APPM 5440: Solutions to Final Exam Review Problems: 6-10

6. Let (X, 7x) homeomorphic to (Y, 7y) and (Y, 7y) homeomorphic to (Z, 7) implies there exist
homeomorphisms f: X — Y and g: Y — Z.

Claim: The composition gf is a homeomorphism from X to Z.
Proof of Claim:

e gf is one-to-one: Suppose g(f(z1)) = g(f(z2)). Since g is a homeomorphism, g is one-

to-one and so this implies that f(x1) = f(z2). Now since f is a homeomorphism, f is
one-to-one, which implies that 1 = z2. Hence, gf is one-to-one.

gf is onto: Let z € Z. Since g is a homeomorphism, g is onto, so there exists a y € Y
such that ¢g(y) = z. Since f is a homeomorphism, f is onto and so there exists an x € X
such that f(z) =y. Thus, g(f(z)) = g(y) = z, so gf is onto.

gf is continuous: Take any U € 7z. Since g is a homeomorphism, ¢ is continuous and
hence ¢g~!(U) € 1y. Since f is a homeomorphism and ¢~ *(U) € 1y, f~ (g~ (U)) € 7x.
But, (¢f) "1 (U) = f~1(¢71(U)) € 7x, so gf is continuous.

(gf)~!is continuous: Take any U € 7x. Since f is a homeomorphism, f~! is continuous
and so f(U) which is the inverse image of f~'(U) is in 7y. Similarly, since g is a
homeomorphism, g~! is continuous and so g(f(U)) is the inverse image of g~ 1(f(U)) is
in 77. But, the inverse image of U under (¢gf)~! is g(f(U)) which is in 7z, so (gf) !
continuous.

Hence, gf is a homeomorphism.

7. Let X be a finite dimensional space and let T': X — Y be a linear operator. We want to show
that there exists some M > 0 such that ||Tz|| < M||z|| for all z € X.

Let {b1,bo,...,b;} be a basis for X.

Take any x € X. Then x can be written as = = Zle a;b; for some aq, ao,...,ar € R.
Then
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Recall that, for any finite dimensional vector space, there are constants ¢, C' > 0 such that
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So, define
1
M= (max ||Tbi||) !
C

1<i<k

and we have ||Tz|| < M||z|| for all x € X, as desired.

. Suppose that 3 ¢ > 0 such that ||Tz|| > ¢||z]|.

Let (y,) be a convergent sequence in range(T) with y, — y € Y. We want to show that
y € range(T).

For each n, y, € range(T) = 3 z,, € X such that y, = Tx,.
(yn) convergent = (yy) Cauchy = (z,) Cauchy since

1 1
llzn = 2ml| < Z[IT(@n = 2m)]| = —llyn = ymll

(zn,) Cauchy in X and X complete = z, — = € X.

T bounded = T continuous =

To=T(Jim =) = g Ton = i vn =y

which implies that y € range(T). /

Suppose that range(T") is closed.
Claim: A closed subspace of a Banach space is Banach.

Proof of Claim: Let X be Banach and let C be a closed subset of X. Let (x,) be a Cauchy
sequence in C. Then (x,) is a Cauchy sequence in X and since X is Banach, =, — = € X.
Since C' is closed, every sequence in C' that has a limit in X has this limit in C. Thus, our
arbitrary Cauchy sequence in C' converges to a limit in C' and therefore C' is Banach.

So, range(T) closed and range(T) C Y which is Banach = range(T) is Banach.

T is bounded is a one-to-one and onto the set range(T"). Since X and range(T") are Banach,
we can apply the Open Mapping Theorem to say that 7! : range(Y) — X is bounded.

Hence, 3 M > 0 such that ||[T~Yy|| < M||y|| V y € range(T).
Thus, for any € X, let y = T’z which is obviously in range(T). So,

|7~ T|| < M| Ta|

which implies
x < M||Tx||.

Take ¢ = 1/M. Then we have that ||Tz|| > ¢||z|| as desired.




9. First of all note that ||T,|| — ||T|| is a convergence of real numbers!

So
I Tnll = 1T = [T —O[| = [T — 0]l |

where 0 is the zero element (an operator) of the linear space B(X,Y).

If we let d(S,T") be the metric induced by the operator norm: d(S,T") := ||S — T'||, then we

have So
Tull = T[] = [[|T% =0l = [|T = 0]

= |d(T,,0) —d(T,0) |
< d(T,,T)=|d(T,,T)|

= T =TIl

10. (a) Let 2 € X be finxed and non-zero. Consider the subspace Y defined as all scalar multiples
of x:

Y = {az:a € R}

Note that this is a linear subspace of X. (i.e. It contains 0, and is closed under addition
and scalar multiplication.)

Define ¢ : Y — R as follows. For each y € Y, y can bew written as y = ax for some
a € R. Define ¢(y) = ¢(az) = a||z||.
Note that this is a linear map since

Y(ayr +az2y2) = Plaronz + agasx)
= Y((a101 + azaz)x)
= (a1 + aza) |||
= araq [[z]] + azaz|[|z|]
= a1(y1) + a2p(y2).
Furthermore, ¢ is bounded since, for y = ax

[ @) = led ||| = llez|| = [ly]l.
The operator norm is

il = sup PON_ otz el 0y
o Wl azo [|ow] oo |l 112]] oo 0]

By the Hahn-Banach Theorem, there exists a ¢ : X — R such that ¢(y) = ¢(y) for all
y €Y, (That is, ¢p(ax) = «af|z|| for all & € R.), and ||¢|| = ||¢|| = 1.

Also, since the fixed z is in X (since z = 1-x), we have that ¢(z) = ¢ (z) = 1-||z|| = ||z|],
as desired.



(b) Suppose that z,y € X are such that ¢(x) = ¢(y) for all ¢ € X*.
Suppose further that x # y. We will show that this results in a contradiction.
Let z := 2 —y Then z # 0..
From part (a), there is a bounded linear functional ¢ € X* such that ||¢|| = 1 and
¢(2) = [|=]].
So,
P(x) = d(y) = ¢(x —y) = d(2) = ||z]| # 0.

This contradicts the fact that ¢(x) = ¢(y). Thus, we must have that x = y.



