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Introduction and
Objectives
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Introduction / Objectives

Main Topic: Optimization: Linear Programming.

Objectives
Obviously learn linear programming.
Emphasize techniques / asking the right questions.
Model problems and analyze model.
Elegant solutions vs brute force.
Writing textbook for AMS.
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Types of Problems
Diet problem.

Banking (asset allocation).

Scheduling (movies, airlines, TSP, MLB).

Elimination numbers.

Sphere packing....
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My (applied) experiences

Marketing: parameters for linear programming
(SilverScreener).

Data integrity: detecting fraud with Benford’s Law
(IRS, Iranian elections).

Sabermetrics: Pythagorean Won-Loss Theorem.
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Course Mechanics
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Grading / Administrative

HW: 15%. Midterm 40%. Final/Project 40%. Class
Participation 5%. May change a bit. A large portion of
work/grade from a group project: you’ll give a talk,
prepare a well-crafted manuscript, and respectfully
listen to reports of others.

Pre-reqs: linear algebra (analysis, stats, programming
a plus).

Office hours / feedback
TBD and when I’m in my office (schedule online).
Feedback ephsmath@gmail.com, password first 8
Fibonacci numbers (011235813).
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Other

Webpage: numerous handouts, additional comments
each day (mix of review and optional advanced
material).

Opportunity to help write a book.

PREPARE FOR CLASS! Must do readings before
each class.
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Other: Advice from Jeff Miller

Party less than the person next to you.

Take advantage of office hours / mentoring.

Learn to manage your time: no one else wants to.

Happy to do practice interviews, adjust deadlines....

Linear algebra textbooks online: http:
//joshua.smcvt.edu/linalg.html/book.pdf
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Useful links
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LaTeX and Mathematica Tutorials and Templates

http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm

Has templates for using LaTeX for papers, talks, posters,
and a Mathematica tutorial.

Also videos on each.
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Examples / Jobs
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Alabama vs Auburn: 2013

https:
//www.youtube.com/watch?v=sLO2SmM9gPw
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Log ruler (and WCMA)
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Scheduling: Baseball Tournaments, Swim Lessons

20



Introduction Mechanics Useful Links Examples / Jobs Pascal’s Triangle Fast Multiplication Euclidean Algorithm Fermat’s little Theorem (FlT)

Scheduling: Baseball Tournaments, Swim Lessons

21



Introduction Mechanics Useful Links Examples / Jobs Pascal’s Triangle Fast Multiplication Euclidean Algorithm Fermat’s little Theorem (FlT)

Scheduling: Baseball Tournaments, Swim Lessons

22



Introduction Mechanics Useful Links Examples / Jobs Pascal’s Triangle Fast Multiplication Euclidean Algorithm Fermat’s little Theorem (FlT)

Inefficiencies from Location
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Inefficiencies from Location
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Maps
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Maps
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Pascal’s Triangle
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Pascal’s Triangle

Video on Pascal’s Triangle
https:
//www.youtube.com/watch?v=tt4_4YajqRM
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Fast Multiplication
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Cost of Standard Polynomial Evaluation

Multiplication far more expensive than addition....

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

These are triangle numbers: degree d have d(d + 1)/2.

S(d) = 1 + 2 + · · ·+ d
S(d) = d + (d − 1) + · · · 1

Thus 2S(d) = d · (d + 1) and claim follows.
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Horner’s Algorithm

f (x) = 3x5 − 8x4 + 7x3 + 6x2 − 9x + 2: Cost is
5 + 4 + 3 + 2 + 1 + 0 = 15 multiplications.

Horner’s algorithm:((((
3x − 8

)
x + 7

)
x + 6

)
x − 9

)
x + 2.

Cost is degree d multiplications!

Useful also in fractal plotting.... Shows can often do
common tasks faster.
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Fast Multiplication

Horner is best in general, but maybe for special
polynomials can do better?

Try polynomials of the form f (x) =

xn.

Write n in binary: Say n = 100 = 64+ 32+ 4 = 11001002.

(1)

39



Introduction Mechanics Useful Links Examples / Jobs Pascal’s Triangle Fast Multiplication Euclidean Algorithm Fermat’s little Theorem (FlT)

Fast Multiplication

Horner is best in general, but maybe for special
polynomials can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64+ 32+ 4 = 11001002.

(1)

40



Introduction Mechanics Useful Links Examples / Jobs Pascal’s Triangle Fast Multiplication Euclidean Algorithm Fermat’s little Theorem (FlT)

Fast Multiplication

Horner is best in general, but maybe for special
polynomials can do better?

Try polynomials of the form f (x) = xn.

Write n in binary: Say n = 100 = 64+ 32+ 4 = 11001002.

x · x = x2

x2 · x2 = x4

x4 · x4 = x8

x8 · x8 = x16

x16 · x16 = x32

x32 · x32 = x64
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Recap

Horner takes us from order d2 to order d .

Fast multiplication takes us to order log2 d , but only for
special polynomials; these though are the ones used in
RSA!
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Euclidean Algorithm
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Preliminaries

Input x , y with y > x .

Goals: find gcd(x , y), find a,b so that ax + by = gcd(x , y).

Lot of ways to go: non-constructive proofs of a,b but need
values; Euclidean algorithm is very fast.
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Euclidean Algorithm

Let r0 = y , r1 = x .

r0 = q1r1 + r2, 0 ≤ r2 < r1.

r1 = q2r2 + r3, 0 ≤ r3 < r2.

Continue until....
rn = qn+1rn+1 + rn+2, rn+2 ∈ {0,1}.

Note gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3), . . . .

Can ‘climb upwards’ to get a,b such that
ax + by = gcd(x , y).
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Fermat’s little Theorem
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Euler totient function

φ(n) is the number of integers from 1 to n relatively prime
to n.

φ(p) = p − 1 and φ(pq) = (p − 1)(q − 1) if p,q distinct
primes.

Do not need, but φ(mn) = φ(m)φ(n) if gcd(m,n) = 1, and
φ(pk) = pk − pk−1.

A lot of group theory lurking in the background, only doing
what absolutely need.
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Fermat’s little Theorem

Fermat’s little Theorem (FlT)

Let a be relatively prime to n. Then aφ(n) = 1 mod n.

Special cases: ap−1 = 1 mod p, a(p−1)(q−1) = 1 mod pq.

Will only prove these two cases....
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Proof of Fermat’s little Theorem: n = p

Proof: Let n = p, let gcd(a,p) = 1.

Consider 1,2, . . . ,p − 1 and a,2a, . . . , (p − 1)a.

Claim both sets are all residues modulo p.

If ia = ja mod p then (i − j)a = 0 mod p so i = j mod p.
Thus (p − 1)! = (p − 1)!ap−1 mod p, so ap−1 = 1 mod p. �

Note: General case: x1, . . . , xφ(n) and ax1, . . . ,axφ(n).
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Proof of Fermat’s little Theorem: n = pq

Proof: Let n = pq, let gcd(a,pq) = 1.

Apply FlT with aq−1 and p: (aq−1)p−1 = 1 mod p.

Apply FlT with ap−1 and q: (ap−1)q−1 = 1 mod q.

Thus a(p−1)(q−1) is 1 modp and is 1 mod q.

a(p−1)(q−1) = 1 + αp = 1 + βq.

Thus αp = βq so q|α and p|β, so a(p−1)(q−1) = 1 mod pq.
�
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Primality Tests from FlT

If gcd(a,n) = 1 and an−1 6= 1 mod n then n cannot be
prime.

If equalled 1 then n might be prime.

If can take high powers, very fast!

Can suggest candidate primes, and then use better,
slower test for certainty.

Carmichael numbers: Composites that are never
rejected: 561, 1105, 1729, 2465, 2821, 6601, 8911,
10585, 15841, 29341, ... (OEIS A002997).
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