MATH 210B: HOMEWORK 6

Problem 55. Let K / F be a finite Galois extension with group G. Let M be an intermediate extension corresponding to a subgroup $H<G$.
(a) Show that G acts on the set $\operatorname{Hom}_{F}(M, K)$, which is in bijection with $\operatorname{Hom}_{F}(M, \bar{F})$, for any fixed algebraic closure \bar{F}.
(b) Show that this G-set is isomorphic to G / H.
(c) When H is normal in G, why does this generalise to the Galois correspondence $G / H \cong \operatorname{Gal}(M / F)$?
Problem 56. Consider the field $A=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, polynomials over the complex numbers in n independent variables. The symmetric group S_{n} acts on A by permuting the variables. Let T be a variable independent from X_{i}. The polynomial

$$
F(T)=\left(T-X_{1}\right) \cdots\left(T-X_{n}\right)
$$

is invariant under the action of S_{n}.
(a) Calculate the coefficient of T^{d} in $F(T)$. These are denoted s_{d} and called the elementary symmetric polynomials in n variables.
(b) Prove that s_{d} is a homogeneous polynomial of degree d.

Problem 57. We define the weight of a monomial $T_{1}^{v_{1}} \cdots T_{n}^{v_{n}}$ is the sum $\sum i \cdot v_{i}$. The weight of a polynomial is defined to be the maximum weight of its monomials.

Suppose that $f(X) \in A$ is fixed by S_{n} and $\operatorname{deg} f=d$. Prove that there exists a polynomial $g\left(T_{1}, \ldots, T_{n}\right)$ of weight $\leq d$ such that

$$
f(X)=g\left(s_{1}, \ldots, s_{n}\right)
$$

Further, prove that if f is homogeneous of degree d, then every monomial in g is of weight d.

Problem 58.

(a) Write the symmetric polynomial $X_{1}^{2}+\cdots+X_{n}^{2} \in A$ in terms of the elementary symmetric polynomials.
(b) Write the symmetric polynomial $X_{1}^{3}+X_{2}^{3}+X_{3}^{3} \in \mathbb{C}\left[X_{1}, X_{2}, X_{3}\right]$ in terms of the elementary symmetric polynomials.

Problem 59. Prove that the elementary symmetric polynomials are algebraically independent over \mathbb{C}. That is, prove that there exists no polynomial $p(T) \in \mathbb{C}\left[T_{1}, \ldots, T_{n}\right]$ such that $p\left(s_{1}, \ldots, s_{n}\right)=0$.

Problem 60. Consider the field of rational functions $K=\mathbb{C}\left(X_{1}, \ldots, X_{n}\right)$.
(a) Prove that $S_{n} \subset \operatorname{Aut}(K)$, where again the symmetric group acts by permuting the variables.
(b) Prove that the fixed field of S_{n} is $\mathbb{C}\left(s_{1}, \ldots, s_{n}\right)$, and that $K / \mathbb{C}\left(s_{1}, \ldots, s_{n}\right)$ is a Galois extension.

Problem 61.

(a) Prove that there exists a Galois extension K / \mathbb{Q} with Galois group $\mathbb{Z} / p^{k} \mathbb{Z}$ for any prime p and any $k \geq 1$.
(b) Let A be a finite abelian group. Prove that there exists a Galois extension K / \mathbb{Q} such that $\operatorname{Gal}(K / \mathbb{Q}) \cong A$. Hint: for any $n>1$, there exists infinitely many primes p such that $p \equiv 1 \bmod n$.

Problem 62. Show that the discriminant of the polynomial $T^{2}+b T+c$ is $\Delta=b^{2}-4 c$.
Problem 63. Show that the discriminant of the polynomial $T^{3}+p T+q$ is $\Delta=$ $-4 p^{3}-27 q^{2}$.
Problem 64. Reprove that the Galois group of $T^{4}+7$ in $\mathbb{Q}[T]$ is D_{8}, the dihedral group of the square. Describe all subfields of its splitting field using the Galois correspondence.

Problem 65. Let p be an odd prime.
(a) Calculate the Galois group of $T^{p}-1$ over \mathbb{Q}, and prove that its splitting field K cannot be embedded in \mathbb{R}.
(b) Find an element $\alpha \in K$ such that $\mathbb{Q}(\alpha)$ is the subfield of K fixed by complex conjugation.

