
Removing Manually Generated Boilerplate from

Electronic Texts: Experiments with Project

Gutenberg e-Books∗

Department of CSAS, UNBSJ Technical Report TR-07-001

Owen Kaser
University of New Brunswick

Daniel Lemire
Université du Québec à Montréal

September 6, 2018

Abstract

Collaborative work on unstructured or semi-structured documents,
such as in literature corpora or source code, often involves agreed upon
templates containing metadata. These templates are not consistent across
users and over time. Rule-based parsing of these templates is expensive
to maintain and tends to fail as new documents are added. Statistical
techniques based on frequent occurrences have the potential to identify
automatically a large fraction of the templates, thus reducing the burden
on the programmers. We investigate the case of the Project GutenbergTM

corpus, where most documents are in ASCII format with preambles and
epilogues that are often copied and pasted or manually typed. We show
that a statistical approach can solve most cases though some documents
require knowledge of English. We also survey various technical solutions
that make our approach applicable to large data sets.

1 Introduction

The Web has encouraged the wide distribution of collaboratively edited collec-
tions of text documents. An example is Project Gutenberg1 [Pro09] (hereafter
PG), the oldest digital library, containing over 20,000 digitized books. Mean-
while, automated text analysis is becoming more common. In any corpus of
unstructured text files, including source code [AG06], we may find that some
uninteresting “boilerplate” text coexists with interesting text that we wish to
process. This problem also exists when trying to “scrape” information from Web

∗Expanded version of [KL07]
1Project Gutenberg is a registered trademark of the Project Gutenberg Literary Archive

Foundation.

1

ar
X

iv
:0

70
7.

19
13

v3
 [

cs
.D

L
]

 2
2

A
ug

 2
01

6

year new eBooks
2001 1240
2002 2441
2003 4164
2004 4049
2005 3186
2006 4314

Table 1: New PG e-Books per year [Coo07]

pages [GPT05]. We are particularly interested in cases where no single template
generates all text files — rather, there is an undetermined number and we do
not initially know which template was used for a particular file. Some templates
may differ only in trivial ways, such as in the use of white space, while other
differences can be substantial — as is expected when distributed teams edit the
files over several years.

Ikeda and Yamada [IY04] propose “substring amplification” to cluster files
according to the templates used to generate them. The key observations are
that chunks of text belonging to the template appear repeatedly in the set of
files, and that a suffix tree can help detect the long and frequent strings.

Using this approach with PG is undesirable since the suffix array would
consume much memory and require much processing: the total size of the files
is large and growing (see Tables 1 and 2). Instead, we should use our domain
knowledge: the boilerplate in PG is naturally organized in lines and only appears
at the beginning or end of a document. We expect to find similar patterns in
other hand-edited boilerplate.

1.1 Contribution and Organization

Section 2 presents the PG corpus and describes the difficulties in removing the
preambles and epilogues, boilerplate that has been inserted manually and has
evolved over time. Given the widespread use of PG, a solution to this specific
problem is itself valuable. We also present a few ideas that can be leveraged;
for instance, line breaking in PG boilerplate is consistent throughout the cor-
pus. Section 3 presents the general frequent-lines algorithm we used. We show
analytically that our algorithm is resilient with respect to line-classification er-
rors in Subsection 3.2. In Subsection 3.3, various line-frequency classification
strategies are presented including exact internal memory, exact external mem-
ory, checksumming, hashing, and hot-item tracking. We show that for very
skewed distribution, hashing to few bits does not lead to frequent collisions and
thus, it can be both accurate and fast. We also provide evidence that hot-item
tracking is easier with highly skewed distributions. Finally, in Subsection 3.4,
we present a few simple rule-based heuristics that can help improve our algo-
rithm’s results. We conclude in Section 4 with an experimental evaluation of
accuracy and processing speed. Benchmarking against an existing tool, we find
our approach gives superior results.

2

Item Typical size
Desktop memory 1 GiB
PG e-books 20,000
PG files 100,000
PG .txt files 25,000
PG size 150 GiB
PG .txt size 10 GiB
PG .txt size 200 M lines
PG line length 50 characters, average
PG avg file size 8500 lines
First DVD (2003):
ebooks 10,000
.txt files 11,000
.txt size 5 GiB
.txt size 80 M pre-proc. lines
.txt size 55 M distinct pre-proc. lines
.txt size 10,000 freq. pre-proc. lines

Table 2: Typical size assumptions for 2007. Preprocessing, discussed in § 3.1,
removes short lines.

Though we have tailored the frequent-lines approach for PG, it could be
similarly tailored for other corpora with manually generated or evolving boiler-
plate.

1.2 Related Work

Stripping unwanted and often repeated content is a common task. Frequent
patterns in text documents have been used for plagiarism detection [SGWG06],
for document fingerprinting [SWA03], for removing templates in HTML doc-
uments [DMG05], and for spam detection [SCKL04]. Template detection in
HTML pages has been shown to improve document retrieval [CYL06].

The algorithmics of finding frequent items or patterns has received much
attention. For a survey of the stream-based algorithms, see Cormode and
Muthukrishnan [CM05b, p. 253]. Finding frequent patterns robustly is pos-
sible using gap constraints [JBD05].

The specific problem of detecting preamble/epilogue templates in the PG
corpus has been tackled by several hand-crafted rule-based systems [Atk04,
Bur05, Gru06].

2 Stripping PG

The PG corpus contains texts in different formats, and subsets of the corpus are
distributed on various media. An e-book may be available in several formats and
may have been revised (for instance, to correct errors) several times. Further-
more, a given book may exist in more than one edition, since published books
are frequently revised by their authors over time. An e-book file corresponds to
a certain format, edition and version of an e-book, and this paper is primarily

3

concerned with e-book files, rather than e-books themselves. The number of
e-book files in PG and its first DVD are given in Table 2, along with related
statistics. While some of these sizes were given by PG itself [Pro06b], others
were obtained by processing the DVDs, whereas yet other were extrapolated
from a random sample of approximately 100 e-books.

Due to the size of the full corpus, we report on results from the first and
second PG DVDs [Pro06a]. These DVDs contain most of the current text files
and can be viewed as snapshots of the text portion of the archive in 2003 and
2006. With few exceptions, e-books produced by PG are available in unstruc-
tured plain text, whereas only a smaller subset are available as XML or HTML.
Therefore, projects that wish to use data from PG need to work with unstruc-
tured text. However, the method by which PG e-books are created produces
some challenges.

Although the first PG e-books were undoubtedly typed in manually, the
production of e-books has been modernized although remaining manual. The
original documents are typically in a printed form and have been scanned. Vol-
unteers then use OCR and proof-reading tools such as the “Distributed Proof-
readers” [NF03] application (see Fig. 1). The volunteers merely translate a
printed document into an electronic text document: headers, tables, sections,
foreign text, and so on are not marked up in the plain-text version. At some
stage, boilerplate text is added.

With PG e-books, there is always a preamble that provides various standard
metadata, possibly comments from the transcribers, comments about the legal
status of the text, and so forth. Following the transcribed body of the book,
there is frequently an epilogue that contains further information about PG,
the transcribers, and so forth. Text-analysis tools are typically applied only to
the body of the book; clearly, a vocabulary analysis will not wish to report on
vocabulary that comes from the preamble. We want an automated solution to
remove the preamble and epilogue, and we are willing to accept less than perfect
accuracy in return for fast runtimes.

One additional complication is that the preamble and epilogue portions are
not entirely one block of boilerplate. The names of the transcribers, the title
of the book, and other variable items appear in the preamble and epilogue.
Further, it appears that the preamble and epilogues are typically the result of
human-guided cut-and-paste (or even re-typing) activities.

PG does specify how the preamble and the epilogue should be formatted.
An e-book file should always begin with a specified template [Pro06c]:

The PG eBook, (insert title), by (insert author)

This eBook is for the use of anyone anywhere at no cost and with

almost no restrictions whatsoever. You may copy it, give it away or

re-use it under the terms of the PG License included

with this eBook or online at www.gutenberg.org

** This is a COPYRIGHTED PG eBook, Details Below **

** Please follow the copyright guidelines in this file. **

4

Figure 1: Screen shot of the “Distributed Proofreaders” application.

Title: (insert title)

Author: (insert author)

Release Date: (insert date) [eBook #(insert ID number)]

Language: (insert language)

Character set encoding: (insert character encoding)

*** START OF THE PROJECT GUTENBERG EBOOK (insert title)***

--

---- the body of the text goes here ----

--

*** END OF THE PROJECT GUTENBERG EBOOK (insert title)***

******* This file should be named (insert file name) *******

(...)

However, few files satisfy this specification; for instance, none of the first 10
files posted on February 27, 2007 matched. In most cases, the first line lacked

5

n number of distinct n-grams error (%)
10 1.06 ×109 14
8 1.01 ×109 14
6 1.06 ×109 14
5 8.85×108 14
4 7.99×108 16
3 4.97 ×108 20
2 1.62 ×108 37
1 1.8 ×107 100

Table 3: Estimated number of distinct n-grams in the texts of the second PG
DVD.

a comma and an occurrence of ‘THE’ had been replaced by ‘THIS’. Further,
thousands of e-book files mention some of the old Internet hosts for PG, and
these were not updated when the host changed: only two e-book files in the first
DVD refer to www.gutenberg.org, and then not in the position required by the
specification. Similarly, on the second DVD at least 13,000 (and probably more)
of the roughly 20,000 files on the second DVD also do not match.

Besides the problem that the specification refers to items (such as Internet
hosts) that change over time, the specification is not meant for automated pro-
cessing. And the specification is not even complete: can we separate authors by
new lines or just comas or other punctuation? How are editors handled?

The desired preambles and epilogues used in PG e-book files have changed
several times over the years, and they may change again in future. This makes
fully hand-crafted PG parsers [Atk04, Bur05, Gru06] an unsatisfactory solu-
tion. We feel the best way to obtain a robust solution is to use methods that
automatically adjust to changes in data.

2.1 Domain Knowledge

Several properties of PG can help us choose an approach detect boilerplate.
First, we know that all PG e-book files have preambles, although not all have
epilogues. Second, we observe that the boilerplate text-flow is typically the
same throughout the documents: sentences are split into lines at the same
locations. This means that we can process frequent text-file lines, rather than
parsing sentences from the text and looking for frequent sentences. We found no
solution improvement and a notable running-time increase when we tried looking
for frequent sentences. Third, we can set reasonable bounds on the maximum
size of preamble and epilogue. Fourth, we can estimate the maximum number
of times that a non-trivial line from the body of an e-book may be replicated.

We know there some textual replication between PG e-book files — but how
much? Some e-books are compilations of an author’s work, whereas some of the
items in the compilation are sometimes themselves e-books. Considering the
two PG DVDs, there appears to be more replication in first PG DVD, where
we find over 700 e-books present in both the initial and a second (corrected)
version. Eighty e-books appear in a third version. Frankenstein is an extreme

6

case: the first DVD contains two editions of the book: one has five versions
on the DVD whereas the other has three, for a total of 8 similar e-books. We
estimate that nearly 10% of the first DVD’s e-book files are near-duplicates.
However, we do not expect to see more than 10 files that are (near) copies, for
any given e-book.

Finally, the properties of PG discourage us from considering frequent n-
gram approaches, where an n-gram (of words) is a consecutive sequence of n
words. To detect transitions in documents, n-gram statistics are sometimes
used [SGWG06]. For example, the 5-gram “END OF THE PROJECT GUTEN-
BERG” is likely to be frequent in the PG corpus. Computing the number of
occurrences of each n-gram can be done efficiently with suffix arrays using the
Nagao-Mori algorithm [NM94]. The size of the suffix array, which is several
times larger than the original corpus, seems an unnecessary burden when one’s
purpose is to remove boilerplate. Alternative data structures that maintain
counts for each distinct n-gram are unlikely to be much better as we deter-
mined [LK06] there are nearly 109 distinct 5-grams on the second PG DVD by
defining a word as text separated by white space (see Table 3).

3 Algorithm

Our solution identifies frequent lines of text in the first and last sections of
each file. These frequent lines are recorded in a common data structure. Then,
each file is processed and the prevalence of infrequent lines is used to detect a
transition from a preamble to the main text, and one from the main text to an
epilogue.

To motivate this approach, see Fig. 2. It shows the frequencies of the first
300 lines in each of 100 e-books randomly sampled from the first DVD. From
it, we see files with long preambles (an older style) as well as those with short
preambles (used in recent e-books).

 0

 50

 100

 150

 200

 250

pr
ep

ro
ce

ss
ed

 li
ne

s

e-books

Figure 2: Pre-processed lines of frequency 100+ in the first DVD. The y-
axis measures (pre-processed) line positions within an e-book file. There were
100 e-book files sampled from the first DVD.

7

3.1 Details

The core algorithm is shown in Algorithm 1. A line is frequent if it occurs more
than K times in the corpus: we chose K = 10. We used the following ideas.

1. Preamble and epilogue lines are frequent. Exceptions include lines meant
to contain the title of the work.

2. Lines not in the preamble or epilogue are infrequent with high probability,
except for trivial lines such as “CHAPTER 1”.

3. Within most preambles or epilogues, there may be small gaps of infrequent
text, but no large gaps.

4. The sizes of the preamble and epilogue can be bounded by pmax and emax

lines, respectively. (We use pmax = emax = 300, after removing trivial
lines.)

The algorithm always does some minor preprocessing of lines. It trims white
space from the beginning and end of each line, and it replaces runs of ‘*’, ‘-’
or whitespace characters by ‘***’, ‘---’ or ‘ ’, respectively. It then omits as
trivial those lines that are short (less than 30 characters) or have no alphabetic
characters. These rules reflect the variety of typing discrepancies that seem
likely when a human typist attempts manual duplication of boilerplate, or from
“boundary errors” during cut-and-paste sessions. Omitting short lines should
avoid problems from lines such as “CHAPTER ONE.”

3.2 Classification-Error Effects

Since Algorithm 1 cannot directly infer that a line belongs to the preamble
or epilogue, it approximates this by distinguishing between frequent and in-
frequent lines. This test can yield a false positive when a non-boilerplate line
occurs frequently, or a false negative when a boilerplate line occurs infrequently.
The situation becomes worse if we choose inexact methods for determining line
frequency.

Two types of errors may occur when trying to identify the preamble from
line frequencies. If a sequence of false negatives occurs within the preamble,
then we may cut the preamble short. If some false positives occur shortly after
the preamble, then we may overestimate the size of the preamble. The analysis
of the epilogue follows a similar pattern.

The effect of false negatives on the underestimation of the preamble is dif-
ficult to assess analytically, since occurrences are not independent of one an-
other. For instance, an infrequent line about some unusual copyright situa-
tion is probably followed by another infrequent line that elaborates. Never-
theless, in the simplistic analytic model where false negatives occur with prob-
ability σ, the probability of encountering GAP MAX false negatives is small

and bounded by LσGAP MAX ≤ 300σGAP MAX where L is the length of
the preamble in lines (known to be almost always smaller than 300). Even

if σ is moderately large (25%), the probability 300σGAP MAX will be very
close to 0 for GAP MAX ≈ 10 (for example, 300 × 0.2510 ≈ 0.0003). In

8

Algorithm 1 Algorithm to detect the end and start of boilerplate in a collection
of documents. Lines that are too short or have no alphabetical characters are
ignored.

Pass 1: identify frequent versus infrequent text
pmax ← 300, emax ← 300
Scan first pmax and last emax lines of each file.
for each line seen do

pre-process line
record in a frequent-lines data structure

end for

Pass 2: identify preambles and epilogues
for each file do

constant GAP MAX ← 10
pre-process lines, skip till frequent line seen
gap ← 0
while gap < GAP MAX do

read and pre-process line
if line is frequent then

gap ← 0
else

increment gap
end if

end while
record that the preamble ends at the last-seen frequent line
process the lines in the file in backwards order
gap ← 0
while gap < GAP MAX do

read previous and pre-process line in file
if line is frequent then

gap ← 0
else

increment gap
end if

end while
record that the epilogue starts at the most-recently-seen frequent line, or that no
epilogue was seen if no frequent line was found

end for

fact, the expected number of lines before GAP MAX false negatives are en-
countered is

∑GAP MAX
k=1 σ−k (see Proposition 1) which is 1.4 million lines for

GAP MAX = 10 and σ = 0.25. Therefore, we might conclude that it is unlikely
we will cut the preamble short by more than GAP MAX lines. This is assessed
experimentally in § 4.

Proposition 1 If the probability of flipping a head is p, then the expected time
before a consecutive sequence of n heads are observed is

∑n
i=1 1/pi.

9

Proof. Let H(k, n) be the expected time before we observe a sequence of n heads
given that we just observed a sequence of k heads. We have that H(k, n) =
(1− p)(1 +H(0, n)) + p(1 +H(k + 1, n)) = 1 + (1− p)H(0, n) + pH(k + 1, n).
Starting with H(0, n) = p(1 + H(1, n)) + (1 − p)(H(0, n) + 1) = 1 + (1 −
p)H(0, n) + pH(1, n) and recursively substituting the former equation, we get
H(0, n) = (1 − pk)H(0, n) + 1 + p + . . . + pk−1 + pkH(k, n), which we can
prove by induction. Thus, because H(n, n) = 0, we have the desired result:

H(0, n) = 1+p+...+pn−1

pn . �
However, regarding the risk of overestimation, it seems reasonable to as-

sume the occurrences of false positives occur independently with probability p
and an analytical approach is more conclusive. Indeed, in the body, one line’s
being frequent (such as “CONTENTS OF THE SECOND VOLUME.”) would
rarely imply that neighbouring lines are frequent. For simplicity, we assume
that there are no false negatives — false negatives only help the situation —
and we focus on preambles. Epilogues would be similar. Let p denote the prob-
ability of a false positive. We see that the last line of the identified preamble
will be GAP MAX (pre-processed) lines before the point when a consecutive
sequence of GAP MAX negatives has been seen. Using Proposition 1, we de-
termine that the expected number of misclassified lines following the preamble
is
∑GAP MAX
k=1 (1− p)−k −GAP MAX.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
is

cl
as

si
fie

d
lin

es

p (false positive probability)

GAP MAX=6
GAP MAX=10
GAP MAX=15

Figure 3: Expected number of non-preamble lines misclassified, given false-
positive probability p. We assume false positives are independent and show
results on a logarithmic y axis.

Figure 3 shows the effect of various values of p on this function. With
MAX GAP = 10, we want p ≤ 20%.

3.3 Data Structures

The algorithm’s first pass builds a data structure to identify the frequent lines in
the corpus. Several data structures are possible, depending whether we require
exact results and how much memory we can use. One approach that we do not
consider in detail is taking a random sample of the data. If the frequent-item

10

threshold is low (say K = 5), too small a sample will lead to many new false
negatives. However, when K is large, sampling might be used with any of the
techniques below.

Although we assume that only 600 (pmax + emax) lines are processed per
PG e-book file, there may be similar applications where this assumption cannot
be made and the entire file must be processed. The impact of removing the
assumption on the desired data structure should be considered.

3.3.1 Exact Counts Using Internal Memory

For exact results, we could build a hash table that maps each line
seen to an occurrence counter. In Java, the Collections library provides
HashMap<String,Integer>. This has the disadvantage of consuming much
memory. Of the 600 pre-processed lines we take from each file, we estimate
about half are unique, non-preamble/epilogue lines, because a given file nor-
mally has a large preamble or a large epilogue, but not both. Within the first
and last 300 pre-processed lines of the first DVD’s files, we see only 3.4 mil-
lion distinct lines. A routine estimation (details omitted) says we need about
700 MiB for our data structure. If the data structure indeed fits, it will tie up
most of our main memory (see Table 2).

3.3.2 Exact Counts Using External Memory

To know exactly which lines occur frequently, if we have inadequate main mem-
ory, an external-memory solution is to sort the lines. Then a pass over the sorted
data can record the frequent lines, presumably in main memory. If we build a
file F containing just the first and last 300 non-trivial pre-processed lines of each
file, the following GNU/Linux pipeline prints a list of under 3,000 frequent lines
(occurring 10 times or more) in less than 100 s on our somewhat old server:

sort F -S 512M | uniq -c | egrep -v ’^ *[1-9] ’

Part of the result (frequency counts and the lines) is shown in Fig. 4. A his-
togram for the data (see Fig. 5(a)) shows that the distribution is very skewed:
out of 3.4 million distinct lines, 2.6 million lines appear only once and 0.7 mil-
lion lines lines appear twice, with less than 100,000 lines appearing more than 2
times and fewer than 3,000 appearing 10 or more times. We see e-book-specific
text occurring with some surprising frequency due to cut-and-paste errors (we
verified that 19 files that were not 1rbnh10.txt, mistakenly claimed that this
should be their name). We also see boilerplate shifts: (eBook and EBook versus
etext, net versus gross and Project versus Foundation). Only 53 files have the
twenty percent spelled out (see Fig. 4), illustrating that rare boilerplate does
occur and showing how false positives/negatives may arise.

3.3.3 Checksumming

For nearly exact results, we can hash lines to large integers, assuming that
commonly used hashing algorithms are unlikely to generate many collisions.
We chose the standard CRC-64 checksum, and a routine calculation [Wik07]
shows that with a 64-bit hash, we can expect to hash roughly 264/2 distinct

11

68 ***The Project Gutenberg’s Etext of Shakespeare’s First Folio***

1034 ***These EBooks Were Prepared By Thousands of Volunteers***

1415 ***These Etexts Are Prepared By Thousands of Volunteers!***

126 ***These Etexts Were Prepared By Thousands of Volunteers!***

5058 ***These eBooks Were Prepared By Thousands of Volunteers!***

20 ***This file should be named 1rbnh10.txt or 1rbnh10.zip***

128 (2) Pay a royalty to the Foundation of 20% of the gross

54 (2) Pay a royalty to the Project of 20% of the net

53 [3] Pay a trademark license fee of 20% (twenty percent) of the

8061 [3] Pay a trademark license fee to the Foundation of 20% of the

Figure 4: Some of the approximately 3,000 frequent sorted lines in the first
DVD.

lines before getting a collision. With hashing, each line is represented using
8 bytes, reducing memory usage tenfold. Even considering the other overheads
of the data structure, Java’s HashMap<Long,Integer>, it seems clear that the
tops and bottoms of all PG files can be processed comfortably within our 1 GiB
limit.

If we hold constant the threshold K beyond which an item is considered
frequent, checksumming does not increase the rate of false negatives. It may
increase the rate of false positives, when the sum of several colliding lines’ fre-
quencies exceeds K. This effect should be negligible for CRC-64.

Solutions that use even less memory may be desirable, when all of a file
must be processed. For instance, suppose that a block of boilerplate could
appear anywhere in a file.

3.3.4 Hashing to Millions of Counters

To use even less memory than CRC-64 hashing, one solution is to use a smaller
hash (e.g., a 30-bit hash) and accept some collisions. Once the range of the
hash function is small enough, it can directly index into an array of counters,
rather than requiring a lookup in a secondary structure mapping checksums to
counters. This could lead to speed or space advantages: for the entire PG corpus
and with K = 10, we could use 230 8-bit counters for a total of 1 GiB. With
larger K (K > 255), approximate counting [Mor78] can trade count accuracy

for the ability to count to 22
8

.
When using this data structure with Algorithm 1, frequent lines will be

correctly recognized as such, but we can expect to increase the rate of false
positives for two reasons. First, we get a false positive from an infrequent line
that shares the same counter with a frequent line. Second, we get false positives
from a collection of infrequent lines that share the same counter and jointly
have too many occurrences.

In our experiments on the first PG DVD, we process only files’ tops and bot-
toms, and we use a 23-bit hash with the 3.4 million distinct lines. Assume that
hashing distributes lines uniformly and independently across the counters. Then
the probability that a randomly selected infrequent line will share a counter with

12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

(a) Number of lines appearing a certain number of times.
The scales are logarithmic.

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30

(b) Probability to pick a line having at least the given
number of occurrences.

Figure 5: Line occurrence statistics in the beginning and end (300 non-trivial
lines) of text documents on the second Gutenberg DVD.

one of the ≈ 3000 frequent lines is estimated as ≈ 3000 × 2−23 = 3.6 × 10−4.
These few additional false positives should not be harmful.

It is more difficult to assess the additional false positives arising when a
collection of infrequent lines share a counter and together have an aggregate
frequency exceeding the frequent-item threshold, K. We can approach this
problem experimentally. Since we do not precisely know the boilerplate locations
for the entire first DVD, we plot the number of lines that falsely appear frequent
due to hashing, divided by the number of lines processed. This is affected by
K (we show several values of K) and by the number of counters used (x-axis).
Fig. 6 shows these experimental results and two theoretical bounds we shall
derive.

13

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100000 1e+06 1e+07 1e+08

K=10
K=20
K=80

K=320
theor. bound

skewed bound

Figure 6: Lines falsely assessed as frequent (as a proportion of the total as-
sessments done) versus number of counters, c. Several different frequent-line

thresholds (K) are shown, as well as the theoretical bound 1− e−n−1
c where n

is the number of distinct lines. The skewed distribution bound is pn−1c with
p = 1/1000.

Consider the probability, pFP, that a line j picked at random among all
lines in a file is a false positive. Let X1 be the frequency of our chosen line.
Naturally, more frequent lines are more likely to be picked. By definition,
if the line is frequent, it cannot be a false positive. Thus pFP = P (X1 ≤
K)P (line j is a false positive|X1 ≤ K).

Assuming that the hashing is uniform and independent, then the number
N of distinct lines hashed to a certain value follows a binomial distribution.
We need to pick a line j at random: for k ≥ 1, the probability that k dis-
tinct lines are hashed to the same hash value is P (N = k) = B(n − 1, k −
1, 1c) =

(
n−1
k−1
)
(1
c)k−1(1 − 1

c)n−k or, alternatively, P (N = k) = kc
n B(n, k, 1c) =

kc
n

(
n
k

)
(1
c)k(1− 1

c)n−k. Because n is large, we can approximate the binomial distri-

bution with a Poisson distribution (e−
n−1
c

(
n−1
c

)k−1
/(k− 1)!). The probability

that we have a false positive when X1 ≤ K is P (line j is a false positive|X1 ≤
K) = P (X1 + X2 > K|X1 ≤ K)P (N = 2) + P (X1 + X2 + X3 > K|X1 ≤
K)P (N = 3) + . . . where Xi denotes the count of one of the various distinct
lines with the same hash as line j. Moreover, we can bound how many distinct
lines can be hashed together. Indeed, under the assumption that n ≤ c, because

P (N = k) ≈ e−
n−1
c

(
n−1
c

)k−1
/(k − 1)! ≤ 1/(k − 1)!, we have that P (N ≥ 9) .∑∞

k=9 1/(k − 1)! ≈ 2× 10−5 and P (N ≥ 6) .
∑∞
k=5 1/(k − 1)! ≈ 0.05.

The exact probability of detecting a false positive naturally depends on the
value of the counter X1, but we can at least bound the probability of observing
a false positive as follows. First, a false positive requires one (or more) lines
hashed together with the current line. Thus, a crude upper bound is pFP ≤
P (line j is a false positive|X1 ≤ K) ≤ P (N ≥ 2) = 1 − P (N = 1) = 1 − (n −
1)!(1− 1/c)n−1 ≈ 1− e−n−1

c .

14

Finer bounds are possible by using Chebyshev’s inequality or exact knowl-
edge of the distribution of the X values. If we assume that the distribution
of the X values is very skewed, X is larger than K with a very small prob-
ability p and small compared to K otherwise, then we can also assume that
P (
∑k
i=1Xi > K|X1 ≤ K) . (k−1)p for k < 10. Then, the probability of a false

positive whenX1 ≤ K is P (X1+X2 > K|X1 ≤ K)P (N = 2)+P (X1+X2+X3 >

K|X1 ≤ K)P (N = 3) +
∑∞
k=2(k − 1)pe−

n−1
c

(
n−1
c

)k−1
/(k − 1)! = pn−1c .

(The expected value of the Poisson distribution is
∑∞
k=0 ke

−λλk/k! = λ.) Hence,

pFP ≤ pn−1c and it follows that if P (
∑k
i=1Xi > K|X1 ≤ K) . (k − 1)p for

k < 10, the probability of a false positive is no more than p. We estimate
from Fig. 5(b) that the Gutenberg line data set has such a distribution with
p ≈ 1/1000 for K ≈ 100. In Fig. 6 this bound, pn−1c , is compared against some
experimental results.

3.3.5 Tracking Hot Items

Many algorithms have been developed for detecting “frequent items” in streams,
and we might use one with Algorithm 1. In such a context, we are not interested
in counting how many times a given item occur, we only want to retrieve frequent
items. Cormode and Muthukrishnan survey some of them [CM05b]. Given
enough memory, Pass 1 of our algorithm can be done with one pass through the
corpus. Yet if we seek to reduce memory usage, then we must either give up
the ability to capture all frequent items (create false negatives), or the ability
to capture only the frequent items (create false positives), or several passes are
required.

Typically, in one pass, these algorithms deliver a set that contains all frequent
items (and some infrequent items). A particularly simple and fast determinis-
tic method, Generalized Majority (GM), has been developed independently by
several authors [DLM02, KSP03, MG82].

Algorithm 2 GM Algorithm [DLM02, KSP03, MG82]: at the end of the run,
all elements occurring at least n/(c+ 1) times are monitored by a counter.

Input: a stream of length n
initialize all c counters to zero
for each element in the stream do

if the element is not currently monitored by a counter and a counter is zero
then

set this counter to monitor the item
end if
if the element is monitored then

increment the counter
else

decrement all counters
end if

end for

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5 1 1.5 2 2.5 3

Figure 7: Efficiency of the GM algorithm for various Zipfian distributions. The
item of rank r has frequency proportional to 1/rx.

GM uses c counters, where c ≥ 1/f − 1 and f is the minimum (relative)
frequency of a frequent item; in the special case where f = 1/2, a single counter
is sufficient (see Algorithm 2). GM can be implemented to run in O(1) time
per element [DLM02]. The implementation uses doubly linked lists of doubly
linked lists, as well as auxiliary data structures mapping counted items to their
counters. Hence it may use significant memory per counter.

Probabilistic variants of GM have been proposed [DLM02]. However, in the
case where the distribution is very skewed, the algorithm already provides a
good approximation of the frequent items: it suffices to keep only the items
with the largest count values. We believe this observation is novel, though there
is related work [CM05a]. To evaluate its accuracy, we generated generalized
Zipfian data sets (n ≈100,000) containing 1,000 distinct items: the frequency of
the rank r item is proportional to 1/rx. We then apply the GM algorithm and
find the largest value of k such that the top-k-items query is exact.

Let this value of k divided by the number of counters c be called the efficiency
of the algorithm. For each value of x, we repeat the experiment 30 times, with
different random ordering of the items, and compute the average efficiency. The
result is presented in Fig. 7 for c = 30; we determined empirically that the
efficiency is not sensitive to the number of counters. Clearly, for highly skewed
distributions, the efficiency can be very close to 100%.

Consider using GM to detect frequent lines in Algorithm 1. Scanning only
the tops and bottoms of files, we see 3 × 106 lines, and suppose we choose
K = 100. To guarantee a set of items that includes all such frequent lines we
need at least 3×104 counters (3×104×100 ≥ 3×106). Since we know that this
is much larger than the number of frequent items, we will have introduced many
false positives. However, by the previous argument and assuming a very skewed
distribution, we can select the items with a relatively large count and expect to

16

have few false positives. We will review the applicability of GM experimentally
later on.

3.4 Heuristic Improvements

A large majority of PG e-books can have their preambles and epilogues de-
tected by a few heuristic tricks. However, there are many exceptions where the
tricks fail, and our experience is that they cannot replace the frequent-line ap-
proach without being significantly more complex and constantly updated. Yet,
heuristics can improve processing based on frequent lines.

The heuristic rules we consider can be expressed as Java regular expressions.

• If a line near the beginning of the file matches the following, it is part of
the preamble.
[\s*]**[\s]?(START\sOF\s(THE|THIS)\sPROJECT

\sGUTENBERG|END[\s*]THE\sSMALL\sPRINT!).*

• If a line near the end of the file matches the following, it is part of the
epilogue.
This|THIS|this|Is|IS|is|The|THE|the|Of|OF

|[*\s]|of)*(End|END|end)(\s|Of|OF|of|The|THE

|the|This|THIS|this)*(Project\s+Gutenberg|

PROJECT\s+GUTENBERG).*

• If a line begins with ETEXT and is near the end of the file, it is part of the
epilogue.

4 Experimental Results

We implemented Algorithm 1 and the data structures discussed in § 3.3 in Java
1.5 (using Sun’s JDK 1.5.0) and tested them on a older machine with Pentium 3
Xeon processors (700 MHz with 2 MiB cache) and 2 GiB of main memory. The
OS kernel was Linux 2.6.18, and the disk system had three 10 kRPM Ultra SCSI
disks. We copied the contents of the first PG DVD onto the hard disk and did
some simple preparations, primarily unzipping all files and removing README
files.

We chose 100 e-book files randomly out of the approximately 11,000 and
the boilerplate boundaries were determined exactly by the authors. The algo-
rithm then processed all files (≈ 11, 000), and then its accuracy was assessed by
checking the sample. The GM data structure used c = 105 counters, whereas the
hashing algorithm used c = 223 counters. (Since GM stores lines and uses com-
plicated auxiliary data structures, the actual memory used by GM and hashing
was much closer than comparing c values would indicate.) The threshold be-
yond which a line is considered frequent is K = 10 for all data structures except
for GM where we used a counter value2 of 5.

Results were compared with and without the use of the supplementary
heuristics from § 3.4.

17

-32

-10

-3

0

3

10

32

100

 0 10 20 30 40 50 60 70 80 90 100

23-bit hash
exact and CRC-64

GM

(a) Preamble errors.

-32

-10

-3

0

3

10

32

100

 0 10 20 30 40 50 60 70 80 90 100

23-bit hash, CRC-64, GM and exact

(b) Epilogue errors.

-32

-10

-3

0

3

10

32

100

 0 10 20 30 40 50 60 70 80 90 100

CRC-64 and exact
GM

GM - no heuristics

(c) Preamble errors. 23-bit-hashing (not
shown) was marginally better than CRC-64
on the first 10 e-books and identical for the
rest.

-32

-10

-3

0

3

10

32

100

 0 10 20 30 40 50 60 70 80 90 100

23-bit hash, CRC-64, exact and GM
GM - no heuristics

(d) Epilogue errors.

Figure 8: Preamble/epilogue errors (negative quantities mean that too many
lines were removed; positive quantities mean insufficient lines were removed).
In 8(c) and 8(d) heuristics were used along with the frequent-line algorithm
(with the exact and GM data structures) whereas heuristics were not used in
8(a) and 8(b). For comparison, GM is also shown without heuristics.

4.1 Errors

Figures 8(a) and 8(b) show the number of lines missed by the preamble-removal
or epilogue-removal process, respectively, for each of the 100 files where we
sorted the files by the number of lines missed. Errors (number of lines) are
measured in actual e-book lines, including trivial lines that pre-processing had
discarded.

In these experiments we did not use the regular-expression-based heuristics.
Looking at epilogues, we see the choice of data structure did not have much
effect on accuracy; problems with false positives or negatives must come from
the data itself. For preambles, we see that the GM approach had moderately
higher errors in about 30% of the cases. However, this always involved 10 or
fewer lines.

2GM decrements, so this does not mean K = 5.

18

Figures 8(c) and 8(d) show how the errors changed when we did use the
regular-expression-based heuristics. Comparing results on preamble detection,
we see that the heuristics were somewhat helpful, but GM still had difficulties
compared to using exact counts in about 30% of the cases.

Comparing results on epilogue detection, we see that heuristics reduce our
error to 0 in about 75% of cases (whereas in these cases, GM without heuristics
would have had an error of 1–10 lines).

4.2 Run Times

Our Java implementation of Algorithm 1 processed the DVD’s files in 20-30
minutes, for each of the data structures. The bottleneck is our unoptimized
implementation of line pre-processing; this trivial task obscures the differences
between the data structures. Yet, it seems clear that with sufficient implemen-
tation effort this preprocessing bottleneck could be removed. Then, the speed
differences would arise from the choice of frequent-lines data structure, and
the differences between these data structures will be most pronounced during
the construction of the structure (the first pass); during the second pass, the
classification of lines typically involves a similar O(1) frequency look up per line.

Therefore, we prepared a single file containing pre-processed tops and bot-
toms of the files on the first PG DVD. We then used this file to construct each
of the data structures, subtracting the time (approximate 20 s) it took to read
the file. Experiments considered a range of values for c, the number of counters
used. For each data point, ten trials were made and their average is shown in
Fig. 9. Exact and CRC-64 always use as many counters as there are distinct
lines whereas the 23-bit hash always allocates the same number of counters;
times for these data structures should not vary with c.

We see that 23-bit hashing was the fastest approach, requiring about 55 s.
For small c, GM is nearly as fast, but it slowed as c increases to the number of
distinct items (3.4 million), at which point its speed resembles the exact struc-
ture. This is not surprising; GM uses a Java HashMap to associate each counted
line to its counter. The “exact” implementation was slowest, and it also uses
a HashMap for the same purpose, although “exact” maps to an Integer rather
than GM’s more complicated data structure. When fewer counters are used,
GM maintains a smaller HashMap and, despite having to do additional book-
keeping beyond “exact”, the speed benefit of the smaller HashMap outweighs the
cost of book-keeping. When CRC-64 is used, these values are also stored in a
HashMap, so the speed advantage enjoyed by CRC-64 presumably arises from its
more economical use of memory. If GM stored CRC values rather than strings,
its performance should match CRC-64 when c ≥3.4 million.

Experiments were limited to 224 counters because GM made our system run
out of memory when 226 counters were used (we limited the JVM to 1.8 GiB).
While this might be due to an inefficient implementation, we feel that only our
23-bit hashing implementation (which uses space-efficient arrays of basic types)

19

 50

 100

 150

 200

 1000 10000 100000 1e+06 1e+07 1e+08

23-bit hash
CRC-64

GM
exact

Figure 9: Wall-clock times (s) to build the frequent-lines structures vs. the
number of counters, c.

would successfully scale for much larger corpora. Of course, using external-
memory techniques is also a viable solution. Recall that GNU/Linux shell utili-
ties, presumably highly optimized, could sort and build the list of frequent lines
in under 100 s.

4.3 Comparison to GutenMark

Of those software tools that reformat PG e-books, it appears only Guten-
Mark [Bur05] formally attempts to detect the preamble, so it can be stripped.
We used its most recent production release, dated 2002, when PG e-books did
not have a long epilogue. Thus we can only test it on preamble detection.

GutenMark attempts to bypass all prefatory material, whether inserted by
PG or part of the original text. To do so, it tries to detect the body of the text,
looking for markers such as “Chapter I.” Unlike our tool, it thus tries to omit
tables of contents, etc.

With GutenMark, the preamble is stripped only in an output format (we use
HTML) and the stripping is accompanied with various reformatting heuristics:
all-capitalized text is transformed in italics, punctuation is transformed into
HTML entities, and headers are identified and marked using h1 elements in
HTML.

To determine where GutenMark infers the preamble, we use the main header
tags (h1 elements in HTML) that it generates. Usually, the first header is
“Prefatory Materials” and the second begins the body of the e-book. We then
have to map this back to corresponding lines in the original text file, which may
look quite different due to reformatting.

Processing e-book files with GutenMark is slow compared to our implementa-
tions of Algorithm 1, but it is unfair to draw conclusions from this. GutenMark
was not intended to process a large corpus, and it processes all of the file. A
heuristic-based approach similar to GutenMark could probably be implemented

20

so that it would run faster than our approach: it has no frequent-line data struc-
ture to maintain and can probably process the corpus in a single pass. However,
is it accurate?

Figure 10 shows the errors obtained when we inferred where GutenMark
detected preambles. In one case, Diary of Samuel Pepys, October 1666, we see
an error of more than 1000 lines. Apparently the diary format used did not
have headings GutenMark could detect.

-10000

-1000

-100

-10

0

10

100

 0 10 20 30 40 50 60 70 80 90 100

GutenMark
exact with heuristic

Figure 10: Preamble errors for GutenMark.

Despite several other large errors, in many cases the GutenMark approach
worked reasonably well. Its erratic behaviour illustrates the risk of heuristics
rules inferred manually from an out-of-date corpus version.

5 Conclusion

The PG Project is a good example of a large, poorly structured data set. Nev-
ertheless, it is evidently proving useful since thousands of volunteers contribute
to the project every year.

Detecting the PG-specific preambles and epilogues is maybe surprisingly
difficult. There are instances where a human without knowledge of English
probably could not accurately determine where the preamble ends. Nevertheless,
our approach based on line frequency can approximately (within 10%) detect
the boilerplate in more than 90% of the documents (see Fig. 8).

Line frequency follows a very skewed distribution and thus, as we have
demonstrated, hashing to small number of bits will not lead to a large num-
ber of lines falsely reported as frequent. Indeed, using 23-bit line hashing,
we can approximately find the frequent lines, with an accuracy sufficient so
that preamble/epilogue detection is not noticeably affected. Simple rule-based
heuristic can improve accuracy in some cases, as observed with epilogues.

Future work should include automatic detection of the remaining cases,
which require human intervention. In general, this will be difficult. Yet a few
simple sanity tests are possible; for instance, seeing ‘Gutenberg’ in the body of
an e-book is typically a sign of trouble.

21

All that is required for our approach to scale up is to detect frequent lines
efficiently. Because the distribution of line frequency is very skewed, highly effi-
cient algorithms are possible, such as the hashing and GM algorithms, without
sacrificing accuracy significantly.

Training accuracy could be improved by including only one copy of each
e-book, or forming separate frequent-lines data structures for preambles and
epilogues. Much replication can be removed by using PG catalogue metadata
that is available from the Project. We did not use it; thus, our results apply to
similar corpora lacking catalogue metadata.

Acknowledgements

The first author was supported in part by NSERC grant 155967, and the sec-
ond author was supported in part by NSERC grant 261437 and FQRNT grant
112381.

References

[AG06] Darren C. Atkinson and William G. Griswold. Effective pattern
matching of source code using abstract syntax patterns. Softw.,
Pract. Exper., 36(4):413–447, 2006.

[Atk04] Tyler Atkins. Newgut program. online: http://rumkin.com/

reference/gutenberg/newgut, 2004. last checked 18-01-2007.

[Bur05] Ronald S. Burkey. GutenMark download page. online: http://

www.sandroid.org/GutenMark/download.html, 2005. last checked
18-01-2007.

[CM05a] G. Cormode and S. Muthukrishnan. Summarizing and mining
skewed data streams. In SDM’05, 2005.

[CM05b] G. Cormode and S. Muthukrishnan. What’s hot and what’s not:
tracking most frequent items dynamically. ACM Trans. Database
Syst., 30(1):249–278, 2005.

[Coo07] Mike Cook. Project Gutenberg weekly newsletter — week #05-
2007. online, http://www.gutenberg.org/newsletter/archive/
PGWeekly_2007_02_07.txt, 2007. last checked 2007-02-27.

[CYL06] Liang Chen, Shaozhi Ye, and Xing Li. Template detection for large
scale search engines. In SAC ’06, pages 1094–1098, 2006.

[DLM02] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Fre-
quency estimation of internet packet streams with limited space.
In Proceedings of ESA-2002, LNCS 2461, pages 348–360. Springer-
Verlag, 2002.

[DMG05] Sandip Debnath, Prasenjit Mitra, and C. Lee Giles. Automatic
extraction of informative blocks from webpages. In SAC ’05, pages
1722–1726, 2005.

22

http://rumkin.com/reference/gutenberg/newgut
http://rumkin.com/reference/gutenberg/newgut
http://www.sandroid.org/GutenMark/download.html
http://www.sandroid.org/GutenMark/download.html
http://www.gutenberg.org/newsletter/archive/PGWeekly_2007_02_07.txt
http://www.gutenberg.org/newsletter/archive/PGWeekly_2007_02_07.txt

[GPT05] David Gibson, Kunal Punera, and Andrew Tomkins. The volume
and evolution of web page templates. In WWW ’05, pages 830–839,
2005.

[Gru06] John Grunenfelder. Weasel reader: Free reading. online: http:

//gutenpalm.sourceforge.net/, 2006. last checked 18-01-2007.

[IY04] Daisuke Ideda and Yasuhiro Yamada. Gathering text files generated
from templates. In IIWeb Workshop, VLDB-2004, 2004.

[JBD05] X. Ji, J. Bailey, and G. Dong. Mining minimal distinguishing subse-
quence patterns with gap constraints. In ICDM’05, pages 194–201,
2005.

[KL07] Owen Kaser and Daniel Lemire. Removing manually generated boil-
erplate from electronic texts: Experiments with Project Gutenberg
e-books. In CASCON’07, 2007.

[KSP03] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A
simple algorithm for finding frequent elements in streams and bags.
ACM Trans. Database Syst., 28(1):51–55, 2003.

[LK06] Daniel Lemire and Owen Kaser. One-pass, one-hash n-gram count
estimation. Technical Report TR-06-001, Dept. of CSAS, UNBSJ,
2006. Available from http://arxiv.org/abs/cs.DB/0610010.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Sci.
Comput. Program., 2(2):143–152, 1982.

[Mor78] Robert Morris. Counting large numbers of events in small registers.
Commun. ACM, 21(10):840–842, 1978.

[NF03] G. B. Newby and C. Franks. Distributed proofreading. In Digital
Libraries 2003, pages 27–31, 2003.

[NM94] Makoto Nagao and Shinsuke Mori. A new method of n-gram statis-
tics for large number of n and automatic extraction of words and
phrases from large text data of Japanese. In COLING’94, pages
611–615, 1994.

[Pro06a] Project Gutenberg Literary Archive Foundation. The CD and
DVD project. http://www.gutenberg.org/wiki/Gutenberg:The_
CD_and_DVD_Project, 2006. checked 2007-03-16.

[Pro06b] Project Gutenberg Literary Archive Foundation. Gutenberg:
Mirroring how-to. http://www.gutenberg.org/wiki/Gutenberg:

Mirroring_How-To, 2006. checked 2007-1-17.

[Pro06c] Project Gutenberg Literary Archive Foundation. Project Gutenberg
header how to. http://www.gutenberg.org/wiki/Gutenberg:

Project_Gutenberg_Header_How-To, 2006. checked 2006-10-17.

23

http://gutenpalm.sourceforge.net/
http://gutenpalm.sourceforge.net/
http://arxiv.org/abs/cs.DB/0610010
http://www.gutenberg.org/wiki/Gutenberg:The_CD_and_DVD_Project
http://www.gutenberg.org/wiki/Gutenberg:The_CD_and_DVD_Project
http://www.gutenberg.org/wiki/Gutenberg:Mirroring_How-To
http://www.gutenberg.org/wiki/Gutenberg:Mirroring_How-To
http://www.gutenberg.org/wiki/Gutenberg:Project_Gutenberg_Header_How-To
http://www.gutenberg.org/wiki/Gutenberg:Project_Gutenberg_Header_How-To

[Pro09] Project Gutenberg Literary Archive Foundation. Project Guten-
berg. http://www.gutenberg.org/ (checked 2009-08-03), 2009.

[SCKL04] R. Segal, J. Crawford, J. Kephart, and B. Leiba. SpamGuru: An
enterprise anti-spam filtering system. In Proceedings of the First
Conference on E-mail and Anti-Spam, 2004.

[SGWG06] Daria Sorokina, Johannes Gehrke, Simeon Warner, and Paul
Ginsparg. Plagiarism detection in arXiv. In ICDM ’06: Proceed-
ings of the Sixth International Conference on Data Mining, pages
1070–1075, Washington, DC, USA, 2006. IEEE Computer Society.

[SWA03] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local
algorithms for document fingerprinting. In SIGMOD’2003, pages
76–85, 2003.

[Wik07] Wikipedia. Birthday paradox — Wikipedia, the free encyclopedia,
2007. [Online; accessed 18-01-2007].

24

http://www.gutenberg.org/

	1 Introduction
	1.1 Contribution and Organization
	1.2 Related Work

	2 Stripping PG
	2.1 Domain Knowledge

	3 Algorithm
	3.1 Details
	3.2 Classification-Error Effects
	3.3 Data Structures
	3.3.1 Exact Counts Using Internal Memory
	3.3.2 Exact Counts Using External Memory
	3.3.3 Checksumming
	3.3.4 Hashing to Millions of Counters
	3.3.5 Tracking Hot Items

	3.4 Heuristic Improvements

	4 Experimental Results
	4.1 Errors
	4.2 Run Times
	4.3 Comparison to GutenMark

	5 Conclusion

