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Chapter 1

Scaling, Dimensional
Analysis (Secs. 1 & 2)

1.1 Dimensional Analysis

Exercises, page 7

1. The period cannot depend only on the length and mass; there is no way
that length and mass can be combined to yield a time dimension. If we
assume there is a physical law f(P, L, g) = 0, then P = F (L, g). The
right side must be time dimensions, and the only way that we can get
time dimensions with g and L is to take

√
L/g. Thus, P = C

√
L/g for

some constant C.

2. If f(D, e) = 0 then we can solve and get e = F (D). Now, e is energy per
mass, or length-squared per time-squared. So the right hand side of the
equation must be proportional to D2. Then e = cD2 for some constant c.

3. Using nonlinear regression, write

r = bt2/5, b = (E/ρ)1/5,

The sum of the squares of the errors is

S =
8∑

i=1

(bt2/5
i − ri)2.

Take the derivative with respect to b and set it equal to zero to get

b =
∑

rit
0.4
i∑

t0.8
i

= 569.5695.

Then the energy in kilotons is

E =
1

4.186× 1012
ρb5 = 17.89.

1
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Another method is to average. We have

E =
ρr5

t2
.

Substitute each data point to get

Ei =
1.25r5

i

t2i
, i = 1, 2, . . . , 8.

Now average the Ei and divide by 4.186× 1012 to get E = 18.368.

4. The variables are t, r, ρ, e, P . We already know one dimensionless quantity
π1 = ρr5/et2. Try to find another that uses P , which is a pressure, or force
per unit area, that is, mass per length per time-squared. By inspection,

π2 =
P

ρgr

is another dimensionless quantity. Thus we have

f(ρr5/et2,
P

ρgr
) = 0.

Now we cannot isolate the r and t variables in one dimensionless expres-
sion. If we solve for the first dimensionless quantity we get

ρr5/et2 = F (
P

ρgr
).

Then

r =
(

et2

ρ

)1/5

F (
P

ρgr
).

Because the second dimensionless variable contains r in some unknown
manner, we cannot conclude that r varies like t2/5. However, if one can
argue that the ambient pressure is small and can be neglected, then we
can set P = 0 and obtain the result

r =
(

et2

ρ

)1/5

F (0),

which does imply that r varies like t2/5.

5. If x = 1
2gt2, then π = x/gt2 is dimensionless and the physical law is

π = 1
2 . If we include mass, then m must be some function of t, x, g, which

is impossible.

6. If x = − 1
2gt2 + vt, then, by inspection, y = x/gt2 and s = v/gt are

dimensionless. Dividing the equation by gt2 gives the dimensionless form
y = −1/2 + s.
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Exercises, page 17

1. Assume that f(v, Λ, g) = 0. If π is dimensionless

[π] = [vα1Λα2gα3 ],
= (LT−1)α1Lα2(LT−2)α3 .

Thus we have the homogeneous system

α1 + α2 + α3 = 0, −α1 − 2α3 = 0.

The rank of the coefficient matrix is one, so there is one dimensionless
variable. Notice that (−2, 1, 1) is a solution to the system, and thus

π = Λg/v2.

By the Pi theorem, F (π) = 0 or Λg/v2 = Const.

2. Two dimensionless variables are

ρV

m
,

S

V 2/3
.

Therefore
ρV

m
= f

(
S

V 2/3

)
.

3. Pick length, time and mass as fundamental and write

x = λ1x, t = λ2t, m = λ3m.

Then write v = λ1λ
−1
2 v, and so on for the other variables. Show that

v − 2
9
r2ρ g µ−1(1− ρl/ρ) = λ1λ

−1
2 (v − 2

9
r2ρgµ−1(1− ρl/ρ))

So, by definition, the law is unit free.

4. Select M , L, and T (mass, length, and time) as fundamental dimensions.

5. There is only one dimensionless variable among E, P , and A, namely
PA3/2/E. Thus,

PA3/2/E = const.

6. The two dimensionless variables are

at

ρL
,

bt

ρ
.
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7. Dimensionless quantities are

ρ

ρe
,

E

v2
.

Thus, by the pi theorem,

v =
√

Ef

(
ρ

ρe

)
.

8. Select M , L, and T (mass, length, and time) as fundamental dimensions.

9. Assume there is a physical law f(T, V,C, Y, r) = 0. We have

π = Tα1V α2Cα3Y α4rα5

and so

1 = Tα1(L3)α2(ML−3)α3(MT−1)α4(MT−1V −3)α5 .

Setting the powers of T , L, and M equal to zero and solving gives

α1 = α4 + α5, α2 = −α4, α3 = −α4 − α5.

This leads to two dimensionless quantities

TY

V C
,

Tr

C
.

10. Select M , L, and T (mass, length, and time) as fundamental dimensions.

11. Select M , L, and T (mass, length, and time) as fundamental dimensions.

12. Pick length L, time T , and mass M as fundamental dimensions. Then
the dimension matrix has rank three and there are 5 − 3 = 2 dimension-
less variables; they are given by π1 = γ and π2 = Rω

√
ρl/
√

P . Thus
f(π1, π2) = 0 implies

ω = R−1
√

P/ρlG(γ)

for some function G.

13. The dimensions are

[E] =
energy
mass

, [T ] = temp, [k] =
energy

mass temp
.

It is clear there is only one dimensionless variable, π = E/kT . Thus
E/kT = const.
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14. We have dimensions

[F ] = MLT−1, [V ] = LT−1, [C] = L3T−1, [K] = ML−1T−2.

Assume a physical law f(F, V, C,K) = 0. If π is dimensionless, then

π = Fα1V α2Cα3Kα4 .

This gives

1 = (MLT−1)α1(LT−1)α2(L3T−1)α3(ML−1T−2)α4 .

This leads to the system of equations

α1 + α2 + 3α3 − α4 = 0,

−2α1 − α2 − α3 − 2α4 = 0,

α1 + α4 = 0.

This system has rank 3 and so there is one solution, (−1,−1, 1, 1), which
gives the dimensionless variable CK/FV = const.

15. We have dimensions

[w] = L, [C0] = [C − 1] = ML−3, [d] = L2T−1, [φ] = ML−2T−1.

Assume a physical law f(w, C0, C1, d, φ) = 0. If π is dimensionless, then

π = wα1Cα2
0 Cα3

1 dα4φα5 .

This gives

1 = Lα1(ML−3)α2(ML−3)α3(L2T−1)α4(ML−2T−1)α5 .

This leads to the system of equations

α1 − 3α2 − 3α3 + 2α4 − 2α5 = 0,

α2 + α3 + α5 = 0,

α4 + α5 = 0.

The system has rank 3 and so there are two independent solutions (0,−1, 1, 0, 0)
and (1,−1, 0,−1, 1). This gives dimensionless variables

C0

C1
,

wφ

dC0
.

Therefore
wφ

dC0
= G

(
C0

C1

)
,

which gives the form of the flux φ,

φ =
dC0

w
G

(
C0

C1

)
.
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1.2 Scaling

Exercises, page 30

1. In (a) we have u = A sin ωt and so u′ = ωA cosωt. Then M = A and
max |u′| = ωA. Then we have tc = 1/ω. In (b) we have u = Ae−λt

and u′ = −λAe−λt. Then tc = max |u|/ max |u′| = 1/λ. In part (c) we
have u = Ate−λt and u′ = (1 − λt)Ae−λt. The maximum of u occurs at
t = 1/λ and is M = A/λe. To find the maximum of u′ we calculate the
second derivative to get u′′ = Aλ(λt−2)e−λt. So the maximum derivative
occurs at t = 2/λ or at an endpoint. It is easily checked that the maximum
derivative occurs at t = 0 and has value max |u′| = A on the given interval.
Therefore tc = (A/λe)/A = 1/λe.

2. Here u = 1+exp(−t/ε) and u′ = −exp(−t/ε)/ε. Then tc = max |u|/ max |u′| =
2/ε−1 = 2ε. The time scale is very small, indicating rapid change in a small
interval. But a graph shows that that this rapid decrease occurs only in a
small interval near t = 0; in most of the interval the changes occur slowly.
Thus two time scales are suggested, one near the origin and one out in the
interval where t is order one.

3. We have
m′ = ax2 − bx3, m = ρx3.

Thus
(ρx3)′ = 3x2ρx′ = ax2 − bx3,

giving

x′ =
a

3ρ
− b

3ρ
x.

We have a given in mass per time per length-squared and b in mass per
time per volume. Scaling time by ρ/b and length by a/b leads to the
dimensionless model

y′ =
1
3
− 1

3
y.

If x(0) = 0 then y(0) = 0 and the solution to the dimensionless model is

y(τ) = 1− eτ/3.

Yes, this is a reasonable model. The organism grows exponentially toward
a limiting value. This is, in fact, observed with most organisms.

4. The constants in the problem, V , k, and a have dimensions

[V ] =
L

T
, [k] =

M

T 2
, [a] =

M

TL
.

One time scale is
√

m/k which is based on damping. Another is
√

m/aV ,
which is based on the restoring force. To rescale, let T and L be scales to
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be chosen and let y = x/L and τ = t/T . Then the model becomes

y′′ = −aTL

m
y|y′| − T 2k

m
y, y(0) = 0, y′(0) =

V T

L
.

We want the restoring force to be small and have the small coefficient.
Therefore take T =

√
m/aV . Then we get

y′′ = −aL
√

m/aV

m
y|y′| − k

aV
y, y(0) = 0, y′(0) =

V
√

m/aV

L

Now choose the length scale L so that the coefficient of y|y′| is one. The
differential equation then becomes

y′′ = −y|y′| − εy, y(0) = 0, y′(0) = 1, ε ≡ k

aV
.

So, the small coefficient is in front of the small damping term.

5. The dimensions of the constants are

[I] =
ML

T
, [a] =

M

T
, [k] =

M

T 2L
.

Letting u = x/(I/a) and τ = t/T , where T is yet to be determined, we
get

m

aT
u′′ = −u′ − kTI2

a3
u, u(0) = 0,

m

aT
u′(0) = 1.

If the mass is small, we want to choose T so that the coefficient of the
u′′ term is small. So, select T that makes the restoring force term have
coefficient 1. Thus, take

T =
a3

kI2
.

The model then becomes

εu′′ = −u′ − u, ε =
mkI2

a4
.

6. (a) The constant a must be budworms-squared because it is added to such
a term in the denominator. The entire predation term must be budworms
per time, and so b must have dimensions budworms per time. (b) The
parameter a defines the place where the predation term makes a significant
rise. Thus it indicates the threshold where the number of budworms is
plentiful so that predation kicks in; there are enough budworms to make
the birds interested. (c) The dimensionless equation is

dN

dτ
= sN(1−N/q)− N2

1 + N2
.
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(d) To find equilibrium solutions we set

sN(1−N/q)− N2

1 + N2
= 0.

At this point we can use a calculator or a computer algebra program
like Maple or Mathematica to solve the equation for N . Observe that we
obtain a fourth degree polynomial equation when we simplify this algebraic
equation:

sN(1−N/q)(1 + N2)−N2 = 0.

When s = 12 and q = 0.25 the equilibrium populations are N = 0, /, 0.261.
When s = 0.4 and q = 35 the equilibrium populations are N = 0, 0.489, 2.218, 32.29.

7. Introduce the following dimensionless variables:

m = m/M, x = x/R, t = t/T, v = v/V,

where T and V are to be determined. In dimensionless variables the
equations now take the form

m′ = −αT

M
,

x′ = −V T

R
v,

v′ =
αβT

MV

1
m
− Tg

V (1− x)2
.

To ensure that the terms in the velocity and acceleration equations are
the same order, with the gravitational term small, pick

V T

R
=

αβT

MV
,

which gives
V =

√
αβR/M

as the velocity scale.

8. The differential equation is

c′ = − q

V
(ci − c)− kc2, c(0) = c0.

Here k is a volume per mass per time. Choosing dimensionless quantities
via

C = c/ci, τ = t/(V/q),

the model equation becomes

dC

dτ
= −(1− C)− bC2, C(0) = γ,

where γ = c0/ci and b = kV ci/q. Solve this initial value problem using
separation of variables.
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9. The quantity q is degrees per time, k is time−1, and θ is degrees (one can
only exponentiate a pure number). Introducing dimensionless variables

T = T/Tf , τ = t/(Tf/q),

we obtain the dimensionless model

dT

dτ
= e−E/T − β(1− T ), T (0) = α,

where α = T0/Tf , E = θ/Tf , and β = kTf/q.

10. Let h be the height measured above the ground. Then Newton’s second
law gives

mh′′ = −mg − a(h′)2, h(0) = 0, h′(0) = V.

Choose new dimensionless time and distance variables according to

τ = t/(V/g), y = h/(V 2/g).

Then the dimensionless model is

y′′ = −1− α(y′)2, y(0) = 0, y′(0) = 1,

where prime is a τ derivative and α = aV 2/mg.

11. The model is

mx′′ = − k

x2
e−t/a, x(0) = L, x′(0) = 0.

We have [a] = T and [k] = ML3

T 2 . Two time scales are

a,

√
mL3

k
.

12. The model is

mx′′ = −kxe−t/a, x(0) = L, x′(0) = V.

Let τ = t/a and y = x/L be dimensionless variables. Then

y′′ = −αye−τ , y(0) = 1, y′(0) = β,

where α = −ka2/m and β = V a/L.

13. The dynamics is given by

x′ = rx(1− x/K) if t < tf ,

and
x′ = rx(1− x/K)− qb(t)x if t > tf .
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Nondimensionalizing,

y′ = y(1− y) if τ < τf ,

and
y′ = y(1− y)− βy if τ > τf .

Here, y = x/K and τ = rt. Also, β = qB/r where b(t) = B.

Setting y′ = 0 for τ > τf gives the constant population y = 1 − β. If we
solve for y = y(τ) for τ < τf , then we can set y(τf ) = 1− β to obtain τf

as a function of β.

14. The mass times acceleration is the force, or

ms′′ = −mg sin θ,

where the force is the tangential component of the force mg along the arc
of the path. But s = Lθ, and so

mLθ′′ = −mg sin θ.

Then
θ′′ +

g

L
sin θ = 0, θ(0) = θ0, θ′(0) = 0.

We can scale theta by θ0 and time by
√

L/g. Then the model becomes

ψ′′ +
1
θ0

sin(θ0ψ) = 0, ψ(0) = 1, ψ′(0) = 0.

15. Three time scales are √
L/g, ω−1

0 ,
1
k

.

These time scales involve the effect of gravity (undamped oscillations),
the angular frequency caused by the initial angular velocity, and the time
scale of the damping.



Chapter 2

Perturbation Methods

2.1 Regular Perturbation

Exercises, page 100

1. Since the mass times the acceleration equals the force, we have my′′ =
−ky − a(y′)2. The initial conditions are y(0) = A, y′(0) = 0. Here, a
is assumed to be small. The scale for y is clearly the amplitude A. For
the time scale choose

√
m/k, which is the time scale when no damping is

present. Letting y = y/A, τ = t/
√

m/k be new dimensionless variables,
the model becomes

y′′ + ε(y′)2 + y = 0,

where ε ≡ aA/m. The initial data is y(0) = 1, y′(0) = 0. Observe that
the small parameter is on the resistive force term, which is correct.

2. The problem is

u′′ − u = εtu, u(0) = 1, u′(0) = −1.

A two-term perturbation expansion is given by

y(t) = e−t +
1
8
ε(et − e−t(1 + 2x + 2x2)).

A six-term Taylor expansion is

y(t) = 1− t +
1
2
t2 +

1− ε

6
x3 +

1− 2ε

24
x4 − 1− 4ε

120
x5.

Plots show the superior performance of the two-term perturbation approx-
imation.

3. We have e−t = o( 1
t2 ) as t →∞ because (using L’Hopital’s rule)

lim
t→∞

e−t

1
t2

= lim
t→∞

t2e−t = 0.

11
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4. Using the binomial theorem,

(1 + εy)−3/2 = 1− 3
2
εy +

(−3/2)(−5/2)
2!

ε2y2 + · · · .

Now substitute y = y0 + εy1 + ε2y2 + · · · and expand.

5. (a) We have
t2 tanh t

t2
= tanh t < 1

for large t. Thus t2 tanh t = 0(t2) as t →∞ .

(b) We have

lim
t→∞

e−t

1
= 0,

which proves the order relation.

(c) The order relation follows from the inequality
√

ε(1− ε)√
ε

=
√

1− ε ≤ 1

for small, positive ε.

(d) The idea is to expand cos ε in a power series to get
√

ε

1− (1− ε2/2 + ε4/4!− · · · )

=
√

ε

ε2/2− ε4/4! + · · · )
=

1
2
ε−3/2 1

1− ε2/12 + · · · .

But, using the geometric series,

1
1− ε2/12 + · · · = 1 + 0(ε2),

which gives the result.

(e) We have
t

t2
=

1
t
≤ 1

for large t. So the ratio is bounded, proving the assertion.

(f) By Taylor’s expansion,

eε − 1 = 1 + ε + 0(ε2)− 1 = 0(ε).
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(g) Expand the integrand in a Taylor series and integrate term-by-term
to get

∫ ε

0

e−x2
dx =

∫ ε

0

(1− x2 +
x2

2!
+ · · · )dx

= ε− 1
3
ε3 + · · ·

= 0.(ε)

An alternate method is to notice that e−x2 ≤ 1, which gives
∫ ε

0
e−x2

dx ≤ ε.
Thus ∫ ε

0
e−x2

dx

ε
≤ 1

(h) Observe that
lim
ε→0

etan ε = 1.

Because the limit exists, the function must be bounded in a neighborhood
of ε = 0, which implies the result.

(i) Notice that
e−ε

ε−p
= e−εεp → 0

as ε → ∞ (exponentials decay faster than power functions grow). One
can use L’Hospital’s rule to show this.

(j) Notice that
ln ε

ε−p
= εp ln ε → 0

as ε → 0 since power functions go to zero faster that logarithms grow near
zero. Again, use L’Hospital’s rule to verify this fact.

6. Substitute x = x0 + εx1 + · · · into the nonlinear equation to get

h(ε) ≡ φ(x0 + εx1 + · · · , ε) = 0

By Taylor’s expansion

h(ε) = h(0) + h′(0)ε +
1
2
h′′(0)ε2 + · · ·

Using the chain rule we can compute these derivatives of h at ε = 0 and
thus expand the equation in powers of ε. We get

φ(x0) = 0, x1 = −φε(x0, 0)
φx(x0, 0)

,

and so on. To obtain x1 we clearly require φx(x0, 0) 6= 0.



14 CHAPTER 2. PERTURBATION METHODS

7. (x + 1)3 = εx. Set x = x0 + x1ε + · · · and expand.

8. (a) Let τ = ωt, with ω = 1 + ω1ε + · · · . Then the problem becomes

ω2y′′ + y = εyω2(y′)2, y(0) = 1, ωy′(0) = 0.

Here, prime denotes a τ derivative. Now assume a regular perturba-
tion expansion. The leading order problem is

y′′0 + y0 = 0, y0(0) = 1, y′0(0) = 0,

which has solution
y0(τ) = cos τ.

The next order problem is

y′′1 + y1 = −2ω1y
′′
0 + y0(y0)2, y1(0) = 0, y′1(0) = 0.

The equation simplifies to

y′′1 + y1 = (
1
4

+ 2ω1) cos τ − 1
4

cos 3τ.

To eliminate the secular term take ω1 = −1/8. Then, to leading
order,

y0(t) = cos
((

1− 1
8
ε

)
t

)
.

(b) Let τ = ωt, with ω = 3 + ω1ε + · · · . Then the problem becomes

ω2y′′ + 9y = 3εy3, y(0) = 0, ωy′(0) = 1.

Here, prime denotes a τ derivative. Now assume a regular perturba-
tion expansion. The leading order problem is

y′′0 + y0 = 0, y0(0) = 0, y′0(0) =
1
3
,

which has solution
y0(τ) =

1
3

sin τ.

The next order problem is

9y′′1 + 9y1 = 3y2
0 − 6ω1y

′′
0 , y1(0) = 0, y′1(0) = −1

9
.

The equation simplifies to

y′′1 + y1 =
1
9

(
1
12

+ 2ω1

)
sin τ − 1

9 · 36
sin 3τ.

To eliminate the secular term take ω1 = −1/24. Then, to leading
order,

y0(t) =
1
3

sin
((

3− 1
24

ε

)
t

)
.
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9. The equation with ε can be handled with a perturbation series in ε. After
determining the coefficients, one can substitute ε = 0.001.

10. If we ignore 0.01x in the first equation then y = 0.1. Then, from the second
equation x = 0.9. Checking these values by substituting back into the first
equation gives 0.01(0.9) + 0.1 = 0.109, so the approximation appears to
be good. But the exact solution is x = 190, y = 1. So the approximation
is in fact terrible. What went wrong? Since x = −90 the first term in the
first equation is 0.01x = −0.9, which is not small compared to the two
other terms in the first equation. Thus the first term cannot be neglected.

11. Letting h = h0 + h1ε + · · · gives

h′′0 + εh′′1 + ε2h′′2 + · · · = −1 + 2h0ε− (3h0 − 2h1)ε2 + · · · .

Here we used the binomial theorem to expand the right hand side. We
also have the initial conditions

h0(0) = 0, h′0(0) = 1; h1(0) = h′1(0) = 0, . . . .

The equations are

h′′0 = −1, h′′1 = 2h0, h′′2 = −(3h0 − 2h1), · · · .

Now we can solve consecutively and get h0, h1, h2, . . .. Once the expansion
is obtained, solve h′(t) = 0 to get tm.

12. The initial value problem is

my′′ = −ay′ − kye−rt, y(0) = y0, y′(0) = 0.

The quantity m is mass, y0 is length, r is time−1, a is mass per time, and
k is mass per time-squared. To nondimensionalize, take u = y/y0 and
τ = t/(m/a). Then

u′′ = −u′ − εue−ατ , u(0) = 1, u′(0) = 0,

where
ε = −km

a2
, α =

mr

a
.

To leading order we have u′′0 = −u′0 which gives u0(t) = A + Be−τ . From
the initial conditions A = 1 and B = 0, giving

u0(t) = 1.

At the next order we have u′′1 = −u′1 − e−ατ with zero initial conditions.
The general solution is

u1(τ) = A + Be−τ +
1

α− α2
e−ατ .

Use the initial conditions to determine A and B. (Here we are assuming
α 6= 1.) Continue in this manner.
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13. Consider the equation
y′′ = εy cos

πx

2
.

Assuming a perturbation expansion, we get

y′′0 = 0, y′′1 = y0 cos
πx

2
, . . . .

Easily, y0(t) = x, and so on.

14. We have
y′0 + εy′1 + · · · = e−eps/(y0+εy1+··· )

To leading order we have y′0 = 1 which gives, using the initial condition,
y0(t) = x + 1. To get higher order terms, use the expansion

exp
(

ε

y0 + εy1 + · · ·
)

= 1− ε

y0
+

y1

y2
0

ε2 + · · · .

15. Let θ = θ0 + θ1ε + · · · . Then, substituting, gives

θ′′0 + θ′′1 ε + · · ·+ 1
ε
(εθ0 − θ1ε

2 + (θ2 − 1
3
θ0)ε3 + · · · ) = 0.

Then θ′′0 + θ0 = 0, θ′′1 + θ1 = 0, θ′′2 + θ2 = 1
3θ0, and so on. The initial

conditions give θ0 = cos τ and θ1 = 0. Then

θ′′2 + θ2 = −1
3

cos τ.

For part (b), multiply the equation by θ′ to get

θ′θ′′ + ε−1 sin(εθ)θ′ = 0.

This is the same as
1
2
(θ′2)′ − 1

ε2
(cos(εθ))′ = 0.

Therefore
1
2
θ′2 − 1

ε2
cos(εθ) = C.

From the initial conditions we get C = − 1
ε2 cos ε, and therefore the last

equation can be written

ε√
2

dθ√
cos(εθ)− cos ε

= ±dτ.

Now integrate over one-fourth of a period P to get

ε√
2

∫ 1

0

ds√
cos(εs)− cos ε

=
P

4
.

To get the expansion P = 2π + π2ε2/8 + · · · , expand the integrand in
powers of ε using the binomial theorem.
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16. The three-term approximation is given by

ya(t) = t +
t4

12
ε +

t7

504
ε2.

The error is

E(t, ε) = y′′a − εtya = −ε3 t8

504
.

Clearly the approximation is not uniform on t ≥ 0.

17. The leading order solution is

y0(t) =
√

t(1− ln t).

Substituting into the ODE gives

Ly0 = −ε

2
(1 + ln t)t3/2.

We find
|Ly0| ≤ 0.0448.

Thus one would expect y0 to be a good approximation on 0 ≤ t ≤ e.

18. Substitute the series u = u0 + u1ε + · · · into the differential equation and
initial conditions:

u′0 + u′1ε + · · ·+ u0 + u1ε + · · · =
1

1 + u0ε + · · ·
= 1− u0ε + 0(ε2).

To get the last step we used the geometric series expansion. Now collecting
the coefficient of ε0 we get the leading order problem

u′0 + u0 = 1, u0(0) = 0.

Collecting the coefficients of ε we get

u′1 + u1 = −u0, u1(0) = 0.

The solution to the leading order problem (a linear equation) is

u0 = 1− e−t.

The the next order problem becomes

u′1 + u1 = e−t − 1, u1(0) = 0.

This linear equation has solution

u1 = (t + 1)e−t − 1.

Therefore, a two-term approximation is

u(t) = 1− e−t + ε((t + 1)e−t − 1) + · · · .
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19. Let s be the speed of the wildebeest and σ =

√(
dx
dt

)2
+

(
dy
dt

)22

= dx
dt

√
1 + y′2

be the speed of the lion. The velocity of the lion is
(

dy

dx
,
dy

dt

)
=

σ√
(a− x)2 + (b + st− y)2

(a− x, b + st− y) .

Now,

y′ =
b + st− y

a− x
, y′ =

dy

dx
.

Therefore,

d

dt
y′ = y′′

dx

dt
=

(a− x)(s− dy
dt ) + dx

dt (b + st− y)
(a− x)2

.

This simplifies to

(a− x)y′′ =
s− dy

dt
dx
dt

+
dy

dx

=
s
dx
dt

=
s

σ

√
1 + y′2.

So we have

(a− x)y′′ = ε
√

1 + y′2, y(0) = 0, y′(0) =
b

a
.

Assuming
y = y0(x) + εy1(x) + · · ·,

the leading order problem is

(a− x)y′′0 = 0, y0(0) = 0, y′0(0) =
b

a
,

which has solution
y0(x) =

b

a
x.

At next order

(a− x)y′′1 = 1, y1(0) = 0, y′1(0) = 0.

Now,
y′1 = − ln(a− x) + C.

Using the second initial condition, C = ln a. Now integrate again to get

y1(x) = −
∫ x

0

ln(a− ξ)dξ + x ln a.

Then

y(x) =
b

a
x +

(
−

∫ x

0

ln(a− ξ)dξ + x ln a

)
ε + · · ·.
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2.2 Singular Perturbation

Exercises, page 111

1. (a) Consider the equation

εx4 + εx3 − x2 + 2x− 1 = 0

If x = O(1) then x2−2x+1 ∼ 0 which means x ∼ 1, 1, a double root
near one. To find the remaining roots assume a dominant balance
εx4 ∼ x2 with the remaining terms small. Then x = O(1/

√
ε). This

is a consistent balance because εx4, x2 = O(1/ε) and the remain-
ing three terms are are order one and small in comparison. So the
dominant balance is

εx4 − x2 ∼ 0,

which gives x ∼ ±1/
√

ε. So the leading order roots are

1, 1,±1/
√

ε.

(b) The equation
εx3 + x− 2 = 0

has an order one root x ∼ 2. The consistent dominant balance is
εx3 ∼ x which gives x = O(1/

√
ε). In this case we have εx3 + x ∼ 0,

which gives the two other leading order roots as

x ∼ ± i√
ε

To find a higher order approximation for the root near x = 2 substi-
tute x = 2 + x1ε + · · · into the equation and collect coefficients of ε
to get x1 = −8. Thus

x = 2− 8ε + · · · .

Since the other two roots are are order O(1/
√

ε), let us choose a new
order one variable y given by

y = x/(1/
√

ε)

So, we are rescaling. Then the equation becomes

y3 + y − 2
√

ε = 0

and the small term appears where it should in the equation. Now
assume y = y0 +y1

√
ε+ · · · , substitute into the equation, and collect

coefficients to get at leading order

y3
0 + y0 = 0,
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which gives y0 = ±i. At order O(
√

ε) we get the equation

3y2
0y1 + y1 − 2 = 0.

Thus y1 = −1 and we have the expansions

y = ±i−√ε + · · · .

In terms of x,

x = ± i√
ε
− 1 + · · · .

(c) The equation
ε2x6 − εx4 − x3 + 8 = 0

has three order one roots as solutions of −x3 + 8 = 0, or

x ∼ 2, −1±
√

3i.

To find the other roots, the dominant balance is ε2x6−x3 ∼ 0, which
gives

x ∼ 1
ε2/3

e2πi/3,
1

ε2/3
e−2πi/3.

(d) The equation
εx5 + x3 − 1 = 0

has three order one roots (the cube roots of one) given by

x ∼ 1, −1
2
±
√

3i.

The dominant balance for the remaining roots is between the first
two terms which gives

x ∼ ± i√
ε
.

2. Follow the given hint.

3. Observe that the equation can be written as a quadratic in ε:

2ε2 + xε + x3 = 0.

Thus
ε =

1
4
(−x±

√
x2 − 8x3).

These two branches can be graphed on a calculator, and the graph shows
that there is just one negative value for x, near x = 0, in the case that ε
is small and positive. Thus assume

x = x1ε + x2ε
2 + · · · .

Substituting into the given equation gives

x = −2ε + 8ε2 + · · · .
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4. The problem is

εy′′ + y′ + y = 0, y(0) = 0, y(1) = 0.

When ε = 0 we get y′ + y = 0 which has solution y = ce−t. This cannot
satisfy both boundary conditions so regular perturbation fails.

The characteristic equation is εm2+m+1 = 0 which has two real, negative
roots given by

m1 =
1
2ε

(−1 +
√

1− 4ε) = −1 + O(ε),

m2 =
1
2ε

(−1−√1− 4ε) = −1
ε

+ O(1).

Here we have used the binomial expansion
√

1 + x = 1 + x/2 + O(x2) for
small x. Note that one of the roots is order one, and one of the roots is
large. So the general solution is

y(t) = c1e
m1t + c2e

m2t.

Applying the boundary conditions gives the exact solution

y(t) =
em1t − em2t

em1 − em2
.

Sketches of this solution show a boundary layer near t = 0 where there is
a rapid increase in y(t). Observe that em1 >> em2 . If t = O(1) then

em1t ∼ e−t, em2t ∼ 0,

and thus

y(t) ∼ em1t

em1
∼ e1−t,

which is an outer approximation. If t = O(ε), then

y(t) ∼ e(−1+O(ε))t − e(−1/ε+O(1))t

em1

∼ eO(ε) − eO(ε)e−t/ε

em1

∼ 1− e−t/ε

e−1
.

This is an inner approximation near t = 0.

2.3 Boundary Layer Analysis

Exercises, page 121
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1. (a) Consider
εy′′ + 2y′ + y = 0, y(0) = 0, y(1) = 1.

By Theorem 2.9 there is a boundary layer at x = 0. Setting ε = 0
gives the outer approximation y(x) = Ce−x/2. Use the right bound-
ary condition to find C =

√
e. Then the outer approximation is

y0(x) =
√

ee−x/2 = e(1−x)/2.

The thickness of the layer is δ(ε) = ε and the inner equation is

Y ′′ + 2Y ′ + εY = 0.

The leading order inner approximation is

Yi(ξ) = a + be−2ξ, ξ =
x

ε
.

Now, Yi(0) = a + b = 0, and matching gives a =
√

e.

(b) We have

εy′′ + y′ + y2 = 0, y(0) = 1/4, y(1) = 1/2.

There is an expected layer at x = 0. Setting ε = 0 and solving gives
the outer solution

y0(x) =
1

x + 2
.

We applied the right boundary condition. In the boundary layer set
ξ = x/ε and Y (ξ) = y(x). Then the inner equation is

Y ′′ + Y ′ + εY 2 = 0.

To leading order we have Y ′′
i +Y ′

i = 0 with Yi(0) = 1/4. So the inner
approximation is

Yi(ξ) = A(1− e−ξ).

Matching gives A = 1/2 and so the uniform approximation is

y(x) =
1

x + 2
− 1

4
e−x/ε.

(c) We have

εy′′ + (1 + x)y′ = 1, y(0) = 0, y(1) = 1 + ln 2.

The outer solution is

y0(x) = 1 + ln(x + 1).

The inner equation, with ξ = x/δε, is

ε

δ2
+ (1 + ξδ)

1
δ
Y ′ = 1.
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Balancing gives δ = ε and the inner first-order approximate equation
is

Y ′′
i + Y ′

i = 0, Yi(0) = 0.

So the inner solution is

Yi(ξ) = A(1− e−ξ).

Matching gives A = 1 and so the uniform approximation is

y(x) = ln(x + 1)− e−x/ε.

(d) The problem is

εy′′ + (1 + t)y′ + y = 0, y(0) = 0, y(1) = 1.

By Theorem 3.1 in the text, there is a boundary layer at zero. The
outer solution is y0 = 2/(t + 1). In the boundary layer set τ = t/ε
and Y (τ) = y(t). Then the inner equation is

Y ′′ + ετ + Y ′ + εY = 0.

To leading order we have Y ′′
i + Y ′

i = 0 with Yi(0) = 0. So the inner
approximation is

Yi(τ) = A(1− e−τ ).

Matching gives A = 2 and so the uniform approximation is

y(t) =
2

t + 1
+ 2(1− e−t/ε)− 2.

(e) The problem is

εy′′ + t1/3y′ + y = 0, y(0) = 0, y(1) = e−3/2.

There is a boundary layer near t = 0. The outer solution is

y0(t) = exp(−1.5t2/3).

In the inner region set τ = t/δ(ε). Then the dominant balance is
between the first and second terms and δ = ε3/4. So the inner ap-
proximation to leading order is

Y ′′
i + τ1/3Y ′

i = 0.

Solving gives

Yi(τ) = c

∫ τ

0

exp(−0.75s4/3)ds.

Pick an intermediate variable to be η = t/
√

ε. Then matching gives

c =
(∫ ∞

0

exp(−0.75s4/3)ds

)−1
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(f) Consider

εy′′ + xy′ − xy = 0, y′(0) = 1, y(1) = e.

By Theorem 2.9 there is a layer at x = 0. The outer approximation
is

y0(x) = e1−x.

Letting ξ = x/δ(ε) in the layer, we find from dominant balance that
δ(ε) =

√
ε. The inner equation is

Y ′′
i + ξY ′

i = 0.

Then

Yi(ξ) = a

∫ ξ

0

es2/2ds + b.

Then Yi(0) = b = 0. Matching gives

a = e

(∫ ∞

0

eds

)−1

.

(g) The problem is

εy′′ + 2y′ + ey = 0, y(0) = y(1) = 0

There is a layer at zero. The outer solution is

y0(t) = − ln
t + 1

2

In the boundary layer the first two terms dominate and δ(ε) = ε.
The inner solution is

Yi(τ) = A(1− e−2τ )

Matching gives A = ln 2. The uniform approximation is

y(t) = ln 2(1− e−2t/ε)− ln
t + 1

2
− ln 2.

(h) The problem is

εy′′ − (2− t2)y = −1, y(−1) = y(1) = 1

Now there are two layers near t = −1 and t = 1. The outer solution,
which is valid in the interval (−1, 1), away from the layers is

y0(t) =
1

2− t2
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In the layer near t = 1 set τ = (1 − t)/δ(ε). We find δ =
√

ε with
inner equation, to leading order, Y ′′

i − Yi = 1. The inner solution is

Yi(τ) = 1 + ae−τ − (1 + a)eτ

In the layer near t = −1 set τ = (t − 1)/δ(ε). We find δ =
√

ε
with inner equation, to leading order, (Y ∗

i )′′ − Y ∗
i = −1. The inner

solution is
Y ∗

i (τ) = 1 + be−τ − (1 + b)eτ

Matching gives a = b = 1 and the uniform approximation is

y(t) =
1

2− t2
− e(t−1)/

√
ε − e(t+1)/

√
ε

(i) The problem is

εy′′ − b(x)y′ = 0, y(0) = α, y(1) = β.

There is an expected layer at x=1 because the coefficient of y′ is
negative. Therefore the outer solution is

y0(x) = const. = α.

Now make the change of variables

ξ =
1− x

δ(ε)
.

Then x = 1− ξδ and the differential equation becomes

ε

δ2
Y ′′ + [b(1)− b′(1)ξδ + · · · )1

δ
Y ′ = 0.

Balancing terms gives δ = ε and the leading order inner equation is

Y ′′
i + b(1)Y ′

i = 0.

We have Yi(0) = β. The solution is

Yi(ξ) = A + (β −A)e−b(1)ξ.

Matching gives A = α. Then, a uniform approximation is

y(x) = α + (β − α)e−b(1)x/ε.

(j) Consider

εy′′ − 4(π − x2)y = cos x, y(0) = 0, y(π/2) = 1.
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2. The solution is
u(x) = a sin(x/

√
ε) + b cos(x/

√
ε)

where a and b are determined uniquely by the boundary conditions. This
a very rapidly oscillating function over the entire interval. To apply per-
turbation methods we set ε = 0 to get the outer solution u(x) = 0. This
constant solution cannot be matched to rapid oscillations.

3. See problem 1(g).

4. Consider

εu′′ − (2x + 1)u′ + 2u = 0, u(0) = 1, u(1) = 0.

5. The problem is

εy′′ +
1
x

y′ + y = 0, y(0) = 1, y′(0) = 0

which is an initial value problem and appears to be singular. But, the
outer solution is

y0(x) = Ce−x2/2

and it is observed that it satisfies both initial conditions when C = 1. It
also satisfies the ODE uniformly, i.e.,

εy′′0 +
1
x

y′0 + y0 = ε(x2 − 1)e−x2/2 = O(ε)

Thus it provides a uniform approximation and the problem does not have
a layer. It is instructive to try to put a layer at x = 0; one finds that no
scaling is possible.

6. Consider

εy′′ +
(

x− 1
2

)
y = 0, y(0) = 1, y(1) = 2.

There is a layer at both x = 0 and x = 1. The outer solution is y0(x) = 0.
By dominant balancing, the width of the layer in both cases is δ(ε) =

√
(ε).

The inner equation at x = 0 is

Y ′′
l − 1

2
Yl = 0,

where
ξ =

x√
ε
.

The inner equation at x = 1 is

Y ′′
r − 1

2
Yr = 0,
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where
ξ =

1− x√
ε

.

. Using the appropriate boundary conditions gives the left and right inner
solutions

Yl(ξ) = e−ξ/
√

2, Yr(ξ) = e−ξ/
√

2.

The uniform approximation is

y(x) = e−x/
√

2ε + e(1−x)/
√

2ε.

7. There is a layer at x = 0. The outer solution is y0(x) = − exp(−x). The
layer has width δ(ε) = ε and the leading order inner problem is

Y ′′
i + Y ′

i = 0.

It has solution Yi(ξ) = A + B exp(−ξ). The boundary condition gives
A + B = 1. Thus Yi(ξ) = A + (1− A) exp(−ξ). Matching give A=-1 and
the uniform approximation is

y(x) = 2e−x/ε − e−x.

8. Assuming a layer at x = 0 we obtain outer solution

y0(x) = f ′(x)− f ′(1).

Now assume ξ = x/δ. In transforming the equation, we need

1
f ′(ξδ)

=
1

f ′(0) + f ′′(0)ξδ + · · ·
=

1
f ′(0)

− f ′′(0)ξδ + · · · .

The dominant balance is δ = ε and the leading order approximation is

Y ′′ − 1
f ′(0)

Y = 0,

giving
Y (ξ) = A + Beξ/f ′(0).

Here we need f ′(0) = b < 0. Matching gives A = f(0)− f(1).

9. Note that the interval should be 0 < x < b, and not 0 < x < 1. The outer
solution is

u0(x) =
1

cos(b− x)
,

which satisfies the right boundary condition u′(b) = 0 automatically. We
try a layer at x = 0 by defining the scaling

ξ = x/δ(ε).
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Then the equation becomes

−ε

δ
Y ′′ + cos(b− ξδ)U = 1.

We have to expand everything in terms of δ. We have

cos(b− x) = cos b cos(ξδ) + sin b sin(ξδ)

= cos b(1− 1
2
(ξδ)2 + · · · ) + sin b(ξδ − 1

6
(ξδ)3 + · · · ).

Substituting into the differential equation leads to a dominant balance
giving

δ =
√

ε.

The leading order inner equation is

−U ′′ + (cos b)U = 1.

The general solution is

U(ξ) = Ae−(cos b)ξ + Be(cos b)ξ +
1

cos b
.

Now, U(0) = A + B + 1
cos b = 0. Thus B = − (

A + 1
cos b

)
. For matching to

work we must have A = − 1
cos b . Then we have the uniform approximation

u(x) = − 1
cos b

e−(cos b)x/
√

ε +
1

cos b
+

1
cos(b− x)

− 1
cos b

= − 1
cos b

e−(cos b)x/
√

ε +
1

cos(b− x)
.

10. The outer solution is clearly

u0(x) = 0,

with a layer at x = 1. (Theorem 2.9 applies.) In the layer,

ξ =
1− x

ε
.

Then the differential equation transforms to

1
ε
U ′′ − a(1− ξε)

−1
ε

U ′ = f(x).

Expanding,
U ′′ + (a(1)− a′(1)ξε + · · · )U ′ = εf(x).

To leading order,

U ′′
i + (a(1)− a′(1)ξε + · · · )U ′

i = 0,

which gives
Ui(ξ) = A + Be−a(1)ξ.

The boundary condition is Ui(0) = A + Be−a(1) = −f(1)/a(1).
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11. See problem 12e.

12. (a) By Theorem 3.1 the problem

εy′′ + (1 + x2)y′ − x3y = 0, y(0) = y(1) = 1

has a layer of order δ = ε at t = 0. The outer solution is

y0(x) =

√
2

1 + x2
exp(

x2 − 1
2

)

The inner solution is

Yi(ξ) = A + (1−A)e−ξ

Matching gives A =
√

2/e.

(b) By Theorem 3.1 the problem

εy′′ + (cosh t)y − y = 0, y(0) = y(1) = 1

has a layer of width δ = ε near t = 0. The outer solution is

y0(t) = exp(2 arctan et − 2 arctan e)

In the layer use the expansion

cosh z = 1 +
1
2
z2 + · · ·

The inner approximation is

Yi(τ) = 1−A + Ae−τ

Matching gives A = 1− exp(π/2− 2 arctan e).

(c) The problem

εy′′ +
2ε

t
y′ − y = 0, y(0) = 0, y′(1) = 1

If we assume a layer at t = 1 the outer solution is y0(t) = 0. In the
inner region near t = 1 the dominant balance is between the first and
last terms and the width of the layer is δ =

√
ε. The inner variable

is τ = (1− t)/δ. The inner solution is

Yi(τ) = (
√

ε + b)e−τ + beτ

We must set b = 0 to stay bounded. So the uniform solution is

y(t) =
√

εe(t−1)/
√

ε
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(d) In this problem we have an outer solution y0(t) = 0 which satisfies
both boundary conditions exactly. So we have an exact solution
y ≡ 0.

(e) The problem is

εy′′ +
1

x + 1
y′ + εy = 0, y(0) = 0, y(1) = 1.

The outer approximation is y0(t) =const., so there are several pos-
sibilities. But, because the y′ coefficient is positive, we suspect the
layer is at x = 0. Therefore we apply the right boundary condition
to the outer solution, giving y0(x) = 1. Then assume a layer at x = 0
of width δ(ε); i.e.,

ξ =
x

δ(ε)
.

The inner problem is

ε

δ(ε)2
Y ′′ +

1
(1 + ξδ(ε))

1
δ(ε)

Y ′ + εY = 0.

Expanding the second term in a geometric series gives

ε

δ(ε)2
Y ′′ + (1− δ(ε)ξ + · · · ) 1

δ(ε)
Y ′ + εY = 0.

Balancing gives δ(ε) = ε and the leading order equation is

Y ′′
i + Yi = 0,

which gives
Y ′′

i (ξ) = a(1− e−ξ).

Matching gives a = 1. Therefore a uniform approximation is

yu(x) = 1 + 1− e−x/ε − 1 = 1− e−x/ε.

This approximation satisfies yu(0) = 0, yu(1) = 1−exp(−1/ε), which
is one minus an exponentially small term. Substituting into the dif-
ferential equation gives

εy′′u +
1

x + 1
y′u + εyu = ε + exponentially small term.

Boundary layer at the right boundary. Just as illustration we
show how to proceed if the differential equation is

εy′′ − 1
x + 1

y′ + εy = 0
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with the same boundary conditions. Now the y′ coefficient is negative
and we expect a layer at x = 1. Therefore the outer solution is
y0(x) = 0 (from applying the left boundary condition). Now let

ξ =
1− x

δ(ε)
, (note the change)

Then the inner problem is

ε

δ(ε)2
Y ′′ − (1− δ(ε)ξ + · · · ) −1

δ(ε)
Y ′ + εY = 0.

Note the minus sign that appears when transforming y′. Then, dom-
inant balance forces δ(ε) = ε and the leading order equation is

Y ′′
i + Yi = 0, Yi(0) = 1.

The inner solution is

Y ′′
i (ξ) = a + be−ξ.

Applying the boundary condition gives a + b = 1, so

Y ′′
i (ξ) = a + (1− a)e−ξ).

Matching gives a = 0 because y0(x) → 0 as x → 1. Therefore a
uniform approximation is outer + inner - common limit, or

yu(x) = e−(1−x)/ε.

2.4 Initial Layers

Exercises, page 133

1. The equation is
εy′ + y = e−t, y(0) = 2.

Set ε = 0 to obtain the outer solution y0(t) = e−t, away from t = 0.
Rescale near zero via τ = t/δ(ε). Then, in the usual way, we find δ(ε) = ε
and the leading order inner problem is

Y ′
i + Yi = 1.

This has solution Yi(τ) = 1 + Ce−τ . Applying the initial condition gives
C = 1. We find the matching condition holds automatically. So the
uniform approximation is

y(t) = e−t + e−t/ε.
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2. The equation is

εy′′ + b(t)y′ + y = 0, y(0) = 1, y′(0) = −β

ε
+ γ.

The outer solution is

y0(t) = C exp
(
−

∫ t

0

b(z)−1dz

)
.

Near t = 0 set τ = δ(ε). Then

ε

δ(ε)2
Y ′′ +

1
δ(ε)

(b(0) + b′(0)τδ(ε) + · · · )Y ′ + Y = 0.

The dominant balance gives δ(ε) = ε and the inner problem, to leading
order is

Y ′′
i + b(0)Y ′

i = 0.

This has general solution Yi = A + Be−b(0)τ . From Yi(0) = 1 we get
A + B = 1. The other initial condition leads to Y ′

i (0) = β. Therefore the
inner approximation in the initial layer is

Yi(τ) =
(

1 +
β

b(0)

)
− β

b(0)
e−b(0)τ .

The matching condition gives C = 1 + β
b(0) . So, a uniform approximation

is

y(t) =
(

1 +
β

b(0)

)
exp

(
−

∫ t

0

b(z)−1dz

)
− β

b(0)
e−b(0)t/ε.

3. The problem is

εy′′ + (t + 1)2y′ = 1, y(0) = 1, εy′(0) = 1.

The outer approximation is

y0(t) = − 1
t + 1

+ C.

Rescaling in the initial layer gives

ε

δ(ε)2
Y ′′ +

1
δ(ε)

(1 + τδ(ε))2Y ′ = 1.

The dominant balance is δ = ε and to leading order we have

Y ′′ + Y ′ = 0,

which gives
Yi(τ) = A + Be−τ .
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Now, Y (0) = 1 gives A + B = 1. And, the other initial condition gives
Y ′(0) = 1. So the inner solution is

Yi(t) = 2− e−τ .

Matching gives C=3. Then the uniform approximation is

y(t) = −e−t/ε + 3− 1
t + 1

.

4. The damped oscillator is governed by

my′′ + ay′ + ky3 = 0, y(0) = 0, my′(0) = I.

Let τ = t/(a/k) and u = y/(I/a) to get

εu′′ + Y ′ + u′ + u = 0, u(0) = 0, εu′(0) = 1.

The standard singular perturbation method with an initial layer at t = 0
leads to the approximation

u(τ) = e−τ − e−τ/ε.

5. (a) In this case the system is

x′ = y − ε sin x, εy′ = x2y + εy3

with initial conditions x(0) = k, y(0) = 0. Setting ε = 0 we get the
outer equations

x′0 = y0, 0 = x2
0y0

Here we can choose y0 = 0 and x0 = k and the initial conditions are
met. So this problem does not have an initial layer. It is a regular
perturbation problem with leading order solution

x0(t) = k, y0(t) = 0

It is instructive for the student to assume a layer near t = 0 and carry
out the analysis to find that the inner approximation agrees with the
outer approximation.

(b) The problem is

u′ = v, εv′ = u2 − v, u(0) = 1, v(0) = 0

Assume a boundary layer near t = 0. Then the outer problem is

u′0 = v0, v0 = −u2
0

Then
u′0 = −u2

0
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which has solution (separate variables)

u0(t) =
1

t + c
, v0(t) =

−1
(t + c)2

In the boundary layer take η = t/ε. Then the inner problem is

U ′ = εV, V ′ = −U2 − V, U(0) = 1, V (0) = 0

Thus, setting ε = 0 and solving yields the inner approximation

U(η) = const. = 1, V (η) = e−η − 1

Matching gives
lim
t→0

u0(t) = lim
η→∞

U(η)

or 1/c = 1. Hence, c = 1. Then the uniform approximation is

u =
1

t + 1
+ 1− 1 =

1
t + 1

and
v =

−1
(t + 1)2

+ e−t/ε − 1− (−1) =
−1

(t + 1)2
+ e−t/ε

6. The governing equations are

a′ = −kfa + kbb, b′ = kfa− kbb.

Therefore a + b is constant, and so a + b = a0, giving b = a0 − a. Then
the a-equation becomes

a′ = −(kf + kb)a + kba0,

which has general solution

a(t) = Ce−(kb+kf )t +
a0kb

kb + kf
.

The constant C can be determined from the initial condition.

7. The governing equations for the reaction X + Y → Z are

x′ = −kxy, y′ = −kxy.

Therefore x− y = C, where C is constant. Hence,

x′ = −kx(x− C) = kx(C − x),

which is the logistic equation.
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8. The governing differential equation is

x′ = −rk(T )x, T = T0 + h(x− x0).

Making all the suggested changes of variables gives

θ′ = eAe−A/θ(1 + β − θ), θ(0) = 1,

where A = E/RT0 and β = −hx0/T0. For small A take

θ = θ0 + θ1A + θ2A
2 + · · · .

To leading order
θ′0 = 1 + βθ0, θ(0) = 1,

which has solution
θ0(τ) = (1− 1/β)eβt +

1
β

.

For large A take

θ = θ0 + θ1
1
A

+ θ2
1

A2
+ · · · .

9.

2.5 WKB Approximation

Exercises, page 141

1. Letting ε = 1/
√

λ we have

ε2y′′ − (1 + x2)2y = 0, y(0) = 0, y′(0) = 1.

This is the non-oscillatory case. From equation (2.96) of the text the
WKB approximation is, after applying the condition y(0) = 0,

yWKB =
c1

1 + x2

[
exp

(√
λ

∫ x

0

(1 + ξ2)2dξ

)
− exp

(
−
√

λ

∫ x

0

(1 + ξ2)2dξ

)]

=
2c1

1 + x2
sinh

(√
λ

∫ x

0

(1 + ξ2)2dξ

)
.

Applying the condition y′(0) = 1 gives c1 = 1/2.

2. Letting ε = 1/
√

λ we have

y′′ + λ(x + π)4y = 0, y(0) = y(π) = 0.

This is the oscillatory case and the method in Example 2.15 applies. The
large eigenvalues are

λn =

(
nπ∫ π

0
(x + π)2dx

)
=

9n2

49π4
.
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The eigenfunctions are

C

x + π
sin

(
3n

7π2

∫ x

0

(ξ + π)2dξ

)

=
C

x + π
sin

(
3n

7π2
(
x3

x
+ πx2 + π2x)

)
.

3. Let λ = 1/ε2 and rewrite the problem as

ε2y′′ + xy = 0, y(1) = y(4) = 0.

Proceed as in the oscillatory case.

4. Straightforward substitution.

5.

6. Make the change of variables τ = εt. Then the differential equation be-
comes

ε2 d2y

dt2
+ q(τ)2y = 0.

We can think of the equation y′′ + q(εt)2y = 0 as a harmonic oscillator
where the frequency is q(εt), which is time-dependent. If ε is small, it
will take a large time t before there is significant changes in the frequency.
Thinking of it differently, if q(t) is a given frequency, then the graph of
q(εt) will be stretched out; so the frequency will vary slowly.

7. Here we apply the ideas in Example 2.15 with k(x) = e2x and ε = 1/
√

λ.
Then the WKB approximation is

yWKB =
c1

ex
sin

(√
λ

2
(e2x − 1)

)
+

c2

ex
cos

(√
λ

2
(e2x − 1)

)
.

Applying the condition y(0) = 0 gives c2 = 0. Then

yWKB =
c1

ex
sin

(√
λ

2
(e2x − 1)

)

Then y(1) = 0 gives

sin

(√
λ

2
(e− 1)

)
= 0,

and this forces

λ =
4π2

(e− 1)2

for large n. [Note the typographical error—the boundary conditions should
be homogeneous.]
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8. Let ε = 1/λ to obtain

ε2y′′ + (x2 + ε2x)y = 0.

Now let y = exp(iu/ε) and proceed as in the derivation of the WKB
approximation.

2.6 Asymptotic Expansion of Integrals

Exercises, page148

1.

2. Making the substitution t = tan2 θ gives

I(λ) =
∫ π/2

0

e−λ tan2 θdθ =
1
2

∫ ∞

0

e−λtdt

(1 + t)
√

t

Now Watson’s lemma (Theorem 6.1) applies. But we proceed directly by
expanding 1/(1 + t) in its Taylor series

1
1 + t

= 1− t + t2 − · · ·

which gives

I(λ) =
1
2

∫ ∞

0

e−λt

√
t

(1− t + t2 − · · · )dt

Now let u = λt. This gives

I(λ) =
1

2
√

λ

∫ ∞

0

e−u

(
1√
u
−
√

u

λ
+

u3/2

λ2
+ · · ·

)

Then, using the defintion of the gamma function,

I(λ) =
1

2
√

λ
(Γ(

1
2
)− 1

λ
Γ(

3
2
) +

1
λ2

Γ(
5
2
) + · · · )

3. Assume that g has a maximum at b with g′(b) > 0. Then expand

g(t) = g(b) + g′(b)(t− b) + · · ·
The integral becomes

I(λ) =
∫ b

a

f(t)eλg(t)dt

=
∫ b

a

f(t)eλ(g(b)+g′(b)(t−b)+··· )dt

≈ f(b)eλg(b)

∫ b

a

eλg′(b)(t−b)dt
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Now make the substitution v = λg′(b)(t− b) to obtain

I(λ) ≈ f(b)eλg(b) 1
λg′(b)

∫ 0

λg′(b)(a−b)

evdv

or

I(λ) ≈ f(b)eλg(b)

λg′(b)

∫ 0

−∞
evdv

or

I(λ) ≈ f(b)eλg(b)

λg′(b)

for large λ.

If the maximum of g occurs at t = a with g′(a) < 0, then it is the same
calculation. We expand g in its Taylor series about t = a and we obtain
the same solution except for a minus sign and the b in the last formula
replaced by a.

4. (a) We have, using a Taylor expansion,

I(λ) =
∫ ∞

0

e−λt ln(1 + t2)dt

=
∫ ∞

0

e−λt(t2 − t4

2
+

t6

3
− · · · )dt

Now let u = λt and we get

I(λ) =
1
λ

∫ ∞

0

e−u(
u2

λ2
− u4

2λ4
+

u6

3λ6
+ · · · )dt

Using the definition of the gamma function, we obtain

I(λ) =
1
λ

(
2!
λ2
− 4!

2λ4
+

6!
3λ6

+ · · · )

(b) Let g(t) = 2t − t2. This function has its maximum at t = 1 where
g′(1) = 0 and g′′(1) = −2. Take f(t) =

√
1 + t. Then

I(λ) =
∫ 1

0

√
1 + teλ(2t−t2)dt ≈ 1

2
f(1)eλg(1)

√
−2π

λg′′(1)

=
√

π

2λ
eλ

(c) Let g(t) = 1/(1+ t). This function has its maximum, with a negative
derivative, at t = 1. Thus Exercise 6.3 holds. With f(t) =

√
3 + t

we have

I(λ) ≈ −f(1)eλg(1)

λg′(1)
=

8
λ

eλ/2
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5. We have

Γ(x + 1) =
∫ ∞

0

uxe−udu

Integrate by parts by letting r = ux and ds = e−udu. Then the integral
becomes ∫ ∞

0

uxe−udu = x

∫ ∞

0

e−uux−1du = xΓ(x)

6.

7.

8.

9.

10.

11.

12. (b) Using the fact that e−t < 1 for t > 0, we have

|rn(λ)| = n!
∫ ∞

λ

e−t

tn+1
dt

≤ n!
∫ ∞

λ

1
tn+1

dt

= n!
−1
ntn

|∞λ = (n− 1)!
1
λn

→ 0

as λ →∞.

(c) Observe that ∫ ∞

λ

e−t

tn+1
dt ≤ e−λ

λn+1

Then the ratio of rn to the last term of the expansion is

|rn(λ)|
(n− 1)!e−λ/λn

≤ n

λ

This tends to zero as λ → ∞. So the remainder is little oh of the last
term, and so we have an asymptotic series.

(d) Fix λ. The nth term of the series is does not converge to zero as
n →∞. Therefore the series does not converge.
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13. We have
I(λ) =

∫ ∞

0

1
(t + λ)2

e−tdt

We integrate by parts letting

u =
1

t + λ)2
, dv = e−t

We get

I(λ) =
1
λ2
− 2

∫ ∞

0

1
t + λ)3

e−tdt

Now integrate by parts again via

u =
1

t + λ)3
, dv = e−t

Then
I(λ) =

1
λ2
− 2

λ3
+ 6

∫ ∞

0

1
t + λ)4

e−tdt

Continuing in the same manner gives

I(λ) =
1
λ2
− 2!

λ3
+

3!
λ2

+ · · ·+ n!
λn−1

(−1)n+1 + (n + 1)!
∫ ∞

0

1
t + λ)n+2

e−tdt



Chapter 3

Calculus of Variations

3.1 Variational Problems

Exercises page 158

1. The functional is

J(y) =
∫ 1

0

(y′ sin πy − (y + t)2)dt.

First note that if y(t) = −t then J(y) = 2/π. Now we have to show that
J(y) < 2/π for any other y. To this end,

J(y) =
∫ 1

0

(y′ sin πy − (y + t)2)dt

≤
∫ 1

0

y′ sin πydt

= − 1
π

∫ 1

0

(cosπy)′dt

= − 1
π

(cos πy(1)− cos πy(0)) ≤ 2
π

.

2. Hint: substitute

y(x) = x + c1x(1− x) + c2x
2(1− x)

into the functional J(y) to obtain a function F = F (c1, c2) of the two
variables c1 and c2. Then apply ordinary calculus techniques to F to find
the values that minimize F , and hence J . That is, set ∇F = 0 and solve
for c1 and c2.

41
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3.2 Necessary Conditions for Extrema

Exercises, page 166

1. (a) The set of polynomials of degree ≤ 2 is a linear space. (b) The set
of continuous functions on [0, 1] satisfying f(0) = 0 is a linear space. (c)
The set of continuous functions on [0, 1] satisfying f(0) = 1 is not a linear
space because, for example, the sum of two such functions is not in the
set.

2. We prove that

||y||1 =
∫ b

a

|y(x)|dx

is a norm on the set of continuous functions on the interval [a, b]. First

||αy||1 =
∫ b

a

|αy(x)|dx = |α|
∫ b

a

|y(x)|dx = |α| ||y||1.

Next, if ||y||1 = 0 iff
∫ b

a
|y(x)|dx = 0 iff y(x) = 0. Finally, the triangle

inequality if proved by

||y + v||1 =
∫ b

a

|y(x) + v(x)|dx ≤
∫ b

a

(|y(x)|+ |v(x)|)dx

=
∫ b

a

|y(x)|dx +
∫ b

a

|v(x)|dx = ||y||1 + ||v||1.

The proof that the maximum norm is, in fact, a norm, follows in the same
manner. To prove the triangle inequality use the fact that the maximum
of a sum is less than or equal to the sum of the maxima.

3. Let y1 = 0 and y2 = 0.01 sin 1000x. Then

||y1 − y2||s = max |0.01 sin 1000x| = 0.01

and

||y1 − y2||w = max |0.01 sin 1000x|+ max |(0.01)(1000) cos 1000x| = 10.01.

4. We have

δJ(y0, αh) = lim
ε→0

J(y0 + εαh)− J(w)
ε

= lim
ε→0

α
J(y0 + εαh)− J(w)

εα

= lim
η→0

α
J(y0 + ηh)− J(w)

η

= αδJ(y0, h).
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5. (a) not linear; (b) not linear; (c) not linear; (d) not linear; (e) linear; (f)
not linear.

6. An alternate characterization of continuity of a functional that is often
easier to work with is: a functional J on a normed linear space with norm
||·|| is continuous at y if for any sequence of functions yn with ||yn−y|| → 0
we have J(yn) → J(y) as n → 0.

(a) Now let ||yn−y||w → 0. Then ||yn−y||s → 0 (because ||v||s ≤ ||v||w).
By assumption J is continuous at y in the strong norm, and therefore
J(yn) → J(y). So J is continuous in the weak norm.

(b) Consider the arclength functional J(y) =
∫ b

a

√
1 + (y′)2dx. If two

functions are close in the strong norm, i.e., if the maximum of their
difference is small, then it is not necessarily true that their arclengths
are close. For example, one may oscillate rapidly while the other does
not. Take y = 0 and y = n−1 sinnx for large n. These two functions
are close in the strong norm, but not the weak norm.

7. (a) δJ(y, h) =
∫ b

a
(hy′ + yh′)dx.

(b) δJ(y, h) =
∫ b

a
(2h′y′ + 2h)dx.

(c) δJ(y, h) = ey(a)h(a).

(d) See Exercise 3.6.

(e) δJ(y, h) =
∫ b

a
h(x) sin x dx.

(f) δJ(y, h) =
∫ b

a
2y′h′ dx + G′(y(b))h(b).

8. Let yn → y. Then J(yn) = J(yn−y)+J(y) → J(y) because J(yn−y) → 0
(since yn − y → 0 and J is continuous at zero by assumption).

9. We have

J(y + εh) =
∫ b

a

(
x(y′ + εh′)2 + (y + εh) sin(y′ + εh′)2

)
dx.

Now take the second derivative of this function of ε with respect to ε and
then set ε = 0. We obtain

δ2J =
∫ b

a

(2x(h′)2 − y(h′)2 sin y′ + 2hh′ cos y′)dx.

10. Here the functional is

J(y) =
∫ 1

0

(x2 − y2 + (y′)2)dx.

Then

δJ(y, h) =
∫ 1

0

(−2yh + 2y′h′)dx.
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Thus
δJ(x, x2) =

3
2
,

and
∆J = J(y + εh)− J(y) = J(x + εx2)− J(x) = etc.

11. J(y) =
∫ 1

0
(1 + x)y′2dx. We find

δJ(y, h) = 2
∫ 1

0

(1 + x)y′h′dx.

Now substitute the given y to show δJ(y, h) = 0 for appropriate h.

12. In this case

J(y) =
∫ 2π

0

(y′)2dx.

Then

J(y + εh) =
∫ 2π

0

(1 + ε cosx)2dx = 2π + ε2

∫ 2π

0

cos2 xdx.

Then
d

dε
J(y + εh) = 2ε

∫ 2π

0

cos2 xdx,

and so
d

dε
J(y + εh) |ε=0= 0.

Thus, by definition, J is stationary at y = x in the direction h = sin x.
The family of curves y + εh is shown in the figure.

13. Here

J(y) =
∫ 1

0

(3y2 + x)dx + y(0)2.

Then

δJ(y, h) =
∫ 1

0

6yh dx + 2y(0)h(0).

Substituting y = x and h = x + 1 gives δJ = 5.

3.3 The Simplest Problem

Exercises, page 175

1. (a) The Euler equation reduces to an identity (0 = 0), and hence every
C2 function is an extremal. (b) The Euler equation reduces to an identity
(0 = 0), and hence every C2 function is an extremal. (c) The Euler
equation reduces to y = 0, which is the only extremal. Remember, by
definition, solutions to the Euler equation are extremals, regardless of the
boundary conditions.
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2. (a) The Euler equation is

Ly − d

dx
Ly′ =

d

dx
(2y′/x3) = 0

Thus
y(x) = Ax4 + B

(b) The Euler equation is
y′′ − y = ex

The general solution is

y(x) = Aex + Be−x +
x

2
ex

3. The Euler equation is

Ly − d

dx
Ly′ = fy

√
1 + (y′)2 − d

dx

fy′√
1 + (y′)2

= 0.

Taking the total derivative and then multiplying by
√

1 + (y′)2 gives

fy − y′fx − fy′′ +
f(y′)2y′′

1 + (y′)2
= 0

This reduces to

fy − y′fx − fy′′

1 + (y′)2
= 0

4. The Euler equation is

− d

dx
Ly′ = 0

or
y′

x
√

1 + (y′)2
= c

Solving for y′ (take the positive square root since, by the boundary con-
ditions, we want y′ > 0), separating variables, and integrating yields

y(x) =
∫ √

c2x2

1− c2x2
dx + k

Then make the substitution u = 1− c2x2 to perform the integration. We
obtain

y(x) =
1
c

√
1− c2x2 + k

Applying the boundary conditions to determine the constants finally leads
to

y(x) = −
√

5− x2 + 2

which is an arc of a circle.
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5. Notice that, by expanding, combining terms, and using the Euler equation,

J(Y + h)− J(Y ) =
∫ b

a

[2pY ′h′ + 2qY h + ph′2 + qh2]dx

>

∫ b

a

[2pY ′h′ + 2qY h]dx

= 2pY ′h|ba −
∫ b

a

[(2pY ′)′h− 2qY h]dx

= 0.

The last two lines follow from integration by parts and the fact that Y
satisfies the Euler equation

(pY ′)′ − qY = 0.

6. Let h ∈ C2. Then

δJ(y, h) =
∫ b

a

∫ b

a

K(s, t)[y(s)h(t) + h(s)y(t)]ds dt

+2
∫ b

a

y(t)h(t)dt− 2
∫ b

a

h(t)f(t)dt

Now, using the symmetry of K and interchanging the order of integration
allows us to rewrite the first integral as

2
∫ b

a

∫ b

a

K(s, t)y(s)h(t)dsdt

Then

δJ(y, h) = 2
∫ b

a

(∫ b

a

K(s, t)y(s)ds + y(t)− f(t)

)
h(t)dt

Thus ∫ b

a

K(s, t)y(s)ds + y(t)− f(t) = 0

This is a Fredholm integral equation (see Chapter 4) for y.

7. The Euler equation is
−((1 + x)y′)′ = 0

or
y′ = c1/(1 + x)

Integrating again
y(x) = c1 ln(1 + x) + c2
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If y(0) = 0, y(1) = 1 then we get

y(x) =
ln(1 + x)

ln 2

If the boundary condition at x = 1 is changed to y′(1) = 0, then the
extremal is y(x) ≡ 0.

8. In each case we minimize the functional T (y) given in Example 3.18 on
page 174.

(a) When n = kx the Lagrangian is independent of y, and therefore the
Euler equation reduces to

x
√

1 + y′2 = C.

Separating variables and integrating gives

y =
∫ √

C1 − x2

x2
dx + C2.

The right hand side can be integrated using a trigonometric substi-
tution.

(b) The integrand is independent of x.

(c) The integrand is independent of x.

(d) This problem is similar to the brachistochrone problem (see Example
3.17).

9. Observe that

Lt − d

dt
(L− y′Ly′) = Lt − dL

dt
+ y′

dLy′

dt
+ y′′Ly′

= Lt − Lt − Lyy′ − Ly′y
′′ + y′

dLy′

dt
+ y′′Ly′

= −y′(Ly − d

dt
Ly′)

10. The minimal surface of revolution is found by minimizing

J(y) =
∫ b

a

2πy
√

1 + (y′)2dx

Because the integrand does not depend explicitly on x, a first integral is

L− y′Ly′ = c

Upon expanding and simplifying, this equation leads to

dy

dx
=

√
k2y2 − 1
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Now separate variables and integrate while using the fact that

d

du
cosh−1 u =

1√
u2 − 1

.

11. The Euler equation becomes

x2y′′ + 2xy′ − y = 0

which is a Cauchy-Euler equation. Its solution is

y(x) = Ax(−1+
√

5)/2 + Bx(−1−√5)/2

(recall that a Cauchy-Euler equation can be solved by trying power func-
tions, y = xm for some m).

12. To find Euler’s equation, use the fact that L is independent of x and
therefore L− y′Ly′ = C.

13. Using the Euler equation it is straight forward to see that the extremal
is Y = 0, giving the value J(Y ) = 4. Take, for example, y = sin πx.
Then J(y) > 4. Hence, Y = 0 does not give a local maximum. Because
the extremals are only necessary conditions, there is no guarantee that
Y = 0 provides a minimum either. Note also that, for any y, we have
J(y) =

∫ 1

0
[y2 + (y′ − 2)2] dx ≥ 0.

14. Substitution of r into the integral gives the variational problem

E(y) = 2
∫ T

0

e−βt
√

αy − y′ dt → max.

The Euler equation is

1− β√
αy − y′

− d

dt

1√
αy − y′

= 0.

This simplifies to

y′′ + (α + 2β − 2)y′ + 2α(1− β)y = 0,

which is a linear equation with constant coefficients.

3.4 Generalizations

Exercises, page 184

1. (a) The Euler equations are

8y1 − y′′2 = 0, 2y2 − y′′1 = 0.
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Eliminating y2 gives
y
(4)
1 − 16y1 = 0.

The characteristic equation is m4 − 16 = 0, which has roots m =
±2,±2i. Therefore the solution is

y1(x) = ae2x + be−2x + c cos 2x + d sin 2x,

where a, b, c, d are arbitrary constants. Then y2 = 0.5y′′1 , and the four
constants a, b, c, d can be computed from the boundary conditions.

(b) The Euler equation is
y(4) = 0,

and thus the extremals are

y(x) = a + bx + cx2 + dx3.

The four constants a, b, c, d can be computed from the boundary con-
ditions.

(c) The Euler equation is y(4) − 2y′′ + y = 0.
(d) The Euler equation is y(4) = 0.

(e) The Euler equation is y(4) − y(3) − y′′ − y = 0.

2. The Euler equation for J(y) =
∫

L(x, y, y′, y′′)dx is

Ly − (Ly′)′ + (Ly′′)′′ = 0

If Ly = 0 then clearly

Ly′ − (Ly′′)′ = const.

If Lx = 0, then expand all the derivatives and use the Euler equation to
show

d

dx
(L− y′(Ly′ − (Ly′′)− y′′Ly′′)) = 0

3. The Euler equation is

LM − d

dx
LM ′ = 2a(aM −M ′ − b) +

d

dx
2(aM −M ′) = 0,

or
M ′′ − a2M = −ab.

The general solution is

M(t) = Aeat + Be−at +
b

a
.

The left boundary condition is M(0) = M0; the right boundary condition
is the natural boundary condition LM ′ = 0 at t = T , or

aM(T )−M ′(T ) = b.
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4. The two Euler equations (expanded out) are

Ly′y′y
′′ + Ly′z′z

′′ = 0
Lz′y′y

′′ + Ly′z′z
′′ = 0

It is given that the determinant of the coefficient matrix of this system is
nonzero. Therefore the only solution is y′′ = z′′ = 0, which gives linear
functions for y and z.

5. (a) The natural boundary condition is y′(1) + y(1) = 0. The extremals
are

y(x) = aex + be−x

. The boundary conditions force a + b = 1 and a = 0, so y(x) = e−x.

(b) The Euler equation is

y′′ + 2y′ + y = 0,

giving extremals
y(x) = ae−x + bxe−x.

The boundary conditions are y(0) = 1 and y′(3) = 0.

(c) The Euler equation is

x2y′′ + 2xy′ +
1
4
y = 0,

which is a Cauchy-Euler equation. Assuming solutions of the form
y = tm gives the characteristic equation

m(m− 1) + 2m +
1
4

= 0,

which has a real double root m = − 1
2 . Thus the general solution is

y(x) = a
1√
x

+ b
1√
x

ln x.

The given boundary condition is y(1) = 1; the natural boundary
condition at x = e is y′(e) = 0. One finds from these two conditions
that a = b = 1.

(d) The Euler equation is
y′′ − 2y′ = −1.

(e) The extremals are
y(x) = ax + b.

The boundary conditions are y(0) = 1 and y′(1) + y(1) = 0.
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6. The natural boundary condition is

Ly′(b, y(b), y′(b)) + G′(y(b)) = 0.

7. The Lagrangian is L =
√

1− k2 + y′2− ky′, where 0 < k < 1. It does not
depend on x, and therefore a first integral is

y′√
1− k2 − y′2

+ k = C.

Solving gives y(x) = Ax + B. Now y(0) = 0 forces B = 0 and y(x) = Ax.
Now apply the natural boundary condition L′y = 0 at x = b. We get

y′√
1− k2 − y′2

+ k =
A√

1− k2 −A
+ k = 0.

This gives

A = −
√

k2(1− k2)
1 + k2

.

8. The natural boundary condition is (see Problem 6)

9y′(2) + 9y(2) = 2.

3.5 The Canonical Formalism

Exercises, page 196

1. The Hamiltonian is

H(t, y, p) =
p2

4r(t)
− q(t)y2

Hamilton’s equations are

y′ =
p

2r(t)
, p′ = 2q(t)y

2. Here we have
J(y) =

∫ √
(t2 + y2)(1 + (y′)2)

We find

p = Ly′ =

√
t2 + y2y′√
1 + (y′)2

which yields

(y′)2 =
p2

t2 + y2 − p2



52 CHAPTER 3. CALCULUS OF VARIATIONS

The Hamiltonian simplifies, after some algebra, to

H(t, y, p) = −
√

t2 + y2 − p2

Then Hamilton’s equations are

dy

dt
=

p√
t2 + y2 − p2

,
dp

dt
=

y√
t2 + y2 − p2

Dividing the two equations gives

dy

dp
=

p

y

Integrating yields
y2 − p2 = const

These are hyperbola in the yp phase plane.

3. Hamilton’s equations for the pendulum are

θ′ =
p

ml2
, p′ = −mgl sin θ

4. (a) The potential energy is the negative integral of the force, or

V (y) = −
∫

(−ω2y + ay2)dy =
1
2
ω2y2 − 1

3
ay3

The Lagrangian is L = 1
2m(y′)2−V (y). The Euler equation coincides

with Newton’s second law:

my′′ = −ω2y + ay2

(b) The momentum is p = Ly′ = my′, which gives y′ = p/m. The
Hamiltonian is

H(y, p) =
1
2
(p/m)2 + V (y)

which is the kinetic plus the potential energy, or the total energy of
the system. Yes, energy is conserved (L is independent of time).

(c) We have H = E for all time t, so at t = 0 we have

1
2
(p(0)/m)2 + V (y(0)) =

ω2

10

If y(0) = 0 we can solve for p(0) to get the momentum at time zero;
but this gives

y′(0) = ±
√

ω2/5m
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(d) The potential energy has a local maximum at y = ω2/a and is equal
to

Vmax = V (ω2/a) =
ω6

6a2

Note that V = 0 at y = 0, 3ω2/2a. If E < Vmax then we obtain
oscillatory motion; if E > Vmax, then the motion is not oscillatory.
Observe that the phase diagram (the solution curves in yp–space, or
phase space), can be found by graphing

p = ±
√

2m(E − V (y)

for various constants E.

5. The Euler equations are

Fy − d

dt
Fy′ = 0, Fp − d

dt
Fp′ = 0,

where F = py′ −H(t, y, p). Easily we find from these two equations that

−Hy − d

dt
p = 0, y′ −Hp = 0.

6. Here the force is F (t, y) = ket/y2. We can define a potential by V (t, y) =
− ∫

F (t, y)dy = ket/y. The Lagrangian is

L(t, y, y′) =
m

2
(y′)2 − V (t, y)

The Euler equation is
my′′ − ket/y2 = 0

which is Newton’s second law of motion. The Hamiltonian is

H(t, y, p) =
p2

2m
+

k

y
et

which is the total energy. Is energy conserved? We can compute dH/dt
to find

dH

dt
= ket/y 6= 0

So the energy is not constant.

7. The kinetic energy is T = m(y′)2/2. The force is mg (with a plus sign since
positive distance is measured downward). Thus V (y) = −mgy. Then the
Lagrangian is L = m(y′)2/2 + mgy.

8. We have, for example,

Lxi −
d

dt
Lx′i =

∂V

∂xi
− d

dt
(mx′i) = 0,

or
mx′′i = Fi.
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9. We have r′ = −α and so r(t) = −αt + l. Then the kinetic energy is

T =
m

2
((r′)2 + r2(θ′)2) =

m

2
(α2 + (l − αt)2(θ′)2),

and the potential energy is

V = mgh = mg(l − r cos θ) = mg(l − (l − αt) cos θ.)

The Lagrangian is L = T − V . The Euler equation, or the equation of
motion, is

g sin θ + (l − αt)θ′′ − 2αθ = 0.

One can check that the Hamiltonian is not the same as the total energy;
energy is not conserved in this system. If fact, one can verify that

d

dt
(T + V ) = −mgα cos θ 6= 0.

10. Follow the instructions.

11. The Emden-Fowler equation is

y′′ +
2
t
y′ + y5 = 0.

Multiply by the integrating factor t2 to write the equation in the form

(t2y′)′ + t2y5 = 0.

Now we can identify this with the Euler equation:

Ly = −t2y5, Ly′ = t2y′.

Integrate these two equations to find

L =
1
2
t2(y′)2 − 1

6
t2y6 + φ(t)

12. Multiply y′′ + ay′ + b = 0 by the integrating factor exp(at) to get

(eaty′)′ + beat = 0

Now identify the terms in this equation with the terms in the Euler equa-
tion as in Exercise 5.14. Finally we arrive at a Lagrangian

L = eat
(m

2
(y′)2 − by

)

There are many Lagrangians, and we have chosen just one by selecting
the arbitrary functions.
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13. Follow Example 3.27 in the book with m, a, k and y replaced by L,R, C−1

and I, respectively.

14. Multiplying the given equation by exp P (t) makes the sum of the first two
terms a total derivative and we get

d

dt
(eP (t)y′) + eP (t)f(y) = 0.

Comparing to the Euler equation we take

Ly = eP (t)f(y), Ly′ = −eP (t)y′.

Integrating the first gives

L = eP (t)F (y) + φ(t, y′),

where φ is arbitrary. Plugging this into the second equation we get

φy′ = −eP (t)y′.

Integrating,

φ = −1
2
y′2eP (t) + ψ(t),

where ψ is arbitrary. Thus,

L = eP (t)

(
F (y)− 1

2
y′2

)
+ ψ(t).

3.6 Isoperimetric Problems

Exercises, page 203

1. Form the Lagrangian
L∗ = (y′)2 + λy2.

The Euler equation reduces to

y′′ − λy = 0, y(0) = y(π) = 0

The extremals are given by

yn(x) = ±
√

2/π sin nx, n = 1, 2, 3, . . . .

2. Let L∗ = x2 + (y′)2 + λy2. Then the Euler equation for L∗ is

y′′ + λy = 0, y(0) = y(1) = 0.

If λ ≥ 0 then this boundary value problem has only trivial solutions. If
λ < 0, say λ = −β2, then the problem has nontrivial solutions

yn(x) = Bn sin nπx, n = 1, 2, . . . ,
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where the Bn are constants. Applying the constraint gives
∫ 1

0

B2
n sin2 nπx dx = 2.

Thus Bn = ±2 for all n. So the extremals are

yn(x) = ±2 sin nπx, n = 1, 2, . . . .

3. The Euler equations become

L∗y1
− d

dx
L∗y1

= 0, L∗y2
− d

dx
L∗y2

= 0,

where L∗ = L + λG.

4. Form the Lagrangian

L∗ = xy′ − yx′ + λ
√

(x′)2 + (y′)2.

Because the Lagrangian does not depend explicitly on t, a first integral is
given by

L∗ − x′L∗x′ − y′L∗y′ = C.

5. The problem is to minimize

J(y) =
∫ 1

0

√
1 + (y′)2dx, y(0) = y(1) = 0

subject to the constraint
∫ 1

0

y(x)dx = A.

Form the Lagrangian

L∗ =
√

1 + (y′)2 + λy

Because the Lagrangian does not depend explicitly on x, a first integral is
given by

L∗ − y′L∗y′ = c.

Expanding out this equation leads to

y′ =

√
1− (λy − c)2

(λy − c)2
.

Separating variables and integrating, and then using the substitution u =
1− (λy − c)2, gives

− 1
2λ

∫
du√

u
= x + c1.
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Thus
(x + c1)2 + (y − c/λ)2 =

1
λ2

,

which is a circle. Now the two boundary conditions and the constraint
give three equations for the constants c, c1, λ.

6. Form the Lagrangian

L∗ = p(y′)2 + qy2 + λry2.

Then the Euler equation corresponding to L∗ is

Ly − (Ly′)′ = 2qy + 2rλy − 2(py′)′ = 0,

or
(py′)′ − qy = rλy, y(a) = y(b) = 0

This is a Sturm-Liouville problem for y (see Chapter 4).

7. Solve the constraint equation to obtain

z = g(t, y).

Substitute this into the functional to obtain

W (y) ≡
∫ b

a

F (t, y, y′) ≡
∫ b

a

L(t, y, g(t, y), y′, gt + gyy′)dt.

Now form the Euler equation for F . We get

Fy − d

dt
Fy′ = 0,

or, in terms of L,

Ly + Lzgy + Lz′(gty + gyyy′)− d

dt
(Ly′ + Lz′gy) = 0.

This simplifies to

Ly − d

dt
Ly′ + gy(Lz − d

dt
Lz′ = 0.

Also G(t, y, g(t, y)) = 0, and taking the partial with respect to y gives

Gy + Gzgy = 0.

Thus
Ly − d

dtLy′

Gy
=

Lz − d
dtLz′

Gy
.

Now these two expressions must be equal to the same function of t, that
is

Ly − d

dt
Ly′ = λ(t)Gy, Lz − d

dt
Lz′ = λ(t)Gz.


