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Abstract: 
This brief survey compiled different adversarial attacks that are reported, and associated defense 

strategies devised. While all Machine Learning (ML) techniques are not Neural Networks (NN) or 

Deep Learning (DL) but many scholars and practitioners are using the terms interchangeably. This 

summary uses the term ML for generalization. The majority of Adversarial Machine Learning 

(AML) focused on image manipulations (and crafted attacks are specific to datasets), some works 

studied other media and tried to develop universal perturbations schemes. Also, reported works in 

the literature on defense mechanisms provide piece-meal solutions to AML. Whereas, this survey 

provides the information in a concise tabular form (highlighting important features, strategies, and 

classification) for better understanding and clarity.  
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Overview: 

 
Machine Learning (ML) techniques have recently attained impressive performances on 

diverse and challenging problems such as malware/intrusion detection, image classification, object 

detection, speech recognition, face recognition in-the-wild, self-driving vehicles, just to name a 

few. In spite of their major breakthroughs in solving complex tasks, it has been lately discovered 

that ML techniques (especially artificial neural networks and data-driven artificial intelligence) are 

highly vulnerable to deliberately crafted samples either at training or at test time, which can easily 

subvert ML techniques’ outcomes. The samples with deliberate perturbations are usually referred 

as ‘adversarial examples’ (a.k.a. wild pattern or adversarial attack), i.e., carefully-perturbed 

samples aimed to mislead the ML techniques. For instance, the arbitrary perturbations added in 

the benign malware binary vector/file can lead to a significant drop in accuracy of DNNs-based 

malware detection systems. Similarly, for image classification ML techniques, an adversarial 

example can be generated by adding some indiscernible perturbations into a given image. The 

resultant adversarial image is misclassified by the well-known ML classifiers, while a human being 

can still classify it correctly without spotting the deliberate added perturbations. In case of 

automatic speech-to-text transcription, a small perturbation (e.g., an arbitrary waveform) when 

added to the original waveform can cause it to be transcribed as any phrase malicious adversary 

chooses. The audio adversarial examples that are perceived one way by a human but transcribed 

differently by a state-of-the-art speech-to-text transcription neural network. Also, an adversary can 

malignly modify labels of the samples to be used for (re-)training of ML techniques, which is 

known as poisoning attacks. 

 

To safeguard ML techniques against malicious adversary, several countermeasure schemes 

have been proposed, which roughly fall within two categories: adversarial defense and adversarial 

detection. Frameworks in first category aim at improving the DNNs’ robustness to classify AEs 

correctly, e.g., adversarial training, i.e., training the ML techniques with clean and malicious 

samples. While the frameworks in second category attempt to detect malicious samples before 

they are fed to ML technique’s main architecture such as augmenting the ML technique’s main 

model with a small “detector” sub-ML technique trained on both adversarial and original clean 

samples, which can be utilized to distinguish whether the input sample is an adversarial attack or 



not. Despite the current progress on increasing robustness of ML techniques against malicious 

attacks, majority of existing countermeasures still do not scale well and have low generalization. 

Namely, adversaries (adversarial samples/input) yet pose great threats to machine learning (ML) 

and artificial intelligence (AI) [40]. 

 

 

Adversarial Input/Sample Generation Methods:  

 
There exists a several methods to generate adversarial samples or adversarial examples 

(AEs). We briefly describe the standard and representative adversarial attack generation methods 

utilized in image, text and audio domains. Adversarial attacks to deep learning-based systems can 

be either black-box or white-box, where the adversary, respectively, does not have and has 

knowledge of the model architecture, parameters and its training data. In addition, the attacks could 

be targeted and non-targeted, that aim to misguide DNNs to a specific class and arbitrary class 

except the correct one, respectively. Following, we outline main adversarial example generation 

techniques, which are also summarized in Table 1. 

Fast Gradient Sign Method (FGSM) [1]: Elements of attack are generated by taking one step 

update along the sign of gradient of a loss function essential to the sample. 

Iterative Gradient Sign Method (IGSM) [2]: It is iterative version of FGSM, which takes 

multiple small steps iteratively while adjusting the direction after each step. 

Jacobian Saliency Map Attack (JSMA) [3]: Attacks are generated by discovering the importance 

of each pixel in the decision process such as a saliency map is generated by computing the forward 

derivative (Jacobian) of the function learned by a DNN. 

DeepFool (DF) [4]: It finds the closest distance from the original input to the decision boundary 

of AA. To overcome the nonlinearity in high dimension, it performs an iterative attack with a linear 

approximation. 

One-Step Target Class Method (OSTCM) [5]: It is extension of FGSM to a targeted attack by 

maximizing the probability of the target class. 

Basic Iterative Method (BIM) [2]: It is AA to the physical world. It is extension of the FGSM by 

running a finer optimization (smaller change) for multiple iterations. 



Iterative Least-Likely Class Method (ILLC) [2]: It is BIM attack to a specific class by 

choosing the least-likely class of prediction and tried to maximize the cross-entropy loss. 

Compositional Pattern-Producing Network-Encoded Evolutionary Algorithm (CPPN EA) 

[6]: It utilizes evolutionary algorithm (EA) to yield the AA. To solve a multiclass classification 

problem using EA, the method applies multidimensional archive of phenotypic elites MAP-Elites. 

Carlini and Wagner’s Attack (C&W) [7]: It employs L2, L0, and L algorithms that generate 

AAs causing misclassification with the same label.  

Universal Perturbation (UP) [9]: It is a universal image-agnostic perturbation attack method that 

fools classifiers by single adversarial perturbation to all images.  

Feature Adversary (FA) [11]: This method minimizes the distance of the representation of 

internal neural network layers instead of the output layer to produce AA.  

Hot/Cold method (H/C) [12]: This method finds multiple AA for every single image input. It first 

aligns the modified image with the original image (cold) and then measure the similarity between 

the perturbed image (hot). 

Model-based Ensembling Attack (MEA) [14]: This technique can generate transferable AAs to 

attack many DNNs using ensemble-based approaches. 

Ground-Truth Attack (GTA) [15]: It conducts a binary search and finds AAs with the smallest 

perturbation by invoking Reluplex iteratively. 

Targeted Audio Adversarial Examples (TAAE) [25]: It is an iterative optimization-based 

targeted attack to a state-of-the-art speech-to-text transcription neural network via optimization 

based on the MFC pre-processing transformation. 

Zeroth Order Optimization (ZOO) [8]: It does not require gradients and utilizes hinge like loss 

function and symmetric difference quotient to generate AA. 

One Pixel Attack (OPA) [10]: To avoid the problem of measurement of perceptiveness, this 

technique generates AAs by only modifying one pixel based on differential evolution.  

Natural GAN (NGAN) [13]: It utilizes generative adversarial networks (GANs) that minimizes 

the distance of the inner representations to generate AAs. 

Zero-Query Attacks (ZQA) [16]: It trains a surrogate model on the same task as the target model, 

performs a gradient-based attack on the surrogate model, and replays this generated AA on the 

target model. 



Natural Evolution Strategies (NES) [17]: It uses gradient estimation technique and employs 

projected gradient descent with the estimated gradient to construct AAs. 

Boundary Attack (BA) [18]: It is a gradient-free AA that starts with an image of the target class 

and then makes steps alternating between moving the image along the decision boundary (while 

remaining adversarial) and steps which move towards the original image.  

Greedy Search Algorithm (GSA) [19]: It is an iterative procedure that considers at each step all 

valid one-word changes to improve the AAs by applying greedy optimization strategy. 

Genetic Attack (GA) [20]: It exploits population-based gradient free optimization via genetic 

algorithms to replace words with their synonyms so as to generate semantically and syntactically 

similar AAs. 

Improved Genetic Algorithm (IGA) [21]:  This procedure adopts the genetic metaheuristic for 

synonyms substitution to attain AAs. 

Probability Weighted Word Saliency (PWWS) [22]: It considers the word saliency as well as 

the classification probability to obtain AAs. 

Replacement, Insertion and Removal of Words (RI&RoW) [23]: It is iterative method that 

combines three different kinds of modifications to alter a regular input into an AA by replacement, 

insertion and removal of words into the text.  

Real-World Noise (RWN) [24]: This technique adds real-world scenario noises such as café, 

meeting, and station to generate AAs. 

Genetic Algorithms and Gradient Estimation (GA&GE) [26]: It combines genetic algorithms 

and gradient estimation to construct AAs. The attack is first carried out by gradient-free genetic 

algorithms, then gradient estimation is utilized to determine careful noise placement.  

 

Countermeasures for Adversarial Examples:  

 
The defenses for mitigating AEs can be roughly grouped into seven categories. For instance, 

adversarial training [27], which is training the system with AEs to augment the regularization and 

loss functions and making the system more resilient. The other technique is defensive distillation 

[29] in which additional DNNs with softmax are trained to obstruct the deep learning system from 

fitting too tightly to the data. Other approaches are pre-processing or denoising [35], i.e., removing 

the adversarial noise from the input samples before feeding them to neural networks, and model 



robustifying [21], i.e., modifying the traditional neural network architectures, e.g., adding extra 

specific robust layers and functions. Also, a category called adversarial examples detection 

techniques, which focus on detecting AEs as a binary classification or anomaly detection problem. 

An AEs detector distinguishes whether the input sample is an adversarial attack or not [38]. Table 

2 summaries the countermeasures against adversarial examples.  

Attack Category Adversarial Attack (AA) Acronym  Used  

White-Box Fast Gradient Sign Method (FGSM) [1] AA1 

Iterative Gradient Sign Method (IGSM) [2] AA2 

Jacobian Saliency Map Attack (JSMA) [3] AA3 

DeepFool (DF) [4] AA4 

One-Step Target Class Method (OSTCM) [5] AA5 

Basic Iterative Method (BIM) [2] AA6 

Iterative Least-Likely Class Method (ILLC) [2] AA7 

Compositional Pattern-Producing Network-Encoded 

Evolutionary Algorithm (CPPN EA) [6] 

AA8 

Carlini and Wagner’s Attack (C&W) [7] AA9 

Universal Perturbation (UP) [9] AA11 

Feature Adversary (FA) [11] AA13 

Hot/Cold method (H/C) [12] AA14 

Model-based Ensembling Attack (MEA) [14] AA16 

Ground-Truth Attack (GTA) [15] AA17 

Targeted Audio Adversarial Examples (TAAE) [25] AA27 

Black-box Zeroth Order Optimization (ZOO) [8] AA10 

One Pixel Attack (OPA) [10] AA12 

Natural GAN (NGAN) [13] AA15 

Zero-Query Attacks (ZQA) [16] AA18 

Natural Evolution Strategies (NES) [17] AA19 

Boundary Attack (BA) [18] AA20 

Greedy Search Algorithm (GSA) [19] AA21 

Genetic Attack (GA) [20] AA22 

Improved Genetic Algorithm (IGA) [21] AA23 

Probability Weighted Word Saliency (PWWS) [22] AA24 

Replacement, Insertion and Removal of Words 

(RI&RoW) [23] 

AA25 

Real-World Noise (RWN) [24] AA26 

Genetic Algorithms and Gradient Estimation (GA&GE) 

[26] 

AA28 

 

Table 1: Adversarial Examples Types. Application Domain (Test Environment): Image Domain, 
Text Domain, Audio Domain.  



 

 

 
 

Defense 

Technique 

Approach/Scheme Attacks 

Studied  

Adversarial 

Training 

Ensemble Adversarial Training, a training methodology that 

incorporates perturbed inputs transferred from other pre-

trained models [27] 

AA1, 

AA2,  

AA7 

Extended adversarial and virtual adversarial training as a 

means of regularizing a text classifier by stabilizing the 

classification function [28] 

AA25 

Training the state-of-the-art speech emotion recognition on 

the mixture of clean and adversarial examples to help 

regularization [24] 

AA26 

Defensive 

Distillation 

The main idea used is training the model twice, initially 

using the one-hot ground truth labels but ultimately using 

the initial model’s probability as outputs to enhance 

robustness [29] [30] 

AA1, 

AA2 

AA25 

Input 

Reconstruction 

(Manifold 

Analysis) 

MagNet method transform adversarial examples to clean 

data via reconstruction. Specifically, it approximates the 

manifold of normal examples and moves adversarial 

examples towards the manifold of normal examples to 

correctly classifying adversarial examples with small 

perturbation [31] 

AA1, 

AA2, 

AA4, 

AA9 

Defense-GAN A framework leveraging the expressive capability of 

generative models to defend deep neural networks against 

adversarial attacks [32] 

AA1, AA2, 

AA3, AA4, 

AA9 

Model 

Robustifying 

 

Synonyms encoding method that inserts an encoder before 

the input layer of the model and then trains the model to 

eliminate adversarial perturbations [21] 

AA21, 

AA22, 

AA23, AA24 

An architecture using Bayesian classifiers (Gaussian 

processes with RBF kernels) to build more robust neural 

networks [33] 

AA1,  

AA9 

The proposed strategy used an ensemble of classifiers with 

weighted/unweighted average of their prediction to increase 

robustness against attacks [34] 

AA1,  

AA6 

Pre-Processing 

Defense 

 

(Transformations 

Defense) 

Using PCA, low-pass filtering, JPEG compression, soft 

thresholding techniques as pre-processing technique to 

improve robustness [35] 

AA1, 

AA2,  

AA9 

Use of use two randomisation operations: (1) random 

resizing of input images and (2) random padding with zeros 

around the input images [36] 

AA1, 

AA4,  

AA9 



Adversarial 

Examples 

Detection 

First, the features are squeezed either by decreasing each 

pixel’s color bit depth or smoothing the sample using a 

spatial filter. Then, a binary classifier that uses as features 

the predictions of a target model before and after squeezing 

of the input sample [37] 

AA1, 

AA3, 

AA6,  

AA9 

A framework that utilizes ten nonintrusive image quality 

features to distinguish between legitimate and adversarial 

attack samples [38] 

AA1, AA2, 

AA3, AA4 

Multiversion Programming based an audio AE detection 

approach, which utilizes multiple off-the-shelf Automatic 

Speech Recognition systems to determine whether an audio 

input is an AE [39] 

AA27, 

AA28 

 

Table 2: Summary of countermeasures against adversarial examples.  
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