− kcA (4.41)

cA(0) = cA0

This equation is also separable. The analytical solution is

cA(t) = cA0e
−(1/τ+k)t +

cAf
1 + kτ

[
1− e−(1/τ+k)t

]
(4.42)

54 / 152



Parts 2 and 3
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Both solutions converge to the same steady-state even though the starting
conditions are quite different.
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Phenol production in a CSTR

Consider the reaction of cumene hydroperoxide (CHP) to phenol and acetone

(C6H5)C(CH3)2OOH −→ (C6H5)OH + (CH3)2CO

CHP −→ phenol + acetone

The reaction is pseudo-first-order

r = kcCHP

Find the reactor volume to achieve 85% conversion of CHP at steady state. The
flowrate into the reactor is Qf = 26.9 m3/hr and k = 4.12 hr−1.
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Phenol production

Liquids at 85◦C, so assume constant density and Q = Qf .

cA = cAf + RAτ

RA = −kcA, and solving for the CHP concentration gives

cA =
cAf

1 + kτ
(4.43)

57 / 152



Phenol production

The conversion of CHP (for Q = Qf ) is

xA =
cAf − cA

cAf
= 1− cA

cAf

xA =
kτ

1 + kτ

Solving this equation for τ gives

τ =
1

k

xA
1− xA
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Phenol production

Substituting the relation τ = VR/Qf and solving for VR gives

VR =
Qf xA

k(1− xA)

Substituting in the known values gives the required CSTR volume

VR =
(26.9 m3/hr)(0.85)

(4.12 hr−1)(0.15)
= 37 m3
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The Semi-Batch Reactor

The semi-batch reactor is a cross between the batch reactor and CSTR.

The semi-batch reactor is initially charged with reactant, like the batch reactor, but
allows a feed addition policy while the reaction takes place, like the CSTR.

Normally there is no outflow stream.
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The Semi-Batch Reactor

We set Q = 0 in the CSTR material balance to obtain

d (cjVR)

dt
= Qf cjf + RjVR , j = 1, . . . , ns (4.44)

One may choose to operate a semi-batch reactor to control the reaction rate or heat
release during reaction by slowly adding one of the reactants in the feed stream.

Compared to the batch reactor, the semi-batch reactor provides more complete use
of the reactor volume in reactions such as polymerizations that convert from lower
density to higher density during the course of the reaction.
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Volume Change Upon Reaction

d (cjVR)

dt
= Qf cjf − Qcj + RjVR (4.45)

Equation 4.45 covers both the batch, CSTR and semi-batch reactors, depending on
how we specify Qf and Q.

If we multiply Equation 4.45 by the molecular weight of species j and sum over all
species we obtain,

d(
∑

j cjMjVR)

dt
= Qf

∑
j

cjfMj − Q
∑
j

cjMj +
∑
j

RjMjVR (4.46)

The term
∑

j cjMj is simply the mass density of the reactor contents, which we
denote ρ

ρ =

ns∑
j=1

cjMj (4.47)
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Volume Change Upon Reaction

The term
∑

j cjfMj is the mass density of the feedstream, ρf .

We know that conservation of mass in chemical reactions implies
∑

j RjMj = 0 (see
Chapter 2). Substitution into Equation 4.46 leads to

d(ρVR)

dt
= Qf ρf − Qρ (4.48)

Equation 4.48 is clearly a total mass balance, in which the total mass in the reactor
changes in time due to the inflow and outflow of mass.

Notice that chemical reactions play no role in the total mass balance.
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Equation of state for the mixture

If we have a single-phase system at equilibrium, the intensive variables cj , T , P,
completely specify all intensive variables of the system.

In this chapter we consider T and P to be known, fixed quantities. Therefore, the
density of the reaction mixture, which is an intensive variable, is known if the cj are
known.

This relationship is one form of the equation of state for the mixture

ρ = f̃ (T ,P, c1, c2, . . . , cns )

Substituting the definition of density, we can express the equation of state as

f (c1, c2, . . . , cns ) = 0
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Equation of state for the mixture

For example, we could express the equation of state in terms of the partial molar
volumes as ∑

j

cjV j = 1

in which V j is the partial molar volume of component j in the mixture.

The partial molar volumes are functions of T , P and cj .
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Equation of state for the mixture — Ideal mixture

If we assume an ideal mixture, this reduces to∑
j

cjV
◦
j = 1, ideal mixture

in which V ◦j is the specific volume of pure component j , which is a function of only
T and P.

We assume that a thermodynamic equation of state is valid even when the reactor is
not at equilibrium.
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Constant density

Because the reaction mixture density, ρ, is independent of composition, it does not
vary with time either and we can set it to the feed value,

ρ = ρf

The total mass balance then reduces to

dVR

dt
= Qf − Q (4.51)

which is sometimes referred to as a “volume balance.”

This terminology should be avoided.
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Constant density

dVR

dt
= Qf − Q

Batch reactor. For the batch reactor, Q = Qf = 0. We can therefore conclude from
Equation 4.51 that a batch reactor with constant density has constant volume.

CSTR (dynamic and steady state). If the outflow of the CSTR is regulated so that
the CSTR has constant volume, then we can conclude from Equation 4.51 that
Q = Qf .

Semi-batch reactor. In the semi-batch reactor, the reactor is filled during operation
so Qf is specified and positive for some time and Q = 0. The solution to
Equation 4.51 then determines the change in volume of the reactor during the filling
operation.
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Nonconstant density

Unknowns.

In the general case, consider the following variables to fully
determine the state of the reactor: T ,P, nj ,VR .
We also require the value of Q to specify the right-hand sides of the
material balances.
The set of unknowns is nj ,VR ,Q.
We therefore have ns + 2 unknowns.

Equations.

We have the ns equations from the component mole balances.
The equation of state provides one additional equation.
The final equation is provided by a statement of reactor operation.
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Nonconstant density – reactor operation

1 Constant-volume reactor. The constant-volume reactor can be achieved by allowing
overflow of the reactor to determine flowrate out of the reactor. In this situation, VR

is specified as the additional equation.

2 Constant-mass reactor. The constant-mass reactor can be achieved if a differential
pressure measurement is used to control the flowrate out of the reactor and the
reactor has constant cross-sectional area. In this situation ρVR is specified as the
additional equation.

3 Flowrate out of the reactor is specified. This type of operation may be achieved if
the flowrate out of the reactor is controlled by a flow controller. In this case Q(t) is
specified. A semi-batch reactor is operated in this way with Q = 0 until the reactor
is filled with the reactants.
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Nonconstant density – reactor operation

See the text for the derivation.

dVR

dt
= Qf

∑
j fjcjf∑
j fjcj

− Q +

∑
i ∆fi riVR∑

j fjcj
(4.53)

in which fj is

fj =
∂f

∂cj

and ∆fi is

∆fi =
∑
j

νij fj =
∑
j

νij
∂f

∂cj

which is a change in a derivative property upon reaction.
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Nonconstant density – idea mixture

For the ideal mixture we have f (cj) =
∑

j cjV
◦
j − 1 = 0.

fj = V ◦j

the pure component specific volumes

The ∆fi are given by
∆fi = ∆V ◦i

the change in specific volume upon reaction i .

So the reactor volume can be calculated from

dVR

dt
= Qf − Q +

∑
i

∆V ◦i riVR
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Nonconstant density

Unknowns (ns + 2): VR , Q, nj , j = 1, . . . , ns

Component balances:
dnj
dt

= Qf cjf − Qcj + Rj VR , j = 1, . . . , ns

Defined quantities: nj = cj VR ρ =
∑

j cj Mj ∆V◦
i =

∑
j νij V

◦
j

(i) constant density: ρ = ρ0 (ii) ideal mixture:
∑

j cj V
◦
j = 1

1. vol VR = VR0 Q = Qf VR = VR0 Q = Qf +
∑

i ∆V◦
i ri VR

2. mass VR = VR0 Q = Qf
dVR
dt

= Qf (1 − ρf /ρ) +
∑

i ∆V◦
i ri VR Q = Qf ρf /ρ

3. Q
dVR
dt

= Qf − Q Q specified
dVR
dt

= Qf − Q +
∑

i ∆V◦
i ri VR Q specified

Table 4.1: Reactor balances for constant-density and ideal-mixture assumptions.
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Nonconstant density

Unknowns (ns + 2): VR , Q, nj , j = 1, . . . , ns

Component balances:
dnj
dt

= Qf cjf − Qcj + Rj VR , j = 1, . . . , ns

Defined quantities: nj = cj VR ρ =
∑

j cj Mj ∆fi =
∑

j νij
∂f
∂cj

Equation of state: f (c1, c2, . . . , cns ) = 0

DAEs ODEs

1. vol VR = VR0 f (cj ) = 0 VR = VR0 Q = Qf

∑
j fj cjf∑
j fj cj

+

∑
i ∆fi ri VR∑

j fj cj

2. mass ρVR = ρ0VR0 f (cj ) = 0
dVR
dt

= Qf

∑
j fj cjf∑
j fj cj

− Q +

∑
i ∆fi ri VR∑

j fj cj
Q = Qf ρf /ρ

3. Q Q specified f (cj ) = 0
dVR
dt

= Qf

∑
j fj cjf∑
j fj cj

− Q +

∑
i ∆fi ri VR∑

j fj cj
Q specified

Table 4.2: Reactor balances for general equation of state.
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Semi-batch polymerization

Consider a solution polymerization reaction, which can be modeled as a first-order,
irreversible reaction

M
k−→ P r = kcM

A 20 m3 semi-batch reactor is initially charged with solvent and initiator to half its
total volume.

A pure monomer feed is slowly added at flowrate Qf 0 = 1 m3/min to fill the reactor
in semi-batch operation to control the heat release.
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Semi-batch polymerization

Consider two cases for the subsequent reactor operation.
1 The monomer feed is shut off and the reaction goes to completion.
2 The monomer feed is adjusted to keep the reactor filled while the reaction goes to

completion.

Calculate the total polymer mass production, and the percentage increase in
polymer production achieved in the second operation.
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The physical properties

You may assume an ideal mixture

The densities of monomer and polymer are

ρM = 800 kg/m3 ρP = 1100 kg/m3

The monomer molecular weight is MM = 100 kg/kmol

The rate constant is k = 0.1 min−1.

77 / 152



Semi-batch polymerization

While the reactor is filling, the monomer mole balance is

d(cMVR)

dt
= Qf 0cMf − kcMVR

in which cMf = ρM/MM is given, and Qf = Qf 0 is constant during the filling
operation.

We denote the total number of moles of monomer by M = cMVR , and can write the
monomer balance as

dM

dt
= Qf 0cMf − kM (4.54)

M(0) = 0
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Semi-batch polymerization

For an ideal mixture, the volume is given by

dVR

dt
= Qf 0 + ∆VkM (4.55)

VR(0) = 10 m3

in which ∆V = (1/ρP − 1/ρM)MM
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The polymer mass production

To compute the polymer mass, we note from the stoichiometry that the mass
production rate of polymer R̃P is

R̃P = −RMMM

The mass balance for total polymer P̃ is given by

dP̃

dt
= R̃pVR = kcMMMVR = (kMM)M (4.56)
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Semi-batch polymerization

The text solves this problem analytically. Instead, let’s solve it numerically.

Let t1 be the time that the reactor fills.

We need an ODE solver that is smart enough to stop when the reactor fills, because
we do not know this time t1. The ODE solver needs to find it for us.

dasrt is an ODE solver with the added capability to find the time at which some
event of interest occurs.
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Finding the time for filling the reactor

The ODE solver finds the time at which VR = 20 m3

t1 = 11.2 min

Note the reactor would have filled in 10 min if the density were constant.

The extra time reflects the available volume created by converting some of the
monomer to polymer during filling.

After t1 we consider the two operations.
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Operation 1.

In the first operation, Qf = 0 after t1.

Notice the reactor volume decreases after t1 because ∆V is negative.
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Semi-batch polymerization
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Figure 4.15: Semi-batch reactor volume for primary monomer addition (operation 1) and primary
plus secondary monomer additions (operation 2).
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Figure 4.16: Semi-batch reactor feed flowrate for primary monomer addition (operation 1) and
primary plus secondary monomer additions (operation 2).
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Figure 4.17: Semi-batch reactor monomer content for primary monomer addition (operation 1)
and primary plus secondary monomer additions (operation 2).
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Figure 4.18: Semi-batch reactor polymer content for primary monomer addition (operation 1)
and primary plus secondary monomer additions (operation 2).
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Operation 2.

Because the reactor volume is constant, we can solve Equation 4.55 for the feed
flowrate during the secondary monomer addition

Qf = −∆VkM

Operation 2 is also shown in the figures.

Notice the final polymer production is larger in operation 2 because of the extra
monomer addition.
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Polymer production rate

We can perform an independent, simple calculation of the total polymer in
operation 2. Useful for debugging the computation.

In operation 2, 10 m3 of polymer are produced because in an ideal mixture, the
volumes are additive. Therefore

P̃2 = (VR − VR0)ρP = 10 m3 × 1100 kg/m3 = 11000 kg

in good agreement with the long-time solution for operation 2.

The increase in production rate is

P̃2 − P̃1

P̃1

× 100% = 22.5%

By using the volume of the reactor more efficiently, the total polymer production
increases 22.5%.
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The Plug-Flow Reactor (PFR)

Plug flow in a tube is an ideal-flow assumption in which the fluid is well mixed in the
radial and angular directions.

The fluid velocity is assumed to be a function of only the axial position in the tube.

Plug flow is often used to approximate fluid flow in tubes at high Reynolds number.
The turbulent flow mixes the fluid in the radial and angular directions.

Also in turbulent flow, the velocity profile is expected to be reasonably flat in the
radial direction except near the tube wall.
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Thin Disk Volume Element

Given the plug-flow assumption, it is natural to take a thin disk for the reactor volume
element

Q

cj

Q(z + ∆z)

cj(z + ∆z)

Q(z)

cj(z)

Qf

cjf

z

Rj∆V

z + ∆z

︷ ︸︸ ︷
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Thin Disk Volume Element

Expressing the material balance for the volume element

∂ (cj∆V )

∂t
= cjQ|z − cjQ|z+∆z + Rj∆V

Dividing the above equation by ∆V and taking the limit as ∆V goes to zero yields,

∂cj
∂t︸︷︷︸

accumulation

= − ∂ (cjQ)

∂V︸ ︷︷ ︸
convection

+ Rj︸︷︷︸
reaction

(4.64)
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Length or volume as independent variable

If the tube has constant cross section, Ac , then velocity, v , is related to volumetric
flowrate by v = Q/Ac , and axial length is related to tube volume by z = V /Ac ,

Equation 4.64 can be rearranged to the familiar form [1, p.584]

∂cj
∂t

= −∂ (cjv)

∂z
+ Rj (4.65)
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Steady-State Operation

Setting the time derivative in Equation 4.64 to zero gives,

d(cjQ)

dV
= Rj (4.66)

The product cjQ = Nj is the total molar flow of component j . One also can express
the PFR mole balance in terms of the molar flow,

dNj

dV
= Rj (4.67)
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Volumetric Flowrate for Gas-Phase Reactions

To use Equation 4.67 for designing a gas-phase reactor, one has to be able to relate
the volumetric flowrate, Q, to the molar flows, Nj , j = 1, 2, . . . , ns .

The important piece of information tying these quantities together is, again, the
equation of state for the reaction mixture, f (T ,P, cj) = 0.

Because the molar flow and concentration are simply related,

Nj = cjQ (4.68)

the equation of state is also a relation between temperature, pressure, molar flows,
and volumetric flowrate.
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Ideal Gas Equation of State

The ideal-gas equation of state, c = P/RT , can be stated in terms of molar
concentrations, cj , as ∑

j

cj =
P

RT

In terms of molar flows, the equation of state is∑
j Nj

Q
=

P

RT

One can solve the previous equation for the volumetric flowrate,

Q =
RT

P

∑
j

Nj (4.69)
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Ideal Gas Equation of State

To evaluate the concentrations for use with the reaction rate expressions, one simply
rearranges Equation 4.68 to obtain

cj =
Nj

Q
=

P

RT

Nj∑
j Nj

(4.70)
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Volumetric Flowrate for Liquid-Phase Reactions

Consider the equation of state for a liquid-phase system to be arranged in the form

ρ = f (T ,P, cj)

The mass density is related to the volumetric flowrate and total mass flow,
M =

∑
j NjMj , via

M = ρQ (4.71)

Multiplying Equation 4.67 by Mj and summing on j produces

dM

dV
= 0, M(0) = Mf

in which Mf is the feed mass flowrate.

The total mass flow in a PFR is constant.
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Volumetric Flowrate for Liquid-Phase Reactions

We can solve for the volumetric flowrate by rearranging Equation 4.71

Q =
Mf

ρ
(4.72)

If the liquid density is considered constant, ρ = ρf , then

Q = Qf , constant density (4.73)

and the volumetric flowrate is constant and equal to the feed value.

Equation 4.73 is used often for liquid-phase reactions.
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Volumetric Flowrate for Liquid-Phase Reactions

If we denote the time spent in the tube by τ = V /Q, if Q is constant, we can
rewrite Equation 4.66 as

dcj
dτ

= Rj , constant flowrate (4.74)

which is identical to the constant-volume batch reactor.

For the constant-flowrate case, the steady-state profile in a PFR starting from a
given feed condition is also the transient profile in a batch reactor starting from the
equivalent initial condition.

97 / 152



Single Reaction Systems – Changing flowrate in a PFR

A pure vapor stream of A is decomposed in a PFR to form B and C

A
k−→ B + C

Determine the length of 2.5 cm inner-diameter tube required to achieve 35%
conversion of A. The reactor temperature is 518◦C and the pressure is 2.0 atm.
Assume the pressure drop is negligible.

The reaction rate is first order in A, k = 0.05 sec−1 at the reactor temperature, and
the feed flowrate is 35 L/min.
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Changing flowrate in a PFR

The mole balance for component A gives

dNA

dV
= RA

The production rate of A is RA = −r = −kcA.

Substituting the production rate into the above equation gives,

dNA

dV
= −kNA/Q (4.75)

The volumetric flowrate is not constant, so we use Equation 4.69, which assumes an
ideal-gas equation of state,

Q =
RT

P
(NA + NB + NC) (4.76)
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Changing flowrate in a PFR

The ideal-gas assumption is reasonable at this reactor temperature and pressure.

One can relate the molar flows of B and C to A using the reaction stoichiometry.
The mole balances for B and C are

dNB

dV
= RB = r

dNC

dV
= RC = r

Adding the mole balance for A to those of B and C gives

d (NA + NB)

dV
= 0

d (NA + NC)

dV
= 0

The stoichiometry does not allow the molar flow NA + NB or NA + NC to change
with position in the tube.
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Changing flowrate in a PFR

Because NA + NB and NB + NC are known at the tube entrance, one can relate NB

and NC to NA,

NA + NB = NAf + NBf

NA + NC = NAf + NCf

Rearranging the previous equations gives,

NB = NAf + NBf − NA

NC = NAf + NCf − NA

Substituting the relations for NB and NC into Equation 4.76 gives

Q =
RT

P
(2NAf + NBf + NCf − NA)
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Changing flowrate in a PFR

Because the feed stream is pure A, NBf = NCf = 0, yielding

Q =
RT

P
(2NAf − NA)

Substituting this expression in Equation 4.75 gives the final mole balance,

dNA

dV
= −k P

RT

NA

2NAf − NA

The above differential equation can be separated and integrated,∫ NA

NAf

2NAf − NA

NA
dNA =

∫ V

0

− kP

RT
dV
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Changing flowrate in a PFR

Performing the integration gives,

2NAf ln (NA/NAf ) + (NAf − NA) = − kP

RT
V

The conversion of component j for a plug-flow reactor operating at steady state is
defined as

xj =
Njf − Nj

Njf

Because we are interested in the V corresponding to 35% conversion of A, we
substitute NA = (1− xA)NAf into the previous equation and solve for V,

V = −RT

kP
NAf [2 ln(1− xA) + xA]
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Changing flowrate in a PFR

Because Qf = NAf RT/P is given in the problem statement and the tube length is
desired, it is convenient to rearrange the previous equation to obtain

z = − Qf

kAc
[2 ln(1− xA) + xA]

Substituting in the known values gives

z = −
(

35× 103 cm3/min

0.05 sec−1 60 sec/min

)(
4

π(2.5 cm)2

)
[2 ln(1− .35) + .35]

z = 1216 cm = 12.2 m
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Multiple-Reaction Systems

The modeler has some freedom in setting up the material balances for a plug-flow
reactor with several reactions.

The most straightforward method is to write the material balance relation for every
component,

dNj

dV
= Rj , j = 1, 2, . . . , ns

Rj =

nr∑
i=1

νij ri , j = 1, 2, . . . , ns

The reaction rates are expressed in terms of the species concentrations.

The cj are calculated from the molar flows with Equation 4.68

Q is calculated from Equation 4.69, if an ideal-gas mixture is assumed.
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Benzene pyrolysis in a PFR I

Hougen and Watson [3] analyzed the rate data for the pyrolysis of benzene by the
following two reactions.

Diphenyl is produced by the dehydrogenation of benzene,

2C6H6

k1−⇀↽−
k−1

C12H10 + H2

2B −⇀↽− D + H
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Benzene pyrolysis in a PFR

Triphenyl is formed by the secondary reaction,

C6H6 + C12H10

k2−⇀↽−
k−2

C18H14 + H2

B + D −⇀↽− T + H

The reactions are assumed to be elementary so that the rate expressions are

r1 = k1

(
c2
B −

cDcH
K1

)
r2 = k2

(
cBcD −

cT cH
K2

)
(4.79)
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Benzene pyrolysis in a PFR

Calculate the tube volume required to reach 50% total conversion of the benzene for
a 60 kmol/hr feed stream of pure benzene.

The reactor operates at 1033K and 1.0 atm.

Plot the mole fractions of the four components versus reactor volume.
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Benzene pyrolysis in a PFR

The rate and equilibrium constants at T = 1033K and P = 1.0 atm are given in
Hougen and Watson,

k1 = 7× 105 L/mol · hr

k2 = 4× 105 L/mol · hr

K1 = 0.31

K2 = 0.48
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Benzene pyrolysis in a PFR

The mole balances for the four components follow from the stoichiometry,

dNB

dV
= −2r1 − r2

dND

dV
= r1 − r2

dNH

dV
= r1 + r2

dNT

dV
= r2

The initial condition for the ODEs are NB(0) = NBf and
ND(0) = NH(0) = NT (0) = 0.
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Benzene pyrolysis in a PFR

The total molar flux does not change with reactor volume.

Q =
RT

P
NBf (4.80)

The rate expressions are substituted into the four ODEs and they are solved
numerically.

The total conversion of benzene, xB = (NBf − NB)/NBf , is plotted versus reactor
volume in Figure 4.20.

A reactor volume of 404 L is required to reach 50% conversion. The composition of
the reactor versus reactor volume is plotted in Figure 4.21.
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Figure 4.20: Benzene conversion versus reactor volume.
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Figure 4.21: Component mole fractions versus reactor volume.
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Ethane pyrolysis in the presence of NO

See the text for another worked PFR example.
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Some PFR-CSTR Comparisons

We have two continuous reactors in this chapter: the CSTR and the PFR.

Let’s compare their steady-state efficiencies in converting reactants to products.

For simplicity, consider a constant-density, liquid

A
k−→ B r = kcnA

For this situation, the steady-state PFR material balance is given by Equation 4.74

dcA
dτ

= −r(cA)
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Some PFR-CSTR Comparisons

We rearrange and solve for the time required to change from the feed condition cAf
to some exit concentration cA

τ =

∫ cA

cAf

1

r(c ′A)
dc ′A

The area under the curve 1/r(c ′A) is the total time required to achieve the desired
concentration change.

1

r(c ′A)

cAfcA
c ′A

PFR

CSTR
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Some PFR-CSTR Comparisons

To achieve this same concentration change in the CSTR, we start with
Equation 4.40, and solve for τ giving

τ =
cAf − cA
r(cA)

This result also can be interpreted as an area. Notice that this area is the height,
1/r(cA), times the width, cAf − cA, of the rectangle.

1

r(c ′A)

cAfcA
c ′A

PFR

CSTR
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Some PFR-CSTR Comparisons

If 1/r(cA) is a decreasing function of cA, or, equivalently, r(cA) is an increasing
function of cA, to achieve the same conversion, the PFR time (or volume,
VR = Qf τ) is less than the CSTR time (volume).

The PFR reaction rate varies with length. The rate is high at the entrance to the
tube where the concentration of A is equal to the feed value, and decreases with
length as the concentration drops. At the exit of the PFR, the rate is the lowest of
any location in the tube.

Now considering that the entire volume of the CSTR is reacting at this lowest rate
of the PFR, it is intuitively obvious that more volume is required for the CSTR to
achieve the same conversion as the PFR.
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Some PFR-CSTR Comparisons

If the reaction order is positive (the usual case), the PFR is more efficient. If the
reaction order is negative, the CSTR is more efficient.

1

r(c ′A)

cAfcA
c ′A

CSTR

PFR
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The PFR versus CSTR with separation

The PFR achieves higher conversion than an equivalent volume CSTR for the
irreversible reaction with first-order kinetics

A −→ B r = kcA

Consider the case in which we add separation.

Find a single CSTR and separator combination that achieves the same conversion as
the PFR.
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The PFR versus CSTR with separation

The issue is to increase the CSTR achievable conversion using separation.

Education in chemical engineering principles leads one immediately to consider
recycle of the unreacted A as a means to increase this conversion.
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The PFR versus CSTR with separation

NA0 NA1 NA2 NA

NA0 NA

αNA2αNA2

pure B

VR

VR

In the text, we show how to find the recycle flowrate so this system achieves the
PFR conversion.
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CSTR Equivalence Principle.

This example was motivated by a recent result of Feinberg and Ellison called the
CSTR Equivalence Principle of Reactor-Separator Systems [2].

This surprising principle states:

For a given reaction network with ni linearly independent reactions, any steady
state that is achievable by any reactor-separator design with total reactor volume
V is achievable by a design with not more than ni + 1 CSTRs, also of total
reactor volume V . Moreover the concentrations, temperatures and pressures in
the CSTRs are arbitrarily close to those occurring in the reactors of the original
design.
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Stochastic Simulation of Chemical Reactions

We wish to introduce next a topic of increasing importance to chemical engineers,
stochastic (random) simulation.

In stochastic models we simulate quite directly the random nature of the molecules.

We will see that the deterministic rate laws and material balances presented in the
previous sections can be captured in the stochastic approach by allowing the
numbers of molecules in the simulation to become large.

The stochastic modeling approach is appropriate if the random nature of the system
is one of the important features to be captured in the model.

These situations are becoming increasingly important to chemical engineers as we
explore reactions at smaller and smaller length scales.
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Stochastic Simulation of Chemical Reactions

For example, if we are modeling the chemical transformation by reaction of only a
few hundreds or thousands of molecules at an interface, we may want to examine
explicitly the random fluctuations taking place.

In biological problems, we often consider the interactions of only several hundred or
several thousand protein molecules and cells.

In sterilization problems, we may wish to model the transient behavior until every
last organism is eliminated.
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Stochastic Simulation of Chemical Reactions

Assume we have only a hundred molecules moving randomly in the gas phase

A
k1−→ B

B
k2−→ C

in a constant-volume batch reactor.

The probability of reaction is assumed proportional to the

r1 = k1xA r2 = k2xB

in which xj is the number of component j molecules in the reactor volume.

Note xj is an integer, unlike the deterministic model’s cj , which is real.
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Stochastic Simulation of Chemical Reactions

The basic idea of the Gillespie algorithm is to: (i) choose randomly the time at which the
next reaction occurs, and (ii) choose randomly which reactions occurs at that time.

1 Initialize. Set integer counter n to zero. Set the initial species numbers,
xj(0), j = 1, . . . ns . Determine stoichiometric matrix ν and reaction probability laws
(rate expressions)

ri = kih(xj)

for all reactions.

2 Compute reaction probabilities, ri = kih(xj). Compute total reaction probability
rtot =

∑
i ri .
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Stochastic Simulation of Chemical Reactions

1 Select two random numbers, p1, p2, from a uniform distribution on the interval
(0, 1). Let the time interval until the next reaction be

t̃ = − ln(p1)/rtot (4.85)
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Stochastic Simulation of Chemical Reactions

1 Determine reaction m to take place in this time interval. The idea here is to
partition the interval (0,1) by the relative sizes of each reaction probability and then
“throw a dart” at the interval to pick the reaction that occurs. In this manner, all
reactions are possible, but the reaction is selected in accord with its probability.

p2

r1

r1+r2

r2

r1+r20 1
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Stochastic Simulation of Chemical Reactions

1 Update the simulation time t(n + 1) = t(n) + t̃. Update the species numbers for the
single occurrence of the mth reaction via

xj(n + 1) = xj(n) + νmj , j = 1, . . . ns

Let n = n + 1. Return to Step 2.
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Stochastic Simulation of Chemical Reactions

If rtot is the total probability for reaction, e−rtot t̃ is the probability that a reaction has
not occurred during time interval t̃.

We will derive this fact in Chapter 8 when we develop the residence-time distribution
for a CSTR.

The next figure shows the results of this algorithm when starting with
xA = 100 molecules.
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Stochastic Simulation of Chemical Reactions
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Stochastic Simulation of Chemical Reactions

Notice the random aspect of the simulation gives a rough appearance to the number
of molecules versus time, which is quite unlike any of the deterministic simulations.

Because the number of molecules is an integer, the simulation is actually
discontinuous with jumps between simulation times.

But in spite of the roughness, we already can make out the classic behavior of the
series reaction: loss of starting material A, appearance and then disappearance of
the intermediate species B, and slow increase in final product C.
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Stochastic Simulation of Chemical Reactions

Next we explore the effect of increasing the initial number of A molecules on a single
simulation. The results for 1000 and 4000 initial A molecules are shown in the next
figures.
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Stochastic Simulation of Chemical Reactions
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Stochastic Simulation of Chemical Reactions
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Stochastic Simulation of Chemical Reactions

We see the random fluctuations become less pronounced. Notice that even with only
4000 starting molecules, the results compare very favorably with the deterministic
simulation shown previously.

Another striking feature of the stochastic approach is the trivial level of
programming effort required to make the simulations.

The biggest numerical challenge is producing the pseudorandom numbers and many
well-developed algorithms are available for that task.

The computational time required for performing the stochastic simulation may,
however, be large.
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Hepatitis B virus modeling
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Hepatitis B virus modeling

nucleotides
cccDNA
−−−−−→ rcDNA

nucleotides + rcDNA −−−−−→ cccDNA

amino acids
cccDNA
−−−−−→ envelope

cccDNA −−−−−→ degraded

envelope −−−−−→ secreted or degraded

rcDNA + envelope −−−−−→ secreted virus

139 / 152



Hepatitis B virus modeling

The reaction rates and production rates for Reactions 4.86–4.91 are given by
r1

r2

r3

r4

r5

r6

 =


k1xA
k2xB
k3xA
k4xA
k5xC

k6xBxC


 RA

RB

RC

 =

 r2 − r4

r1 − r2 − r6

r3 − r5 − r6

 (4.94)

in which A is cccDNA, B is rcDNA, and C is envelope.
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Hepatitis B virus modeling

Assume the systems starts with a single cccDNA molecule and no rcDNA and no
envelope protein, and the following rate constants[

xA xB xC
]T

=
[

1 0 0
]T

(4.92)

kT =
[

1 0.025 1000 0.25 2 7.5× 10−6
]

(4.93)
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Average stochastic is not deterministic. I
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Hepatitis B virus modeling

0

5

10

15

20

25

30

35

0 50 100 150 200

cc
cD

N
A

deterministic

stochastic 1

stochastic 2

t (days)

Figure 4.35: Species cccDNA versus time for hepatitis B virus model; two representative
stochastic trajectories.
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Hepatitis B virus modeling

The simulation of the deterministic model and an average of 500 stochastic
simulations are not the same.

Figure 4.35 shows two representative stochastic simulations for only the cccDNA
species.

Notice the first stochastic simulation does fluctuate around the deterministic
simulation as expected.

The second stochastic simulation, however, shows complete extinction of the virus.
That is another possible steady state for the stochastic model.
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Average stochastic is not deterministic.

In fact, it occurs for 125 of the 500 simulations. So the average stochastic
simulation consists of 75% trajectories that fluctuate about the deterministic
trajectory and 25% trajectories that go to zero.
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Summary

We have introduced four main reactor types in this chapter.

the batch reactor

the continuous-stirred-tank reactor (CSTR)

the semi-batch reactor

the plug-flow reactor (PFR).
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Summary

BATCH
d(cj VR )

dt
= Rj VR (4.95)

constant volume
dcj

dt
= Rj (4.96)

CSTR
d(cj VR )

dt
= Qf cjf − Qcj + Rj VR (4.97)

constant density
dcj

dt
=

1

τ
(cjf − cj ) + Rj (4.98)

steady state cj = cjf + Rjτ (4.99)

SEMI-BATCH
d(cj VR )

dt
= Qf cjf + Rj VR (4.100)

PFR
∂cj

∂t
= −

∂(cj Q)

∂V
+ Rj (4.101)

steady state
d(cj Q)

dV
= Rj (4.102)

constant flowrate
dcj

dτ
= Rj , τ = V/Qf (4.103)
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Summary

We also have introduced some of the basic reaction-rate expressions.

first order, irreversible

first order, reversible

second order, irreversible

nth order, irreversible

two first-order reactions in series

two first-order reactions in parallel

two second-order, reversible reactions
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Summary

We developed the equations required to compute the volume of the reactor if there
is a significant volume change upon reaction. We require an equation of state for
this purpose.

Several of these simple mass balances with basic rate expressions were solved
analytically.

In the case of multiple reactions with nonlinear rate expressions (i.e., not first-order
reaction rates), the balances must be solved numerically.

A high-quality ordinary differential equation (ODE) solver is indispensable for solving
these problems.
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Summary

We showed that the PFR achieves higher conversion than the CSTR of the same
volume if the reaction rate is an increasing function of a component composition
(n > 0 for an nth-order rate expression).

Conversely, the CSTR achieves higher conversion than the same-volume PFR if the
rate is a decreasing function of a component composition (n < 0).

Finally, we introduced stochastic simulation to model chemical reactions occurring
with small numbers of molecules.
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Summary

The stochastic model uses basic probability to compute reaction rate. A given
reaction’s probability of occurrence is assumed proportional to the number of
possible combinations of reactants for the given stoichiometry.

Two pseudorandom numbers are chosen to determine: (i) the time of the next
reaction and (ii) the reaction that occurs at that time.

The smooth behavior of the macroscopic ODE models is recovered by the random
simulations in the limit of large numbers of reacting molecules.

With small numbers of molecules, however, the average of the stochastic simulation
does not have to be equal to the deterministic simulation. We demonstrated this
fact with the simple, nonlinear hepatitis B virus model.
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