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PREFACE

karmany eva dhikaras te; ma phalesu kadachana; ma karmaphalahetur bhur; ma
te sango stv akarmani.

Your right is to work only; but never to the fruits thereof; may you not be
motivated by the fruits of actions; nor let your attachment to be towards inaction.
— Bhagavad Gita

We have been witnessing tremendous growth in the software industry over the past
25 years. Software applications have proliferated from the original data processing
and scientific computing domains into our daily lives in such a way that we do not
realize that some kind of software executes when we do even something ordinary,
such as making a phone call, starting a car, turning on a microwave oven, and
making a debit card payment. The processes for producing software must meet two
broad challenges. First, the processes must produce low-cost software in a short
time so that corporations can stay competitive. Second, the processes must produce
usable, dependable, and safe software; these attributes are commonly known as
quality attributes. Software quality impacts a number of important factors in our
daily lives, such as economy, personal and national security, health, and safety.

Twenty-five years ago, testing accounted for about 50% of the total time
and more than 50% of the total money expended in a software development
project—and, the same is still true today. Those days the software industry was a
much smaller one, and academia offered a single, comprehensive course entitled
Software Engineering to educate undergraduate students in the nuts and bolts of
software development. Although software testing has been a part of the classical
software engineering literature for decades, the subject is seldom incorporated into
the mainstream undergraduate curriculum. A few universities have started offering
an option in software engineering comprising three specialized courses, namely,
Requirements Specification, Software Design, and Testing and Quality Assurance.
In addition, some universities have introduced full undergraduate and graduate
degree programs in software engineering.

Considering the impact of software quality, or the lack thereof, we observe
that software testing education has not received its due place. Ideally, research
should lead to the development of tools and methodologies to produce low-cost,
high-quality software, and students should be educated in the testing fundamentals.
In other words, software testing research should not be solely academic in nature
but must strive to be practical for industry consumers. However, in practice, there

xvii
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is a large gap between the testing skills needed in the industry and what are taught
and researched in the universities.

Our goal is to provide the students and the teachers with a set of well-rounded
educational materials covering the fundamental developments in testing theory and
common testing practices in the industry. We intend to provide the students with the
“big picture” of testing and quality assurance, because software quality concepts are
quite broad. There are different kinds of software systems with their own intricate
characteristics. We have not tried to specifically address their testing challenges.
Instead, we have presented testing theory and practice as broad stepping stones
which will enable the students to understand and develop testing practices for
more complex systems.

We decided to write this book based on our teaching and industrial experi-
ences in software testing and quality assurance. For the past 15 years, Sagar has
been teaching software engineering and software testing on a regular basis, whereas
Piyu has been performing hands-on testing and managing test groups for testing
routers, switches, wireless data networks, storage networks, and intrusion preven-
tion appliances. Our experiences have helped us in selecting and structuring the
contents of this book to make it suitable as a textbook.

Who Should Read This Book?

We have written this book to introduce students and software professionals to the
fundamental ideas in testing theory, testing techniques, testing practices, and quality
assurance. Undergraduate students in software engineering, computer science, and
computer engineering with no prior experience in the software industry will be
introduced to the subject matter in a step-by-step manner. Practitioners too will
benefit from the structured presentation and comprehensive nature of the materials.
Graduate students can use the book as a reference resource. After reading the whole
book, the reader will have a thorough understanding of the following topics:

¢ Fundamentals of testing theory and concepts

o Practices that support the production of quality software

o Software testing techniques

o Life-cycle models of requirements, defects, test cases, and test results

e Process models for unit, integration, system, and acceptance testing

¢ Building test teams, including recruiting and retaining test engineers

¢ Quality models, capability maturity model, testing maturity model, and test
process improvement model

How Should This Book be Read?

The purpose of this book is to teach how to do software testing. We present some
essential background material in Chapter 1 and save the enunciation of software
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quality questions to a later part of the book. It is difficult to intelligently discuss for
beginners what software quality means until one has a firm sense of what software
testing does. However, practitioners with much testing experience can jump to
Chapter 17, entitled “Software Quality,” immediately after Chapter 1.

There are three different ways to read this book depending upon someone’s
interest. First, those who are exclusively interested in software testing concepts and
want to apply the ideas should read Chapter 1 (“Basic Concepts and Preliminaries”),
Chapter 3 (“Unit Testing”), Chapter 7 (“System Integration Testing””), and Chapters
8—14, related to system-level testing. Second, test managers interested in improving
the test effectiveness of their teams can read Chapters 1, 3, 7, 8—14, 16 (“Test
Team Organization”), 17 (“Software Quality”), and 18 (“Maturity Models”). Third,
beginners should read the book from cover to cover.

Notes for Instructors

The book can be used as a text in an introductory course in software testing and
quality assurance. One of the authors used the contents of this book in an under-
graduate course entitled Software Testing and Quality Assurance for several years
at the University of Waterloo. An introductory course in software testing can cover
selected sections from most of the chapters except Chapter 16. For a course with
more emphasis on testing techniques than on processes, we recommend to choose
Chapters 1 (“Basic Concepts and Preliminaries”) to 15 (“Software Reliability”).
When used as a supplementary text in a software engineering course, selected por-
tions from the following chapters can help students imbibe the essential concepts
in software testing:

e Chapter 1: Basic Concepts and Preliminaries
Chapter 3: Unit Testing
Chapter 7: System Integration Testing

Chapter 8: System Test Category

Chapter 14: Acceptance Testing

Supplementary materials for instructors are available at the following Wiley web-
site: http:/www.wiley.com/sagar.

Acknowledgments

In preparing this book, we received much support from many people, including the
publisher, our family members, and our friends and colleagues. The support has
been in many different forms. First, we would like to thank our editors, namely,
Anastasia Wasko, Val Moliere, Whitney A. Lesch, Paul Petralia, and Danielle
Lacourciere who gave us much professional guidance and patiently answered our
various queries. Our friend Dr. Alok Patnaik read the whole draft and made numer-
ous suggestions to improve the presentation quality of the book; we thank him for



XX  PREFACE

all his effort and encouragement. The second author, Piyu Tripathy, would like to
thank his former colleagues at Nortel Networks, Cisco Systems, and Airvana Inc.,
and present colleagues at NEC Laboratories America.

Finally, the support of our parents, parents-in-law, and partners deserve a
special mention. I, Piyu Tripathy, would like to thank my dear wife Leena, who
has taken many household and family duties off my hands to give me time that I
needed to write this book. And I, Sagar Naik, would like to thank my loving wife
Alaka for her invaluable support and for always being there for me. I would also
like to thank my charming daughters, Monisha and Sameeksha, and exciting son,
Siddharth, for their understanding while I am writing this book. I am grateful to
my elder brother, Gajapati Naik, for all his support. We are very pleased that now
we have more time for our families and friends.

Kshirasagar Naik
University of Waterloo
Waterloo

Priyadarshi Tripathy
NEC Laboratories America, Inc.
Princeton



LIST OF FIGURES

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
22
23

2.4

3.1
3.2
33
34
35
3.6

4.1
42
43
4.4

4.5
4.6

4.7
4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

Shewhart cycle 2
Ishikawa diagram 4
Examples of basic test cases 1
Example of a test case with a sequence of < input, expected outcome > 12
Subset of the input domain exercising a subset of the program behavior 14
Different activities in program testing 14
Development and testing phases in the V model 16
Regression testing at different software testing levels. (From ref. 41.

© 2005 John Wiley & Sons.) 17
Executing a program with a subset of the input domain 32
Example of inappropriate path selection 35
Different ways of comparing power of test methods: (a) produces all test cases
produced by another method; (b) test sets have common elements. 43
Context of applying test adequacy 44
Steps in the code review process 55
Dynamic unit test environment 63
Test-first process in XP. (From ref. 24. © 2005 IEEE.) 72
Sample pseudocode for performing unit testing 73
The assertTrue() assertion throws an exception 75
Example test suite 76
Process of generating test input data for control flow testing 90
Symbols in a CFG 91
Function to open three files 91
High-level CFG representation of openfiles(). The three nodes are numbered

1, 2, and 3. 92

Detailed CFG representation of openfiles(). The numbers 1-21 are the nodes 93
Function to compute average of selected integers in an array. This program
is an adaptation of “Figure 2. A sample program” in ref. 10. (With permission

from the Australian Computer Society.) 9%
A CFG representation of ReturnAverage(). Numbers 1-13 are the nodes. 95
Dashed arrows represent the branches not covered by statement covering in

Table 4.4 99
Partial CFG with (a) OR operation and (b) AND operations 100
Example of a path from Figure 4.7 102
Path predicate for path in Figure 4.10 102
Method in Java to explain symbolic substitution [11] 103
Path predicate expression for path in Figure 4.10 105
Another example of path from Figure 4.7 105
Path predicate expression for path shown in Figure 4.14 106
Input data satisfying constraints of Figure 4.13 106

xxi



XXil  LIST OF FIGURES

4.17  Binary search routine 111
5.1 Sequence of computations showing data flow anomaly 113
5.2 State transition diagram of a program variable. (From ref. 2. © 1979 IEEE.) 115
53 Definition and uses of variables 117
54 Data flow graph of ReturnAverage() example 118
5.5 Relationship among DF (data flow) testing criteria. (From ref. 4. © 1988

IEEE.) 125
5.6 Relationship among FDF (feasible data flow) testing criteria.

(From ref. 4. © 1988 IEEE.) 127
5.7 Limitation of different fault detection techniques 128
5.8 Binary search routine 133
59 Modified binary search routine 133
6.1 [lustration of the concept of program domains 137
6.2 A function to explain program domains 139
6.3 Control flow graph representation of the function in Figure 6.2 139
6.4 Domains obtained from interpreted predicates in Figure 6.3 140
6.5 Predicates defining the TT domain in Figure 6.4 141
6.6 ON and OFF points 146
6.7 Boundary shift resulting in reduced domain (closed inequality) 147
6.8 Boundary shift resulting in enlarged domain (closed inequality) 149
6.9 Tilted boundary (closed inequality) 149
6.10  Closure error (closed inequality) 150
6.11 Boundary shift resulting in reduced domain (open inequality) 151
6.12  Boundary shift resulting in enlarged domain (open inequality) 152
6.13  Tilted boundary (open inequality) 153
6.14  Closure error (open inequality) 153
6.15  Equality border 154
6.16 Domains Dy, D, and D3 157
7.1 Module hierarchy with three levels and seven modules 168
7.2 Top-down integration of modules A and B 169
7.3 Top-down integration of modules A, B, and D 169
7.4 Top-down integration of modules A, B, D, and C 169
7.5 Top-down integration of modules A, B, C, D, and E 170
7.6 Top-down integration of modules A, B, C, D, E, and F 170
7.7 Top-down integration of modules A, B, C, D, E, F and G 170
7.8 Bottom-up integration of modules E, F, and G 171
7.9 Bottom-up integration of modules B, C, and D with E, F, and G 172
7.10  Bottom-up integration of module A with all others 172
7.11  Hardware ECO process 179
7.12  Software ECO process 180
7.13  Module hierarchy of software system 190
8.1 Types of system tests 193
8.2 Types of basic tests 194
8.3 Types of functionality tests 197
8.4 Types of robustness tests 205
8.5 Typical 1xEV-DO radio access network. (Courtesy of Airvana, Inc.) 206
9.1 Frequency selection box of Bluetooth specification 224

9.2 Part of form ON479 of T1 general—2001, published by the CCRA 227



9.3
9.4
9.5

9.6
9.7
9.8
9.9
9.10
9.11

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17

10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28
10.29
10.30

10.31
10.32
10.33
10.34
10.35
10.36
10.37

LIST OF FIGURES

Functionally related variables

Function in context

(a) Obtaining output values from an input vector and (b) obtaining an input
vector from an output value in functional testing

Functional testing in general

System S with three input variables

(a) Too many test inputs; (b) one input selected from each subdomain

Gold standard oracle

Parametric oracle

Statistical oracle

Spectrum of software systems

Data-dominated systems

Control-dominated systems

FSM model of dual-boot laptop computer

Interactions between system and its environment modeled as FSM
PCOs on a telephone

FSM model of a PBX

FSM model of PBX

Interaction of test sequence with SUT

Derived test case from transition tour

Conceptual model of test case with state verification
Finite-state machine G| (From ref. 5. © 1997 IEEE.)

UIO tree for G in Figure 10.12. (From ref. 5. © 1997 IEEE.)
Identification of UIO sequences on UIO tree of Figure 10.13
Finite-state machine G,

Distinguishing sequence tree for G, in Figure 10.15

FSM that does not possess distinguishing sequence. (From ref. 11. © 1994
IEEE.)

DS tree for FSM (Figure 10.17)

Abstraction of N-entity in OSI reference architecture

Abstract local test architecture

Abstract external test architecture

Local architecture

Distributed architecture

Coordinated architecture

Remote architecture

Structure of module in TTCN-3

Definitions of two subtypes

Parameterized template for constructing message to be sent
Parameterized template for constructing message to be received
Testing (a) square-root function (SRF) calculator and (b) port between
tester and SRF calculator

Defining port type

Associating port with component

Test case for testing SRF calculator

Executing test case

Comparison of state transitions of FSM and EFSM

Controlled access to a door

SDL/GR door control system

xxiii

231
232

233
234
235
244
253
253
254

266
266
267
267
268
269
270
271
274
275
278
281
282
283
286
286

287
288
291
292
292
293
293
294
295
297
297
298
298

299
300
300
301
302
303
304
305



Xxiv

10.38
10.39
10.40
10.41
10.42
10.43
10.44
10.45

10.46
10.47
10.48
10.49
10.50
10.51
10.52

11.1
11.2
11.3
11.4
11.5
11.6
11.7

12.1
12.2
12.3
12.4
12.5
12.6
12.7

13.1
13.2
133

13.4
13.5

15.1
15.2
15.3

15.4

15.5

16.1
16.2
16.3
16.4

LIST OF FIGURES

Door control behavior specification

Door control behavior specification

Transition tour from door control system of Figures 10.38 and 10.39
Testing door control system

Output and input behavior obtained from transition tour of Figure 10.40
Test behavior obtained by refining if part in Figure 10.42

Test behavior that can receive unexpected events (derived from Figure 10.43)
Core behavior of test case for testing door control system (derived from
Figure 10.44)

User interface of ATM

Binding of buttons with user options

Binding of buttons with cash amount

FSM G

FSM H

FSM K

Nondeterministic FSM

State transition diagram of requirement

Test suite structure

Service interworking between FR and ATM services
Transformation of FR to ATM cell

FrAtm test suite structure

State transition diagram of a test case

State transition diagram of test case result

Concept of cycle-based test execution strategy

Gantt chart for FR—ATM service interworking test project
Broad criteria of test automation tool evaluation

Test selection guideline for automation

Characteristics of automated test cases

Six major steps in automated test case

Components of a automation infrastructure

State transition diagram representation of life cycle of defect

Projected execution of test cases on weekly basis in cumulative chart form
PAE metric of Bazooka (PE: projected execution; AE: actually executed)
project

Pareto diagram for defect distribution shown in Table 13.12

Cause—effect diagram for DCA

Relationship between MTTR, MTTF, and MTBF

Graphical representation of operational profile of library information system
Failure intensity A as function of cumulative failure u (Ao = 9 failures

per unit time, vop = 500 failures, & = 0.0075)

Failure intensity A as function of execution time t (Ao = 9 failures

per unit time, vop = 500 failures, 6 = 0.0075)

Cumulative failure u as function of execution time v (1o = 9 failures per unit
time, vy = 500 failures, 6 = 0.0075)

Structure of test groups

Structure of software quality assurance group
System test team hierarchy

Six phases of effective recruiting process

306
307
309
309
310
310
31

312
314
314
315
318
318
319
319

323
336
337
338
342
345
349

363
390
393
396
397
399
401

409
417

421
431
434

475
484

488

490

490

498
499
500
505



16.5

17.1
17.2

18.1
18.2
18.3

LIST OF FIGURES

System test organization as part of development

Relation between quality factors and quality criteria [6]
ISO 9126 sample quality model refines standard’s features into
subcharacteristics. (From ref. 4. © 1996 IEEE.)

CMM structure. (From ref. 3. © 2005 John Wiley & Sons.)
SW-CMM maturity levels. (From ref. 3 © 2005 John Wiley & Sons.)
Five-level structure of TMM. (From ref. 5. © 2003 Springer.)

XXV

518
528

532

549
550
568






LIST OF TABLES

3.1
3.2
33

4.1
4.2
43
4.4
4.5
4.6

4.7
4.8
4.9

5.1
52

6.1
6.2

6.3

6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5

8.1
8.2

9.1
9.2
9.3
9.4
9.5
9.6

Hierarchy of System Documents
Code Review Checklist
McCabe Complexity Measure

Examples of Path in CFG of Figure 4.7

Input Domain of openfiles()

Inputs and Paths in openfiles()

Paths for Statement Coverage of CFG of Figure 4.7

Paths for Branch Coverage of CFG of Figure 4.7

Two Cases for Complete Statement and Branch Coverage of CFG of
Figure 4.9a

Interpretation of Path Predicate of Path in Figure 4.10

Interpretation of Path Predicate of Path in Figure 4.14

Test Data for Statement and Branch Coverage

Def() and c-use() Sets of Nodes in Figure 5.4
Predicates and p-use() Set of Edges in Figure 5.4

Two Interpretations of Second if() Statement in Figure 6.2

Detection of Boundary Shift Resulting in Reduced Domain

(Closed Inequality)

Detection of Boundary Shift Resulting in Enlarged Domain

(Closed Inequality)

Detection of Boundary Tilt (Closed Inequality)

Detection of Closure Error (Closed Inequality)

Detection of Boundary Shift Resulting in Reduced Domain (Open Inequality)
Detection of Boundary Shift Resulting in Enlarged Domain (Open Inequality)
Detection of Boundary Tilt (Open Inequality)

Detection of Closure Error (Open Inequality)

Check-in Request Form

Example Software/Hardware Compatibility Matrix
Framework for SIT Plan

Framework for Entry Criteria to Start System Integration
Framework for System Integration Exit Criteria

EMS Functionalities
Regulatory Approval Bodies of Different Countries

Number of Special Values of Inputs to FBS Module of Figure 9.1
Input and Output Domains of Functions of P in Figure 9.6
Pairwise Test Cases for System §

L4(2%) Orthogonal Array

Commonly Used Orthogonal Arrays

Various Values That Need to Be Tested in Combinations

56
58
79

95
97
97
98
99

101
104
105
106

120
121

140
148

149
150
151
151
152
153
154

166
178
181

182

199
217

230
234
236
236
237
238

XXVii



xxviii

9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12

12.13

13.1
13.2
133
13.4
13.5
13.6

LIST OF TABLES

Lo(3*) Orthogonal Array

Lo(3*%) Orthogonal Array after Mapping Factors
Generated Test Cases after Mapping Left-Over Levels
Generated Test Cases to Cover Each Equivalence Class
Decision Table Comprising Set of Conditions and Effects
Pay Calculation Decision Table with Values for Each Rule
Pay Calculation Decision Table after Column Reduction
Decision Table for Payment Calculation

PCOs for Testing Telephone PBX

Set of States in FSM of Figure 10.8

Input and Output Sets in FSM of Figure 10.8

Transition Tours Covering All States in Figure 10.8

State Transitions Not Covered by Transition Tours of Table 10.4
Transition Tours Covering All State Transitions in Figure 10.8

UIO Sequences of Minimal Lengths Obtained from Figure 10.14
Examples of State Blocks

Outputs of FSM G, in Response to Input Sequence 11 in Different States
Output Sequences Generated by FSM of Figure 10.17 as Response to W,
Output Sequences Generated by FSM of Figure 10.17 as Response to W,
Test Sequences for State Transition (D, A, a/x) of FSM in Figure 10.17

Coverage Matrix [A;;]

Requirement Schema Field Summary

Engineering Change Document Information
Characteristics of Testable Functional Specifications
Mapping of FR QoS Parameters to ATM QoS Parameters
Test Case Schema Summary

Test Suite Schema Summary

Test Result Schema Summary

Outline of System Test Plan

Equipment Needed to be Procured

Entry Criteria for First System Test Cycle

Test Case Failure Counts to Initiate RCA in Test Cycle 1

Test Case Failure Counts to Initiate RCA in Test Cycle 2

Test Effort Estimation for FR—ATM PVC Service Interworking
Form for Computing Unadjusted Function Point

Factors Affecting Development Effort

Empirical Relationship between Function Points and LOC
Guidelines for Manual Test Case Creation Effort

Guidelines for Manual Test Case Execution Effort

Guidelines for Estimation of Effort to Manually Execute Regression
Test Cases

Benefits of Automated Testing

States of Defect Modeled in Figure 13.1

Defect Schema Summary Fields

State Transitions to Five Possible Next States from Open State
Outline of Test Execution Working Document

EST Metric in Week 4 of Bazooka Project

EST Metric in Bazooka Monitored on Weekly Basis

239
239
240
246
248
250
251
252

270
272
272
276
277
277
284
284
287
289
289
290

322
324
329
333
340
346
348
348

356
360
368
374
375
379
382
382
383
384
386

386
391

410
412
413
416
422
423



13.7

13.8

13.9

13.10
13.11
13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19

14.1
142
143
14.4

15.1

17.1
17.2
17.3

18.1
18.2

LIST OF TABLES

DAR Metric for Stinger Project

Weekly DRR Status for Stinger Test Project

Weekly OD on Priority Basis for Stinger Test Project

Weekly CD Observed by Different Groups for Stinger Test Project
ARD Metric for Bayonet

Sample Test Data of Chainsaw Test Project

Framework for Beta Release Criteria

Structure of Final System Test Report

Scale for Defect Age

Defect Injection versus Discovery on Project Boomerang

Number of Defects Weighted by Defect Age on Project Boomerang
ARD Metric for Test Project

Scale for PhAge

Outline of ATP

ACC Document Information

Structure of Acceptance Test Status Report
Structure of Acceptance Test Summary Report

Example of Operational Profile of Library Information System

McCall’s Quality Factors
Categorization of McCall’s Quality Factors
McCall’s Quality Criteria

Requirements for Different Maturity Levels
Test Maturity Matrix

XXix

425
426
427
427
428
430
436
438
443
443
444
448
449

462
464
465
466

484

524
527
529

564
566






CHAPTER 1

Basic Concepts and Preliminaries

Software is like entropy. It is difficult to grasp, weighs nothing, and obeys the
second law of thermodynamics, i.e., it always increases.
— Norman Ralph Augustine

1.1 QUALITY REVOLUTION

People seek quality in every man-made artifact. Certainly, the concept of quality did
not originate with software systems. Rather, the quality concept is likely to be as old
as human endeavor to mass produce artifacts and objects of large size. In the past
couple of decades a quality revolution, has been spreading fast throughout the world
with the explosion of the Internet. Global competition, outsourcing, off-shoring,
and increasing customer expectations have brought the concept of quality to the
forefront. Developing quality products on tighter schedules is critical for a company
to be successful in the new global economy. Traditionally, efforts to improve quality
have centered around the end of the product development cycle by emphasizing
the detection and correction of defects. On the contrary, the new approach to
enhancing quality encompasses all phases of a product development process—from
a requirements analysis to the final delivery of the product to the customer. Every
step in the development process must be performed to the highest possible standard.
An effective quality process must focus on [1]:

e Paying much attention to customer’s requirements

e Making efforts to continuously improve quality

o Integrating measurement processes with product design and development
o Pushing the quality concept down to the lowest level of the organization

e Developing a system-level perspective with an emphasis on methodology
and process

o Eliminating waste through continuous improvement

Software Testing and Quality Assurance: Theory and Practice, Edited by Kshirasagar Naik and Priyadarshi Tripathy
Copyright © 2008 John Wiley & Sons, Inc.
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A quality movement started in Japan during the 1940s and the 1950s by
William Edwards Deming, Joseph M. Juran, and Kaoru Ishikawa. In circa 1947,
W. Edwards Deming “visited India as well, then continued on to Japan, where
he had been asked to join a statistical mission responsible for planning the 1951
Japanese census” [2], p. 8. During his said visit to Japan, Deming invited statis-
ticians for a dinner meeting and told them how important they were and what
they could do for Japan [3]. In March 1950, he returned to Japan at the invitation
of Managing Director Kenichi Koyanagi of the Union of Japanese Scientists and
Engineers (JUSE) to teach a course to Japanese researchers, workers, executives,
and engineers on statistical quality control (SQC) methods. Statistical quality con-
trol is a discipline based on measurements and statistics. Decisions are made and
plans are developed based on the collection and evaluation of actual data in the
form of metrics, rather than intuition and experience. The SQC methods use seven
basic quality management tools: Pareto analysis, cause-and-effect diagram, flow
chart, trend chart, histogram, scatter diagram, and control chart [2].

In July 1950, Deming gave an eight-day seminar based on the Shewhart meth-
ods of statistical quality control [4, 5] for Japanese engineers and executives. He
introduced the plan—do—check—act (PDCA) cycle in the seminar, which he called
the Shewhart cycle (Figure 1.1). The Shewhart cycle illustrates the following activ-
ity sequence: setting goals, assigning them to measurable milestones, and assessing
the progress against those milestones. Deming’s 1950 lecture notes formed the basis
for a series of seminars on SQC methods sponsored by the JUSE and provided the
criteria for Japan’s famed Deming Prize. Deming’s work has stimulated several dif-
ferent kinds of industries, such as those for radios, transistors, cameras, binoculars,
sewing machines, and automobiles.

Between circa 1950 and circa 1970, automobile industries in Japan, in par-
ticular Toyota Motor Corporation, came up with an innovative principle to com-
press the time period from customer order to banking payment, known as the
“lean principle.” The objective was to minimize the consumption of resources
that added no value to a product. The lean principle has been defined by the
National Institute of Standards and Technology (NIST) Manufacturing Extension
Partnership program [61] as “a systematic approach to identifying and eliminat-
ing waste through continuous improvement, flowing the product at the pull of
the customer in pursuit of perfection,” p.l1. It is commonly believed that lean
principles were started in Japan by Taiichi Ohno of Toyota [7], but Henry Ford

Plan—Establish the objective and process to deliver
the results.

Do—Implement the plan and measure its performance.
Check—Assess the measurements and report the
results to decision makers.

Act—Decide on changes needed to improve the
process.

Figure 1.1 Shewhart cycle.
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had been using parts of lean as early as circa 1920, as evidenced by the following
quote (Henry Ford, 1926) [61], p.1:

One of the noteworthy accomplishments in keeping the price of Ford products low is
the gradual shortening of the production cycle. The longer an article is in the process
of manufacture and the more it is moved about, the greater is its ultimate cost.

This concept was popularized in the United States by a Massachusetts Insti-
tute of Technology (MIT) study of the movement from mass production toward
production, as described in The Machine That Changed the World, by James P.
Womack, Daniel T. Jones, and Daniel Roos, New York: Rawson and Associates,
1990. Lean thinking continues to spread to every country in the world, and lead-
ers are adapting the principles beyond automobile manufacturing, to logistics and
distribution, services, retail, health care, construction, maintenance, and software
development [8].

Remark: Walter Andrew Shewhart was an American physicist, engineer, and
statistician and is known as the father of statistical quality control. Shewhart worked
at Bell Telephone Laboratories from its foundation in 1925 until his retirement in
1956 [9]. His work was summarized in his book Economic Control of Quality
of Manufactured Product, published by McGraw-Hill in 1931. In 1938, his work
came to the attention of physicist W. Edwards Deming, who developed some of
Shewhart’s methodological proposals in Japan from 1950 onward and named his
synthesis the Shewhart cycle.

In 1954, Joseph M. Juran of the United States proposed raising the level of
quality management from the manufacturing units to the entire organization. He
stressed the importance of systems thinking that begins with product requirement,
design, prototype testing, proper equipment operations, and accurate process feed-
back. Juran’s seminar also became a part of the JUSE’s educational programs [10].
Juran spurred the move from SQC to TQC (total quality control) in Japan. This
included companywide activities and education in quality control (QC), audits,
quality circle, and promotion of quality management principles. The term TQC
was coined by an American, Armand V. Feigenbaum, in his 1951 book Quality
Control Principles, Practice and Administration. It was republished in 2004 [11].
By 1968, Kaoru Ishikawa, one of the fathers of TQC in Japan, had outlined, as
shown in the following, the key elements of TQC management [12]:

e Quality comes first, not short-term profits.
e The customer comes first, not the producer.

e Decisions are based on facts and data.

Management is participatory and respectful of all employees.

Management is driven by cross-functional committees covering product
planning, product design, purchasing, manufacturing, sales, marketing, and
distribution.
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Remark: A quality circle is a volunteer group of workers, usually members of the
same department, who meet regularly to discuss the problems and make presenta-
tions to management with their ideas to overcome them. Quality circles were started
in Japan in 1962 by Kaoru Ishikawa as another method of improving quality. The
movement in Japan was coordinated by the JUSE.

One of the innovative TQC methodologies developed in Japan is referred
to as the Ishikawa or cause-and-effect diagram. Kaoru Ishikawa found from sta-
tistical data that dispersion in product quality came from four common causes,
namely materials, machines, methods, and measurements, known as the 4 Ms
(Figure 1.2). The bold horizontal arrow points to quality, whereas the diagonal
arrows in Figure 1.2 are probable causes having an effect on the quality. Mate-
rials often differ when sources of supply or size requirements vary. Machines, or
equipment, also function differently depending on variations in their parts, and
they operate optimally for only part of the time. Methods, or processes, cause
even greater variations due to lack of training and poor handwritten instructions.
Finally, measurements also vary due to outdated equipment and improper calibra-
tion. Variations in the 4 Ms parameters have an effect on the quality of a product.
The Ishikawa diagram has influenced Japanese firms to focus their quality control
attention on the improvement of materials, machines, methods, and measurements.

The total-quality movement in Japan has led to pervasive top-management
involvement. Many companies in Japan have extensive documentation of their qual-
ity activities. Senior executives in the United States either did not believe quality
mattered or did not know where to begin until the National Broadcasting Corpora-
tion (NBC), an America television network, broadcast the documentary “If Japan
Can ... Why Can’t We?” at 9:30 P.M. on June 24, 1980 [2]. The documentary
was produced by Clare Crawford-Mason and was narrated by Lloyd Dobyns. Fif-
teen minutes of the broadcast was devoted to Dr. Deming and his work. After the

Materials | | Machines

P Quality

Effect

Causes

Figure 1.2 Ishikawa diagram.
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broadcast, many executives and government leaders realized that a renewed empha-
sis on quality was no longer an option for American companies but a necessity
for doing business in an ever-expanding and more demanding competitive world
market. Ford Motor Company and General Motors immediately adopted Deming’s
SQC methodology into their manufacturing process. Other companies such as Dow
Chemical and the Hughes Aircraft followed suit. Ishikawa’s TQC management phi-
losophy gained popularity in the United States. Further, the spurred emphasis on
quality in American manufacturing companies led the U.S. Congress to establish
the Malcolm Baldrige National Quality Award—similar to the Deming Prize in
Japan—in 1987 to recognize organizations for their achievements in quality and
to raise awareness about the importance of quality excellence as a competitive
edge [6]. In the Baldrige National Award, quality is viewed as something defined
by the customer and thus the focus is on customer-driven quality. On the other
hand, in the Deming Prize, quality is viewed as something defined by the pro-
ducers by conforming to specifications and thus the focus is on conformance to
specifications.

Remark: Malcolm Baldrige was U.S. Secretary of Commerce from 1981 until
his death in a rodeo accident in July 1987. Baldrige was a proponent of quality
management as a key to his country’s prosperity and long-term strength. He took a
personal interest in the quality improvement act, which was eventually named after
him, and helped draft one of its early versions. In recognition of his contributions,
Congress named the award in his honor.

Traditionally, the TQC and lean concepts are applied in the manufacturing
process. The software development process uses these concepts as another tool to
guide the production of quality software [13]. These concepts provides a frame-
work to discuss software production issues. The software capability maturity model
(CMM) [14] architecture developed at the Software Engineering Institute is based
on the principles of product quality that have been developed by W. Edwards
Deming [15], Joseph M. Juran [16], Kaoru Ishikawa [12], and Philip Crosby [17].

1.2 SOFTWARE QUALITY

The question “What is software quality?”” evokes many different answers. Quality
is a complex concept—it means different things to different people, and it is highly
context dependent. Garvin [18] has analyzed how software quality is perceived in
different ways in different domains, such as philosophy, economics, marketing,
and management. Kitchenham and Pfleeger’s article [60] on software quality gives
a succinct exposition of software quality. They discuss five views of quality in a
comprehensive manner as follows:

1. Transcendental View: It envisages quality as something that can be rec-
ognized but is difficult to define. The transcendental view is not specific
to software quality alone but has been applied in other complex areas
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of everyday life. For example, In 1964, Justice Potter Stewart of the
U.S. Supreme Court, while ruling on the case Jacobellis v. Ohio, 378
U.S. 184 (1964), which involved the state of Ohio banning the French
film Les Amants (“The Lovers”) on the ground of pornography, wrote “I
shall not today attempt further to define the kinds of material I under-
stand to be embraced within that shorthand description; and perhaps I
could never succeed in intelligibly doing so. But I know it when I see
it, and the motion picture involved in this case is not that” (emphasis
added).

2. User View: It perceives quality as fitness for purpose. According to this
view, while evaluating the quality of a product, one must ask the key
question: “Does the product satisfy user needs and expectations?”

3. Manufacturing View: Here quality is understood as conformance to the
specification. The quality level of a product is determined by the extent
to which the product meets its specifications.

4. Product View: In this case, quality is viewed as tied to the inherent char-
acteristics of the product. A product’s inherent characteristics, that is,
internal qualities, determine its external qualities.

5. Value-Based View: Quality, in this perspective, depends on the amount a
customer is willing to pay for it.

The concept of software quality and the efforts to understand it in terms of
measurable quantities date back to the mid-1970s. McCall, Richards, and Walters
[19] were the first to study the concept of software quality in terms of quality factors
and quality criteria. A quality factor represents a behavioral characteristic of a
system. Some examples of high-level quality factors are correctness, reliability,
efficiency, testability, maintainability, and reusability. A quality criterion is an
attribute of a quality factor that is related to software development. For example,
modularity is an attribute of the architecture of a software system. A highly modular
software allows designers to put cohesive components in one module, thereby
improving the maintainability of the system.

Various software quality models have been proposed to define quality and
its related attributes. The most influential ones are the ISO 9126 [20-22] and the
CMM [14]. The ISO 9126 quality model was developed by an expert group under
the aegis of the International Organization for Standardization (ISO). The docu-
ment ISO 9126 defines six broad, independent categories of quality characteristics:
functionality, reliability, usability, efficiency, maintainability, and portability. The
CMM was developed by the Software Engineering Institute (SEI) at Carnegie Mel-
lon University. In the CMM framework, a development process is evaluated on a
scale of 1-5, commonly known as level 1 through level 5. For example, level
1 is called the initial level, whereas level 5—optimized—is the highest level of
process maturity.

In the field of software testing, there are two well-known process models,
namely, the test process improvement (TPI) model [23] and the test maturity Model
(TMM) [24]. These two models allow an organization to assess the current state
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of their software testing processes, identify the next logical area for improvement,
and recommend an action plan for test process improvement.

1.3 ROLE OF TESTING

Testing plays an important role in achieving and assessing the quality of a software
product [25]. On the one hand, we improve the quality of the products as we repeat
a test—find defects—fix cycle during development. On the other hand, we assess how
good our system is when we perform system-level tests before releasing a product.
Thus, as Friedman and Voas [26] have succinctly described, software testing is a
verification process for software quality assessment and improvement. Generally
speaking, the activities for software quality assessment can be divided into two
broad categories, namely, static analysis and dynamic analysis.

o Static Analysis: As the term “static” suggests, it is based on the examina-
tion of a number of documents, namely requirements documents, software
models, design documents, and source code. Traditional static analysis
includes code review, inspection, walk-through, algorithm analysis, and
proof of correctness. It does not involve actual execution of the code under
development. Instead, it examines code and reasons over all possible behav-
iors that might arise during run time. Compiler optimizations are standard
static analysis.

e Dynamic Analysis: Dynamic analysis of a software system involves actual
program execution in order to expose possible program failures. The behav-
ioral and performance properties of the program are also observed. Pro-
grams are executed with both typical and carefully chosen input values.
Often, the input set of a program can be impractically large. However, for
practical considerations, a finite subset of the input set can be selected.
Therefore, in testing, we observe some representative program behaviors
and reach a conclusion about the quality of the system. Careful selection
of a finite test set is crucial to reaching a reliable conclusion.

By performing static and dynamic analyses, practitioners want to identify as many
faults as possible so that those faults are fixed at an early stage of the software
development. Static analysis and dynamic analysis are complementary in nature,
and for better effectiveness, both must be performed repeatedly and alternated.
Practitioners and researchers need to remove the boundaries between static and
dynamic analysis and create a hybrid analysis that combines the strengths of both
approaches [27].

1.4 VERIFICATION AND VALIDATION

Two similar concepts related to software testing frequently used by practitioners are
verification and validation. Both concepts are abstract in nature, and each can be
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realized by a set of concrete, executable activities. The two concepts are explained
as follows:

o Verification: This kind of activity helps us in evaluating a software system
by determining whether the product of a given development phase satisfies
the requirements established before the start of that phase. One may note
that a product can be an intermediate product, such as requirement speci-
fication, design specification, code, user manual, or even the final product.
Activities that check the correctness of a development phase are called
verification activities .

o Validation: Activities of this kind help us in confirming that a product
meets its intended use. Validation activities aim at confirming that a product
meets its customer’s expectations. In other words, validation activities focus
on the final product, which is extensively tested from the customer point of
view. Validation establishes whether the product meets overall expectations
of the users.

Late execution of validation activities is often risky by leading to
higher development cost. Validation activities may be executed at early
stages of the software development cycle [28]. An example of early exe-
cution of validation activities can be found in the eXtreme Programming
(XP) software development methodology. In the XP methodology, the cus-
tomer closely interacts with the software development group and conducts
acceptance tests during each development iteration [29].

The verification process establishes the correspondence of an implementation
phase of the software development process with its specification, whereas validation
establishes the correspondence between a system and users’ expectations. One can
compare verification and validation as follows:

¢ Verification activities aim at confirming that one is building the product cor-
rectly, whereas validation activities aim at confirming that one is building
the correct product [30].

o Verification activities review interim work products, such as requirements
specification, design, code, and user manual, during a project life cycle to
ensure their quality. The quality attributes sought by verification activities
are consistency, completeness, and correctness at each major stage of sys-
tem development. On the other hand, validation is performed toward the
end of system development to determine if the entire system meets the
customer’s needs and expectations.

¢ Verification activities are performed on interim products by applying mostly
static analysis techniques, such as inspection, walkthrough, and reviews,
and using standards and checklists. Verification can also include dynamic
analysis, such as actual program execution. On the other hand, validation
is performed on the entire system by actually running the system in its real
environment and using a variety of tests.
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1.5 FAILURE, ERROR, FAULT, AND DEFECT

In the literature on software testing, one can find references to the terms failure,
error, fault, and defect. Although their meanings are related, there are important
distinctions between these four concepts. In the following, we present first three
terms as they are understood in the fault-tolerant computing community:

o Failure: A failure is said to occur whenever the external behavior of a
system does not conform to that prescribed in the system specification.

e Error: An error is a state of the system. In the absence of any corrective
action by the system, an error state could lead to a failure which would
not be attributed to any event subsequent to the error.

e Fault: A fault is the adjudged cause of an error.

A fault may remain undetected for a long time, until some event activates it. When
an event activates a fault, it first brings the program into an intermediate error state.
If computation is allowed to proceed from an error state without any corrective
action, the program eventually causes a failure. As an aside, in fault-tolerant com-
puting, corrective actions can be taken to take a program out of an error state into
a desirable state such that subsequent computation does not eventually lead to a
failure. The process of failure manifestation can therefore be succinctly represented
as a behavior chain [31] as follows: fault — error — failure. The behavior chain
can iterate for a while, that is, failure of one component can lead to a failure of
another interacting component.

The above definition of failure assumes that the given specification is accept-
able to the customer. However, if the specification does not meet the expectations
of the customer, then, of course, even a fault-free implementation fails to satisfy the
customer. It is a difficult task to give a precise definition of fault, error, or failure
of software, because of the “human factor” involved in the overall acceptance of a
system. In an article titled “What Is Software Failure” [32], Ram Chillarege com-
mented that in modern software business software failure means “the customer’s
expectation has not been met and/or the customer is unable to do useful work with
product,” p. 354.

Roderick Rees [33] extended Chillarege’s comments of software failure by
pointing out that “failure is a matter of function only [and is thus] related to purpose,
not to whether an item is physically intact or not” (p. 163). To substantiate this,
Behrooz Parhami [34] provided three interesting examples to show the relevance
of such a view point in wider context. One of the examples is quoted here (p. 451):

Consider a small organization. Defects in the organization’s staff promotion policies can
cause improper promotions, viewed as faults. The resulting ineptitudes & dissatisfac-
tions are errors in the organization’s state. The organization’s personnel or departments
probably begin to malfunction as result of the errors, in turn causing an overall degra-
dation of performance. The end result can be the organization’s failure to achieve
its goal.

There is a fine difference between defects and faults in the above example, that
is, execution of a defective policy may lead to a faulty promotion. In a software
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context, a software system may be defective due to design issues; certain system
states will expose a defect, resulting in the development of faults defined as incor-
rect signal values or decisions within the system. In industry, the term defect is
widely used, whereas among researchers the term fault is more prevalent. For all
practical purpose, the two terms are synonymous. In this book, we use the two
terms interchangeably as required.

1.6 NOTION OF SOFTWARE RELIABILITY

No matter how many times we run the test—find faults—fix cycle during software
development, some faults are likely to escape our attention, and these will even-
tually surface at the customer site. Therefore, a quantitative measure that is useful
in assessing the quality of a software is its reliability [35]. Software reliability is
defined as the probability of failure-free operation of a software system for a speci-
fied time in a specified environment. The level of reliability of a system depends on
those inputs that cause failures to be observed by the end users. Software reliability
can be estimated via random testing, as suggested by Hamlet [36]. Since the notion
of reliability is specific to a “specified environment,” test data must be drawn from
the input distribution to closely resemble the future usage of the system. Captur-
ing the future usage pattern of a system in a general sense is described in a form
called the operational profile. The concept of operational profile of a system was
pioneered by John D. Musa at AT&T Bell Laboratories between the 1970s and the
1990s [37, 38].

1.7 OBJECTIVES OF TESTING

The stakeholders in a test process are the programmers, the test engineers, the
project managers, and the customers. A stakeholder is a person or an organization
who influences a system’s behaviors or who is impacted by that system [39].
Different stakeholders view a test process from different perspectives as explained
below:

o It does work: While implementing a program unit, the programmer may
want to test whether or not the unit works in normal circumstances. The
programmer gets much confidence if the unit works to his or her satisfac-
tion. The same idea applies to an entire system as well—once a system
has been integrated, the developers may want to test whether or not the
system performs the basic functions. Here, for the psychological reason,
the objective of testing is to show that the system works, rather than it
does not work.

o It does not work: Once the programmer (or the development team) is
satisfied that a unit (or the system) works to a certain degree, more tests
are conducted with the objective of finding faults in the unit (or the system).
Here, the idea is to try to make the unit (or the system) fail.
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¢ Reduce the risk of failure: Most of the complex software systems contain
faults, which cause the system to fail from time to time. This concept of
“failing from time to time” gives rise to the notion of failure rate. As
faults are discovered and fixed while performing more and more tests, the
failure rate of a system generally decreases. Thus, a higher level objective
of performing tests is to bring down the risk of failing to an acceptable
level.

¢ Reduce the cost of testing: The different kinds of costs associated with a
test process include
the cost of designing, maintaining, and executing test cases,
the cost of analyzing the result of executing each test case,
the cost of documenting the test cases, and

the cost of actually executing the system and documenting it.

Therefore, the less the number of test cases designed, the less will be the
associated cost of testing. However, producing a small number of arbitrary
test cases is not a good way of saving cost. The highest level of objective
of performing tests is to produce low-risk software with fewer number
of test cases. This idea leads us to the concept of effectiveness of test
cases. Test engineers must therefore judiciously select fewer, effective test
cases.

1.8 WHAT IS A TEST CASE?

In its most basic form, a fest case is a simple pair of < input, expected outcome >.
If a program under test is expected to compute the square root of nonnegative
numbers, then four examples of test cases are as shown in Figure 1.3.

In stateless systems, where the outcome depends solely on the current input,
test cases are very simple in structure, as shown in Figure 1.3. A program to
compute the square root of nonnegative numbers is an example of a stateless
system. A compiler for the C programming language is another example of a
stateless system. A compiler is a stateless system because to compile a program it
does not need to know about the programs it compiled previously.

In state-oriented systems, where the program outcome depends both on the
current state of the system and the current input, a test case may consist of a

TBi: <0,0>,

TBy: <25,5>,

TB3: <40, 6.3245553 >,
TB4: < 100.5, 10.024968 >.

Figure 1.3 Examples of basic test cases.
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TS1: < check balance, $500.00 >, < withdraw, “amount?’’ >,
< $200.00, “$200.00” >, < check balance, $300.00 > .

Figure 1.4 Example of a test case with a sequence of < input, expected outcome >.

sequence of < input, expected outcome > pairs. A telephone switching system and
an automated teller machine (ATM) are examples of state-oriented systems. For an
ATM machine, a test case for testing the withdraw function is shown in Figure 1.4.
Here, we assume that the user has already entered validated inputs, such as the cash
card and the personal identification number (PIN).

In the test case TS, “check balance” and “withdraw” in the first, second, and
fourth tuples represent the pressing of the appropriate keys on the ATM keypad. It is
assumed that the user account has $500.00 on it, and the user wants to withdraw an
amount of $200.00. The expected outcome “$200.00” in the third tuple represents
the cash dispensed by the ATM. After the withdrawal operation, the user makes
sure that the remaining balance is $300.00.

For state-oriented systems, most of the test cases include some form of deci-
sion and timing in providing input to the system. A test case may include loops
and timers, which we do not show at this moment.

1.9 EXPECTED OUTCOME

An outcome of program execution is a complex entity that may include the
following:

e Values produced by the program:
Outputs for local observation (integer, text, audio, image)
Outputs (messages) for remote storage, manipulation, or observation
o State change:
State change of the program
State change of the database (due to add, delete, and update operations)

e A sequence or set of values which must be interpreted together for the
outcome to be valid

An important concept in test design is the concept of an oracle. An oracle
is any entity—program, process, human expert, or body of data—that tells us the
expected outcome of a particular test or set of tests [40]. A test case is meaningful
only if it is possible to decide on the acceptability of the result produced by the
program under test.

Ideally, the expected outcome of a test should be computed while designing
the test case. In other words, the test outcome is computed before the program is
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executed with the selected test input. The idea here is that one should be able to
compute the expected outcome from an understanding of the program’s require-
ments. Precomputation of the expected outcome will eliminate any implementation
bias in case the test case is designed by the developer.

In exceptional cases, where it is extremely difficult, impossible, or even
undesirable to compute a single expected outcome, one should identify expected
outcomes by examining the actual test outcomes, as explained in the following:

1. Execute the program with the selected input.
2. Observe the actual outcome of program execution.

3. Verify that the actual outcome is the expected outcome.

4. Use the verified actual outcome as the expected outcome in subsequent
runs of the test case.

1.10 CONCEPT OF COMPLETE TESTING

It is not unusual to find people making claims such as “I have exhaustively tested
the program.” Complete, or exhaustive, testing means there are no undiscovered
Sfaults at the end of the test phase. All problems must be known at the end of
complete testing. For most of the systems, complete testing is near impossible
because of the following reasons:

e The domain of possible inputs of a program is too large to be completely
used in testing a system. There are both valid inputs and invalid inputs.
The program may have a large number of states. There may be timing
constraints on the inputs, that is, an input may be valid at a certain time
and invalid at other times. An input value which is valid but is not properly
timed is called an inopportune input. The input domain of a system can
be very large to be completely used in testing a program.

e The design issues may be too complex to completely test. The design may
have included implicit design decisions and assumptions. For example,
a programmer may use a global variable or a static variable to control
program execution.

o [t may not be possible to create all possible execution environments of the
system. This becomes more significant when the behavior of the software
system depends on the real, outside world, such as weather, temperature,
altitude, pressure, and so on.

1.11 CENTRAL ISSUE IN TESTING

We must realize that though the outcome of complete testing, that is, discovering all
faults, is highly desirable, it is a near-impossible task, and it may not be attempted.
The next best thing is to select a subset of the input domain to test a program.
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Input domain D Program P

Apply inputs P, Observe outcome
—>

Py

Figure 1.5 Subset of the input domain exercising a subset of the program behavior.

Referring to Figure 1.5, let D be the input domain of a program P. Suppose that
we select a subset D of D, that is, D C D, to test program P. It is possible that
D exercises only a part Py, that is, P| C P, of the execution behavior of P, in
which case faults with the other part, P,, will go undetected.

By selecting a subset of the input domain D, the test engineer attempts
to deduce properties of an entire program P by observing the behavior of a part
P, of the entire behavior of P on selected inputs D ;. Therefore, selection of the
subset of the input domain must be done in a systematic and careful manner so
that the deduction is as accurate and complete as possible. For example, the idea
of coverage is considered while selecting test cases.

1.12 TESTING ACTIVITIES

In order to test a program, a test engineer must perform a sequence of testing
activities. Most of these activities have been shown in Figure 1.6 and are explained
in the following. These explanations focus on a single test case.

o Identify an objective to be tested: The first activity is to identify an
objective to be tested. The objective defines the intention, or purpose, of
designing one or more test cases to ensure that the program supports the
objective. A clear purpose must be associated with every test case.

Compute expected outcome for the selected input

Result
analysis

Selected input Observe actual
e Program (P)

A 4

outcome

Environment

Assign a test verdict

Figure 1.6 Different activities in program testing.
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o Select inputs: The second activity is to select test inputs. Selection of test
inputs can be based on the requirements specification, the source code,
or our expectations. Test inputs are selected by keeping the test objective
in mind.

e Compute the expected outcome: The third activity is to compute the
expected outcome of the program with the selected inputs. In most cases,
this can be done from an overall, high-level understanding of the test
objective and the specification of the program under test.

¢ Set up the execution environment of the program: The fourth step is to
prepare the right execution environment of the program. In this step all the
assumptions external to the program must be satisfied. A few examples of
assumptions external to a program are as follows:

Initialize the local system, external to the program. This may include
making a network connection available, making the right database
system available, and so on.

Initialize any remote, external system (e.g., remote partner process in a
distributed application.) For example, to test the client code, we may
need to start the server at a remote site.

o Execute the program: In the fifth step, the test engineer executes the
program with the selected inputs and observes the actual outcome of the
program. To execute a test case, inputs may be provided to the program at
different physical locations at different times. The concept of test coordi-
nation is used in synchronizing different components of a test case.

o Analyze the test result: The final test activity is to analyze the result of
test execution. Here, the main task is to compare the actual outcome of
program execution with the expected outcome. The complexity of compar-
ison depends on the complexity of the data to be observed. The observed
data type can be as simple as an integer or a string of characters or as
complex as an image, a video, or an audio clip. At the end of the analy-
sis step, a test verdict is assigned to the program. There are three major
kinds of test verdicts, namely, pass, fail, and inconclusive, as explained
below.

If the program produces the expected outcome and the purpose of the
test case is satisfied, then a pass verdict is assigned.

If the program does not produce the expected outcome, then a fail verdict
is assigned.

However, in some cases it may not be possible to assign a clear pass
or fail verdict. For example, if a timeout occurs while executing a
test case on a distributed application, we may not be in a position to
assign a clear pass or fail verdict. In those cases, an inconclusive test
verdict is assigned. An inconclusive test verdict means that further
tests are needed to be done to refine the inconclusive verdict into a
clear pass or fail verdict.
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A test report must be written after analyzing the test result. The
motivation for writing a test report is to get the fault fixed if the test revealed
a fault. A test report contains the following items to be informative:

Explain how to reproduce the failure.
Analyze the failure to be able to describe it.

A pointer to the actual outcome and the test case, complete with the
input, the expected outcome, and the execution environment.

1.13 TEST LEVELS

Testing is performed at different levels involving the complete system or parts of
it throughout the life cycle of a software product. A software system goes through
four stages of testing before it is actually deployed. These four stages are known
as unit, integration, system, and acceptance level testing. The first three levels of
testing are performed by a number of different stakeholders in the development
organization, where as acceptance testing is performed by the customers. The four
stages of testing have been illustrated in the form of what is called the classical V
model in Figure 1.7.

In unit testing, programmers test individual program units, such as a proce-
dures, functions, methods, or classes, in isolation. After ensuring that individual
units work to a satisfactory extent, modules are assembled to construct larger sub-
systems by following integration testing techniques. Integration testing is jointly
performed by software developers and integration test engineers. The objective of

Development Testing

Requirements

High-level
design _ System

Integration

Legend
Validation

h Verification

Figure 1.7 Development and testing phases in the V model.
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integration testing is to construct a reasonably stable system that can withstand
the rigor of system-level testing. System-level testing includes a wide spectrum
of testing, such as functionality testing, security testing, robustness testing, load
testing, stability testing, stress testing, performance testing, and reliability testing.
System testing is a critical phase in a software development process because of the
need to meet a tight schedule close to delivery date, to discover most of the faults,
and to verify that fixes are working and have not resulted in new faults. System
testing comprises a number of distinct activities: creating a test plan, designing
a test suite, preparing test environments, executing the tests by following a clear
strategy, and monitoring the process of test execution.

Regression testing is another level of testing that is performed throughout the
life cycle of a system. Regression testing is performed whenever a component of
the system is modified. The key idea in regression testing is to ascertain that the
modification has not introduced any new faults in the portion that was not subject
to modification. To be precise, regression testing is not a distinct level of testing.
Rather, it is considered as a subphase of unit, integration, and system-level testing,
as illustrated in Figure 1.8 [41].

In regression testing, new tests are not designed. Instead, tests are selected,
prioritized, and executed from the existing pool of test cases to ensure that nothing
is broken in the new version of the software. Regression testing is an expensive
process and accounts for a predominant portion of testing effort in the industry. It
is desirable to select a subset of the test cases from the existing pool to reduce the
cost. A key question is how many and which test cases should be selected so that
the selected test cases are more likely to uncover new faults [42—-44].

After the completion of system-level testing, the product is delivered to the
customer. The customer performs their own series of tests, commonly known as
acceptance testing. The objective of acceptance testing is to measure the quality
of the product, rather than searching for the defects, which is objective of system
testing. A key notion in acceptance testing is the customer’s expectations from the
system. By the time of acceptance testing, the customer should have developed
their acceptance criteria based on their own expectations from the system. There
are two kinds of acceptance testing as explained in the following:

e User acceptance testing (UAT)

e Business acceptance testing (BAT)

Regression testing

Unit ,| Integration .|  System .| Acceptance
testing testing . testing " testing

Figure 1.8 Regression testing at different software testing levels. (From ref. 41. © 2005
John Wiley & Sons.)
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User acceptance testing is conducted by the customer to ensure that the system
satisfies the contractual acceptance criteria before being signed off as meeting user
needs. On the other hand, BAT is undertaken within the supplier’s development
organization. The idea in having a BAT is to ensure that the system will eventually
pass the user acceptance test. It is a rehearsal of UAT at the supplier’s premises.

1.14 SOURCES OF INFORMATION FOR TEST
CASE SELECTION

Designing test cases has continued to stay in the foci of the research community
and the practitioners. A software development process generates a large body of
information, such as requirements specification, design document, and source code.
In order to generate effective tests at a lower cost, test designers analyze the
following sources of information:

¢ Requirements and functional specifications
e Source code

¢ Input and output domains

¢ Operational profile

¢ Fault model

Requirements and Functional Specifications The process of software devel-
opment begins by capturing user needs. The nature and amount of user needs
identified at the beginning of system development will vary depending on the
specific life-cycle model to be followed. Let us consider a few examples. In the
Waterfall model [45] of software development, a requirements engineer tries to
capture most of the requirements. On the other hand, in an agile software develop-
ment model, such as XP [29] or the Scrum [46—48], only a few requirements
are identified in the beginning. A test engineer considers all the requirements
the program is expected to meet whichever life-cycle model is chosen to test a
program.

The requirements might have been specified in an informal manner, such as
a combination of plaintext, equations, figures, and flowcharts. Though this form of
requirements specification may be ambiguous, it is easily understood by customers.
For example, the Bluetooth specification consists of about 1100 pages of descrip-
tions explaining how various subsystems of a Bluetooth interface is expected to
work. The specification is written in plaintext form supplemented with mathemat-
ical equations, state diagrams, tables, and figures. For some systems, requirements
may have been captured in the form of use cases, entity—relationship diagrams,
and class diagrams. Sometimes the requirements of a system may have been spec-
ified in a formal language or notation, such as Z, SDL, Estelle, or finite-state
machine. Both the informal and formal specifications are prime sources of test
cases [49].
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Source Code Whereas a requirements specification describes the intended
behavior of a system, the source code describes the actual behavior of the system.
High-level assumptions and constraints take concrete form in an implementation.
Though a software designer may produce a detailed design, programmers may
introduce additional details into the system. For example, a step in the detailed
design can be “sort array A.” To sort an array, there are many sorting algorithms
with different characteristics, such as iteration, recursion, and temporarily using
another array. Therefore, test cases must be designed based on the program [50].

Input and Output Domains Some values in the input domain of a program
have special meanings, and hence must be treated separately [5]. To illustrate this
point, let us consider the factorial function. The factorial of a nonnegative integer
n is computed as follows:

factorial(0) = 1;
factorial(l) = 1;
factorial(n) = n * factorial (n-1);

A programmer may wrongly implement the factorial function as
factorial(n) =1 * 2 * ... * n;

without considering the special case of n = 0. The above wrong implementation
will produce the correct result for all positive values of n, but will fail for n = 0.

Sometimes even some output values have special meanings, and a program
must be tested to ensure that it produces the special values for all possible causes.
In the above example, the output value 1 has special significance: (i) it is the
minimum value computed by the factorial function and (ii) it is the only value
produced for two different inputs.

In the integer domain, the values O and 1 exhibit special characteristics
if arithmetic operations are performed. These characteristics are 0 x x =0 and
1 x x = x for all values of x. Therefore, all the special values in the input and
output domains of a program must be considered while testing the program.

Operational Profile As the term suggests, an operational profile is a quanti-
tative characterization of how a system will be used. It was created to guide test
engineers in selecting test cases (inputs) using samples of system usage. The notion
of operational profiles, or usage profiles, was developed by Mills et al. [52] at IBM
in the context of Cleanroom Software Engineering and by Musa [37] at AT&T Bell
Laboratories to help develop software systems with better reliability. The idea is
to infer, from the observed test results, the future reliability of the software when
it is in actual use. To do this, test inputs are assigned a probability distribution, or
profile, according to their occurrences in actual operation. The ways test engineers
assign probability and select test cases to operate a system may significantly differ
from the ways actual users operate a system. However, for accurate estimation
of the reliability of a system it is important to test a system by considering the
ways it will actually be used in the field. This concept is being used to test web
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applications, where the user session data are collected from the web servers to
select test cases [53, 54].

Fault Model Previously encountered faults are an excellent source of informa-
tion in designing new test cases. The known faults are classified into different
classes, such as initialization faults, logic faults, and interface faults, and stored in
a repository [55, 56]. Test engineers can use these data in designing tests to ensure
that a particular class of faults is not resident in the program.

There are three types of fault-based testing: error guessing, fault seeding,
and mutation analysis. In error guessing, a test engineer applies his experience
to (i) assess the situation and guess where and what kinds of faults might exist,
and (ii) design tests to specifically expose those kinds of faults. In fault seeding,
known faults are injected into a program, and the test suite is executed to assess
the effectiveness of the test suite. Fault seeding makes an assumption that a test
suite that finds seeded faults is also likely to find other faults. Mutation analysis is
similar to fault seeding, except that mutations to program statements are made in
order to determine the fault detection capability of the test suite. If the test cases are
not capable of revealing such faults, the test engineer may specify additional test
cases to reveal the faults. Mutation testing is based on the idea of fault simulation,
whereas fault seeding is based on the idea of fault injection. In the fault injection
approach, a fault is inserted into a program, and an oracle is available to assert that
the inserted fault indeed made the program incorrect. On the other hand, in fault
simulation, a program modification is not guaranteed to lead to a faulty program.
In fault simulation, one may modify an incorrect program and turn it into a correct
program.

1.15 WHITE-BOX AND BLACK-BOX TESTING

A key idea in Section 1.14 was that test cases need to be designed by consider-
ing information from several sources, such as the specification, source code, and
special properties of the program’s input and output domains. This is because all
those sources provide complementary information to test designers. Two broad con-
cepts in testing, based on the sources of information for test design, are white-box
and black-box testing. White-box testing techniques are also called structural test-
ing techniques, whereas black-box testing techniques are called functional testing
techniques.

In structural testing, one primarily examines source code with a focus on con-
trol flow and data flow. Control flow refers to flow of control from one instruction
to another. Control passes from one instruction to another instruction in a number
of ways, such as one instruction appearing after another, function call, message
passing, and interrupts. Conditional statements alter the normal, sequential flow
of control in a program. Data flow refers to the propagation of values from one
variable or constant to another variable. Definitions and uses of variables determine
the data flow aspect in a program.
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In functional testing, one does not have access to the internal details of a
program and the program is treated as a black box. A test engineer is concerned
only with the part that is accessible outside the program, that is, just the input
and the externally visible outcome. A test engineer applies input to a program,
observes the externally visible outcome of the program, and determines whether
or not the program outcome is the expected outcome. Inputs are selected from
the program’s requirements specification and properties of the program’s input and
output domains. A test engineer is concerned only with the functionality and the
features found in the program’s specification.

At this point it is useful to identify a distinction between the scopes of
structural testing and functional testing. One applies structural testing techniques
to individual units of a program, whereas functional testing techniques can be
applied to both an entire system and the individual program units. Since individual
programmers know the details of the source code they write, they themselves
perform structural testing on the individual program units they write. On the other
hand, functional testing is performed at the external interface level of a system,
and it is conducted by a separate software quality assurance group.

Let us consider a program unit U which is a part of a larger program P.
A program unit is just a piece of source code with a well-defined objective and
well-defined input and output domains. Now, if a programmer derives test cases
for testing U from a knowledge of the internal details of U, then the programmer
is said to be performing structural testing. On the other hand, if the programmer
designs test cases from the stated objective of the unit U and from his or her
knowledge of the special properties of the input and output domains of U, then he
or she is said to be performing functional testing on the same unit U'.

The ideas of structural testing and functional testing do not give programmers
and test engineers a choice of whether to design test cases from the source code
or from the requirements specification of a program. However, these strategies are
used by different groups of people at different times during a software’s life cycle.
For example, individual programmers use both the structural and functional testing
techniques to test their own code, whereas quality assurance engineers apply the
idea of functional testing.

Neither structural testing nor functional testing is by itself good enough to
detect most of the faults. Even if one selects all possible inputs, a structural testing
technique cannot detect all faults if there are missing paths in a program. Intuitively,
a path is said to be missing if there is no code to handle a possible condition.
Similarly, without knowledge of the structural details of a program, many faults
will go undetected. Therefore, a combination of both structural and functional
testing techniques must be used in program testing.

1.16 TEST PLANNING AND DESIGN

The purpose of system test planning, or simply test planning, is to get ready and
organized for test execution. A test plan provides a framework, scope, details of
resource needed, effort required, schedule of activities, and a budget. A framework
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is a set of ideas, facts, or circumstances within which the tests will be conducted.
The stated scope outlines the domain, or extent, of the test activities. The scope
covers the managerial aspects of testing, rather than the detailed techniques and
specific test cases.

Test design is a critical phase of software testing. During the test design
phase, the system requirements are critically studied, system features to be
tested are thoroughly identified, and the objectives of test cases and the detailed
behavior of test cases are defined. Test objectives are identified from different
sources, namely, the requirement specification and the functional specification,
and one or more test cases are designed for each test objective. Each test case is
designed as a combination of modular test components called fest steps. These
test steps can be combined together to create more complex, multistep tests. A
test case is clearly specified so that others can easily borrow, understand, and
reuse it.

It is interesting to note that a new test-centric approach to system development
is gradually emerging. This approach is called test-driven development (TDD) [57].
In test-driven development, programmers design and implement test cases before
the production code is written. This approach is a key practice in modern agile
software development processes such as XP. The main characteristics of agile
software development processes are (i) incremental development, (ii) coding of
unit and acceptance tests conducted by the programmers along with customers,
(iii) frequent regression testing, and (iv) writing test code, one test case at a time,
before the production code.

1.177 MONITORING AND MEASURING TEST
EXECUTION

Monitoring and measurement are two key principles followed in every scientific and
engineering endeavor. The same principles are also applicable to the testing phases
of software development. It is important to monitor certain metrics which truly
represent the progress of testing and reveal the quality level of the system. Based
on those metrics, the management can trigger corrective and preventive actions. By
putting a small but critical set of metrics in place the executive management will
be able to know whether they are on the right track [58]. Test execution metrics
can be broadly categorized into two classes as follows:

e Metrics for monitoring test execution

e Metrics for monitoring defects

The first class of metrics concerns the process of executing test cases, whereas
the second class concerns the defects found as a result of test execution. These
metrics need to be tracked and analyzed on a periodic basis, say, daily or weekly.
In order to effectively control a test project, it is important to gather valid and
accurate information about the project. One such example is to precisely know
when to trigger revert criteria for a test cycle and initiate root cause analysis of
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the problems before more tests can be performed. By triggering such a revert
criteria, a test manager can effectively utilize the time of test engineers, and pos-
sibly money, by suspending a test cycle on a product with too many defects to
carry out a meaningful system test. A management team must identify and mon-
itor metrics while testing is in progress so that important decisions can be made
[59]. It is important to analyze and understand the test metrics, rather than just
collect data and make decisions based on those raw data. Metrics are meaning-
ful only if they enable the management to make decisions which result in lower
cost of production, reduced delay in delivery, and improved quality of software
systems.

Quantitative evaluation is important in every scientific and engineering field.
Quantitative evaluation is carried out through measurement. Measurement lets one
evaluate parameters of interest in a quantitative manner as follows:

o Evaluate the effectiveness of a technique used in performing a task. One
can evaluate the effectiveness of a test generation technique by counting
the number of defects detected by test cases generated by following the
technique and those detected by test cases generated by other means.

o Evaluate the productivity of the development activities. One can keep track
of productivity by counting the number of test cases designed per day, the
number of test cases executed per day, and so on.

e Evaluate the quality of the product. By monitoring the number of defects
detected per week of testing, one can observe the quality level of the
system.

e Evaluate the product testing. For evaluating a product testing process, the
following two measurements are critical:

Test case effectiveness metric: The objective of this metric is twofold
as explained in what follows: (1) measure the “defect revealing
ability” of the test suite and (2) use the metric to improve the
test design process. During the unit, integration, and system test-
ing phases, faults are revealed by executing the planned test cases.
In addition to these faults, new faults are also found during a test-
ing phase for which no test cases had been designed. For these new
faults, new test cases are added to the test suite. Those new test
cases are called test case escaped (TCE). Test escapes occur because
of deficiencies in test design. The need for more testing occurs
as test engineers get new ideas while executing the planned test
cases.

Test effort effectiveness metric: It is important to evaluate the effective-
ness of the testing effort in the development of a product. After a
product is deployed at the customer’s site, one is interested to know
the effectiveness of testing that was performed. A common measure
of test effectiveness is the number of defects found by the customers
that were not found by the test engineers prior to the release of the
product. These defects had escaped our test effort.
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1.18 TEST TOOLS AND AUTOMATION

In general, software testing is a highly labor intensive task. This is because test cases
are to a great extent manually generated and often manually executed. Moreover,
the results of test executions are manually analyzed. The durations of those tasks
can be shortened by using appropriate tools. A test engineer can use a variety of
tools, such as a static code analyzer, a test data generator, and a network analyzer,
if a network-based application or protocol is under test. Those tools are useful in
increasing the efficiency and effectiveness of testing.

Test automation is essential for any testing and quality assurance division of
an organization to move forward to become more efficient. The benefits of test
automation are as follows:

e Increased productivity of the testers

o Better coverage of regression testing

e Reduced durations of the testing phases
¢ Reduced cost of software maintenance

e Increased effectiveness of test cases

Test automation provides an opportunity to improve the skills of the test
engineers by writing programs, and hence their morale. They will be more focused
on developing automated test cases to avoid being a bottleneck in product delivery
to the market. Consequently, software testing becomes less of a tedious job.

Test automation improves the coverage of regression testing because of accu-
mulation of automated test cases over time. Automation allows an organization to
create a rich library of reusable test cases and facilitates the execution of a con-
sistent set of test cases. Here consistency means our ability to produce repeated
results for the same set of tests. It may be very difficult to reproduce test results in
manual testing, because exact conditions at the time and point of failure may not
be precisely known. In automated testing it is easier to set up the initial conditions
of a system, thereby making it easier to reproduce test results. Test automation
simplifies the debugging work by providing a detailed, unambiguous log of activ-
ities and intermediate test steps. This leads to a more organized, structured, and
reproducible testing approach.

Automated execution of test cases reduces the elapsed time for testing, and,
thus, it leads to a shorter time to market. The same automated test cases can be
executed in an unsupervised manner at night, thereby efficiently utilizing the differ-
ent platforms, such as hardware and configuration. In short, automation increases
test execution efficiency. However, at the end of test execution, it is important to
analyze the test results to determine the number of test cases that passed or failed.
And, if a test case failed, one analyzes the reasons for its failure.

In the long run, test automation is cost-effective. It drastically reduces the soft-
ware maintenance cost. In the sustaining phase of a software system, the regression
tests required after each change to the system are too many. As a result, regression
testing becomes too time and labor intensive without automation.
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A repetitive type of testing is very cumbersome and expensive to perform
manually, but it can be automated easily using software tools. A simple repetitive
type of application can reveal memory leaks in a software. However, the application
has to be run for a significantly long duration, say, for weeks, to reveal memory
leaks. Therefore, manual testing may not be justified, whereas with automation it
is easy to reveal memory leaks. For example, stress testing is a prime candidate for
automation. Stress testing requires a worst-case load for an extended period of time,
which is very difficult to realize by manual means. Scalability testing is another
area that can be automated. Instead of creating a large test bed with hundreds of
equipment, one can develop a simulator to verify the scalability of the system.

Test automation is very attractive, but it comes with a price tag. Sufficient
time and resources need to be allocated for the development of an automated test
suite. Development of automated test cases need to be managed like a programming
project. That is, it should be done in an organized manner; otherwise it is highly
likely to fail. An automated test suite may take longer to develop because the test
suite needs to be debugged before it can be used for testing. Sufficient time and
resources need to be allocated for maintaining an automated test suite and setting up
a test environment. Moreover, every time the system is modified, the modification
must be reflected in the automated test suite. Therefore, an automated test suite
should be designed as a modular system, coordinated into reusable libraries, and
cross-referenced and traceable back to the feature being tested.

It is important to remember that test automation cannot replace manual test-
ing. Human creativity, variability, and observability cannot be mimicked through
automation. Automation cannot detect some problems that can be easily observed
by a human being. Automated testing does not introduce minor variations the way
a human can. Certain categories of tests, such as usability, interoperability, robust-
ness, and compatibility, are often not suited for automation. It is too difficult to
automate all the test cases; usually 50% of all the system-level test cases can be
automated. There will always be a need for some manual testing, even if all the
system-level test cases are automated.

The objective of test automation is not to reduce the head counts in the
testing department of an organization, but to improve the productivity, quality, and
efficiency of test execution. In fact, test automation requires a larger head count in
the testing department in the first year, because the department needs to automate
the test cases and simultaneously continue the execution of manual tests. Even after
the completion of the development of a test automation framework and test case
libraries, the head count in the testing department does not drop below its original
level. The test organization needs to retain the original team members in order to
improve the quality by adding more test cases to the automated test case repository.

Before a test automation project can proceed, the organization must assess
and address a number of considerations. The following list of prerequisites must
be considered for an assessment of whether the organization is ready for test
automation:

e The test cases to be automated are well defined.

e Test tools and an infrastructure are in place.



26  CHAPTER1 BASIC CONCEPTS AND PRELIMINARIES

e The test automation professionals have prior successful experience in
automation.

¢ Adequate budget should have been allocated for the procurement of soft-
ware tools.

1.19 TEST TEAM ORGANIZATION AND MANAGEMENT

Testing is a distributed activity conducted at different levels throughout the life
cycle of a software. These different levels are unit testing, integration testing, sys-
tem testing, and acceptance testing. It is logical to have different testing groups in
an organization for each level of testing. However, it is more logical—and is the
case in reality—that unit-level tests be developed and executed by the programmers
themselves rather than an independent group of unit test engineers. The program-
mer who develops a software unit should take the ownership and responsibility
of producing good-quality software to his or her satisfaction. System integration
testing is performed by the system integration test engineers. The integration test
engineers involved need to know the software modules very well. This means that
all development engineers who collectively built all the units being integrated
need to be involved in integration testing. Also, the integration test engineers
should thoroughly know the build mechanism, which is key to integrating large
systems.

A team for performing system-level testing is truly separated from the devel-
opment team, and it usually has a separate head count and a separate budget. The
mandate of this group is to ensure that the system requirements have been met and
the system is acceptable. Members of the system test group conduct different cate-
gories of tests, such as functionality, robustness, stress, load, scalability, reliability,
and performance. They also execute business acceptance tests identified in the user
acceptance test plan to ensure that the system will eventually pass user acceptance
testing at the customer site. However, the real user acceptance testing is executed
by the client’s special user group. The user group consists of people from differ-
ent backgrounds, such as software quality assurance engineers, business associates,
and customer support engineers. It iS a common practice to create a temporary
user acceptance test group consisting of people with different backgrounds, such
as integration test engineers, system test engineers, customer support engineers,
and marketing engineers. Once the user acceptance is completed, the group is dis-
mantled. It is recommended to have at least two test groups in an organization:
integration test group and system test group.

Hiring and retaining test engineers are challenging tasks. Interview is the
primary mechanism for evaluating applicants. Interviewing is a skill that improves
with practice. It is necessary to have a recruiting process in place in order to be
effective in hiring excellent test engineers. In order to retain test engineers, the
management must recognize the importance of testing efforts at par with develop-
ment efforts. The management should treat the test engineers as professionals and
as a part of the overall team that delivers quality products.
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1.20 OUTLINE OF BOOK

With the above high-level introduction to quality and software testing, we are now
in a position to outline the remaining chapters. Each chapter in the book covers
technical, process, and/or managerial topics related to software testing. The topics
have been designed and organized to facilitate the reader to become a software test
specialist. In Chapter 2 we provide a self-contained introduction to the theory and
limitations of software testing.

Chapters 3—6 treat unit testing techniques one by one, as quantitatively
as possible. These chapters describe both static and dynamic unit testing. Static
unit testing has been presented within a general framework called code review,
rather than individual techniques called inspection and walkthrough. Dynamic unit
testing, or execution-based unit testing, focuses on control flow, data flow, and
domain testing. The JUnit framework, which is used to create and execute dynamic
unit tests, is introduced. We discuss some tools for effectively performing unit
testing.

Chapter 7 discusses the concept of integration testing. Specifically, five kinds
of integration techniques, namely, top down, bottom up, sandwich, big bang, and
incremental, are explained. Next, we discuss the integration of hardware and soft-
ware components to form a complete system. We introduce a framework to develop
a plan for system integration testing. The chapter is completed with a brief discus-
sion of integration testing of off-the-shelf components.

Chapters 8—13 discuss various aspects of system-level testing. These six
chapters introduce the reader to the technical details of system testing that is the
practice in industry. These chapters promote both qualitative and quantitative eval-
uation of a system testing process. The chapters emphasize the need for having an
independent system testing group. A process for monitoring and controlling sys-
tem testing is clearly explained. Chapter 14 is devoted to acceptance testing, which
includes acceptance testing criteria, planning for acceptance testing, and acceptance
test execution.

Chapter 15 contains the fundamental concepts of software reliability and their
application to software testing. We discuss the notion of operation profile and its
application in system testing. We conclude the chapter with the description of an
example and the time of releasing a system by determining the additional length
of system testing. The additional testing time is calculated by using the idea of
software reliability.

In Chapter 16, we present the structure of test groups and how these groups
can be organized in a software company. Next, we discuss how to hire and retain
test engineers by providing training, instituting a reward system, and establishing
an attractive career path for them within the testing organization. We conclude this
chapter with the description of how to build and manage a test team with a focus
on teamwork rather than individual gain.

Chapters 17 and 18 explain the concepts of software quality and different
maturity models. Chapter 17 focuses on quality factors and criteria and describes
the ISO 9126 and ISO 9000:2000 standards. Chapter 18 covers the CMM, which
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was developed by the SEI at Carnegie Mellon University. Two test-related models,
namely the TPI model and the TMM, are explained at the end of Chapter 18.

We define the key words used in the book in a glossary at the end of the book.
The reader will find about 10 practice exercises at the end of each chapter. A list
of references is included at the end of each chapter for a reader who would like to
find more detailed discussions of some of the topics. Finally, each chapter, except
this one, contains a literature review section that, essentially, provides pointers to
more advanced material related to the topics. The more advanced materials are
based on current research and alternate viewpoints.
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Exercises

. Explain the principles of statistical quality control. What are the tools used for

this purpose? Explain the principle of a control chart.

. Explain the concept of lean principles.

3. What is an “Ishikawa” diagram? When should the Ishikawa diagram be used?

0 N N W

10.
1.
12.

Provide a procedure to construct an Ishikawa diagram.

What is total quality management (TQM)? What is the difference between
TQM and TQC?

. Explain the differences between validation and verification.
. Explain the differences between failure, error, and fault.

. What is a test case? What are the objectives of testing?

Explain the concepts of unit, integration, system, acceptance, and regression
testing.

What are the different sources from which test cases can be selected?
What is the difference between fault injection and fault simulation?
Explain the differences between structural and functional testing.

What are the strengths and weaknesses of automated testing and manual
testing?



CHAPTER 2

Theory of Program Testing

He who loves practice without theory is like the sailor who boards [a] ship
without a rudder and compass and never knows where he may cast.
— Leonardo da Vinci

2.1 BASIC CONCEPTS IN TESTING THEORY

The idea of program testing is as old as computer programming. As computer
programs got larger and larger since their early days in the 1960s, the need for
eliminating defects from them in a systematic manner received more attention.
Both the research community and the practitioners became more deeply involved
in software testing. Thus, in the 1970s, a new field of research called testing theory
emerged. Testing theory puts emphasis on the following:

o Detecting defects through execution-based testing

e Designing test cases from different sources, namely, requirement specifi-
cation, source code, and the input and output domains of programs

o Selecting a subset of test cases from the set of all possible test cases [1, 2]
o Effectiveness of the test case selection strategy [3—5]

e Test oracles used during testing [6, 7]

o Prioritizing the execution of the selected test cases [8]

e Adequacy analysis of test cases [9—15]

A theoretical foundation of testing gives testers and developers valuable
insight into software systems and the development processes. As a consequence,
testers design more effective test cases at a lower cost. While considering testing
theory, there may be a heightened expectation that it lets us detect all the defects
in a computer program. Any testing theory must inherit the fundamental limitation
of testing. The limitation of testing has been best articulated by Dijkstra: Testing
can only reveal the presence of errors, never their absence [16]. In spite of the
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said limitation, testing remains as the most practical and reliable method for defect
detection and quality improvement.

In this chapter, three well-known testing theories are discussed. These are
Goodenough and Gerhart’s theory [17], Weyuker and Ostrand’s theory [18], and
Gourlay’s theory [19]. Goodenough and Gerhart introduced some key concepts such
as an ideal test, reliability and validity of a test, test selection criteria, thorough
test, and five categories of program errors. Weyuker and Ostrand refined some
of the above ideas in the form of uniformly reliable criterion, uniformly valid
criterion, and uniformly ideal test. Gourlay introduced the concept of a fest system
and a general method for comparing different test methods.

2.2 THEORY OF GOODENOUGH AND GERHART

Goodenough and Gerhart published a seminal paper [17] in 1975 on test data
selection. This paper gave a fundamental testing concept, identified a few types of
program errors, and gave a theory for selecting test data from the input domain
of a program. Though this theory is not without critiques, it is widely quoted and
appreciated in the research community of software testing.

2.2.1 Fundamental Concepts

Let D be the input domain of a program P. Let T C D. The result of executing P
with input d € D is denoted by P(d) (Figure 2.1):

OK(d): Define a predicate OK(d) which expresses the acceptability of result
P(d). Thus, OK(d) = true if and only if P(d) is an acceptable outcome.

SUCCESSFUL(T): For a given T €D, T is a successful test, denoted by
SUCCESSFUL(T), if and only if, Vt €T, OK(¢). Thus, SUCCESS-
FUL(T) = true if and only if, V¢ € T, OK().

Ideal Test: T constitutes an ideal test if
OK(t) Vt e T = OK(d) Vd € D

An ideal test is interpreted as follows. If from the successful execution
of a sample of the input domain we can conclude that the program con-
tains no errors, then the sample constitutes an ideal test. Practitioners may

Input domain D

Program P(d)
P

Figure 2.1 Executing a program with a subset of the input domain.
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loosely interpret “no error” as “not many errors of severe consequences.”
The validity of the above definition of an ideal test depends on how “thor-
oughly” T exercises P. Some people equate thorough test with exhaustive
or complete test, in which case T = D.

COMPLETE(T, C): A thorough test T is defined to be one satisfying COM-
PLETE(T,C), where COMPLETE is a predicate that defines how some
test selection criteria C is used in selecting a particular set of test data 7
from D. COMPLETE(T, C) will be defined in a later part of this section.
Essentially, C defines the properties of a program that must be exercised
to constitute a thorough test.

Reliable Criterion: A selection criterion C is reliable if and only if either
every test selected by C is successful or no test selected is successful.
Thus, reliability refers to consistency.

Valid Criterion: A selection criterion C is valid if and only if whenever P
is incorrect C selects at least one test set 7 which is not successful for P.
Thus, validity refers to the ability to produce meaningful results.

Fundamental — Theorem. (37 C D)(COMPLETE(T, C) A RELIABLE(C) A
VALID(C) A SUCCESSFUL(T)) = (Vd € D)OK(d)

Proof. Let P be a program and D be the set of inputs for P. Let d be a member
of D. We assume that P fails on input d. In other words, the actual outcome of
executing P with input d is not the same as the expected outcome. In the form of
our notation, —~OK(d) is true. VALID(C) implies that there exists a complete set
of test data T such that =SUCCESSFUL(T). RELIABLE(C) implies that if one
complete test fails, all tests fail. However, this leads to a contradiction that there
exists a complete test that is successfully executed.

One may be tempted to find a reliable and valid criterion, if it exists, so that
all faults can be detected with a small set of test cases. However, there are several
difficulties in applying the above theory, as explained in the following:

e Since faults in a program are unknown, it is impossible to prove the reli-
ability and validity of a criterion. A criterion is guaranteed to be both
reliable and valid if it selects the entire input domain D. However, this is
undesirable and impractical.

o Neither reliability nor validity is preserved during the debugging process,
where faults keep disappearing.

o If the program P is correct, then any test will be successful and every
selection criterion is reliable and valid.

o If P is not correct, there is in general no way of knowing whether a criterion
is ideal without knowing the errors in P.
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2.2.2 Theory of Testing

Let D be the input domain of a program P. Let C denote a set of test predicates.
If d € D satisfies test predicate ¢ € C, then c(d) is said to be true. Selecting data to
satisfy a test predicate means selecting data to exercise the condition combination
in the course of executing P.

With the above idea in mind, COMPLETE(T, C), where T C D, is defined
as follows:

COMPLETE(T,C) = (Ve € C)(Ft € T)c(t) A (Yt € T)(3c € C)e(t)

The above theory means that, for every test predicate, we select a test such that
the test predicate is satisfied. Also, for every test selected, there exists a test pred-
icate which is satisfied by the selected test. The definitions of an ideal test and
thoroughness of a test do not reveal any relationship between them. However, we
can establish a relationship between the two in the following way.

Let B be the set of faults (or bugs) in a program P revealed by an ideal test
T;. Let a test engineer identify a set of test predicates C; and design a set of test
cases T'1, such that COMPLETE(T |, C) is satisfied. Let B represent the set of
faults revealed by 7';. There is no guarantee that 7'; reveals all the faults. Later,
the test engineer identifies a larger set of test predicates C, such that C, D C| and
designs a new set of test cases T such that 7o D T and COMPLETE(T;, C») is
satisfied. Let B, be the set of faults revealed by T». Assuming that the additional
test cases selected reveal more faults, we have B, D B . If the test engineer repeats
this process, he may ultimately identify a set of test predicates C; and design a set
of test cases T'; such that COMPLETE(T;, C ) is satisfied and T'; reveals the entire
set of faults B. In this case, 7 is a thorough test satisfying COMPLETE(T;, C)
and represents an ideal test set.

2.2.3 Program Errors

Any approach to testing is based on assumptions about the way program faults
occur. Faults are due to two main reasons:

o Faults occur due to our inadequate understanding of all conditions with
which a program must deal.

o Faults occur due to our failure to realize that certain combinations of con-
ditions require special treatments.

Goodenough and Gerhart classify program faults as follows:

e Logic Fault: This class of faults means a program produces incorrect
results independent of resources required. That is, the program fails because
of the faults present in the program and not because of a lack of resources.
Logic faults can be further split into three categories:

Requirements fault: This means our failure to capture the real require-
ments of the customer.
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Design fault: This represents our failure to satisfy an understood
requirement.

Construction fault: This represents our failure to satisfy a design. Sup-
pose that a design step says “Sort array A.” To sort the array with N
elements, one may choose one of several sorting algorithms. Let

for (i = 0; i < N; i++) {

}

be the desired for loop construct to sort the array. If a programmer
writes the for loop in the form

for (1 = 0; 1 <= N; 1i++){

}

then there is a construction error in the implementation.

o Performance Fault: This class of faults leads to a failure of the program
to produce expected results within specified or desired resource limitations.

A thorough test must be able to detect faults arising from any of the above
reasons. Test data selection criteria must reflect information derived from each stage
of software development. Since each type of fault is manifested as an improper
effect produced by an implementation, it is useful to categorize the sources of faults
in implementation terms as follows:

Missing Control Flow Paths: Intuitively, a control flow path, or simply a
path, is a feasible sequence of instructions in a program. A path may be
missing from a program if we fail to identify a condition and specify a
path to handle that condition. An example of a missing path is our failure
to test for a zero divisor before executing a division. If we fail to recognize
that a divisor can take a zero value, then we will not include a piece of
code to handle the special case. Thus, a certain desirable computation will
be missing from the program.

Inappropriate Path Selection: A program executes an inappropriate path if
a condition is expressed incorrectly. In Figure 2.2, we show a desired
behavior and an implemented behavior. Both the behaviors are identical
except in the condition part of the if statement. The if part of the imple-
mented behavior contains an additional condition B. It is easy to see that

Desired behavior  Implemented behavior

if (A) proc1(); if (A&&B) procl();
else  proc2(); else proc2();

Figure 2.2 Example of inappropriate path selection.
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both the desired part and the implemented part behave in the same way
for all combinations of values of A and B except when A = 1 and B = 0.

Inappropriate or Missing Action: There are three instances of this class of
fault:

e One may calculate a value using a method that does not necessarily
give the correct result. For example, a desired expression is x = x X w,
whereas it is wrongly written as x = x + w. These two expressions
produce identical results for several combinations of x and w, such as
x = 1.5 and w = 3, for example.

o Failing to assign a value to a variable is an example of a missing action.
¢ Calling a function with the wrong argument list is a kind of inappropriate
action.

The main danger due to an inappropriate or missing action is that the action is
incorrect only under certain combinations of conditions. Therefore, one must do
the following to find test data that reliably reveal errors:

o Identify all the conditions relevant to the correct operation of a program.

o Select test data to exercise all possible combinations of these conditions.
The above idea of selecting test data leads us to define the following terms:

Test Data: Test data are actual values from the input domain of a program

that collectively satisfy some test selection criteria.

Test Predicate: A test predicate is a description of conditions and combina-
tions of conditions relevant to correct operation of the program:

o Test predicates describe the aspects of a program that are to be tested.
Test data cause these aspects to be tested.

o Test predicates are the motivating force for test data selection.

o Components of test predicates arise first and primarily from the speci-
fications for a program.

¢ Further conditions and predicates may be added as implementations are
considered.

2.2.4 Conditions for Reliability

A set of test predicates must at least satisfy the following conditions to have any
chance of being reliable. These conditions are key to meaningful testing:

o Every individual branching condition in a program must be represented by
an equivalent condition in C.

o Every potential termination condition in the program, for example, an over-
flow, must be represented by a condition in C.

e Every condition relevant to the correct operation of the program that is
implied by the specification and knowledge of the data structure of the
program must be represented as a condition in C.
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2.2.5 Drawbacks of Theory

Several difficulties prevent us from applying Goodenough and Gerhart’s theory of
an ideal test as follows [18]:

e The concepts of reliability and validity have been defined with respect to
the entire input domain of a program. A criterion is guaranteed to be both
reliable and valid if and only if it selects the entire domain as a single test.
Since such exhaustive testing is impractical, one will have much difficulty
in assessing the reliability and validity of a criterion.

o The concepts of reliability and validity have been defined with respect to a
program. A test selection criterion that is reliable and valid for one program
may not be so for another program. The goodness of a test set should be
independent of individual programs and the faults therein.

o Neither validity nor reliability is preserved throughout the debugging pro-
cess. In practice, as program failures are observed, the program is debugged
to locate the faults, and the faults are generally fixed as soon as they are
found. During this debugging phase, as the program changes, so does the
idealness of a test set. This is because a fault that was revealed before
debugging is no more revealed after debugging and fault fixing. Thus,
properties of test selection criteria are not even ‘“monotonic” in the sense
of being either always gained or preserved or always lost or preserved.

2.3 THEORY OF WEYUKER AND OSTRAND

A key problem in the theory of Goodenough and Gerhart is that the reliability and
validity of a criterion depend upon the presence of faults in a program and their
types. Weyuker and Ostrand [18] provide a modified theory in which the validity
and reliability of test selection criteria are dependent only on the program specifi-
cation, rather than a program. They propose the concept of a uniformly ideal test
selection criterion for a given output specification. In the theory of Goodenough
and Gerhart, implicit in the definitions of the predicates OK(d) and SUCCESS-
FUL(T) is a program P. By abbreviating SUCCESSFUL() as SUCC(), the two
predicates are rewritten as follows:

OK(P, d): Define a predicate OK(P, d) which expresses the acceptability of
result P(d). Thus, OK(P,d) = true if and only if P(d) is an acceptable
outcome of program P.

SUCC(P, T): For a given TCD, T is a successful test for a program
P, denoted by SUCC(P,T), if and only if, VteT, OK(P,t). Thus,
SUCC(T) = true if and only if, Vt € T, OK(P, t).

With the above definitions of OK(P, d) and SUCC(P, T), the concepts of uniformly
valid criterion, uniformly reliable criterion, and uniformly ideal test selection are
defined as follows.
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Uniformly Valid Criterion C: Criterion C is uniformly valid iff
(YP)[(3d € D)(—OK(P,d)) = (AT < D)(C(T) & —~SUCC(P, T))]
Uniformly Reliable Criterion C: Criterion C is uniformly reliable iff

(YP)(VT, VT, < D)[(C(T1) & C(T2)) = (SUCC(P, T1)
& SUCC(P, Tr))]

Uniformly Ideal Test Selection: A uniformly ideal test selection criterion for
a given specification is both uniformly valid and uniformly reliable.

The external quantifier (VP) binding the free variable P in the definition of uni-
formly valid criterion C essentially means that the rest of the predicate holds for
all programs P for a given output specification. Similarly, the external quantifier
(VP) binding the free variable P in the definition of uniformly reliable criterion C
means that the rest of the predicate holds for all programs P for a given output
specification.

Since a uniformly ideal test selection criterion is defined over all programs for
a given specification, it was intended to solve all the program-dependent difficulties
in the definitions given by Goodenough and Gerhart. However, the concept of
uniformly ideal test selection also has several flaws. For example, for any significant
program there can be no uniformly ideal criterion that is not trivial in the sense of
selecting the entire input domain D. A criterion C is said to be trivially valid if
the union of all tests selected by C is D. Hence, the following theorems.

Theorem. A criterion C is uniformly valid if and only if C is trivially valid.

Proof. Obviously a trivially valid criterion is valid. Now we need to show that a
criterion C which is not trivially valid cannot be uniformly valid for a given output
specification. For any element d not included in any test of C, one can write a
program which is incorrect for d and correct for D — {d}.

Theorem. A criterion C is uniformly reliable if and only if C selects a single
test set.

Proof. If C selects only one test, it is obviously reliable for any program. Now,
assume that C selects different tests 71 and 7, and that t€ T but t ¢ T,. A
program P exists which is correct with respect to test inputs in 7 but incorrect
on ¢. Thus, the two tests yield different results for P, and C is not reliable.

Now, we can combine the above two theorems to have the following corollary.

Corollary. A criterion C is uniformly valid and uniformly reliable if and only if
C selects only the single test set 7 = D.
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An important implication of the above corollary is that uniform validity and
uniform reliability lead to exhaustive testing —and exhaustive testing is considered
to be impractical. Next, the above corollary is reformulated to state that irrespective
of test selection criterion used and irrespective of tests selected, except the entire
D, one can always write a program which can defeat the tests. A program P is
said to defeat a test T if P passes T but fails on some other valid input. This is
paraphrasing the well-known statement of Dijkstra that testing can only reveal the
presence of errors, never their absence [16].

Reliability and validity of test selection criterion are ideal goals, and ideal
goals are rarely achieved. It is useful to seek less ideal but usable goals. By set-
tling for less ideal goals, we essentially accept the reality that correctness of large
programs is not something that we strive to achieve.

Weyuker and Ostrand [18] have introduced the concept of a revealing crite-
rion with respect to a subdomain, where a subdomain S is a subset of the input
domain D. A test selection criterion C is revealing for a subdomain S if when-
ever S contains an input which is processed incorrectly then every test set which
satisfies C is unsuccessful. In other words, if any test selected by C is success-
fully executed, then every test in S produces correct output. A predicate called
REVEALING(C, S) captures the above idea in the following definition:

REVEALING(C, ) iff (3d € S)(=OK(d)) = (VT C S)(C(T) = =SUCC(T))

The key advantage in a revealing criterion is that it concerns only a subset of the
input domain, rather than the entire input domain. By considering a subset of the
input domain, programmers can concentrate on local errors. An important task in
applying the idea of a revealing criterion is to partition the input domain into smaller
subdomains, which is akin to partitioning a problem into a set of subproblems.
However, partitioning a problem into subproblems has been recognized to be a
difficult task.

2.4 THEORY OF GOURLAY

An ideal goal in software development is to find out whether or not a program is
correct, where a correct program is void of faults. Much research results have been
reported in the field of program correctness. However, due to the highly constrained
nature of program verification techniques, no developer makes any effort to prove
the correctness of even small programs of, say, a few thousand lines, let alone
large programs with millions of lines of code. Instead, testing is accepted in the
industry as a practical way of finding faults in programs. The flip side of testing
is that it cannot be used to settle the question of program correctness, which is the
ideal goal. Even though testing cannot settle the program correctness issue, there
is a need for a testing theory to enable us to compare the power of different test
methods.

To motivate a theoretical discussion of testing, we begin with an ideal process
for software development, which consists of the following steps:
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e A customer and a development team specify the needs.

o The development team takes the specification and attempts to write a pro-
gram to meet the specification.

o A test engineer takes both the specification and the program and selects
a set of test cases. The test cases are based on the specification and the
program.

o The program is executed with the selected test data, and the test outcome
is compared with the expected outcome.

e The program is said to have faults if some tests fail.

¢ One can say the program to be ready for use if it passes all the test cases.

We focus on the selection of test cases and the interpretation of their results.
We assume that the specification is correct, and the specification is the sole arbiter
of the correctness of the program. The program is said to be correct if and only if
it satisfies the specification. Gourlay’s testing theory [19] establishes a relationship
between three sets of entities, namely, specifications, programs, and tests, and
provides a basis for comparing different methods for selecting tests.

2.4.1 Few Definitions

The set of all programs are denoted by &, the set of all specifications by 4, and
the set of all tests by 7. Members of & will be denoted by p and g, members of
4 will be denoted by r and s, and members of T~ will be denoted by ¢ and u.

Uppercase letters will denote subsets of #, 4, and T . For examples,
pePCP and teT C T, where ¢ denotes a single test case. The correctness of
a program p with respect to a specification s will be denoted by p corrs. Given
s, p, and t, the predicate p ok(¢#) s means that the result of testing p under 7 is
judged successful by specification s. The reader may recall that 7 denotes a set
of test cases, and p ok(7') s is true if and only if p ok(t) s Vt€T.

We must realize that if a program is correct, then it will never produce any
unexpected outcome with respect to the specification. Thus, p corrs = p ok(z) s
Vt.

Definition. A resting system is a collection < P, S, 7T, corr, ok >, where &P,
4, and T are arbitrary sets, corrC &P x 4, sets, ok CT x P x4, and
VpVsVt(p corr s = p ok(t)s).

Definition. Given a testing system < P, S, 7, corr, ok > a new system < P, S,
T’ corr, ok’ > is called a set construction, where 7 is the set of all subsets of 7,
and where p ok/(T)s < Vi(t € T = p ok(r)s). (The reader may recall that T is a
member of 7/ because T C T.)

Theorem. < P, S, 7', corr, ok’ >, a set construction on a testing system < P, S,
T, corr, ok >, is itself a testing system.
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Proof. 'We need to show that p corr s = p ok'(T) s. Assume that p corr s holds.
By assumption, the original system is a testing system. Thus, V¢, p ok(z) s. If we
choose a test set T, we know that, V¢ € T, p ok(z) s. Therefore, p ok’(T) s holds.

The set construction is interpreted as follows. A test consists of a number of trials
of some sort, and success of the test as a whole depends on success of all the
trials. In fact, this is the rule in testing practice, where a test engineer must run a
program again and again on a variety of test data. Failure of any one run is enough
to invalidate the program.

Definition. Given a testing system < &, 48,7 ,corr,ok>a new system < P,
8, T, corr,ok’ > is called a choice construction, where 7' is the set of subsets of
7, and where p ok'(T) s < 3r(t € TAp ok(z) s). (The reader may recall that T is
a member of 7 because T C T.)

Theorem. < P,48,7, corr,ok’ >, a choice construction on a testing system
<P,48,7T, corr,ok >, is itself a testing system.

Proof. Similar to the previous theorem, we need to show that p corrs = p ok/(T")
s. Assume that p corrs. Thus, V¢, p ok(r) s. If we pick a nonempty test set 7', we
know that 3¢ € T such that p ok(?) s. Thus, we can write VT'(T # ¢ = Jt(t € TAp
ok(t) s)), and VT(T # ¢ = p ok/(T) s). The empty test set ¢ must be excluded
from (77°) because a testing system must include at least one test.

The choice construction models the situation in which a test engineer is given a
number of alternative ways of testing the program, all of which are assumed to be
equivalent.

Definition. A test method is a function M:P x § — T .

That is, in the general case, a test method takes the specification S and an imple-
mentation program P and produces test cases. In practice, test methods are pre-
dominantly program dependent, specification dependent, or totally dependent on
the expectations of customers, as explained below:

e Program Dependent: In this case, 7 = M (P), that is, test cases are
derived solely based on the source code of a system. This is called
white-box testing. Here, a test method has complete knowledge of the
internal details of a program. However, from the viewpoint of practical
testing, a white-box method is not generally applied to an entire program.
One applies such a method to small units of a given large system. A unit
refers to a function, procedure, method, and so on. A white-box method
allows a test engineer to use the details of a program unit. Effective use of
a program unit requires a thorough understanding of the unit. Therefore,
white-box test methods are used by programmers to test their own code.
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o Specification Dependent: In this case, 7 = M(S), that is, test cases
are derived solely based on the specification of a system. This is called
black-box testing. Here, a test method does not have access to the internal
details of a program. Such a method uses information provided in the
specification of a system. It is not unusual to use an entire specification
in the generation of test cases because specifications are much smaller in
size than their corresponding implementations. Black-box methods are
generally used by the development team and an independent system test
group.

o Expectation Dependent: In practice, customers may generate test cases
based on their expectations from the product at the time of taking delivery
of the system. These test cases may include continuous-operation tests,
usability tests, and so on.

2.4.2 Power of Test Methods

A tester is concerned with the methods to produce test cases and to compare test
methods so that they can identify an appropriate test method. Let M and N be two
test methods. For M to be at least as good as N, we must have the situation that
whenever N finds an error, so does M. In other words, whenever a program fails
under a test case produced by method N, it will also fail under a test case produced
by method M, with respect to the same specification. Therefore, Fy C Fy;, where
Fy and Fy; are the sets of faults discovered by test sets produced by methods N
and M, respectively.

Let Ty and Ty be the set of test cases produced by methods M and N,
respectively. Then, we need to follow two ways to compare their fault detection
power.

Case 1: Ty 2 Ty. In this case, it is clear that method M is at least as good
as method N. This is because method M produces test cases which reveal
all the faults revealed by test cases produced by method N. This case is
depicted in Figure 2.3a.

Case 2: Ty and Ty overlap, but Ty 2 Ty. This case suggests that Ty
does not totally contain 7. To be able to compare their fault detection
ability, we execute the program P under both sets of test cases, namely
Ty and Ty. Let Fy; and Fy be the sets of faults detected by test sets
Ty and Ty, respectively. If Fy; O Fy, then we say that method M is at
least as good as method N. This situation is explained in Figure 2.3b.

2.5 ADEQUACY OF TESTING

Testing gives designers and programmers much confidence in a software component
or a complete product if it passes their test cases. Assume that a set of test cases
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Figure 2.3 Different ways of comparing power of test methods: (a) produces all test
cases produced by another method; (b) test sets have common elements.

T has been designed to test a program P. We execute P with the test set 7. If T
reveals faults in P, then we modify the program in an attempt to fix those faults.
At this stage, there may be a need to design some new test cases, because, for
example, we may include a new procedure in the code. After modifying the code,
we execute the program with the new test set. Thus, we execute the test-and-fix
loop until no more faults are revealed by the updated test set. Now we face a
dilemma as follows: Is P really fault free, or is 7 not good enough to reveal
the remaining faults in P? From testing we cannot conclude that P is fault free,
since, as Dijkstra observed, testing can reveal the presence of faults, but not their
absence. Therefore, if P passes T, we need to know that T is “good enough” or,
in other words, that 7 is an adequate set of tests. It is important to evaluate the
adequacy of T because if 7 is found to be not adequate, then more test cases need
to be designed, as illustrated in Figure 2.4. Adequacy of 7 means whether or not
T thoroughly tests P.

Ideally, testing should be performed with an adequate test set T. Intuitively,
the idea behind specifying a criterion for evaluating test adequacy is to know
whether or not sufficient testing has been done. We will soon return to the idea of
test adequacy. In the absence of test adequacy, developers will be forced to use ad
hoc measures to decide when to stop testing. Some examples of ad hoc measures
for stopping testing are as follows [13]:

o Stop when the allocated time for testing expires.
e Stop when it is time to release the product.
e Stop when all the test cases execute without revealing faults.

Figure 2.4 depicts two important notions concerning test design and evaluating test
adequacy as follows:
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Design a set of test cases T
to test a program P.

A A

N

Execute P with 7.

Does T reveal
faults in P?

Fix the faults in P. If there
is a need, augment 7" with
new test cases.

Is T an

adequate test set? Augment 7 with new test cases.

Figure 2.4 Context of applying test adequacy.

e Adequacy of a test set T is evaluated after it is found that T reveals no
more faults. One may argue: Why not design test cases to meet an adequacy
criterion? However, it is important to design test cases independent of an
adequacy criterion because the primary goal of testing is to locate errors,
and, thus, test design should not be constrained by an adequacy criterion.
An example of a test design criteria is as follows: Select test cases to
execute all statements in a program at least once. However, the difficulty
with such a test design criterion is that we may not be able to know whether
every program statement can be executed. Thus, it is difficult to judge the
adequacy of the test set selected thereby. Finally, since the goal of testing
is to reveal faults, there is no point in evaluating the adequacy of the test
set as long as faults are being revealed.

e An adequate test set 7" does not say anything about the correctness of a
program. A common understanding of correctness is that we have found
and fixed all faults in a program to make it “correct.” However, in practice,
it is not realistic—though very much desirable—to find and fix all faults
in a program. Thus, on the one hand, an adequacy criterion may not try
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to aim for program correctness. On the other hand, a fault-free program
should not turn any arbitrary test set 7 into an adequate test.

The above two points tell us an important notion: that the adequacy of a test set be
evaluated independent of test design processes for the programs under test. Intu-
itively, a test set 7 is said to be adequate if it covers all aspects of the actual
computation performed by a program and all computations intended by its specifi-
cation. Two practical methods for evaluating test adequacy are as follows:

o Fault Seeding: This method refers to implanting a certain number of faults
in a program P and executing P with test set 7. If 7' reveals k percent of
the implanted faults, we assume that 7" has revealed only k percent of the
original faults. If 100% of the implanted faults have been revealed by T,
we feel more confident about the adequacy of 7. A thorough discussion of
fault seeding can be found in Chapter 13.

e Program Mutation: Given a program P, a mutation is a program obtained
by making a small change to P. In the program mutation method, a series
of mutations are obtained from P. Some of the mutations may contain
faults and the rest are equivalent to P. A test set 7 is said to be adequate
if it causes every faulty mutation to produce an unexpected outcome. A
more thorough discussion of program mutation can be found in Chapter 3.

2.6 LIMITATIONS OF TESTING

Ideally, all programs should be correct, that is, there is no fault in a program. Due
to the impractical nature of proving even small programs to be correct, customers
and software developers rely on the efficacy of testing. In this section, we introduce
two main limitations of testing:

o Testing means executing a program with a generally small, proper subset
of the input domain of the program. A small, proper subset of the input
domain is chosen because cost may not allow a much larger subset to
be chosen, let alone the full input set. Testing with the full input set is
known as exhaustive testing. Thus, the inherent need to test a program
with a small subset of the input domain poses a fundamental limit on the
efficacy of testing. The limit is in the form of our inability to extrapolate the
correctness of results for a proper subset of the input domain to program
correctness. In other words, even if a program passes a test set T, we
cannot conclude that the program is correct.

e Once we have selected a subset of the input domain, we are faced with the
problem of verifying the correctness of the program outputs for individual
test input. That is, a program output is examined to determine if the program
performed correctly on the test input. The mechanism which verifies the
correctness of a program output is known as an oracle. The concept of
an oracle is discussed in detail in Chapter 9. Determining the correctness
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of a program output is not a trivial task. If either of the following two
conditions hold, a program is considered nontestable [20]:

There does not exist an oracle.
It is too difficult to determine the correct output.

If there is no mechanism to verify the correctness of a program output or
it takes an extraordinary amount of time to verify an output, there is not
much to be gained by running the test.

2.7 SUMMARY

The ideal, abstract goal of testing is to reveal all faults in a software system without
exhaustively testing the software. This idea is the basis of the concept of an ideal
test developed by Goodenough and Gerhart [17]. An ideal test is supposed to be a
small, proper subset of the entire input domain, and we should be able to extrapolate
the results of an ideal test to program correctness. In other words, in an abstract
sense, if a program passes all the tests in a carefully chosen test set, called an ideal
test, we are in a position to claim that the program is correct.

Coupled with the concept of an ideal test is a test selection criterion which
allows us to pick members of an ideal test. A test selection criterion is characterized
in terms of reliability and validity. A reliable criterion is one which selects test
cases such that a program either passes all tests or fails all tests. On the other
hand, a valid criterion is one which selects at least one test set which fails in case
the program contains a fault. If a criterion is both valid and reliable, then any test
selected by the criterion is an ideal test. The theory has a few drawback. First, the
concepts of reliability and validity have been defined with respect to one program
and its entire input domain. Second, neither reliability nor validity is preserved
throughout the debugging phase of software development.

Faults occur due to our inadequate understanding of all conditions that a
program must deal with and our failure to realize that certain combinations of
conditions require special treatments. Goodenough and Gerhart categorize faults
into five categories: logic faults, requirement faults, design faults, construction
faults, and performance faults.

Weyuker and Ostrand [18] tried to eliminate the drawbacks of the theory of
Goodenough and Gerhart by proposing the concept of a uniformly ideal test. The
concept is defined with respect to all programs designed to satisfy a specification,
rather than just one program—hence the concept of “uniformity” over all program
instances for a given specification. Further, the idea of uniformity was extended
to test selection criteria in the form of a uniformly reliable and uniformly valid
criterion. However, their theory too is impractical because a uniformly valid and
uniformly reliable criterion selects the entire input domain of a program, thereby
causing exhaustive testing. Next, the idea of an ideal test was extended to a proper
subset of the input domain called a subdomain, and the concept of a revealing
criterion was defined.
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Though testing cannot settle the question of program correctness, different
testing methods continue to be developed. For example, there are specification-
based testing methods and code-based testing methods. It is important to develop a
theory to compare the power of different testing methods. Gourlay [19] put forward
a theory to compare the power of testing methods based on their fault detection
abilities.

A software system undergoes multiple test—fix—retest cycles until, ideally,
no more faults are revealed. Faults are fixed by modifying the code or adding new
code to the system. At this stage there may be a need to design new test cases.
When no more faults are revealed, we can conclude this way: either there is no
fault in the program or the tests could not reveal the faults. Since we have no way
to know the exact situation, it is useful to evaluate the adequacy of the test set.
There is no need to evaluate the adequacy of tests so long as they reveal faults. Two
practical ways of evaluating test adequacy are fault seeding and program mutation.

Finally, we discussed two limitations of testing. The first limitation of testing
is that it cannot settle the question of program correctness. In other words, by
testing a program with a proper subset of the input domain and observing no fault,
we cannot conclude that there are no remaining faults in the program. The second
limitation of testing is that in several instances we do not know the expected output
of a program. If for some inputs the expected output of a program is not known
or it cannot be determined within a reasonable amount of time, then the program
is called nontestable [20].

LITERATURE REVIEW

Weyuker and Ostrand [18] have shown by examples how to construct revealing
subdomains from source code. Their main example is the well-known triangle
classification problem. The triangle classification problem is as follows. Let us
consider three positive integers A, B, and C. The problem is to find whether the
given integers represent the sides of an equilateral triangle, the sides of a scalene
right triangle, and so on.

Weyuker [13] has introduced the notion of program inference to capture the
notion of test data adequacy. Essentially, program inference refers to deriving a
program from its specification and a sample of its input—output behavior. On the
other hand, the testing process begins with a specification S and a program P and
selects input—output pairs that characterize every aspect of the actual computations
performed by the program and the intended computations performed by the spec-
ification. Thus, program testing and program inference are thought of as inverse
processes. A test set T is said to be adequate if 7' contains sufficient data to infer
the computations defined by both S and P. However, Weyuker [13] explains that
such an adequacy criterion is not pragmatically usable. Rather, the criterion can
at best be used as a guide. By considering the difficulty in using the criterion,
Weyuker defines two weaker adequacy criterion, namely program adequate and
specification adequate. A test set T is said to be program adequate if it contains
sufficient data to infer the computations defined by P. Similarly, the test set T is
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said to be specification adequate if it contains sufficient data to infer the computa-
tions defined by S. It is suggested that depending upon how test data are selected,
one of the two criteria can be eased out. For example, if 7 is derived from S, then
it is useful to evaluate if 7' is program adequate. Since 7 is selected from S, T
is expected to contain sufficient data to infer the computations defined by S, and
there is no need to evaluate T”s specification adequacy. Similarly, if T is derived
from P, it is useful to evaluate if T is specification adequate.

The students are encouraged to read the article by Stuart H. Zweben and John
S. Gourlay entitled “On the Adequacy of Weyuker’s Test Data Adequacy Axioms”
[15] The authors raise the issue of what makes an axiomatic system as well as
what constitutes a proper axiom. Weyuker responds to the criticism at the end of
the article. Those students have never seen such a professional interchange; this is
worth reading for this aspect alone. This article must be read along with the article
by Elaine Weyuker entitled “Axiomatizing Software Test Data Adequacy” [12].

Martin David and Elaine Weyuker [9] present an interesting notion of dis-
tance between programs to study the concept of test data adequacy. Specifically,
they equate adequacy with the capability of a test set to be able to successfully
distinguish a program being tested from all programs that are sufficiently close to
it and differ in input—output behavior from the given program.

Weyuker [12, 21] proposed a set of properties to evaluate test data ade-
quacy criteria. Some examples of adequacy criteria are to (i) ensure coverage of
all branches in the program being tested and (ii) ensure that boundary values of
all input data have been selected for the program under test. Parrish and Zweben
[11] formalized those properties and identified dependencies within the set. They
formalized the adequacy properties with respect to criteria that do not make use of
the specification of the program under test.

Frankl and Weyuker [10] compared the relative fault-detecting ability of a
number of structural testing techniques, namely, data flow testing, mutation testing,
and a condition coverage technique, to branch testing. They showed that the for-
mer three techniques are better than branch testing according to two probabilistic
measures.

A good survey on test adequacy is presented in an article by Hong Zhu,
Patrick A. V. Hall, and John H. R. May entitled “Software Unit Test Coverage
and Adequacy” [14]. In this article, various types of software test adequacy criteria
proposed in the literature are surveyed followed by a summary of methods for
comparison and assessment of adequacy criteria.
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Exercises
1. Explain the concept of an ideal test.
2. Explain the concept of a selection criterion in test design.
3. Explain the concepts of a valid and reliable criterion.
4. Explain five kinds of program faults.
5. What are the drawbacks of Goodenough and Gerhart’s theory of program

testing?
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6. Explain the concepts of a uniformly ideal test as well as the concepts of
uniformly valid and uniformly reliable criteria.

7. Explain how two test methods can be compared.
8. Explain the need for evaluating test adequacy.
9. Explain two practical methods for assessing test data adequacy.

10. Explain the concept of a nontestable program.



CHAPTER 3

Unit Testing

Knowledge is of no value unless you put it into practice.
— Anton Chekhov

3.1 CONCEPT OF UNIT TESTING

In this chapter we consider the first level of testing, that is, unit testing. Unit testing
refers to testing program units in isolation. However, there is no consensus on the
definition of a unit. Some examples of commonly understood units are functions,
procedures, or methods. Even a class in an object-oriented programming language
can be considered as a program unit. Syntactically, a program unit is a piece of
code, such as a function or method of class, that is invoked from outside the unit
and that can invoke other program units. Moreover, a program unit is assumed to
implement a well-defined function providing a certain level of abstraction to the
implementation of higher level functions. The function performed by a program unit
may not have a direct association with a system-level function. Thus, a program
unit may be viewed as a piece of code implementing a “low”-level function. In
this chapter, we use the terms unit and module interchangeably.

Now, given that a program unit implements a function, it is only natural to
test the unit before it is integrated with other units. Thus, a program unit is tested
in isolation, that is, in a stand-alone manner. There are two reasons for testing a
unit in a stand-alone manner. First, errors found during testing can be attributed
to a specific unit so that it can be easily fixed. Moreover, unit testing removes
dependencies on other program units. Second, during unit testing it is desirable
to verify that each distinct execution of a program unit produces the expected
result. In terms of code details, a distinct execution refers to a distinct path in the
unit. Ideally, all possible—or as much as possible—distinct executions are to be
considered during unit testing. This requires careful selection of input data for each
distinct execution. A programmer has direct access to the input vector of the unit by
executing a program unit in isolation. This direct access makes it easier to execute
as many distinct paths as desirable or possible. If multiple units are put together for
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testing, then a programmer needs to generate test input with indirect relationship
with the input vectors of several units under test. The said indirect relationship
makes it difficult to control the execution of distinct paths in a chosen unit.

Unit testing has a limited scope. A programmer will need to verify whether
or not a code works correctly by performing unit-level testing. Intuitively, a pro-
grammer needs to test a unit as follows:

o Execute every line of code. This is desirable because the programmer needs
to know what happens when a line of code is executed. In the absence of
such basic observations, surprises at a later stage can be expensive.

o Execute every predicate in the unit to evaluate them to true and false
separately.

o Observe that the unit performs its intended function and ensure that it
contains no known errors.

In spite of the above tests, there is no guarantee that a satisfactorily tested unit
is functionally correct from a systemwide perspective. Not everything pertinent to a
unit can be tested in isolation because of the limitations of testing in isolation. This
means that some errors in a program unit can only be found later, when the unit
is integrated with other units in the integration testing and system testing phases.
Even though it is not possible to find all errors in a program unit in isolation, it
is still necessary to ensure that a unit performs satisfactorily before it is used by
other program units. It serves no purpose to integrate an erroneous unit with other
units for the following reasons: (i) many of the subsequent tests will be a waste
of resources and (ii) finding the root causes of failures in an integrated system is
more resource consuming.

Unit testing is performed by the programmer who writes the program unit
because the programmer is intimately familiar with the internal details of the unit.
The objective for the programmer is to be satisfied that the unit works as expected.
Since a programmer is supposed to construct a unit with no errors in it, a unit
test is performed by him or her to their satisfaction in the beginning and to the
satisfaction of other programmers when the unit is integrated with other units. This
means that all programmers are accountable for the quality of their own work,
which may include both new code and modifications to the existing code. The idea
here is to push the quality concept down to the lowest level of the organization and
empower each programmer to be responsible for his or her own quality. Therefore,
it is in the best interest of the programmer to take preventive actions to minimize
the number of defects in the code. The defects found during unit testing are internal
to the software development group and are not reported up the personnel hierarchy
to be counted in quality measurement metrics. The source code of a unit is not
used for interfacing by other group members until the programmer completes unit
testing and checks in the unit to the version control system.

Unit testing is conducted in two complementary phases:

o Static unit testing

e Dynamic unit testing
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In static unit testing, a programmer does not execute the unit; instead, the code is
examined over all possible behaviors that might arise during run time. Static unit
testing is also known as non-execution-based unit testing, whereas dynamic unit
testing is execution based. In static unit testing, the code of each unit is validated
against requirements of the unit by reviewing the code. During the review process,
potential issues are identified and resolved. For example, in the C programming
language the two program-halting instructions are abort() and exit(). While the two
are closely related, they have different effects as explained below:

e Abort(): This means abnormal program termination. By default, a call to
abort() results in a run time diagnostic and program self-destruction. The
program destruction may or may not flush and close opened files or remove
temporary files, depending on the implementation.

o Exit(): This means graceful program termination. That is, the exit() call
closes the opened files and returns a status code to the execution environ-
ment.

Whether to use abort() or exit() depends on the context that can be easily
detected and resolved during static unit testing. More issues caught earlier lead to
fewer errors being identified in the dynamic test phase and result in fewer defects
in shipped products. Moreover, performing static tests is less expensive than per-
forming dynamic tests. Code review is one component of the defect minimization
process and can help detect problems that are common to software development.
After a round of code review, dynamic unit testing is conducted. In dynamic unit
testing, a program unit is actually executed and its outcomes are observed. Dynamic
unit testing means testing the code by actually running it. It may be noted that static
unit testing is not an alternative to dynamic unit testing. A programmer performs
both kinds of tests. In practice, partial dynamic unit testing is performed concur-
rently with static unit testing. If the entire dynamic unit testing has been performed
and a static unit testing identifies significant problems, the dynamic unit testing
must be repeated. As a result of this repetition, the development schedule may be
affected. To minimize the probability of such an event, it is required that static unit
testing be performed prior to the final dynamic unit testing.

3.2 STATIC UNIT TESTING

Static unit testing is conducted as a part of a larger philosophical belief that a
software product should undergo a phase of inspection and correction at each
milestone in its life cycle. At a certain milestone, the product need not be in its
final form. For example, completion of coding is a milestone, even though coding
of all the units may not make the desired product. After coding, the next milestone
is testing all or a substantial number of units forming the major components of the
product. Thus, before units are individually tested by actually executing them, those
are subject to usual review and correction as it is commonly understood. The idea
behind review is to find the defects as close to their points of origin as possible so



54 CHAPTER3 UNIT TESTING

that those defects are eliminated with less effort, and the interim product contains
fewer defects before the next task is undertaken.

In static unit testing, code is reviewed by applying techniques commonly
known as inspection and walkthrough. The original definition of inspection was
coined by Michael Fagan [1] and that of walkthrough by Edward Yourdon [2]:

o Inspection: It is a step-by-step peer group review of a work product, with
each step checked against predetermined criteria.

o Walkthrough: It is a review where the author leads the team through a
manual or simulated execution of the product using predefined scenarios.

Regardless of whether a review is called an inspection or a walkthrough, it is
a systematic approach to examining source code in detail. The goal of such an
exercise is to assess the quality of the software in question, not the quality of the
process used to develop the product [3]. Reviews of this type are characterized
by significant preparation by groups of designers and programmers with varying
degree of interest in the software development project. Code examination can be
time consuming. Moreover, no examination process is perfect. Examiners may take
shortcuts, may not have adequate understanding of the product, and may accept a
product which should not be accepted. Nonetheless, a well-designed code review
process can find faults that may be missed by execution-based testing. The key to
the success of code review is to divide and conquer, that is, having an examiner
inspect small parts of the unit in isolation, while making sure of the following:
(i) nothing is overlooked and (ii) the correctness of all examined parts of the
module implies the correctness of the whole module. The decomposition of the
review into discrete steps must assure that each step is simple enough that it can
be carried out without detailed knowledge of the others.

The objective of code review is to review the code, not to evaluate the author
of the code. A clash may occur between the author of the code and the reviewers,
and this may make the meetings unproductive. Therefore, code review must be
planned and managed in a professional manner. There is a need for mutual respect,
openness, trust, and sharing of expertise in the group. The general guidelines for
performing code review consists of six steps as outlined in Figure 3.1: readiness,
preparation, examination, rework, validation, and exit. The input to the readiness
step is the criteria that must be satisfied before the start of the code review process,
and the process produces two types of documents, a change request (CR) and a
report. These steps and documents are explained in the following.

Step 1: Readiness The author of the unit ensures that the unit under test is
ready for review. A unit is said to be ready if it satisfies the following
criteria:

o Completeness: All the code relating to the unit to be reviewed must be
available. This is because the reviewers are going to read the code and
try to understand it. It is unproductive to review partially written code
or code that is going to be significantly modified by the programmer.
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Steps in the code review process.

e Minimal Functionality: The code must compile and link. Moreover,

the code must have been tested to some extent to make sure that it
performs its basic functionalities.

Readability: Since code review involves actual reading of code by
other programmers, it is essential that the code is highly readable.
Some code characteristics that enhance readability are proper format-
ting, using meaningful identifier names, straightforward use of pro-
gramming language constructs, and an appropriate level of abstraction
using function calls. In the absence of readability, the reviewers are
likely to be discouraged from performing the task effectively.

Complexity: There is no need to schedule a group meeting to review
straightforward code which can be easily reviewed by the programmer.
The code to be reviewed must be of sufficient complexity to warrant
group review. Here, complexity is a composite term referring to the
number of conditional statements in the code, the number of input data
elements of the unit, the number of output data elements produced by
the unit, real-time processing of the code, and the number of other units
with which the code communicates.

Requirements and Design Documents: The latest approved version
of the low-level design specification or other appropriate descriptions
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TABLE 3.1

Hierarchy of System Documents

Requirement: High-level marketing or product proposal.

Functional specification: Software engineering response to the marketing proposal.

High-level design: Overall system architecture.

Low-level design: Detailed specification of the modules within the architecture.

Programming: Coding of the modules.

of program requirements (see Table 3.1) should be available. These
documents help the reviewers in verifying whether or not the code
under review implements the expected functionalities. If the low-level
design document is available, it helps the reviewers in assessing whether
or not the code appropriately implements the design.

All the people involved in the review process are informed of the
group review meeting schedule two or three days before the meeting.
They are also given a copy of the work package for their perusal. Reviews
are conducted in bursts of 1-2 hours. Longer meetings are less and less
productive because of the limited attention span of human beings. The
rate of code review is restricted to about 125 lines of code (in a high-level
language) per hour. Reviewing complex code at a higher rate will result
in just glossing over the code, thereby defeating the fundamental purpose
of code review. The composition of the review group involves a number
of people with different roles. These roles are explained as follows:

e Moderator: A review meeting is chaired by the moderator. The mod-
erator is a trained individual who guides the pace of the review process.
The moderator selects the reviewers and schedules the review meetings.
Myers suggests that the moderator be a member of a group from an
unrelated project to preserve objectivity [4].

o Author: This is the person who has written the code to be reviewed.

o Presenter: A presenter is someone other than the author of the code.
The presenter reads the code beforehand to understand it. It is the
presenter who presents the author’s code in the review meeting for
the following reasons: (i) an additional software developer will under-
stand the work within the software organization; (ii) if the original
programmer leaves the company with a short notice, at least one other
programmer in the company knows what is being done; and (iii) the
original programmer will have a good feeling about his or her work, if
someone else appreciates their work. Usually, the presenter appreciates
the author’s work.

o Recordkeeper: The recordkeeper documents the problems found dur-
ing the review process and the follow-up actions suggested. The person
should be different than the author and the moderator.

o Reviewers: These are experts in the subject area of the code under
review. The group size depends on the content of the material under
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review. As a rule of thumb, the group size is between 3 and 7. Usually
this group does not have manager to whom the author reports. This
is because it is the author’s ongoing work that is under review, and
neither a completed work nor the author himself is being reviewed.

Observers: These are people who want to learn about the code under
review. These people do not participate in the review process but are
simply passive observers.

Preparation Before the meeting, each reviewer carefully reviews the
work package. It is expected that the reviewers read the code and under-
stand its organization and operation before the review meeting. Each
reviewer develops the following:

List of Questions: A reviewer prepares a list of questions to be asked,
if needed, of the author to clarify issues arising from his or her reading.
A general guideline of what to examine while reading the code is
outlined in Table 3.2.

Potential CR: A reviewer may make a formal request to make a
change. These are called change requests rather than defect reports.
At this stage, since the programmer has not yet made the code pub-
lic, it is more appropriate to make suggestions to the author to make
changes, rather than report a defect. Though CRs focus on defects in
the code, these reports are not included in defect statistics related to
the product.

Suggested Improvement Opportunities: The reviewers may suggest
how to fix the problems, if there are any, in the code under review.
Since reviewers are experts in the subject area of the code, it is not
unusual for them to make suggestions for improvements.

Examination The examination process consists of the following
activities:

The author makes a presentation of the procedural logic used in the
code, the paths denoting major computations, and the dependency of
the unit under review on other units.

The presenter reads the code line by line. The reviewers may raise
questions if the code is seen to have defects. However, problems are not
resolved in the meeting. The reviewers may make general suggestions
on how to fix the defects, but it is up to the author of the code to take
corrective measures after the meeting ends.

The recordkeeper documents the change requests and the suggestions
for fixing the problems, if there are any. A CR includes the following
details:

1. Give a brief description of the issue or action item.
2. Assign a priority level (major or minor) to a CR.

3. Assign a person to follow up the issue. Since a CR documents a
potential problem, there is a need for interaction between the author
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TABLE 3.2 Code Review Checklist

11.
12.
13.
14.
15.
16.

17.
18.

19.

20.

21.

1. Does the code do what has been specified in the design specification?
2. Does the procedure used in the module solve the problem correctly?

3.
4

. If library modules are being used, are the right libraries and the right versions of the libraries

Does a software module duplicate another existing module which could be reused?

being used?

. Does each module have a single entry point and a single exit point? Multiple exit and entry

point programs are harder to test.

. Is the cyclomatic complexity of the module more than 10? If yes, then it is extremely difficult

to adequately test the module.

. Can each atomic function be reviewed and understood in 10—15 minutes? If not, it is con-

sidered to be too complex.

. Have naming conventions been followed for all identifiers, such as pointers, indices, variables,

arrays, and constants? It is important to adhere to coding standards to ease the introduction
of a new contributor (programmer) to the development of a system.

. Has the code been adequately commented upon?
10.

Have all the variables and constants been correctly initialized? Have correct types and scopes
been checked?

Are the global or shared variables, if there are any, carefully controlled?

Are there data values hard coded in the program? Rather, these should be declared as variables.
Are the pointers being used correctly?

Are the dynamically acquired memory blocks deallocated after use?

Does the module terminate abnormally? Will the module eventually terminate?

Is there a possibility of an infinite loop, a loop that never executes, or a loop with a premature
exit?

Have all the files been opened for use and closed at termination?

Are there computations using variables with inconsistent data types? Is overflow or underflow
a possibility?

Are error codes and condition messages produced by accessing a common table of messages?
Each error code should have a meaning, and all of the meanings should be available at one
place in a table rather than scattered all over the program code.

Is the code portable? The source code is likely to execute on multiple processor architectures
and on different operating systems over its lifetime. It must be implemented in a manner that
does not preclude this kind of a variety of execution environments.

Is the code efficient? In general, clarity, readability, or correctness should not be sacrificed
for efficiency. Code review is intended to detect implementation choices that have adverse
effects on system performance.

of the code and one of the reviewers, possibly the reviewer who
made the CR.

4. Set a deadline for addressing a CR.

o The moderator ensures that the meeting remains focused on the review
process. The moderator makes sure that the meeting makes progress at
a certain rate so that the objective of the meeting is achieved.
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¢ At the end of the meeting, a decision is taken regarding whether or
not to call another meeting to further review the code. If the review
process leads to extensive rework of the code or critical issues are
identified in the process, then another meeting is generally convened.
Otherwise, a second meeting is not scheduled, and the author is given
the responsibility of fixing the CRs.

Rework At the end of the meeting, the recordkeeper produces a sum-
mary of the meeting that includes the following information:

o A list of all the CRs, the dates by which those will be fixed, and the
names of the persons responsible for validating the CRs

e A list of improvement opportunities
e The minutes of the meeting (optional)

A copy of the report is distributed to all the members of the review group.
After the meeting, the author works on the CRs to fix the problems. The
author documents the improvements made to the code in the CRs. The
author makes an attempt to address the issues within the agreed-upon
time frame using the prevailing coding conventions [5].

Validation The CRs are independently validated by the moderator
or another person designated for this purpose. The validation process
involves checking the modified code as documented in the CRs and
ensuring that the suggested improvements have been implemented
correctly. The revised and final version of the outcome of the review
meeting is distributed to all the group members.

Exit Summarizing the review process, it is said to be complete if all of
the following actions have been taken:
e Every line of code in the unit has been inspected.

o If too many defects are found in a module, the module is once again
reviewed after corrections are applied by the author. As a rule of thumb,
if more than 5% of the total lines of code are thought to be contentious,
then a second review is scheduled.

e The author and the reviewers reach a consensus that when corrections
have been applied the code will be potentially free of defects.

o All the CRs are documented and validated by the moderator or someone
else. The author’s follow-up actions are documented.

e A summary report of the meeting including the CRs is distributed to
all the members of the review group.

The effectiveness of static testing is limited by the ability of a reviewer to
find defects in code by visual means. However, if occurrences of defects depend on
some actual values of variables, then it is a difficult task to identify those defects
by visual means. Therefore, a unit must be executed to observe its behaviors in
response to a variety of inputs. Finally, whatever may be the effectiveness of static
tests, one cannot feel confident without actually running the code.
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Code Review Metrics 1t is important to collect measurement data pertinent to
a review process, so that the review process can be evaluated, made visible to
the upper management as a testing strategy, and improved to be more effective.
Moreover, collecting metrics during code review facilitates estimation of review
time and resources for future projects. Thus, code review is a viable testing strategy
that can be effectively used to improve the quality of products at an early stage.
The following metrics can be collected from a code review:

e Number of lines of code (LOC) reviewed per hour

e Number of CRs generated per thousand lines of code (KLOC)
e Number of CRs generated per hour

o Total number of CRs generated per project

o Total number of hours spent on code review per project

3.3 DEFECT PREVENTION

It is in the best interest of the programmers in particular and the company in general
to reduce the number of CRs generated during code review. This is because CRs are
indications of potential problems in the code, and those problems must be resolved
before different program units are integrated. Addressing CRs means spending more
resources and potentially delaying the project. Therefore, it is essential to adopt
the concept of defect prevention during code development. In practice, defects
are inadvertently introduced by programmers. Those accidents can be reduced by
taking preventive measures. It is useful to develop a set of guidelines to construct
code for defect minimization as explained in the following. These guidelines focus
on incorporating suitable mechanisms into the code:

¢ Build internal diagnostic tools, also known as instrumentation code, into
the units. Instrumentation codes are useful in providing information about
the internal states of the units. These codes allow programmers to realize
built-in tracking and tracing mechanisms. Instrumentation plays a passive
role in dynamic unit testing. The role is passive in the sense of observing
and recording the internal behavior without actively testing a unit.

o Use standard controls to detect possible occurrences of error conditions.
Some examples of error detection in the code are divides by zero and array
index out of bounds.

o Ensure that code exists for all return values, some of which may be invalid.
Appropriate follow-up actions need to be taken to handle invalid return
values.

e Ensure that counter data fields and buffer overflow and underflow are
appropriately handled.

e Provide error messages and help texts from a common source so that
changes in the text do not cause inconsistency. Good error messages
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identify the root causes of the problems and help users in resolving the
problems [7].

Validate input data, such as the arguments, passed to a function.

Use assertions to detect impossible conditions, undefined uses of data, and
undesirable program behavior. An assertion is a Boolean statement which
should never be false or can be false only if an error has occurred. In other
words, an assertion is a check on a condition which is assumed to be true,
but it can cause a problem if it not true. Assertion should be routinely used
to perform the following kinds of checks:

1. Ensure that preconditions are satisfied before beginning to execute a
unit. A precondition is a Boolean function on the states of a unit spec-
ifying our expectation of the state prior to initiating an activity in the
code.

2. Ensure that the expected postconditions are true while exiting from the
unit. A postcondition is a Boolean function on the state of a unit speci-
fying our expectation of the state after an activity has been completed.
The postconditions may include an invariance.

3. Ensure that the invariants hold. That is, check invariant states—
conditions which are expected not to change during the execution of a
piece of code.

Leave assertions in the code. You may deactivate them in the released
version of code in order to improve the operational performance of the
system.

Fully document the assertions that appear to be unclear.

After every major computation, reverse-compute the input(s) from the
results in the code itself. Then compare the outcome with the actual inputs
for correctness. For example, suppose that a piece of code computes the
square root of a positive number. Then square the output value and com-
pare the result with the input. It may be needed to tolerate a margin of
error in the comparison process.

In systems involving message passing, buffer management is an important
internal activity. Incoming messages are stored in an already allocated
buffer. It is useful to generate an event indicating low buffer availability
before the system runs out of buffer. Develop a routine to continually
monitor the availability of buffer after every use, calculate the remaining
space available in the buffer, and call an error handling routine if the
amount of available buffer space is too low.

Develop a timer routine which counts down from a preset time until it
either hits zero or is reset. If the software is caught in an infinite loop, the
timer will expire and an exception handler routine can be invoked.

Include a loop counter within each loop. If the loop is ever executed less
than the minimum possible number of times or more than the maximum
possible number of times, then invoke an exception handler routine.
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¢ Define a variable to indicate the branch of decision logic that will be taken.
Check this value after the decision has been made and the right branch has
supposedly been taken. If the value of the variable has not been preset,
there is probably a fall-through condition in the logic.

3.4 DYNAMIC UNIT TESTING

Execution-based unit testing is referred to as dynamic unit testing. In this testing,
a program unit is actually executed in isolation, as we commonly understand it.
However, this execution differs from ordinary execution in the following way:

1. A unit under test is taken out of its actual execution environment.

2. The actual execution environment is emulated by writing more code
(explained later in this section) so that the unit and the emulated
environment can be compiled together.

3. The above compiled aggregate is executed with selected inputs. The
outcome of such an execution is collected in a variety of ways, such as
straightforward observation on a screen, logging on files, and software
instrumentation of the code to reveal run time behavior. The result
is compared with the expected outcome. Any difference between the
actual and expected outcome implies a failure and the fault is in
the code.

An environment for dynamic unit testing is created by emulating the context
of the unit under test, as shown in Figure 3.2. The context of a unit test consists
of two parts: (i) a caller of the unit and (ii) all the units called by the unit. The
environment of a unit is emulated because the unit is to be tested in isolation
and the emulating environment must be a simple one so that any fault found
as a result of running the unit can be solely attributed to the unit under test.
The caller unit is known as a test driver, and all the emulations of the units
called by the unit under test are called sfubs. The test driver and the stubs are
together called scaffolding . The functions of a test driver and a stub are explained as
follows:

o Test Driver: A test driver is a program that invokes the unit under test.
The unit under test executes with input values received from the driver
and, upon termination, returns a value to the driver. The driver compares
the actual outcome, that is, the actual value returned by the unit under test,
with the expected outcome from the unit and reports the ensuing test result.
The test driver functions as the main unit in the execution process. The
driver not only facilitates compilation, but also provides input data to the
unit under test in the expected format.

e Stubs: A stub is a “dummy subprogram” that replaces a unit that is called
by the unit under test. Stubs replace the units called by the unit under test.
A stub performs two tasks. First, it shows an evidence that the stub was,
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Figure 3.2 Dynamic unit test environment.
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in fact, called. Such evidence can be shown by merely printing a message.
Second, the stub returns a precomputed value to the caller so that the unit
under test can continue its execution.

The driver and the stubs are never discarded after the unit test is completed.
Instead, those are reused in the future in regression testing of the unit if there is
such a need. For each unit, there should be one dedicated test driver and several
stubs as required. If just one test driver is developed to test multiple units, the
driver will be a complicated one. Any modification to the driver to accommodate
changes in one of the units under test may have side effects in testing the other
units. Similarly, the test driver should not depend on the external input data files
but, instead, should have its own segregated set of input data. The separate input
data file approach becomes a very compelling choice for large amounts of test
input data. For example, if hundreds of input test data elements are required to test
more than one unit, then it is better to create a separate input test data file rather
than to include the same set of input test data in each test driver designed to test
the unit.

The test driver should have the capability to automatically determine the
success or failure of the unit under test for each input test data. If appropriate,
the driver should also check for memory leaks and problems in allocation and
deallocation of memory. If the module opens and closes files, the test driver should
check that these files are left in the expected open or closed state after each test.
The test driver can be designed to check the data values of the internal variable that
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normally would not be available for checking at integration, system, or acceptance
testing levels.

The test driver and stubs are tightly coupled with the unit under test and
should accompany the unit throughout its life cycle. A test driver and the stubs
for a unit should be reusable and maintainable. Every time a unit is modified, the
programmer should check whether or not to modify the corresponding driver and
stubs. Whenever a new fault is detected in the unit, the corresponding test driver
should be updated with a new set of input data to detect that fault and similar
faults in the future. If the unit is expected to run on different platforms, the test
driver and stubs should also be built to test the unit on new platforms. Finally, the
test driver and stubs should be reviewed, cross-referenced with the unit for which
these are written, and checked in to the version control system as a product along
with the unit.

The low-level design document provides guidance for the selection of input
test data that are likely to uncover faults. Selection of test data is broadly based on
the following techniques:

o Control Flow Testing: The following is an outline of control flow testing:
(1) draw a control flow graph from a program unit; (ii) select a few control
flow testing criteria; (iii) identify paths in the control flow graph to sat-
isfy the selection criteria; (iv) derive path predicate expressions from the
selected paths; and (v) by solving the path predicate expression for a path,
generate values of the inputs to the program unit that are considered as
a test case to exercise the corresponding path. A thorough discussion of
control flow testing is given in Chapter 4.

o Data Flow Testing: The following is an outline of data flow testing:
(i) draw a data flow graph from a program unit; (ii) select a few data
flow testing criteria; (iii) identify paths in the data flow graph to satisfy the
selection criteria; (iv) derive path predicate expressions from the selected
paths; and (v) by solving the path predicate expression, generate values of
the inputs to the program unit that are considered as a test case to exercise
the corresponding path. Chapter 5 discusses data flow testing in greater
detail.

¢ Domain Testing: In control flow and data flow testing, no specific types
of faults are explicitly considered for detection. However, domain testing
takes a new approach to fault detection. In this approach, a category of
faults called domain errors are defined and then test data are selected to
catch those faults. It is discussed in detail in Chapter 6.

¢ Functional Program Testing: In functional program testing one performs
the following steps: (i) identify the input and output domains of a program;
(i) for a given input domain, select some special values and compute the
expected outcome; (iii) for a given output domain, select some special
values and compute the input values that will cause the unit to produce
those output values; and (iv) consider various combinations of the input
values chosen above. Chapter 9 discusses functional testing.
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3.5 MUTATION TESTING

Mutation testing has a rich and long history. It can be traced back to the late 1970s
[8—10]. Mutation testing was originally proposed by Dick Lipton, and the article
by DeMillo, Lipton, and Sayward [9] is generally cited as the seminal reference.
Mutation testing is a technique that focuses on measuring the adequacy of test data
(or test cases). The original intention behind mutation testing was to expose and
locate weaknesses in test cases. Thus, mutation testing is a way to measure the
quality of test cases, and the actual testing of program units is an added benefit.
Mutation testing is not a testing strategy like control flow or data flow testing. It
should be used to supplement traditional unit testing techniques.

A mutation of a program is a modification of the program created by intro-
ducing a single, small, legal syntactic change in the code. A modified program so
obtained is called a mutant. The term mutant has been borrowed from biology.
Some of these mutants are equivalent to the original program, whereas others are
faulty. A mutant is said to be killed when the execution of a test case causes it to
fail and the mutant is considered to be dead.

Some mutants are equivalent to the given program, that is, such mutants
always produce the same output as the original program. In the real world, large
programs are generally faulty, and test cases too contain faults. The result of exe-
cuting a mutant may be different from the expected result, but a test suite does
not detect the failure because it does not have the right test case. In this scenario
the mutant is called killable or stubborn, that is, the existing set of test cases
is insufficient to kill it. A mutation score for a set of test cases is the percent-
age of nonequivalent mutants killed by the test suite. The test suite is said to be
mutation adequate if its mutation score is 100%. Mutation analysis is a two-step
process:

1. The adequacy of an existing test suite is determined to distinguish the
given program from its mutants. A given test suite may not be adequate
to distinguish all the nonequivalent mutants. As explained above, those
nonequivalent mutants that could not be identified by the given test suite
are called stubborn mutants.

2. New test cases are added to the existing test suite to kill the stubborn
mutants. The test suite enhancement process iterates until the test suite
has reached a desired level of mutation score.

Let us consider the following program P that finds rank corresponding to the first
time the maximum value appears in the array. For simplicity, we assume that the
program P reads three input arguments and prints the message accordingly:

main (argc, argv)
int argc, r, 1i;
char *argvl[];
{r=1;
for i = 2 to 3 do
if (atoi(argv[i]) > atoi(argvir])) r = 1i;

o Ul W N
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7. printf("Value of the rank is %d \n", r);
8. exit(0); }

Now let us assume that we have the following test suite that tests the program P:

Test case 1:

Input: 123

Output: Value of the rank is 3
Test case 2:

Input: 12 1

Output: Values of the rank is 2
Test case 3:

Input: 312

Output: Value of the rank is 1
Now, let us mutate the program P. We can start with the following changes:

Mutant 1: Change line 5 to

for i = 1 to 3 do

Mutant 2: Change line 6 to

if (i > atoi(argvir])) r = i;

Mutant 3: Change line 6 to

if (atoi(argv[i]) >= atoi(argvir])) r = i;

Mutant 4: Change line 6 to

if (atoi(argv(r]) > atoi(argvir])) r = i;

If we run the modified programs against the test suite, we will get the following
results:

Mutants 1 and 3: The programs will completely pass the test suite. In other
words, mutants 1 and 3 are not killed.

Mutant 2: The program will fail test case 2.

Mutant 4: The program will fail test case 1 and test case 2.

If we calculate the mutation score, we see that we created four mutants, and
two of them were killed. This tells us that the mutation score is 50%, assuming
that mutants 1 and 3 are nonequivalent.

The score is found to be low. It is low because we assumed that mutants 1 and
3 are nonequivalent to the original program. We have to show that either mutants
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1 and 3 are equivalent mutants or those are killable. If those are killable, we need
to add new test cases to kill these two mutants. First, let us analyze mutant 1
in order to derive a “killer” test. The difference between P and mutant 1 is the
starting point. Mutant 1 starts with i = 1, whereas P starts with i = 2. There is
no impact on the result r. Therefore, we conclude that mutant 1 is an equivalent
mutant. Second, we add a fourth test case as follows:

Test case 4:
Input: 22 1

Then program P will produce the output “Value of the rank is 1” and mutant 3
will produce the output “Value of the rank is 2.” Thus, this test data kills mutant 3,
which give us a mutation score of 100%.

In order to use the mutation testing technique to build a robust test suite, the
test engineer needs to follow the steps that are outlined below:

Step 1: Begin with a program P and a set of test cases 7 known to be correct.

Step 2: Run each test case in T against the program P. If a test case fails, that
is, the output is incorrect, program P must be modified and retested. If
there are no failures, then continue with step 3.

Step 3: Create a set of mutants {P,}, each differing from P by a simple, syntac-
tically correct modification of P.

Step 4: Execute each test case in 7" against each mutant P;. If the output of the
mutant P; differs from the output of the original program P, the mutant
P; is considered incorrect and is said to be killed by the test case. If P;
produces exactly the same results as the original program P for the tests
in 7, then one of the following is true:

e P and P; are equivalent. That is, their behaviors cannot be distin-
guished by any set of test cases. Note that the general problem of
deciding whether or not a mutant is equivalent to the original program
is undecidable.

e P; is killable. That is, the test cases are insufficient to kill the mutant
P;. In this case, new test cases must be created.

Step 5: Calculate the mutation score for the set of test cases 7. The muta-
tion score is the percentage of nonequivalent mutants killed by the test
data, that is, Mutation score = 100 x D/(N — E), where D is the dead
mutants, N the total number of mutants, and £ the number of equivalent
mutants.

Step 6: If the estimated mutation adequacy of 7 in step 5 is not sufficiently high,
then design a new test case that distinguishes P; from P, add the new
test case to 7, and go to step 2. If the computed adequacy of T is more
than an appropriate threshold, then accept T as a good measure of the
correctness of P with respect to the set of mutant programs P;, and stop
designing new test cases.
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Mutation testing makes two major assumptions:

1. Competent Programmer Hypothesis: This assumption states that program-
mers are generally competent, and they do not create “random” programs.
Therefore, we can assume that for a given problem a programmer will cre-
ate a correct program except for simple errors. In other words, the mutants
to be considered are the ones falling within a small deviation from the
original program. In practice, such mutants are obtained by systematically
and mechanically applying a set of transformations, called mutation oper-
ators, to the program under test. These mutation operators are expected to
model programming errors made by programmers. In practice, this may
be only partly true.

2. Coupling Effect: This assumption was first hypothesized in 1978 by
DeMillo et al. [9]. The assumption can be restated as complex faults
are coupled to simple faults in such a way that a test suite detecting
all simple faults in a program will detect most of the complex faults.
This assumption has been empirically supported by Offutt [11] and
theoretically demonstrated by Wah [12]. The fundamental premise of
mutation testing as coined by Geist et al. [13] is: If the software contains
a fault, there will usually be a set of mutants that can only be killed by a
test case that also detect that fault.

Mutation testing helps the tester to inject, by hypothesis, different types of
faults in the code and develop test cases to reveal them. In addition, comprehensive
testing can be performed by proper choice of mutant operations. However, a rela-
tively large number of mutant programs need to be tested against many of the test
cases before these mutants can be distinguished from the original program. Run-
ning the test cases, analyzing the results, identifying equivalent mutants [14], and
developing additional test cases to kill the stubborn mutants are all time consum-
ing. Robust automated testing tools such as Mothra [15] can be used to expedite
the mutation testing process. Recently, with the availability of massive comput-
ing power, there has been a resurgence of mutation testing processes within the
industrial community to use as a white-box methodology for unit testing [16, 17].
Researchers have shown that with an appropriate choice of mutant programs muta-
tion testing is as powerful as path testing, domain testing [18], and data flow
testing [19].

3.6 DEBUGGING

The programmer, after a program failure, identifies the corresponding fault and
fixes it. The process of determining the cause of a failure is known as debugging.
Debugging occurs as a consequence of a test revealing a failure. Myers proposed
three approaches to debugging in his book The Art of Software Testing [20]:

o Brute Force: The brute-force approach to debugging is preferred by many
programmers. Here, “let the computer find the error” philosophy is used.
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Print statements are scattered throughout the source code. These print state-
ments provide a crude trace of the way the source code has executed.
The availability of a good debugging tool makes these print statements
redundant. A dynamic debugger allows the software engineer to navigate
by stepping through the code, observe which paths have executed, and
observe how values of variables change during the controlled execution.
A good tool allows the programmer to assign values to several variables
and navigate step by step through the code. Instrumentation code can be
built into the source code to detect problems and to log intermediate val-
ues of variables for problem diagnosis. One may use a memory dump
after a failure has occurred to understand the final state of the code being
debugged. The log and memory dump are reviewed to understand what
happened and how the failure occurred.

o Cause Elimination: The cause elimination approach can be best described
as a process involving induction and deduction [21]. In the induction part,
first, all pertinent data related to the failure are collected , such as what
happened and what the symptoms are. Next, the collected data are orga-
nized in terms of behavior and symptoms, and their relationship is studied
to find a pattern to isolate the causes. A cause hypothesis is devised, and the
above data are used to prove or disprove the hypothesis. In the deduction
part, a list of all possible causes is developed in order of their likelihoods,
and tests are conducted to eliminate or substantiate each cause in decreas-
ing order of their likelihoods. If the initial tests indicate that a particular
hypothesis shows promise, test data are refined in an attempt to isolate the
problem as needed.

o Backtracking: In this approach, the programmer starts at a point in the
code where a failure was observed and traces back the execution to the point
where it occurred. This technique is frequently used by programmers, and
this is useful in small programs. However, the probability of tracing back
to the fault decreases as the program size increases, because the number
of potential backward paths may become too large.

Often, software engineers notice other previously undetected problems while
debugging and applying a fix. These newly discovered faults should not be fixed
along with the fix in focus. This is because the software engineer may not have a
full understanding of the part of the code responsible for the new fault. The best
way to deal with such a situation is to file a CR. A new CR gives the programmer an
opportunity to discuss the matter with other team members and software architects
and to get their approval on a suggestion made by the programmer. Once the CR is
approved, the software engineer must file a defect in the defect tracking database
and may proceed with the fix. This process is cumbersome, and it interrupts the
debugging process, but it is useful for very critical projects. However, programmers
often do not follow this because of a lack of a procedure to enforce it.

A Debugging Heuristic The objective of debugging is to precisely identify the
cause of a failure. Once the cause is identified, corrective measures are taken to
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fix the fault. Debugging is conducted by programmers, preferably by those who
wrote the code, because the programmer is the best person to know the source code
well enough to analyze the code efficiently and effectively. Debugging is usually
a time consuming and error-prone process, which is generally performed under
stress. Debugging involves a combination of systematic evaluation, intuition, and,
sometimes, a little bit of luck. Given a symptom of a problem, the purpose is to
isolate and determine its specific cause. The following heuristic may be followed
to isolate and correct it:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Reproduce the symptom(s).

¢ Read the troubleshooting guide of the product. This guide may include
conditions and logs, produced by normal code, or diagnostics code
specifically written for troubleshooting purpose that can be turned on.

e Try to reproduce the symptoms with diagnostics code turned on.

e Gather all the information and conduct causal analysis The goal of
causal analysis is to identify the root cause of the problem and initiate
actions so that the source of defects is eliminated.

Formulate some likely hypotheses for the cause of the problem based on
the causal analysis.

Develop a test scenario for each hypothesis to be proved or disproved.
This is done by designing test cases to provide unambiguous results
related to a hypothesis. The test cases may be static (reviewing code and
documentation) and/or dynamic in nature. Preferably, the test cases are
nondestructive, have low cost, and need minimum additional hardware
needs. A test case is said to be destructive if it destroys the hardware
setup. For example, cutting a cable during testing is called destructive
testing.

Prioritize the execution of test cases. Test cases corresponding to the
highly probable hypotheses are executed first. Also, the cost factor cannot
be overlooked. Therefore, it is desirable to execute the low-cost test cases
first followed by the more expensive ones. The programmer needs to
consider both factors.

Execute the test cases in order to find the cause of a symptom. After
executing a test case, examine the result for new evidence. If the test
result shows that a particular hypothesis is promising, test data are refined
in an attempt to isolate the defect. If necessary, go back to earlier steps
or eliminate a particular hypothesis.

Fix the problem.

¢ Fixing the problem may be a simple task, such as adding a line of
code or changing a variable in a line of code, or a more complex task
such as modifying several lines of code or designing a new unit. In
the complex case, defect fixing is a rigorous activity.

e If code review has already been completed for the module which
received a fix, then code review must be done once again to avoid
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any side effects (collateral damage) due to the changes effected in the
module.

o After a possible code review, apply the fix.

e Retest the unit to confirm that the actual cause of failure had been
found. The unit is properly debugged and fixed if tests show that the
observed failure does not occur any more.

o If there are no dynamic unit test cases that reveal the problem, then
add a new test case to the dynamic unit testing to detect possible
reoccurrences or other similar problems.

e For the unit under consideration, identify all the test cases that have
passed. Now, perform a regression test on the unit with those test
cases to ensure that new errors have not been introduced. That is why
it is so important to have archived all the test cases that have been
designed for a unit. Thus, even unit-level test cases must be managed
in a systematic manner to reduce the cost of software development.

Document the changes which have been made. Once a defect is fixed,
the following changes are required to be applied:

e Document the changes in the source code itself to reflect the change.
e Update the overall system documentation.
e Changes to the dynamic unit test cases.

o File a defect in the defect tracking database if the problem was found
after the code was checked in to the version control system.

3.7 UNIT TESTING IN EXTREME PROGRAMMING

A TDD approach to code development is used in the XP methodology [22, 23]. The
key aspect of the TDD approach is that a programmer writes low-level tests before
writing production code. This is referred to as test first [24] in software develop-
ment. Writing test-driven units is an important concept in the XP methodology. In
XP, a few unit tests are coded first, then a simple, partial system is implemented to
pass the tests. Then, one more new unit test is created, and additional code is writ-
ten to pass the new test, but not more, until a new unit test is created. The process
is continued until nothing is left to test. The process is illustrated in Figure 3.3 and
outlined below:

Step 1:
Step 2:

Step 3:

Step 4:

Pick a requirement, that is, a story.

Write a test case that will verify a small part of the story and assign a
fail verdict to it.

Write the code that implements a particular part of the story to pass the
test.

Execute all tests.
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| Understand |

v

| Add a single test
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| Add code for the test |

v

/p{ Execute all tests |
F

Rework on code

No
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Figure 3.3 Test-first process in XP. (From ref. 24. © 2005 IEEE.)

Step 5: Rework the code, and test the code until all tests pass.
Step 6: Repeat steps 2—5 until the story is fully implemented.

The simple cycle in Figure 3.3 shows that, at the beginning of each cycle,
the intention is for all tests to pass except the newly added test case. The new test
case is introduced to drive the new code development. At the end of the cycle, the
programmer executes all the unit tests, ensuring that each one passes and, hence,
the planned task of the code still works. A TDD developer must follow the three
laws proposed by Robert C. Martin [25]:

e One may not write production code unless the first failing unit test is
written.

¢ One may not write more of a unit test than is sufficient to fail.

e One may not write more production code than is sufficient to make the
failing unit test pass.

These three laws ensure that one must write a portion of a unit test that fails
and then write just enough production code to make that unit test pass. The goal
of these three laws is not to follow them strictly—it is to decrease the interval
between writing unit tests and production code.

Creating unit tests helps a developer focus on what needs to be done. Require-
ments, that is, user stories, are nailed down firmly by unit tests. Unit tests are
released into the code repository along with the code they test. Code without unit
tests may not be released. If a unit test is discovered to be missing, it must be cre-
ated immediately. Creating unit tests independently before coding sets up checks
and balances and improves the chances of getting the system right the first time.
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Unit tests provide a safety net of regression tests and validation tests so that XP
programmers can refactor and integrate effectively.

In XP, the code is being developed by two programmers working together side
by side. The concept is called pair programming. The two programmers sit side by
side in front of the monitor. One person develops the code tactically and the other
one inspects it methodically by keeping in mind the story they are implementing.
It is similar to the two-person inspection strategy proposed by Bisant and Lyle
[26]. Code inspection is carried out by an author—examiner pair in discrete steps,
examining a small part of the implementation of the story in isolation, which is
key to the success of the code review process.

3.8 JUNIT: FRAMEWORK FOR UNIT TESTING

The JUnit is a unit testing framework for the Java programming language designed
by Kent Beck and Erich Gamma. Experience gained with JUnit has motivated the
development of the TDD [22] methodology. The idea in the JUnit framework has
been ported to other languages, including C# (NUnit), Python (PyUnit), Fortran
(fUnit) and C++ (CPPUnit). This family of unit testing frameworks is collectively
referred to as xUnit. This section will introduce the fundamental concepts of JUnit
to the reader.

Suppose that we want to test the individual methods of a class called Planet-
Class. Let Move() be a method in PlanetClass such that Move() accepts only one
input parameter of type integer and returns a value of type integer. One can follow
the following steps, illustrated using pseudocode in Figure 3.4, to test Move():

e Create an object instance of PlanetClass. Let us call the instance Mars.
Now we are interested in testing the method Move() by invoking it on
object Mars.

e Select a value for all the input parameters of Move()—this function has
just one input parameter. Let us represent the input value to Move() by x.

e Know the expected value to be returned by Move(). Let the expected
returned value be y.

Planet Mars = new Planet(); // Instantiate class Planet to create

// an object Mars.
x = ... ; // Select a value for x.
Y = ... ; // The expected value to be returned by the call Move(x) .
z = Mars.Move(x); // Invoke method Mars() on object Mars.
if (z == y) print("Test passed");

else print ("Test failed.");

Figure 3.4 Sample pseudocode for performing unit testing.
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¢ Invoke method Move() on object Mars with input value x. Let z denote
the value returned by Move().

e Now compare y with z. If the two values are identical, then the method
Move() in object Mars passes the test. Otherwise, the test is said to have
failed.

In a nutshell, the five steps of unit testing are as follows:

o Create an object and select a method to execute.
e Select values for the input parameters of the method.
o Compute the expected values to be returned by the method.

o Execute the selected method on the created object using the selected input
values.

o Verify the result of executing the method.

Performing unit testing leads to a programmer consuming some resources,
especially time. Therefore, it is useful to employ a general programming framework
to code individual test cases, organize a set of test cases as a fest suite, initialize a
test environment, execute the test suite, clean up the test environment, and record
the result of execution of individual test cases. In the example shown in Figure 3.4,
creating the object Mars is a part of the initialization process. The two print()
statements are examples of recording the result of test execution. Alternatively,
one can write the result of test execution to a file.

The JUnit framework has been developed to make test writing simple. The
framework provides a basic class, called TestCase, to write test cases. Programmers
need to extend the TestCase class to write a set of individual test cases. It may be
noted that to write, for example, 10 test cases, one need not write 10 subclasses of
the class TestCase. Rather, one subclass, say MyTestCase, of TestCase, can contain
10 methods—one for each test case.

Programmers need to make assertions about the state of objects while extend-
ing the TestCase class to write test cases. For example, in each test case it is
required to compare the actual outcome of a computation with the expected out-
come. Though an if() statement can be used to compare the equality of two values
or two objects, it is seen to be more elegant to write an assert statement to achieve
the same. The class TestCase extends a utility class called Assert in the JUnit
framework. Essentially, the Assert class provides methods, as explained in the fol-
lowing, to make assertions about the state of objects created and manipulated while
testing.

assertTrue(Boolean condition): This assertion passes if the condition is true;
otherwise, it fails.

assertEquals(Object expected, Object actual): This assertion passes if the
expected and the actual objects are equal according to the equals() method;
otherwise, the assertion fails.

assertEquals(int expected, int actual): This assertion passes if expected and
actual are equal according to the = = operator; otherwise, the assertion
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fails. For each primitive type int, float, double, char, byte, long, short, and
boolean, the assertion has an overloaded version.

assertEquals(double expected, double actual, double tolerance): This asser-
tion passes if the absolute value of the difference between expected and
actual is less than or equal to the tolerance value; otherwise, the assertion
fails. The assertion has an overloaded version for float inputs.

assertSame(Object expected, Object actual): This assertion passes if the
expected and actual values refer to the same object in memory; otherwise,
the assertion fails.

assertNull(Object testobject): This assertion passes if testobject is null; oth-
erwise the assertion fails.

assertFalse(Boolean condition): This is the logical opposite of assertTrue().

The reader may note that the above list of assertions is not exhaustive. In
fact, one can build other assertions while extending the TestCase class. When an
assertion fails, a programmer may want to know immediately the nature of the
failure. This can be done by displaying a message when the assertion fails. Each
assertion method listed above accepts an optional first parameter of type String—if
the assertion fails, then the String value is displayed. This facilitates the programmer
to display a desired message when the assertion fails. As an aside, upon failure,
the assertEquals() method displays a customized message showing the expected
value and the actual value. For example, an assertEquals() method can display the
following:

junit. framework.AssertionFailedError: expected: <2006> but
was:<2060>.

At this point it is interesting to note that only failed tests are reported. Failed
tests can be reported by various means, such as displaying a message, displaying an
identifier for the test case, and counting the total number of failed test cases. Essen-
tially, an assertion method throws an exception, called AssertionFailedError, when
the assertion fails, and JUnit catches the exception. The code shown in Figure 3.5
illustrates how the assertTrue() assertion works: When the JUnit framework catches
an exception, it records the fact that the assertion failed and proceeds to the next
test case. Having executed all the test cases, JUnit produces a list of all those tests
that have failed.

In Figure 3.6, we show an example of a test suite containing two test cases.
In order to execute the two test cases, one needs to create an object instance of

static public void assertTrue (Boolean condition) {
if (!condition)
throw new AssertionFailedError();

Figure 3.5 The assertTrue() assertion throws an exception.
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import TestMe; // TestMe is the class whose methods are going
//to be tested.
import junit.framework.*; // This contains the TestCase class.

public class MyTestSuite extends TestCase { // Create a subclass
//of TestCase

public void MyTestl() { // This method is the first test case
TestMe objectl = new TestMe( ... ); // Create an
//instance of TestMe with
//desired parameters

int x = objectl.Methodl(...); // invoke Methodl
//on objectl
assertEquals (365, x); // 365 and x are expected and

//actual values, respectively

public void MyTest2() { // This method is the second test case
TestMe object2 = new TestMe( ... ); // Create another
//instance of TestMe
//with desired parameters
double y = object2.Method2(...); // invoke Method2
//on object2
assertEquals(2.99, y, 0.0001d); // 2.99 is the expected
// value; y is the actual
// value; 0.0001 is tolerance
// level

Figure 3.6 Example test suite.

MyTestSuite and invoke the two methods MyTestl() and MyTest2(). Whether or
not the two methods, namely Method1() and Method()2, are to be invoked on two
different instances of the class TestMe depends on the individual objectives of
those two test cases. In other words, it is the programmer who decides whether or
not two instances of the class TestMe are to be created.

This section is by no means a thorough exposition of the capabilities of the
JUnit framework. Readers are referred to other sources, such as JUnit Recipes by
Rainsberger [27] and Pragmatic Unit Testing by Hunt and Thomas [28]. In addition,
tools such as Korat [29], Symstra [30], and Eclat [31] for Java unit testing are being
developed and used by researchers.

3.9 TOOLS FOR UNIT TESTING

Programmers can benefit from using tools in unit testing by reducing testing time
without sacrificing thoroughness. The well-known tools in everyday life are an
editor, a compiler, an operating system, and a debugger. However, in some cases,
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the real execution environment of a unit may not be available to a programmer
while the code is being developed. In such cases, an emulator of the environment
is useful in testing and debugging the code. Other kinds of tools that facilitate
effective unit testing are as follows:

1. Code Auditor: This tool is used to check the quality of software to ensure
that it meets some minimum coding standards. It detects violations of program-
ming, naming, and style guidelines. It can identify portions of code that cannot
be ported between different operating systems and processors. Moreover, it can
suggest improvements to the structure and style of the source code. In addition, it
counts the number of LOC which can be used to measure productivity, that is, LOC
produced per unit time, and calculate defect density, that is, number of defects per
KLOC.

2. Bound Checker: This tool can check for accidental writes into the instruc-
tion areas of memory or to any other memory location outside the data storage area
of the application. This fills unused memory space with a signature pattern (dis-
tinct binary pattern) as a way of determining at a later time whether any of this
memory space has been overwritten. The tool can issue diagnostic messages when
boundary violations on data items occur. It can detect violation of the bound-
aries of array, for example, when the array index or pointer is outside its allowed
range. For example, if an array z is declared to have a range from z[0] to z[99],
it can detect reads and writes outside this range of storage, for example, z[—3]
or z[10].

3. Documenters: These tools read source code and automatically generate
descriptions and caller/callee tree diagram or data model from the source code.

4. Interactive Debuggers: These tools assist software developers in imple-
menting different debugging approaches discussed in this chapter. These tools
should have the trace-back and breakpoint capabilities to enable the programmers to
understand the dynamics of program execution and to identify problem areas in the
code. Breakpoint debuggers are based on deductive logic. Breakpoints are placed
according to a heuristic analysis of code [32]. Another popular kind of debugger
is known as omniscient debugger (ODB), in which there is no deduction. It simply
follows the trail of “bad” values back to their source—no “guessing” where to put
the breakpoints. An ODB is like “the snake in the grass,” that is, if you see a snake
in the grass and you pull its tail, sooner or later you get to its head. In contrast,
breakpoint debuggers suffer from the “lizard in the grass” problem, that is, when
you see the lizard and grab its tail, the lizard breaks off its tail and gets away [33].

5. In-Circuit Emulators: An in-circuit emulator, commonly known as ICE,
is an invaluable software development tool in embedded system design. It provides
a high-speed Ethernet connection between a host debugger and a target micropro-
cessor, enabling developers to perform common source-level debugging activities,
such as watching memory and controlling large numbers of registers, in a matter
of seconds. It is vital for board bring-up, solving complex problems, and manu-
facturing or testing of products. Many emulators have advanced features, such as
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performance analysis, coverage analysis, buffering of traces, and advance trigger
and breakpoint possibilities.

6. Memory Leak Detectors: These tools test the allocation of memory to an
application which requests for memory, but fails to deallocate. These detect the
following overflow problems in application programs:

o Illegal read, that is, accesses to memory which is not allocated to the
application or which the application is not authorized to access.

¢ Reads memory which has not been initialized.

¢ Dynamic memory overwrites to a memory location that has not been allo-
cated to the application.

e Reading from a memory location not allocated, or not initialized, prior to
the read operation.

The tools watch the heap, keep track of heap allocations to applications, and
detect memory leaks. The tools also build profiles of memory use, for example,
which line-of-code source instruction accesses a particular memory address.

7. Static Code (Path) Analyzer: These tools identify paths to test, based
on the structure of the code such as McCabe’s cyclomatic complexity measure
(Table 3.3). Such tools are dependent on source language and require the source
code to be recompiled with the tool. These tools can be used to improve produc-
tivity, resource management, quality, and predictability by providing complexity
measurement metrics.

8. Software Inspection Support: Tools can help schedule group inspections.
These can also provide status of items reviewed and follow-up actions and distribute
the reports of problem resolution. They can be integrated with other tools, such as
static code analyzers.

9. Test Coverage Analyzer: These tools measure internal test coverage, often
expressed in terms of the control structure of the test object, and report the cover-
age metric. Coverage analyzers track and report what paths were exercised during
dynamic unit testing. Test coverage analyzers are powerful tools that increase con-
fidence in product quality by assuring that tests cover all of the structural parts of
a unit or a program. An important aspect in test coverage analysis is to identify
parts of source code that were never touched by any dynamic unit test. Feedback
from the coverage reports to the source code makes it easier to design new unit
test cases to cover the specific untested paths.

10. Test Data Generator: These tools assist programmers in selecting test data
that cause a program to behave in a desired manner. Test data generators can offer
several capabilities beyond the basics of data generation:

¢ They have generate a large number of variations of a desired data set based
on a description of the characteristics which has been fed into the tool.

o They can generate test input data from source code.
o They can generate equivalence classes and values close to the boundaries.

e They can calculate the desired extent of boundary value testing.
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TABLE 3.3 McCabe Complexity Measure

McCabe’s complexity measure is based on the cyclomatic complexity of a programe graph for
a module. The metric can be computed using the formulav=e—n + 2,

where

v = cyclomatic complexity of graph,

e =number of edges (program flow between nodes)

n = number of nodes (sequential group of program statements)

If a strongly connected graph is constructed (one in which there is an edge between the exit
node and the entry node), the calculationisv=e—n+ 1.

Example: A program graph, illustrated below, is used to depict control flow. Each circled
node represents a sequence of program statements, and the flow of control is represented by
directed edges. For this graph the cyclomatic complexity isv=9—-8+2=3

4
=®

n
e

8
9

Source: From ref. 6.

o They can estimate the likelihood of the test data being able to reveal faults.
e They can generate data to assist in mutation analysis.

Automatic generation of test inputs is an active area of research. Several tools,
such as CUTE [34], DART [35], and EGT system [36], have been developed by
researchers to improve test coverage.

11. Test Harness: This class of tools supports the execution of dynamic unit
tests by making it almost painless to (i) install the unit under test in a test environ-
ment, (ii) drive the unit under test with input data in the expected input format, (iii)
generate stubs to emulate the behavior of subordinate modules, and (iv) capture
the actual outcome as generated by the unit under test and log or display it in a
usable form. Advanced tools may compare the expected outcome with the actual
outcome and log a test verdict for each input test data.

12. Performance Monitors: The timing characteristics of software components
can be monitored and evaluated by these tools. These tools are essential for any
real-time system in order to evaluate the performance characteristics of the system,
such as delay and throughput. For example, in telecommunication systems, these
tools can be used to calculate the end-to-end delay of a telephone call.
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13. Network Analyzers: Network operating systems such as software that run
on routers, switches, and client/server systems are tested by network analyzers.
These tools have the ability to analyze the traffic and identify problem areas.
Many of these networking tools allow test engineers to monitor performance met-
rics and diagnose performance problems across the networks. These tools are
enhanced to improve the network security monitoring (NSM) capabilities to detect
intrusion [37].

14. Simulators and Emulators: These tools are used to replace the real soft-
ware and hardware that are currently not available. Both kinds of tools are used
for training, safety, and economy reasons. Some examples are flight simulators,
terminal emulators, and emulators for base transceiver stations in cellular mobile
networks. These tools are bundled with traffic generators and performance analyzers
in order to generate a large volume of input data.

15. Traffic Generators: Large volumes of data needed to stress the interfaces
and the integrated system are generated by traffic generators. These produce streams
of transactions or data packets. For example, in testing routers, one needs a traffic
that simulates streams of varying size Internet Protocol (IP) packets arriving from
different sources. These tools can set parameters for mean packet arrival rate,
duration, and packet size. Operational profiles can be used to generate traffic for
load and stability testing.

16. Version Control: A version control system provides functionalities to store
a sequence of revisions of the software and associated information files under
development. A system release is a collection of the associated files from a ver-
sion control tool perspective. These files may contain source code, compiled code,
documentation, and environment information, such as version of the tool used to
write the software. The objective of version control is to ensure a systematic and
traceable software development process in which all changes are precisely man-
aged, so that a software system is always in a well-defined state. With most of the
version control tools, the repository is a central place that holds the master copy
of all the files.

The configuration management system (CMS) extends the version control from
software and documentation to control the changes made to hardware, firmware,
software, documentation, test, test fixtures, test documentation, and execution envi-
ronments throughout the development and operational life of a system. Therefore,
configuration management tools are larger, better variations of version control tools.
The characteristics of the version control and configuration management tools are
as follows:

o Access Control: The tools monitor and control access to components.
One can specify which users can access a component or group of com-
ponents. One can also restrict access to components currently undergoing
modification or testing.

e Cross Referencing: The tools can maintain linkages among related com-
ponents, such as problem reports, components, fixes, and documentations.
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One can merge files and coordinate multiple updates from different versions
to produce one consolidated file.

e Tracking of Modifications: The tools maintain records of all modifi-
cations to components. These also allow merging of files and coordinate
multiple updates from different versions to produce one consolidated file.
These can track similarities and differences among versions of code, docu-
mentation, and test libraries. They also provide an audit trail or history of
the changes from version to version.

o Release Generation: The tools can automatically build new system
releases and insulate the development, test, and shipped versions of the
product.

o System Version Management: The tools allow sharing of common com-
ponents across system versions and controlled use of system versions. They
support coordination of parallel development, maintenance, and integration
of multiple components among several programmers or project teams. They
also coordinate geographically dispersed development and test teams.

e Archiving: The tools support automatic archiving of retired components
and system versions.

3.10 SUMMARY

This chapter began with a description of unit-level testing, which means identifying
faults in a program unit analyzed and executed in isolation. Two complementary
types of unit testing were introduced: static unit testing and dynamic unit test-
ing. Static unit testing involves visual inspection and analysis of code, whereas a
program unit is executed in a controlled manner in dynamic unit testing.

Next, we described a code review process, which comprises six steps: readi-
ness, preparation, examination, rework, validation, and exit. The goal of code
review is to assess the quality of the software in question, not the quality of the
process used to develop the product. We discussed a few basic metrics that can
be collected from the code review process. Those metrics facilitate estimation of
review time and resources required for similar projects. Also, the metrics make
code review visible to the upper management and allow upper management to be
satisfied with the viability of code review as a testing tool.

We explained several preventive measures that can be taken during code
development to reduce the number of faults in a program. The preventive mea-
sures were presented in the form of a set of guidelines that programmers can
follow to construct code. Essentially, the guidelines focus on incorporating suitable
mechanisms into the code.

Next, we studied dynamic unit testing in detail. In dynamic unit testing, a
program unit is actually executed, and the outcomes of program execution are
observed. The concepts of test driver and stubs were explained in the context
of a unit under test. A test driver is a caller of the unit under test and all the
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“dummy modules” called by the unit are known as stubs. We described how muta-
tion analysis can be used to locate weaknesses in test data used for unit testing.
Mutation analysis should be used in conjunction with traditional unit testing tech-
niques such as domain analysis or data flow analysis. That is, mutation testing is
not an alternative to domain testing or data flow analysis.

With the unit test model in place to reveal defects, we examined how pro-
grammers can locate faults by debugging a unit. Debugging occurs as a consequence
of a test revealing a defect. We discussed three approaches to debugging: brute
force, cause elimination, and backtracking. The objective of debugging is to pre-
cisely identify the cause of a failure. Given the symptom of a problem, the purpose
is to isolate and determine its specific cause. We explained a heuristic to perform
program debugging.

Next, we explained dynamic unit testing is an integral part of the XP software
development process. In the XP process, unit tests are created prior to coding—this
is known as test first. The test-first approach sets up checks and balances to improve
the chances of getting things right the first time. We then introduced the JUnit
framework, which is used to create and execute dynamic unit tests.

We concluded the chapter with a description of several tools that can be use-
ful in improving the effectiveness of unit testing. These tools are of the following
types: code auditor, bound checker, documenters, interactive debuggers, in-circuit
emulators, memory leak detectors, static code analyzers, tools for software inspec-
tion support, test coverage analyzers, test data generators, tools for creating test
harness, performance monitors, network analyzers, simulators and emulators, traffic
generators, and tools for version control.

LITERATURE REVIEW

The Institute of Electrical and Electronics Engineers (IEEE) standard 1028-1988
(IEEE Standard for Software Reviews and Audits: IEEE/ANSI Standard) describes
the detailed examination process for a technical review, an inspection, a software
walkthrough, and an audit. For each of the examination processes, it includes an
objective, an abstract, special responsibilities, program input, entry criteria, proce-
dures, exit criteria, output, and auditability.

Several improvements on Fagan’s inspection techniques have been proposed
by researchers during the past three decades. Those proposals suggest ways to
enhance the effectiveness of the review process or to fit specific application
domains. A number of excellent articles address various issues related to software
inspection as follows:

S. Biffl, and M. Halling, “Investigating the Defect Effectiveness and Cost
Benefit of Nominal Inspection Teams,” IEEE Transactions on Software
Engineering, Vol. 29, No. 5, May 2003, pp. 385-397.

A. A. Porter and P. M. Johnson, “Assessing Software Review Meeting:
Results of a Comparative Analysis of Two Experimental Studies,” IEEE
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Transactions on Software Engineering, Vol. 23, No. 3, March 1997, pp.
129-145.

A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta, “An Experiment
to Assess the Cost-Benefits of Code Inspection in Large Scale Software
Development,” IEEE Transactions on Software Engineering, Vol. 23, No.
6, June 1997, pp. 329-346.

A. A. Porter and L. G. Votta, “What Makes Inspection Work,” IEEE Software,
Vol. 14, No. 5, May 1997, pp. 99-102.

C. Sauer, D. Jeffery, L. Land, and P. Yetton, “The Effectiveness of Soft-
ware Development Technical Reviews: A Behaviorally Motivated Program
of Search,” IEEE Transactions on Software Engineering, Vol. 26, No. 1,
January 2000, pp. 1-14.

An alternative non-execution-based technique is formal verification of code.
Formal verification consists of mathematical proofs to show that a program is
correct. The two most prominent methods for proving program properties are those
of Dijkstra and Hoare:

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, NJ, 1976.

C. A. R. Hoare, “An Axiomatic Basis of Computer Programming,” Commu-
nications of the ACM, Vol. 12, No. 10, October 1969, pp. 576-580.

Hoare presented an axiomatic approach in which properties of program fragments
are described using preconditions and postconditions. An example statement with
a precondition and a postcondition is {PRE} P {POST}, where PRE is the pre-
condition, POST is the postcondition, and P is the program fragment. Both PRE
and POST are expressed in first-order predicate calculus, which means that they
can include the universal quantifier V (“for all”’) and existential quantifier 3 (“there
exists”). The interpretation of the above statement is that if the program fragment
P starts executing in a state satisfying PRE, then if P terminates, P will do so in a
state satisfying POST.

Hoare’s logic led to Dijkstra’s closely related “calculus of programs,” which
is based on the idea of weakest preconditions. The weakest preconditions R with
respect to a program fragment P and a postcondition POST is the set of all states
that, when subject to P, will terminate and leave the state of computation in POST.
The weakest precondition is written as WP(P, POST).

While mutation testing systematically implants faults in programs by applying
syntactic transformations, perturbation testing is performed to test a program’s
robustness by changing the values of program data during run time, so that the
subsequent execution will either fail or succeed. Program perturbation is based on
three parts of software hypothesis as explained in the following:

o Execution: A fault must be executed.

o Infection: The fault must change the data state of the computation directly
after the fault location.
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o Propagation: The erroneous data state must propagate to an output vari-
able.

In the perturbation technique, the programmer injects faults in the data state
of an executing program and traces the injected faults on the program’s output.
A fault injection is performed by applying a perturbation function that changes
the program’s data state. A perturbation function is a mathematical function that
takes a data state as its input, changes the data state according to some specified
criteria, and produces a modified data state as output. For the interested readers,
two excellent references on perturbation testing are as follows:

M. A. Friedman and J. M. Voas, Software Assessment—Reliability, Safety,
Testability, Wiley, New York, 1995.

J. M. Voas and G. McGraw, Software Fault Injection—Inoculating Programs
Against Errors, Wiley, New York, 1998.

The paper by Steven J. Zeil (“Testing for Perturbation of Program State-
ment,” [EEE Transactions on Software Engineering, Vol. 9, No. 3, May 1983,
pp- 335-346) describes a method for deducing sufficient path coverage to ensure
the absence of prescribed errors in a program. It models the program computation
and potential errors as a vector space. This enables the conditions for nondetection
of an error to be calculated. The above article is an advanced reading for students
who are interested in perturbation analysis.

Those readers actively involved in software configuration management
(SCM) systems or interested in a more sophisticated treatment of the topic must
read the article by Jacky Estublier, David Leblang, André V. Hoek, Reidar
Conradi, Geoffrey Clemm, Walter Tichy, and Darcy Wiborg-Weber (“Impact
of Software Engineering Research on the Practice of Software Configuration
Management,” ACM Transactions on Software Engineering and Methodology,
Vol. 14, No. 4, October 2005, pp. 383—-430). The authors discussed the evolution
of software configuration management technology, with a particular emphasis on
the impact that university and industrial research has had along the way. This
article creates a detailed record of the critical value of software configuration
management research and illustrates the research results that have shaped the
functionality of SCM systems.
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Exercises

. Study the Yourdon [2] concept of a design walkthrough and the IBM concept
[1] of a design inspection. Discuss the similarities and the differences between
them.

2. A software engineering group is developing a mission-critical software system

that will launch laser-guided missiles to its destinations. This is a new kind
of product that was never built by the company. As a quality assurance man-
ager, which code review methodology—walkthrough or inspection—would
you recommend? Justify your answer.

3. What size of a review team would you recommend for the project in exercise

2, and why? What are the different roles of each member of the review team?
What groups should send representatives to participate in code review?

4. Suppose that the C programming language is chosen in the project in exercise

2. Recommend a detailed code review checklist to the review team.

In addition to code review, what other static unit testing techniques would you
recommend for the project in exercise 3? Justify your answer.

6. Describe the special role of a recordkeeper.

7. Discuss the importance of code review rework and validation.

8. Draw a control flow graph for the following sample code. Determine the cyclo-

matic complexity of the graph.

sum_of_all_positive_numbers(a, num_of_entries, sum)
sum = 0

while(init <= num_of_entries)

(a)
(b)
(¢) init = 1
(d)
(e) if alinit] > 0
(f)

sum = sum + alinit]
endif
(g9) init = init + 1
endwhile

(h) end sum_of_all_positive_numbers
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A test engineer generates 70 mutants of a program P and 150 test cases to test
the program P. After the first iteration of mutation testing, the tester finds 58
dead mutants and 4 equivalent mutants. Calculate the mutation score for this
test suite. Is the test suite adequate for program P? Should the test engineer
develop additional test cases? Justify your answer.

There is some debate as to whether code should be compiled before it is
reviewed and vice versa. Based on your experience, give an opinion on this
matter.

Attempt to draw a control flow graph for a module that you have recently
developed. Determine the cyclomatic complexity for the module. Is the module
too complex?
For your current software project, conduct a formal code review as described
in Section 3.2.
For your current software project, develop dynamic unit test cases for each of

the units in the JUnit framework if the code is in Java or in an appropriate
xUnit framework.



CHAPTER 1

Control Flow Testing

He who controls the present, controls the past. He who controls the past, controls
the future.
— George Orwell

4.1 BASICIDEA

Two kinds of basic statements in a program unit are assignment statements and
conditional statements. An assignment statement is explicitly represented by using
an assignment symbol, “ =", such as x = 2*y;, where x and y are variables.
Program conditions are at the core of conditional statements, such as if(), for()
loop, while() loop, and goto. As an example, in if(x! = y), we are testing for the
inequality of x and y. In the absence of conditional statements, program instructions
are executed in the sequence they appear. The idea of successive execution of
instructions gives rise to the concept of control flow in a program unit. Conditional
statements alter the default, sequential control flow in a program unit. In fact,
even a small number of conditional statements can lead to a complex control flow
structure in a program.

Function calls are a mechanism to provide abstraction in program design.
A call to a program function leads to control entering the called function. Similarly,
when the called function executes its refurn statement, we say that control exits
from the function. Though a function can have many return statements, for simplic-
ity, one can restructure the function to have exactly one return. A program unit can
be viewed as having a well-defined entry point and a well-defined exit point. The
execution of a sequence of instructions from the entry point to the exit point of a
program unit is called a program path. There can be a large, even infinite, number
of paths in a program unit. Each program path can be characterized by an input
and an expected output. A specific input value causes a specific program path to be
executed; it is expected that the program path performs the desired computation,
thereby producing the expected output value. Therefore, it may seem natural to
execute as many program paths as possible. Mere execution of a large number of
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paths, at a higher cost, may not be effective in revealing defects. Ideally, one must
strive to execute fewer paths for better effectiveness.

The concepts of control flow in computer programs [1], program paths [2],
and control flow testing [2—8] have been studied for many decades. Tools are
being developed to support control flow testing [9]. Such tools identify paths from
a program unit based on a user-defined criterion, generate the corresponding input
to execute a selected path, and generate program stubs and drivers to execute the
test. Control flow testing is a kind of structural testing, which is performed by
programmers to test code written by them. The concept is applied to small units of
code, such as a function. Test cases for control flow testing are derived from the
source code, such as a program unit (e.g., a function or method), rather than from
the entire program.

Structurally, a path is a sequence of statements in a program unit, whereas,
semantically, it is an execution instance of the unit. For a given set of input data,
the program unit executes a certain path. For another set of input data, the unit may
execute a different path. The main idea in control flow testing is to appropriately
select a few paths in a program unit and observe whether or not the selected paths
produce the expected outcome. By executing a few paths in a program unit, the
programmer tries to assess the behavior of the entire program unit.

4.2 OUTLINE OF CONTROL FLOW TESTING

The overall idea of generating test input data for performing control flow testing
has been depicted in Figure 4.1. The activities performed, the intermediate results
produced by those activities, and programmer preferences in the test generation
process are explained below.

Inputs: The source code of a program unit and a set of path selection criteria
are the inputs to a process for generating test data. In the following, two
examples of path selection criteria are given.

Example. Select paths such that every statement is executed at least once.

Example. Select paths such that every conditional statement, for
example, an if() statement, evaluates to true and false at least once on
different occasions. A conditional statement may evaluate to true in one
path and false in a second path.

Generation of a Control Flow Graph: A control flow graph (CFG) is a
detailed graphical representation of a program unit. The idea behind draw-
ing a CFG is to be able to visualize all the paths in a program unit. The
process of drawing a CFG from a program unit will be explained in the
following section. If the process of test generation is automated, a compiler
can be modified to produce a CFG.
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Figure 4.1 Process of generating test input data for control flow testing.

Selection of Paths: Paths are selected from the CFG to satisfy the path selec-
tion criteria, and it is done by considering the structure of the CFG.

Generation of Test Input Data: A path can be executed if and only if a
certain instance of the inputs to the program unit causes all the conditional
statements along the path to evaluate to true or false as dictated by the
control flow. Such a path is called a feasible path. Otherwise, the path is
said to be infeasible. It is essential to identify certain values of the inputs

Feasibility Test of a Path: The idea behind checking the feasibility of a
selected path is to meet the path selection criteria. If some chosen paths
are found to be infeasible, then new paths are selected to meet the criteria.

4.3 CONTROL FLOW GRAPH

from a given path for the path to execute.

A CFG is a graphical representation of a program unit. Three symbols are used
to construct a CFG, as shown in Figure 4.2. A rectangle represents a sequential
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True False

Computation

Sequential computation Decision point Merge point

Figure 4.2 Symbols in a CFG.

computation. A maximal sequential computation can be represented either by a
single rectangle or by many rectangles, each corresponding to one statement in the
source code.

We label each computation and decision box with a unique integer. The two
branches of a decision box are labeled with T and F to represent the true and false
evaluations, respectively, of the condition within the box. We will not label a merge
node, because one can easily identify the paths in a CFG even without explicitly
considering the merge nodes. Moreover, not mentioning the merge nodes in a path
will make a path description shorter.

We consider the openfiles() function shown in Figure 4.3 to illustrate the
process of drawing a CFG. The function has three statements: an assignment state-
ment int i = 0;, a conditional statement if(), and a return(i) statement. The reader
may note that irrespective of the evaluation of the if(), the function performs the
same action, namely, null. In Figure 4.4, we show a high-level representation of

FILE *fptrl, *fptr2, *fptr3; /* These are global variables. */

int openfiles() {
/*
This function tries to open files "filel", "file2", and
"file3" for read access, and returns the number of files
successfully opened. The file pointers of the opened files
are put in the global variables.

*/
int 1 = 0;
1f(
((( fptrl = fopen("filel", "r")) != NULL) && (i++)
&& (0)) ||
((( fptr2 = fopen("file2", "r")) != NULL) && (i++)
&& (0)) ||
((( fptr3 = fopen("file3", "r")) != NULL) && (i++))
)
return (i) ;

Figure 4.3 Function to open three files.
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Entry point

3 . . .
Exit point . Figure 4.4 High-level CFG representation of openfiles().
The three nodes are numbered 1, 2, and 3.

the control flow in openfiles() with three nodes numbered 1, 2, and 3. The flow
graph shows just two paths in openfiles().

A closer examination of the condition part of the if() statement reveals that
there are not only Boolean and relational operators in the condition part, but also
assignment statements. Some of their examples are given below:

Assignment statements: fptrl = fopen(“filel”, “r””) and i++
Relational operator: fptrl! = NULL

Boolean operators: && and ||

Execution of the assignment statements in the condition part of the if statement
depends upon the component conditions. For example, consider the following com-
ponent condition in the if part:

((( fptrl = fopen("filel", "r")) != NULL) && (i++) && (0))
The above condition is executed as follows:

¢ Execute the assignment statement fptrl = fopen(“filel”, “r”).
o Execute the relational operation fptrl! = NULL.

o If the above relational operator evaluates to false, skip the evaluation of
the subsequent condition components (i++) && (0).

o If the relational operator evaluates to true, then first (i) is evaluated to true
or false. Irrespective of the outcome of this evaluation, the next statement
executed is (i++).

e If (i) has evaluated to true, then the condition (0) is evaluated. Otherwise,
evaluation of (0) is skipped.

In Figure 4.5, we show a detailed CFG for the openfiles() function. The
figure illustrates a fact that a CFG can take up a complex structure even for a
small program unit.

We give a Java method, called ReturnAverage(), in Figure 4.6. The method
accepts four parameters, namely value, AS, MIN, and MAX, where value is an
integer array and AS is the maximum size of the array. The array can hold fewer
number of elements than AS; such a scenarion is semantically represented by
having the value —999 denoting the end of the array. For example, AS = 15,
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i=0

2 { 8

| fptrl = fopen("filel", "r") | | fptr2 = fopen("file2", "r") |

return(i)

Figure 4.5 Detailed CFG representation of openfiles(). The numbers 1-21 are the nodes.

whereas the 10th element of the array is —999, which means that there are 10
elements—0—-9—in the array. MIN and MAX are two integer values that are used
to perform certain computations within the method. The method sums up the values
of all those elements of the array which fall within the closed range [MIN, MAX],
counts their number, and returns their average value. The CFG of the method is
shown in Figure 4.7.

4.4 PATHS IN A CONTROL FLOW GRAPH

We assume that a control flow graph has exactly one entry node and exactly one
exit node for the convenience of discussion. Each node is labeled with a unique
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public static double ReturnAverage (int valuel],
int AS, int MIN, int MAX) {

/ *
Function: ReturnAverage Computes the average
of all those numbers in the input array in
the positive range [MIN, MAX]. The maximum
size of the array is AS. But, the array size
could be smaller than AS in which case the end
of input is represented by -999.
*/

int i, ti, tv, sum;

double av;

i =0; ti = 0; tv = 0; sum = 0;

|

while (ti < AS && value[i] != -999) {
ti++;
if (value[i] >= MIN && value[i] <= MAX) {
tv++;

sum = sum + value[i];
}
1++;
}
if (tv > 0)
av = (double)sum/tv;
else
av = (double) -999;
return (av);

Figure 4.6 Function to compute average of selected integers in an array. This program is
an adaptation of “Figure 2. A sample program” in ref. 10. (With permission from the
Australian Computer Society.)

integer value. Also, the two branches of a decision node are appropriately labeled
with true (T) or false (F). We are interested in identifying entry—exit paths in a
CFG. A path is represented as a sequence of computation and decision nodes from
the entry node to the exit node. We also specify whether control exits a decision
node via its true or false branch while including it in a path.

In Table 4.1, we show a few paths from the control flow graph of Figure 4.7.
The reader may note that we have arbitrarily chosen these paths without applying
any path selection criterion. We have unfolded the loop just once in path 3, whereas
path 4 unfolds the same loop twice, and these are two distinct paths.

4.5 PATH SELECTION CRITERIA

A CFG, such as the one shown in Figure 4.7, can have a large number of different
paths. One may be tempted to test the execution of each and every path in a program
unit. For a program unit with a small number of paths, executing all the paths may
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Initialize: value[], AS |1
MIN, MAX

}

i=0,t=0, 2
tv =0, sum =0

11 12

av = (double)—999 av = (double)sum/tv

8

tv++
sum = sum + value[i]

13

return(av)

i++

Figure 4.7 A CFG representation of ReturnAverage(). Numbers 1-13 are the nodes.

TABLE 4.1 Examples of Path in CFG of Figure 4.7

Path 1  1-2-3(F)-10(T)-12-13

Path 2 1-2-3(F)-10(F)-11-13

Path 3 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13

Path 4  1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13
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be desirable and achievable as well. On the other hand, for a program unit with a
large number of paths, executing every distinct path may not be practical. Thus,
it is more productive for programmers to select a small number of program paths
in an effort to reveal defects in the code. Given the set of all paths, one is faced
with a question “What paths do I select for testing?” The concept of path selection
criteria is useful is answering the above question. In the following, we state the
advantages of selecting paths based on defined criteria:

o All program constructs are exercised at least once. The programmer needs
to observe the outcome of executing each program construct, for example,
statements, Boolean conditions, and returns.

e We do not generate test inputs which execute the same path repeatedly.
Executing the same path several times is a waste of resources. However,
if each execution of a program path potentially updates the state of the
system, for example, the database state, then multiple executions of the
same path may not be identical.

e We know the program features that have been tested and those not tested.
For example, we may execute an if statement only once so that it evaluates
to true. If we do not execute it once again for its false evaluation, we are,
at least, aware that we have not observed the outcome of the program with
a false evaluation of the if statement.

Now we explain the following well-known path selection criteria:

e Select all paths.
o Select paths to achieve complete statement coverage.
o Select paths to achieve complete branch coverage.

o Select paths to achieve predicate coverage.

4.5.1 All-Path Coverage Criterion

If all the paths in a CFG are selected, then one can detect all faults, except those
due to missing path errors. However, a program may contain a large number of
paths, or even an infinite number of paths. The small, loop-free openfiles() function
shown in Figure 4.3 contains more than 25 paths. One does not know whether or
not a path is feasible at the time of selecting paths, though only eight of all those
paths are feasible. If one selects all possible paths in a program, then we say that
the all-path selection criterion has been satisfied.

Let us consider the example of the openfiles() function. This function tries to
open the three files filel, file2, and file3. The function returns an integer representing
the number of files it has successfully opened. A file is said to be successfully
opened with “read” access if the file exists. The existence of a file is either “yes”
or “no.” Thus, the input domain of the function consists of eight combinations of
the existence of the three files, as shown in Table 4.2.

We can trace a path in the CFG of Figure 4.5 for each input, that is, each
row of Table 4.2. Ideally, we identify test inputs to execute a certain path in a
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TABLE 4.2 Input Domain of openfiles()

Existence of filel Existence of file2 Existence of file3

No No No
No No Yes
No Yes No
No Yes Yes
Yes No No
Yes No Yes
Yes Yes No
Yes Yes Yes

TABLE 4.3 Inputs and Paths in openfiles()

Input Path

< No, No, No > 1-2-3(F)-8-9(F)-14-15(F)-19-21
< Yes, No, No > 1-2-3(T)-4(F)-6-8-9(F)-14-15(F)-19-21
< Yes, Yes, Yes>  1-2-3(T)-4(F)-6-8-9(T)-10(T)-11-13(F)-14-15(T)-16(T)-18-20-21

program; this will be explained later in this chapter. We give three examples of the
paths executed by the test inputs (Table 4.3). In this manner, we can identify eight
possible paths in Figure 4.5. The all-paths selection criterion is desirable since it
can detect faults; however, it is difficult to achieve in practice.

4.5.2 Statement Coverage Criterion

Statement coverage refers to executing individual program statements and observ-
ing the outcome. We say that 100% statement coverage has been achieved if all
the statements have been executed at least once. Complete statement coverage is
the weakest coverage criterion in program testing. Any test suite that achieves less
than statement coverage for new software is considered to be unacceptable.

All program statements are represented in some form in a CFG. Referring
to the ReturnAverage() method in Figure 4.6 and its CFG in Figure 4.7, the four
assignment statements

i =
ti =
tv =

7
7

7

o O O o

sum =

7

have been represented by node 2. The while statement has been represented as a
loop, where the loop control condition

(ti < AS && value[i] != -999)
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has been represented by nodes 3 and 4. Thus, covering a statement in a program
means visiting one or more nodes representing the statement, more precisely, select-
ing a feasible entry—exit path that includes the corresponding nodes. Since a single
entry—exit path includes many nodes, we need to select just a few paths to cover
all the nodes of a CFG. Therefore, the basic problem is to select a few feasible
paths to cover all the nodes of a CFG in order to achieve the complete statement
coverage criterion. We follow these rules while selecting paths:

e Select short paths.

o Select paths of increasingly longer length. Unfold a loop several times if
there is a need.

o Select arbitrarily long, “complex” paths.

One can select the two paths shown in Figure 4.4 to achieve complete statement
coverage.

4.5.3 Branch Coverage Criterion

Syntactically, a branch is an outgoing edge from a node. All the rectangle nodes
have at most one outgoing branch (edge). The exit node of a CFG does not have an
outgoing branch. All the diamond nodes have two outgoing branches. Covering a
branch means selecting a path that includes the branch. Complete branch coverage
means selecting a number of paths such that every branch is included in at least
one path.

In a preceding discussion, we showed that one can select two paths, SCPath 1
and SCPath 2 in Table 4.4, to achieve complete statement coverage. These two
paths cover all the nodes (statements) and most of the branches of the CFG shown
in Figure 4.7. The branches which are not covered by these two paths have been
highlighted by bold dashed lines in Figure 4.8. These uncovered branches corre-
spond to the three independent conditions

value[i] != -999
value[i] >= MIN
value[i] <= MAX

evaluating to false. This means that as a programmer we have not observed the
outcome of the program execution as a result of the conditions evaluating to false.
Thus, complete branch coverage means selecting enough number of paths such that
every condition evaluates to true at least once and to false at least once.

We need to select more paths to cover the branches highlighted by the bold
dashed lines in Figure 4.8. A set of paths for complete branch coverage is given
in Table 4.5.

TABLE 4.4 Paths for Statement Coverage of CFG of Figure 4.7

SCPath 1 1-2-3(F)-10(F)-11-13
SCPath 2 1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13




4.5 PATH SELECTION CRITERIA

Initialize: value[], AS |1
MIN, MAX

I

i=0,ti=0, 2
tv=0,sum=0

A

av = (double)-999 av = (double)sum/tv

8

tv++
sum = sum + valuel[i]

13

return(av)

i++

Figure 4.8 Dashed arrows represent the branches not covered by statement covering
in Table 4.4.

TABLE 4.5 Paths for Branch Coverage of CFG of Figure 4.7

BCPath 1 1-2-3(F)-10(F)-11-13
BCPath2  1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13
BCPath3  1-2-3(T)-4(F)-10(F)-11-13

BCPath4  1-2-3(T)-4(T)-5-6(F)-9-3(F)-10(F)-11-13
BCPath 5 1-2-3(T)-4(T)-5-6(T)-7(F)-9-3(F)-10(F)-11-13
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4.5.4 Predicate Coverage Criterion

We refer to the partial CFG of Figure 4.9a to explain the concept of predicate
coverage. OB1, OB2, OB3, and OB are four Boolean variables. The program
computes the values of the individual variables OB1, OB2, and OB3— details of
their computation are irrelevant to our discussion and have been omitted. Next, OB
is computed as shown in the CFG. The CFG checks the value of OB and executes
either OBlockl or OBlock2 depending on whether OB evaluates to true or false,
respectively.

We need to design just two test cases to achieve both statement coverage
and branch coverage. We select inputs such that the four Boolean conditions in
Figure 4.9a evaluate to the values shown in Table 4.6. The reader may note that
we have shown just one way of forcing OB to true. If we select inputs so that these
two cases hold, then we do not observe the effect of the computations taking place
in nodes 2 and 3. There may be faults in the computation parts of nodes 2 and 3
such that OB2 and OB3 always evaluate to false.

1 1
Compute OB1 Compute AB1
v v
2 2
Compute OB2 Compute AB2
v v
3 Compute OB3 3 Compute AB3
v v

~
~

OB =0OB1110B2 Il OB3

AB = AB1 && AB2 && AB3

OBlockl1 OBlock2 ABlockl ABlock2

(a) (b)
Figure 4.9 Partial CFG with (a) OR operation and (b) AND operation.
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TABLE4.6 Two Cases for Complete Statement
and Branch Coverage of CFG of Figure 4.9a

Cases OB1 OB2 OB3 OB
T F F T
2 F F F F

Therefore, there is a need to design test cases such that a path is executed
under all possible conditions. The False branch of node 5 (Figure 4.9a) is executed
under exactly one condition, namely, when OB1 = False, OB2 = False, and OB3 =
False, whereas the true branch executes under seven conditions. If all possible
combinations of truth values of the conditions affecting a selected path have been
explored under some tests, then we say that predicate coverage has been achieved.
Therefore, the path taking the true branch of node 5 in Figure 4.9a must be executed
for all seven possible combinations of truth values of OB1, OB2, and OB3 which
result in OB = True.

A similar situation holds for the partial CFG shown in Figure 4.9b, where
AB1, AB2, AB3, and AB are Boolean variables.

4.6 GENERATING TEST INPUT

In Section 4.5 we explained the concept of path selection criteria to cover certain
aspects of a program with a set of paths. The program aspects we considered
were all statements, true and false evaluations of each condition, and combinations
of conditions affecting execution of a path. Now, having identified a path, the
question is how to select input values such that when the program is executed
with the selected inputs, the chosen paths get executed. In other words, we need
to identify inputs to force the executions of the paths. In the following, we define
a few terms and give an example of generating test inputs for a selected path.

1. Input Vector: An input vector is a collection of all data entities read by
the routine whose values must be fixed prior to entering the routine. Members of
an input vector of a routine can take different forms as listed below:

e Input arguments to a routine
e Global variables and constants
Files

Contents of registers in assembly language programming

e Network connections
e Timers

A file is a complex input element. In one case, mere existence of a file can be
considered as an input, whereas in another case, contents of the file are considered
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to be inputs. Thus, the idea of an input vector is more general than the concept of
input arguments of a function.

Example. An input vector for openfiles() (Figure 4.3) consists of individual pres-
ence or absence of the files filel, file2, and file3.

Example. The input vector of the ReturnAverage() method shown in Figure 4.6
is < value [], AS, MIN, MAX > .

2. Predicate: A predicate is a logical function evaluated at a decision point.
Example. The construct ti < AS is the predicate in decision node 3 of Figure 4.7.

Example. The construct OB is the predicate in decision node 5 of Figure 4.9.

3. Path Predicate: A path predicate is the set of predicates associated with
a path.

The path in Figure 4.10 indicates that nodes 3, 4, 6, 7, and 10 are deci-
sion nodes. The predicate associated with node 3 appears twice in the path; in
the first instance it evaluates to true and in the second instance it evaluates to
false. The path predicate associated with the path under consideration is shown in

Figure 4.11.
We also specify the intended evaluation of the component predicates as found
in the path specification. For instance, we specify that value[i] ! = —999 must

evaluate to true in the path predicate shown in Figure 4.11. We keep this additional
information for the following two reasons:

¢ In the absence of this additional information denoting the intended evalu-
ation of a predicate, we will have no way to distinguish between the two
instances of the predicate ti < AS, namely 3(T) and 3(F), associated with
node 3.

1-2-3(T)-4(T)-5-6(T)-7(T)-8-9-3(F)-10(T)-12-13

Figure 4.10 Example of a path from Figure 4.7.

ti < AS = True
value[i] != -999 = True
value[i] >= MIN = True
value[i] <= MAX = True
ti < AS = False
tv > 0 = True

Figure 4.11 Path predicate for path in Figure 4.10.
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e We must know whether the individual component predicates of a path
predicate evaluate to true or false in order to generate path forcing inputs.

4. Predicate Interpretation: The path predicate shown in Figure 4.11 is com-
posed of elements of the input vector < value[], AS, MIN, MAX >, a vector of
local variables <1, ti, tv>, and the constant —999. The local variables are not
visible outside a function but are used to

e hold intermediate results,
e point to array elements, and
e control loop iterations.

In other words, they play no roles in selecting inputs that force the paths to execute.
Therefore, we can easily substitute all the local variables in a predicate with the
elements of the input vector by using the idea of symbolic substitution. Let us
consider the method shown in Figure 4.12. The input vector for the method in
Figure 4.12 is given by < x1, x2 > . The method defines a local variable y and also
uses the constants 7 and 0.

The predicate

x1l +y >= 0

can be rewritten as

xl + x2 + 7 >=0

by symbolically substituting y with x, + 7. The rewritten predicate
xl + x2 + 7 >=0

has been expressed solely in terms of the input vector < x1,x2 > and the constant
vector < 0,7 > . Thus, predicate interpretation is defined as the process of symbol-
ically substituting operations along a path in order to express the predicates solely
in terms of the input vector and a constant vector.

In a CFG, there may be several different paths leading up to a decision point
from the initial node, with each path doing different computations. Therefore, a
predicate may have different interpretations depending on how control reaches the
predicate under consideration.

public static int SymSub(int x1, int x2){
int vy;
v = x2 + 7;
if (x1 + y >= 0)
return (x2 + v);
else return (x2 - vy);

}

Figure 4.12 Method in Java to explain symbolic substitution [11].
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5. Path Predicate Expression: An interpreted path predicate is called a path
predicate expression. A path predicate expression has the following properties:

o It is void of local variables and is solely composed of elements of the input
vector and possibly a vector of constants.

o It is a set of constraints constructed from the elements of the input vector
and possibly a vector of constants.

o Path forcing input values can be generated by solving the set of constraints
in a path predicate expression.

o If the set of constraints cannot be solved, there exist no input which can
cause the selected path to execute. In other words, the selected path is said
to be infeasible.

¢ An infeasible path does not imply that one or more components of a path
predicate expression are unsatisfiable. It simply means that the total combi-
nation of all the components in a path predicate expression is unsatisfiable.

o Infeasibility of a path predicate expression suggests that one considers other
paths in an effort to meet a chosen path selection criterion.

Example. Consider the path shown in Figure 4.10 from the CFG of Figure 4.7.
Table 4.7 shows the nodes of the path in column 1, the corresponding description
of each node in column 2, and the interpretation of each node in column 3. The

TABLE 4.7 Interpretation of Path Predicate of Path in Figure 4.10.

Node Node Description Interpreted Description
1 Input vector:
< value[], AS, MIN, MAX >
2 i=0,ti=0,
tv=0, sum =0
3(T) ti< AS 0<AS
4(T) value[i]! = — 999 value[0]! = — 999
5 ti++ i=0+1=1
6(T) value[i] > = MIN value[0] > = MIN
7(T) value[i] < = MAX value[0] < = MAX
8 tv++ tv=0+1=1
sum = sum + value[i] sum = 0 + value[0]
=value[0]
9 i+ i=0+1=1
3(F) ti<AS 1 <AS
10(T) tv>0 1>0
12 av = (double) sum/tv av = (double) value[0]/1
13 return(av) return(value[0])

Note: The bold entries in column 1 denote interpreted predicates.
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intended evaluation of each interpreted predicate can be found in column 1 of the
same row.

We show the path predicate expression of the path under consider-
ation in Figure 4.13 for the sake of clarity. The rows of Figure 4.13 have been
obtained from Table 4.11 by combining each interpreted predicate in column 3 with
its intended evaluation in column 1. Now the reader may compare Figures 4.11
and 4.13 to note that the predicates in Figure 4.13 are interpretations of the corre-
sponding predicates in Figure 4.11.

Example. We show in Figure 4.14 an infeasible path appearing in the CFG of
Figure 4.7. The path predicate and its interpretation are shown in Table 4.8, and the
path predicate expression is shown in Figure 4.15. The path predicate expression is
unsolvable because the constraint 0 > 0 = True is unsatisfiable. Therefore, the path
shown in Figure 4.14 is an infeasible path.

0 <AS = True  ........ (1)

value[0] !'= -999 = True ........ (2)
value[0] >= MIN = True  ........ (3)
value[0] <= MAX = True  ........ (4)
1 < AS = False ........ (5)

1 >0 = True  ........ (6)

Figure 4.13 Path predicate expression for path in Figure 4.10.

1-2-3(T)-4(F)-10(T)-12-13.

Figure 4.14  Another example path from Figure 4.7.

TABLE 4.8 Interpretation of Path Predicate of Path in Figure 4.14.

Node Node Description Interpreted Description
1 Input vector:
< value[], AS, MIN, MAX >
2 i=0,t=0,
tv=0,sum =0
3(T) ti<AS 0<AS
4(F) value[i]! = — 999 value[0]! = —999
10(T) tv>0 0>0
12 av = (double)sum/ty av = (double)value[0]/0
13 return(av) return((double) value[0]/0)

Note: The bold entries in column 1 denote interpreted predicates.
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0 <AS = True ........ (1)
value[0] != -999 = True ........ (2)
0>0 = True ........ (3)

Figure 4.15 Path predicate expression for path in Figure 4.14.

AS =1
MIN = 25
MAX = 35
value[0] = 30

Figure 4.16 Input data satisfying constraints of Figure 4.13.

6. Generating Input Data from Path Predicate Expression: We must solve
the corresponding path predicate expression in order to generate input data which
can force a program to execute a selected path. Let us consider the path predicate
expression shown in Figure 4.13. We observe that constraint 1 is always satisfied.
Constraints 1 and 5 must be solved together to obtain AS = 1. Similarly, constraints
2, 3, and 4 must be solved together. We note that MIN < = value[0] < = MAX
and value[0]! = —999. Therefore, we have many choices to select values of MIN,
MAX, and value[0]. An instance of the solutions of the constraints of Figure 4.13
is shown in Figure 4.16.

4.7 EXAMPLES OF TEST DATA SELECTION

We give examples of selected test data to achieve complete statement and branch
coverage. We show four sets of test data in Table 4.9. The first two data sets cover
all statements of the CFG in Figure 4.7. However, we need all four sets of test
data for complete branch coverage.

If we execute the method ReturnAverage shown in Figure 4.6 with the four
sets of test input data shown in Figure 4.9, then each statement of the method is
executed at least once, and every Boolean condition evaluates once to true and

TABLE4.9 Test Data for Statement and Branch Coverage

Input Vector

Test Data Set AS MIN MAX valuel[]
1 1 5 20 [10]
2 1 5 20 [—999]
3 1 5 20 [4]
4 1 5 20 [25]
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once to false. We have thoroughly tested the method in the sense of complete
branch coverage. However, it is possible to introduce simple faults in the method
which can go undetected when the method with the above four sets of test data is
executed. Two examples of fault insertion are given below.

Example. We replace the correct statement
av = (double) sum/tv;

with a faulty statement

av (double) sum/ti;

in the method. Here the fault is that the method computes the average of the
total number of inputs, denoted by ti, rather than the total number of valid inputs,
denoted by tv.

Example. We replace the correct statement
sum = sum + value[il];

with a faulty statement
sum = value[i];

in the method. Here the fault is that the method no more computes the sum
of all the valid inputs in the array. In spite of the fault, the first set of test data
produce the correct result due to coincidental correctness.

The above two examples of faults lead us to the following conclusions:

e One must generate test data to satisfy certain selection criteria, because
those selection criteria identify the aspects of a program that we want to
cover.

o Additional tests, which are much longer than the simple tests generated to
meet coverage criteria, must be generated after the coverage criteria have
been met.

o Given a set of test data for a program, we can inject faults into the program
which go undetected by those test cases.

4.8 CONTAINING INFEASIBLE PATHS

Woodward, Hedley, and Hennell [12] have identified some practical problems in
applying the idea of path testing. First, a CFG may contain a very large number
of paths; therefore, the immediate challenge is to decide which paths to select to
derive test cases. Second, it may not be feasible to execute many of the selected
paths. Thus, it is useful to apply a path selection strategy: First, select as many
short paths as feasible; next choose longer paths to achieve better coverage of
statements, branches, and predicates. A large number of infeasible paths in a CFG
complicate the process of test selection. To simplify path-based unit testing, it is
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useful to reduce the number of infeasible paths in a program unit through language
design, program design, and program transformation. Brown and Nelson [13] have
demonstrated the possibility of writing code with no infeasible paths.

Bertolino and Marre [14] have given an algorithm to generate a set of paths,
to cover all the branchs of a CFG, to reduce the number of infeasible paths in the
chosen set. Their algorithm is based on the idea of a reduced flow graph, called a
ddgraph. The algorithm uses the concepts of dominance and implications among
the arcs of a ddgraph.

Yates and Malevris [15] have suggested a strategy to reduce the number
of infeasible paths in a set of paths to achieve branch coverage. They suggest
selecting a path cover, that is, a set of paths, whose constituent paths each involve
a minimum number of predicates . On the contrary, if a path involves a large number
of predicates, it is less likely that all the predicates simultaneously hold, thereby
making the path infeasible. They have statistically demonstrated the efficacy of the
strategy.

McCabe’s [16] cyclomatic complexity measure (Table 3.3) gives an interest-
ing graph-theoretic interpretation of a program flow graph. If we consider cyclo-
matic complexity measures as paths in a flow graph, it is likely that a few infeasible
paths will be constructed. The above discussion leads us to conclude that though the
idea of statement coverage and branch coverage appear simple and straightforward,
it is not easy to fully achieve those coverage criteria even for small programs.

4.9 SUMMARY

The notion of a path in a program unit is a fundamental concept. Assuming that a
program unit is a function, a path is an executable sequence of instructions from
the start of execution of the function to a return statement in the function. If there
is no branching condition in a program unit, then there is just one path in the
function. Generally, there are many branching conditions in a program unit, and
thus there are numerous paths. One path differs from another path by at least
one instruction. A path may contain one or more loops, but, ultimately, a path is
expected to terminate its execution. Therefore, a path is of finite length in terms
of number of instructions it executes. One can have a graphical representation of
a program unit, called a control flow graph, to capture the concept of control flow
in the program unit.

Each path corresponds to a distinct behavior of the program unit, and therefore
we need to test each path with at least one test case. If there are a large number of
paths in a program, a programmer may not have enough time to test all the paths.
Therefore, there is a need to select a few paths by using some path selection criteria.
A path selection criterion allows us to select a few paths to achieve a certain kind
of coverage of program units. Some well-known coverage metrics are statement
coverage, branch coverage, and predicate coverage. A certain number of paths are
chosen from the CFG to achieve a desired degree of coverage of a program unit. At
an abstract level, each path is composed of a sequence of predicates and assignment
(computation) statements. The predicates can be functions of local variables, global
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variables, and constants, and those are called path predicates. All the predicates
along the path must evaluate to true when control reaches the predicates for a path
to be executable. One must select inputs, called path forcing inputs, such that the
path predicates evaluate to true in order to be able to execute the path. The process
of selecting path forcing inputs involves transforming the path predicates into a
form that is void of local variables. Such a form of path predicates is called a
path predicate expression. A path predicate expression is solely composed of the
input vector and possibly a vector of constants. One can generate values of the
input vector, which is considered as a test case, to exercise a path by solving the
corresponding path predicate expression. Tools are being designed for generating
test inputs from program units.

If a program unit makes function calls, it is possible that the path predicates
are functions of the values returned by those functions. In such a case, it may be
difficult to solve a path predicate expression to generate test cases. Path testing is
more applicable to lower level program units than to upper level program units
containing many function calls.

LITERATURE REVIEW

Clarke [3] describes an automated system to generate test data from FORTRAN
programs. The system is based on the idea of selecting program paths, identifying
path conditions, and solving those conditions to generate inputs. When the pro-
gram is executed with the selected inputs, the corresponding paths are executed.
Automatically generating test inputs is a difficult task. The general problem of test
generation from source code is an unsolvable problem. To mitigate the problem,
there have been suggestions to select paths in certain ways. For example, select
paths that execute loops for a restricted number of times. Similarly, select paths that
are restricted to a maximum statement count. This is because longer paths are likely
to have more predicates and are likely to be more complex. The system generates
test inputs for paths that can be described by a set of linear path constraints.

The students are encouraged to read the tutorial by J. C. Huang entitled “An
Approach to Program Testing,” ACM Computing Surveys, Vol. 8, No. 3, September
1975, pp. 113—128. This article discusses a method for determining path conditions
to enable achievement of branch coverage. It introduces the reader to the predicate
calculus notation for expressing path conditions.

Ramamoorthy, Ho, and Chen [7] discuss the usefulness of symbolic substi-
tution in generating path predicates for testing a path. Array referencing is a major
problem in symbolic substitution because index values may not be known during
symbolic execution. References to arrays are recorded in a table while performing
symbolic execution, and ambiguities are resolved when test input are generated to
evaluate the subscript expressions. Another major problem is determination of the
number of times to execute a loop.

Considering that symbolic execution requires complex algebraic manipula-
tions, Korel [17] suggested an alternative idea based on actual execution of the
program under test, function minimization methods, and data flow analysis. Test
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data are gathered for the program using concrete values of the input variables.
A program’s control flow is monitored while executing the program. If an exe-
cution, that is, a program path, is an undesirable one, then function minimization
algorithms are used to locate the values of input variables which caused the unde-
sirable path to be executed. In this approach, values of array indexes and pointers
are known at each step of program execution. Thus, this approach helps us in
overcoming the difficulties in handling arrays and pointers.

An excellent book on path-based program testing is Software Testing Tech-
niques by Beizer [S]. The reader can find a more through treatment of the subject
in the said book.

The test tool from ParaSoft [9] allows programmers to perform flow-based
testing of program units written in C, C++-, and Java. If a program unit under test
calls another program unit, the tool generates a stub replacing the called unit. If a
programmer wants to control what return values are used, he or she can create a
stub table specifying the input—outcome mapping.
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int binsearch(int X, int VI[], int n){
int low, high, mid;
low = 0;

high = n - 1;
while (low <= high) {
mid = (low + high)/2;
if (X < V[mid])
high = mid - 1;
else if (X > V[mid])
low = mid + 1;
else
return mid;
}

return -1;

Figure 4.17 Binary search routine.

Exercises

You are given the binary search routine in C shown in Figure 4.17. The input array
V is assumed to be sorted in ascending order, n is the array size, and you want
to find the index of an element X in the array. If X is not found in the array, the
routine is supposed to return — 1.
The first eight questions refer to the binary search() function.
1. Draw a CFG for binsearch().

2. From the CFG, identify a set of entry—exit paths to satisfy the complete state-
ment coverage criterion.

3. Identify additional paths, if necessary, to satisfy the complete branch coverage
criterion.

4. For each path identified above, derive their path predicate expressions.

5. Solve the path predicate expressions to generate test input and compute the
corresponding expected outcomes.

6. Are all the selected paths feasible? If not, select and show that a path is
infeasible, if it exists.

7. Can you introduce two faults in the routine so that these go undetected by your
test cases designed for complete branch coverage?

8. Suggest a general way to detect the kinds of faults introduced in the previous
step.

9. What are the limitations of control flow—based testing?

10. Show that branch coverage includes statement coverage.



CHAPTER 5

Data Flow Testing

An error does not become truth by reason of multiplied propagation, nor does
truth become error because nobody sees it.
— Mohandas Karamchand Gandhi

5.1 GENERAL IDEA

A program unit, such as a function, accepts input values, performs computations
while assigning new values to local and global variables, and, finally, produces
output values. Therefore, one can imagine a kind of “flow” of data values between
variables along a path of program execution. A data value computed in a certain
step of program execution is expected to be used in a later step. For example, a
program may open a file, thereby obtaining a value for a file pointer; in a later step,
the file pointer is expected to be used. Intuitively, if the later use of the file pointer
is never verified, then we do not know whether or not the earlier assignment of
value to the file pointer variable is all right. Sometimes, a variable may be defined
twice without a use of the variable in between. One may wonder why the first
definition of the variable is never used. There are two motivations for data flow
testing as follows. First, a memory location corresponding to a program variable
is accessed in a desirable way. For example, a memory location may not be read
before writing into the location. Second, it is desirable to verify the correctness of
a data value generated for a variable—this is performed by observing that all the
uses of the value produce the desired results.

The above basic idea about data flow testing tells us that a programmer can
perform a number of tests on data values, which are collectively known as data flow
testing. Data flow testing can be performed at two conceptual levels: static data
flow testing and dynamic data flow testing. As the name suggests, static data flow
testing is performed by analyzing the source code, and it does not involve actual
execution of source code. Static data flow testing is performed to reveal potential
defects in programs. The potential program defects are commonly known as data
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flow anomaly. On the other hand, dynamic data flow testing involves identifying
program paths from source code based on a class of data flow testing criteria.

The reader may note that there is much similarity between control flow test-
ing and data flow testing. Moreover, there is a key difference between the two
approaches. The similarities stem from the fact that both approaches identify pro-
gram paths and emphasize on generating test cases from those program paths. The
difference between the two lies in the fact that control flow test selection criteria
are used in the former, whereas data flow test selection criteria are used in the
latter approach.

In this chapter, first we study the concept of data flow anomaly as identified
by Fosdick and Osterweil [1]. Next, we discuss dynamic data flow testing in detail.

5.2 DATA FLOW ANOMALY

An anomaly is a deviant or abnormal way of doing something. For example, it
is an abnormal situation to successively assign two values to a variable without
using the first value. Similarly, it is abnormal to use a value of a variable before
assigning a value to the variable. Another abnormal situation is to generate a
data value and never use it. In the following, we explain three types of abnormal
situations concerning the generation and use of data values. The three abnormal
situations are called type 1, type 2, and type 3 anomalies [1]. These anomalies
could be manifestations of potential programming errors. We will explain why
program anomalies need not lead to program failures.

Defined and Then Defined Again (Type 1): Consider the partial sequence of
computations shown in Figure 5.1, where f1(y) and f2(z) denote functions
with the inputs y and z, respectively. We can interpret the two statements
in Figure 5.1 in several ways as follows:

e The computation performed by the first statement is redundant if the
second statement performs the intended computation.

e The first statement has a fault. For example, the intended first compu-
tation might be w = fl(y).

e The second statement has a fault. For example, the intended second
computation might be v = f2(z).

o A fourth kind of fault can be present in the given sequence in the form of
a missing statement between the two. For example, v = f3(x) may be the
desired statement that should go in between the two given statements.

Figure 5.1 Sequence of computations showing data flow anomaly.
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It is for the programmer to make the desired interpretation, though one
can interpret the given two statements in several ways, However, it can be
said that there is a data flow anomaly in those two statements, indicating
that those need to be examined to eliminate any confusion in the mind of
a code reader.

Undefined but Referenced (Type 2): A second form of data flow anomaly is
to use an undefined variable in a computation, such as x =x —y —w,
where the variable w has not been initialized by the programmer. Here,
too, one may argue that though w has not been initialized, the programmer
intended to use another initialized variable, say y, in place of w. Whatever
may be the real intention of the programmer, there exists an anomaly in
the use of the variable w, and one must eliminate the anomaly either by
initializing w or replacing w with the intended variable.

Defined but Not Referenced (Type 3): A third kind of data flow anomaly is to
define a variable and then to undefine it without using it in any subsequent
computation. For example, consider the statement x = f(x, y) in which a
new value is assigned to the variable x. If the value of x is not used in any
subsequent computation, then we should be suspicious of the computation
represented by x = f(x, y). Hence, this form of anomaly is called “defined
but not referenced.”

Huang [2] introduced the idea of “states” of program variables to identify
data flow anomaly. For example, initially, a variable can remain in an “undefined”
(U) state, meaning that just a memory location has been allocated to the variable
but no value has yet been assigned. At a later time, the programmer can perform
a computation to define (d) the variable in the form of assigning a value to the
variable—this is when the variable moves to a “defined but not referenced” (D)
state. At a later time, the programmer can reference (r), that is, read, the value of
the variable, thereby moving the variable to a “defined and referenced” state (R).
The variable remains in the R state as long as the programmer keeps referencing
the value of the variable. If the programmer assigns a new value to the variable, the
variable moves back to the D state. On the other hand, the programmer can take
an action to undefine (u) the variable. For example, if an opened file is closed, the
value of the file pointer is no more recognized by the underlying operating system,
and therefore the file pointer becomes undefined. The above scenarios describe the
normal actions on variables and are illustrated in Figure 5.2.

However, programmers can make mistakes by taking the wrong actions while
a variable is in a certain state. For example, if a variable is in the state U —that is,
the variable is still undefined—and a programmer reads (r) the variable, then the
variable moves to an abnormal (A) state. The abnormal state of a variable means
that a programming anomaly has occurred. Similarly, while a variable is in the state
D and the programmer undefines () the variable or redefines (d) the variable, then
the variable moves to the abnormal (A) state. Once a variable enters the abnormal
state, it remains in that state irrespective of what action—d, u, or r—is taken. The
actions that take a variable from a desired state, such as U or D, to an abnormal
state are illustrated in Figure 5.2.
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Legend:
States Actions
U: Undefined d: Define
D: Defined but not referenced r: Reference
R: Defined and referenced u: Undefine
A: Abnormal

Figure 5.2 State transition diagram of a program variable. (From ref. 2. © 1979 IEEE.)

Now it is useful to make an association between the type 1, type 2, and
type 3 anomalies and the state transition diagram shown in Figure 5.2. The type 1,
type 2, and type 3 anomalies are denoted by the action sequences dd, ur, and du,
respectively, in Figure 5.2.

Data flow anomaly can be detected by using the idea of program instrumen-
tation. Intuitively, program instrumentation means incorporating additional code
in a program to monitor its execution status. For example, we can write addi-
tional code in a program to monitor the sequence of states, namely the U, D, R,
and A, traversed by a variable. If the state sequence contains the dd, ur, and du
subsequence, then a data flow anomaly is said to have occurred.

The presence of a data flow anomaly in a program does not necessarily mean
that execution of the program will result in a failure. A data flow anomaly simply
means that the program may fail, and therefore the programmer must investigate
the cause of the anomaly. Let us consider the dd anomaly shown in Figure 5.1.
If the real intention of the programmer was to perform the second computation
and the first computation produces no side effect, then the first computation merely
represents a waste of processing power. Thus, the said dd anomaly will not lead
to program failure. On the other hand, if a statement is missing in between the two
statements, then the program can possibly lead to a failure. The programmers must
analyze the causes of data flow anomalies and eliminate them.

5.3 OVERVIEW OF DYNAMIC DATA FLOW TESTING

In the process of writing code, a programmer manipulates variables in order to
achieve the desired computational effect. Variable manipulation occurs in several
ways, such as initialization of the variable, assignment of a new value to the
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variable, computing a value of another variable using the value of the variable, and
controlling the flow of program execution.

Rapps and Weyuker [3] convincingly tell us that one should not feel confi-
dent that a variable has been assigned the correct value if no test case causes the
execution of a path from the assignment to a point where the value of the variable
is used. In the above motivation for data flow testing, (i) assignment of a correct
value means whether or not a value for the variable has been correctly generated
and (ii) use of a variable refers to further generation of values for the same or other
variables and/or control of flow. A variable can be used in a predicate, that is, a
condition, to choose an appropriate flow of control.

The above idea gives us an indication of the involvement of certain kinds of
program paths in data flow testing. Data flow testing involves selecting entry—exit
paths with the objective of covering certain data definition and use patterns, com-
monly known as data flow testing criteria. Specifically, certain program paths are
selected on the basis of data flow testing criteria. Following the general ideas in
control flow testing that we discussed in Chapter 4, we give an outline of performing
data flow testing in the following:

e Draw a data flow graph from a program.

¢ Select one or more data flow testing criteria.

Identify paths in the data flow graph satisfying the selection criteria.

¢ Derive path predicate expressions from the selected paths and solve those
expressions to derive test input.

The reader may recall that the process of deriving a path predicate expression from
a path has been explained in Chapter 4. The same idea applies to deriving a path
predicate expression from a path obtained from a data flow graph. Therefore, in
the rest of this chapter we will explain a procedure for drawing a data flow graph
from a program unit, and discuss data flow testing criteria.

5.4 DATA FLOW GRAPH

In this section, we explain the main ideas in a data flow graph and a method to
draw it. In practice, programmers may not draw data flow graphs by hand. Instead,
language translators are modified to produce data flow graphs from program units.
A data flow graph is drawn with the objective of identifying data definitions and
their uses as motivated in the preceding section. Each occurrence of a data variable
is classified as follows:

Definition: This occurs when a value is moved into the memory location
of the variable. Referring to the C function VarTypes() in Figure 5.3, the
assignment statement i = x; is an example of definition of the variable i.

Undefinition or Kill: This occurs when the value and the location become
unbound. Referring to the C function VarTypes(), the first

(iptr = malloc(sizeof (int));



int VarTypes (int x, int vy){

int i;

int *iptr;

i = x;

iptr = malloc(sizeof (int));
*iptr = 1 + Xx;

if (*iptr > vy)
return (x);
else {
iptr = malloc(sizeof (int));
*iptr = x + y;
return (*iptr) ;

}

}

Figure 5.3 Definition and uses of variables.

5.4 DATA FLOW GRAPH

statement initializes the integer pointer variable iptr and

iptr = 1 + x;

initializes the value of the location pointed to by iptr. The second

iptr = malloc(sizeof (int));

117

statement redefines variable iptr, thereby undefining the location previ-

ously pointed to by iptr.

Use: This occurs when the value is fetched from the memory location of the
variable. There are two forms of uses of a variable as explained below.

o Computation use (c-use): This directly affects the computation being
performed. In a c-use, a potentially new value of another variable or of
the same variable is produced. Referring to the C function VarTypes(),

the statement

*iptr = 1 + x;

gives examples of c-use of variables i and x.

o Predicate use (p-use): This refers to the use of a variable in a predicate
controlling the flow of execution. Referring to the C function VarTypes(),

the statement

if (*iptr > vy)

gives examples of p-use of variables y and iptr.

A data flow graph is a directed graph constructed as follows:

o A sequence of definitions and c-uses is associated with each node of the

graph.

o A set of p-uses is associated with each edge of the graph.
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¢ The entry node has a definition of each parameter and each nonlocal vari-
able which occurs in the subprogram.

o The exit node has an undefinition of each local variable.

Example: We show the data flow graph in Figure 5.4 for the ReturnAverage()
example discussed in Chapter 4, The initial node, node 1, represents initialization
of the input vector < value, AS, MIN, MAX > . Node 2 represents the initialization
of the four local variables i, ti, tv, and sum in the routine. Next we introduce a
NULL node, node 3, keeping in mind that control will come back to the beginning
of the while loop. Node 3 also denotes the fact that program control exits from
the while loop at the NULL node. The statement ti++ is represented by node 4.
The predicate associated with edge (3, 4) is the condition part of the while loop,
namely,

((t1i < AS) && (value[i] !'= -999))

Statements tv++ and sum = sum + value[i] are represented by node 5.
Therefore, the condition part of the first if statement forms the predicate associated
with edge (4, 5), namely,

1 Initialize: valuel[],
AS, MIN, MAX
lTrue
2| i=0t=0,
tv=0,sum=0
lTrue
3
NULL <
~((ti < AS) && ((ti <AS) &&
(value[i] = -999)) (valueli] !=-999))
NULL |7
~([V > 0) ([V > 0) ((va]ue[i] >= MIN) &&
8 9 (value[i] <= MAX)) ~((value[i] >= MIN) &&
(value[i] <= MAX))
av = (double) v+
—999 av = (double)sum/tv sum = sum + value[i]
True True
10
return(av)

Figure 5.4 Data flow graph of ReturnAverage() example.



5.5 DATA FLOW TERMS 119

((valuel[i] >= MIN) && (valuel[i] <= MAX))

The statement i4++ is represented by node 6. The predicate associated with
edge (4, 6) is the negation of the condition part of the if statement, namely,

((value[i] >= MIN) && (valuel[i] <= MAX)).

The predicate associated with edge (5, 6) is true because there is an uncondi-
tional flow of control from node 5 to node 6. Execution of the while loop terminates
when its condition evaluates to false. Therefore, the predicate associated with edge
(3, 7) is the negation of the predicate associated with edge (3, 4), namely,

“((ti < AS) && (valueli] != -999))

It may be noted that there is no computation performed in a NULL node.
Referring to the second if statement, av = (double) — 999 is represented by node
8, and av = (double) sum/tv is represented by node 9. Therefore, the predicate
associated with edge (7, 9) is

(tv > 0),
and the predicate associated with edge (7, 8) is
“(tv > 0).

Finally, the return(av) statement is represented by node 10, and the predicate
True is associated with both the edges (7, 8) and (7, 9).

5.5 DATA FLOW TERMS

A variable defined in a statement is used in another statement which may occur
immediately or several statements after the definition. We are interested in finding
paths that include pairs of definition and use of variables. In this section, we explain
a family of path selection criteria that allow us to select paths with varying strength.
The reader may note that for every feasible path we can generate a test case. In
the following, first we explain a few terms, and then we explain a few selection
criteria using those terms.

Global c-use: A c-use of a variable x in node i is said to be a global c-use
if x has been defined before in a node other than node i.

Example: The c-use of variable tv in node 9 is a global c-use since tv
has been defined in nodes 2 and 5 (Figure 5.4).

Definition Clear Path: A path i —n;—---—n, —j), m >0, is called a def-
inition clear path (def-clear path) with respect to variable x

e from node i to node j and

e from node i to edge (1, j)
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if x has been neither defined nor undefined in nodes ny, . .. ,n,,. The reader
may note that the definition of a def-clear path is unconcerned about the
status of x in nodes i and j. Also, a def-clear path does not preclude
loops. Therefore, the path 2-3-4-6-3-4-6-3-4-5, which includes a loop, is
a def-clear path.

Example: The paths 2-3-4-5 and 2-3-4-6 are def-clear paths with respect
to variable tv from node 2 to 5 and from node 2 to 6, respectively
(Figure 5.4).

Global Definition: A node i has a global definition of a variable x if node i

has a definition of x and there is a def-clear path with respect to x from
node i to some

¢ node containing a global c-use or
e edge containing a p-use of

variable x. The reader may note that we do not define global p-use of a
variable similar to global c-use. This is because every p-use is associated
with an edge—and not a node.

In Table 5.1, we show all the global definitions and global c-uses
appearing in the data flow graph of Figure 5.4; def(i) denotes the set
of variables which have global definitions in node i. Similarly, c-use(i)
denotes the set of variables which have global c-uses in node i. We show
all the predicates and p-uses appearing in the data flow graph of Figure 5.4
in Table 5.2; predicate(i,j) denotes the predicate associated with edge (i, j)
of the data flow graph in Figure 5.4; p-use(i, j) denotes the set of variables
which have p-uses on edge (i, j).

Simple Path: A simple path is a path in which all nodes, except possibly the

first and the last, are distinct.

TABLE 5.1 Def() and c-use() Sets of Nodes in Figure 5.4

Nodes i def(i) c-use(i)
1 {value, AS, MIN, MAX} {}
2 {i, ti, tv, sum} {}
3 it {}
4 {ti} {ti}
5 {tv, sum} {tv, i, sum, value}
6 {i} {i}
7 {} {
8 {av} {}
9 {av} {sum, tv}

—
=

{} {av}
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TABLE 5.2 Predicates and p-use() Set of Edges in Figure 5.4

Edges (i, j) predicate(i, j) p-use(i, j)

1, 2) True {}

2,3 True {}

3,4 (ti < AS) && (value[i] ! = —999) {i, ti, AS, value}
4, 5) (value[i] < = MIN) && (value[i] > = MAX) {i, MIN, MAX, value}
4, 6) “((value[i] < = MIN) && (value[i] > = MAX)) {i, MIN, MAX, value}
(5, 6) True {}

(6, 3) True it

3,7 T((ti < AS) && (valueli] ! = —999)) {i, ti, AS, value}
(7, 8) “(tv>0) {tv}

(7,9 (tv>0) {tv}

(8, 10) True {}

9, 10) True {}

Example: Paths 2-3-4-5 and 3-4-6-3 are simple paths (Figure 5.4).

Loop-Free Path: A loop-free path is a path in which all nodes are distinct.

Complete Path: A complete path is a path from the entry node to the exit

node.

Du-path: A path (ny —ny —---—n; —ny) is a definition-use path (du-path)
with respect to (w.r.t) variable x if node n; has a global definition of x

and either

e node ny has a global c-use of x and (ny—ny—---—n; —ng) is a

def-clear simple path w.r.t. x or

e edge (nj,n;) has a p-use of x and (ny —ny —---—n;) is a def-clear,

loop-free path w.r.t. x.

Example: Considering the global definition and global c-use of variable tv in

nodes 2 and 5, respectively, 2-3-4-5 is a du-path.

Example: Considering the global definition and p-use of variable tv in nodes 2

and on edge (7, 9), respectively, 2-3-7-9 is a du-path.

5.6 DATA FLOW TESTING CRITERIA

In this section, we explain seven types of data flow testing criteria. These criteria
are based on two fundamental concepts, namely, definitions and uses—both c-uses

and p-uses—of variables.

All-defs: For each variable x and for each node i such that x has a global
definition in node i, select a complete path which includes a def-clear path

from node i to
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¢ node j having a global c-use of x or

e edge (j,k) having a p-use of x.

Example: Consider the variable tv, which has global definitions in nodes 2 and
5 (Figure 5.4 and Tables 5.1 and 5.2). First, we consider its global definition in
node 2. We find a global c-use of tv in node 5, and there exists a def-clear path
2-3-4-5 from node 2 to node 5. We choose a complete path 1-2-3-4-5-6-3-7-9-10
that includes the def-clear path 2-3-4-5 to satisfy the all-defs criterion. We also
find p-uses of variable tv on edge (7, 8), and there exists a def-clear path 2-3-7-8
from node 2 to edge (7, 8). We choose a complete path 1-2-3-7-8-10 that includes
the def-clear path 2-3-7-8 to satisfy the all-defs criterion. Now we consider the
definition of tv in node 5. In node 9 there is a global c-use of tv, and in edges
(7, 8) and (7, 9) there are p-uses of tv. There is a def-clear path 5-6-3-7-9 from
node 5 to node 9. Thus, we choose a complete path 1-2-3-4-5-6-3-7-9-10 that
includes the def-clear path 5-6-3-7-9 to satisfy the all-defs criterion. The reader
may note that the complete path 1-2-3-4-5-6-3-7-9-10 covers the all-defs criterion
for variable tv defined in nodes 2 and 5. To satisfy the all-defs criterion, similar
paths must be obtained for variables i, ti, and sum.

All-c-uses: For each variable x and for each node i, such that x has a global
definition in node i, select complete paths which include def-clear paths
from node i to all nodes j such that there is a global c-use of x in j.

Example: Let us obtain paths to satisfy the all-c-uses criterion with respect to
variable ti. We find two global definitions of ti in nodes 2 and 4. Corresponding
to the global definition in node 2, there is a global c-use of ti in node 4. However,
corresponding to the global definition in node 4, there is no global c-use of ti. From
the global definition in node 2, there is a def-clear path to the global c-use in node
4 in the form of 2-3-4. The reader may note that there are four complete paths that
include the def-clear path 2-3-4 as follows:

1-2-3-4-5-6-3-7-8-10,

1-2-3-4-5-6-3-7-9-10,

1-2-3-4-6-3-7-8-10, and

1-2-3-4-6-3-7-9-10.

One may choose one or more paths from among the four paths above to

satisfy the all-c-uses criterion with respect to variable ti.

All-p-uses: For each variable x and for each node i such that x has a global
definition in node i, select complete paths which include def-clear paths
from node i to all edges (j,k) such that there is a p-use of x on edge (j,k).

Example: Let us obtain paths to satisfy the all-p-uses criterion with respect to
variable tv. We find two global definitions of tv in nodes 2 and 5. Corresponding
to the global definition in node 2, there is a p-use of tv on edges (7, 8) and (7, 9).
There are def-clear paths from node 2 to edges (7, 8) and (7, 9), namely 2-3-7-8
and 2-3-7-9, respectively. Also, there are def-clear paths from node 5 to edges
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(7, 8) and (7, 9), namely, 5-6-3-7-8 and 5-6-3-7-9, respectively. In the following,
we identify four complete paths that include the above four def-clear paths:

1-2-3-7-8-10,
1-2-3-7-9-10,
1-2-3-4-5-6-3-7-8-10, and
1-2-3-4-5-6-3-7-9-10.

All-p-uses/Some-c-uses: This criterion is identical to the all-p-uses criterion
except when a variable x has no p-use. If x has no p-use, then this criterion
reduces to the some-c-uses criterion explained below.

Some-c-uses: For each variable x and for each node i such that x has
a global definition in node i, select complete paths which include
def-clear paths from node i to some nodes j such that there is a
global c-use of x in node j.

Example: Let us obtain paths to satisfy the all-p-uses/some-c-uses criterion with
respect to variable i. We find two global definitions of i in nodes 2 and 6. There is no
p-use of i in Figure 5.4. Thus, we consider some c-uses of variable i. Corresponding
to the global definition of variable i in node 2, there is a global c-use of i in node
6, and there is a def-clear path from node 2 to node 6 in the form of 2-3-4-5-6.
Therefore, to satisfy the all-p-uses/some-c-uses criterion with respect to variable i,
we select the complete path 1-2-3-4-5-6-3-7-9-10 that includes the def-clear path
2-3-4-5-6.

All-c-uses/Some-p-uses: This criterion is identical to the all-c-uses criterion
except when a variable x has no global c-use. If x has no global c-use,
then this criterion reduces to the some-p-uses criterion explained below.

Some-p-uses: For each variable x and for each node i such that x has
a global definition in node i, select complete paths which include
def-clear paths from node i to some edges (j,k) such that there is a
p-use of x on edge (j.,k).

Example: Let us obtain paths to satisfy the all-c-uses/some-p-uses criterion with
respect to variable AS. We find just one global definition of AS in node 1. There
is no global c-use of AS in Figure 5.4. Thus, we consider some p-uses of AS.
Corresponding to the global definition of AS in node 1, there are p-uses of AS
on edges (3, 7) and (3, 4), and there are def-clear paths from node 1 to those
two edges, namely, 1-2-3-7 and 1-2-3-4, respectively. There are many complete
paths that include those two def-clear paths. One such example path is given as
1-2-3-4-5-6-3-7-9-10.

All-uses: This criterion is the conjunction of the all-p-uses criterion and the

all-c-uses criterion discussed above.
All-du-paths: For each variable x and for each node i such that x has a global

definition in node 7, select complete paths which include all du-paths from
node i
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e to all nodes j such that there is a global c-use of x in j and

e to all edges (j,k) such that there is a p-use of x on (j,k).

In Chapter 4, we explained a procedure to generate a test input from an
entry—exit program path. There is much similarity between the control flow—based
testing and the data flow—based testing. Their difference lies in the ways the two
techniques select program paths.

5.7 COMPARISON OF DATA FLOW TEST SELECTION
CRITERIA

Having seen a relatively large number of test selection criteria based on the concepts
of data flow and control flow, it is useful to find relationships among them. Given
a pair of test selection criteria, we should be able to compare the two. If we cannot
compare them, we realize that they are incomparable. Rapps and Weyuker [3]
defined the concept of an includes relationship to find out if, for a given pair of
selection criteria, one includes the other. In the following, by a complete path we
mean a path from the entry node of a flow graph to one of its exit nodes.

Definition: Given two test selection criteria ¢ and ¢», ¢ includes c; if for every
def/use graph any set of complete paths of the graph that satisfies ¢ also satisfies c5.

Definition: Given two test selection criteria ¢; and ¢y, ¢ strictly includes c,
denoted by c; — ¢, provided c; includes ¢, and for some def/use graph there is
a set of complete paths of the graph that satisfies ¢, but not c;.

It is easy to note that the “—” relationship is a transitive relation.
Moreover, given two criteria ¢; and cj, it is possible that neither ¢; — c¢»
nor ¢p — ¢ holds, in which case we call the two criteria incomparable.
Proving the strictly includes relationship or the incomparable relationship
between two selection criteria in a programming language with arbitrary
semantics may not be possible. Thus, to show the strictly includes rela-
tionship between a pair of selection criteria, Rapps and Weyuker [3] have
considered a restricted programming language with the following syntax:

Start statement: start
Input statement: read xq,...,x,, where x;,...,n are
variables.
Assignment statement: y<f(x1,...,x,), Where y, x;,...,n are
variables, and f is a function.
Output statement: print ¢y, ...,e,, where eq,...,e, are output
values.
Unconditional transfer statement: goto m, where m is a label.
Conditional transfer statement: if p(x1,...,x,), then goto m, where p is a
predicate.

Halt statement: stop
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All-paths

All-du-paths

l

All-uses

— T,

All-c-uses/Some-p-uses All-p-uses/Some-c-uses

All—c-use\ All-p-uses

All-defs l

All-branches

I

All-statements

Figure 5.5 Relationship among DF (data flow) testing criteria. (From ref. 4. © 1988
IEEE.)

Frankl and Weyuker [4] have further extended the relationship; what they
have proved has been summarized in Figure 5.5. For example, the all-paths
selection criterion strictly includes the all-du-paths criterion. Similarly, the
all-c-uses/some-p-uses criterion strictly includes the all-defs criterion.

However, we cannot find a strictly includes relationship between the pair
all-c-uses and all-p-uses. Let P{ be a set of paths selected by the all-c-uses criterion
with respect to a variable x. Now we cannot say with certainty whether or not the
path set P¢ satisfies the all-p-uses criterion with respect to the same variable x.
Similarly, let P? be a set of paths selected by the all-p-uses criterion with respect
to the variable x. Now we cannot say with certainty whether or not the path set
P! satisfies the all-c-uses criterion with respect to the same variable x. Thus, the
two criteria all-c-uses and all-p-uses are incomparable.

Note the relationship between data flow—based test selection criteria and
control flow—based test selection criteria, as shown in Figure 5.5. The two control
flow—based test selection criteria in Figure 5.5 are all-branches and all-statements.
The all-p-uses criterion strictly includes the all-branches criterion, which implies
that one can select more paths from a data flow graph of a program unit than from
its control flow graph.

5.8 FEASIBLE PATHS AND TEST SELECTION CRITERIA

Given a data flow graph, a path is a sequence of nodes and edges. A complete
path is a sequence of nodes and edges starting from the initial node of the graph to
one of its exit nodes. A complete path is executable if there exists an assignment
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of values to input variables and global variables such that all the path predicates
evaluate to true, thereby making the path executable. Executable paths are also
known as feasible paths. If no such assignment of values to input variables and
global variables exists, then we call the path infeasible or inexecutable.

Since we are interested in selecting inputs to execute paths, we must ensure
that a test selection criterion picks executable paths. Assume that we want to test
a program by selecting paths to satisfy a certain selection criterion C. Let P be
the set of paths selected according to criterion C for a given program unit. As an
extreme example, if all the paths in P are infeasible, then the criterion C has
not helped us in any way. For a criterion C to be useful, it must select a set of
executable, or feasible, paths. Frankl and Weyuker [4] have modified the definitions
of the test selection criteria so that each criterion selects only feasible paths. In
other words, we modify the definition of criterion C to obtain a criterion C* which
selects only feasible paths, and C* is called a feasible data flow (FDF) testing
criterion. As an example, the criterion (All-c-uses)* is an adaptation of All-c-uses
such that only feasible paths are selected by (All-c-uses)*, as defined below.

(All-c-uses)*: For each variable x and for each node i, such that x has a
global definition in node i, select feasible complete paths which include
def-clear paths from node i to all nodes j such that there is a global c-use
of x inj.

Thus, test selection criteria (All-paths)*, (All-du-paths)*, (All-uses)*,
(All-c-uses/Some-p-uses)*, (All-p-uses/Some-c-uses)*, (All-c-uses)*, (All-p-
uses)*, (All-defs)*, (All-branches)*, and (All-statements)* choose only feasible
paths, and, therefore, these are called feasible data flow (FDF) testing criteria.
Frankl and Weyuker [4] have shown that the strictly includes relationships among
test selection criteria, as shown in Figure 5.5, do not hold if the selection criteria
choose only feasible paths. The new relationship among FDF test selection criteria
is summarized in Figure 5.6. Though it is seemingly useful to select only feasible
paths, and therefore consider only the FDF test selection criteria, we are faced
with the decidability problem. More specifically, it is undecidable to know if a
given set of paths is executable. We cannot automate the application of an FDF
test selection criterion, if we do not know the executability of the path. On the
other hand, a data flow testing criterion may turn out to be inadequate if all
its selected paths are infeasible, in which case the criterion is considered to be
inadequate. Consequently, a test engineer must make a choice between using an
inadequate selection criterion and one that cannot be completely automated.

5.9 COMPARISON OF TESTING TECHNIQUES

So far we have discussed two major techniques for generating test data from source
code, namely control flow—based path selection and data flow—based path selection.
We also explained a few criteria to select paths from a control flow graph and data
flow graph of a program. Programmers often randomly select test data based on
their own understanding of the code they have written. Therefore, it is natural to
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Figure 5.6 Relationship among FDF (feasible data flow) testing criteria. (From ref. 4. ©
1988 IEEE.)

compare the effectiveness of the three test generation techniques, namely random
test selection, test selection based on control flow, and test selection based on data
flow. Comparing those techniques does not seem to be an easy task. An acceptable,
straightforward way of comparing them is to apply those techniques to the same
set of programs with known faults and express their effectiveness in terms of the
following two metrics:

e Number of test cases produced

o percentage of known faults detected

Ntafos [5] has reported on the results of an experiment comparing the effec-
tiveness of three test selection techniques. The experiment involved seven math-
ematical programs with known faults. For the control flow—based technique, the
branch coverage criterion was selected, whereas the all-uses criterion was cho-
sen for data flow testing. Random testing was also applied to the programs. The
data flow testing, branch testing, and random testing detected 90%, 85.5%, and
79.5%, respectively, of the known defects. A total of 84 test cases were designed
to achieve all-uses coverage, 34 test cases were designed to achieve branch cover-
age, and 100 test cases were designed in the random testing approach. We interpret
the experimental results as follows:

e A programmer can randomly generate a large number of test cases to find
most of the faults. However, one will run out of test cases to find some of
the remaining faults. Random testing does not look to be ineffective, but
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Figure 5.7 Limitation of different fault detection techniques.

it incurs higher costs than the systematic techniques, namely, the control
flow and the data flow techniques.

o Test selection based on branch coverage produces much fewer test cases
than the random technique, but achieves nearly the same level of fault
detection as the random technique. Thus, there is significant saving in the
cost of program testing.

o The all-uses testing criterion gives a programmer a new way to design
more test cases and reveal more faults than the branch coverage criterion.

o All these techniques have inherent limitations which prevent them from
revealing all faults. Therefore, there is a need to use many different testing
techniques and develop new techniques. This idea is depicted in Figure 5.7.
Our goal is to reduce the gap between the total number of faults present
in a program and the faults detected by various test generation techniques.

5.10 SUMMARY

Flow of data in a program can be visualized by considering the fact that a program
unit accepts input data, transforms the input data through a sequence of compu-
tations, and, finally, produces the output data. Therefore, one can imagine data
values to be flowing from one assignment statement defining a variable to another
assignment statement or a predicate where the value is used.

Three fundamental actions associated with a variable are undefine (1), define
(d), and reference (r). A variable is implicitly undefined when it is created without
being assigned a value. On the other hand, a variable can be explicitly undefined.
For example, when an opened file is closed, the variable holding the file pointer
becomes undefined. We have explained the idea of “states” of a variable, namely,
undefined (U ), defined (D), referenced (R), and abnormal (A), by considering the
three fundamental actions on a variable. The A state represents the fact that the
variable has been accessed in an abnormal manner causing data flow anomaly.
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Individual actions on a variable do not cause data flow anomaly. Instead, certain
sequences of actions lead to data flow anomaly, and those three sequences of
actions are dd, ur, and du. A variable continues to remain in the abnormal state
irrespective of subsequent actions once it enters that state. The mere presence of
data flow anomaly in a program may not lead to program failure. The programmer
must investigate the cause of an anomaly and modify the code to eliminate it. For
example, a missing statement in the code might have caused a dd anomaly, in
which case the programmer needs to write new code.

The program path is a fundamental concept in testing. One test case can be
generated from one executable path. The number of different paths selected for
execution is a measure of the extent of testing performed. Path selection based on
statement coverage and branch coverage lead to a small number of paths being
chosen for execution. Therefore, there exists a large gap between control flow
testing and exhaustive testing. The concept of data flow testing gives us a way to
bridge the gap between control flow testing and exhaustive testing.

The concept of data flow testing gives us new selection criteria for
choosing more program paths to test than what we can choose by using the
idea of control flow testing. Specifically, the data flow test selection criteria are
all-du-paths, all-defs, all-c-uses, all-p-uses, all-uses, all-c-uses/some-p-uses, and
all-p-uses/some-c-uses. To compare two selection criteria, the concept of a strictly
includes relationship is found to be useful.

LITERATURE REVIEW

Osterweil and Fosdick [6] have implemented a system, called DAVE, to analyze
FORTRAN programs and detect ur, dd, and du types of data flow anomalies.
DAVE detects those anomalies by performing a flow graph search for each variable
in a given program unit. For programs with subprogram invocations, the system
works in a bottom-up manner, that is, the called subprograms are analyzed before
analyzing the caller.

Programmers need to be aware that it is difficult to apply the idea of data
flow analysis to all kinds of data structures and program constructs. The analysis of
arrays is one such difficulty. Fosdick and Osterweil [1] have noted that problems
arise when different elements of the same array are acted upon in different ways,
thereby giving rise to different patterns of definition, reference, and undefinition.
Static data flow analysis systems, such as DAVE, do not evaluate index expressions
and therefore cannot tell us what array element is being referenced in a given
expression. Such systems try to get around this problem by treating an entire array
as one single variable, rather than a set of different variables of the same type.
Fosdick and Osterweil have shown that recursive programs pose difficulty in data
flow analysis. A programming style that can pose a difficulty in data flow analysis
is to pass a single variable as an argument more than once. This is because DAVE
assumes that all subprogram parameters are distinct variables.

Laski and Korel [7] argue that data flow testing bridges the gap between
branch testing and all-paths testing. On the one hand, in branch testing, one selects
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a set of paths to cover all branches of the control flow graph of a program unit;
one needs to select a small number of paths to satisfy the criterion. On the other
hand, all-paths testing is the same as exhaustive testing. Data flow testing allows
programmers to select many more paths than chosen by branch testing. Essentially,
in data flow testing, loops are unfolded to exercise the definition—use pairs.

Herman [8] had a programmer apply data flow testing to a number of
medium-sized program units of about 800 statements. It is interesting to note
that faults detected during testing were usually found while attempting to devise
test data to satisfy the chosen paths, rather than while examining the test run
output. The fact that program faults were found during the process of test design
is significant in the sense that system development and selection of tests can
simultaneously be done in producing a better quality system.

The article by Ural [9] presents a method for generating test cases from
the specifications of communications protocols given in the Estelle language. The
method involves static data flow analysis of specifications. The method is sum-
marized as follows: (i) transform a specification into a graph containing both the
control flow and the data flow aspects; (ii) detect data flow anomalies in the spec-
ification; and (iii) generate test cases to cover all definition—use pairs.

The article by Ntafos [10] explains an extended overview of data flow testing
strategies in terms of their relative coverage of a program’s structure and the
number of test cases needed to satisfy each strategy. In addition, the article extends
the subsumption hierarchy introduced by Rapps and Weyuker [3] by including
TER, = 1. For details about testing hierarchy levels, denoted by n above and test
effectiveness ratio (TER), the reader is referred to the article by Woodward, Hedley,
and Hennell [11].

The concept of selecting program paths based on data flow has been studied
in different ways by different researchers, namely, Laski and Korel [7], Ntafos
[5], and Rapps and Weyuker [3]. To facilitate the comparison and simplify the
discussion, Clarke, Podgurski, Richardson, and Zeil [12] define all the data flow
criteria using a single set of terms. They give a new subsumption hierarchy of the
data flow test selection criteria by modifying the subsumption hierarchy of Rapps
and Weyuker [7] shown in Figure 5.5.

Koh and Liu [3] have presented a two-step approach for generating paths that
test both the control flow and the data flow in implementations of communication
protocols based on the idea of extended finite-state machines. First, select a set
of paths to cover a data flow selection criterion. Second, selectively augment the
state transitions in the chosen set of paths with state check sequences so that
control flow can be ensured and data flow coverage can be preserved. The test
design methodology of Sarikaya, Bochmann, and Cerny [14] also generates paths
to achieve joint coverage of control flow and data flow in the Estelle specifications
of communication protocols.

Researchers have extended the classical data flow testing approach to the test-
ing of object-oriented programs [15—18]. Harrold and Rothermel [16] have applied
the concept of data flow testing to the testing of classes in object-oriented pro-
grams. The three levels of testing that they have proposed are intramethod testing,
intermethod testing, and intraclass testing. Intermethod testing is the same as data
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flow testing performed on a unit in a procedural programming language, such as
C. Intermethod testing is similar to integrating program units in a procedural pro-
gramming language. Finally, intraclass testing refers to calling the public methods
of a class in a random, acceptable sequence.

The concept of classical data flow testing that is applied to one program
unit at a time has been extended to inferprocedural data flow testing. The idea of
interprocedural data flow has been extensively studied in the literature (see ref. 19
and the bibliography of the article by Harrold and Soffa [20]).

Often programmers utilize the capability of pointers in the C and C++ lan-
guages. Data flow analysis becomes difficult when pointers are passed between
procedures. Pande, Landi, and Ryder [21] have defined a term called reaching def-
initions, which is the set of all points where a value of a variable was last written.
For one level of pointer indirection, they give a polynomial time algorithm for the
problem. To develop the algorithm, the authors have introduced the concept of an
interprocedural control flow graph, which is a hybrid of the control flow graph
and call graph. They prove that the general problem of identifying interprocedural
reaching definitions is NP-hard.

Lemos, Vincenzi, Maldonado, and Masiero [22] have applied the idea of
data flow testing to aspect-oriented programs [23]. The concept of aspect-oriented
programming was developed to address the difficulty in clearly capturing
certain high-level design decisions at the code level. The properties of those
design decisions are called aspects, and hence the name aspect-oriented
programming. The reason some design decisions are difficult to represent
at the code level is that they cross-cut the system’s basic functionality [23].
Naturally, an aspect that is difficult to code is likely to be more difficult to
test and verify. To this end, the work of Lemos et al. [22] gains significance.
They have proposed the concept of an aspect-oriented def-use (AODU)
graph, based on the idea of a data flow instruction graph [24], and identified
new coverage criteria, such as all-exception-independent-uses, all-exception-
dependent-uses, and all-crosscutting-uses. Zhao [25] has applied the idea of
data flow testing at a coarse-grain level in aspect-oriented programs. The author
extended the concept of class testing studied by Harrold and Rothermel [16].

The 1990 book Software Testing Techniques by Beizer [26] gives an excellent
exposition of the concept of data flow testing.
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Exercises

1. Draw a data flow graph for the binsearch() function given in Figure 5.8.

2. Assuming that the input array V[ ] has at least one element in it, find an
infeasible path in the data flow graph for the binsearch() function.



int binsearch(int X, int VI[], int n){
int low, high, mid;
low = 0;

high = n - 1;
while (low <= high) {
mid = (low + high)/2;
if (X < V[mid])
high = mid - 1;
else if (X > V[mid])
low = mid + 1;
else
return mid;
}

return -1;

Figure 5.8 Binary search routine.

int modifiedbinsearch(int X, int V[], int
int low, high, mid;
low = 0;

high = n - 1;
while (low <= high) {
mid = (low + high)/2;
if (X < V[mid]) {
high = mid - 1;
mid = mid - 1;
}
else if (X > V[mid])
low = mid + 1;
else
return mid;
}

return -1;

Figure 5.9 Modified binary search routine.

3. Identify a data flow anomaly in the code given in Figure 5.9.
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4. By referring to the data flow graph obtained in exercise 1, find a set of complete
paths satisfying the all-defs selection criterion with respect to variable mid.

5. By referring to the data flow graph obtained in exercise 1, find a set of complete
paths satisfying the all-defs selection criterion with respect to variable high.

6. Write a function in C such that the all-uses criterion produces more test cases

than the all-branches criterion.

7. What is meant by the gap between all-branches testing and all-paths testing

and how does data flow testing fill the gap?
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8. Explain why the presence of data flow anomaly does not imply that execution
of the program will definitely produce incorrect results.

9. Program anomaly has been defined by considering three operations, namely,
define (d), reference (r), and undefine (#). The three sequences of operations
identified to be program anomaly are dd, du, and ur. Explain why the rest of
the two-operation sequences are not considered to be program anomaly.

10. Identify some difficulties in identifying data flow anomaly in programs.



CHAPTER 6

Domain Testing

Even granting that the genius subjected to the test of critical inspection emerges
free from all error, we should consider that everything he has discovered in a
given domain is almost nothing in comparison with what is left to be discovered.
— Santiago Ramon y Cajal

6.1 DOMAIN ERROR

Two fundamental elements of a computer program are input domain and program
paths. The input domain of a program is the set of all input data to the program. A
program path is a sequence of instructions from the start of the program to some
point of interest in the program. For example, the end of the program is a point
of interest. Another point of interest is when the program waits to receive another
input from its environment so that it can continue its execution. In other words, a
program path, or simply path, corresponds to some flow of control in the program.
A path is said to be feasible if there exists an input data which causes the program
to execute the path. Otherwise, the path is said to be infeasible.

Howden [1] identified two broad classes of errors, namely, computation error
and domain error, by combining the concepts of input data and program path. The
two kinds of errors have been explained in the following.

Computation Error: A computation error occurs when a specific input data
causes the program to execute the correct, i.e., desired path, but the output
value is wrong. Note that the output value can be wrong even if the desired
path has been executed. This can happen due to a wrong function being
executed in an assignment statement. For example, consider a desired path
containing the statement result = f(a, b), where a and b are input values.
A computation error may occur if the statement is replaced by a faulty
one, such as result = f(b, a). Therefore, the result of executing the path
can be erroneous because of a fault in the assignment statement, and this
can happen in spite of executing a correct path.

Software Testing and Quality Assurance: Theory and Practice, Edited by Kshirasagar Naik and Priyadarshi Tripathy
Copyright © 2008 John Wiley & Sons, Inc.
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Domain Error: A domain error occurs when a specific input data causes
the program to execute a wrong, that is, undesired, path in the program.
An incorrect path can be selected by a program if there is a fault in one
or more of the conditional statements in the program. Let us consider a
conditional statement of the form if (p) then fI() else f2(). If there is a
fault in the formulation of the predicate p, then the wrong function call is
invoked, thereby causing an incorrect path to be executed.

The above two kinds of program errors lead us to view a computer program
as performing an abstract mapping function as follows. Ideally, for each input
value, the program assigns a program path to execute; the same program path can
be exclusively assigned (i.e., executed) for a subset of the input values. Here, the
subset of the input values causing the same path to be executed is referred to an
input domain or subdomain. Thus, the program is said to map a domain to a path
within itself. Since there are a large number of values in the input domain of the
program and there are a large number of paths in a program, we can view a program
as partitioning the input space into a finite number of subdomains and assigning a
distinct program path to each of the input subdomains.

We further explain the concept of program domains using Figure 6.1. The
set D is the entire input set of a program P (Figure 6.1a). We call D the domain
of the entire program. Set D can be an infinite set, and P may not have different
computation behavior for each element of D. Instead, P may perform the same
computation for all the elements in a certain subset of D. For example, as shown
in Figure 6.1b, P performs five different computations, one for each subset D,
..., Ds. It may be noted that the partition of D is not visible outside P. Instead,
P has a conceptual, in-built mechanism, as illustrated in Figure 6.1c, to decide the
computation method needed to choose a specific branch when P is invoked with
a certain input. Such an input classifier may not exist in a program in a single,
clearly identifiable form. The concept can exist as an entity as a cross-cutting
concept; it is cross-cutting because portions of the input classifier can be found in
different program modules. We show five different computations, computation for
D through computation for Ds, for subsets D1, ..., D5, respectively (Figure 6.1¢).
The part of P that decides what computation to invoke for a given element of D
is called an input classifier. We remind the reader that the structure of a program
may not resemble the case we have shown inside the larger circle in Figure 6.1c.
The figure simply denotes the fact that a program does different computations for
different subsets of its input domain. Programs perform input classification through
sequences of predicates, though an input classifier may not exist as a single module.

Therefore, a program will perform the wrong computation if there are faults
in the input classification portion. With the above backdrop, we define the following
two terms:

o A domain is a set of input values for which the program performs the same
computation for every member of the set. We are interested in maximal
domains such that the program performs different computations on adjacent
domains.
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Figure 6.1 TIllustration of the concept of program domains.

e A program is said to have a domain error if the program incorrectly
performs input classification. Assuming that adjacent domains perform dif-
ferent computations, a domain error will cause the program to produce
incorrect output.

6.2 TESTING FOR DOMAIN ERRORS

The idea of domain testing was first studied by White and Cohen in 1978 [2, 3].
There is a fundamental difference between flow graph—based testing techniques
and domain testing. By flow graph we mean control flow graph and data flow
graph. The difference is explained as follows:

e Select paths from a control flow graph or a data flow graph to satisfy
certain coverage criteria. To remind the reader, the control flow coverage
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criteria are statement coverage, branch coverage, and predicate coverage.
Similarly, the criteria studied to cover the definition and use aspects of
variables in a program are all-defs, all-c-uses, all-p-uses, and all-uses, to
name a few. The path predicates were analyzed to derive test data. While
selecting paths and the corresponding test data, no assumption is made
regarding the actual type of faults that the selected test cases could poten-
tially uncover, that is, no specific types of faults are explicitly considered
for detection.

Domain testing takes an entirely new approach to fault detection. One
defines a category of faults, called domain errors, and selects test data to
detect those faults. If a program has domain errors, those will be revealed
by the test cases.

We discuss the following concepts in detail:

¢ Sources of Domains: By means of an example program, we explain how

program predicates behave as an input classifier.

o Types of Domain Errors: We explain how minor modifications to pro-

gram predicates, which can be interpreted as programming defects, can
lead to domain errors.

o Selecting Test Data to Reveal Domain Errors: A test selection criterion

is explained to pick input values. The test data so chosen reveal the specific
kinds of domain errors.

6.3 SOURCES OF DOMAINS

Domains can be identified from both specifications and programs. We explain a
method to identify domains from source code using the following steps:

e Draw a control flow graph from the given source code.

o Find all possible interpretations of the predicates. In other words, express

the predicates solely in terms of the input vector and, possibly, a vector
of constants. The reader may note that a predicate in a program may have
multiple interpretations, because control may arrive at a predicate node via
different paths.

o Analyze the interpreted predicates to identify domains.

In the following, we explain the above procedure to identify domains. We show an
example C function in Figure 6.2 to illustrate a procedure to identify domains.

The function accepts two inputs x and y and returns an integer. A control flow

graph representation of codedomain() is shown in Figure 6.3. The two predicates
in the two if() statements have been represented by nodes 3 and 6 in Figure 6.3.
The predicate

P c>5
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int codedomain (int x, int vy){
int ¢, d, k
c =X+ Yy;
if (¢ > 5) d = ¢ - x/2;
else d =c + x/2;
if (d >=c + 2) k = x + d/2;
else k =y + d/4;
return (k) ;

Figure 6.2 A function to explain program domains.

in the first if() statement has just one interpretation, namely,

P x+y>5

because program control reaches the if() statement via only one path from the initial

node. However, predicate

Initialize: x,y | 1

!

c=x+y 2

P, 3
False True
5 4
d=c+x/2 d=c—x/2
)
P: False
P, 6
Py x24 FalseTrue
8 7
k=y+dl4 k=x+dl2
M
\I/ 9
return (k)

P x+y>5
Py True
Py x<-4

Figure 6.3 Control flow graph representation of the function in Figure 6.2.
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P d>c+2

in the second if() statement gets two interpretations, because program control can
reach the second if() statement along two paths: (i) when the first if() evaluates
to true and (ii) when the first if() evaluates to false. These two interpretations are
summarized in Table 6.1.

We explain a procedure to obtain domains from the interpretations of P and
P, (Figure 6.3). We show a two-dimensional grid labeled x and y in Figure 6.4.
The grid size is large enough to show all the domains of the program under con-
sideration. We consider the predicate nodes of the control flow graph one by one
(Figure 6.3). Predicate P divides the grid into two regions. The P; boundary
is shown by a straight line represented by the equality x +y = 5. All the points
above, but excluding this line, satisfy predicate P.

TABLE 6.1 Two Interpretations of Second if()
Statement in Figure 6.2

Evaluation of Interpretation of
P1 P2
True x< —4
False x>4
X
AT
[T P, (P, =False)
~ )
©° P
P, (P, =True)
y
L7 6 —4 -1 01 .4 7

X

Figure 6.4 Domains obtained from interpreted predicates in Figure 6.3.
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Next, we consider the two interpretations of predicate P,. For P = True,
P, has the following interpretation

P> : x <-4

Therefore, P, further divides the area, or set of points, defined by P; = True
into two sets corresponding to its two truth values. The P, boundary, when P
evaluates to true, is represented by the straight line x = — 4. The area to the left
of the P, boundary and above the P; boundary corresponds to PP, =TT, and
the area to the right of the P, boundary and above the P; boundary corresponds
to PP, =TF.

For P, = False, P, has the following interpretation:

P x >4

In other words, P, further divides the area, or set of points, defined by P = False
into two sets corresponding to its two truth values. The P, boundary, when P
evaluates to false, is represented by the straight line x = 4. The area to the right
of the P, boundary and below the P; boundary corresponds to PP, = FT, and
the area to the left of the P, boundary and below the P; boundary corresponds to
PP, = FF in Figure 6.4.

The reader may note that if a program contains k predicates in a sequence, the
maximum number of domains obtained is 2¥. In practice, the number of domains
obtained is much smaller than 2%, because certain combinations of truth values of
those k predicates may not hold simultaneously.

6.4 TYPES OF DOMAIN ERRORS

The reader may recall the following properties of a domain:

e A domain is a set of values for which the program performs identical
computations.

e A domain can be represented by a set of predicates. Individual elements
of the domain satisfy the predicates of the domain.

Example: The domain TT in Figure 6.4 is mathematically represented by the set
of predicates shown in Figure 6.5.

A domain is defined, from a geometric perspective, by a set of constraints
called boundary inequalities. Properties of a domain are discussed in terms of the
properties of its boundaries as follows:

P1: X+y>5 = True
P2: X< =—4 = True

Figure 6.5 Predicates defining the TT domain in Figure 6.4.
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Closed Boundary: A boundary is said to be closed if the points on the bound-
ary are included in the domain of interest.

Example: Consider the domain TT in Figure 6.4 and its boundary
defined by the inequality

P x <-4
The above boundary is a closed boundary of the domain TT.

Open Boundary: A boundary is said to be open if the points on the boundary
do not belong to the domain of interest.

Example: Consider the domain TT in Figure 6.4 and its boundary
defined by the inequality

P x+y>5

The above boundary is an open boundary of the domain TT. The reader
may notice that it is the equality symbol ( =) in a relational operator that
determines whether or not a boundary is closed. If the relational operator
in a boundary inequality has the equality symbol in it, then the boundary
is a closed boundary; otherwise it is an open boundary.

Closed Domain: A domain is said to be closed if all of its boundaries are
closed.

Open Domain: A domain is said to be open if some of its boundaries are
open.

Extreme Point: An extreme point is a point where two or more boundaries
Cross.

Adjacent Domains: Two domains are said to be adjacent if they have a
boundary inequality in common.

A program path will have a domain error if there is incorrect formulation
of a path predicate. After an interpretation of an incorrect path predicate, the path
predicate expression causes a boundary segment to

e be shifted from its correct position or

¢ have an incorrect relational operator.
A domain error can be caused by

¢ an incorrectly specified predicate or

e an incorrect assignment which affects a variable used in the predicate.

Now we discuss different types of domain errors:
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Closure Error: A closure error occurs if a boundary is open when the inten-
tion is to have a closed boundary, or vice versa. Some examples of closure
error are:

e The relational operator <is implemented as <.
o The relational operator < is implemented as <.

Shifted-Boundary Error: A shifted-boundary error occurs when the imple-
mented boundary is parallel to the intended boundary. This happens when
the constant term of the inequality defining the boundary takes up a value
different from the intended value. In concrete terms, a shifted-boundary
error occurs due to a change in the magnitude or the sign of the constant
term of the inequality.

Example: Consider the boundary defined by the following predicate
(Figure 6.4):
P x+y>5

If the programmer’s intention was to define a boundary represented by the
predicate
P : x+y>4

then the boundary defined by P is parallel, but not identical, to the bound-
ary defined by P;.

Tilted-Boundary Error: If the constant coefficients of the variables in a pred-
icate defining a boundary take up wrong values, then the tilted-boundary
eITor occurs.

Example: Consider the boundary defined by the following predicate
(Figure 6.4):
P xX+y>5

If the programmer’s intention was to define a boundary represented by the
predicate
P/ x+05y>5

then the boundary defined by P, is tilted with respect to the boundary
defined by P/

The reader may recall that for all the data points in a domain the program
performs identical computations. It is not difficult to notice that input data points
fall in the wrong domain if there is a closure defect, a shifted boundary, or a tilted
boundary. Assuming that domains are maximal in size in the sense that adjacent
domains perform different computations, a program will produce a wrong outcome
because of wrong computations performed on those input data points which fall in
the wrong domains.
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6.5 ON AND OFF POINTS

In domain testing a programmer targets domain errors where test cases are designed
with the objective of revealing the domain errors as discussed in Section 6.4.
Therefore, it is essential that we consider an important characteristic of domain
errors, stated as follows: Data points on or near a boundary are most sensitive to
domain errors. In this observation, by sensitive we mean data points falling in the
wrong domains. Therefore, the objective is to identify the data points that are most
sensitive to domain errors so that errors can be detected by executing the program
with those input values. In the following, we define two kinds of data points near
domain boundaries, namely, ON point and OFF point:

ON Point: Given a boundary, an ON point is a point on the boundary or
“very close” to the boundary.
This definition suggests that we can choose an ON point in two ways.
Therefore, one must know when to choose an ON point in which way:

o If a point can be chosen to lie exactly on the boundary, then choose
such a point as an ON point. If the boundary inequality leads to an
exact solution, choose such an exact solution as an ON point.

o If a boundary inequality leads to an approximate solution, choose a
point very close to the boundary.

Example: Consider the following boundary inequality. This inequality is not
related to our running example of Figure 6.4.

Pon : x+7y26

For x = —1, the predicate Pon; leads to an exact solution of y = 1. Therefore, the
point (—1, 1) lies on the boundary.

However, if we choose x = 0, the predicate Pon; leads to an approximate
solution of y in the form of y = 0.8571428 ... . Since y does not have an exact
solution, we either truncate it to 0.857 or round it off to 0.858. We notice that the
point (0, 0.857) does not satisfy the predicate Poni, whereas the point (0, 0.858)
does. Thus, (0, 0.858) is an ON point which lies very close to the Pon; boundary.

Example: Consider a domain with the following open boundary:
Pono - x+7y <6

Points lying exactly on the boundary defined by the predicate
Pono - x+7y=6

are not a part of the domain under consideration. The point (—1, 1) lies exactly on
the boundary Py, and is an ON point. Note that the point (—1, 1) is not a part of
the domain under consideration. Similarly, the point (0, 0.858), which is almost on
the boundary, that is, very close to the boundary, is an ON point and it lies outside
the domain of interest.
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OFF Point: An OFF point of a boundary lies away from the boundary.
However, while choosing an OFF point, we must consider whether a
boundary is open or closed with respect to a domain:

o If the domain is open with respect to the boundary, then an OFF point of
that boundary is an interior point inside the domain within an e-distance
from the boundary.

o If the domain is closed with respect to the boundary, then an OFF
point of that boundary is an exterior point outside the boundary within
an e-distance. The symbol € denotes an arbitrarily small value.

Example: Consider a domain D with a closed boundary as follows:
PoFr1 : x+7y =6

Since the boundary is closed, an OFF point lies outside the domain; this means
that the boundary inequality is nort satisfied. Note that the point (—1, 1) lies exactly
on the boundary and it belongs to the domain. Therefore, (—1, 1) is not an OFF
point. However, the point (—1, 0.99) lies outside the domain, and it is not a part of
the domain under consideration. This is easily verified by substituting x = —1 and
y = 0.99 in the above Porr; inequality which produces a value of 5.93. Therefore,
(—1, 0.99) is an OFF point.

Example: Consider a domain D, which is adjacent to domain D in the above
example with an open boundary as follows:

Porrs : x+7y <6

It may be noted that we have obtained POFF2 from POFF1 by simply reversing
the > inequality. Since the Popp; boundary is open, an OFF point lies inside the
domain. It can be easily verified that the point (— 1, 0.99) lies inside D, and hence
it is an OFF point for domain D, with respect to boundary P opp;.

Summary The above ideas of ON and OFF points lead to the following conclu-
sions:

e While testing a closed boundary, the ON points are in the domain under
test, whereas the OFF points are in an adjacent domain.

e While testing an open boundary, the ON points are in an adjacent domain,
whereas the OFF points are in the domain being tested.

The above ideas have been further explained in Figure 6.6, which shows two
domains D | and D, defined by predicates x <4 and x > 4, respectively. Therefore,
the actual boundary is defined by the following predicate:

PoN, OFF : x =4

In the figure, we show two ON points A and B, where A lies exactly on the
boundary and B lies “very close” to the boundary. Therefore, we have A = 4 and
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Boundary:
Open with respect to D,
Closed with respect to D,

Domain D, (x<4) / Domain D, (x = 4)

q

X axix

C
X

1
|
X
i
i
1

4_.I [

ON point for Dy and D, (very close to boundary)
ON point for D; and D, (lying exactly on boundary)

OFF point for D and D, (lying away from boundary)

Figure 6.6 ON and OFF points.

B =4.00001, for example. We show an OFF point C lying in D| away from the
boundary. Point C = 3.95 lies inside domain D and outside domain D5.

6.6 TEST SELECTION CRITERION

In this section, we explain a criterion for test selection and show that test data so
selected reveal the domain errors identified in Section 6.4. Before we explain the
selection criterion, we state the assumptions made in domain testing as follows:

o A program performs different computations in adjacent domains. If this
assumption does not hold, then data points falling in the wrong domains
may not have any influence on program outcome, and therefore failures
will not be observed.

e Boundary predicates are linear functions of input variables. This is not a
strong assumption given that most of the predicates in real-life programs are
linear. This is because programmers can easily visualize linear predicates
and use them.
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We present the following criterion for domain testing and show that test data
selected using this criterion reveal domain errors:

Test Selection Criterion: For each domain and for each boundary, select three
points A, C, and B in an ON-OFF-ON sequence.

This criterion generates test data that reveal domain errors. Specifically, the fol-
lowing kinds of errors are considered:
1. Closed inequality boundary
a. Boundary shift resulting in a reduced domain
b. Boundary shift resulting in an enlarged domain
c. Boundary tilt
d. Closure error
2. Open inequality boundary
a. Boundary shift resulting in a reduced domain
b. Boundary shift resulting in an enlarged domain
c. Boundary tilt
d. Closure error
3. Equality boundary

In our analysis below, we consider two adjacent domains D and D,. We assume
that the program computation associated with D and D, are f and f'», respectively,

and f1 #f>.

la (Closed Inequality) Boundary Shift Resulting in Reduced Domain: The
boundary between the two domains D and D, has shifted by a certain amount
(see Figure 6.7). The figure shows the actual boundary between the two domains
and an arbitrary position of the expected boundary. One must remember that we
do not know the exact position of the expected boundary. The expected boundary
has been shown only to explain that the actual boundary has moved away from the
expected boundary for conceptual understanding of boundary shift. The boundary
between the two domains is closed with respect to domain D . Therefore, the two

: Dy, f5 /,/ Expected boundary
NG
Actual boundary

(closed with respect to D)
Dy, fi

Figure 6.7 Boundary shift resulting in reduced domain (closed inequality).
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ON points A and B belong to domain D, and the OFF point C belongs to domain
D,. Hence the actual output from the program corresponding to test data A, B,
and C are f1(A), f1(B), and f,(C), respectively. It is obvious from Figure 6.7
that in the absence of any boundary shift all the test points belong to domain D .
Therefore, the expected output corresponding to test data A, B, and C are f(A),
f1(B), and f1(C), respectively. These outputs are listed in Table 6.2. We observe,
by comparing the second and the third columns of Table 6.2, that the actual output
and the expected output are not identical for data point C. Hence, data point C
reveals the shifted-boundary fault.
It is important to understand the following at this point:

¢ We do not need to know the exact position of the expected boundary. This
is because what we actually need are the expected program outcomes in
response to the three data points A, B, and C, which can be computed from
the specification of a program without explicitly finding out the expected
boundary.

o All three data points A, B, and C need not reveal the same fault. Our
purpose is to show that test data selected according to the stated criterion
reveal all domain errors. The purpose is satisfied if at least one data point
reveals the fault. Different elements of the set {A, B, C} reveal different
kinds of domain errors.

o If point C is away from the boundary by a magnitude of €, then a bound-
ary shift of magnitude less than € cannot be detected. This is because the
expected output f»(C) is identical to the actual output f»(C).

1b (Closed Inequality) Boundary Shift Resulting in Enlarged Domain: To
detect this fault, we use Figure 6.8, where the boundary between the two domains
D and D has shifted from its expected position such that the size of the domain
D under consideration has enlarged. Once again, we do not know the exact
position of the expected boundary. The boundary between the two domains is
closed with respect to domain D . Therefore, the two ON points A and B belong
to domain D, and the OFF point C belongs to domain D,. Hence the actual
outputs from the program corresponding to test data A, B, and C are f1(A), f1(B),
and f»(C), respectively. From Figure 6.8 it is clear that, in the absence of any
boundary shift, all the test points belong to domain D,. Therefore, the expected
outputs corresponding to test data A, B, and C are f,(A), f2(B), and f»(C),
respectively. We observe from Table 6.3 that the actual output and the expected
output are not identical for data points A and B. Hence, data points A and B

TABLE 6.2 Detection of Boundary Shift Resulting in Reduced Domain (Closed Inequality)

Test Data Actual Output Expected Output Fault Detected
A S1(A) f14) No
B f1(B) S1(B) No

¢ J2(0) S Yes
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Dy, fo !

Actual boundary
x € mith respect to D)

A B

Dy, f \_/ Expected boundary

Figure 6.8 Boundary shift resulting in enlarged domain (closed inequality).

TABLE 6.3 Detection of Boundary Shift Resulting in Enlarged Domain (Closed Inequality)

Test Data Actual Output Expected Output Fault Detected
A f1(A) f2(4) Yes
B f1(B) f2B) Yes
C F2(0) f2(C) No

reveal the shifted-boundary fault. If the magnitude of the shift is less than e —the
magnitude by which the OFF point is away from the boundary—the boundary
shift cannot be detected by these test data.

Ic (Closed Inequality) Boundary Tilt: In Figure 6.9 the boundary between
the two domains D and D, has tilted by an appreciable amount. The boundary
between the two domains is closed with respect to domain D . Therefore, the two
ON points A and B belong to domain D, and the OFF point C belongs to domain
D». Hence the actual outputs from the program corresponding to test data A, B,
and C are f1(A), f1(B), and f»(C), respectively. It is clear from Figure 6.9 that
in the absence of any boundary tilt test point A falls in domain D and test points
B and C fall in domain D,. Therefore, the expected outputs corresponding to test

Expected boundary

T

| Actual boundary
Dy, fi s (closed with respect to D)

Figure 6.9 Tilted boundary (closed inequality).
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data A, B, and C are f(A), f2(B), and f2(C), respectively. By comparing the
second and the third columns of Table 6.4 we observe that the actual output and
the expected output are not identical for test point B. Hence, test point B reveals
the tilted-boundary fault.

1d (Closed Inequality) Closure Error: The expected boundary between the
two domains in Figure 6.10 is closed with respect to domain D . However, in an
actual implementation, it is open with respect to D, resulting in a closure error.
The boundary between the two domains belongs to domain D;. The two ON points
A and B belong to domain D, and the OFF point C belongs to domain D ;. Hence
the actual outputs from the program corresponding to test data A, B, and C are
f2(A), f2(B), and f1(C), respectively. In the absence of any closure error all three
test points A, B and C fall in domain D;. These outputs are listed in Table 6.5.
By comparing the second and the third columns of Table 6.5 we observe that the
actual output and the expected output are not identical for data points A and B.
Therefore, data points A and B reveal the closure boundary fault.

2a (Open Inequality) Boundary Shift Resulting in Reduced Domain: To
explain the detection of this type of error, we use Figure 6.11, where the boundary
between the two domains D and D, has shifted by a certain amount. The
boundary between the two domains is open with respect to domain D . Therefore,
the two ON points A and B belong to domain D,, and the OFF point C belongs
to domain D;. Hence the actual outputs from the program corresponding to test
data A, B, and C are f»(A), f2(B), and f(C), respectively. It is obvious from
Figure 6.11 that, in the absence of any boundary shift, all the test points belong
to domain D ;. Therefore, the expected outputs corresponding to test data A, B,

TABLE 6.4 Detection of Boundary Tilt (Closed Inequality)

Test Data Actual Output Expected Output Fault Detected
A f14) f1(4) No
B f1(B) f2B) Yes
¢ f2(C) f2(C) No
Dy, fo

A

Expected boundary
/ (closed with respect to D)
N

Actual boundary
(open with respect to D)

Xc
Dy, fi

Figure 6.10 Closure error (closed inequality).
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TABLE 6.5 Detection of Closure Error (Closed Inequality)

Test Data Actual Output Expected Output Fault Detected
A f2(4) f1(A) Yes
B f2B) f1(B) Yes
c f1(0) f1(0) No

D,. f, /,,/‘ Expected boundary
A A
C Actual boundary

(open with respect to D)
Dy, fi

Figure 6.11 Boundary shift resulting in reduced domain (open inequality).

and C are f1(A), f1(B), and f(C), respectively. By comparing the second and
third columns of Table 6.6 we observe that the actual output and the expected
output are not identical for the data point C. Therefore, data point C reveals the
shifted-boundary fault.

2b (Open Inequality) Boundary Shift Resulting in Enlarged Domain: We use
Figure 6.12 to explain the detection of this kind of errors. The boundary between
the two domains D; and D, has shifted to enlarge the size of the domain D
under consideration. The boundary between the two domains is open with respect
to domain D . Therefore, the two ON points A and B belong to domain D,, and
the OFF point C belongs to domain D ;. Hence the actual outputs from the program
corresponding to test data A, B, and C are f»(A), f2(B), and f1(C), respectively.
It follows from Figure 6.12 that, in the absence of any boundary shift, all the
test points belong to domain D,. Therefore, the expected outputs corresponding
to test data A, B, and C are f»(A), f2(B), and f»(C), respectively. These outputs

TABLE 6.6 Detection of Boundary Shift Resulting in Reduced Domain (Open Inequality)

Test Data Actual Output Expected Output Fault Detected
A f2(A) S1(A) Yes
B f2(B) S1(B) Yes

C f1(C) £1(C) No
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D,,
2> fa Actual boundary
. o (open with respect to D)
______________ Expected boundary
Dy, fi \‘—/

Figure 6.12 Boundary shift resulting in enlarged domain (open inequality).

are listed in Table 6.7. From Table 6.7 we observe that data point C reveals the
shifted-boundary fault.

2¢ (Open Inequality) Boundary Tilt: We explain the boundary tilt fault by
referring to Figure 6.13, where the boundary between the two domains D and
D, has tilted. Once again, we do not know the exact position of the expected
boundary. The boundary between the two domains is open with respect to domain
D . Therefore, the two ON points A and B belong to domain D, and the OFF point
C belongs to domain D . Hence the actual outputs from the program corresponding
totest data A, B, and C are f»(A), f2(B), and f1(C), respectively. Figure 6.13 shows
that in the absence of any boundary tilt test points A and C fall in domain D,
and test point B falls in domain D,. Therefore, the expected outputs corresponding
to test data A, B, and C are f(A), f2(B), and f{(C), respectively. We compare
the second and third columns of Table 6.8 to observe that the actual output and
the expected output are not identical for the test point A. Hence, the test point A
reveals the tilted-boundary fault.

2d (Open Inequality) Closure Error: Detection of this kind of fault is
explained by using the two domains of Figure 6.14, where the expected boundary
between the two domains is open with respect to domain D;. However, in an
actual implementation it is closed with respect to D, resulting in a closure error.
The two ON points A and B belong to domain D, and the OFF point C belongs
to domain D,. Hence the actual outputs from the program corresponding to test
data A, B, and C are f{(A), f1(B), and f»(C), respectively. Figure 6.14 shows
that, in the absence of any closure error, all three test points A, B and C fall
in domain D,. Table 6.9 shows the actual outputs and the expected outputs. By

TABLE 6.7 Detection of Boundary Shift Resulting in Enlarged Domain (Open Inequality)

Test Data Actual Output Expected Output Fault Detected
A f2(4) f2(4) No
B f2(B) f2(B) No

¢ S1(©) f2(C) Yes
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Expected boundary

A X NG Actual boundary
C S (open with respect to D)

Dy, fi

Figure 6.13 Tilted boundary (open inequality).

TABLE 6.8 Detection of Boundary Tilt (Open Inequality)

Test Data Actual Output Expected Output Fault Detected
A fa(A) f14) Yes
B f2(B) f2B) No
c S1(C) f1(C) No

comparing the second and the third columns of Table 6.9 we observe that the
actual output and the expected output are not identical for data points A and B.
Therefore, data points A and B reveal the closure boundary fault.

3. Equality Boundary: Sometimes a domain may consist of an equality
boundary sandwiched between two open domains, as shown in Figure 6.15,
where D and D, are two domains open with respect to their common equality
boundary. In this case, to test the common boundary, we choose two ON points A
and B on the boundary and two OFF points C and D—one in each open domain.

| Dy, f |
: : Expected boundary
E x C m with respect to D)
A A
A N
Actual boundary
(closed with respect to D)
Dy, fi !

Figure 6.14 Closure error (open inequality).
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TABLE 6.9 Detection of Closure Error (Open Inequality)

Test Data Actual Output Expected Output Fault Detected
A F14) f2(4) Yes
B f1(B) f2B) Yes
c f2(C) f2C) No

6.7 SUMMARY

Two kinds of program errors, namely computation error and domain errors, were
identified. A computation error occurs when an input value causes the program
to execute the correct path, but the program output is incorrect due to a fault in
an assignment statement. A domain error occurs when an input value causes the
program to execute the wrong path. A program executes a wrong path because of
faults in conditional statements. A program can be viewed as an abstract classifier
that partitions the input domain into a finite number of subdomains such that a
separate program path executes for each input subdomain. Thus, a program is seen
to be mapping the input subdomains to its execution paths. Program subdomains
can be identified by considering individual paths in the program and evaluating
path predicates. Each subdomain, also called domain, is defined by a set of bound-
aries. Often input data points would fall in a wrong domain if there are faults
in defining domain boundaries, thereby executing the wrong paths. Input domains
were characterized by means of a few properties, such as closed boundary, open
boundary, closed domain, open domain, extreme point, and adjacent domain. Next,
three kinds of boundary errors, namely, closure error, shifted-boundary error, and
tilted-boundary error, were identified. Given a domain and its boundaries, the con-
cept of ON and OFF points were explained. Finally, a test selection criterion was
defined to choose test points to reveal domain errors. Specifically, the selection
criterion is as follows: For each domain and for each boundary, select three points
A, C, and B in an ON-OFF-ON sequence.

Domain Dy
defined by an equality boundary
and associated computation f3

Figure 6.15 Equality border.
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LITERATURE REVIEW

Since White and Cohen proposed the concept of domain testing in 1978, it
has been analyzed and extended in several ways. In 1982, Clarke, Hassell, and
Richardson [4] showed that some domain errors go undetected by the White
and Cohen strategy. Next, they proposed a strategy, namely the V x V strategy,
to improve domain testing. If a domain border under consideration contains V
vertices, then the V x V strategy selects V' ON points—one ON point as close as
possible to each vertex—and V OFF points. The V' OFF points are chosen at a
uniform distance from the border. Zeil, Afifi, and White [5] introduced a domain
testing strategy to detect linear errors in nonlinear predicate functions. A few
other variants of domain testing have been proposed by White and Perera [6] and
Onoma, Yamaura, and Kobayashi [7].

Zeil [8] considers domain errors that may be caused by faults in arithmetic
and simple relational expressions. These expressions are restricted to floating-point
or integer computations. Fault detection techniques, called perturbation techniques,
are presented to reveal domain errors.

Koh and Liu [9] have presented an approach for generating paths that test both
the control flow and the data flow in implementations of communication protocols.
The protocols are assumed to be modeled as extended finite-state machines. The
path selection approach consists of two steps: (i) select a set of paths to cover
a data flow selection criterion and (ii) selectively augment the state transitions
in the chosen set of paths with state check sequences so that control flow can be
ensured and data flow coverage can be preserved. Augmentation of state transitions
is performed by using the concept of effective domains.

Jeng and Weyuker [10] have proposed a simplified domain testing strategy
that is applicable to arbitrary types of predicates and detects both linear and nonlin-
ear errors for both continuous and discrete variable spaces. Moreover, the strategy
requires a constant number of test points. That is, the number of test points is
independent of the dimension or the type of border or the number of vertices on
the border under consideration. Their simplified technique requires us to generate
one ON point and one OFF point for an inequality (i.e., <, <, >, or>) border.
For an equality (i.e., = ) or nonequality (i.e., #) border, one ON and two OFF test
points are required. The test generation technique requires (i) an ON point to lie
on the border, (ii) an OFF point to lie outside the border, and (iii) an ON-OFF
pair to be as close to each other as possible. Hajnal and Forgacs [11] have given an
algorithm to generate ON-OFF points that can be used by the simplified domain
testing strategy.

In contrast, the test selection strategy of White and Cohen [3] requires the
selection of N ON points in all cases, where N is the dimension of the input space,
and the Clarke, Hassell, and Richardson [4] strategy requires the selection of V ON
points, where V is the number of vertices on the border under consideration.

Zhao, Lyu, and Min [12] have studied an approach to generate ON-OFTF test
points for character string predicate borders associated with program paths. They
use the idea of program slicing [13] to compute the current values of variables in the
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predicates. The same authors have shown in reference [14] that partition testing
strategies are relatively ineffective in detecting faults related to small shifts in input
domain boundary, and presented a different testing approach based on input domain
analysis of specifications and programs.

An elaborate treatment of domain testing can be found in the book by Beizer

[15]. Beizer explains how the idea of domains can be used in testing interfaces
between program units.
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Exercises

1. Explain what are computation error and domain error.

2. Give an example of code showing a domain error.
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10.

. Explain the difference between control flow—based testing and domain

error—based testing.

. Recall that the domain testing strategy requires us to select test points on and/or

very close to domain boundaries. Why do we not select test points far from
the boundaries?

. Consider the three domains D1, D,, and D3 shown in Figure 6.16. Domain

D3 consists of all those points lying on the indicated straight line. Assum-
ing that the maximum X and Y span of all the three domains are [—5, 5]
and [—5, 5], respectively, give concrete values of test points for domain D3.

State four kinds of domain errors and explain how they occur.

Explain the following terms: closed boundary, open boundary, closed domain,
open domain, extreme point, adjacent domain.

Explain the idea of ON points and OFF points.

. Clearly explain the test selection criterion in domain-based testing and show

the closed inequality error (boundary shift resulting in a reduced domain) is
detected by the test points chosen by the selection criterion.

Identify some difficulties in applying the concept of domain testing to actual
program testing.



CHAPTER /.

System Integration Testing

| criticize by creation, not by finding fault.
— Marcus Tullius Cicero

7.1 CONCEPT OF INTEGRATION TESTING

A software module, or component, is a self-contained element of a system. Modules
have well-defined interfaces with other modules. A module can be a subroutine,
function, procedure, class, or collection of those basic elements put together to
deliver a higher level service. A system is a collection of modules interconnected
in a certain way to accomplish a tangible objective. A subsystem is an interim
system that is not fully integrated with all the modules. It is also known as a
subassembly.

In moderate to large projects, from tens to hundreds of programmers imple-
ment their share of the code in the form of modules. Modules are individually
tested, which is commonly known as unit testing, by their respective programmers
using white-box testing techniques. At the unit testing level, the system exists in
pieces under the control of the programmers. The next major task is to put the
modules, that is, pieces, together to construct the complete system. Constructing a
working system from the pieces is not a straightforward task, because of numerous
interface errors. Even constructing a reasonably stable system from the components
involves much testing. The path from tested components to constructing a deliv-
erable system contains two major testing phases, namely, integration testing and
system testing. The primary objective of integration testing is to assemble a rea-
sonably stable system in a laboratory environment such that the integrated system
can withstand the rigor of a full-blown system testing in the actual environment
of the system. The importance of integration testing stems from three reasons as
outlined below.

o Different modules are generally created by groups of different developers.
The developers may be working at different sites. In spite of our best
effort in system design and documentation, misinterpretation, mistakes, and
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oversights do occur in reality. Interface errors between modules created by
different programmers and even by the same programmers are rampant.
We will discuss the sources of interface errors in Section 7.2.

o Unit testing of individual modules is carried out in a controlled environ-
ment by using test drivers and stubs. Stubs are dummy modules which
merely return predefined values. If a module under unit test invokes sev-
eral other modules, the effectiveness of unit testing is constrained by the
programmer’s ability to effectively test all the paths. Therefore, with the
inherent limitations of unit testing, it is difficult to predict the behavior of
a module in its actual environment after the unit testing is performed.

e Some modules are more error prone than other modules, because of their
inherent complexity. It is essential to identify the ones causing most
failures.

The objective of system integration is to build a “working” version of the sys-
tem by (i) putting the modules together in an incremental manner and (ii) ensuring
that the additional modules work as expected without disturbing the functionalities
of the modules already put together. In other words, system integration testing is
a systematic technique for assembling a software system while conducting tests
to uncover errors associated with interfacing. We ensure that unit-tested modules
operate correctly when they are combined together as dictated by the design. Inte-
gration testing usually proceeds from small subassemblies containing a few modules
to larger ones containing more and more modules. Large, complex software prod-
ucts can go through several iterations of build-and-test cycles before they are fully
integrated.

Integration testing is said to be complete when the system is fully integrated
together, all the test cases have been executed, all the severe and moderate defects
found have been fixed, and the system is retested.

7.2 DIFFERENT TYPES OF INTERFACES
AND INTERFACE ERRORS

Modularization is an important principle in software design, and modules are
interfaced with other modules to realize the system’s functional requirements. An
interface between two modules allows one module to access the service provided
by the other. It implements a mechanism for passing control and data between
modules. Three common paradigms for interfacing modules are as follows:

¢ Procedure Call Interface: A procedure in one module calls a procedure
in another module. The caller passes on control to the called module. The
caller can pass data to the called procedure, and the called procedure can
pass data to the caller while returning control back to the caller.

e Shared Memory Interface: A block of memory is shared between two
modules. The memory block may be allocated by one of the two modules



160 CHAPTER7 SYSTEM INTEGRATION TESTING

or a third module. Data are written into the memory block by one module
and are read from the block by the other.

o Message Passing Interface: One module prepares a message by initializ-
ing the fields of a data structure and sending the message to another module.
This form of module interaction is common in client—server-based systems
and web-based systems.

Programmers test modules to their satisfaction. The question is: If all the
unit-tested modules work individually, why can these modules not work when
put together? The problem arises when we “put them together” because of rampant
interface errors. Interface errors are those that are associated with structures existing
outside the local environment of a module but which the module uses [1]. Perry
and Evangelist [2] reported in 1987 that interface errors accounted for up to a
quarter of all errors in the systems they examined. They found that of all errors
that required a fix within one module, more than half were caused by interface
errors. Perry and Evangelist have categorized interface errors as follows:

1. Construction: Some programming languages, such as C, generally sep-
arate the interface specification from the implementation code. In a C
program, programmers can write a statement #include header.h, where
header.h contains an interface specification. Since the interface specifica-
tion lies somewhere away from the actual code, programmers overlook the
interface specification while writing code. Therefore, inappropriate use of
#include statements cause construction errors.

2. Inadequate Functionality: These are errors caused by implicit assump-
tions in one part of a system that another part of the system would
perform a function. However, in reality, the “other part” does not pro-
vide the expected functionality—intentionally or unintentionally by the
programmer who coded the other part.

3. Location of Functionality: Disagreement on or misunderstanding about
the location of a functional capability within the software leads to this
sort of error. The problem arises due to the design methodology, since
these disputes should not occur at the code level. It is also possible that
inexperienced personnel contribute to the problem.

4. Changes in Functionality: Changing one module without correctly adjust-
ing for that change in other related modules affects the functionality of
the program.

5. Added Functionality: A completely new functional module, or capabil-
ity, was added as a system modification. Any added functionality after
the module is checked in to the version control system without a CR is
considered to be an error.

6. Misuse of Interface: One module makes an error in using the interface of a
called module. This is likely to occur in a procedure—call interface. Inter-
face misuse can take the form of wrong parameter type, wrong parameter
order, or wrong number of parameters passed.
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Misunderstanding of Interface: A calling module may misunderstand the
interface specification of a called module. The called module may assume
that some parameters passed to it satisfy a certain condition, whereas the
caller does not ensure that the condition holds. For example, assume that
a called module is expected to return the index of an element in an array
of integers. The called module may choose to implement binary search
with an assumption that the calling module gives it a sorted array. If the
caller fails to sort the array before invoking the second module, we will
have an instance of interface misunderstanding.

. Data Structure Alteration: These are similar in nature to the functionality

problems discussed above, but they are likely to occur at the detailed
design level. The problem arises when the size of a data structure is
inadequate or it fails to contain a sufficient number of information fields.
The problem has its genesis in the failure of the high-level design to fully
specify the capability requirements of the data structure. Let us consider
an example in which a module reads the data and keeps it in a record
structure. Each record holds the person name followed by their employee
number and salary. Now, if the data structure is defined for 1000 records,
then as the number of record grows beyond 1000, the program is bound
to fail. In addition, if management decides to award bonuses to a few
outstanding employees, there may not be any storage space allocated for
additional information.

. Inadequate Error Processing: A called module may return an error code

to the calling module. However, the calling module may fail to handle the
error properly.

Additions to Error Processing: These errors are caused by changes to
other modules which dictated changes in a module error handling. In
this case either necessary functionality is missing from the current error
processing that would help trace errors or current techniques of error
processing require modification.

Inadequate Postprocessing: These errors are caused by a general failure
to release resources no longer required, for example, failure to deallocate
memory.

Inadequate Interface Support: The actual functionality supplied was inad-
equate to support the specified capabilities of the interface. For example, a
module passes a temperature value in Celsius to a module which interprets
the value in Fahrenheit.

Initialization/Value Errors: A failure to initialize, or assign, the appropri-
ate value to a variable data structure leads to this kind of error. Problems
of this kind are usually caused by simple oversight. For example, the
value of a pointer can change; it might point to the first character in a
string, then to the second character, after that to the third character, and
so on. If the programmer forgets to reinitialize the pointer before using
that function once again, the pointer may eventually point to code.
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14. Violation of Data Constraints: A specified relationship among data items
was not supported by the implementation. This can happen due to incom-
plete detailed design specifications.

15. Timing/Performance Problems: These errors were caused by inadequate
synchronization among communicating processes. A race condition is an
example of these kinds of error. In the classical race, there are two possible
events event a and event b happening in communicating processes process
A and process B, respectively. There is logical ground for expecting event
a to precede event b. However, under an abnormal condition event b may
occur before event a. The program will fail if the software developer did
not anticipate the possibility of event b preceding event a and did not
write any code to deal with the situation.

16. Coordination of Changes: These errors are caused by a failure to com-
municate changes to one software module to those responsible for other
interrelated modules.

17. Hardware/Software Interfaces: These errors arise from inadequate soft-
ware handling of hardware devices. For example, a program can send
data at a high rate until the input buffer of the connected device is full.
Then the program has to pause until the device frees up its input buffer.
The program may not recognize the signal from the device that it is no
longer ready to receive more data. Loss of data will occur due to a lack
of synchronization between the program and the device.

Interface errors cannot be detected by performing unit testing on modules
since unit testing causes computation to happen within a module, whereas interac-
tions are required to happen between modules for interface errors to be detected. It
is difficult to observe interface errors by performing system-level testing, because
these errors tend to be buried in system internals. The major advantages of con-
ducting system integration testing are as follows:

o Defects are detected early.

o It is easier to fix defects detected earlier.

We get earlier feedback on the health and acceptability of the individual
modules and on the overall system.

Scheduling of defect fixes is flexible, and it can overlap with development.

System integration testing is performed by the system integration group, also
known as a build engineering group. The integration test engineers need to know
the details of the software modules. This means that the team of engineers who
built the modules needs to be involved in system integration. The integration testers
should be familiar with the interface mechanisms. The system architects should be
involved in the integration testing of complex software systems because of the fact
that they have the bigger picture of the system.
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7.3 GRANULARITY OF SYSTEM INTEGRATION
TESTING

System integration testing is performed at different levels of granularity. Integration
testing includes both white- and black-box testing approaches. Black-box testing
ignores the internal mechanisms of a system and focuses solely on the outputs
generated in response to selected inputs and execution conditions. The code is
considered to be a big black box by the tester who cannot examine the internal
details of the system. The tester knows the input to the black box and observes
the expected outcome of the execution. White-box testing uses information about
the structure of the system to test its correctness. It takes into account the internal
mechanisms of the system and the modules. In the following, we explain the ideas
of intrasystem testing, intersystem testing, and pairwise testing.

1. Intrasystem Testing: This form of testing constitutes low-level integration
testing with the objective of combining the modules together to build a cohesive
system. The process of combining modules can progress in an incremental man-
ner akin to constructing and testing successive builds, explained in Section 7.4.1.
For example, in a client—server-based system both the client and the server are
distinct entities running at different locations. Before the interactions of clients
with a server are tested, it is essential to individually construct the client and the
server systems from their respective sets of modules in an incremental fashion. The
low-level design document, which details the specification of the modules within
the architecture, is the source of test cases.

2. Intersystem Testing: Intersystem testing is a high-level testing phase which
requires interfacing independently tested systems. In this phase, all the systems are
connected together, and testing is conducted from end to end. The term end to end
is used in communication protocol systems, and end-to-end testing means initiating
a test between two access terminals interconnected by a network. The purpose in
this case is to ensure that the interaction between the systems work together, but
not to conduct a comprehensive test. Only one feature is tested at a time and
on a limited basis. Later, at the time of system testing, a comprehensive test is
conducted based on the requirements, and this includes functional, interoperability,
stress, performance, and so on. Integrating a client—server system, after integrating
the client module and the server module separately, is an example of intersystem
testing. Integrating a call control system and a billing system in a telephone network
is another example of intersystem testing. The test cases are derived from the
high-level design document, which details the overall system architecture.

3. Pairwise Testing: There can be many intermediate levels of system inte-
gration testing between the above two extreme levels, namely intrasystem testing
and intersystem testing. Pairwise testing is a kind of intermediate level of integra-
tion testing. In pairwise integration, only two interconnected systems in an overall
system are tested at a time. The purpose of pairwise testing is to ensure that two
systems under consideration can function together, assuming that the other systems
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within the overall environment behave as expected. The whole network infrastruc-
ture needs to be in place to support the test of interactions of the two systems,
but the rest of the systems are not subject to tests. The network test infrastruc-
ture must be simple and stable during pairwise testing. While pairwise testing may
sound simple, several issues can complicate the testing process. The biggest issue
is unintended side effects. For example, in testing communication between a net-
work element (radio node) and the element management systems, if another device
(radio node controller) within the 1XEV-DO wireless data network, discussed in
Chapter 8, fails during the test, it may trigger a high volume of traps to the element
management systems. Untangling this high volume of traps may be difficult.

7.4 SYSTEM INTEGRATION TECHNIQUES

One of the objectives of integration testing is to combine the software modules
into a working system so that system-level tests can be performed on the complete
system. Integration testing need not wait until all the modules of a system are
coded and unit tested. Instead, it can begin as soon as the relevant modules are
available. A module is said to be available for combining with other modules when
the module’s check-in request form, to be discussed in this section, is ready. Some
common approaches to performing system integration are as follows:

e Incremental
e Top down
¢ Bottom up
¢ Sandwich
¢ Big bang

In the remainder of this section, we explain the above approaches.

7.4.1 Incremental

In this approach, integration testing is conducted in an incremental manner as
a series of test cycles as suggested by Deutsch [3]. In each test cycle, a few
more modules are integrated with an existing and tested build to generate a larger
build. The idea is to complete one cycle of testing, let the developers fix all the
errors found, and continue the next cycle of testing. The complete system is built
incrementally, cycle by cycle, until the whole system is operational and ready for
system-level testing.

The system is built as a succession of layers, beginning with some core mod-
ules. In each cycle, a new layer is added to the core and tested to form a new core.
The new core is intended to be self-contained and stable. Here, “self-contained”
means containing all the necessary code to support a set of functions, and “stable”
means that the subsystem (i.e., the new, partial system) can stay up for 24 hours
without any anomalies. The number of system integration test cycles and the total
integration time are determined by the following parameters:
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Number of modules in the system

Relative complexity of the modules (cyclomatic complexity)

e Relative complexity of the interfaces between the modules

Number of modules needed to be clustered together in each test cycle

Whether the modules to be integrated have been adequately tested before

Turnaround time for each test—debug—fix cycle

Constructing a build is a process by which individual modules are integrated
to form an interim software image. A software image is a compiled software binary.
A build is an interim software image for internal testing within the organization.
Eventually, the final build will be a candidate for system testing, and such a tested
system is released to the customers. Constructing a software image involves the
following activities:

Gathering the latest unit tested, authorized versions of modules

Compiling the source code of those modules

Checking in the compiled code to the repository

Linking the compiled modules into subassemblies

Verifying that the subassemblies are correct

Exercising version control

A simple build involves only a small number of modules being integrated
with a previously tested build on a reliable and well-understood platform. No spe-
cial tool or procedure needs to be developed and documented for a simple build.
On the other hand, organized, well-documented procedures are applied for com-
plex builds. A build process becomes complicated if a large number of modules
are integrated together, and a significant number of those modules are new with
complex interfaces. These interfaces can be between software modules and hard-
ware devices, across platforms, and across networks. For complex builds, a version
control tool is highly recommended for automating the build process and for fast
turnaround of a test—debug—fix cycle.

Creating a daily build [4] is very popular in many organizations because it
facilitates to a faster delivery of the system. It puts emphasis on small incremental
testing, steadily increasing the number of test cases, and regression testing from
build to build. The integrated system is tested using automated, reusable test cases.
An effort is made to fix the defects that were found during the testing cycle. A new
version of the system is constructed from the existing, revised, and newly developed
modules and is made available for retesting. Prior versions of the build are retained
for reference and rollback. If a defect is not found in a module of a build in which
the module was introduced, the module will be carried forward from build to build
until one is found. Having access to the version where the defective module was
originally introduced is useful in debugging and fixing, limiting the side effects
of the fixes, and performing a root cause analysis. During system development,
integration, and testing, a typical practice is to retain the past 7—10 builds.
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The software developer fills out a check-in request form before a new soft-
ware module or a module with an error fix is integrated into a build. The form is
reviewed by the build engineering group for giving approval. Once it is approved,
the module can be considered for integration. The main portions of a check-in form
are given in Table 7.1. The idea behind having a check-in request mechanism is
fourfold:

1. All the files requiring an update must be identified and known to other
team members.

2. The new code must have been reviewed prior to its integration.

3. The new code must have been unit tested.

4. The scope of the check-in is identified.

A release note containing the following information accompanies a build:

e What has changed since the last build?

e What outstanding defects have been fixed?
e What are the outstanding defects in the build?

e What new modules or features have been added?

TABLE7.1 Check-in Request Form

Author

Today’s date

Check-in request date

Category (identify all that apply)

Short description of check-in

Number of files to be checked in

Code reviewer names
Command line interface changes made

Does this check-in involve changes to
global header?

Does this check-in involve changes in
output logging?

Unit test description

Comments

Name of the person requesting this check-in

month, day, year

month, day, year

New Feature: (Y, N)

Enhancement: (Y, N)

Defect: (Y, N); if yes: defect numbers:
Are any of these major defects: (Y, N)
Are any of these moderate defects: (Y, N)

Describe in a short paragraph the feature, the
enhancement, or the defect fixes to be
checked in.

Give the number of files to be checked in.
Include the file names, if possible.

Provide the names of the code reviewers.
(Y, N); if yes, were they:

Documented? (Y, N)

Reviewed? (Y, N, pending)
(Y, N); if yes, include the header file names.

(Y, N); if yes, were they documented? (Y, N)

Description of the unit tests conducted
Any other comments and issues
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e What existing modules or features have been enhanced, modified, or
deleted?

e Are there any areas where unknown changes may have occurred?

A test strategy is created for each new build based on the above information. The
following issues are addressed while planning a test strategy:

e What test cases need to be selected from the system integration test plan,
as discussed in Section 7.6, in order to test the changes? Will these test
cases give feature coverage of the new and modified features? If necessary,
add new test cases to the system integration test plan.

e What existing test cases can be reused without modification in order to
test the modified system? What previously failed test cases should now be
reexecuted in order to test the fixes in the new build?

e How should the scope of a partial regression test be determined? A full
regression test may not be run on each build because of frequent turnaround
of builds. At the least, any earlier test cases which pertain to areas that
have been modified must be reexecuted.

e What are the estimated time, resource demand, and cost to test this build?
Some builds may be skipped based on this estimate and the current activ-
ities, because the integration test engineers may choose to wait for a later
build.

7.4.2 Top Down

Systems with hierarchical structures easily lend themselves to top-down and
bottom-up approaches to integration. In a hierarchical system, there is a first,
top-level module which is decomposed into a few second-level modules. Some of
the second-level modules may be further decomposed into third-level modules,
and so on. Some or all the modules at any level may be terminal modules, where
a terminal module is one that is no more decomposed. An internal module,
also known as a nonterminal module, performs some computations, invokes its
subordinate modules, and returns control and results to its caller. In top-down
and bottom-up approaches, a design document giving the module hierarchy is
used as a reference for integrating modules. An example of a module hierarchy is
shown in Figure 7.1, where module A is the topmost module; module A has been
decomposed into modules B, C, and D. Modules B, D, E, F, and G are terminal
modules, as these have not been further decomposed. The top-down approach is
explained in the following:

Step 1: Let IM represent the set of modules that have already been integrated
and the required stubs. Initially, IM contains the top-level module and
stubs corresponding to all the subordinate modules of the top-level
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module. It is assumed that the top-level module has passed its entry
criteria.

Step 2: Choose a stub member M’ in set IM. Let M be the actual module cor-
responding to stub M’. We obtain a new set CM from IM by replacing
stub M” with M and including in CM all stubs corresponding to the sub-
ordinate modules of M. We consider CM to be a union of four sets:
{M}, CMs, CMi, CMr, where CMs is the set of stubs, CMi is the set
of modules having direct interfaces with M, and CMr is the rest of the
modules in CM.

Step 3: Now, test the combined behavior of CM. Testing CM means applying
input to the top-level module of the system. It may be noted that though
the integration team has access to the top module of the system, all
kinds of tests cannot be performed. This is apparent from the fact that
CM does not represent the full system. In this step, the integration team
tests a subset of the system functions implemented by the actual modules
in CM. The integration team performs two kinds of tests:

1. Run test cases to discover any interface defects between M and mem-
bers of CMi.

2. Perform regression tests to ensure that integration of the modules in

the two sets CMi and CMr is satisfactory in the presence of module M.
One may note that in previous iterations the interfaces between mod-
ules in CMi and CMr were tested and the defects fixed. However,
the said tests were executed with M'—a stub of M—and not M. The
presence of M in the integrated system up to this moment allows us
to test the interfaces between the modules in the combined set of CMi
and CMr, because of the possibility of the system supporting more
functionalities with M.
The above two kinds of tests are continued until the integration team
is satisfied that there is no known interface error. In case an interface
error is discovered, the error must be fixed before moving on to the
next step.

Step 4: If the set CMs is empty, then stop; otherwise, set IM = CM and go to
step 2.
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Now, let us consider an example of top-down integration using Figure 7.1.
The integration of modules A and B by using stubs C’ and D’ (represented by grey
boxes) is shown in Figure 7.2. Interactions between modules A and B is severely
constrained by the dummy nature of C’ and D’. The interactions between A and
B are concrete, and, as a consequence, more tests are performed after additional
modules are integrated. Next, as shown in Figure 7.3, stub D’ has been replaced
with its actual instance D. We perform two kinds of tests: first, test the interface
between A and D; second, perform regression tests to look for interface defects
between A and B in the presence of module D. Stub C’ has been replaced with the
actual module C, and new stubs E’, F, and G’ have been added to the integrated
system (Figure 7.4). We perform tests as follows: First, test the interface between
A and C; second, test the combined modules A, B, and D in the presence of C
(Figure 7.4). The rest of the integration process is depicted in Figures 7.5 and 7.6
to obtain the final system of Figure 7.7.

The advantages of the top-down approach are as follows:

e System integration test (SIT) engineers continually observe system-level
functions as the integration process continues. How soon such functions
are observed depends upon their choice of the order in which modules are
integrated. Early observation of system functions is important because it
gives them better confidence.

o Isolation of interface errors becomes easier because of the incremental
nature of top-down integration. However, it cannot be concluded that an
interface error is due to a newly integrated module M. The interface error

Figure 7.2 Top-down integration of modules
A and B.
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Figure 7.4 Top-down integration of modules
A, B, D, and C.
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Figure 7.5 Top-down integration of modules
A, B, C, D, and E.

| E | | F | | G | Figure 7.6 Top-down integration of
modules A, B, C, D, E, and F.
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modules A, B, C, D, E, F and G.

may be due to faulty implementation of a module that was already inte-
grated much earlier. This is possible because earlier tests were conducted
with or without a stub for M, and the full capability of M simply allowed
the test engineers to conduct more tests that were possible due to M.

Test cases designed to test the integration of a module M are reused during
the regression tests performed after integrating other modules.

Since test inputs are applied to the top-level module, it is natural that those
test cases correspond to system functions, and it is easier to design those
test cases than test cases designed to check internal system functions.
Those test cases can be reused while performing the more rigorous,
system-level tests.

The limitations of the top-down approach are as follows:

e Until a certain set of modules has been integrated, it may not be possible
to observe meaningful system functions because of an absence of lower
level modules and the presence of stubs. Careful analysis is required to
identify an ordering of modules for integration so that system functions
are observed as early as possible.



7.4 SYSTEM INTEGRATION TECHNIQUES 171

o Test case selection and stub design become increasingly difficult when
stubs lie far away from the top-level module. This is because stubs support
limited behavior, and any test run at the top level must be constrained to
exercise the limited behavior of lower level stubs.

7.4.3 Bottom Up

In the bottom-up approach, system integration begins with the integration of lowest
level modules. A module is said to be at the lowest level if it does not invoke
another module. It is assumed that all the modules have been individually tested
before. To integrate a set of lower level modules in this approach, we need to
construct a test driver module that invokes the modules to be integrated. Once the
integration of a desired group of lower level modules is found to be satisfactory,
the driver is replaced with the actual module and one more test driver is used to
integrate more modules with the set of modules already integrated. The process of
bottom-up integration continues until all the modules have been integrated.

Now we give an example of bottom-up integration for the module hierarchy
of Figure 7.1. The lowest level modules are E, F, and G. We design a test driver
to integrate these three modules, as shown in Figure 7.8. It may be noted that
modules E, F, and G have no direct interfaces among them. However, return values
generated by one module is likely to be used in another module, thus having an
indirect interface. The test driver in Figure 7.8 invokes modules E, F, and G in a
way similar to their invocations by module C. The test driver mimics module C
to integrate E, F, and G in a limited way, because it is much simpler in capability
than module C. The test driver is replaced with the actual module—in this case
C—and a new test driver is used after the testers are satisfied with the combined
behavior of E, F, and G (Figure 7.9). At this moment, more modules, such as
B and D, are integrated with the so-far integrated system. The test driver mimics
the behavior of module A. We need to include modules B and D because those are
invoked by A and the test driver mimics A (Figure 7.9). The test driver is replaced
with module A (Figure 7.10), and further tests are performed after the testers are
satisfied with the integrated system shown in Figure 7.9.

The advantages of the bottom-up approach are as follows. If the low-level
modules and their combined functions are often invoked by other modules, then it
is more useful to test them first so that meaningful effective integration of other
modules can be done. In the absence of such a strategy, the testers write stubs
to emulate the commonly invoked low-level modules, which will provide only a
limited test capability of the interfaces.

Test
driver

Figure 7.8 Bottom-up integration of
F modules E, F, and G.
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The disadvantages of the bottom-up approach are as follows:

o Test engineers cannot observe system-level functions from a partly inte-

grated system. In fact, they cannot observe system-level functions until the
top-level test driver is in place.

o Generally, major design decisions are embodied in top-level modules,

whereas most of the low-level modules largely perform commonly known
input—output functions. Discovery of major flaws in system design may
not be possible until the top-level modules have been integrated.

Now we compare the top-down and bottom-up approaches in the following:

o Validation of Major Design Decisions: The top-level modules contain

major design decisions. Faults in design decisions are detected early if
integration is done in a top-down manner. In the bottom-up approach,
those faults are detected toward the end of the integration process.

Observation of System-Level Functions: One applies test inputs to the
top-level module, which is akin to performing system-level tests in a very
limited way in the top-down approach. This gives an opportunity to the
SIT personnel and the development team to observe system-level functions
early in the integration process. However, similar observations can be done
in the bottom-up approach only at the end of system integration.

Difficulty in Designing Test Cases: In the top-down approach, as more
and more modules are integrated and stubs lie farther away from the
top-level module, it becomes increasingly difficult to design stub behavior
and test input. This is because stubs return predetermined values, and a
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test engineer must compute those values for a given test input at the top
level. However, in the bottom-up approach, one designs the behavior of a
test driver by simplifying the behavior of the actual module.

o Reusability of Test Cases: In the top-down approach, test cases designed
to test the interface of a newly integrated module is reused in performing
regression tests in the following iteration. Those test cases are reused as
system-level test cases. However, in the bottom-up approach, all the test
cases incorporated into test drivers, except for the top-level test driver,
cannot be reused. The top-down approach saves resources in the form of
time and money.

7.4.4 Sandwich and Big Bang

In the sandwich approach, a system is integrated by using a mix of the top-down
and bottom-up approaches. A hierarchical system is viewed as consisting of three
layers. The bottom layer contains all the modules that are often invoked. The
bottom-up approach is applied to integrate the modules in the bottom layer. The
top layer contains modules implementing major design decisions. These modules
are integrated by using the top-down approach. The rest of the modules are put in
the middle layer. We have the advantages of the top-down approach where writing
stubs for the low-level module is not required. As a special case, the middle layer
may not exist, in which case a module falls either in the top layer or in the
bottom layer. On the other hand, if the middle layer exists, then this layer can be
integrated by using the big-bang approach after the top and the bottom layers have
been integrated.

In the big-bang approach, first all the modules are individually tested. Next,
all those modules are put together to construct the entire system which is tested
as a whole. Sometimes developers use the big-bang approach to integrate small
systems. However, for large systems, this approach is not recommended for the
following reasons:

e In a system with a large number of modules, there may be many interface
defects. It is difficult to determine whether or not the cause of a failure is
due to interface errors in a large and complex system.

o In large systems, the presence of a large number of interface errors is not
an unlikely scenario in software development. Thus, it is not cost effective
to be optimistic by putting the modules together and hoping it will work.

Solheim and Rowland [5] measured the relative efficacy of top-down, bottom-up,
sandwich, and big-bang integration strategies for software systems. The empirical
study indicated that top-down integration strategies are most effective in terms
of defect correction. Top-down and big-bang strategies produced the most reliable
systems. Bottom-up strategies are generally least effective at correcting defects and
produce the least reliable systems. Systems integrated by the sandwich strategy are
moderately reliable in comparison.
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7.5 SOFTWARE AND HARDWARE INTEGRATION

A component is a fundamental part of a system, and it is largely independent
of other components. Many products require development of both hardware and
software components. These two kinds of components are integrated to form the
complete product. In addition, a third kind of component, a product documentation,
is developed in parallel with the first two components. A product documenta-
tion is an integration of different kinds of individual documentations. The overall
goal is to reduce the time to market of the product by removing the sequential
nature of product development processes.

On the hardware side, the individual hardware modules, or components, are
diverse in nature, such as a chassis, a printed circuit board, a power supply, a
fan tray for cooling, and a cabinet to hold the product. On the documentation
side, the modules that are integrated together include an installation manual, a
troubleshooting guide, and a user’s manual in more than one natural language.

It is essential to test both the software and the hardware components indi-
vidually as much as possible before integrating them. In many products, neither
component can be completely tested without the other. Usually, the entry criteria
for both the hardware and software components are establishedand satisfied before
beginning to integrate those components. If the target hardware is not available at
the time of system integration, then a hardware emulator is developed. The emu-
lator replaces the hardware platform on which the software is tested until the real
hardware is available. However, there is no guarantee that the software will work
on the real hardware even if it worked on the emulator.

Integration of hardware and software components is often done in an itera-
tive manner. A software image with a minimal number of core software modules
is loaded on the prototype hardware. In each step, a small number of tests are
performed to ensure that all the desired software modules are present in the build.
Next, additional tests are run to verify the essential functionalities. The process of
assembling the build, loading on the target hardware, and testing the build contin-
ues until the entire product has been integrated. If a problem is discovered early
in the hardware/software integration and the problem can be resolved easily, then
the problem is fixed without any delay. Otherwise, integration of software and
hardware components may continue in a limited way until the root cause of the
problem is found and analyzed. The integration is delayed until the fixes, based on
the outcome of the root cause analysis, are applied.

7.5.1 Hardware Design Verification Tests

A hardware engineering process is viewed as consisting of four phases: (i) planning
and specification, (ii) design, prototype implementation, and testing, (iii) integration
with the software system, and (iv) manufacturing, distribution, and field service.
Testing of a hardware module in the second phase of hardware development without
software can be conducted to a limited degree. A hardware design verification test
(DVT) plan is prepared and executed by the hardware group before integration
with the software system. The main hardware tests are discussed below.
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Diagnostic Test Diagnostic tests are the most fundamental hardware tests. Such
tests are often imbedded in the basic input—output system (BIOS) component and
are executed automatically whenever the system power