An introduction to ludics

Lionel Vaux
Institut de Mathématiques de Luminy, Marseille, France

LOCI Symposium:

Rebuilding logic and rethinking language in interaction terms
21 July 2011

Ludics in a few words

Ludics:

- erases the distinction between syntax and semantics;
- allows to rebuild logic from the sole notion of interaction.

The basic artifact of ludics is the design:

- designs are abstract representations of linear logic proofs;
- designs rely on an alternation of polarities in proofs;
- designs retain only the information relevant for local interaction;
- designs needs not represent correct proofs.

Linear Logic

- Girard, 80's
- classical logic: negation is involutive
- takes cut elimination in sequent calculus seriously
- drops structural rules

A quick reminder

- a sequent is a pair of lists: $A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{p}$
- it "means" $A_{1} \wedge \cdots \wedge A_{n} \Rightarrow B_{1} \vee \cdots \vee B_{p}$
- the cut rule is $\frac{A \vdash B \quad B \vdash C}{A \vdash C}$
- cut elimination gives proofs without detours, which have good properties
- up to De Morgan laws, we can restrict to sequents $\vdash B_{1}, \ldots, B_{p}$ and the cut becomes $\frac{\vdash A, B \quad \vdash \neg B, C}{\vdash A, C}$
- provable sequents admit cut free proofs

Linear logic: rules

$$
\begin{array}{cc|c}
& \text { multiplicative } & \text { additive } \\
\wedge: & \frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B}(\otimes) & \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B}(\&) \\
\vee: & \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \gtrdot B}(\gamma) & \frac{\vdash \Gamma, A_{i}}{\vdash \Gamma, A_{1} \oplus A_{2}}\left(\oplus_{i}\right)
\end{array}
$$

Linear logic: rules

$$
\overline{\vdash X^{\perp}, X}(\mathrm{ax})
$$

$$
\begin{array}{cc|c}
& \text { multiplicative } & \text { additive } \\
\wedge: & \frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B}(\otimes) & \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B}(\&) \\
\vee: & \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \gamma B}(\gamma) & \frac{\vdash \Gamma, A_{i}}{\vdash \Gamma, A_{1} \oplus A_{2}}\left(\oplus_{i}\right) \\
& \frac{\vdash \Gamma, A}{\vdash A^{\perp}, \Delta}(\mathrm{cut})
\end{array}
$$

Linear logic: rules

$$
\overline{\vdash X^{\perp}, X}(\mathrm{ax})
$$

$$
\begin{aligned}
& \text { multiplicative } \\
& \begin{array}{cc|c}
\wedge: & \frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B}(\otimes) & \frac{\vdash \Gamma, A \quad \vdash \Gamma, B}{\vdash \Gamma, A \& B}(\&) \\
\vee: & \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ngtr B}(\gtrdot) & \frac{\vdash \Gamma, A_{i}}{\vdash \Gamma, A_{1} \oplus A_{2}}\left(\oplus_{i}\right)
\end{array} \\
& \frac{\vdash \Gamma, A \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta}(\mathrm{cut}) \\
& A, B:=X\left|X^{\perp}\right| A \ngtr B|A \otimes B| A \& B \mid A \oplus B \\
& (A \ngtr B)^{\perp}=A^{\perp} \otimes B^{\perp} \\
& (A \& B)^{\perp}=A^{\perp} \oplus B^{\perp}
\end{aligned}
$$

Linear logic: cut elimination

A multiplicative cut ((γ / \otimes) :

$$
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\vdash \Gamma, A & \vdash \Gamma^{\prime}, B \\
\frac{\vdash \Gamma, \Gamma^{\prime}, A \otimes B}{}(\otimes) & \frac{\vdash \Delta, A^{\perp}, B^{\perp}}{\vdash \Delta, A^{\perp} \oslash B^{\perp}}(\text { (}) ~
\end{array}
$$

Linear logic: cut elimination

A multiplicative cut ($8 / \otimes$):

$$
\begin{array}{cc}
\vdots & \vdots \\
\vdash \Gamma^{\prime}, A & \vdash \Gamma^{\prime}, B \\
\vdash \Gamma, \Gamma^{\prime}, \underline{A \otimes B}(\otimes) & \frac{\vdash \Delta, A^{\perp}, B^{\perp}}{\vdash \Delta, A^{\perp} 8 B^{\perp}}
\end{array}(\text { (8) }
$$

Linear logic: cut elimination

A multiplicative cut ($8 / \otimes$):

$$
\begin{array}{cc}
\vdots & \vdots \\
\vdash \Gamma^{\prime}, A & \vdash \Gamma^{\prime}, B \\
\vdash \Gamma, \Gamma^{\prime}, \underline{A \otimes B}(\otimes) & \frac{\vdash \Delta, A^{\perp}, B^{\perp}}{\vdash \Delta, A^{\perp} 8 B^{\perp}}
\end{array}(\text { (8) }(\mathrm{cut})
$$

Linear logic: cut elimination

A multiplicative cut ($8 / \otimes$):
reduces to

$$
\begin{array}{ccc}
& \vdots & \vdots \\
\vdots & \vdash \Gamma^{\prime}, B & \vdash \Delta, A^{\perp}, B^{\perp} \\
\vdash \Gamma, A & \vdash \Gamma^{\prime}, \Delta, A^{\perp}(\mathrm{cut}) \\
\qquad & \vdash \Gamma, \Gamma^{\prime}, \Delta
\end{array}
$$

Linear logic: cut elimination

A multiplicative cut ($8 / \otimes$):
reduces to

$$
\begin{array}{ccc}
& \vdots & \vdots \\
\vdots & \vdash \Gamma^{\prime}, B & \vdash \Delta, A^{\perp}, B^{\perp} \\
\vdash \Gamma, A & \vdash \Gamma^{\prime}, \Delta, A^{\perp}(\mathrm{cut}) \\
\qquad & \vdash \Gamma, \Gamma^{\prime}, \Delta
\end{array}
$$

Linear logic: cut elimination

A multiplicative cut ($8 / \otimes$):
reduces to

$$
\begin{array}{ccc}
& \vdots & \vdots \\
\vdots & \vdash \Gamma^{\prime}, B & \vdash \Delta, A^{\perp}, B^{\perp} \\
\vdash \Gamma, A & \vdash \Gamma^{\prime}, \Delta, A^{\perp}(\mathrm{cut}) \\
\qquad & \vdash \Gamma, \Gamma^{\prime}, \Delta
\end{array}
$$

Linear logic: cut elimination

An additive cut $(\& / \oplus)$:

$$
\frac{\begin{array}{cc}
\vdots & \vdots \\
\vdash \Gamma, A ~ \vdash \Gamma, B \\
\vdash \Gamma, A \& B & \vdots \\
\vdash \Gamma, \Delta & \vdash \Delta, A^{\perp} \\
\vdash \Delta, A^{\perp} \oplus B^{\perp}
\end{array}\left(\oplus_{1}\right)}{}(\text { cut })
$$

Linear logic: cut elimination

An additive cut ($\& / \oplus$):

$$
\frac{\begin{array}{c}
\vdots \\
\vdash \Gamma, A \\
\vdash \Gamma, B \\
\vdash \Gamma, A \& B
\end{array}(\&) \frac{\vdash \Delta, A^{\perp}}{\vdash \Delta, A^{\perp} \oplus B^{\perp}}}{\qquad}\left(\oplus_{1}\right)
$$

Linear logic: cut elimination

An additive cut ($\& / \oplus$):

$$
\frac{\begin{array}{c}
\vdots \\
\vdash \Gamma, A \\
\vdash \Gamma, B \\
\vdash \Gamma, A \& B
\end{array}(\&) \frac{\vdash \Delta, A^{\perp}}{\vdash \Delta, A^{\perp} \oplus B^{\perp}}}{\qquad}\left(\oplus_{1}\right)
$$

Linear logic: cut elimination

An additive cut $(\& / \oplus)$:

$$
\frac{\vdots \vdots}{\stackrel{\vdash}{\vdash}, A \quad \vdash \Gamma, B} \begin{array}{r}
\vdash \Gamma, \underline{A \& B} \\
\vdash \Gamma) \frac{\vdash \Delta, A^{\perp}}{\vdash \Delta, A^{\perp} \oplus B^{\perp}}
\end{array}\left(\oplus_{1}\right)
$$

reduces to

$$
\frac{\left.\begin{array}{c}
\vdots \\
\vdash \Gamma, A \\
\vdash \Gamma, \Delta
\end{array}\right)\left(\mathrm{H}, A^{\perp}\right.}{(\mathrm{cut})}
$$

Linear logic: cut elimination

Identity:

reduces to

$$
\vdash \begin{gathered}
\vdots \\
\vdash A, \Gamma
\end{gathered}
$$

Linear logic: cut elimination

Bureaucracy: e.g.,

$$
\frac{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \gamma B}(\gamma) \frac{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C}{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C \oplus D}}{\vdash \Gamma, \Delta, C \oplus D}\left(\oplus_{1}\right)
$$

Linear logic: cut elimination

Bureaucracy: egg.,

$$
\frac{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, \underline{A 叉 B}}(8) \frac{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C}{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C \oplus D}}{\vdash \Gamma, \Delta, C \oplus D}\left(\oplus_{1}\right)
$$

Linear logic: cut elimination

Bureaucracy: egg.,

$$
\frac{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, \underline{A \gamma B}}(\gamma) \frac{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C}{\vdash \Delta, A^{\perp} \otimes B^{\perp}}, C \oplus D}{\vdash \Gamma}\left(\oplus_{1}\right)
$$

Linear logic: cut elimination

Bureaucracy: e.g.,

$$
\frac{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, \underline{A 叉 B}}(8) \frac{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C}{\vdash \Delta, A^{\perp} \otimes B^{\perp}, C \oplus D}}{\vdash \Gamma}\left(\oplus_{1}\right)
$$

reduces to

$$
\frac{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \gamma B}(\gamma) \quad \vdots \Delta, A^{\perp} \otimes B^{\perp}, C}{\vdash(\mathrm{cut})}
$$

Focusing

Reversibility

The connectives 8 and \& are reversible:
from the conclusion and active formula, one can recover the premises.
During proof search, one can always perform reversible rules. We thus divide connectors between two classes: 8 and \& are negative, and \otimes and \oplus are positive.
Positive connectors are not reversible but:

Focusing

Every provable sequent admits a focused cut-free proof.
A cut-free proof is focused if:

- each time we decompose a formula using an introduction rule, we focus on its subformulas, as long as they have the same polarity;
- if a sequent contains a negative formula, we first apply negative rules.

Synthetic connectives: rules

Up to focusing and the distributivity isomorphism
$A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$, we obtain:

- one negative (reversible) rule:

$$
\frac{\left(\vdash\left(P_{i, j}\right)_{j \in J_{i}}, \Gamma\right)_{i \in I}}{\vdash \&_{i \in I} \mathcal{X}_{j \in J_{i}} P_{i, j}, \Gamma}(-)
$$

- one positive rule:

$$
\frac{\left(\vdash N_{i_{0}, j}, \Gamma_{j}\right)_{j \in J_{i_{0}}}}{\vdash \bigoplus_{i \in I} \bigotimes_{j \in J_{i}} N_{i, j}, \Gamma}\left(+, i_{0}\right)
$$

$$
\text { with } \Gamma=\sum_{j \in J_{i_{0}}} \Gamma_{j}
$$

Synthetic connectives: rules

Up to focusing and the distributivity isomorphism
$A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$, we obtain:

- one negative (reversible) rule:

$$
\frac{\left(\vdash\left(P_{i, j}\right)_{j \in J_{i}}, \Gamma\right)_{i \in I}}{\vdash \&_{i \in I} \mathcal{X}_{j \in J_{i}} P_{i, j}, \Gamma}(-)
$$

- one positive rule:

$$
\frac{\left(\vdash N_{i_{0}, j}, \Gamma_{j}\right)_{j \in J_{i_{0}}}}{\vdash \bigoplus_{i \in I} \bigotimes_{j \in J_{i}} N_{i, j}, \Gamma}\left(+, i_{0}\right)
$$

$$
\text { with } \Gamma=\sum_{j \in J_{i_{0}}} \Gamma_{j}
$$

Plus axiom and cut.

Synthetic connectives: cut elimination

$$
\frac{\left(\begin{array}{c}
\pi_{j} \\
\vdots \\
\vdash P_{i_{0}, j}^{\perp}, \Gamma_{j}
\end{array}\right)_{j \in J_{i_{0}}}^{\vdash \bigoplus_{i \in I} \otimes_{j \in J_{i}} P_{i, j}^{\perp}, \Gamma}\left(+, i_{0}\right)}{\vdash \frac{\left(\begin{array}{c}
\rho_{i, j} \\
\vdots \\
\vdash\left(P_{i, j}\right)_{j \in J_{i}}, \Delta
\end{array}\right)_{i \in I}}{\vdash \&_{i \in I} \not \mathcal{Z}_{j \in J_{i}} P_{i, j}, \Delta}(-)}(\mathrm{cut})
$$

Synthetic connectives: cut elimination

$$
\frac{\left(\begin{array}{c}
\pi_{j} \\
\vdots \\
\vdash P_{i, j}, \Gamma_{j}
\end{array}\right)_{j \in J_{i 0}}^{\vdash \bigoplus_{i \in 1} \otimes_{j \in J_{i}} P_{i, j,}^{\perp}, \Gamma}\left(+, i_{0}\right)}{\vdash \frac{\left(\begin{array}{c}
\rho_{i, j} \\
\vdots \\
\vdash\left(P_{i, j}\right)_{j \in J_{i}}, \Delta
\end{array}\right)_{i \in I}}{\vdash \&_{i \in \prime} 8_{j \in J_{i}} P_{i, j}, \Delta}(-)} \text { (cut) }
$$

Synthetic connectives: cut elimination

$$
\frac{\left(\begin{array}{c}
\pi_{j} \\
\vdots \\
\vdash P_{i_{0}, j}^{\perp}, \Gamma_{j}
\end{array}\right)_{j \in J_{i 0}}^{\vdash \bigoplus_{i \in l} \otimes_{j \in J_{i}} P_{i, j}^{\perp}, \Gamma}\left(+, i_{0}\right)}{\vdash \frac{\left(\begin{array}{c}
\rho_{i, j} \\
\vdots \\
\vdash\left(P_{i, j}\right)_{j \in J_{i}}, \Delta
\end{array}\right)_{i=i_{0}}}{\vdash \ell_{i \in 1} \bigotimes_{j \in J_{i}} P_{i, j}, \Delta}(-)}(\mathrm{cut})
$$

Synthetic connectives: cut elimination

$$
\frac{\left(\begin{array}{c}
\pi_{j} \\
\vdots \\
\vdash P_{i_{0}, j}^{\perp}, \Gamma_{j}
\end{array}\right)_{j \in J_{i 0}}^{\vdash \bigoplus_{i \in I} \otimes_{j \in J_{i}} P_{i, j}^{\perp}, \Gamma}\left(+, i_{0}\right)}{\vdash \frac{\left(\begin{array}{c}
\rho_{i, j} \\
\vdots \\
\vdash\left(P_{i, j}\right)_{j \in J_{i}}, \Delta
\end{array}\right)_{i=i_{0}}}{\vdash \ell_{i \in l} \bigotimes_{j \in J_{i}} P_{i, j}, \Delta}(-)}(\mathrm{cut})
$$

reduces to

Loci

Ludics founds logic on the interaction between proofs: cut-elimination between A and A^{\perp}.

To enable this dialogue without preconception:

- Ludics forgets about the meaning of formulas. Sequents only retain information on the location of subformulas: the locus.
- It introduces a generic "dummy" proof: the daimon. The essential point of interaction is that both parties should reach an agreement: one must give up, using the daimon.

Definition
An address (or locus) is a finite list of natural numbers. A sequent is a pair $\Lambda \vdash \Delta$ where Λ holds at most one formula.
If $\Lambda=\emptyset$ the sequent is positive, otherwise it is negative.

Designs

... as abstract proof trees (dessins)
daimon

$$
\overline{\vdash \Delta}(\mathbf{W})
$$

negative rule

$$
\frac{\left(\vdash(\xi i)_{i \in I}, \Delta_{I}\right)_{I \in \mathcal{N}}}{\xi \vdash \Delta}(-, \xi, \mathcal{N})
$$

where $\mathcal{N} \subseteq \mathfrak{P}_{f}(\mathbf{N})$ and each $\Delta_{I} \subseteq \Delta$.
positive rule

$$
\frac{\left(\xi i \vdash \Delta_{i}\right)_{i \in I}}{\vdash \xi, \Delta}(+, \xi, I)
$$

where I is finite, $\bigcup \Delta_{i} \subseteq \Delta$, and $\Delta_{i} \cap \Delta_{j}=\emptyset$ for all $i \neq j$.

Proofs as designs

$$
\frac{\frac{\vdash P, Q, S \quad \vdash R, S}{\vdash(P \gamma Q) \& R, S}(-)}{\vdash T \oplus((P \gamma Q) \& R) \oplus U, S}(+,\{2\})
$$

becomes

$$
\frac{\vdash \xi 21, \xi 22, \sigma \quad \vdash \xi 23, \sigma}{\frac{\xi 2 \vdash \sigma}{\vdash \xi, \sigma}(+, \xi,\{2\})}(-, \xi 2,\{\{1,2\},\{3\}\})
$$

Remarks

- Designs have possibly infinite width and depth.

Remarks

- Designs have possibly infinite width and depth.
- In fact, every daimon free design is infinite.

Remarks

- Designs have possibly infinite width and depth.
- In fact, every daimon free design is infinite.
- There is no cut rule: designs represent cut-free proofs.

Remarks

- Designs have possibly infinite width and depth.
- In fact, every daimon free design is infinite.
- There is no cut rule: designs represent cut-free proofs.
- There is not even an axiom rule: see later.

Remarks

- Designs have possibly infinite width and depth.
- In fact, every daimon free design is infinite.
- There is no cut rule: designs represent cut-free proofs.
- There is not even an axiom rule: see later.
- Designs as dessins (trees) actually retain irrelevant information about the context of rules: compare

Remarks

- Designs have possibly infinite width and depth.
- In fact, every daimon free design is infinite.
- There is no cut rule: designs represent cut-free proofs.
- There is not even an axiom rule: see later.
- Designs as dessins (trees) actually retain irrelevant information about the context of rules: compare

One can introduce a further level of abstraction to fix this: designs as strategies (desseins). Intuitively: desseins $=$ sets of branches in a dessin.

Interaction: cut nets

Definition

A cut net is a non empty set of designs s.t.:

- addresses in conclusions are either disjoint or identical;
- each address appears in at most two conclusions, and then with opposite polarities: this is a cut;
- the graph with conclusions as vertices and cuts as arrows is connected and acyclic.

Interaction: cut nets

Definition

A cut net is a non empty set of designs s.t.:

- addresses in conclusions are either disjoint or identical;
- each address appears in at most two conclusions, and then with opposite polarities: this is a cut;
- the graph with conclusions as vertices and cuts as arrows is connected and acyclic.

In particular there is exactly one design without a cut on the left: its conclusion is the main sequent and its last rule the main rule.

Interaction: cut elimination as normalization

The case of closed nets: all addresses are cuts
The main design D is then necessarily positive.

- The main rule is ($\mathbf{(} \mathbf{\Sigma}$): normalization immediately ends and results in
- The main rule is $(+, \xi, I)$: then ξ is a cut, with the negative address of another design E, whose last rule is $(-, \xi, \mathcal{N})$.
- if I $\notin \mathcal{N}$, normalization fails;
- otherwise, for all $i \in I$, we consider the subdesign D_{i} of D with conclusion ($\xi i \vdash \cdots$), and the subdesign E^{\prime} of E with conclusion ($\vdash \xi I, \cdots)$: we replace D with the D_{i} 's and E with E^{\prime}. We normalize the net obtained as the component of E^{\prime}.

The general case
When none of the above cases applies, we normalize above the main rule ($c f$. commutative cuts in sequent calculus).

Example

Start from a net made of two designs:

$$
\begin{aligned}
& \left.\begin{array}{cc}
\xi 1 \vdash \quad \xi 2 \vdash \sigma 31 \\
\hline \frac{\vdash \xi, \sigma 31}{\sigma 3 \vdash \xi}(-, \sigma 3,\{\{1\}\}) & \vdots \\
\hline \vdash \xi, \sigma & \sigma 7 \vdash \\
\hline
\end{array}+, \sigma,\{3,7\}\right) \\
& \frac{\vdash \xi 0, \tau \quad \vdash \xi 1, \xi 2, \tau \quad \vdash \xi 3, \tau}{\xi \vdash \tau}(-, \xi,\{\{0\},\{1,2\},\{3\}\})
\end{aligned}
$$

Example

Start from a net made of two designs:

$$
\begin{aligned}
& \begin{array}{cc}
\underline{\xi 1 \vdash} \boldsymbol{\xi 2 \vdash \sigma 3 1}(+, \xi,\{1,2\}) & \vdots \\
\hline \frac{\vdash \xi, \sigma 31}{\sigma 3 \vdash \xi}(-, \sigma 3,\{\{1\}\}) & \sigma 7 \vdash \\
\hline \vdash \xi, \sigma & (+, \sigma,\{3,7\})
\end{array} \\
& \frac{\vdash \xi 0, \tau \quad \vdash \xi 1, \xi 2, \tau \quad \vdash \xi 3, \tau}{\xi \vdash \tau}(-, \xi,\{\{0\},\{1,2\},\{3\}\})
\end{aligned}
$$

Example

Start from a net made of two designs:

$$
\begin{aligned}
& \begin{array}{cc}
\underline{\xi 1 \vdash} \boldsymbol{\xi 2 \vdash \sigma 3 1}(+, \xi,\{1,2\}) & \vdots \\
\frac{\vdash \xi, \sigma 31}{\sigma 3 \vdash \xi}(-, \sigma 3,\{\{1\}\}) & \sigma 7 \vdash \\
\hline \vdash \sigma & (+, \sigma,\{3,7\})
\end{array} \\
& \frac{\vdash \xi 0, \tau \quad \vdash \xi 1, \xi 2, \tau \quad \vdash \xi 3, \tau}{\xi \vdash \tau}(-, \xi,\{\{0\},\{1,2\},\{3\}\})
\end{aligned}
$$

Example

Start from a net made of two designs:

$\begin{array}{ccc}\vdots & \vdots & \vdots \\ \vdash \xi 0, \tau & \vdash \xi 1, \xi 2, \tau & \vdash \xi 3, \tau \\ \xi \vdash \tau & \end{array}(-, \xi,\{\{0\},\{1,2\},\{3\}\})$
We reached a genuine cut.

Example

It remains to normalize a cut net made of three designs:

$$
\begin{array}{ccc}
\vdots & \vdots \\
\xi 1 \vdash & \xi 2 \vdash \sigma 31 \\
\hline & \frac{\sigma 3 \vdash}{}(-, \sigma 3,\{\{1\}\}) & \vdots \\
& \vdash \sigma & \\
\vdots \\
\vdash \xi 1, \xi 2, \tau
\end{array}
$$

Fax

There are no axioms, because there are no formulas. Instead there is a generic η-expansion, given by the fax design $\mathfrak{F}_{\xi, \xi^{\prime}}$:

$$
\begin{aligned}
& \mathfrak{F}_{\xi^{\prime} i, \xi i} \\
& \frac{\cdots \quad \begin{array}{l}
\\
\cdots \quad \xi^{\prime} i \vdash \xi i \quad \cdots \\
\vdash \xi^{\prime},(\xi i)_{i \in I} \\
\xi \vdash \xi^{\prime}
\end{array}\left(+, \xi^{\prime}, I\right)}{\cdots}\left(-, \xi, \mathfrak{P}_{f}(\mathbf{N})\right)
\end{aligned}
$$

Fax

There are no axioms, because there are no formulas. Instead there is a generic η-expansion, given by the fax design $\mathfrak{F}_{\xi, \xi^{\prime}}$:

The axiom $P \oplus Q \vdash P \oplus Q$ becomes:

$$
\begin{array}{cc}
\mathfrak{F}_{\xi^{\prime} 1, \xi 1} & \mathfrak{F}_{\xi^{\prime} 1, \xi 1} \\
\vdots & \vdots \\
\frac{\xi^{\prime} 1 \vdash \xi 1}{\vdash \xi 1, \xi^{\prime}}\left(+, \xi^{\prime},\{1\}\right) & \frac{\xi^{\prime} 2 \vdash \xi 2}{\vdash \xi 2, \xi^{\prime}}\left(+, \xi^{\prime},\{2\}\right) \\
\xi \vdash \xi^{\prime} &
\end{array}
$$

Fax

There are no axioms, because there are no formulas. Instead there is a generic η-expansion, given by the fax design $\mathfrak{F}_{\xi, \xi^{\prime}}$:

Normalizing a design D of conclusion $\xi^{\prime} \vdash \Gamma$ with $\mathfrak{F}_{\xi, \xi^{\prime}}$ results in a relocalized design D^{\prime}, with conclusion $\xi \vdash \Gamma$.

Rebuilding logic: orthogonality

Definition

Let D be a design with conclusion $\Lambda \vdash \Gamma$ and for all $\xi \in \Lambda \cup \Gamma$, let E_{ξ} be a designs of conclusion $\vdash \xi$ or $\xi \vdash$ so that $N=\{D\} \cup\left\{E_{\xi} \mid \xi \in \Lambda \cup \Gamma\right\}$ is a closed cut net.
We say D is orthogonal to $\left(E_{\xi}\right)$ if N normalizes to the daimon.

Rebuilding logic: behaviours

Definition

Let \mathbf{D} be a set of designs with the same conclusion: we write $\mathbf{D}^{\perp \perp}$ for its bidual.
We say \mathbf{D} is a behaviour if $\mathbf{D}=\mathbf{D}^{\perp \perp}$.

Rebuilding logic: behaviours

Definition

Let \mathbf{D} be a set of designs with the same conclusion: we write $\mathbf{D}^{\perp \perp}$ for its bidual.
We say \mathbf{D} is a behaviour if $\mathbf{D}=\mathbf{D}^{\perp \perp}$.
Behaviours are the ludics counterpart of formulas.

Rebuilding logic: additives

- Any intersection of behaviours is a behaviour.
- It does not necessarily hold for union: write $\sqcup \mathbf{D}_{i}=\left(\bigcup \mathbf{D}_{i}\right)^{\perp \perp}$.
- If $\mathbf{D}_{1} \cap \mathbf{D}_{2}=\emptyset, \mathbf{D}_{1} \sqcup \mathbf{D}_{2}=\mathbf{D}_{1} \cup \mathbf{D}_{2}$.

Fact
\bigcap and \bigsqcup provide locative interpretations of $\&$ and \bigoplus.
To recover the usual connectives, we should introduce some more structure.

Rebuilding logic: multiplicatives

The basic idea is to introduce a binary operation on positive designs:
if the first (positive) actions of D and D^{\prime} are I and J, we form a new design $D \odot D^{\prime}$ with first action $I \cup J$, and branches selected among those of D and D^{\prime}.

Fact
Several choices for \odot are possible, with interesting properties. Setting $\mathbf{D} \otimes \mathbf{D}^{\prime}=\left\{D \odot D^{\prime} \mid D \in \mathbf{D}, D^{\prime} \in \mathbf{D}^{\prime}\right\}^{\perp \perp}$ provides a locative interpretation of tensor.
We recover 8 by duality.

What is missing from this talk?

Almost everything :-)

- the good notion of designs (desseins);
- beautiful theorems (associativity, separation, stability, ...);
- the notion of truth;
- completeness theorems;
- etc.
(...)

