IntroductionMechanicsUseful LinksExamples / JobsPascal's Triangle
ocFast MultiplicationEuclidean AlgorithmFermat's little
occoord

Math 317: Operations Research First Lecture

Steven J Miller Williams College

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller/public_html/317

Williams College

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
0000							

Introduction and Objectives

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
0000							

Introduction / Objectives

Main Topic: Optimization: Linear Programming.

Objectives

- Obviously learn linear programming.
- Emphasize techniques / asking the right questions.
- Model problems and analyze model.
- Elegant solutions vs brute force.
- Writing textbook for AMS.

Introduction Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
0000 0000						

Types of Problems

- Diet problem.
- Banking (asset allocation).
- Scheduling (movies, airlines, TSP, MLB).
- Elimination numbers.
- Sphere packing....

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
0000							

My (applied) experiences

- Marketing: parameters for linear programming (SilverScreener).
- Data integrity: detecting fraud with Benford's Law (IRS, Iranian elections).
- Sabermetrics: Pythagorean Won-Loss Theorem.

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
	0000						

Course Mechanics

Introduction		Pascal's Triangle	Euclidean Algorithm	Fermat's littl 000000

Grading / Administrative

- HW: 15%. Midterm 40%. Final/Project 40%. Class Participation 5%. May change a bit. A large portion of work/grade from a group project: you'll give a talk, prepare a well-crafted manuscript, and respectfully listen to reports of others.
- Pre-reqs: linear algebra (analysis, stats, programming a plus).

Office hours / feedback

- TBD and when I'm in my office (schedule online).
- Feedback ephsmath@gmail.com, password first 8 Fibonacci numbers (011235813).

Introduction	Mechanics ○○●○	Useful Links oo	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
Other							

- Webpage: numerous handouts, additional comments each day (mix of review and optional advanced material).
- Opportunity to help write a book.
- PREPARE FOR CLASS! Must do readings before each class.

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
	0000						

• Party less than the person next to you.

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
	0000						

- Party less than the person next to you.
- Take advantage of office hours / mentoring.

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
	0000						

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
	0000						

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Happy to do practice interviews, adjust deadlines....

Linear algebra textbooks online: http: //joshua.smcvt.edu/linalg.html/book.pdf

Introduction Mech	anics Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
	••					

Useful links

Introduction Mechanics Useful Links Examples / Jobs Pascal's Triangle Fast Multiplication Euclidean Algorithm Fermat's little occord

LaTeX and Mathematica Tutorials and Templates

http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm

Has templates for using LaTeX for papers, talks, posters, and a Mathematica tutorial.

Also videos on each.

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			00000				

Examples / Jobs

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			00000				

Alabama vs Auburn: 2013

https: //www.youtube.com/watch?v=sLO2SmM9gPw

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			000000				

Log ruler (and WCMA)

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			00000				

Log ruler (and WCMA)

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			000000				

Log ruler (and WCMA)

11.2014.26.62

As New England forests became depleted in the nineteenth century, lumber companies surveyed their trees more carefully to ensure profit. With this two-foot scale, a man called a "scaler" could estimate the usable output of wood. Lumberjacks distrusted the mathematically trained scaler in protection of their daily wages, which were based on individual production. Introduction Mechanics Useful Links Examples / Jobs Pascal's Triangle Fast Multiplication Euclidean Algorithm Fermat's littl

Scheduling: Baseball Tournaments, Swim Lessons

Introduction

000000

Mechanics Useful Links Examples / Jobs Pascal's Triangle Fast Multiplication Euclidean Algorithm Fermat's littl

Scheduling: Baseball Tournaments, Swim Lessons

Introduction

000000

Mechanics Useful Links Examples / Jobs Pascal's Triangle Fast Multiplication Euclidean Algorithm Fermat's littl

Scheduling: Baseball Tournaments, Swim Lessons

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			000000				

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			000000				

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			000000				

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			000000				

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			000000				

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Y			1 Aliones Fund & Bornti Fand bege	2	3	4	S Max Ranson Feetbad Washind
	e	5 7	8	9	10	11	12
		Eid al-Adha (begats at sandown) Columbus Day	Tal al-Adha Badig Penal eade	16	17	18	19
	20	21	22	23	24	25 8 Farmiy Westand	26
	27	28	29	30	31 8 9 22	SEPTEMBER 13 M T W T F S 2 3 4 5 6 7 9 10 11 12 13 14 6 16 17 18 19 20 21 2 32 24 25 26 27 28	SMTWTER

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
			000000				

						Euclidean Algorithm	
0000	0000	00	000000	00	00000	000	000000
Mane							

Year distribution of sunrise and sunset times in North Adams, MA – 2019 https://sunrise – sunset.org/us/north – adams – ma

Who America is rooting for in the Super Bowl:

Maps

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
				•0			

Pascal's Triangle

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
				00			

Pascal's Triangle

Video on Pascal's Triangle

https: //www.youtube.com/watch?v=tt4_4YajqRM

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
					00000		

Fast Multiplication

Introduction Mechanics Useful Links Examples / Jobs Pascal's Triangle **Fast Multiplication** Euclidean Algorithm Fermat's littl

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

$$f(x) = 3x^5 - 8x^4 + 7x^3 + 6x^2 - 9x + 2$$
: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree *d* have d(d+1)/2.

Introduction Mechanics Useful Links Examples / Jobs Pascal's Triangle Fast Multiplication euclidean Algorithm Fermat's little

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

$$f(x) = 3x^5 - 8x^4 + 7x^3 + 6x^2 - 9x + 2$$
: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree *d* have d(d+1)/2.

$$S(d) = 1 + 2 + \cdots + d$$

 $S(d) = d + (d - 1) + \cdots 1$

Introduction Mechanics Useful Links Examples / Jobs Pascal's Triangle Fast Multiplication euclidean Algorithm Fermat's little

Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

$$f(x) = 3x^5 - 8x^4 + 7x^3 + 6x^2 - 9x + 2$$
: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree *d* have d(d+1)/2.

$$S(d) = 1 + 2 + \dots + d$$

 $S(d) = d + (d - 1) + \dots 1$

Thus $2S(d) = d \cdot (d+1)$ and claim follows.

Introduction		Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
Hornei	r's Algo	orithm					

$$f(x) = 3x^5 - 8x^4 + 7x^3 + 6x^2 - 9x + 2$$
: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

Horner's algorithm:

$$\left(\left(\left((3x-8)x+7\right)x+6\right)x-9\right)x+2$$

Introduction	Mechanics 0000		Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
Horne	r's Algo	orithm					

$$f(x) = 3x^5 - 8x^4 + 7x^3 + 6x^2 - 9x + 2$$
: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

Horner's algorithm:

$$\left(\left(\left((3x-8)x+7\right)x+6\right)x-9\right)x+2$$

Cost is degree d multiplications!

Useful also in fractal plotting.... Shows can often do common tasks faster.

Introduction		Useful Links	Pascal's Triangle	Fast Multiplication ○○○●○	Euclidean Algorithm	Fermat's littl
Fast M	ultiplic	ation				

Horner is best in general, but maybe for special polynomials can do better?

Try polynomials of the form f(x) =

Horner is best in general, but maybe for special polynomials can do better?

Try polynomials of the form $f(x) = x^n$.

Horner is best in general, but maybe for special polynomials can do better?

Try polynomials of the form $f(x) = x^n$.

$$egin{array}{rcl} x \cdot x &=& x^2 \ x^2 \cdot x^2 &=& x^4 \ x^4 \cdot x^4 &=& x^8 \ x^8 \cdot x^8 &=& x^{16} \ x^{16} \cdot x^{16} &=& x^{32} \ x^{32} \cdot x^{32} &=& x^{64} \end{array}$$

Horner is best in general, but maybe for special polynomials can do better?

Try polynomials of the form $f(x) = x^n$.

$$\begin{array}{rcrcrcrc} x \cdot x &=& x^2 \\ x^2 \cdot x^2 &=& x^4 \\ x^4 \cdot x^4 &=& x^8 \\ x^8 \cdot x^8 &=& x^{16} \\ x^{16} \cdot x^{16} &=& x^{32} \\ x^{32} \cdot x^{32} &=& x^{64} \end{array}$$

Horner is best in general, but maybe for special polynomials can do better?

Try polynomials of the form $f(x) = x^n$.

$$\begin{array}{rcrcrcrc} x \cdot x &=& x^2 \\ x^2 \cdot x^2 &=& x^4 \\ x^4 \cdot x^4 &=& x^8 \\ x^8 \cdot x^8 &=& x^{16} \\ x^{16} \cdot x^{16} &=& x^{32} \\ x^{32} \cdot x^{32} &=& x^{64} \end{array}$$

Horner is best in general, but maybe for special polynomials can do better?

Try polynomials of the form $f(x) = x^n$.

$$\begin{array}{rclrcrcrc} x \cdot x & = & x^2 \\ x^2 \cdot x^2 & = & x^4 \\ x^4 \cdot x^4 & = & x^8 \\ x^8 \cdot x^8 & = & x^{16} \\ x^{16} \cdot x^{16} & = & x^{32} \\ x^{32} \cdot x^{32} & = & x^{64} \end{array}$$

Introduction	Useful Links oo	Examples / Jobs	Pascal's Triangle	Fast Multiplication ○○○○●	Euclidean Algorithm	Fermat's littl
Recap						

Horner takes us from order d^2 to order d.

Fast multiplication takes us to order $\log_2 d$, but only for special polynomials; these though are the ones used in RSA!

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
						000	

Euclidean Algorithm

Introduction		Pascal's Triangle	Euclidean Algorithm	Fermat's littl

Preliminaries

Input x, y with y > x.

Goals: find gcd(x, y), find a, b so that ax + by = gcd(x, y).

Lot of ways to go: non-constructive proofs of *a*, *b* but need values; Euclidean algorithm is *very* fast.

Introduction	Mechanics 0000	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm ○○●	Fermat's littl
Euclid	ean Alg	gorithm					

Let
$$r_0 = y, r_1 = x$$
.

$$r_0 = q_1 r_1 + r_2, \quad 0 \le r_2 < r_1.$$

Introduction 0000	Mechanics 0000		Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm ○○●	Fermat's littl
Euclid	ean Alg	gorithm					

Let
$$r_0 = y, r_1 = x$$
.

$$r_0 = q_1 r_1 + r_2, \quad 0 \le r_2 < r_1.$$

$$r_1 = q_2 r_2 + r_3, \quad 0 \le r_3 < r_2.$$

Introduction			Pascal's Triangle	Euclidean Algorithm ○○●	Fermat's littl
Euclid	ean Ald	norithm			

Let
$$r_0 = y, r_1 = x$$
.

$$r_0 = q_1 r_1 + r_2, \quad 0 \le r_2 < r_1.$$

$$r_1 = q_2 r_2 + r_3, \quad 0 \leq r_3 < r_2.$$

Continue until....

 $r_n = q_{n+1}r_{n+1} + r_{n+2}, r_{n+2} \in \{0, 1\}.$

Introduction	Mechanics 0000	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
Euclide	ean Alo	orithm					

Let
$$r_0 = y, r_1 = x$$
.

$$r_0 = q_1 r_1 + r_2, \quad 0 \le r_2 < r_1.$$

$$r_1 = q_2 r_2 + r_3, \quad 0 \le r_3 < r_2.$$

Continue until....

$$r_n = q_{n+1}r_{n+1} + r_{n+2}, r_{n+2} \in \{0, 1\}.$$

Note $gcd(r_0, r_1) = gcd(r_1, r_2) = gcd(r_2, r_3), \ldots$

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
Euclide	ean Alg	gorithm					

Let
$$r_0 = y, r_1 = x$$
.

$$r_0 = q_1 r_1 + r_2, \quad 0 \le r_2 < r_1.$$

$$r_1 = q_2 r_2 + r_3, \quad 0 \le r_3 < r_2.$$

Continue until....

$$r_n = q_{n+1}r_{n+1} + r_{n+2}, r_{n+2} \in \{0, 1\}.$$

Note $gcd(r_0, r_1) = gcd(r_1, r_2) = gcd(r_2, r_3), \ldots$

Can 'climb upwards' to get a, b such that ax + by = gcd(x, y).

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
							00000

Fermat's little Theorem

Introduction		Useful Links		Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
Euler t	otient f	functior	1				

 $\phi(n)$ is the number of integers from 1 to *n* relatively prime to *n*.

$$\phi(p) = p - 1$$
 and $\phi(pq) = (p - 1)(q - 1)$ if p, q distinct primes.

Do not need, but $\phi(mn) = \phi(m)\phi(n)$ if gcd(m, n) = 1, and $\phi(p^k) = p^k - p^{k-1}$.

A lot of group theory lurking in the background, only doing what absolutely need.

Introduction	Mechanics	Useful Links	Examples / Jobs	Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl
							000000

Fermat's little Theorem

Fermat's little Theorem (FIT)

Let *a* be relatively prime to *n*. Then $a^{\phi(n)} = 1 \mod n$.

Special cases: $a^{p-1} = 1 \mod p$, $a^{(p-1)(q-1)} = 1 \mod pq$.

Will only prove these two cases....

			Examples / Jobs	Fast Multiplication	Euclidean Algorithm	Fermat's littl
Droof	of Earm	aat'a litt	le Theorei			

Proof: Let n = p, let gcd(a, p) = 1.

Consider 1, 2, ..., p - 1 and a, 2a, ..., (p - 1)a.

Claim both sets are all residues modulo p.

Proof: Let n = p, let gcd(a, p) = 1.

Consider 1, 2, ..., p - 1 and a, 2a, ..., (p - 1)a.

Claim both sets are all residues modulo *p*.

If $ia = ja \mod p$ then $(i - j)a = 0 \mod p$ so $i = j \mod p$.

Proof of Fermat's little Theorem: n = p

Proof: Let n = p, let gcd(a, p) = 1.

Consider 1, 2, ..., p - 1 and a, 2a, ..., (p - 1)a.

Claim both sets are all residues modulo *p*.

If $ia = ja \mod p$ then $(i - j)a = 0 \mod p$ so $i = j \mod p$. Thus $(p - 1)! = (p - 1)!a^{p-1} \mod p$, so $a^{p-1} = 1 \mod p$. \Box

Proof of Fermat's little Theorem: n = p

Proof: Let n = p, let gcd(a, p) = 1.

Consider 1, 2, ..., p - 1 and a, 2a, ..., (p - 1)a.

Claim both sets are all residues modulo *p*.

If $ia = ja \mod p$ then $(i - j)a = 0 \mod p$ so $i = j \mod p$. Thus $(p - 1)! = (p - 1)!a^{p-1} \mod p$, so $a^{p-1} = 1 \mod p$. \Box

Note: General case: $x_1, \ldots, x_{\phi(n)}$ and $ax_1, \ldots, ax_{\phi(n)}$.

Introduction			Examples / Jobs		Fast Multiplication	Euclidean Algorithm	Fermat's littl ○○○○●○
Proof	of Ferm	nat's litt	le Theorei	m: <i>n</i> = <i>pq</i>			

Proof: Let n = pq, let gcd(a, pq) = 1.

Introduction 0000		Pascal's Triangle	Euclidean Algorithm	Fermat's littl ○○○○●○

Proof of Fermat's little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.

Apply FIT with a^{q-1} and p: $(a^{q-1})^{p-1} = 1 \mod p$.

Apply FIT with a^{p-1} and q: $(a^{p-1})^{q-1} = 1 \mod q$.

Introduction		Pascal's Triangle	Euclidean Algorithm	Fermat's littl ○○○○●○

Proof of Fermat's little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.

Apply FIT with a^{q-1} and p: $(a^{q-1})^{p-1} = 1 \mod p$.

Apply FIT with a^{p-1} and q: $(a^{p-1})^{q-1} = 1 \mod q$.

Thus $a^{(p-1)(q-1)}$ is 1 mod p and is 1 mod q.

 $a^{(p-1)(q-1)} = 1 + \alpha p = 1 + \beta q.$

Introduction			Euclidean Algorithm	Fermat's littl ○○○○●○

Proof of Fermat's little Theorem: n = pq

Proof: Let n = pq, let gcd(a, pq) = 1.

Apply FIT with a^{q-1} and p: $(a^{q-1})^{p-1} = 1 \mod p$.

Apply FIT with a^{p-1} and q: $(a^{p-1})^{q-1} = 1 \mod q$.

Thus $a^{(p-1)(q-1)}$ is 1 mod p and is 1 mod q.

 $a^{(p-1)(q-1)} = 1 + \alpha p = 1 + \beta q.$

Thus $\alpha p = \beta q$ so $q | \alpha$ and $p | \beta$, so $a^{(p-1)(q-1)} = 1 \mod pq$.

Introduction		Useful Links		Pascal's Triangle	Fast Multiplication	Euclidean Algorithm	Fermat's littl ○○○○○●
Primal	ity Tes	ts from	FIT				

If gcd(a, n) = 1 and $a^{n-1} \neq 1 \mod n$ then *n* cannot be prime.

If equalled 1 then *n* might be prime.

Introduction 0000			Pascal's Triangle	Euclidean Algorithm	Fermat's littl ○○○○○●
Drimol		CIT.			

Primality Tests from FIT

If gcd(a, n) = 1 and $a^{n-1} \neq 1 \mod n$ then *n* cannot be prime.

If equalled 1 then *n* might be prime.

- If can take high powers, very fast!
- Can suggest candidate primes, and then use better, slower test for certainty.
- Carmichael numbers: Composites that are never rejected: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, ... (OEIS A002997).