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Abstract—The interest in attribute weighting for soft sub-
space clustering have been increasing in the last years. However,
most of the proposed approaches are designed for dealing only
with numeric data. In this paper, our focus is on soft subspace
clustering for categorical data. In soft subspace clustering,
the attribute weighting approach plays a crucial role. Due to
this, we propose an entropy-based approach for measuring
the relevance of each categorical attribute in each cluster.
Besides that, we propose the EBK-modes (entropy-based k-
modes); an extension of the basic k-modes that uses our
approach for attribute weighting. We performed experiments
on five real-world datasets, comparing the performance of
our algorithms with four state-of-the-art algorithms, using
three well-known evaluation metrics: accuracy, f-measure and
adjusted Rand index. According to the experiments, the EBK-
modes outperforms the algorithms that were considered in the
evaluation, regarding the considered metrics.

Keywords-clustering; subspace clustering; categorical data;
attribute weighting; data mining; entropy;

I. INTRODUCTION

Clustering is a widely used technique in which objects
are partitioned into groups, in such a way that objects
in the same group (or cluster) are more similar among
themselves than to those in other clusters [1]. Most of the

clustering algorithms in the literature were developed for

handling data sets where objects are defined over numerical
attributes. In such cases, the similarity (or dissimilarity)

of objects can be determined using well-studied measures

that are derived from the geometric properties of the data

[2]. However, there are many data sets where the objects

are defined over categorical attributes, which are neither

numerical nor inherently comparable in any way. Thus,

categorical data clustering refers to the clustering of objects

that are defined over categorical attributes (or discrete-

valued, symbolic attributes) [2], [3].

One of the challenges regarding categorical data clustering

arises from the fact that categorical data sets are often

high-dimensional [4], i.e., records in such data sets are

described according to a large number of attributes. In high-

dimensional data, the dissimilarity between a given object

x and its nearest object will be close to the dissimilarity

between x and its farthest object. Due to this loss of the

dissimilarity discrimination in high dimensions, discovering

meaningful separable clusters becomes a very challenging

task.

For handling the high-dimensionality, some works take

advantage of the fact that clusters usually occur in a sub-
space defined by a subset of the initially selected attributes

[5], [6], [7], [8]. In this work, we are interested in the

so-called soft subspace clustering approaches [9], [4]. In

these approaches, different weights are assigned to each

attribute in each cluster, for measuring their respective

contributions to the formation of each clusters. In this way,

soft subspace clustering can be considered as an extension

of the conventional attribute weighting clustering [10] that

employs a common global (and usually fixed) weight vector

for the whole data set in the clustering procedure. However,

it is different, since different weight vectors are assigned
to different clusters. In this approaches, the strategy for

attribute weighting plays a crucial role.

Most of the recent results in soft subspace clustering

for categorical data [4], [11] propose modifications of the

k-modes algorithm [12], [4], [13]. In general, in these

approaches the contribution of each attribute is measured

considering only the frequency of the mode category or the

average distance of data objects from the mode of a cluster.

In this paper, adopting a different approach, we explore

a strategy for measuring the contribution of each attribute

considering the notion of entropy, which measures the

uncertainty of a given random variable. As a consequence,

we propose the EBK-modes (entropy-based k-modes)1; an

extension of the basic k-modes algorithm that uses the notion

of entropy for measuring the relevance of each attribute

in each cluster. Basically, our algorithm assumes that a

given value v of the attribute a of the mode of a cluster

ci determines a subset c′i of ci , i.e., the set of all objects

in ci that have the categorical value v for the attribute a.

Then, we can determine the uncertainty of another attribute

b, regarding v, calculating the entropy of c′i , considering the

attribute b. In this way, we assume that the relevance of a

given attribute b is inversely proportional to the average of

the entropies induced by the values of each attribute of the

1The source codes of our algorithms are available in http://www.inf.ufrgs.
br/bdi/wp-content/uploads/EBK-Modes.zip
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mode of ci in b.
In this paper, we also compare the performance of EBK-

modes against the performance of four other algorithms

available in the literature, using five real data sets. According

to the experiments, EBK-modes outperforms the considered

algorithms.

In Section II we discuss some related works. Before

presenting our approach, in Section III we introduce the

notation that will be used throughout the paper. Section IV

presents our entropy-based attribute weighting approach for

categorical attributes. Section V presents the EBK-modes.

Experimental results are presented in Section VI. Finally,

section VII presents our concluding remarks.

II. RELATED WORKS

In subspace clustering, objects are grouped into clusters

according to subsets of dimensions (or attributes) of a data

set [9]. These approaches involve two mains tasks, identi-

fication of the subsets of dimensions where clusters can be

found and discovery of the clusters from different subsets of

dimensions. According to the ways with which the subsets of

dimensions are identified, we can divide subspace clustering

methods into two categories: hard subspace clustering and

soft subspace clustering. The approaches of hard subspace

clustering determine the exact subsets of attributes where

clusters are discovered. On the other hand, approaches of

soft subspace clustering determine the subsets of dimensions

according to the contributions of the attributes in discovering

the corresponding clusters. The contribution of a dimension

is measured by a weight that is assigned to the dimension in

the clustering process. The algorithm proposed in this paper

can be viewed as a soft subspace clustering approach.

In [12], for example, it is proposed an approach in which

each weight is computed according to the average distance

of data objects from the mode of a cluster. That is, it is

assigned a larger weight to an attribute that has a smaller

sum of the within cluster distances and a smaller weight

to an attribute that has a larger sum of the within cluster

distances. An analysis carried out by [4] have shown that this

approach is sensitive to the setting of the parameter β. In [4],

it is assumed that the weight of a given attribute for a given

cluster is a function of the frequency of the categorical value

of the mode of the cluster for that attribute. This approach

requires the setting of three parameters (β,Tv and Ts ) for

determining the attribute weights. In [11], the authors use the

notion of complement entropy for weighting the attributes.

The complement entropy reflects the uncertainty of an object

set with respect to an attribute (or attribute set), in a way that

the bigger the complement entropy value is, the higher the

uncertainty is. In [9] the authors noticed that the decrease of

the entropy in a cluster implies the increase of certainty of a

subset of dimensions with larger weights in determination of

the cluster. According to this, their approach simultaneously

minimize the within cluster dispersion and maximize the

negative weight entropy to stimulate more dimensions to

contribute to the identification of a cluster.

In our approach, as in [9], we also use the notion of en-

tropy for measuring the relevance of each attribute. However,

here we assume that the relevance of a given attribute, for a

given cluster, is inversely proportional to the average of the

entropy that is induced by each attribute value of the mode

of the cluster.

III. NOTATIONS

In this section, we introduce the following notation that

will be used throughout the paper:

• U = {x1 , x2 , ..., xn} is a non-empty set of n data

objects, called a universe.

• A = {a1 , a2 , ..., am} is a non-empty set of m categor-

ical attributes.

• dom(ai) = {a(1)i , a
(2)
i , ..., a

(li )
i } describes the domain

of values of the attribute ai ∈ A, where li , is the

number of categorical values that ai can assume in U .

Notice that dom(ai) is finite and unordered, e.g., for

any 1 ≤ p ≤ q ≤ li , either a
(p)
i = a

(q)
i or a

(p)
i �= a

(q)
i .

• V is the union of attribute domains, i.e., V =⋃m
j=1 dom(aj ).

• C = {c1 , c2 , ..., ck} is a set of k disjoint partitions of

U , such that U =
⋃k

i=1 ci .
• Each xi ∈ U is a m − tuple, such that xi =

(xi1 , xi2 , ..., xim), where xiq ∈ dom(aq) for 1 ≤ i ≤
n and 1 ≤ q ≤ m.

IV. AN ENTROPY-BASED APPROACH FOR CATEGORICAL

ATTRIBUTE WEIGHTING

In information theory, entropy is a measure of the un-
certainty in a random variable [14]. The larger the entropy

of a given random variable, the larger is the uncertainty

associated to it. When taken from a finite sample, the entropy

H of a given random variable X can be written as

H(X) = −
∑
i

P (xi ) logP (xi ) (1)

where P (xi) is the probability mass function.

In this work, we use the notion of entropy for measuring

the relevance of a given attribute for a given partition ci ∈
C. In order to illustrate the main notions underlying our

approach, let us consider the categorical data set represented

in the Table I, where:

• U = {x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10}.
• A = {a1 , a2 , a3 , a4 , a5}.
• dom(a1 ) = {a, b, c, d, e, f, g, h, i, j}, dom(a2 ) =
{k, l,m}, dom(a3 ) = {n, o, p}, dom(a4 ) = {q, r} and

dom(a5 ) = {s, t, u}.
Let us suppose, in our example, that the universe U repre-

sented in Tale I is partitioned in three disjoint partitions c1 =
{x1 , x2 , x3 , x4}, c2 = {x5 , x6 , x7}, c3 = {x8 , x9 , x10},
with their respective centers, as follows:
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Data objects a1 a2 a3 a4 a5

x1 a k n q s
x2 b k n r s
x3 c k n q s
x4 d k o r t
x5 e l o q t
x6 f l o r t
x7 g l o q t
x8 h m o r u
x9 i m p q u
x10 j m p r u

Table I
REPRESENTATIONS OF AN EXAMPLE OF CATEGORICAL DATA SET.

c1 : (d, k, n, r, s).
c2 : (g, l, o, q, t).
c3 : (j,m, p, r, u).

Firstly, let us consider the function φi : V → 2ci that maps

a given categorical value a
(l)
h ∈ dom(ah) to a set s ⊆ ci ,

which contains every object in the partition ci ∈ C that has

the value a
(l)
h for the attribute ah . Notice that 2ci represents

the powerset of ci , i.e., the set of all subsets of ci , including

the empty set and ci itself. Thus:

φi (a
(l)
h ) ={xq |xq ∈ ci

and xqh = a
(l)
h }

(2)

Considering our example, we have that φ1 (s) =
{x1 , x2 , x3}.

Also, let us consider the function αi : V × A → 2V that

maps a given categorical value a
(l)
h and a given attribute aj ∈

A to a set V ′ ⊆ V , which represents the set of categorical

values of attribute aj that co-occur with the categorical value

a
(l)
h , in the partition ci ∈ C. That is:

αi (a
(l)
h , aj ) =|{a(p)j |∀xq ∈ φi (a(l)h ), xqj = a

(p)
j }| (3)

Thus, in our example, we have that α1 (s, a1 ) = {a, b, c}.
Moreover, let us consider ψi : V × V → N as a function

that maps two given categorical values a
(l)
h ∈ dom(ah) and

a
(p)
j ∈ dom(aj ) to the number of objects, in ci ∈ C, in

which these values co-occur (assigned to the attributes ah
and aj , respectively). That is:

ψi (a
(l)
h , a

(p)
j ) =|{xq |xq ∈ ci

and xqh = a
(l)
h

and xqj = a
(p)
j }|

(4)

In our example, we have that ψ1 (s, q) = |{x1 , x3}| = 2.

Furthermore, let us consider the function Ei : V ×A→ R

that maps a given categorical value a
(l)
h ∈ dom(ah) and a

categorical attribute aj ∈ A to the entropy of the set φi(a
(l)
h ),

regarding the attribute aj . That is:

Ei (a(l)h , aj ) = −
∑

a
p
j ∈α(a

(l)
h

,aj )

ψi (a
(l)
h , a

(p)
j )

|φi (a(l)h )|
log

ψi (a
(l)
h , a

(p)
j )

|φi (a(l)h )|
(5)

According to our example, we have that

E1 (s, a1 ) = −
(
1

3
log

1

3
+

1

3
log

1

3
+

1

3
log

1

3

)
= 1.10 (6)

On the other hand, for example, we also have that

E1 (s, a3 ) = −
(
3

3
log

3

3

)
= 0 (7)

At this point, let us consider zi as the mode of the partition

ci ∈ C, such that zi = {zi1 , ..., zim}, where ziq ∈ dom(aq)
for 1 ≤ i ≤ k and 1 ≤ q ≤ m.

Notice that we can use the function E for measuring the

entropy associated to a given categorical attribute ah ∈ A,

in a given partition ci ∈ C, regarding the value zij of the

attribute aj ∈ A of the mode zi . Intuitively, this would

measure the uncertainty associated to the attribute ah , given

the categorical value zij of the mode.

Using the function E , we can define a function ei : A→ R

that maps a given categorical attribute ah ∈ A to the average

of the value of Ei(zij , ah), for all aj ∈ A, considering a

partition ci ∈ C. That is:

ei (ah ) =

∑
zij∈zi

Ei (zij , ah )

|A| (8)

Intuitively, ei(ah) measures the average of the uncertainty

associated to ah , considering all the categorical values of

the mode zi . In our example, we have: E1 (d, a5 ) = 0,

E1 (k, a5 ) = 0.56, E1 (n, a5 ) = 0, E1 (r, a5 ) = 0.69 and

E1 (s, a5 ) = 0. As a consequence, we have:

e1 (a5 ) =
0 + 0.56 + 0 + 0.69 + 0

5
= 0.25 (9)

We also have: e1 (a1 ) = 0.86, e1 (a2 ) = 0, e1 (a3 ) = 0.25
and e1 (a4 ) = 0.39.

At this point, we are able to introduce the entropy-
based relevance index (ERI); the main notion underlying

our approach.

Definition 1. Entropy-based relevance index: The ERI mea-

sures the relevance of a given categorical attribute ah ∈ A,

for a partition ci ∈ C. The ERI can be measured through

the function ERIi : A→ R, such that:

ERIi (ah ) =
exp(−ei (ah ))∑

aj∈A
exp(−ei (aj ))

(10)

According to our example, we have that: ERI1 (a1 ) =
0.12, ERI1 (a2 ) = 0.27, ERI1 (a3 ) = 0.21, ERI1 (a4 ) =
0.18 and ERI1 (a5 ) = 0.21. Notice that ERIi(ah) is

inversely proportional to ei(ah). The smaller the ei(ah), the

larger the ERIi(ah), the more important the corresponding

categorical attribute ah ∈ A.

274274274274274274274274274



V. EBK-MODES: AN ENTROPY-BASED K-MODES

The EBK-modes extends the basic K-modes algorithm

[15] by considering our entropy-based attribute weighting

approach for measuring the relevance of each attribute in

each cluster. Thus, the EBK-modes can be viewed as a soft

subspace clustering algorithm. Our algorithm uses the k-
means paradigm to search a partition of U into k clusters that

minimize the objective function P (W,Z,Λ) with unknown

variables W , Z and Λ as follows:

min
W ,Z ,Λ

P (W,Z,Λ)

k∑
l=1

n∑
i=1

wlid(xi , zl ) (11)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wli ∈ {0, 1} 1 ≤ l ≤ k, 1 ≤ i ≤ n
k∑

l=1
wli = 1, 1 ≤ i ≤ n

0 ≤
n∑

i=1
wli ≤ n, 1 ≤ l ≤ k

λlj ∈ [0, 1], 1 ≤ l ≤ k, 1 ≤ j ≤ m
m∑

j=1
λlj = 1, 1 ≤ l ≤ k

(12)

Where:

• W = [wli ] is a k×n binary membership matrix, where

wli = 1 indicates that xi is allocated to the cluster Cl .

• Z = [zlj ] is a k×m matrix containing k cluster centers.

The dissimilarity function d(xi , zl) is defined as follows:

d(xi , zl ) =
m∑

j=1

θaj (xi , zl ) (13)

where

θaj (xi , zl ) =

{
1, xij �= zlj
1− λlj , xij = zlj

(14)

where

λlj = ERIl (aj ) (15)

The minimization of the objective function 11 with the

constraints in 12 forms a class of constrained nonlinear

optimization problems whose solutions are unknown. The

usual method towards optimization of 11 is to use partial

optimization for Z, W and Λ. In this method, following [11],

we first fix Z and Λ and find necessary conditions on W to

minimize P (W,Z,Λ). Then, we fix W and Λ and minimize

P (W,Z,Λ) with respect to Z. Finally, we then fix W and Z
and minimize P (W,Z,Λ) with respect to Λ. The process is

repeated until no more improvement in the objective function

value can be made. The Algorithm 1 presents the EBK-

modes algorithm, which formalizes this process, using the

entropy-based relevance index for measuring the relevance

of each attribute in each cluster.

Algorithm 1: EBK-modes

Input: A set of categorical data objects U and the number k of
clusters.

Output: The data objects in U partitioned in k clusters.
begin

Initialize the variable oldmodes as a k × |A|-ary empty array;
Randomly choose k distinct objects x1 , x2 ,...,xk from U and
assign [x1 , x2 , ..., xk ] to the k × |A|-ary variable newmodes;

Set all initial weights λlj to 1
|A| , where 1 ≤ l ≤ k, 1 ≤ j ≤ m;

while oldmodes �= newmodes do
foreach i = 1 to |U | do

foreach l = 1 to k do
Calculate the dissimilarity between the i− th
object and the l− th mode and classify the i− th
object into the cluster whose mode is closest to it;

foreach l = 1 to k do
Find the mode zl of each cluster and assign to
newmodes;
Calculate the weight of each attribute ah ∈ A of the
l − th cluster, using ERIl (ah );

VI. EXPERIMENTS

For evaluating our approach, we have compared the EBK-

modes algorithm, proposed in Section V, with state-of-the-

art algorithms. For this comparison, we considered three

well-known evaluation measures: accuracy [15], [13], f-
measure [16] and adjusted Rand index [4]. The experiments

were conducted considering five real-world data sets: con-

gressional voting records, mushroom, breast cancer, soy-

bean2 and genetic promoters. All the data sets were obtained

from the UCI Machine Learning Repository3. Regarding the

data sets, missing value in each attribute was considered as a

special category in our experiments. In Table II, we present

the details of the data sets that were used.

Dataset Tuples Attributes Classes

Vote 435 17 2
Mushroom 8124 23 2
Breast cancer 286 10 2
Soybean 683 36 19
Genetic promoters 106 58 2

Table II
DETAILS OF THE DATA SETS THAT WERE USED IN THE EVALUATION

PROCESS.

In our experiments, the EBK-modes algorithm were com-

pared with four algorithms available in the literature: stan-

dard k-modes (KM) [15], NWKM [4], MWKM [4] and WK-

modes (WKM) [11]. For the NWKM algorithm, following

the recommendations of the authors, the parameter β was set

to 2. For the same reason, for the MWKM algorithm, we

have used the following parameter settings:β = 2, Tv = 1
and Ts = 1.

2This data set combines the large soybean data set and its corresponding
test data set

3http://archive.ics.uci.edu/ml/
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For each data set in Table II, we carried out 100 random

runs of each one of the considered algorithms. This was

done because all of the algorithms choose their initial

cluster centers via random selection methods, and thus the

clustering results may vary depending on the initialization.

Besides that, the parameter k was set to the corresponding

number of clusters of each data set. For the considered data

sets, the expected number of clusters k is previously known.

The resulting measures of accuracy, f-measure and ad-

justed Rand index that were obtained during the experiments

are summarized, respectively, in Tables III, IV and V. Notice

that the tables present both, the best performance (at the top

of each cell) and the average performance (at the bottom of

each cell), for each algorithm in each data set. Moreover, the

best results for each data set are marked in bold typeface.

Algorithm Vote Mushroom
Breast
cancer

Soybean Promoters Average

KM
0.86 0.89 0.73 0.70 0.80 0.80
0.86 0.71 0.70 0.63 0.59 0.70

NWKM
0.88 0.89 0.75 0.73 0.77 0.80
0.86 0.72 0.70 0.63 0.61 0.70

MWKM
0.87 0.89 0.71 0.72 0.81 0.80
0.86 0.72 0.70 0.63 0.61 0.70

WKM
0.88 0.89 0.74 0.74 0.78 0.81
0.87 0.73 0.70 0.65 0.62 0.71

EBKM
0.88 0.89 0.74 0.75 0.83 0.82
0.87 0.76 0.70 0.66 0.62 0.72

Table III
COMPARISON OF THE ACCURACY PRODUCED BY EACH ALGORITHM.

Algorithm Vote Mushroom
Breast
cancer

Soybean Promoters Average

KM
0.77 0.81 0.68 0.52 0.69 0.69
0.76 0.64 0.54 0.42 0.53 0.58

NWKM
0.80 0.81 0.70 0.55 0.66 0.70
0.78 0.64 0.56 0.42 0.54 0.59

MWKM
0.78 0.81 0.67 0.53 0.70 0.70
0.76 0.64 0.54 0.42 0.54 0.58

WKM
0.79 0.81 0.69 0.55 0.68 0.70
0.78 0.66 0.55 0.45 0.55 0.60

EBKM
0.79 0.81 0.69 0.57 0.73 0.72
0.78 0.68 0.56 0.47 0.55 0.61

Table IV
COMPARISON OF THE F-MEASURE PRODUCED BY EACH ALGORITHM.

The Tables III, IV and V show that EBK-modes achieves

high-quality overall results, considering the selected data sets

and measures of performance. It has performances that are

better than the performance of state-of-the-art algorithms,

such as WKM. As shown in the column that represents the

average performance, considering all the data sets, the EBK-

modes algorithm outperforms all the considered algorithm,

in the three considered metrics of performance.

VII. CONCLUSION

In this paper, we propose a subspace clustering algorithm

for categorical data called EBK-modes (entropy-based k-

modes). It modifies the basic k-modes by considering the

Algorithm Vote Mushroom
Breast
cancer

Soybean Promoters Average

KM
0.52 0.61 0.19 0.48 0.36 0.43
0.51 0.26 0.01 0.37 0.06 0.24

NWKM
0.56 0.62 0.21 0.51 0.30 0.44
0.54 0.26 0.02 0.37 0.07 0.25

MWKM
0.56 0.62 0.14 0.49 0.39 0.44
0.52 0.28 0.01 0.37 0.07 0.25

WKM
0.57 0.62 0.18 0.51 0.32 0.44
0.54 0.28 0.02 0.41 0.08 0.27

EBKM
0.57 0.62 0.18 0.53 0.44 0.47
0.54 0.33 0.03 0.42 0.09 0.28

Table V
COMPARISON OF THE ADJUSTED RAND INDEX (ARI) PRODUCED BY

EACH ALGORITHM.

entropy-based relevance index (ERI) as a measure of the

relevance of each attribute in each cluster. The ERI of

a given attribute is inversely proportional to the average

of the entropy induced to this attribute for each attribute

value of the mode of a cluster. We conducted experiments

on five real-world datasets, comparing the performance of

our algorithms with four state-of-the-art algorithms, using

three well-known evaluation metrics: accuracy, f-measure

and adjusted Rand index. The results have shown that the

EBK-modes outperforms the state-of-the-art algorithms. In

the next steps, we plan to investigate how the entropy-based
relevance index can be calculate for mixed data sets, i.e.,

data sets with both categorical and numerical attributes.
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