APPM 5440: Solutions to Final Exam Review Problems: 6-10

6. Let (\mathbb{X}, τ_X) homeomorphic to (\mathbb{Y}, τ_Y) and (\mathbb{Y}, τ_Y) homeomorphic to (\mathbb{Z}, τ_Z) implies there exist homeomorphisms $f : \mathbb{X} \to \mathbb{Y}$ and $g : \mathbb{Y} \to \mathbb{Z}$.

Claim: The composition gf is a homeomorphism from \mathbb{X} to \mathbb{Z} .

Proof of Claim:

- gf is one-to-one: Suppose $g(f(x_1)) = g(f(x_2))$. Since g is a homeomorphism, g is one-to-one and so this implies that $f(x_1) = f(x_2)$. Now since f is a homeomorphism, f is one-to-one, which implies that $x_1 = x_2$. Hence, gf is one-to-one.
- gf is onto: Let $z \in Z$. Since g is a homeomorphism, g is onto, so there exists a $y \in \mathbb{Y}$ such that g(y) = z. Since f is a homeomorphism, f is onto and so there exists an $x \in \mathbb{X}$ such that f(x) = y. Thus, g(f(x)) = g(y) = z, so gf is onto.
- gf is continuous: Take any $U \in \tau_Z$. Since g is a homeomorphism, g is continuous and hence $g^{-1}(U) \in \tau_Y$. Since f is a homeomorphism and $g^{-1}(U) \in \tau_Y$, $f^{-1}(g^{-1}(U)) \in \tau_X$. But, $(gf)^{-1}(U) = f^{-1}(g^{-1}(U)) \in \tau_X$, so gf is continuous.
- $(gf)^{-1}$ is continuous: Take any $U \in \tau_X$. Since f is a homeomorphism, f^{-1} is continuous and so f(U) which is the inverse image of $f^{-1}(U)$ is in τ_Y . Similarly, since g is a homeomorphism, g^{-1} is continuous and so g(f(U)) is the inverse image of $g^{-1}(f(U))$ is in τ_Z . But, the inverse image of U under $(gf)^{-1}$ is g(f(U)) which is in τ_Z , so $(gf)^{-1}$ is continuous.

Hence, gf is a homeomorphism.

7. Let X be a finite dimensional space and let $T : X \to Y$ be a linear operator. We want to show that there exists some M > 0 such that $||Tx|| \leq M||x||$ for all $x \in X$.

Let $\{b_1, b_2, \ldots, b_k\}$ be a basis for X.

Take any $x \in \mathbb{X}$. Then x can be written as $x = \sum_{i=1}^{k} \alpha_i b_i$ for some $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$. Then

$$||Tx|| = \left\| T\left(\sum_{i=1}^{k} \alpha_i b_i\right) \right\| = \left\| \sum_{i=1}^{k} \alpha_i Tb_i \right\| \le \sum_{i=1}^{k} |\alpha_i| ||Tb_i||$$
$$\le \left(\max_{1 \le i \le k} ||Tb_i|| \right) \sum_{i=1}^{k} |\alpha_i|$$

Recall that, for any finite dimensional vector space, there are constants c, C > 0 such that

$$c\sum_{i=1}^{k} |\alpha_i| \le ||x|| \le C\sum_{i=1}^{k} |\alpha_i|.$$

So,

$$||Tx|| \le \left(\max_{1 \le i \le k} ||Tb_i||\right) \sum_{i=1}^k |\alpha_i| \le \left(\max_{1 \le i \le k} ||Tb_i||\right) \frac{1}{c} ||x||.$$

So, define

$$M = \left(\max_{1 \le i \le k} ||Tb_i||\right) \frac{1}{c}$$

and we have $||Tx|| \leq M||x||$ for all $x \in \mathbb{X}$, as desired.

8. \implies Suppose that $\exists c > 0$ such that $||Tx|| \ge c||x||$.

Let (y_n) be a convergent sequence in range(T) with $y_n \to y \in \mathbb{Y}$. We want to show that $y \in range(T)$.

For each $n, y_n \in range(T) \Rightarrow \exists x_n \in \mathbb{X}$ such that $y_n = Tx_n$.

 (y_n) convergent $\Rightarrow (y_n)$ Cauchy $\Rightarrow (x_n)$ Cauchy since

$$||x_n - x_m|| \le \frac{1}{c} ||T(x_n - x_m)|| = \frac{1}{c} ||y_n - y_m||$$

 (x_n) Cauchy in X and X complete $\Rightarrow x_n \to x \in X$.

 $T \text{ bounded} \Rightarrow T \text{ continuous} \Rightarrow$

$$Tx = T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} y_n = y_n$$

which implies that $y \in range(T)$. \checkmark

 \leftarrow Suppose that range(T) is closed.

Claim: A closed subspace of a Banach space is Banach.

Proof of Claim: Let X be Banach and let C be a closed subset of X. Let (x_n) be a Cauchy sequence in C. Then (x_n) is a Cauchy sequence in X and since X is Banach, $x_n \to x \in X$. Since C is closed, every sequence in C that has a limit in X has this limit in C. Thus, our arbitrary Cauchy sequence in C converges to a limit in C and therefore C is Banach.

So, range(T) closed and $range(T) \subseteq \mathbb{Y}$ which is Banach $\Rightarrow range(T)$ is Banach.

T is bounded is a one-to-one and onto the set range(T). Since X and range(T) are Banach, we can apply the Open Mapping Theorem to say that $T^{-1}: range(Y) \to X$ is bounded.

Hence, $\exists M > 0$ such that $||T^{-1}y|| \le M ||y|| \forall y \in range(T)$.

Thus, for any $x \in \mathbb{X}$, let y = Tx which is obviously in range(T). So,

$$||T^{-1}Tx|| \le M||Tx||$$

which implies

$$x \le M||Tx||.$$

Take c = 1/M. Then we have that $||Tx|| \ge c||x||$ as desired.

9. First of all note that $||T_n|| \to ||T||$ is a convergence of real numbers! So

$$|||T_n|| - ||T||| = |||T_n - 0|| - ||T - 0|||$$

where 0 is the zero element (an operator) of the linear space $B(\mathbb{X}, \mathbb{Y})$.

If we let d(S,T) be the metric induced by the operator norm: d(S,T) := ||S - T||, then we have So $|||T_n|| - ||T||| = |||T_n - 0|| - ||T - 0|||$

$$T_n || - ||T||| = ||T_n - 0|| - ||T - 0|||$$

= $|d(T_n, 0) - d(T, 0)|$
 $\leq d(T_n, T) = |d(T_n, T)|$
= $||T_n - T||$

10. (a) Let $x \in \mathbb{X}$ be finxed and non-zero. Consider the subspace \mathbb{Y} defined as all scalar multiples of x:

$$\mathbb{Y} = \{ \alpha x : \alpha \in \mathbb{R} \}.$$

Note that this is a linear subspace of X. (i.e. It contains 0, and is closed under addition and scalar multiplication.)

Define $\psi : \mathbb{Y} \to \mathbb{R}$ as follows. For each $y \in \mathbb{Y}$, y can be written as $y = \alpha x$ for some $\alpha \in \mathbb{R}$. Define $\psi(y) = \psi(\alpha x) = \alpha ||x||$.

Note that this is a linear map since

$$\psi(a_1y_1 + a_2y_2) = \psi(a_1\alpha_1x + a_2\alpha_2x)$$

= $\psi((a_1\alpha_1 + a_2\alpha_2)x)$
= $(a_1\alpha_1 + a_2\alpha_2)||x||$
= $a_1\alpha_1 ||x|| + a_2\alpha_2 ||x||$
= $a_1\psi(y_1) + a_2\psi(y_2).$

Furthermore, ψ is bounded since, for $y = \alpha x$

$$|\psi(y)| = |\alpha| \, ||x|| = ||\alpha x|| = ||y||.$$

The operator norm is

$$||\psi|| = \sup_{||y|| \neq 0} \frac{|\psi(y)|}{||y||} = \sup_{\alpha \neq 0} \frac{\alpha ||x||}{||\alpha x||} = \sup_{\alpha \neq 0} \frac{\alpha ||x||}{|\alpha| ||x||} = \sup_{\alpha \neq 0} \frac{\alpha}{|\alpha|} = 1.$$

By the Hahn-Banach Theorem, there exists a $\phi : \mathbb{X} \to \mathbb{R}$ such that $\phi(y) = \psi(y)$ for all $y \in \mathbb{Y}$, (That is, $\phi(\alpha x) = \alpha ||x||$ for all $\alpha \in \mathbb{R}$.), and $||\phi|| = ||\psi|| = 1$. Also, since the fixed x is in \mathbb{X} (since $x = 1 \cdot x$), we have that $\phi(x) = \psi(x) = 1 \cdot ||x|| = ||x||$, as desired. (b) Suppose that x, y ∈ X are such that φ(x) = φ(y) for all φ ∈ X*.
Suppose further that x ≠ y. We will show that this results in a contradiction.
Let z := x - y Then z ≠ 0..
From part (a), there is a bounded linear functional φ ∈ X* such that ||φ|| = 1 and φ(z) = ||z||.
So,

$$\phi(x) - \phi(y) = \phi(x - y) = \phi(z) = ||z|| \neq 0.$$

This contradicts the fact that $\phi(x) = \phi(y)$. Thus, we must have that x = y.