

DATA ANALYTICS USING DEEP LEARNING GT 8803 // FALL 2019 // JOY ARULRAJ

LECTURE #01: COURSE INTRODUCTION

CREATING THE NEXT®

WELCOME TO 8803-DDL

- This is a cross-cutting course!
- Gain holistic understanding of three areas
 - Data Analytics
 - Machine Learning
 - Computer Vision
- Bridge the gap between systems and machine learning

CREDITS

- This course is derived from two courses
- Convolutional Neural Networks for Visual Recognition
 - Fei Fei Li, Andrej Karpathy, and Justin Johnson
 - http://cs231n.stanford.edu/
- Advanced database systems
 - Andy Pavlo
 - https://15721.courses.cs.cmu.edu/

TODAY'S AGENDA

- Course Overview
- Course Objectives
- Course Logistics
- History of Computer Vision
- Visual Recognition Overview

COURSE OVERVIEW

BIG DATA & DATA SCIENCE ERA

Visual data is the biggest Big Data out there

MILLIONS OF **IMAGES**UPLOADED EVERY DAY

HOURS OF **VIDEOS**UPLOADED EVERY MINUTE

NEXT-GENERATION APPS

Apps will focus on visual data

SELF-DRIVING CARS

SPORTS ANALYTICS

CHALLENGES: TRADITIONAL DATABASE SYSTEMS

 Traditional database systems only support structured data

EMPLOYEE ID	NAME	AGE	SALARY
101	PETER	25	100K
102	JOHN	20	80K
103	MARK	30	120K

WHY IS THIS IMPORTANT NOW?

- Modern computer vision techniques have made great strides
 - Near human-levels of accuracy for several visual data analytics tasks

EXAMPLE: IMAGE CLASSIFICATION

22 K categories and 15 M images

Animals

- Bird
- Mammal
 Food
- Invertebrate

- FishFlower

 - Materials

- Plants Structures
 - Tree
 Artifact

 - Appliances
 - Structures

www.image-net.org

- Person
- Scenes
- Tools
 Indoor
 - Geological Formations
 - Sport Activities

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

GT 8803 // FALL 2019

EXAMPLE: IMAGE CLASSIFICATION

OUTPUT:

Scale T-shirt Steel drum Drumstick Mud turtle

www.image-net.org

OUTPUT:

Scale T-shirt

Giant Panda

Drumstick Mud turtle

EXAMPLE: IMAGE CLASSIFICATION

CHALLENGES: DEEP LEARNING MODELS

- Computational Efficiency
- Usability

CHALLENGES: COMPUTER VISION PIPELINES

- Computational Efficiency
 - These pipelines are computationally infeasible at scale
 - Example: State-of-the-art object detection models run at 3 frames per second (fps) (e.g., Mask R-CNN)
 - It will take 8 decades of GPU time to process 100 cameras over a month of video.

CHALLENGES: COMPUTER VISION PIPELINES

Usability

- These techniques require complex, imperative programming across many low-level libraries (e.g., Pytorch and OpenCV)
- This is an ad-hoc, tedious process that ignores opportunity for cross-operator optimization
- Traditional database systems were successful due to their ease of use (i.e., SQL is declarative)

GOAL: DECLARATIVE VIDEO ANALYTICS SYSTEM

COURSE OBJECTIVES

WHY SHOULD YOU TAKE THIS COURSE?

- There are many challenging problems in database systems & machine learning
- Systems + ML developers are in demand
- If you are good enough to write code for a ML-driven data analytics system, then you can write code on almost anything else

COURSE OBJECTIVES

- Learn about cutting-edge research topics in data analytics and deep learning
- Learn about modern practices in systems programming and deep learning
- We will cover state-of-the-art topics
- This is **not** a course on classical database systems

PRE-REQUISITES

- Proficiency in Python and some high-level familiarity with C++
 - All assignments will be in Python; but some of the deep learning libraries we may look at later in the class will be written in C++
 - A Python tutorial is available on course website
- Calculus, Linear Algebra
- Basic Probability and Statistics

PRE-REQUISITES

- Fundamentals of Machine Learning
 - We will be formulating cost functions, taking derivatives and performing optimization with gradient descent
- I am happy to have people from different backgrounds
 - But talk to me if you're not sure

COURSE LOGISTICS

COURSE LOGISTICS

- Office: Klaus 3324
- On-line Discussion through Piazza:
 - https://piazza.com/gatech/fall2019/cs8803ddl/home
- For all technical questions, please use Piazza
 - Don't email me directly
 - All non-technical questions should be sent to me

COURSE LOGISTICS

- Course Schedule
 - https://www.cc.gatech.edu/~jarulraj/courses/8803
 -f19/pages/schedule.html
 - We will post lecture slides and course materials on this page
- Course Policies
 - Students are expected to abide by the <u>Georgia</u>
 <u>Tech Honor Code</u>
 - If you are not sure, ask me

COURSE LOGISTICS

- Grading Tool: Gradescope
 - https://www.gradescope.com/courses/54455
 - You will get immediate feedback on your programming assignments
 - You can iteratively improve your score over time

GRADE BREAKDOWN

- The final grade for the course will be tentatively based on the following weights:
 - 30% Assignments
 - 30% Midterm Exam
 - 40% Group Project
- Emphasis on learning rather than testing you
 - If your project is truly amazing, you get an automatic A!

TEACHING ASSISTANTS

- TA #1: Jaeho Bang
- Ph.D. student in Computer Science
- B.S. from Carnegie Mellon

• TA #2: TBD

OFFICE HOURS

- Immediately before class
 - Me: Mon/Wed 3:30 4:30 PM
 - Jaeho: Tue/Thu 3:30 4:30 PM
 - Near my office (Klaus 3324)
- Things we can talk about
 - Questions related to lectures and assignments
 - Project ideas
 - Can't give relationship advice

HISTORY OF COMPUTER VISION

EVOLUTION'S BIG BANG

- ~543 million years
 - What was life like back then?
 - Onset of vision triggered evolution's Big Bang
 - Now biggest sensory system in most animals

CAMERA OBSCURA

GEMMA FRISIUS (1545)

DA VINCI (~1500)

ENCYCLOPEDIE (~1800)

ELECTROPHYSIOLOGY (1959)

Visual processing mechanism in mammals

BLOCK WORLD (1961)

Visual world simplified into geometric shapes

PROJECT MAC (1966)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

STAGES OF VISUAL REPRESENTATION (1970s)

BETTER REPRESENTATIONS (1970s)

OBJECT RECOGNITION (1987)

IMAGE SEGMENTATION (1987)

FACE DETECTION (2001)

FEATURE-BASED OBJECT RECOGNITION (1999)

Certain features are invariant to perspective

FEATURE MATCHING (2006)

LEVEL 1

HUMAN POSE DETECTION (2005)

PASCAL VISUAL OBJECT CHALLENGE (2006~12)

20 OBJECT CATEGORIES

IMAGENET CHALLENGE (2009~17)

IMAGENET

22K categories and 15M images

Animals

- Bird
- Fish
- Mammal
 Food
- Invertebrate

- Plants
- Flower
- Materials

- Structures
- Tree
 Artifact

 - Appliances
 - Structures

www.image-net.org

- Person
- Scenes
- Tools
 Indoor
 - Geological Formations
 - Sport Activities

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

GT 8803 // FALL 2019

IMAGENET CHALLENGE (2009~17)

OUTPUT:

Scale T-shirt Steel drum Drumstick Mud turtle

www.image-net.org

OUTPUT:

Scale T-shirt

Giant Panda

Drumstick Mud turtle

IMAGENET CHALLENGE (2009~17)

GT 8803 // FALL 2019

VISUAL RECOGNITION OVERVIEW

IMAGE CLASSIFICATION

- This course will focus on one of the most fundamental problems of visual recognition
 - Image classification
- This technique can be applied in many ways

IMAGE CLASSIFICATION

OTHER VISUAL RECOGNITION PROBLEMSS

- There are many visual recognition problems related to image classification
 - Action classification
 - Image captioning
 - Object detection
- Tools developed for image classification can be reused for these other problems as well

OTHER VISUAL RECOGNITION PROBLEMSS

ACTION CLASSIFICATION

OBJECT DETECTION

IMAGE CAPTIONING

Person

Hammer

CONVOLUTIONAL NEURAL NETWORKS

 Convolutional Neural Networks (CNNs) have become an important tool for object recognition

IMAGENET CHALLENGE

CONVOLUTIONAL NEURAL NETWORKS

They were not invented overnight

1998

LeCun et al.

OF TRANSISTORS

106

OF PIXELS USED IN TRAINING

10⁷ NST

2012

Krizhevsky et al.

OF TRANSISTORS

OF PIXELS USED IN TRAINING

109

10¹⁴ IMAGENET

INGREDIENTS FOR DEEP LEARNING

GIGAFLOPS PER DOLLAR

• The quest for visual intelligence goes far beyond object recognition

SEMANTIC SEGMENTATION

VIRTUAL REALITY

SCENE GRAPHS

PT= 500ms

Some kind of game or fight. Twogroups of two men? Theman on the left is throwing something. Outdoors seemed like because i have an impression of grass and maybe lines on the grass? That would be why I think perhaps a game, rough game though, more like rugby than football because they pairs weren't in pads and helmets, though I did get the impression of similar clothing. maybe sometrees? in the background. (Subject: SM)

OPTIONAL TEXTBOOK

- Deep Learning
 - Ian Goodfellow et. al.
 - Free online

COURSE PHILOSOPHY

- Thorough and detailed
 - Understand how to develop, train, and debug convolutional neural networks from scratch.
- Practical
 - Focus on practical techniques for training these networks at scale, and on GPUs. Cover deep learning frameworks.
- State of the art
 - Most materials are new from research world.

COURSE PHILOSOPHY

- Fun
 - We will cover some fun topics
 - Image Captioning (using RNN), NeuralStyle, etc.

NEXT CLASS: IMAGE CLASSIFICATION

K-NEAREST NEIGHBOURS

LINEAR CLASSIFIER

