
Notes on Backpropagation

Peter Sadowski
Department of Computer Science

University of California Irvine
Irvine, CA 92697

peter.j.sadowski@uci.edu

Abstract

This document derives backpropagation for some common neural networks.

1 Cross Entropy Error with Logistic Activation

In a classification task with two classes, it is standard to use a neural network architecture with
a single logistic output unit and the cross-entropy loss function (as opposed to, for example, the
sum-of-squared loss function). With this combination, the output prediction is always between zero
and one, and is interpreted as a probability. Training corresponds to maximizing the conditional
log-likelihood of the data, and as we will see, the gradient calculation simplifies nicely with this
combination.

We can generalize this slightly to the case where we have multiple, independent, two-class classi-
fication tasks. In order to demonstrate the calculations involved in backpropagation, we consider
a network with a single hidden layer of logistic units, multiple logistic output units, and where the
total error for a given example is simply the cross-entropy error summed over the output units.

y1

t1

y2

t2

y3

t3

Hidden
hj

Inputs xk

Output yi

The cross entropy error for a single example with nout independent targets is given by the sum

E = −
nout∑
i=1

(ti log(yi) + (1− ti) log(1− yi)) (1)

where t is the target vector, y is the output vector. In this architecture, the outputs are computed by
applying the logistic function to the weighted sums of the hidden layer activations, s,

yi =
1

1 + e−si
(2)

si =
∑
j=1

hjwji. (3)

1

We can compute the derivative of the error with respect to each weight connecting the hidden units
to the output units using the chain rule.

∂E

∂wji
=

∂E

∂yi

∂yi
∂si

∂si
∂wji

(4)

Examining each factor in turn,
∂E

∂yi
=
−ti
yi

+
1− ti
1− yi

, (5)

=
yi − ti

yi(1− yi)
, (6)

∂yi
∂si

= yi(1− yi) (7)

∂si
∂wji

= hj (8)

where xj is the activation of the j node in the hidden layer. Combining things back together,
∂E

∂si
= yi − ti (9)

and
∂E

∂wji
= (yi − ti)hj (10)

.

The above gives us the gradients of the error with respect to the weights in the last layer of the
network, but computing the gradients with respect to the weights in lower layers of the network (i.e.
connecting the inputs to the hidden layer units) requires another application of the chain rule. This
is the backpropagation algorithm.

Here it is useful to calculate the quantity ∂E
∂s1j

where j indexes the hidden units, s1j is the weighted

input sum at hidden unit j, and hj =
1

1+e
−s1

j
is the activation at unit j.

∂E

∂s1j
=

nout∑
i=1

∂E

∂si

∂si
∂hj

∂hj

∂s1j
(11)

=

nout∑
i=1

(yi − ti)(wji)(hj(1− hj)) (12)

∂E

∂hj
=

∑
i=1

∂E

∂yi

∂yi
∂si

∂si
∂xj

(13)

=
∑
i

∂E

∂yi
yi(1− yi)wji (14)

Then a weight w1
kj connecting input unit k to hidden unit j has gradient

∂E

∂w1
kj

=
∂E

∂s1j

∂s1j
∂w1

kj

(15)

=

nout∑
i=1

(yi − ti)(wji)(hj(1− hj))(xk) (16)

By recursively computing the gradient of the error with respect to the activity of each neuron, we
can compute the gradients for all weights in a network.

2

2 Classification with Softmax Transfer and Cross Entropy Error

When a classification task has more than two classes, it is standard to use a softmax output layer.
The softmax function provides a way of predicting a discrete probability distribution over the classes.
We again use the cross-entropy error function, but it takes a slightly different form. The softmax
activation of the ith output unit is

yi =
esi∑nclass

c esc
(17)

and the cross entropy error function for multi-class output is

E = −
nclass∑

i

ti log(yi) (18)

Thus, computing the gradient yields
∂E

∂yi
= − ti

yi
(19)

∂yi
∂sk

=

{
esi∑nclass

c esc
− (esi∑nclass

c esc
)2 i = k

− esiesk

(
∑nclass

c esc)2
i 6= k

(20)

=

{
yi(1− yi) i = k
−yiyk i 6= k

(21)

∂E

∂si
=

nclass∑
k

∂E

∂yk

∂yk
∂si

(22)

=
∂E

∂yi

∂yi
∂si
−
∑
k 6=i

∂E

∂yk

∂yk
∂si

(23)

= −ti(1− yi) +
∑
k 6=i

tkyi (24)

= −ti + yi
∑
k

tk (25)

= yi − ti (26)
(27)

Note that this is the same formula as in the case with the logistic output units! The values themselves
will be different, because the predictions y will take on different values depending on whether the
output is logistic or softmax, but this is an elegant simplification. The gradient for weights in the top
layer is again

∂E

∂wji
=

∑
i

∂E

∂si

∂si
∂wji

(28)

= (yi − ti)hj (29)

and for units in the hidden layer, indexed by j,

∂E

∂s1j
=

nclass∑
i

∂E

∂si

∂si
∂hj

∂hj

∂s1j
(30)

=

nclass∑
i

(yi − ti)(wji)(hj(1− hj)) (31)

3

3 Regression with Linear Output and Mean Squared Error

Note that performing regression with a linear output unit and the mean squared error loss function
also leads to the same form of the gradient at the output layer, ∂E

∂si
= (yi − ti).

4 Algebraic trick for cross-entropy calculations

There are some tricks to reducing computation when doing cross-entropy error calculations when
training a neural network. Here are a couple.

For a single output neuron with logistic activation, the cross-entropy error is given by

E = − (t log y + (1− t) log (1− y)) (32)

= −
(
t log (

y

1− y
) + log(1− y)

)
(33)

= −

(
t log (

1
1+e−s

1− 1
1+e−s

) + log (1− 1

1 + e−s
)

)
(34)

= −
(
ts+ log (

1

1 + es
)

)
(35)

= −ts+ log (1 + es) (36)

For a softmax output, the cross-entropy error is given by

E = −
∑
i

(
ti log

esi∑
j e

sj

)
(37)

= −
∑
i

ti

si − log
∑
j

esj

 (38)

(39)
(40)

Also note that in this softmax calculation, a constant can be added to each row of the output with no
effect on the error function.

4

