Apache Spark
Quick Start Guide

Quickly learn the art of writing efficient big data applications
with Apache Spark

Packt

www.packtcom
Shrey Mehrotra and Akash Grade

Apache Spark Quick Start
Guide

Quickly learn the art of writing efficient big data applications
with Apache Spark

Shrey Mehrotra
Akash Grade

BIRMINGHAM - MUMBAI

Apache Spark Quick Start Guide

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Siddharth Mandal
Content Development Editor: Smit Carvalho
Technical Editor: Aishwarya More

Copy Editor: Safis Editing

Project Coordinator: Pragati Shukla
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Alishon Mendonsa

Production Coordinator: Deepika Naik

First published: January 2019
Production reference: 1310119
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-910-8

www.packtpub.com

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the authors

Shrey Mehrotra has over 8 years of IT experience and, for the past 6 years, has been
designing the architecture of cloud and big-data solutions for the finance, media, and
governance sectors. Having worked on research and development with big-data labs and
been part of Risk Technologies, he has gained insights into Hadoop, with a focus on Spark,
HBase, and Hive. His technical strengths also include Elasticsearch, Kafka, Java, YARN,
Sqoop, and Flume. He likes spending time performing research and development on
different big-data technologies. He is the coauthor of the books Learning YARN and Hive
Cookbook, a certified Hadoop developer, and he has also written various technical papers.

Akash Grade is a data engineer living in New Delhi, India. Akash graduated with a BSc in
computer science from the University of Delhi in 2011, and later earned an MSc in software
engineering from BITS Pilani. He spends most of his time designing highly scalable data
pipeline using big-data solutions such as Apache Spark, Hive, and Kafka. Akash is also a
Databricks-certified Spark developer. He has been working on Apache Spark for the last
five years, and enjoys writing applications in Python, Go, and SQL.

About the reviewer

Nisith Kumar Nanda is a passionate big data consultant who loves to find solutions to
complex data problems. He has around 10 years of IT experience working on multiple
technologies with various clients globally. His core expertise involves working with open
source big data technologies such as Apache Spark, Kafka, Cassandra, HBase, to build
critical next generation real-time and batch applications. He is very proficient in various
programming languages such as Java, Scala, and Python. He is passionate about Al,
machine learning, and NLP.

I would like to thank my family and especially my wife, Samita, for their support. I will
also take this opportunity to thank my friends and colleagues who helped me to grow
professionally.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

Chapter 1: Introduction to Apache Spark
What is Spark?
Spark architecture overview
Spark language APIs
Scala
Java
Python
R
SQL
Spark components
Spark Core
Spark SQL
Spark Streaming
Spark machine learning
Spark graph processing
Cluster manager
Standalone scheduler
YARN
Mesos
Kubernetes
Making the most of Hadoop and Spark
Summary

Chapter 2: Apache Spark Installation
AWS elastic compute cloud (EC2)
Creating a free account on AWS

Connecting to your Linux instance
Configuring Spark
Prerequisites
Installing Java
Installing Scala
Installing Python
Installing Spark
Using Spark components
Different modes of execution
Spark sandbox
Summary

Chapter 3: Spark RDD

Table of Contents

What is an RDD?

Resilient metadata
Programming using RDDs
Transformations and actions

Transformation

Narrow transformations

map()
flatMap()

filter()
union()
mapPartitions()
Wide transformations
distinct()
sortBy()
intersection()
subtract()
cartesian()
Action
collect()
count()
take()
top()
takeOrdered()
first()
countByValue()
reduce()
saveAsTextFile()
foreach()
Types of RDDs
Pair RDDs
groupByKey()
reduceByKey()
sortByKey()
join()
Caching and checkpointing
Caching
Checkpointing
Understanding partitions
repartition() versus coalesce()
partitionBy()
Drawbacks of using RDDs

Summary

Chapter 4: Spark DataFrame and Dataset
DataFrames
Creating DataFrames
Data sources
DataFrame operations and associated functions

[ii]

Table of Contents

Running SQL on DataFrames
Temporary views on DataFrames
Global temporary views on DataFrames
Datasets
Encoders
Internal row
Creating custom encoders
Summary

Chapter 5: Spark Architecture and Application Execution Flow
A sample application
DAG constructor
Stage
Tasks
Task scheduler
FIFO
FAIR
Application execution modes
Local mode
Client mode
Cluster mode
Application monitoring
Spark Ul
Application logs
External monitoring solution
Summary

Chapter 6: Spark SQL
Spark SQL
Spark metastore
Using the Hive metastore in Spark SQL
Hive configuration with Spark
SQL language manual
Database
Table and view
Load data
Creating UDFs
SQL database using JDBC
Summary

Chapter 7: Spark Streaming, Machine Learning, and Graph Analysis

Spark Streaming
Use cases
Data sources
Stream processing
Microbatch
DStreams
Streaming architecture

69

70
71
74
76
76
76

78
78
82

82
83

84
84
84
85
85
86
86
89
89
90
90
91

92
92
92
93
93
93
94
95

99
100
100

101
101
102
102
103
103
103
104

[iii]

Table of Contents

Streaming example 104
Machine learning 106
MLIib 107

ML 110
Graph processing 112
GraphX 113
mapVertices 114
mapEdges 114
subgraph 115
GraphFrames 115
degrees 116
subgraphs 117

Graph algorithms 117
PageRank 117
Summary 118
Chapter 8: Spark Optimizations 119
Cluster-level optimizations 119
Memory 120
Disk 120
CPU cores 121
Project Tungsten 123
Application optimizations 124
Language choice 124
Structured versus unstructured APls 125
File format choice 125
RDD optimizations 125
Choosing the right transformations 126
Serializing and compressing 127
Broadcast variables 127
DataFrame and dataset optimizations 128
Catalyst optimizer 129
Storage 130
Parallelism 130

Join performance 131

Code generation 131
Speculative execution 131
Summary 132
Other Books You May Enjoy 133
Index 136

[iv]

Preface

Apache Spark is a flexible in-memory framework that allows the processing of both batch
and real-time data in a distributed way. Its unified engine has made it quite popular for big
data use cases.

This book will help you to quickly get started with Apache Spark 2.x and help you write
efficient big data applications for a variety of use cases. You will get to grip with the low-
level details as well as core concepts of Apache Spark, and the way they can be used to
solve big data problems. You will be introduced to RDD and DataFrame APIs, and their
corresponding transformations and actions.

This book will help you learn Spark's components for machine learning, stream processing,
and graph analysis. At the end of the book, you'll learn different optimization techniques
for writing efficient Spark code.

Who this book is for

If you are a big data enthusiast and love processing huge amounts of data, this book is for
you. If you are a data engineer and looking for the best optimization techniques for your
Spark applications, then you will find this book helpful. This book will also help data
scientists who want to implement their machine learning algorithms in Spark. You need to
have a basic understanding of programming languages such as Scala, Python, or Java.

What this book covers

Chapter 1, Introduction to Apache Spark, provides an introduction to Spark 2.0. It provides a
brief description of different Spark components, including Spark Core, Spark SQL, Spark
Streaming, machine learning, and graph processing. It also discusses the advantages of
Spark compared to other similar frameworks.

Chapter 2, Apache Spark Installation, provides a step-by-step guide to installing Spark on an
AWS EC2 instance from scratch. It also helps you install all the prerequisites, such as
Python, Java, and Scala.

Chapter 3, Spark RDD, explains Resilient Distributed Datasets (RDD) APIs, which are the
heart of Apache Spark. It also discusses various transformations and actions that can be
applied on an RDD.

Preface

Chapter 4, Spark DataFrame and Dataset, covers Spark's structured APIs: DataFrame and
Dataset. This chapter also covers various operations that can be performed on a DataFrame
or Dataset.

Chapter 5, Spark Architecture and Application Execution Flow, explains the interaction
between different services involved in Spark application execution. It explains the role of
worker nodes, executors, and drivers in application execution in both client and cluster
mode. It also explains how Spark creates a Directed Acyclic Graph (DAG) that consists of
stages and tasks.

Chapter 6, Spark SQL, discusses how Spark gracefully supports all SQL operations by
providing a Spark-SQL interface and various DataFrame APIs. It also covers the seamless
integration of Spark with the Hive metastore.

Chapter 7, Spark Streaming, Machine Learning, and Graph Analysis, explores different Spark
APIs for working with real-time data streams, machine learning, and graphs. It explains the
candidature of features based on the use case requirements.

Chapter 8, Spark Optimizations, covers different optimization techniques to improve the
performance of your Spark applications. It explains how you can use resources such as
executors and memory in order to better parallelize your tasks.

To get the most out of this book

Use a machine with a recent version of Linux or macOS. It will be useful to know the basic
syntax of Scala, Python, and Java. Install Python's NumPy package in order to work with
Spark's machine learning packages.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www.packt .com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com
Select the SUPPORT tab
Click on Code Downloads and Errata

Ll e

Enter the name of the book in the Search box and follow the onscreen
instructions

[2]

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Apache-Spark-Quick-Start-Guide. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789349108_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WwebStorm-10* . dmg disk image file as another disk in
your system."

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

[3]

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome:

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[4]

Introduction to Apache Spark

Apache Spark is an open source framework for processing large datasets stored in
heterogeneous data stores in an efficient and fast way. Sophisticated analytical algorithms
can be easily executed on these large datasets. Spark can execute a distributed program 100
times faster than MapReduce. As Spark is one of the fast-growing projects in the open
source community, it provides a large number of libraries to its users.

We shall cover the following topics in this chapter:

e A brief introduction to Spark

e Spark architecture and the different languages that can be used for coding Spark
applications

e Spark components and how these components can be used together to solve a
variety of use cases

¢ A comparison between Spark and Hadoop

What is Spark?

Apache Spark is a distributed computing framework which makes big-data processing
quite easy, fast, and scalable. You must be wondering what makes Spark so popular in the
industry, and how is it really different than the existing tools available for big-data
processing? The reason is that it provides a unified stack for processing all different kinds
of big data, be it batch, streaming, machine learning, or graph data.

Spark was developed at UC Berkeley’s AMPLab in 2009 and later came under the Apache
Umbrella in 2010. The framework is mainly written in Scala and Java.

Introduction to Apache Spark Chapter 1

Spark provides an interface with many different distributed and non-distributed data
stores, such as Hadoop Distributed File System (HDEFS), Cassandra, Openstack Swift,
Amazon S3, and Kudu. It also provides a wide variety of language APIs to perform
analytics on the data stored in these data stores. These APIs include Scala, Java, Python,
and R.

The basic entity of Spark is Resilient Distributed Dataset (RDD), which is a read-only
partitioned collection of data. RDD can be created using data stored on different data stores
or using existing RDD. We shall discuss this in more detail in chapter 3, Spark RDD.

Spark needs a resource manager to distribute and execute its tasks. By default, Spark comes
up with its own standalone scheduler, but it integrates easily with Apache Mesos and Yet
Another Resource Negotiator (YARN) for cluster resource management and task
execution.

One of the main features of Spark is to keep a large amount of data in memory for faster
execution. It also has a component that generates a Directed Acyclic Graph (DAG) of
operations based on the user program. We shall discuss these in more details in coming
chapters.

The following diagram shows some of the popular data stores Spark can connect to:

.Spc.wr‘lgZ

A

| \
- “% ‘ Y 9
QT i YW g itk {1SON)

cassandra
Parquet Amazon 53

Data stores

[6]

Introduction to Apache Spark Chapter 1

Spark is a computing engine, and should not be considered as a storage
system as well. Spark is also not designed for cluster management. For
this purpose, frameworks such as Mesos and YARN are used.

Spark architecture overview

Spark follows a master-slave architecture, as it allows it to scale on demand. Spark's
architecture has two main components:

e Driver Program: A driver program is where a user writes Spark code using
either Scala, Java, Python, or R APISs. It is responsible for launching various
parallel operations of the cluster.

¢ Executor: Executor is the Java Virtual Machine (JVM) that runs on a worker
node of the cluster. Executor provides hardware resources for running the tasks
launched by the driver program.

As soon as a Spark job is submitted, the driver program launches various operation on each
executor. Driver and executors together make an application.

The following diagram demonstrates the relationships between Driver, Workers, and
Executors. As the first step, a driver process parses the user code (Spark Program) and
creates multiple executors on each worker node. The driver process not only forks the
executors on work machines, but also sends tasks to these executors to run the entire
application in parallel.

[7]

Introduction to Apache Spark Chapter 1

Once the computation is completed, the output is either sent to the driver program or saved
on to the file system:

Spark Program

TN

O O

Worker 1 Worker 2 Worker N

Driver, Workers, and Executors

Spark language APls

Spark has integration with a variety of programming languages such as Scala, Java, Python,
and R. Developers can write their Spark program in either of these languages. This freedom
of language is also one of the reasons why Spark is popular among developers. If you
compare this to Hadoop MapReduce, in MapReduce, the developers had only one choice:
Java, which made it difficult for developers from another programming languages to work
on MapReduce.

[8]

Introduction to Apache Spark Chapter 1

Scala

Scala is the primary language for Spark. More than 70% of Spark's code is

written in Scalable Language (Scala). Scala is a fairly new language. It was developed by
Martin Odersky in 2001, and it was first launched publicly in 2004. Like Java, Scala also
generates a bytecode that runs on JVM. Scala brings advantages from both object-oriented
and functional-oriented worlds. It provides dynamic programming without compromising
on type safety. As Spark is primarily written in Scala, you can find almost all of the new
libraries in Scala API.

Java

Most of us are familiar with Java. Java is a powerful object-oriented programming
language. The majority of big data frameworks are written in Java, which provides rich
libraries to connect and process data with these frameworks.

Python

Python is a functional programming language. It was developed by Guido van Rossum and
was first released in 1991. For some time, Python was not popular among developers, but
later, around 2006-07, it introduced some libraries such as Numerical Python (NumPy) and
Pandas, which became cornerstones and made Python popular among all types of
programmers. In Spark, when the driver launches executors on worker nodes, it also starts
a Python interpreter for each executor. In the case of RDD, the data is first shipped into the
JVMs, and is then transferred to Python, which makes the job slow when working with
RDDs.

R

R is a statistical programming language. It provides a rich library for analyzing and
manipulating the data, which is why it is very popular among data analysts, statisticians,
and data scientists. Spark R integration is a way to provide data scientists the flexibility
required to work on big data. Like Python, SparkR also creates an R process for each
executor to work on data transferred from the JVM.

[9]

Introduction to Apache Spark Chapter 1

SQL

Structured Query Language (SQL) is one of the most popular and powerful languages for
working with tables stored in the database. SQL also enables non-programmers to work
with big data. Spark provides Spark SQL, which is a distributed SQL query engine. We will
learn about it in more detail in Chapter ¢, Spark SQL.

Spark components

As discussed earlier in this chapter, the main philosophy behind Spark is to provide a
unified engine for creating different types of big data applications. Spark provides a variety
of libraries to work with batch analytics, streaming, machine learning, and graph analysis.

It is not as if these kinds of processing were never done before Spark, but for every new big
data problem, there was a new tool in the market; for example, for batch analysis, we had
MapReduce, Hive, and Pig. For Streaming, we had Apache Storm, for machine learning,
we had Mahout. Although these tools solve the problems that they are designed for, each of
them requires a learning curve. This is where Spark brings advantages. Spark provides a
unified stack for solving all of these problems. It has components that are designed for
processing all kinds of big data. It also provides many libraries to read or write different
kinds of data such as JSON, CSV, and Parquet.

Here is an example of a Spark stack:

Streaming

Spark

Core

MLLib GraphX

Spark stack

[10]

Introduction to Apache Spark Chapter 1

Having a unified stack brings lots of advantages. Let's look at some of the advantages:

e First is code sharing and reusability. Components developed by the data
engineering team can easily be integrated by the data science team to avoid code
redundancy.

e Secondly, there is always a new tool coming in the market to solve a different
big data usecase. Most of the developers struggle to learn new tools and gain
expertise in order to use them efficiently. With Spark, developers just have to
learn the basic concepts which allows developers to work on different big data
use cases.

e Thirdly, its unified stack gives great power to the developers to explore new
ideas without installing new tools.

The following diagram provides a high-level overview of different big-data applications
powered by Spark:

Data
* f Warehousing
T = Spark’ == I

iy N e
g

Spark use cases

Spark Core

Spark Core is the main component of Spark. Spark Core defines the following;:

¢ The basic components, such as RDD and DataFrames
e The APIs available to perform operations on these basic abstractions
e Shared or distributed variables, such as broadcast variables and accumulators

We shall look at them in more detail in the upcoming chapters.

[11]

Introduction to Apache Spark Chapter 1

Spark Core also defines all the basic functionalities, such as task management, memory
management, basic I/O functionalities, and more. It’s a good idea to have a look at the
Spark code on GitHub (https://github.com/apache/spark).

Spark SQL

Spark SQL is where developers can work with structured and semi-structured data such as
Hive tables, MySQL tables, Parquet files, AVRO files, JSON files, CSV files, and more.
Another alternative to process structured data is using Hive. Hive processes structured
data stored on HDFS using Hive Query Language (HQL). It internally uses MapReduce for
its processing, and we shall see how Spark can deliver better performance than
MapReduce. In the initial version of Spark, structured data used to be defined as schema
RDD (another type of an RDD). When there is data along with the schema, SQL becomes
the first choice of processing that data. Spark SQL is Spark's component that enables
developers to process data with Structured Query Language (SQL).

Using Spark SQL, business logic can be easily written in SQL and HQL. This enables data
warehouse engineers with a good knowledge of SQL to make use of Spark for their extract,
transform, load (ETL) processing. Hive projects can easily be migrated on Spark using
Spark SQL, without changing the Hive scripts.

Spark SQL is also the first choice for data analysis and data warehousing. Spark SQL
enables the data analysts to write ad hoc queries for their exploratory analysis. Spark
provides Spark SQL shell, where you can run the SQL-like queries and they get executed on
Spark. Spark internally converts the code into a chain of RDD computations, while Hive
converts the HQL job into a series of MapReduce jobs. Using Spark SQL, developers can
also make use of caching (a Spark feature that enables data to be kept in memory), which
can significantly increase the performance of their queries.

Spark Streaming

Spark Streaming is a package that is used to process a stream of data in real time. There
can be many different types of a real-time stream of data; for example, an e-commerce
website recording page visits in real time, credit card transactions, a taxi provider app
sending information about trips and location information of drivers and passengers, and
more. In a nutshell, all of these applications are hosted on multiple web servers that
generate event logs in real time.

[12]

Introduction to Apache Spark Chapter 1

Spark Streaming makes use of RDD and defines some more APIs to process the data stream
in real time. As Spark Streaming makes use of RDD and its APIs, it is easy for developers to
learn and execute the use cases without learning a whole new technology stack.

Spark 2.x introduced structured streaming, which makes use of DataFrames rather than
RDD to process the data stream. Using DataFrames as its computation abstraction brings all
the benefits of the DataFrame API to stream processing. We shall discuss the benefits of
DataFrames over RDD in coming chapters.

Spark Streaming has excellent integration with some of the most popular data messaging
queues, such as Apache Flume and Kafka. It can be easily plugged into these queues to
handle a massive amount of data streams.

Spark machine learning

It is difficult to run a machine-learning algorithm when your data is distributed across
multiple machines. There might be a case when the calculation depends on another point
that is stored or processed on a different executor. Data can be shuffling across executors or
workers, but shuffle comes with a heavy cost. Spark provides a way to avoid shuffling data.
Yes, it is caching. Spark's ability to keep a large amount of data in memory makes it easy to
write machine-learning algorithms.

Spark MLlib and ML are the Spark’s packages to work with machine-learning algorithms.
They provide the following;:

e Inbuilt machine-learning algorithms such as Classification, Regression,
Clustering, and more

e Features such as pipelining, vector creation, and more

The previous algorithms and features are optimized for data shuffle and to scale across the
cluster.

Spark graph processing

Spark also has a component to process graph data. A graph consists of vertices and edges.
Edges define the relationship between vertices. Some examples of graph data are
customers's product ratings, social networks, Wikipedia pages and their links, airport
flights, and more.

[13]

Introduction to Apache Spark Chapter 1

Spark provides GraphX to process such data. GraphX makes use of RDD for its
computation and allows users to create vertices and edges with some properties. Using
GraphX, you can define and manipulate a graph or get some insights from the graph.

GraphFrames is an external package that makes use of DataFrames instead of RDD, and
defines vertex-edge relation using a DataFrame.

Cluster manager

Spark provides a local mode for the job execution, where both driver and executors run
within a single JVM on the client machine. This enables developers to quickly get started
with Spark without creating a cluster. We will mostly use this mode of job execution
throughout this book for our code examples, and explain the possible challenges with a
cluster mode whenever possible. Spark also works with a variety of schedules. Let’s have a
quick overview of them here.

Standalone scheduler

Spark comes with its own scheduler, called a standalone scheduler. If you are running
your Spark programs on a cluster that does not have a Hadoop installation, then there is a
chance that you are using Spark’s default standalone scheduler.

YARN

YARN is the default scheduler of Hadoop. It is optimized for batch jobs such as
MapReduce, Hive, and Pig. Most of the organizations already have Hadoop installed on
their clusters; therefore, Spark provides the ability to configure it with YARN for the job
scheduling.

Mesos

Spark also integrates well with Apache Mesos which is build using the same principles as
the Linux kernel. Unlike YARN, Apache Mesos is general purpose cluster manager that
does not bind to the Hadoop ecosystem. Another difference between YARN and Mesos is
that YARN is optimized for the long-running batch workloads, whereas Mesos, ability to
provide a fine-grained and dynamic allocation of resources makes it more optimized for
streaming jobs.

[14]

