
Automatic verification of textbook programs that use
comprehensions

K. Rustan M. Leino0 and Rosemary Monahan1

0 Microsoft Research, Redmond, WA, USA
leino@microsoft.com

1 National University of Ireland, Maynooth, Co.Kildare, Ireland
Rosemary.Monahan@nuim.ie

Manuscript KRML 175, 30 June 2007.

Abstract. Textbooks on program verification make use of simple programs in
mathematical domains as illustrative examples. Mechanical verification tools can
give students a quicker way to learn, because the feedback cycle can be reduced
from days (waiting for hand-proofs to be graded by the teaching assistant) to
seconds or minutes (waiting for the tool’s output). However, the mathematical
domains that are so familiar to students (for example, sum-comprehensions) are
not directly supported by first-order SMT solvers.
This paper presents a technique for translating common comprehension expres-
sions (sum , count , product , min , andmax) into verification conditions
that can be tackled by two first-order SMT solvers. The technique has been im-
plemented in the Spec# program verifier. The paper also reports on the experience
of using Spec# to verify several challenging programming examples drawn from
a textbook by Dijkstra and Feijen.

0 Motivation

Computer science students are often introduced to program verification—thus learn-
ing about assertions, pre- and postconditions, and invariants—in a class setting where
they conduct hand proofs of small programs. To let students focus on specifications and
programming, the example programs often draw from the domain of familiar mathe-
matics; for example, computing factorials or summing the elements of arrays. Just like
parsers and type checkers are tools whose feedback help teach students about well-
formed and well-typed programs, the feedback from verification tools can help teach
students about preconditions and invariants, bridging thegap that otherwise exists be-
tween hand proofs and programming practice. However, usingverification tools in a
class setting brings complications: the verification tool might be built on an interactive
theorem prover, which puts an additional burden on the student to learn the commands
and tactics of the prover, or on an automatic prover, whose theory domains might not
be rich enough to include the mathematics that is so familiarto the student (like multi-
plication and sum-comprehensions).

In this paper, we present a technique for translating commoncomprehension ex-
pressions (likesum , count , product , min , andmax) into verification conditions
that can be tackled by a first-order Satisfiability Modulo Theories (SMT) solver. We

2

public static int SegSum(int[] a, int i , int j)
requires 0 6 i && i 6 j && j 6 a.Length;
ensures result == sum{int k in (i : j); a[k]};

{
int s = 0;
for (int n = i ; n < j ; n++)

invariant i 6 n && n 6 j ;
invariant s == sum{int k in (i : n); a[k]};

{
s += a[n];

}
return s;

}

Fig. 0. Spec# method to sum the elementsa[i], a[i + 1], . . . , a[j − 1] . Here and throughout,
our examples assume use of the Spec# compiler’s/nn switch, which treats reference types as
non-null reference types by default.

have implemented the technique in the Spec# [1] program verifier [0]. Using a choice
of Simplify [5] or Z3 [4] as the underlying SMT solver, we are able to verify the partial
correctness of several challenging programming examples from the Dijkstra and Feijen
bookA Method of Programming[6].

1 Some Textbook Examples: The Programmer’s Perspective

In this section, we write some textbook examples to introduce the Spec# notation, fo-
cusing especially on comprehension expressions. In Spec#,every method has a specifi-
cation outlining a contract between its callers and its implementations. The programmer
writes each method and its specification together in a Spec# source file before running
the verifier. The verifier is run like the compiler—either from the IDE or the command
line. In either case, this involves just pushing a button, waiting, and then getting a list
of compilation/verification error messages, if they exist.

A sample Spec# method,SegSum , which sums the elements in a segment of an
array, is presented in Fig. 0. Using the sum comprehension

sum{int k in (i : j); a[k]} (0)

wherek in (i : j) expresses the rangei 6 k < j , SegSum ’s postcondition expresses
the summation of thej − i array elements starting witha[i] .

The general form of a comprehension in Spec# is

Q{K k in E , F ; T}

whereQ is sum , count , product , min , or max (or forall , exists , or exists

unique , but these forms have counterparts in first-order logic, so we won’t cover them

3

in this paper),k is a bound variable of some typeK , E is an enumerable expression
that generates values of typeK , the boolean expressionF is afilter that further restricts
the values ofk under consideration (if omitted,F defaults totrue), and the integer
(or for count , boolean) expressionT is the term of the comprehension. The bound
variablek can occur free inF andT , but not inE .

The comprehension expression evaluates to the value obtained by applying the op-
erator associated withQ (for example,+ for sum) to the expressionsT that result for
each of the prescribed values ofk . To support the dynamic execution of comprehen-
sions, Spec# insists onE being executable; currently, static verification is supported
only for comprehensions whereK is int and E is a half-open interval(L : H) ,
which meansk satisfiesL 6 k < H , and the closed (inclusive) interval(L ..H) ,
which meansk satisfiesL 6 k 6 H .

As an example of a filter expression, comprehension (0) can also be expressed as:

sum{int k in (0 : a.Length), i 6 k && k < j ; a[k]} (1)

To verify the SegSum example, it suffices to know the following mathematical
properties about sum comprehensions:

empty range (∀ lo, hi • hi 6 lo ⇒ sum{int k in (lo : hi); a[k]} = 0)
induction (∀ lo, hi • lo 6 hi ⇒

sum{int k in (lo : hi + 1); a[k]} = sum{int k in (lo : hi); a[k]} + a[hi])

As we explain in the next section, we have included these and other properties as axioms
in the program verifier.

Another classical example used to introduce students to program verification is the
calculation of factorials. A method that calculatesn! can be specified as:

requires 0 6 n;
ensures result == product{int k in (1 ..n); k};

This specification lends itself to the obvious iterative implementation.

2 Encoding Comprehensions as First-Order Expressions

The Spec# static program verifier, named Boogie, translatescompiled Spec# programs
into the intermediate verification language BoogiePL, fromwhich it then generates ver-
ification conditions for various SMT solvers [0]. The BoogiePL language includes func-
tions and axioms, and its expressions include logical quantifiers and arithmetic. Boo-
giePL does not include direct support for any other comprehensions or binders, so the
translation from Spec# into BoogiePL must instead use some suitable encoding. Such
an encoding will necessarily be incomplete, but we hope to achieve an encoding that is
good enough for use in practice.

The key idea in our translation is to introduce and axiomatise one BoogiePL func-
tion for each differentcomprehension templateoccurring in the Spec# program. In our
explanation of what that means, we use theSegSum example from the previous sec-
tion as a running example. The sum comprehension (0) has bound variablek with

4

range(i : j) , (implicit) filter true , and terma[k] . The BoogiePL translations of these
expressions arei , j , true , and

ArrayGet($Heap[a, $elements], k)

respectively. (To understand this translation, think of every array as being an object
with one instance field,$elements , whose value is a sequence of element values. The
sequence is retrieved from the heap, which is modelled as a two-dimensional array
indexed by object identities and field names, and the elementvalue is then retrieved
using the functionArrayGet .)

2.0 Comprehension Functions

Comprehensions supported by the Spec# program verifier havethe form

Q{int k in (L : H), F ; T}

We consider the most general parameterisation of the expressionsF and T , ex-
tracting what we call thetemplateof the comprehension. The template is a triple whose
first component isQ and whose other two components are obtained by abstracting
over the (largest) subexpressions of the filter and term thatdo not mention the bound
variable. For example, the template of comprehension (0) is

(sum, �, ArrayGet(�, k))

Each “� ” indicates a place where we have abstracted over a subexpression. Here and
throughout this section, we assume the bound variable has some canonical name, and
we’ll simply usek . Note that the range expressionsL andH are not part of the tem-
plate. We write the general form of a template as

(Q, Filter [[�...�, k]], Term[[�...�, k]]) (2)

with the understanding thatFilter [[�...�, k]] and Term[[�...�, k]] stand for expres-
sions that can mentionk and some number of� ’s.

For each comprehension template, our translation introduces a function. We shall
refer to it as acomprehension functionand give it a name likeQ#n wheren is some
unique sequence number. For example, sum comprehension (0)in programSegSum

gives rise to the following comprehension function in our translation into BoogiePL:

function sum#0(lo: int, hi : int, a0:bool, a1:Elements) returns (int);

The comprehension function takes as arguments the range (expressed as the end points
of a half-open interval), as well as one argument for each “hole” � in the template.
Intuitively, for a comprehension template (2), the comprehension function has the fol-
lowing meaning:

Q#n(lo, hi , aa) = Q
k∈(lo:hi) such thatFilter [[aa,k]]Term[[aa, k]]

whereaa corresponds to as many arguments as there are� ’s in the template.

5

For example, comprehension functionsum#0 above has the meaning:

sum#0(lo, hi , a0, a1) =
∑

k∈(lo:hi) such thata0

ArrayGet(a1, k)

Using comprehension functionsum#0 , the sum comprehension (0) translates into
BoogiePL as

sum#0(i , j , true, $Heap[a, $elements])

Notice how the filter and term of the template are part of the intuitive meaning of
sum#0 , and how the subexpressions that were abstracted over in thetemplate find
themselves as arguments in the translation of a particular sum comprehension.

As another example, the sum comprehension (1) with a filter has the following
template:

(sum, � 6 k ∧ k < �, ArrayGet(�, k))

Thus, if both it and the comprehension in Fig. 0 were present in the same program,
they would give rise to two different comprehension functions, like sum#0 above and
sum#1 :

function sum#1(lo: int, hi : int, a0: int, a1: int, a2:Elements) returns (int);

Functionsum#1 then has the intuitive meaning

sum#1(lo, hi , a0, a1, a2) =
∑

k∈(lo:hi) such thata06k∧k<a1

ArrayGet(a2, k)

and comprehension (1) translates into BoogiePL as

sum#1(0, $ArrayLength(a), i , j , $Heap[a, $elements])

2.1 Matching Triggers

For each comprehension function, our translation also generates a number of axioms.
To obtain the desired effect of these axioms in the Simplify and Z3 SMT solvers, it is
crucial to indicate appropriatematching triggersfor the quantifiers [5]. A matching trig-
ger of a universal quantifier is a set of expressions that determines how the SMT solver
instantiates the quantifier. Logically, it is correct to instantiate a universal quantifier with
anything at all, but since most instantiations are irrelevant to the verification goal, one
can hope for a more fruitful search by limiting which instantiations the SMT solver is
allowed to consider. When the SMT solver’s search heuristics determine that it is time
to look at quantifiers, the solver’s ground terms (typicallystored in ane-graphdata
structure that tracks equivalence classes of terms [8]) arecompared against the triggers
of the active quantifiers. Ground terms that match the triggers are used to instantiate the
quantifiers.

Note that a universal quantifier that appears in a negative position in an axiom is re-
ally an existential quantifier. The SMT solver always Skolemizes existential quantifiers,
so we need not worry about triggers for them.

6

Let us give some simple examples that demonstrate how triggers are employed.
Using BoogiePL syntax, which encloses triggers in curly braces, the quantifier

(∀ x : int, y: int • {g(x , y)} f (x) < y ⇒ g(x , y) = 100)

says that it is to be instantiated with termsx andy that appear in the e-graph as argu-
ments to the functiong . In order to be discriminating, a trigger must mention all bound
variables and cannot mention a bound variable by itself. Forexample,{f (x)} is not a
legal trigger for the quantifier above, because it doesn’t limit the terms that can be used
to instantiatey , and likewise for{f (x), y} .

Typically, the terms mentioned in triggers also appear in the body of the quantifier,
but this is not a requirement. For example,{h(x , y)} is a legal trigger for the quantifier
above.

Since matching is done in the e-graph in Simplify and Z3, the congruence closure of
all known terms is taken into consideration. Stated differently, matching is done within
the theory of uninterpreted function symbols and equality (EUF). But other theories are
not taken into consideration. For example,

(∀ x : int • {g(x + 1)} h(x) = g(x + 1))

would not match against either the termg(2 + y − 1) or the termg(1 + y) , because
the equalities of2 + y − 1 andy + 1 , and of1 + y andy + 1 , are facts known to the
decision procedure for the theory of linear arithmetic but may never be propagated into
the e-graph. In this way, using interpreted functions like+ in a trigger makes the trigger
fragile. The interpreted functions of interest in this paper are+ and− . Simplify enters
given expressions that mention+ and− into the e-graph (as well as passing them onto
the arithmetic theory, which interprets the symbols), which means they are available in
matching, but with no regard to their interpretation. In Z3,the interpreted symbols+
and− are not entered into the e-graph, so triggers that mention+ and− will never
give rise to any matches.

Some triggers are not limiting enough. For example,

(∀ x : int • {h(x)} h(x) < h(k(x)))

matches any argument ofh , but when the quantifier is instantiated, the instantiation
produces a term with another argument ofh . Hence, ifh(X) occurs in the e-graph, then
this quantifier will be instantiated withX , k(X) , k(k(X)) , . . . , causing amatching
loop. A more limiting trigger for this quantifier is{h(k(x))} , which does not cause a
matching loop.

2.2 Axioms

Back to our comprehensions. We show our axioms for sum comprehensions; the others
are similar.

For every comprehension template, our encoding introducesnot one, but two func-
tion symbols,sum#n ands#n . We axiomatize these to be synonyms of each other:

(∀ lo: int, hi : int, aa:T • {sum#n(lo, hi , aa)}
sum#n(lo, hi , aa) = s#n(lo, hi , aa))

7

Each sum comprehension in the Spec# program turns into a termthat usessum#n , as
we showed earlier in this section. For all axioms below, we use s#n in all quantifier
bodies, but we sometimes usesum#n instead ofs#n in quantifier triggers. The effect
of this encoding is that we can limit certain instantiationsto avoid matching loops: since
the bodies of axioms only mentions#n , instantiations will not give rise to any new
sum#n terms. Note that thesynonymaxiom above usessum#n in its trigger (shown
in curly braces), nots#n ; thus, for eachsum#n term in the input, the SMT solver
will generate an equivalents#n term, but not vice versa.

We provide aunit axiom, which we render as follows:

(∀ lo: int, hi : int, aa:T • {s#n(lo, hi , aa)}
(∀ k : int • lo 6 k ∧ k < hi ⇒ ¬Filter [[aa, k]])
⇒ s#n(lo, hi , aa) = 0)

whereFilter [[aa, k]] (andTerm[[aa, k]] below) stands for the filter (and term, respec-
tively) expression in the template for thesum comprehension. Note that theempty
range property in the previous section is a special case of theunit axiom. The trigger
says for the outer quantifier to be instantiated for every occurrence ofs#n in the e-
graph. The inner quantifier appears in a negative position inthe axiom, so we need not
worry about triggers for it.

It is important to be able to reason inductively about comprehensions, but induc-
tion axioms are susceptible to matching loops. To avoid matching loops, we limit each
sum#n expression in the input to one instantiation of each induction axiom, which
we achieve by mentioningsum#n , not s#n , in the triggers. We provide four in-
duction axioms altogether. Theinduction below axioms relates#n(lo, hi , aa) and
s#n(lo + 1, hi , aa) :

(∀ lo: int, hi : int, aa:T • {sum#n(lo, hi , aa)}
lo < hi ∧ Filter [[aa, lo]]
⇒ s#n(lo, hi , aa) = s#n(lo + 1, hi , aa) + Term[[aa, lo]])

(∀ lo: int, hi : int, aa:T • {sum#n(lo, hi , aa)}
lo < hi ∧ ¬Filter [[aa, lo]]
⇒ s#n(lo, hi , aa) = s#n(lo + 1, hi , aa))

and theinduction aboveaxioms relates#n(lo, hi , aa) ands#n(lo, hi − 1, aa) :

(∀ lo: int, hi : int, aa:T • {sum#n(lo, hi , aa)}
lo < hi ∧ Filter [[aa, hi − 1]]
⇒ s#n(lo, hi , aa) = s#n(lo, hi − 1, aa) + Term[[aa, hi − 1]])

(∀ lo: int, hi : int, aa:T • {sum#n(lo, hi , aa)}
lo < hi ∧ ¬Filter [[aa, hi − 1]]
⇒ s#n(lo, hi , aa) = s#n(lo, hi − 1, aa))

Another way to avoid matching loops would be to use{s#n(lo + 1, hi , aa)} as the
trigger for theinduction below axioms and{s#n(lo, hi − 1, aa)} as the trigger for
the induction aboveaxioms; however, these triggers are fragile, because they mention
the interpreted symbols+ and− , so they are of limited use with Simplify and of no

8

use with Z3. Our synonym encoding, on the other hand, works with both Simplify and
Z3.

The next axiom is thesplit range axiom:

(∀ lo: int,mid : int, hi : int, aa:T •
{sum#n(lo,mid , aa), sum#n(mid , hi , aa)}
{sum#n(lo,mid , aa), sum#n(lo, hi , aa)}
lo 6 mid ∧ mid 6 hi

⇒ s#n(lo,mid , aa) + s#n(mid , hi , aa) = s#n(lo, hi , aa))

Several remarks about the triggers are in order. First, eachtrigger mentions two terms,
because there is no single term that covers all bound variables. Second, we give two
triggers; a match of either one gives rise to an instantiation of the quantifier. From the
point of view of symmetry, the possible trigger

{sum#n(lo, hi , aa), sum#n(mid , hi , aa)}

is conspicuously absent. We omitted this trigger, because it had a dramatically adverse
impact on performance (for the larger examples we report on in Section 4, including this
trigger slowed down the verifications by as much as a factor of35 with both Simplify
and Z3). Third, the triggers usesum#n , despite the fact that usings#n would not lead
to any matching loop here (repeated instantiations will eventually lead to quiescence,
because the set of terms used among the first two arguments tos#n is not increased).
However, usings#n had a bad impact on performance (by as much as a factor of 10
for our examples).

We also generate asame termsaxiom:

(∀ lo: int, hi : int, aa:T , bb:T • {sum#n(lo, hi , aa), s#n(lo, hi , bb)}
(∀ k : int • lo 6 k ∧ k < hi ⇒

(Filter [[aa, k]] ≡ Filter [[bb, k]]) ∧
(Filter [[aa, k]] ⇒ Term[[aa, k]] = Term[[bb, k]]))

⇒ s#n(lo, hi , aa) = s#n(lo, hi , bb))

This axiom is the only one that relates two comprehension-function applications with
different arguments for the template “holes”. It says the two function applications are
equal if the filters agree in the range(lo : hi) and, whenever the filters hold for ak in
that range, the terms fork are equal. The inner quantifier appears in a negative position
in the axiom, so we need not worry about a trigger for it. For the outer quantifier, we
could have chosen the trigger

{s#n(lo, hi , aa), s#n(lo, hi , bb)}

without running the risk of matching loops, since instantiating the quantifier would not
give rise to anys#n terms that are not already required by this trigger. However, the
trigger with twos#n terms gave rise to unacceptable performance, so we chose to use
sum#n in one of the terms. We also tried specifying both terms in thetrigger with
sum#n , but that was too restrictive for our example programs, which sometimes need
this axiom to be applied to terms generated by the inductive axioms.

9

Finally, exclusively formin and max comprehensions, we generate one more
axiom, thedistribution (of plus over min/max) axiom (here shown formin , using
functionsmin#n andm#n):

(∀ lo: int, hi : int, aa:T , bb:T ,D : int •
{min#n(lo, hi , aa) + D ,m#n(lo, hi , bb)}
(∀ k : int • lo 6 k ∧ k < hi ⇒

(Filter [[aa, k]] ≡ Filter [[bb, k]]) ∧
(Filter [[aa, k]] ⇒ Term[[aa, k]] + D = Term[[bb, k]])) ∧

(∃ k : int • lo 6 k ∧ k < hi ∧ Filter [[aa, k]] ∧
Term[[aa, k]] + D = Term[[bb, k]])

⇒ m#n(lo, hi , aa) + D = m#n(lo, hi , bb))

Several remarks are in order. First, for nonempty ranges, this axiom generalizes the
same termsaxiom (with 0 for D). Second, the nested universal quantifier appears in
a negative position, so we need not worry about a trigger for it, but the trigger for the
existential quantifier matters. What makes a good trigger for it depends on the compre-
hension template. Therefore, we specify no trigger, which puts us at the mercy of the
SMT solver’s heuristics to select a trigger from the body of the quantifier. Third, given
the nested universal quantifier, the conjunct

Term[[aa, k]] + D = Term[[bb, k]]

in the body of the existential quantifier follows from the other conjuncts. However, we
include it to give the SMT solver’s heuristics a better chance of finding some trigger.
Fourth, in the case whereFilter [[aa, k]] does not actually depend onk (which happens
in the common case where the comprehension uses no filter at all), we replace the
existential quantifier by

lo < hi ∧ Filter [[aa, k]]

Fifth, the trigger of the outer quantifier is problematic. Itmentions+ and is therefore
fragile. For our examples, this fragility does not cause a problem for Simplify, but it
renders the axiom useless for Z3.

2.3 Adequacy of the Axiomatisation

We make a few remarks about the adequacy of our axiomatisation.
First, notice that all axioms concern just one comprehension function: there is no

axiom that relates two different comprehension functions.For example, since sum com-
prehension (0) has a different template than sum comprehension (1), they give rise to
different comprehension functions. Thus, if the sum comprehension in the loop invari-
ant in theSegSum method were changed to the form (1) that uses the filter, then the
verification would not be able to establish the postcondition (which is written in the
form (0)) after the loop. Although some verifications could benefit from axioms that
relate different comprehension functions, this was not necessary for any of the textbook
examples that we looked at. This is because their loop invariants and postconditions are

10

written in the same style. We recommend that when students write specifications, this
similarity between loop invariants and postconditions is maintained.

Second, our use ofsum#n instead ofs#n in some triggers limits the number of
quantifier instantiations. However, the instantiations are adequate for the examples we
tried. Also, using Simplify as the SMT solver, we have not experienced any problems
with the fragile trigger of thedistribution axiom. The lack of thedistribution axiom
for Z3 means that it cannot verify examples like Minimal Segment Sum.

Third, trigger issues aside, the collection of axioms we have provided seems plau-
sibly adequate in that ranges of size 0 or 1 can be addressed bytheunit andinduction
aboveaxioms, and all larger ranges can be addressed by decomposing them into smaller
ranges with thesplit rangeaxiom. For example, it is not necessary to include theinduc-
tion below axiom that enlarges the range at the lower end, as the effect of that axiom
can be achieved by first reasoning about the ranges(lo : lo + 1) and (lo + 1 : hi) and
then using thesplit range axiom.

However, triggers are an issue. Omitting theinduction below axiom from our ax-
iomatisation prevents the verification of programs likeSum2 from Fig. 2. This program
could be verified using theinduction aboveandsplit range axioms as just described,
but the needed axiom applications are not triggered automatically. In cases like this, it
is possible, as an advanced feature, to introduce expressions in the Spec# source code
that will trigger the instantiation of axioms. For example,adding the assert statement
assert a[n] == sum{int k in (n : n + 1); a[k]}; before modifyings would be
enough to makeSum2 verify even without theinduction below axiom. Simply men-
tioning sum comprehension over the range(n : n+1) acts as a prover directive causing
the appropriate axiom to be instantiated. However, this is not a solution that we recom-
mend, since adding such prover directives puts a much higherburden on the specifier.

3 Some More Difficult Examples

We now report on our experience of using Spec# to verify some more challenging ex-
amples, including some programming problems described in atextbook by Dijkstra
and Feijen [6]. We begin with an example that illustrates theuse of alternative loop
invariants.

11

public static int Sum0(int[] a)
ensures result == sum{int i in (0 : a.Length); a[i]};

{
int s = 0;
for (int n = 0; n < a.Length; n++)

invariant n 6 a.Length && s == sum{int i in (0 : n); a[i]};
{

s += a[n];
}
return s;

}

public static int Sum1(int[] a)
ensures result == sum{int i in (0 : a.Length); a[i]};

{
int s = 0;
for (int n = 0; n < a.Length; n++)

invariant n 6 a.Length &&
s + sum{int i in (n : a.Length); a[i]} == sum{int i in (0 : a.Length); a[i]};

{
s += a[n];

}
return s;

}

Fig. 1. Two programs that sum an array’s elements starting from its first element. The programs
are identical, except that they use different loop invariants. Whereas,Sum0 uses a loop invariant
that focuses on what has been summed so far,Sum1 uses a loop invariant that focuses on what
is yet to be summed. (The interval analysis performed by the Spec# program verifier infers the
invariant 0 6 n automatically.) Ourinduction above axiom allows the verification of both
programs.

3.0 Variations of summing

There are two main ways that a loop can iterate over a number ofitems to compute a
property expressed by a comprehension, namely forward and backward. And for each
of these ways, there are two main ways to write the associatedloop invariant, either
describing what has been computed so far or what is yet to be computed. Figure 1 and 2
show these four variations for summing the elements of an array.

The verification of these four programs collectively make use of both theinduction
belowandinduction aboveaxioms, and trigger these with different terms. Our verifier
verifies all of these programs, in a fraction of a second, as seen in the performance
figures in Fig. 7.

3.1 Coincidence count

The coincidence count of two given integer arrays, each of which is arranged in strict
increasing order, is the number of values occurring in both arrays. This problem is

12

public static int Sum2(int[] a)
ensures result == sum{int i in (0 : a.Length); a[i]};

{
int s = 0;
for (int n = a.Length; 0 6 −−n;)

invariant 0 6 n && n 6 a.Length &&
s == sum{int i in (n : a.Length); a[i]};

{
s += a[n];

}
return s;

}

public static int Sum3(int[] a)
ensures result == sum{int i in (0 : a.Length); a[i]};

{
int s = 0;
for (int n = a.Length; 0 6 −−n;)

invariant 0 6 n && n 6 a.Length &&
s + sum{int i in (0 : n); a[i]} == sum{int i in (0 : a.Length); a[i]};

{
s += a[n];

}
return s;

}

Fig. 2. Two programs that sum an array’s elements starting from its last element. The programs
are identical, except that they use different loop invariants. Whereas,Sum2 uses a loop invariant
that focuses on what has been summed so far,Sum3 uses a loop invariant that focuses on what
is yet to be summed. Ourinduction below axiom allows the verification of both programs.

included in the book of Dijkstra and Feijen [6]. The specification of the problem uses a
sum comprehension nested inside two minimum comprehensions.

We show one solution to this problem in Fig. 3. Although this asolution that some
students might write, it is not the nicest solution to the problem. First, it iterates until
both arrays have been exhausted, despite the fact that all coincidences have been found
by the time that one array has been exhausted. Second, this has an effect on the guards
of the if statement in the program, which need to consider thepossibility of either array
having been exhausted. The program is correct, however, andit passes our verifier.

A nicer solution to the problem is shown in Fig. 4. This solution is more efficient
as it stops iterating when either array has been exhausted. This, in turn, makes the if
statement guards less complicated. The main issue is triggering the instantiation of the
split range axiom. The inclusion of the second trigger for thesplit range axiom gets
used here, and the program is automatically verified.

The programs in Fig. 3 and 4 have different loop and if guards,but have identical
loop invariants. The loop invariant aboutct focuses on what has been computed so
far. The program in Fig. 4 can also be verified using an alternative loop that focuses

13

public static int CoincidenceCount0(int[] f , int[] g)
requires forall{int i in (0 : f .Length), int j in (0 : f .Length), i < j ; f [i] < f [j]};
requires forall{int i in (0 : g .Length), int j in (0 : g .Length), i < j ; g [i] < g [j]};
ensures result ==

count{int i in (0 : f .Length), int j in (0 : g .Length); f [i] == g [j]};
{

int ct = 0; int m = 0; int n = 0;
while (m < f .Length || n < g .Length)

invariant m 6 f .Length && n 6 g .Length;
invariant ct == count{int i in (0 : m), int j in (0 : n); f [i] == g [j]};
invariant m == f .Length || forall{int j in (0 : n); g [j] < f [m]};
invariant n == g .Length || forall{int i in (0 : m); f [i] < g [n]};

{
if (n == g .Length || (m < f .Length && f [m] < g [n])) {

m++;
} else if (m == f .Length || (n < g .Length && g [n] < f [m])) {

n++;
} else { // g [n] == f [m]

ct++; m++; n++;
}

}
return ct ;

}

Fig. 3. A first solution to the Coincidence Count problem. Giving multiple binders for a compre-
hension is a shorthand for nesting multiple comprehensions; for a count comprehension with
multiple binders, the innermost comprehension remains acount whereas the enclosing ones are
sum comprehensions.

on what is left to compute, see Fig. 5. Dijkstra and Feijen, who consider the derivation
of program from its specification, comment that this alternative invariant “leads more
inevitably” [6] to this solution.

3.2 Minimal Segment Sum

The minimal segment sum of a given integer arraya is the minimum of all segment
sums, calculated for all segmentsa[i], a[i + 1], . . . , a[j − 1] where 0 6 i 6 j 6

a.Length . We present the problem’s specification, together with its solution, in Fig. 6.
The main verification problems are due to the nesting of comprehensions in the program
invariant. In particular, the verification of the invariants requires theinduction axioms
to be applied to both the inner and outer comprehensions, using a combination of thein-
duction andsame termsaxioms. The verification also requires the fragiledistribution
axiom, which means our verifier is unable to prove the programusing Z3.

14

public static int CoincidenceCount1(int[] f , int[] g)
requires forall{int i in (0 : f .Length), int j in (0 : f .Length), i < j ; f [i] < f [j]};
requires forall{int i in (0 : g .Length), int j in (0 : g .Length), i < j ; g [i] < g [j]};
ensures result ==

count{int i in (0 : f .Length), int j in (0 : g .Length); f [i] == g [j]};
{

int ct = 0; int m = 0; int n = 0;
while (m < f .Length && n < g .Length)

invariant m 6 f .Length && n 6 g .Length;
invariant ct == count{int i in (0 : m), int j in (0 : n); f [i] == g [j]};
invariant m == f .Length || forall{int j in (0 : n); g [j] < f [m]};
invariant n == g .Length || forall{int i in (0 : m); f [i] < g [n]};

{
if (f [m] < g [n]) {

m++;
} else if (g [n] < f [m]) {

n++;
} else { // g [n] == f [m]

ct++; m++; n++;
}

}
return ct ;

}

Fig. 4. A more efficient solution to the Coincidence Count problem that terminates the loop as
soon as one array is exhausted. The program and its loop invariants are identical to the one in
Fig. 3, except for the loop and if guards.

4 Evaluation

Many of the difficulties met during our program verificationswere in trying to diagnose
error messages. Error messages need to be made more descriptive, particularly for use
in a learning environment. Much of the confusion comes from uncertainty about how
to proceed when an error is found; do we rewrite the specification, correct the program,
or assist the verifier by addingassert or assume statements?

Debugging by adding prover-directive assertions at the Spec# level requires an un-
derstanding of the verification process and the methodologyemployed by the program
verifier. Adding assertions merely to ensure that the correct axiom is triggered might
make the proof appear mysterious to the student. This shouldbe avoided by carefully
guiding students to examples that the verifier can prove automatically.

The overall performance of the enhanced system programmingsystem is accept-
able. Table 7 shows the times required to verify a number of programs using two first-
order SMT solvers, Simplify and Z3. As we would expect, the performance decreases
as the number of comprehensions and the complexity of the invariants increase. In most
cases, the Z3 solver verifies the programs slightly faster than Simplify. However, Sim-
plify succeeds in verifying all of our examples where Z3 doesnot. Factorial cannot be
verified by Z3 as multiplications by non-constants are, at the moment, essentially ig-

15

invariant m 6 f .Length && n 6 g .Length;
invariant

ct + count{int i in (m : f .Length), int j in (n : g .Length); f [i] == g [j]}
== count{int i in (0 : f .Length), int j in (0 : g .Length); f [i] == g [j]};

Fig. 5. The alternative invariant for the Coincidence Count problem. This invariant can be used
in lieu of the one in Fig. 4 to yield the programCoincidenceCount2 .

public static int MinSegmentSum(int[] a)
ensures result == min{int j in (0 .. a.Length); min{int i in (0 .. j);

sum{int k in (i : j); a[k] }}};
{

int x = 0; int y = 0;
for (int n = 0; n < a.Length; n++)

invariant n 6 a.Length;
invariant x == min{int j in (0 ..n); min{int i in (0 .. j);

sum{int k in (i : j); a[k] }}};
invariant y == min{int i in (0 ..n); sum{int k in (i : n); a[k] }};

{
y += a[n];
if (0 6 y) { y = 0; } else if (y < x) { x = y ; }

}
return x ;

}

Fig. 6. Spec# specification and solution of the Minimal Segment Sum problem.

nored. Simplify is willing to treat such multiplications asuninterpreted functions and
hence it can verify the solution. Z3 cannot verifyMinSegmentSum because the distri-
bution of + over themin comprehension is required, and ourdistribution axiom that
states this property uses a trigger that contains a “+ ”, which is not allowed in Z3.

We do not fully understand why Z3 cannot verifyCoincidenceCount1 in Fig. 4.
If we remove the first of the two triggers for thesplit range axiom for the outercount

comprehension, then Z3 verifies the program in less than 2 seconds. The problem there-
fore seems related to the first of these triggers setting off achain of instantiations that
prevent Z3 from completing the verification.

5 Related Work

Paulson and Meng [7] present work on translating Isabelle/HOL [9] to first-order logic.
Their motivation is to improve the automation of interactive provers by integrating
them with automatic provers which are usually based on first-order logic. Much of
their work focuses on translating Isabelle’s axiomatic type classes to first-order logic

16

Program Simplify Z3
Sum0 0.219 0.172
Sum1 0.063 0.016
Sum2 0.047 0.016
Sum3 0.110 0.016
Factorial 0.172
MinSegmentSum 16.063
CoincidenceCount0 6.017 1.815
CoincidenceCount1 18.970
CoincidenceCount2 12.907 1.16

Fig. 7. Performance measurements (measured in seconds) of programverifications.

predicates and Isabelle types to first-order logic terms so that type information present
in Isabelle/HOL is not lost during the translation.

Our work also translates higher-order functions to first-order logic but the com-
prehensions that we support do not require any type information to be carried in our
encoding. This is due to all comprehensions supported by theSpec# program verifier
having the same form:

Q{int k in (L : H), F ; T}

Perfect Developer [3, 2], an automatic specification and verification environment,
uses a custom theorem prover to provide support for comprehensions like the ones we
have considered here. In some ways, Perfect Developer provides more flexible support
(allowing programmers to define their own operators that apply to sequences, sets, and
multisets), whereas in other ways, we provide more flexible support (directly allowing
comprehensions to apply to arbitrary terms, not just the elements of sequences, and
supporting programs that use filtered subsequences and reverse summations). We hope
to learn how to combine the techniques of the two tools.

6 Conclusions and Future Work

We have implemented support for summation-like comprehensions in the Spec# pro-
gram verifier, using the SMT solvers Simplify and Z3. This implementation takes us
a step closer to providing tool support for students learning program verification. Our
axiomatisation is of a modest size, and we have found our approach to work fairly well,
even on some challenging textbook examples. However, more work is needed, espe-
cially in the area of explaining error messages to users.

To further support students in verification, we would like todevelop a larger reper-
toire of verified textbook programs. We would like to includein it programs that use
common mathematical data structures like sets, multisets,maps, and sequences, as well
as common support for abstraction like model variables and abstraction invariants. Our
aim is to provide a learning environment that focuses on writing good program specifi-
cations rather than burdening the user with seemingly formidable program verifications.

17

AcknowledgmentsWe thank the participants of the IFIP WG 2.3 meeting in Sydney,
January 2007, for serving as a springboard for the initial ideas. We also thank the anony-
mous referees, for their thoughtful and helpful comments.

References

0. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors,Formal Methods
for Components and Objects: 4th International Symposium, FMCO 2005, volume 4111 of
Lecture Notes in Computer Science, pages 364–387. Springer, September 2006.

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. TheSpec# programming system:
An overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian
Muntean, editors,CASSIS 2004, Construction and Analysis of Safe, Secure and Interoperable
Smart devices, volume 3362 ofLecture Notes in Computer Science, pages 49–69. Springer,
2005.

2. Gareth Carter, Rosemary Monahan, and Joseph M. Morris. Software refinement with Per-
fect Developer. In Bernhard K. Aichernig and Bernhard Beckert, editors,Third IEEE In-
ternational Conference on Software Engineering and FormalMethods (SEFM 2005), pages
363–373. IEEE Computer Society, September 2005.

3. David Crocker and Judith Carlton. A high productivity tool for formally veri-
fied software development. Technical report, Escher Technologies, September 2004.
http://www.eschertech.com/papers/pdpaper.pdf.

4. Leonardo de Moura and Nikolaj Björner. Efficient e-matching for SMT solvers. InProceed-
ings CADE 2007, July 2007. To appear.

5. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: atheorem prover for program
checking.Journal of the ACM, 52(3):365–473, May 2005.

6. Edsger W. Dijkstra and W. H. J. Feijen.A method of programming. Addison-Wesley, July
1988.

7. Jia Meng and Lawrence C. Paulson. Translating higher-order problems to first-order clauses.
In Geoff Sutcliffe, Renate Schmidt, and Stephan Schulz, editors,ESCoR 2006: Empirically
Successful Computerized Reasoning, volume 192 ofCEUR Workshop Proceedings, pages
70–80. http://ceur-ws.org, 2006.

8. Charles Gregory Nelson. Techniques for program verification. Technical Report CSL-81-10,
Xerox PARC, June 1981. The author’s PhD thesis.

9. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 ofLecture Notes in Computer Science. Springer, 2002.

