
An introduction to ludics

Lionel Vaux

Institut de Mathématiques de Luminy, Marseille, France

LOCI Symposium:
Rebuilding logic and rethinking language in interaction terms

21 July 2011

Ludics in a few words

Ludics:

I erases the distinction between syntax and semantics;

I allows to rebuild logic from the sole notion of interaction.

The basic artifact of ludics is the design:

I designs are abstract representations of linear logic proofs;

I designs rely on an alternation of polarities in proofs;

I designs retain only the information relevant for local
interaction;

I designs needs not represent correct proofs.

Linear Logic

I Girard, 80’s

I classical logic: negation is involutive

I takes cut elimination in sequent calculus seriously

I drops structural rules

A quick reminder

I a sequent is a pair of lists: A1, . . . ,An ` B1, . . . ,Bp

I it “means” A1 ∧ · · · ∧ An ⇒ B1 ∨ · · · ∨ Bp

I the cut rule is
A ` B B ` C

A ` C
I cut elimination gives proofs without detours, which have good properties

I up to De Morgan laws, we can restrict to sequents ` B1, . . . ,Bp and the cut

becomes
` A,B ` ¬B,C

` A,C
I provable sequents admit cut free proofs

Linear logic: rules

(ax)
` X⊥,X

multiplicative additive

∧ :
` Γ,A ` ∆,B

(⊗)` Γ,∆,A⊗ B

` Γ,A ` Γ,B
(&)` Γ,A & B

∨ :
` Γ,A,B

(`)` Γ,A ` B

` Γ,Ai (⊕i)` Γ,A1 ⊕ A2

` Γ,A ` A⊥,∆
(cut)` Γ,∆

A,B := X | X⊥ | A ` B | A⊗ B | A & B | A⊕ B

(A ` B)⊥ = A⊥ ⊗ B⊥

(A & B)⊥ = A⊥ ⊕ B⊥

Linear logic: rules
(ax)

` X⊥,X

multiplicative additive

∧ :
` Γ,A ` ∆,B

(⊗)` Γ,∆,A⊗ B

` Γ,A ` Γ,B
(&)` Γ,A & B

∨ :
` Γ,A,B

(`)` Γ,A ` B

` Γ,Ai (⊕i)` Γ,A1 ⊕ A2

` Γ,A ` A⊥,∆
(cut)` Γ,∆

A,B := X | X⊥ | A ` B | A⊗ B | A & B | A⊕ B

(A ` B)⊥ = A⊥ ⊗ B⊥

(A & B)⊥ = A⊥ ⊕ B⊥

Linear logic: rules
(ax)

` X⊥,X

multiplicative additive

∧ :
` Γ,A ` ∆,B

(⊗)` Γ,∆,A⊗ B

` Γ,A ` Γ,B
(&)` Γ,A & B

∨ :
` Γ,A,B

(`)` Γ,A ` B

` Γ,Ai (⊕i)` Γ,A1 ⊕ A2

` Γ,A ` A⊥,∆
(cut)` Γ,∆

A,B := X | X⊥ | A ` B | A⊗ B | A & B | A⊕ B

(A ` B)⊥ = A⊥ ⊗ B⊥

(A & B)⊥ = A⊥ ⊕ B⊥

Linear logic: cut elimination

A multiplicative cut (`/⊗):

...
` Γ,A

...
` Γ′,B

(⊗)` Γ, Γ′,A⊗ B

...
` ∆,A⊥,B⊥

(`)
` ∆,A⊥ ` B⊥

(cut)` Γ, Γ′,∆

reduces to

...
` Γ,A

...
` Γ′,B

...
` ∆,A⊥,B⊥

(cut)
` Γ′,∆,A⊥

(cut)` Γ, Γ′,∆

Linear logic: cut elimination

A multiplicative cut (`/⊗):

...
` Γ,A

...
` Γ′,B

(⊗)` Γ, Γ′,A⊗ B

...
` ∆,A⊥,B⊥

(`)
` ∆,A⊥ ` B⊥

(cut)` Γ, Γ′,∆

reduces to

...
` Γ,A

...
` Γ′,B

...
` ∆,A⊥,B⊥

(cut)
` Γ′,∆,A⊥

(cut)` Γ, Γ′,∆

Linear logic: cut elimination

A multiplicative cut (`/⊗):

...
` Γ,A

...
` Γ′,B

(⊗)` Γ, Γ′,A⊗ B

...
` ∆,A⊥,B⊥

(`)
` ∆,A⊥ ` B⊥

(cut)` Γ, Γ′,∆

reduces to

...
` Γ,A

...
` Γ′,B

...
` ∆,A⊥,B⊥

(cut)
` Γ′,∆,A⊥

(cut)` Γ, Γ′,∆

Linear logic: cut elimination

A multiplicative cut (`/⊗):

...
` Γ,A

...
` Γ′,B

(⊗)` Γ, Γ′,A⊗ B

...
` ∆,A⊥,B⊥

(`)
` ∆,A⊥ ` B⊥

(cut)` Γ, Γ′,∆

reduces to

...
` Γ,A

...
` Γ′,B

...
` ∆,A⊥,B⊥

(cut)
` Γ′,∆,A⊥

(cut)` Γ, Γ′,∆

Linear logic: cut elimination

A multiplicative cut (`/⊗):

...
` Γ,A

...
` Γ′,B

(⊗)` Γ, Γ′,A⊗ B

...
` ∆,A⊥,B⊥

(`)
` ∆,A⊥ ` B⊥

(cut)` Γ, Γ′,∆

reduces to

...
` Γ,A

...
` Γ′,B

...
` ∆,A⊥,B⊥

(cut)
` Γ′,∆,A⊥

(cut)` Γ, Γ′,∆

Linear logic: cut elimination

A multiplicative cut (`/⊗):

...
` Γ,A

...
` Γ′,B

(⊗)` Γ, Γ′,A⊗ B

...
` ∆,A⊥,B⊥

(`)
` ∆,A⊥ ` B⊥

(cut)` Γ, Γ′,∆

reduces to

...
` Γ,A

...
` Γ′,B

...
` ∆,A⊥,B⊥

(cut)
` Γ′,∆,A⊥

(cut)` Γ, Γ′,∆

Linear logic: cut elimination

An additive cut (&/⊕):

...
` Γ,A

...
` Γ,B

(&)` Γ,A & B

...
` ∆,A⊥

(⊕1)
` ∆,A⊥ ⊕ B⊥

(cut)` Γ,∆

reduces to

...
` Γ,A

...
` ∆,A⊥

(cut)` Γ,∆

Linear logic: cut elimination

An additive cut (&/⊕):

...
` Γ,A

...
` Γ,B

(&)` Γ,A & B

...
` ∆,A⊥

(⊕1)
` ∆,A⊥ ⊕ B⊥

(cut)` Γ,∆

reduces to

...
` Γ,A

...
` ∆,A⊥

(cut)` Γ,∆

Linear logic: cut elimination

An additive cut (&/⊕):

...
` Γ,A

...
` Γ,B

(&)` Γ,A & B

...
` ∆,A⊥

(⊕1)
` ∆,A⊥ ⊕ B⊥

(cut)` Γ,∆

reduces to

...
` Γ,A

...
` ∆,A⊥

(cut)` Γ,∆

Linear logic: cut elimination

An additive cut (&/⊕):

...
` Γ,A

...
` Γ,B

(&)` Γ,A & B

...
` ∆,A⊥

(⊕1)
` ∆,A⊥ ⊕ B⊥

(cut)` Γ,∆

reduces to

...
` Γ,A

...
` ∆,A⊥

(cut)` Γ,∆

Linear logic: cut elimination

Identity:

(ax)
` A,A⊥

...
` A, Γ

(cut)` A, Γ

reduces to

...
` A, Γ

Linear logic: cut elimination

Bureaucracy: e.g.,

...
` Γ,A,B

(`)` Γ,A ` B

...
` ∆,A⊥ ⊗ B⊥,C

(⊕1)
` ∆,A⊥ ⊗ B⊥,C ⊕ D

(cut)` Γ,∆,C ⊕ D

reduces to

...
` Γ,A,B

(`)` Γ,A` B

...
` ∆,A⊥ ⊗ B⊥,C

(cut)` Γ,∆,C
(⊕1)` Γ,∆,C ⊕ D

Linear logic: cut elimination

Bureaucracy: e.g.,

...
` Γ,A,B

(`)` Γ,A ` B

...
` ∆,A⊥ ⊗ B⊥,C

(⊕1)
` ∆,A⊥ ⊗ B⊥,C ⊕ D

(cut)` Γ,∆,C ⊕ D

reduces to

...
` Γ,A,B

(`)` Γ,A` B

...
` ∆,A⊥ ⊗ B⊥,C

(cut)` Γ,∆,C
(⊕1)` Γ,∆,C ⊕ D

Linear logic: cut elimination

Bureaucracy: e.g.,

...
` Γ,A,B

(`)` Γ,A ` B

...
` ∆,A⊥ ⊗ B⊥,C

(⊕1)
` ∆,A⊥ ⊗ B⊥,C ⊕ D

(cut)` Γ,∆,C ⊕ D

reduces to

...
` Γ,A,B

(`)` Γ,A` B

...
` ∆,A⊥ ⊗ B⊥,C

(cut)` Γ,∆,C
(⊕1)` Γ,∆,C ⊕ D

Linear logic: cut elimination

Bureaucracy: e.g.,

...
` Γ,A,B

(`)` Γ,A ` B

...
` ∆,A⊥ ⊗ B⊥,C

(⊕1)
` ∆,A⊥ ⊗ B⊥,C ⊕ D

(cut)` Γ,∆,C ⊕ D

reduces to

...
` Γ,A,B

(`)` Γ,A ` B

...
` ∆,A⊥ ⊗ B⊥,C

(cut)` Γ,∆,C
(⊕1)` Γ,∆,C ⊕ D

Focusing

Reversibility

The connectives ` and & are reversible:
from the conclusion and active formula, one can recover the
premises.

During proof search, one can always perform reversible rules.
We thus divide connectors between two classes: ` and & are
negative, and ⊗ and ⊕ are positive.
Positive connectors are not reversible but:

Focusing

Every provable sequent admits a focused cut-free proof.

A cut-free proof is focused if:

I each time we decompose a formula using an introduction rule,
we focus on its subformulas, as long as they have the same
polarity;

I if a sequent contains a negative formula, we first apply
negative rules.

Synthetic connectives: rules

Up to focusing and the distributivity isomorphism
A⊗ (B ⊕ C) = (A⊗ B)⊕ (A⊗ C), we obtain:

I one negative (reversible) rule:(
` (Pi ,j)j∈Ji , Γ

)
i∈I (−)

`
˘

i∈I
˙

j∈Ji Pi ,j , Γ

I one positive rule:

(` Ni0,j , Γj)j∈Ji0 (+, i0)
`
⊕

i∈I
⊗

j∈Ji Ni ,j , Γ

with Γ =
∑

j∈Ji0
Γj .

Plus axiom and cut.

Synthetic connectives: rules

Up to focusing and the distributivity isomorphism
A⊗ (B ⊕ C) = (A⊗ B)⊕ (A⊗ C), we obtain:

I one negative (reversible) rule:(
` (Pi ,j)j∈Ji , Γ

)
i∈I (−)

`
˘

i∈I
˙

j∈Ji Pi ,j , Γ

I one positive rule:

(` Ni0,j , Γj)j∈Ji0 (+, i0)
`
⊕

i∈I
⊗

j∈Ji Ni ,j , Γ

with Γ =
∑

j∈Ji0
Γj .

Plus axiom and cut.

Synthetic connectives: cut elimination

 πj
...

` P⊥i0,j , Γj

j∈Ji0 (+, i0)

`
⊕

i∈I
⊗

j∈Ji P
⊥
i ,j , Γ

 ρi ,j
...

` (Pi ,j)j∈Ji ,∆

i∈I (−)

`
˘

i∈I
˙

j∈Ji Pi ,j ,∆
(cut)` Γ,∆

reduces to πj
...

` P⊥i0,j , Γj

j∈Ji0

ρi0,j
...

` (Pi0,j)j∈Ji0
,∆

(cut)×#Ji0` (Γj)j∈Ji0
,∆

Synthetic connectives: cut elimination

 πj
...

` P⊥i0,j , Γj

j∈Ji0 (+, i0)

`
⊕

i∈I
⊗

j∈Ji P
⊥
i ,j , Γ

 ρi ,j
...

` (Pi ,j)j∈Ji ,∆

i∈I (−)

`
˘

i∈I
˙

j∈Ji Pi ,j ,∆
(cut)` Γ,∆

reduces to πj
...

` P⊥i0,j , Γj

j∈Ji0

ρi0,j
...

` (Pi0,j)j∈Ji0
,∆

(cut)×#Ji0` (Γj)j∈Ji0
,∆

Synthetic connectives: cut elimination

 πj
...

` P⊥i0,j , Γj

j∈Ji0 (+, i0)

`
⊕

i∈I
⊗

j∈Ji P
⊥
i ,j , Γ

 ρi ,j
...

` (Pi ,j)j∈Ji ,∆

i=i0 (−)

`
˘

i∈I
˙

j∈Ji Pi ,j ,∆
(cut)` Γ,∆

reduces to πj
...

` P⊥i0,j , Γj

j∈Ji0

ρi0,j
...

` (Pi0,j)j∈Ji0
,∆

(cut)×#Ji0` (Γj)j∈Ji0
,∆

Synthetic connectives: cut elimination

 πj
...

` P⊥i0,j , Γj

j∈Ji0 (+, i0)

`
⊕

i∈I
⊗

j∈Ji P
⊥
i ,j , Γ

 ρi ,j
...

` (Pi ,j)j∈Ji ,∆

i=i0 (−)

`
˘

i∈I
˙

j∈Ji Pi ,j ,∆
(cut)` Γ,∆

reduces to πj
...

` P⊥i0,j , Γj

j∈Ji0

ρi0,j
...

` (Pi0,j)j∈Ji0
,∆

(cut)×#Ji0` (Γj)j∈Ji0
,∆

Loci

Ludics founds logic on the interaction between proofs:
cut-elimination between A and A⊥.

To enable this dialogue without preconception:

I Ludics forgets about the meaning of formulas.
Sequents only retain information on the location of
subformulas: the locus.

I It introduces a generic “dummy” proof: the daimon.
The essential point of interaction is that both parties should
reach an agreement: one must give up, using the daimon.

Definition
An address (or locus) is a finite list of natural numbers.
A sequent is a pair Λ ` ∆ where Λ holds at most one formula.
If Λ = ∅ the sequent is positive, otherwise it is negative.

Designs

. . . as abstract proof trees (dessins)

daimon
(z)` ∆

negative rule (
` (ξi)i∈I ,∆I

)
I∈N (−, ξ,N)

ξ ` ∆

where N ⊆ Pf (N) and each ∆I ⊆ ∆.

positive rule
(ξi ` ∆i)i∈I (+, ξ, I)` ξ,∆

where I is finite,
⋃

∆i ⊆ ∆, and ∆i ∩∆j = ∅ for all i 6= j .

Proofs as designs

...
` P,Q, S

...
` R,S

(−)
` (P ` Q) & R, S

(+, {2})
` T ⊕ ((P ` Q) & R)⊕ U,S

becomes

...
` ξ21, ξ22, σ

...
` ξ23, σ

(−, ξ2, {{1, 2}, {3}})
ξ2 ` σ

(+, ξ, {2})` ξ, σ

Remarks

I Designs have possibly infinite width and depth.

I In fact, every daimon free design is infinite.

I There is no cut rule: designs represent cut-free proofs.

I There is not even an axiom rule: see later.

I Designs as dessins (trees) actually retain irrelevant
information about the context of rules: compare

(z)` ξ12
(−, ξ1, {{2}})

ξ1 ` σ
(+, ξ, {1})` ξ, σ

with

(z)` ξ12
(−, ξ1, {{2}})

ξ1 `
(+, ξ, {1})` ξ, σ

One can introduce a further level of abstraction to fix this:
designs as strategies (desseins).
Intuitively: desseins = sets of branches in a dessin.

Remarks

I Designs have possibly infinite width and depth.

I In fact, every daimon free design is infinite.

I There is no cut rule: designs represent cut-free proofs.

I There is not even an axiom rule: see later.

I Designs as dessins (trees) actually retain irrelevant
information about the context of rules: compare

(z)` ξ12
(−, ξ1, {{2}})

ξ1 ` σ
(+, ξ, {1})` ξ, σ

with

(z)` ξ12
(−, ξ1, {{2}})

ξ1 `
(+, ξ, {1})` ξ, σ

One can introduce a further level of abstraction to fix this:
designs as strategies (desseins).
Intuitively: desseins = sets of branches in a dessin.

Remarks

I Designs have possibly infinite width and depth.

I In fact, every daimon free design is infinite.

I There is no cut rule: designs represent cut-free proofs.

I There is not even an axiom rule: see later.

I Designs as dessins (trees) actually retain irrelevant
information about the context of rules: compare

(z)` ξ12
(−, ξ1, {{2}})

ξ1 ` σ
(+, ξ, {1})` ξ, σ

with

(z)` ξ12
(−, ξ1, {{2}})

ξ1 `
(+, ξ, {1})` ξ, σ

One can introduce a further level of abstraction to fix this:
designs as strategies (desseins).
Intuitively: desseins = sets of branches in a dessin.

Remarks

I Designs have possibly infinite width and depth.

I In fact, every daimon free design is infinite.

I There is no cut rule: designs represent cut-free proofs.

I There is not even an axiom rule: see later.

I Designs as dessins (trees) actually retain irrelevant
information about the context of rules: compare

(z)` ξ12
(−, ξ1, {{2}})

ξ1 ` σ
(+, ξ, {1})` ξ, σ

with

(z)` ξ12
(−, ξ1, {{2}})

ξ1 `
(+, ξ, {1})` ξ, σ

One can introduce a further level of abstraction to fix this:
designs as strategies (desseins).
Intuitively: desseins = sets of branches in a dessin.

Remarks

I Designs have possibly infinite width and depth.

I In fact, every daimon free design is infinite.

I There is no cut rule: designs represent cut-free proofs.

I There is not even an axiom rule: see later.

I Designs as dessins (trees) actually retain irrelevant
information about the context of rules: compare

(z)` ξ12
(−, ξ1, {{2}})

ξ1 ` σ
(+, ξ, {1})` ξ, σ

with

(z)` ξ12
(−, ξ1, {{2}})

ξ1 `
(+, ξ, {1})` ξ, σ

One can introduce a further level of abstraction to fix this:
designs as strategies (desseins).
Intuitively: desseins = sets of branches in a dessin.

Remarks

I Designs have possibly infinite width and depth.

I In fact, every daimon free design is infinite.

I There is no cut rule: designs represent cut-free proofs.

I There is not even an axiom rule: see later.

I Designs as dessins (trees) actually retain irrelevant
information about the context of rules: compare

(z)` ξ12
(−, ξ1, {{2}})

ξ1 ` σ
(+, ξ, {1})` ξ, σ

with

(z)` ξ12
(−, ξ1, {{2}})

ξ1 `
(+, ξ, {1})` ξ, σ

One can introduce a further level of abstraction to fix this:
designs as strategies (desseins).
Intuitively: desseins = sets of branches in a dessin.

Interaction: cut nets

Definition
A cut net is a non empty set of designs s.t.:

I addresses in conclusions are either disjoint or identical;

I each address appears in at most two conclusions, and then
with opposite polarities: this is a cut;

I the graph with conclusions as vertices and cuts as arrows is
connected and acyclic.

In particular there is exactly one design without a cut on the left:
its conclusion is the main sequent and its last rule the main rule.

Interaction: cut nets

Definition
A cut net is a non empty set of designs s.t.:

I addresses in conclusions are either disjoint or identical;

I each address appears in at most two conclusions, and then
with opposite polarities: this is a cut;

I the graph with conclusions as vertices and cuts as arrows is
connected and acyclic.

In particular there is exactly one design without a cut on the left:
its conclusion is the main sequent and its last rule the main rule.

Interaction: cut elimination as normalization

The case of closed nets: all addresses are cuts
The main design D is then necessarily positive.

I The main rule is (z): normalization immediately ends and
results in z.

I The main rule is (+, ξ, I): then ξ is a cut, with the negative
address of another design E , whose last rule is (−, ξ,N).

I if I 6∈ N , normalization fails;
I otherwise, for all i ∈ I , we consider the subdesign Di of D with

conclusion (ξi ` · · ·), and the subdesign E ′ of E with
conclusion (` ξI , · · ·): we replace D with the Di ’s and E with
E ′. We normalize the net obtained as the component of E ′.

The general case

When none of the above cases applies, we normalize above the
main rule (cf. commutative cuts in sequent calculus).

Example

Start from a net made of two designs:

...
ξ1 `

...
ξ2 ` σ31

(+, ξ, {1, 2})` ξ, σ31
(−, σ3, {{1}})

σ3 ` ξ

...
σ7 `

(+, σ, {3, 7})` ξ, σ

...
` ξ0, τ

...
` ξ1, ξ2, τ

...
` ξ3, τ

(−, ξ, {{0}, {1, 2}, {3}})
ξ ` τ

We reached a genuine cut.

Example

Start from a net made of two designs:

...
ξ1 `

...
ξ2 ` σ31

(+, ξ, {1, 2})` ξ, σ31
(−, σ3, {{1}})

σ3 ` ξ

...
σ7 `

(+, σ, {3, 7})` ξ, σ

...
` ξ0, τ

...
` ξ1, ξ2, τ

...
` ξ3, τ

(−, ξ, {{0}, {1, 2}, {3}})
ξ ` τ

We reached a genuine cut.

Example

Start from a net made of two designs:

...
ξ1 `

...
ξ2 ` σ31

(+, ξ, {1, 2})` ξ, σ31
(−, σ3, {{1}})

σ3 ` ξ

...
σ7 `

(+, σ, {3, 7})` σ

...
` ξ0, τ

...
` ξ1, ξ2, τ

...
` ξ3, τ

(−, ξ, {{0}, {1, 2}, {3}})
ξ ` τ

We reached a genuine cut.

Example

Start from a net made of two designs:

...
ξ1 `

...
ξ2 ` σ31

(+, ξ, {1, 2})` ξ, σ31
(−, σ3, {{1}})

σ3 `

...
σ7 ` (+, σ, {3, 7})` σ

...
` ξ0, τ

...
` ξ1, ξ2, τ

...
` ξ3, τ

(−, ξ, {{0}, {1, 2}, {3}})
ξ ` τ

We reached a genuine cut.

Example

It remains to normalize a cut net made of three designs:

...
ξ1 `

...
ξ2 ` σ31

(−, σ3, {{1}})
σ3 `

...
σ7 ` (+, σ, {3, 7})` σ

...
` ξ1, ξ2, τ

Fax

There are no axioms, because there are no formulas.
Instead there is a generic η-expansion, given by the fax design Fξ,ξ′ :

· · ·
· · ·

Fξ′i ,ξi
...

ξ′i ` ξi · · ·
(+, ξ′, I)

` ξ′, (ξi)i∈I · · ·
(−, ξ,Pf (N))

ξ ` ξ′

Fax

There are no axioms, because there are no formulas.
Instead there is a generic η-expansion, given by the fax design Fξ,ξ′ :

· · ·
· · ·

Fξ′i ,ξi
...

ξ′i ` ξi · · ·
(+, ξ′, I)

` ξ′, (ξi)i∈I · · ·
(−, ξ,Pf (N))

ξ ` ξ′

The axiom P ⊕ Q ` P ⊕ Q becomes:

Fξ′1,ξ1

...
ξ′1 ` ξ1

(+, ξ′, {1})
` ξ1, ξ′

Fξ′1,ξ1

...
ξ′2 ` ξ2

(+, ξ′, {2})
` ξ2, ξ′

(−, ξ, {{1}, {2}})
ξ ` ξ′

Fax

There are no axioms, because there are no formulas.
Instead there is a generic η-expansion, given by the fax design Fξ,ξ′ :

· · ·
· · ·

Fξ′i ,ξi
...

ξ′i ` ξi · · ·
(+, ξ′, I)

` ξ′, (ξi)i∈I · · ·
(−, ξ,Pf (N))

ξ ` ξ′

Normalizing a design D of conclusion ξ′ ` Γ with Fξ,ξ′ results in a
relocalized design D ′, with conclusion ξ ` Γ.

Rebuilding logic: orthogonality

Definition
Let D be a design with conclusion Λ ` Γ and for all ξ ∈ Λ ∪ Γ, let
Eξ be a designs of conclusion ` ξ or ξ ` so that
N = {D} ∪ {Eξ | ξ ∈ Λ ∪ Γ} is a closed cut net.
We say D is orthogonal to (Eξ) if N normalizes to the daimon.

Rebuilding logic: behaviours

Definition
Let D be a set of designs with the same conclusion: we write D⊥⊥

for its bidual.
We say D is a behaviour if D = D⊥⊥.

Behaviours are the ludics counterpart of formulas.

Rebuilding logic: behaviours

Definition
Let D be a set of designs with the same conclusion: we write D⊥⊥

for its bidual.
We say D is a behaviour if D = D⊥⊥.

Behaviours are the ludics counterpart of formulas.

Rebuilding logic: additives

I Any intersection of behaviours is a behaviour.

I It does not necessarily hold for union: write⊔
Di = (

⋃
Di)
⊥⊥.

I If D1 ∩D2 = ∅, D1 tD2 = D1 ∪D2.

Fact⋂
and

⊔
provide locative interpretations of

˘
and

⊕
.

To recover the usual connectives, we should introduce some more
structure.

Rebuilding logic: multiplicatives

The basic idea is to introduce a binary operation on positive
designs:
if the first (positive) actions of D and D ′ are I and J,
we form a new design D � D ′ with first action I ∪ J,
and branches selected among those of D and D ′.

Fact
Several choices for � are possible, with interesting properties.
Setting D⊗D′ = {D � D ′ | D ∈ D,D ′ ∈ D′}⊥⊥ provides a
locative interpretation of tensor.
We recover ` by duality.

What is missing from this talk?

Almost everything :-)

I the good notion of designs (desseins);

I beautiful theorems (associativity, separation, stability, . . .);

I the notion of truth;

I completeness theorems;

I etc.

(...)

