
Solutions to Week 6 Homework

ASSIGNMENT 13.

3.1.19. Find the solution of the initial value problem

y′′ − y = 0, y(0) =
5

4
, y′(0) = −3

4
.

Plot the solution for 0 ≤ t ≤ 2 and determine its minimum value.[5 points for the solution, 2
for the plot, 3 for the minimum value.]

The characteristic equation is
r2 − 1 = 0,

which has roots r = ±1. Thus, a fundamental set of solutions is

y1 = et, y2 = e−t.

We look for a solution of the form

y = C1e
t + C2e

−t.

To solve the required initial value problem, we need

5

4
= C1 + C2,

−3

4
= C1 − C2.

Adding these equations together gives 1/2 = 2C1, or C1 = 1/4, and subtracting them gives
2 = 2C2, or C2 = 1. So the solution is

y =
1

4
et + e−t.

Here is a graph:

1



As you can see, the function has a unique critical point, which is a minimum. This should be
the unique point where y′ = 0. We have

y′ =
1

4
et − e−t,

so we need
1

4
et = e−t

e−2t = 1/4

−2t = ln(1/4)

t = ln(2) ≈ 0.693.

[It is fine to read this off the graph rather than solving, though you might want to point out
that they can solve it exactly.]

22. Solve the initial value problem

4y′′ − y = 0, y(0) = 2, y′(0) = β.

Then find β so that the solution approaches zero as t → ∞. [5 points for the solution, 5 for
β = −1.]

The characteristic equation is 4r2 − 1 = 0, which has solutions r = ±1/2. So the general
solution is

y = C1e
t/2 + C2e

−t/2.

To solve the initial value problem, we solve the system of equations

2 = C1 + C2,

β =
C1

2
− C2

2
.

The second equation gives
2β = C1 − C2.

Adding this to the first equation shows that C1 = β+ 1. Subtracting the two equations shows
that C2 = 1− β. So the solution is

y = (1 + β)et/2 + (1− β)e−t/2.

As t → ∞, the first term will predominate, and send y to ±∞, unless its coefficient is zero.
So we need β = −1, which makes

y = 2e−t/2.

This does, in fact, go to 0 as t→∞.

ASSIGNMENT 14.

3.2.13. Verify that y1(t) = t2 and y2(t) = t−1 are two solutions of the differential equation

t2y′′ − 2y = 0

for t > 0. Then show that y = c1t
2 + c2t

−1 is also a solution of this equation for any c1 and
c2.[5 pts – okay to quote the theorem for the second part]

We have
t2y′′1 − 2y1 = t2 · 2− 2t2 = 0

and
t2y′′2 − 2y2 = t2 · (2t−3)− 2t−1 = 0.
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So both are solutions for t > 0. (At t = 0, y2 has a discontinuity. However, y2 is also a solution
for t < 0, and y1 is a solution that is valid for all t.)

Since this is a linear and homogeneous equation, its set of solutions is closed under linear
combinations, by Theorem 3.2.2 in the text. Thus, any c1y1 + c2y2 is also a solution.

Alternatively, we could check directly that y = c1y1 + c2y2 is a solution. We have

y = c1t
2 + c2t

−1

y′ = 2c1t− c2t−2

y′′ = 2c1 + 2c2t
−3

and thus
t2y′′ − 2y = 2c1t

2 + 2c2t
−1 − 2c1t

2 − 2c2t
−1 = 0.

14. Verify that y1(t) = 1 and y2(t) = t1/2 are solutions of the differential equation

yy′′ + (y′)2 = 0

for t > 0. Then show that y = c1 +c2t
1/2 is not, in general, a solution to the equation. Explain

why this does not contradict Theorem 3.2.2.[7 pts]

We check that
y1y
′′
1 + (y′1)2 = 1 · 0 + 02 = 0

and that

y2y
′′
2 + (y′2)2 = t1/2 · (1/2)(−1/2)t−3/2 +

[
(1/2)t−1/2

]2
= −1

4
t−1 +

1

4
t−1 = 0.

For a general y = c1 + c2t
1/2, we have

y′ =
c2
2
t−1/2

y′′ = −c2
4
t−3/2

Therefore,

yy′′ + (y′)2 = −c1c2
4
t−3/2 − c22

4
t−1 +

c22
4
t−1 = −c1c2

4
t−3/2.

This is only zero if c1 or c2 is zero. Another way to approach this would be to pick a random
value for c1 and c2 and try it out – typically with problems like this, it’s very unlikely that
you would land on the wrong answer by chance.

This does not contradict Theorem 3.2.2 because the differential equation is not linear. It is
usually only true for linear, homogeneous differential equations that their solutions are closed
under taking linear combinations.

25. Verify that the functions y1 and y2 are solutions of the given differential equation. Do they
constitute a fundamental set of solutions? [8 pts – 4 for verification, 4 for checking that they
are a fundamental set of solutions.]

y′′ − 2y′ + y = 0; y1(t) = et, y2(t) = tet.

We check that
y′′1 − 2y′1 + y1 = et − 2et + et = 0.

For y2, we have y′2 = et + tet by the product rule, and y′′2 = 2et + tet by the same method. So

y′′2 − 2y′2 + y2 = (2et + tet)− 2(et + tet) + tet = 0.
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Absent a method of solving this equation in general, we can prove that these are a fundamental
set of solutions by calculating the Wronskian. We have

W (y1, y2)(t) =

∣∣∣∣et tet

et et + tet

∣∣∣∣ = e2t + te2t − te2t = e2t.

This is never zero, so y1 and y2 are a fundamental set of solutions.

Note that Abel’s theorem tells us that the Wronskian of y1 and y2 is of the form Ce2t just by
looking at the equation. However, it does not tell us the value of C, and in particular whether
or not C = 0. So Abel’s theorem by itself is of no help here.

Another way to do this is to notice that neither of y1 or y2 is a scalar multiple of each
other, so they are linearly independent. Since the solutions to a linear homogeneous second-
order equation are always a two-dimensional vector space – they are always generated by a
fundamental set of two solutions – it follows immediately that y1 and y2 are a fundamental
set of solutions. (If not, we could find a third linearly independent solution y3, which would
give us the general solution in terms of three parameters. But this doesn’t happen for linear
homogeneous second-order equations.)
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