Grade 12
Applied Mathematics
Achievement Test

Local Marking Training Workbook

January 2020

Copyright © 2020, the Government of Manitoba, represented by the Minister of Education.
Manitoba Education
Winnipeg, Manitoba, Canada
All exemplars and images found in this resource are copyright protected and should not be extracted, accessed, or reproduced for any purpose other than for their intended educational use in this resource. Sincere thanks to the students who allowed their original material to be used.

This resource is available on the Manitoba Education website at www.edu.gov.mb.ca/k12/assess/local_marking/index.html.
Websites are subject to change without notice.

Disponible en français.

While the department is committed to making its publications as accessible as possible, some parts of this document are not fully accessible at this time.

Exemplar 1

Question 3

Total: 3 marks

At the Manitoba provincial track and field meet, an athlete is competing in the javelin event. On the athlete's first attempt

- the javelin was thrown at a starting height of 1.6 m
- the javelin reached a height of 4 m at a horizontal distance of 7.2 m from the athlete
- the javelin hit the ground 38 m away from the athlete

a) Determine a quadratic regression equation that models the height of the javelin as a function of the horizontal distance from the athlete. Show your work.
(2 marks)

$$
\begin{aligned}
& \qquad \begin{array}{|c|c|}
\hline \begin{array}{c}
\text { Horizontal } \\
\text { Distance }(\mathrm{m})
\end{array} & \text { Height }(\mathrm{m}) \\
\hline 0 & 1.6 \\
\hline 7,2 & 4 \\
\hline 38 & 0 \\
\hline \text { STAT } \rightarrow \text { CALC QuadReg } \\
y=a x^{2}+b x+c \quad a, y=-0,01 x^{2}+0,42 x+1.6
\end{array}
\end{aligned}
$$

b) Determine the maximum height reached by the javelin.
(1 mark)

$$
\begin{aligned}
& \text { STAT } \rightarrow \text { Maximum } \\
& x=2.13 \\
& y=2.04 \mathrm{~m}
\end{aligned}
$$

Exemplar 1

Question 3-Relations and Functions

Mark(s): 2/3
(1) $\rightarrow 1$ mark for appropriate work in (a)
(2) $\rightarrow 1$ mark for consistent equation in (a)

Exemplar 2

Question 3

Total: 3 marks

At the Manitoba provincial track and field meet, an athlete is competing in the javelin event.
On the athlete's first attempt

- the javelin was thrown at a starting height of 1.6 m
- the javelin reached a height of 4 m at a horizontal distance of 7.2 m from the athlete
- the javelin hit the ground 38 m away from the athlete

a) Determine a quadratic regression equation that models the height of the javelin as a function of the horizontal distance from the athlete. Show your work.
(2 marks)

b) Determine the maximum height reached by the javelin.
(l mark)

$$
\begin{aligned}
& \text { Ind }-7 \text { trace }-7 \text { maximum } \\
& x=17.27 \quad y=5.24 \\
& \text { maximum height is } 5.24 \mathrm{~m}
\end{aligned}
$$

Exemplar 2

Question 3-Relations and Functions

Mark(s): 2/3
(1) $\rightarrow 1$ mark for appropriate work in (a)

3 $\rightarrow 1$ mark for consistent answer in (b)

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Exemplar 1

Question 4

Total: 4 marks
In 2020, the elk population in Riding Mountain National Park can be predicted by the following exponential equation:

$$
P=3500(1.03)^{t}
$$

where P represents the elk population
and t represents the time (in years) starting in January 2020.
a) Create a clearly labelled graph of the predicted elk population over the next 50 years.

Exemplar 1 (continued)
b) Assume that Riding Mountain National Park can support a maximum population of 16000 elk. Using the exponential equation, determine in what year the population will reach 16000.
(1 mark)

Exemplar 1

Question 4-Relations and Functions

Mark(s): 1.5/4
(1) $\rightarrow 1$ mark for communicating the context of the graph with appropriate title and/or labels in (a)
(4) $\rightarrow 0.5$ mark for correct x-value in (b)

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Exemplar 2

Question 4

Total: 4 marks
In 2020, the elk population in Riding Mountain National Park can be predicted by the following exponential equation:

$$
\stackrel{y}{P}=3500(1.03)^{t^{t}}
$$

where P represents the elk population
and t represents the time (in years) starting in January 2020.
a) Create a clearly labelled graph of the predicted elk population over the next 50 years.

Exemplar 2 (continued)
b) Assume that Riding Mountain National Park can support a maximum population of 16000 elk. Using the exponential equation, determine in what year the population will reach 16000.
(1 mark)

$$
\begin{aligned}
y_{2} & =16000 \\
\text { calc\#5 } \quad x & =51.42
\end{aligned}
$$

$$
\text { Sometime during year } 51
$$

Exemplar 2

Question 4-Relations and Functions

Mark(s): 3.5/4

(1) $\rightarrow 1$ mark for communicating the context of the graph with appropriate title and/or labels in (a)
(2) $\rightarrow 1$ mark for using an appropriate domain and range (i.e., window settings/grid range) for the context of the question in (a)
(3) $\rightarrow 1$ mark for an appropriate shape that illustrates key characteristics of the function (e.g., maximum, minimum, asymptotes, intercepts) in (a)
(4) $\rightarrow 0.5$ mark for correct x-value in (b)

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Exemplar 1

Question 5

An observer collects data for the sea level in Churchill, Manitoba. The sea level rises and falls twice daily. The data is shown below:

Time (h)	Sea Level (m)
0	4.31
3	2.41
6	0.51
9	2.41
12	4.31

a) Determine a sinusoidal regression equation that models this data.
(1 mark)

$$
y=1.1000 \sin (1.5108 x+(-4.7103 .0)+2.4100
$$

b) Determine the sea level at 5.5 hours.
(1 mark)
1.06 m

Exemplar 1 (continued)
c) State the range and explain its meaning in this situation.
(2 marks)
$(0.51,4)$

$$
\begin{aligned}
& \text { It means how high the sea level } \\
& \text { gets, and how low the sea level gets. }
\end{aligned}
$$

Exemplar 1

Question 5-Relations and Functions

Mark(s): 2.5/4
(1) $\rightarrow 0.5$ mark for two correct values in (a)
(3) $\rightarrow 1$ mark for consistent answer in (b)
© $\rightarrow 1$ mark for correct explanation in (c)

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Exemplar 2

Question 5

An observer collects data for the sea level in Churchill, Manitoba. The sea level rises and falls twice daily. The data is shown below:

Time (h)	Sea Level (m)
0	4.31
3	2.41
6	0.51
9	2.41
12	4.31

a) Determine a sinusoidal regression equation that models this data.
(1 mark)

$$
y=0 x^{3}+0.0905 x^{2}-1.0857 x+4.4186
$$

b) Determine the sea level at 5.5 hours.
(1 mark)

$$
y=1.18 \mathrm{~m}
$$

Exemplar 2 (continued)
c) State the range and explain its meaning in this situation.
(2 marks)

$$
[1.161, \infty)
$$

It mean) the lowest the see level would go is 1.161 m and the highest is infinite

Exemplar 2

Question 5-Relations and Functions

Mark(s): 3/4
(3) $\rightarrow 1$ mark for consistent answer in (b)
(4) $\rightarrow 0.5$ mark for consistent upper and lower bounds of the range in (c)
$\boldsymbol{5} \rightarrow 0.5$ mark for inclusivity of both upper and lower bounds in (c)
(6) $\rightarrow 1$ mark for correct explanation in (c)

Exemplar 1
Question 6
A patient has his blood pressure monitored for 16 hours. During this period, his blood pressure can be modelled by the following cubic function:

$$
P=-0.05 t^{3}+1.28 t^{2}-7.46 t+101
$$

where P represents the blood pressure (in mm of mercury) and t represents the amount of time his blood pressure is monitored (in hours).
a) Determine his lowest blood pressure during this period, in mm of mercury.
(1 mark)

Ind carman
It his blood Pressuc (4) is 88.387
at 3.73 h
or abut 88.4
b) Determine how long his blood pressure is at 99 mm of mercury or below. Show your work.
(2 marks)

$$
\begin{aligned}
& y=99 \\
& \text { nd intersect } \\
& \text { starts at } x=0.28 \mathrm{~h} \\
& \text { ends } x=8.39 \text { or } 8.4 \mathrm{~h} \\
& 8.39+0.28=8.67 \mathrm{hs} \\
& x=
\end{aligned}
$$

Exemplar 1

Question 6 (a) and (b)—Relations and Functions

Mark(s): 2/3
(1) $\rightarrow 1$ mark for correct answer in (a)
(2) $\rightarrow 0.5$ mark for correct first x-value in (b)
(3) $\rightarrow 0.5$ mark for correct second x-value in (b)
(56) \rightarrow rounds incorrectly

Exemplar 2
Question 6
A patient has his blood pressure monitored for 16 hours. During this period, his blood pressure can be modelled by the following cubic function:

$$
P=-0.05 t^{3}+1.28 t^{2}-7.46 t+101
$$

where P represents the blood pressure (in mm of mercury) and t represents the amount of time his blood pressure is monitored (in hours).
a) Determine his lowest blood pressure during this period, in mm of mercury.
(1 mark)

$$
\begin{aligned}
& \text { Ind - trace } \rightarrow \text { Value } \rightarrow x=0 \\
& \text { lowest blood is } 3.46 \mathrm{~mm}
\end{aligned}
$$

22.934866
b) Determine how long his blood pressure is at 99 mm of mercury or below. Show your work. (2 marks)

$$
\begin{aligned}
& y^{2}=99 \quad \text { Ind-trace-inter } \\
& x=8.39 \quad 8.93 \text { hod } \\
& x=16.92 \quad \\
& 16.92-8.39
\end{aligned}
$$

Exemplar 2

Question 6 (a) and (b)—Relations and Functions
Mark(s): 1.5/3
(2) $\rightarrow 0.5$ mark for correct first x-value in (b)
(4) $\rightarrow 1$ mark for consistent difference in (b)

Exemplar 1

Question 8

Total: 2 marks

A student enters a maze and needs to make 4 turns. She must turn left or right at each intersection.

Determine how many different paths are possible if she makes either 1 or 2 right turns. Use a graphic organizer to show your work.

$$
\begin{aligned}
& S=\text { Start of maze } \\
& F=\text { Finish }
\end{aligned}
$$

Exemplar 1

Question 8-Probability

Mark(s): 0/2
\rightarrow no criteria met

Exemplar 2
Question 8
A student enters a maze and needs to make 4 turns. She must turn left or right at each intersection.

Determine how many different paths are possible if she makes either 1 or 2 right turns. Use a graphic organizer to show your work.

$$
p=\frac{10}{14}
$$

Exemplar 2

Question 8-Probability

$\operatorname{Mark}(\mathrm{s}): ~ 1.5 / 2$
(1) $\rightarrow 1$ mark for appropriate work
(2) $\rightarrow 1$ mark for consistent answer

PB $\rightarrow 0.5$ mark deduction for procedural error
(®) \rightarrow incorrectly states the final answer

Exemplar 1

Question 9

Students at a high school were surveyed about their use of online television services.
The survey results showed the following:

- 48% of students use Service A
- 40% of students use Service B
- the remaining students do not use any service
- no student uses both services
a) According to the survey results, is the use of online television services mutually exclusive? Justify your reasoning.
(1 mark)

$$
\begin{aligned}
& \text { No they aren't because no students } \\
& \text { use both services }
\end{aligned}
$$

b) According to the survey results, determine the odds against a student using an online television service.
(1 mark)

$$
\begin{aligned}
& 40: 100 \rightarrow \text { service } B \\
& 48: 100 \rightarrow \text { service } A
\end{aligned}
$$

Exemplar 1

Question 9—Probability

Mark(s): 0/2
\rightarrow no criteria met

Exemplar 2

Question 9

Students at a high school were surveyed about their use of online television services.
The survey results showed the following:

- 48% of students use Service A
- 40% of students use Service B
- the remaining students do not use any service
- no student uses both services
a) According to the survey results, is the use of online television services mutually exclusive? Justify your reasoning.
(l mark)

b) According to the survey results, determine the odds against a student using an online television service.
(1 mark)

Exemplar 2

Question 9—Probability

Mark(s): 0.5/2
(2) $\rightarrow 1$ mark for correct answer in (b)
(AB) $\rightarrow 0.5$ mark deduction for arithmetic error

Exemplar 1

Twenty cards numbered 11 to 30 are placed in a box.
Determine the probability of selecting one card from the box that is a multiple of 3 or a multiple of 4. Show your work.

$$
19 \text { cards }
$$

Multiple of $3: 12,15,18,21,24,27,30$
multiple of $4: 12,16,20,24,28$
12 cards multiples of 3 or 4

$$
\frac{12}{19}
$$

Exemplar 1

Question 10—Probability

Mark(s): 1/2
(1) $\rightarrow 0.5$ mark for multiples of 3
(2) $\rightarrow 0.5$ mark for multiples of 4

Exemplar 2

Question 10

Twenty cards numbered 11 to 30 are placed in a box.
Determine the probability of selecting one card from the box that is a multiple of 3 or a multiple of 4 . Show your work.

$\frac{3}{12}$	$\frac{4}{12}$
15	16
18	20
21	24
24	28

27

30

Exemplar 2

Question 10—Probability

Mark(s): 1.5/2
(1) $\rightarrow 0.5$ mark for multiples of 3
(2) $\rightarrow 0.5$ mark for multiples of 4
(4) $\rightarrow 0.5$ mark for consistent answer using 20 as the total number of outcomes

Exemplar 1

Question 11

Your school requires a group of 4 actors for a play.
a) Determine how many ways the group of 4 actors can be chosen from 23 interested students.
(1 mark)

$$
\begin{aligned}
& 23 \subset 4 \\
= & 35960 \text { mays }
\end{aligned}
$$

b) You and your best friend are 2 of the 23 interested students. Determine the probability that you both are chosen. Show your work.
(2 marks)

$$
\begin{aligned}
& \frac{\left({ }_{2} C_{2}\right)\left({ }_{22} C_{2}\right)}{{ }_{23} C_{4}} \\
& =0.64
\end{aligned}
$$

Exemplar 1

Question 11—Probability

Mark(s): 1.5/3

(1) $\rightarrow 1$ mark for correct answer in (a)
(3) $\rightarrow 1$ mark for consistent probability in (b)
(BI) $\rightarrow 0.5$ mark deduction for procedural error
(®1) \rightarrow does not include a percent sign

Exemplar 2

Question 11

Your school requires a group of 4 actors for a play.
a) Determine how many ways the group of 4 actors can be chosen from 23 interested students.
(1 mark)

b) You and your best friend are 2 of the 23 interested students. Determine the probability that you both are chosen. Show your work.
(2 marks)

$$
\frac{2}{23} \text { or } 8.69 \%
$$

Exemplar 2

Question 11—Probability

Mark(s): 0.5/3
(1) $\rightarrow 1$ mark for correct answer in (a)
(BB) $\rightarrow 0.5$ mark deduction for procedural error

Exemplar 1

Question 12

A dance studio has 9 students: 4 students are ballet dancers and 5 students are hip-hop dancers. They are arranging themselves in a row for a year-end photo.
a) Determine how many ways the dancers can be arranged for the photo if they must alternate between their type of dance. Show your work.
(2 marks)

$$
\begin{aligned}
& H B H B H B+H B+ \\
& \begin{aligned}
& x=5 \text { groups } \\
& x_{1}=4(H B, B H) \\
& x_{2}=1(H) \\
& \qquad \text { Pgroups }=5!4! \\
&=2880 \text { ways }
\end{aligned} \\
& \text { there are } 2880 \text { ways the dancers can } \\
& \text { be alternativly rearranged. }
\end{aligned}
$$

b) Determine how many ways the dancers can be arranged for the photo if the ballet dancers must all stand together. Show your work.
(2 marks)

$$
\begin{aligned}
& x=2 \text { groups } \\
& x_{1}=4 \text { students } \\
& x_{2}=5 \text { students } \quad \text { Pgroups }=21.4!5! \\
& \hline 760 \text { ways }
\end{aligned}
$$

there are 5760 ways the dancers can be arranged

Exemplar 1

Question 12-Probability

$\operatorname{Mark}(\mathrm{s}): ~ 3.5 / 4$
(1) $\rightarrow 0.5$ mark for permutation of ballet dancers in (a)
(2) $\rightarrow 0.5$ mark for permutation of hip-hop dancers in (a)
(3) $\rightarrow 1$ mark for consistent product of the permutations in (a)
(4) $\rightarrow 0.5$ mark for 4 ! in (b)
(6) $\rightarrow 1$ mark for consistent product in (b)

Exemplar 2

Question 12

Total: 4 marks
A dance studio has 9 students: 4 students are ballet dancers and 5 students are hiphop dancers. They are arranging themselves in a row for a year-end photo.
a) Determine how many ways the dancers can be arranged for the photo if they must alternate between their type of dance. Show your work.
(2 marks)

$$
5443 \leq 2 \underline{2} 112880 \text { ways }
$$

b) Determine how many ways the dancers can be arranged for the photo if the ballet dancers must all stand together. Show your work.
(2 marks)
$4!54!321=2880$ ways

Exemplar 2

Question 12-Probability

$\operatorname{Mark}(\mathrm{s}): ~ 3.5 / 4$
(1) $\rightarrow 0.5$ mark for permutation of ballet dancers in (a)
(2) $\rightarrow 0.5$ mark for permutation of hip-hop dancers in (a)
(3) $\rightarrow 1$ mark for consistent product of the permutations in (a)
(4) $\rightarrow 0.5$ mark for 4 ! in (b)
(6) $\rightarrow 1$ mark for consistent product in (b)

Exemplar 1
Question 13
Kyla wants to buy a cup of tea for $\$ 2$. She has the following coins in her pocket:

- 2 identical toonies ($\$ 2$ coin)
- 6 identical loonies ($\$ 1$ coin)
- 3 identical quarters (25ϕ coin)
a) Determine the probability of randomly drawing 2 loonies, one after the other, if the first coin is not replaced in her pocket before drawing the second coin. Show your work.
(2 marks)

b) Once she has paid for her tea using the 2 loonies, Kyla decides to stack all of the remaining coins in a tower. Determine the number of different ways she can stack the coins. Show your work.
(2 marks)

Exemplar 1

Question 13-Probability

Mark(s): 2.5/4
(1) $\rightarrow 0.5$ mark for demonstrating the dependency of loonies in (a)
(2) $\rightarrow 0.5$ mark for demonstrating the dependency of the total number of coins in (a)
(3) $\rightarrow 1$ mark for consistent product in (a)
(4) $\rightarrow 0.5$ mark for 9 ! in (b)
$\boldsymbol{\theta} \rightarrow 0.5$ mark for consistent quotient in (b)
PB $\rightarrow 0.5$ mark deduction for procedural error
(6) \rightarrow rounds too soon

Exemplar 2
Question 13
Kyla wants to buy a cup of tea for $\$ 2$. She has the following coins in her pocket:

- 2 identical monies ($\$ 2$ coin)
- 6 identical loonies ($\$ 1$ coin)
- 3 identical quarters (25 c coin)
a) Determine the probability f randomly drawing 2 loonies, one after the other, if the first coin is not replaced int her pocket before drawing the second coin. Show your work.

b) Once she has paid for her tea using the 2 loonies, Kyla decides to stack all of the remaining coins in a tower. Determine the number of different ways she can stack the coins. Show your work. loonies loonies quarters
(2 marks)
$2+4+3=9 \quad 2$

Applied Mathematics: Local Marking Training Workbook (January 2020)

Exemplar 2

Question 13-Probability

Mark(s): 3.5/4
(1) $\rightarrow 0.5$ mark for demonstrating the dependency of loonies in (a)
(2) $\rightarrow 0.5$ mark for demonstrating the dependency of the total number of coins in (a)
(3) $\rightarrow 1$ mark for consistent product in (a)
(4) $\rightarrow 0.5$ mark for 9 ! in (b)
© $\rightarrow 0.5$ mark for $4!$ in (b)
(6) $\rightarrow 0.5$ mark for $2!3$! in (b)

Exemplar 1
Question 15

$=52.36 \mathrm{~cm}^{3}$
$7000 \mathrm{~cm}^{3}$
$52.36 \mathrm{~cm}^{3}$
$=133.69$ lades
of soup

Exemplar 1

Question 15-Design and Measurement

$\operatorname{Mark}(\mathrm{s}): ~ 1.5 / 2$
(1) $\rightarrow 0.5$ mark for correct substitution of radius in formula
(2) $\rightarrow 0.5$ mark for consistent volume of ladle
(3) $\rightarrow 0.5$ mark for dividing volume of pot by volume of ladle
(4) $\rightarrow 0.5$ mark for consistent answer
(8B) $\rightarrow 0.5$ mark deduction for procedural error

Exemplar 2

Question 15

Sarah has prepared $7000 \mathrm{~cm}^{3}$ of soup in a pot. She uses a ladle, in the shape of a hemisphere, to serve the soup into bowls. The ladle has a diameter of 10 cm .

Determine the number of full ladles of soup that she can serve. Show your work.

$$
\begin{aligned}
& \text { FIND } v \text { of } \theta \quad \frac{7000}{52.36}=133 \text { full ladles } \\
& \begin{aligned}
v & =1 / 2\left(\frac{4 \pi r^{2}}{3}\right) \\
& =1 / 2\left(\frac{4 \pi 5^{2}}{3}\right) \\
& =52.36 \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

Exemplar 2

Question 15-Design and Measurement

Mark(s): 1/2
(3) $\rightarrow 0.5$ mark for dividing volume of pot by volume of ladle
(4) $\rightarrow 0.5$ mark for consistent answer

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Exemplar 1

Question 16

Total: 6 marks

Nashida wants to build an outdoor kitchen.

18 ft .
a) Determine the number of patio stones Nashida needs. Show your work.
(2 marks)
$A=\operatorname{Lw} \quad A=(24)(a) \quad A=216)+=432 \mathrm{ft}^{2}$
$A=1$ w $\quad A=(18)(12) \quad A=216$

$432 \mathrm{ft}^{2}=5184 \mathrm{in}^{2}$
$288 \times 3=\$ 864$

Nashida must buy a grill, a countertop, and a patio set for the outdoor kitchen. She has the following options:

Grill		Countertop		Patio Set	
Propane	$\$ 1400.00$	Granite	$\$ 2700.00$	Basic	$\$ 600.00$
Pellet	$\$ 3000.00$	Soapstone	$\$ 3600.00$	Elegant	$\$ 1000.00$

She also plans to buy three of the following items:

Side Burner	Fridge		Cabinet		Sink		Warming Drawer		
Single	$\$ 400.00$	Small	$\$ 800.00$	30 -inch	$\$ 700.00$	Single	$\$ 350.00$	Small	$\$ 800.00$
Double	$\$ 650.00$	Large	$\$ 1100.00$	42 -inch	$\$ 1250.00$	Double	$\$ 500.00$	Large	$\$ 1300.00$

Exemplar 1 (continued)
b) Nashida can spend a maximum of $\$ 11000.00$, taxes included. Calculate the total cost, plus GST and PST, of the patio stones and components of the outdoor kitchen. Show your work. (Note: GST $=5 \%, \mathrm{PST}=7 \%$)
(2 marks)

$$
8614.00(0.05)(0.07)=30.15
$$

c) Nashida is financing the outdoor kitchen with a financial institution that gives her an interest rate of 5.00%, compounded monthly. She wants to make $\$ 300.00$ monthly payments on the loan. Calculate how many payments it will take Nashida to pay off the loan. Show your work.
(2 marks)

$$
\begin{aligned}
& N=12=27.3 \rightarrow 28 \text { months } \\
& N=5 \\
& P V=0 \\
& P M T=-300 \\
& F V=8644.15 \\
& P I Y=12 \\
& C I Y=12
\end{aligned}
$$

Exemplar 1

Question 16-Design and Measurement \& Financial Mathematics

Mark(s): 3/6
(1) $\rightarrow 0.5$ mark for correct area of layout in (a)
(4) $\rightarrow 0.5$ mark for consistent number of patio stones in (a)
$\boldsymbol{5} \rightarrow 0.5$ mark for indicating required components and costs in (b)
$\boldsymbol{7} \rightarrow 0.5$ mark for consistent subtotal including all components in (b)
(1) $\rightarrow 1$ mark for consistent answer in (c)

Exemplar 2

Question 16

Total: 6 marks
Nashida wants to build an outdoor kitchen.

a) Determine the number of patio stones Nashida needs. Show your work.
(2 marks)
on graph paper

184 stones are needed

Nashida must buy a grill, a countertop, and a patio set for the outdoor kitchen. She has the following options:

Grill		Countertop		Patio Set	
Propane	$\$ 1400.00$	Granite	$\$ 2700.00$	Basic	$\$ 600.00$
Pellet	$\$ 3000.00$	Soapstone	$\$ 3600.00$	Elegant	$\$ 1000.00$

She also plans to buy three of the following items:

Side Burner	Fridge		Cabinet		Sink		Warming Drawer		
Single	$\$ 400.00$	Small	$\$ 800.00$	30 -inch	$\$ 700.00$	Single	$\$ 350.00$	Small	$\$ 800.00$
Double	$\$ 650.00$	Large	$\$ 1100.00$	42 -inch	$\$ 1250.00$	Double	$\$ 500.00$	Large	$\$ 1300.00$

Exemplar 2 (continued)

						K			\square		-4	पF	± 4					\rightarrow				
				K			1										1					
							1															
							1										,		att			
							1										1					
							-										4	-1				
		2																				
	$2 \times$	0																				
						$12+$																
			y														1					
													$F+$									
					1.5																	
									1	\square												
											fT											
									-1			ton	es	$\times 2$		65	ront	es				
										+4												
									17	24	$=$		14	$3+2$								
											$f+2$			68	$5+6$	Sne	5					
				1.4	$\frac{1}{5 x}$	1.5	$=3$	$f t^{2}$														
									16	661	$+16$	$=$	14	45	ton	res		re		eed	end	

Exemplar 2 (continued)

b) Nashida can spend a maximum of $\$ 11000.00$, taxes included. Calculate the total cost, plus GST and PST, of the patio stones and components of the outdoor kitchen. Show your work. (Note: $\mathrm{GST}=5 \%, \mathrm{PST}=7 \%$)
(2 marks)

$=8350 * 0.07$
$=\$ 584.50$
GST:.8350*0.05
$=417.50$
c) Nashida is financing the outdoor kitchen with a financial institution that gives her an interest rate of 5.00%, compounded monthly. She wants to make $\$ 300.00$ monthly payments on the loan. Calculate how many payments it will take Nashida to pay off the loan. Show your work.
(2 marks)

c) $2.79 \times 12=33.48$
she would have
to make 33.48
payment's to pay off the
loan.

Exemplar 2

Question 16-Design and Measurement \& Financial Mathematics

Mark(s): 3.5/6
(2) $\rightarrow 0.5$ mark for correct area of one patio stone in (a)
(3) $\rightarrow 0.5$ mark for correct unit conversion in (a)
$\boldsymbol{5} \rightarrow 0.5$ mark for indicating required components and costs in (b)
$8 \rightarrow 0.5$ mark for consistent total cost, including taxes, less than $\$ 11000.00$ in (b)
$\boldsymbol{9} \rightarrow 1$ mark for appropriate work in (c)
(10) $\rightarrow 1$ mark for consistent answer in (c)
(BE) $\rightarrow 0.5$ mark deduction for procedural error
(9) \rightarrow does not use whole units in contextual questions involving discrete data

Exemplar 1
Question 17
Kazoo is looking for a house. He has the following options:
Option 1: He can buy a house with a monthly mortgage payment of $\$ 1150.00$ amortized over 25 years.

Option 2: He can rent a similar house for $\$ 1150.00$ per month.
State which option Kazoo should choose. Provide one reason for your choice.
Option 2: \rightarrow he could get aut of the rent if he didnt want to liv there

Exemplar 1

Question 17-Financial Mathematics

Mark(s): 0.5/1
(1) $\rightarrow 1$ mark for appropriate reason
(L) $\rightarrow 0.5$ mark deduction for lack of clarity

Exemplar 2
Question 17
Kazoo is looking for a house. He has the following options:
Option 1: He can buy a house with a monthly mortgage payment of $\$ 1150.00$ amortized over 25 years.

Option 2: He can rent a similar house for $\$ 1150.00$ per month.
State which option Kazoo should choose. Provide one reason for your choice.

- Kazoo should choose Option I because if he buys house and continues to pay for it monthly he would obtain a good credit

Exemplar 2

Question 17-Financial Mathematics

Mark(s): 0/1
\rightarrow no criteria met

Exemplar 1

Question 18

Total: 6 marks
Ham and Sylvie each had \$10 000.00 to invest.
a) Ham invested $\$ 10000.00$ in a mutual fund at an interest rate of 6.00%, compounded monthly. Determine the value of the mutual fund at the end of the first year. Show your work.
(2 marks)

b) Sylvie invested $\$ 10000.00$ in a guaranteed investment certificate (GIC) with interest compounded semi-annually. The value of the GIC was $\$ 11261.62$ at the end of the third year. Determine the interest rate for the GIC. Show your work.
(2 marks)
$N=3$

$\mathrm{R}^{2}=-10000$ PM $=0.8$
PM $=1$
CM $=2$

c) Using the Rule of 72, determine approximately how much longer it will take for Sylvie's GIC to reach a value of $\$ 40000.00$ compared to Ham's mutual fund. Show your work.
(2 marks)

years $=\frac{72}{3.9}$

$$
=1846.15
$$

Exemplar 1

Question 18-Financial Mathematics

Mark(s): 4/6
(1) $\rightarrow 1$ mark for appropriate work in (a)
(2) $\rightarrow 1$ mark for consistent answer in (a)
(3) $\rightarrow 1$ mark for appropriate work in (b)
(4) $\rightarrow 1$ mark for consistent answer in (b)
© $\rightarrow 0.5$ mark for correctly using Rule of 72 on GIC in (c)
PB $\rightarrow 0.5$ mark deduction for procedural error
(E5) \rightarrow does not include the dollar sign for monetary values
(巨6) \rightarrow rounds incorrectly

Exemplar 2
Question 18
Ham and Sylvie each had \$10 000.00 to invest.
a) Ham invested $\$ 10000.00$ in a mutual fund at an interest rate of 6.00%, compounded monthly. Determine the value of the mutual fund at the end of the first year. Show your work.

b) Sylvie invested $\$ 10000.00$ in a guaranteed investment certificate (GIC) with interest compounded semi-annually. The value of the GIC was $\$ 11261.62$ at the end of the third year. Determine the interest rate for the GIC. Show your work.
(2 marks)

$$
N: 3
$$

$$
I: ? \rightarrow 3.99
$$

$$
\rightarrow 4,00^{20}
$$

$$
p u:-10000
$$

DAT: O

$$
F U=11261.62
$$

$$
\text { ply: } 1
$$

$$
\text { cry: } 2 ?
$$

c) Using the Rule of $\overrightarrow{7} 2$, determine approximately how much longer it will take for Sylvie's GIC to reach a value of $\$ 40000.00$ compared to Ham's mutual fund. Show your work.

$$
\begin{aligned}
& \text { (2 marks) flam } \\
& N^{\prime} ? \rightarrow 23,16 \\
& I: 6 \\
& p^{V}:-10000 \\
& p^{m T}: 0 \\
& F U: 40000 \\
& p / y: 1 \\
& c / y: 12
\end{aligned}
$$

Sylive

$$
N: 35.00
$$

$$
I: 3.99
$$

$$
\text { Pu: }-10000
$$

$$
\text { mT: } 0
$$

$$
\text { FO: } 40 \operatorname{cose}
$$

$$
\text { ply } 1
$$

$$
\operatorname{ciy}: 2
$$

Exemplar 2

Question 18-Financial Mathematics

Mark(s): 5/6
(1) $\rightarrow 1$ mark for appropriate work in (a)
(2) $\rightarrow 1$ mark for consistent answer in (a)
(3) $\rightarrow 1$ mark for appropriate work in (b)
(4) $\rightarrow 1$ mark for consistent answer in (b)
$\boldsymbol{\theta} \rightarrow 0.5$ mark for doubling twice in (c)
$8 \rightarrow 0.5$ mark for consistent subtraction in (c)
(Es) \rightarrow does not include the dollar sign for monetary values

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

Exemplar 1

Question 19

Simba wants to purchase a bed for $\$ 2200.00$ (taxes included). The store offers him a promotion of 0% interest with no payments for one year. If Simba does not pay the amount in full within one year, interest will be charged from the date of purchase at an interest rate of 19.99%, compounded monthly.
a) If Simba does not make any payments during the first year, calculate the amount the store will bill him one year after the date of purchase. Show your work.
(2 marks)

b) If Simba makes monthly payments over the second year to pay off the amount calculated in (a), determine his monthly payment. Show your work.
(2 marks)

Exemplar 1 (continued)
c) Using your answer in (b), calculate the interest Simba would pay over the two-year period. Show your work.
(1.5 marks)

$$
\begin{aligned}
& 207.18 \times 12=2486.16 \\
& 2236.65-2486.16=249.51
\end{aligned}
$$

d) Give one reason why Simba would buy his bed using the promotion.
(0.5 mark)

$$
\begin{aligned}
& \text { if he is in desfreet need of } \\
& \text { a bed }
\end{aligned}
$$

Exemplar 1

Question 19—Financial Mathematics

$\operatorname{Mark}(\mathbf{s}): \mathbf{3 . 5 / 6}$
(2) $\rightarrow 1$ mark for consistent answer in (a)

3 $\rightarrow 1$ mark for appropriate work in (b)
(4) $\rightarrow 1$ mark for consistent answer in (b)
© $\rightarrow 0.5$ mark for the total amount paid during the second year in (c)

Exemplar 2

Question 19

Total: 6 marks

Simba wants to purchase a bed for $\$ 2200.00$ (taxes included). The store offers him a promotion of 0% interest with no payments for one year. If Simba does not pay the amount in full within one year, interest will be charged from the date of purchase at an interest rate of 19.99%, compounded monthly.
a) If Simba does not make any payments during the first year, calculate the amount the store will bill him one year after the date of purchase. Show your work.
(2 marks)

$$
\text { - The bill will be } \$ 2682.40
$$

b) If Simba makes monthly payments over the second year to pay off the amount calculated in (a), determine his monthly payment. Show your work.
(2 marks)
-monthly payments of 248.58 .

Exemplar 2 (continued)

Exemplar 2 (continued)
c) Using your answer in (b), calculate the interest Simba would pay over the two-year period. Show your work.
(1.5 marks)

$$
\begin{array}{r}
\text { first year } \$ 482.40 \\
\text { second your \$299.13 } \\
\$ \$ 781.53
\end{array}
$$

d) Give one reason why Simba would buy his bed using the promotion.
(0.5 mark)

Because he can save up his money during the year and then pay it off before interst aplise

Exemplar 2

Question 19—Financial Mathematics

Mark(s): 6/6
(1) $\rightarrow 1$ mark for appropriate work in (a)
(2) $\rightarrow 1$ mark for consistent answer in (a)
(3) $\rightarrow 1$ mark for appropriate work in (b)
(4) $\rightarrow 1$ mark for consistent answer in (b)
© $\rightarrow 0.5$ mark for the total amount paid during the second year in (c)
© $\rightarrow 0.5$ mark for considering the initial cost of the bed in (c)
$\boldsymbol{0} \rightarrow 0.5$ mark for consistent answer in (c)
$8 \rightarrow 0.5$ mark for appropriate reason in (d)
(B3) \rightarrow makes a transcription error (inaccurate transferring of information)
(巨5) \rightarrow does not include the dollar sign for monetary values

Exemplar 1

Question 20
Total: 3 marks
The Ramilo family moved to The Pas. They bought a house with a purchase price of $\$ 229000.00$ and made a down payment of $\$ 20000.00$. Their mortgage has an interest rate of 3.15%, compounded semi-annually, and is amortized over 25 years.
a) Calculate their monthly mortgage payment. Show your work.
(2 marks)

$$
\begin{aligned}
& N=25 \times 2 \\
& I=3.15 \\
& P V=209000 \\
& \text { m PT }=\$ 6070.89 \text { is the monthly mortgage payment } \\
& F=0 \\
& P l y=2 \\
& C l y=2
\end{aligned}
$$

b) Calculate the balance owing on the mortgage after 10 years if they have been making regular monthly payments.
(1 mark)

$$
\begin{aligned}
& \text { Bal }(y r s \times p / 4) \\
& \text { Bal(} 10 \times 2 \text {) }=\$ 144259.23 \text { owing after } 10 y r s .
\end{aligned}
$$

Exemplar 1

Question 20-Financial Mathematics

Mark(s): 2/3
(2) $\rightarrow 1$ mark for consistent answer in (a)
(3) $\rightarrow 1$ mark for consistent answer in (b)

Exemplar 2

The Ramilo family moved to The Pas. They bought a house with a purchase price of $\$ 229000.00$ and made a down payment of $\$ 20000.00$. Their mortgage has an interest rate of 3.15%, compounded semi-annually, and is amortized over 25 years.
a) Calculate their monthly mortgage payment. Show your work.
(2 marks)

$$
\begin{aligned}
& N=25 \times 12=300 \\
& I=3.15 \\
& P_{V}=229000 \quad \$ 1101.43 \text { a month } \\
& P M T=-1101.43 \quad \\
& F V=0 \\
& P / Y=12 \\
& C / Y=2
\end{aligned}
$$

b) Calculate the balance owing on the mortgage after 10 years if they have been making regular monthly payments.
(l mark)

$$
\begin{aligned}
& N=10 \times 12 \\
& I=3.1 \mathrm{~s} \\
& P_{V}=\text { solve } \\
& P_{M}=-1101.43 \\
& F_{V}=0 \\
& P_{C Y}=12 \\
& C / Y=2
\end{aligned}
$$

$\$ 113363.16$ is the remaining batalace

Exemplar 2

Question 20-Financial Mathematics

Mark(s): 1/3
(2) $\rightarrow 1$ mark for consistent answer in (a)

Exemplar 1

Question 21

In 2009 , the value of a cottage was $\$ 325000.00$. In 2019, the same cottage had a value of $\underbrace{}_{\$ 425000.00 .}$

Determine the average annual appreciation rate. Show your work.

Exemplar 1

Question 21—Financial Mathematics

Mark(s): 0/2
\rightarrow no criteria met

Exemplar 2

In 2009, the value of a cottage was $\$ 325000.00$. In 2019, the same cottage had a value of $\$ 425000.00$.

Determine the average annual appreciation rate. Show your work.

$$
\left.\begin{array}{l}
2009-325000.00 \\
2019-425000^{.00} \\
\\
\\
\\
N=10 \% \\
\\
I
\end{array}=10.7 .72 \%\right)
$$

*

$$
\begin{aligned}
& 7.6 \% \\
& f v=-676,092 \\
& .765 .2 \\
& f v=539,561 \\
& 3.1 \% F v=441,632
\end{aligned}
$$

Exemplar 2

Question 21—Financial Mathematics

Mark(s): 2/2
(1) $\rightarrow 1$ mark for appropriate work
(2) $\rightarrow 1$ mark for consistent answer
(®) \rightarrow does not include a percent sign

Exemplar 1

Question 24

There are 7 students in Ms. Sanduk's class. She knows that some of her students have part-time jobs and some of her students participate in extra-curricular activities. However, 2 students neither have a part-time job nor participate in extra-curricular activities.

$$
\begin{aligned}
& A=\{\text { students with part-time jobs }\} \\
& B=\{\text { students who participate in extra-curricular activities }\} \\
& n(A \cap B)=1
\end{aligned}
$$

Fill in the blank diagrams below to show two possibilities in this situation.

Exemplar 1

Question 24-Logical Reasoning

Mark(s): 2/2
(1) $\rightarrow 1$ mark for first correct diagram
(2) $\rightarrow 1$ mark for second correct diagram

Exemplar 2

Question 24

There are 7 students in Ms. Sanduk's class. She knows that some of her students have part-time jobs and some of her students participate in extra-curricular activities. However, 2 students neither have a part-time job nor participate in extra-curricular activities.

$$
\begin{aligned}
& A=\{\text { students with part-time jobs }\} \\
& B=\{\text { students who participate in extra-curricular activities }\} \\
& n(A \cap B)=1
\end{aligned}
$$

Fill in the blank diagrams below to show two possibilities in this situation.

Exemplar 2

Question 24-Logical Reasoning

Mark(s): 1/2
(1) $\rightarrow 1$ mark for first correct diagram

Exemplar 1

Question 25

Total: 2 marks
Complete the truth table, including the missing symbol in the box, based on the following logical statement:

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \square \boldsymbol{q}$
True	True	True
True	False	False
False	True	False
False	False	True

Exemplar 1

Question 25-Logical Reasoning

Mark(s): 1/2
(2) $\rightarrow 1$ mark for consistent values in the third column

Exemplar 2

Question 25

Total: 2 marks
Complete the truth table, including the missing symbol in the box, based on the following logical statement:

A number is even if and only if a number is a multiple of two.

even	nultiple of2	
\boldsymbol{p}	q	$p \square=$
True	True	tue
True	False	false
False	True	fulse
False	False	frue

Exemplar 2

Question 25-Logical Reasoning

Mark(s): 1/2
(2) $\rightarrow 1$ mark for consistent values in the third column

Exemplar 1
Question 26
To form a group, 4 students are randomly chosen from 7 students. Jean writes the following conditional statement:
"If all 7 students have an equal chance of being chosen, then there are 840 different groups that could be formed."
a) Write the contrapositive of the conditional statement.
(1 mark)
If there are not 840 different group that could be formed, all 7 students will not have equal chance of being chosen
b) Is the original conditional statement true? Justify your answer.
(1 mark)
False
There can be an equal chance of being chosen, it doesn't have to be shul exact.

Exemplar 1

Question 26-Logical Reasoning

Mark(s): 0.5/2
(2) $\rightarrow 0.5$ mark for correct contrapositive in (a)

Exemplar 2
Question 26
To form a group, 4 students are randomly chosen from 7 students. Jean writes the following conditional statement:
"If all 7 students have an equal chance of being chosen, then there are 840 different groups that could be formed."
a) Write the contrapositive of the conditional statement.
(1 mark)
There are not 840 different groups that can be formed if all 7 studen's do not have an equal chance of being chosen
b) Is the original conditional statement true? Justify your answer.
(1 mark)
no because $7^{c}=35$ different groups can be formed.

Exemplar 2

Question 26-Logical Reasoning

Mark(s): 1/2
(3) $\rightarrow 1$ mark for correct justification in (b)

