
1

Compilers I - Chapter 4: 
Generating Better Code

• Lecturers: 
– Part I: Paul Kelly (phjk@doc.ic.ac.uk)

• Office: room 423
– Part II: Naranker Dulay (nd@doc.ic.ac.uk)

• Office: room 562

• Materials:
– Textbook
– Course web pages 

(http://www.doc.ic.ac.uk/~phjk/Compilers)
– Course news group



2

Overview
• We have seen a simple code generator which handles the 

basic components of common programming languages -
statements and expressions

• We will cover other basic components shortly:
– declarations (constants, records etc)
– storage management
– procedures and functions

• But first we will examine ways of producing better-quality 
output code
– The main issue is the effective use of registers

• At this stage we are looking for simple, fast algorithms 
which do a reasonably good job: optimizing compilers use 
more powerful (slower!) techniques, which we will 
examine briefly later



3

The plan
• A simple language with assignments, loops etc.
• A stack-based instruction set and its code generator
• Code generation for a machine with registers:

– an unbounded number of registers
– a fixed number of registers
– avoiding running out of registers
– register allocation across multiple statements

• Conditionals and Boolean expressions



4

Code generation with an unbounded number of 
registers

• We will concentrate on using registers well in arithmetic 
expressions:
– Initially assume there will always be enough registers.
– Invent a scheme to handle cases where we run out of 

registers
– Modify the translator to evaluate expressions in the order 

which minimises the number of registers needed

• When we look at sequences of assignments (“basic blocks”) it 
is clear that better code results if variables are kept in registers 
as well as nameless intermediate values. We will examine the 
graph colouring approach to register allocation which 
addresses this.



5

Instruction set for example machine with registers

• Instruction set data type:
data Instruction =
Add reg reg (reg := reg + reg)
| Sub reg reg | ... (similar)
| Load reg name (reg := value at location name)
| LoadImm reg num (load constant into reg)
| Store reg name (store reg at location name)
| Push reg (push reg onto stack)
| Pop reg (remove value from stack, and put it in the reg)
| CompEq reg reg (subtract reg from reg and set reg to 1

if the result was zero, 0 otherwise)
| JTrue reg label (if reg = 1 jump to label)
| JFalse reg label (if reg = 0 jump to label)
| Define label (set up destination for jump)

Model: Stack machine as before, 
augmented with some number of 
registers R0, R1, . . . 



6

Storage allocation for intermediate values in expressions

• The code generator 
given earlier would 
translate the 
expression:
(100*3) + 
((200*2) + 300) + 
(400 + (500*3))

• to the stack machine 
assembly code:

PushImm 100,
PushImm 3,
Mul,
PushImm 200,
PushImm 2,
Mul,
PushImm 300,
Add,
Add,
PushImm 400,
PushImm 500,
PushImm 3,
Mul,
Add,
Add



7

• If you feed this into the 
stack machine simulator

(http://www.doc.ic.ac.uk/˜phjk
/Compilers/Haskell/StackMac
hine.hs)

• you can get the trace:



8

How the stack machine uses memory
• The first instruction puts 100 into slot 0
• the second puts 3 into slot 1
• the third adds the contents of slots 0 and 1 and puts 

the result in slot 0

We see that if the computer knows where the stack 
pointer starts, it can work out beforehand where 
everything will be

• This shows the way towards using registers 
efficiently



9

LoadImm R0 100,
LoadImm R1 3,
Mul R0 R1,
LoadImm R1 100,
LoadImm R2 2,
Mul R1 R2,
LoadImm R2 300,
Add R1 R2,
Add R0 R1,
LoadImm R1 400,
LoadImm R2 500,
LoadImm R3 3,
Mul R2 R3,
Add R1 R2,
Add R0 R1

Here is the 
code 

which 
results 

from 
working 

out where 
all the 

operands 
will be at 
compile-

time



10

The translation function
• The translation function transExp requires an 

extra parameter which specifies the register in 
which the result is to be left:
transExp :: exp -> reg -> [instruction]

• The code generated by transExp e Ri can use 
registers Ri, Ri+1 upwards, but must leave the other 
registers (R0. . .Ri-1) intact

• The easy cases….
transExp (Const n) r = [LoadImm r n]
transExp (Ident x) r = [Load r x]



11

The translation function…
transExp (Binop op e1 e2) r

= transExp e1 r ++
transExp e2 (r+1) ++
transBinop op r (r+1)

where

transBinop Plus r1 r2 = [Add r1 r2]
transBinop Minus r1 r2 = [Sub r1 r2]

etc.

• Parameter r is used to track where the stack pointer 
would point



12

Example: x * 3 + 4
• AST:

• Walkthrough:
transExp (Binop Plus (Binop Times (Ident "x")

(Const 3))
(Const 4))

0 (deliver result to register 0)



13

• transExp (Binop Plus (Binop Times (Ident "x")(Const 3))(Const 4)) 0

Using the definition of transExp, we unfold this to get:
• ( transExp (Binop Times (Ident "x")(Const 3)) 0 ) ++

( transExp (Const 4) 1 ) ++
[Add R0 R1]

Unfolding again, this reduces to:

[Load R0 "x",
LoadImm R1 3,
Mul R0 R1, (R0 := x*3)
LoadImm R1 4, (R1 := 4)
Add R0 R1] (R0 := (x*3)+4)

How might this be improved?

Example: x * 3 + 4 …



14

How might use of registers be improved?
• Example: x * 3 + 4
• We used two registers – can we get away with fewer?
• How about:

[Load R0 "x",
MulImm R0 3,
AddImm R0 4]

• This is clearly better because it involves fewer 
instructions, and uses fewer registers

• How to fix the translator to do this?

Instead of loading the constant into a 
register, use an instruction that takes an 
immediate operand – eg on a Pentium:

movl x,%eax
imull $3,%eax
addl $4,%eax



15

Using immediate operands
• The modification required to the translator is small—we need to add a 

rule to catch the special case:
transExp (Binop op e1 (Const n)) r

= transExp e1 r ++ transBinopImm op r n
where
transBinopImm Plus r n = [AddImm r n]

etc.

• If the operator is commutative, we can catch another case:

transExp (Binop op (Const n) e2) r
|  commutative op = transExp e2 r ++

transBinopImm op r n



16

• Problem: We don’t have an unbounded number of 
registers

• Before we see how to overcome this problem in the 
register machine case, we introduce the accumulator 
machine—a machine with only one register, its 
“accumulator”.

• The solution to the problem will be to combine the 
two techniques.



17

The Accumulator 
Machine

• This machine has a 
stack, and just one 
register, the accumulator. 
The stack is used for 
intermediate values as 
before, but arithmetic 
etc. instructions are 
always of the form:
Acc := Acc + 

Store[SP]; 
SP := SP+1;

• The instruction set:
data Instruction =

Add | Sub | Mul | Div... |
AddImm num | ... |
CompEq | ... |
Push |
Pop |
Load name |
LoadImm num |
Store name |
Jump label | 
Jtrue label | 
JFalse label |
Define label



18

The accumulator machine…
What the instructions do:

• Add:

Acc:=Acc+Store[SP]; SP:=SP+1;
• Push:

SP:=SP-1; Store[SP]:=Acc;
• Pop:

Acc:=Store[SP]; SP:=SP+1;
• Load name:

Acc:=Store[name];
• Store name:

Store[name]:=Acc;



19

Translator for accumulator machine:
• The translator transExp generates code to evaluate an 

expression and leave its value in the accumulator:

transExp (Const n) = [LoadImm n]
transExp (Ident x) = [Load x]
transExp (Binop op e1 e2)

= transExp e2 ++
[Push] ++
transExp e1 ++
transBinop op

where
transBinop Plus = [Add]
etc.

• For ‘e1 + e2’, push value of e2 onto stack while evaluating e1

(Note that e2 has to 
be evaluated before e1
so that it forms the 
right-hand operand of 
the binary operator)



20

Translator for machine with limited register set

• A neat solution to the problem of running out of 
registers is to combine the register machine and 
accumulator strategies:
– While free registers remain, use the register machine 

strategy
– When the limit is reached (ie. when there is one register 

left), revert to the accumulator strategy, using the last 
register as the accumulator

• The effect is that most expressions get the full 
benefit of registers, while unusually large 
expressions are handled correctly



21

Code generation with limited registers - Implementation:
transExp (Const n) r = [LoadImm r n]
transExp (Ident x) r = [Load r x]

transExp (Binop op e1 e2) r
= if r == MAXREG then

transExp e2 r ++
[Push r] ++
transExp e1 r ++
transBinopStack op r

elseif r < MAXREG
transExp e1 r ++
transExp e2 (r+1) ++
transBinop op r (r+1)

if no more 
registers, use stack 
for e2 while 
evaluating e1

If there are more 
registers, use 
register r to hold 
e1.  Evaluate e2 
leaving result in 
register r+1

Arithmetic 
instruction gets 
one operand 
from stack (next 
slide)

Arithmetic 
instruction gets 
both operands 
from registers



22

• If there were enough registers, generate an arithmetic 
instruction which takes register operands:

transBinop Plus r1 r2 = [Add r1 r2]
transBinop Minus r1 r2 = [Sub r1 r2]

etc.
• If there is only one register left, we need an arithmetic 

instruction which takes one operand from the top of the 
stack, as in the accumulator machine:

transBinopStack Add r = [AddStack r] 
transBinopStack Sub r = [SubStack r] 

etc.

• The AddStack r instruction is simply:
r := r+Store[SP];  SP:=SP+1;



23

Conclusion
• In last chapter we saw a code generator for simple 

statements and expressions.
• In this chapter we looked at ways of improving code for 

expressions
• We looked at using stacks, accumulators and registers —

three ways of managing storage for intermediate values
• The stack approach is not very efficient. Adding just one 

register (“accumulator”) much reduces the number of 
memory references

• With several registers, main memory for intermediate 
values is rarely needed. If you run out, it is efficient enough 
to revert to the accumulator scheme.

• Optimising control structures (if-then-else, while, for) is 
trickier


