
APPM 5440: Solutions to Final Exam Review Problems: 6-10

6. Let (X, τX) homeomorphic to (Y, τY ) and (Y, τY ) homeomorphic to (Z, τZ) implies there exist
homeomorphisms f : X→ Y and g : Y→ Z.

Claim: The composition gf is a homeomorphism from X to Z.

Proof of Claim:

• gf is one-to-one: Suppose g(f(x1)) = g(f(x2)). Since g is a homeomorphism, g is one-
to-one and so this implies that f(x1) = f(x2). Now since f is a homeomorphism, f is
one-to-one, which implies that x1 = x2. Hence, gf is one-to-one.

• gf is onto: Let z ∈ Z. Since g is a homeomorphism, g is onto, so there exists a y ∈ Y
such that g(y) = z. Since f is a homeomorphism, f is onto and so there exists an x ∈ X
such that f(x) = y. Thus, g(f(x)) = g(y) = z, so gf is onto.

• gf is continuous: Take any U ∈ τZ . Since g is a homeomorphism, g is continuous and
hence g−1(U) ∈ τY . Since f is a homeomorphism and g−1(U) ∈ τY , f−1(g−1(U)) ∈ τX .
But, (gf)−1(U) = f−1(g−1(U)) ∈ τX , so gf is continuous.

• (gf)−1 is continuous: Take any U ∈ τX . Since f is a homeomorphism, f−1 is continuous
and so f(U) which is the inverse image of f−1(U) is in τY . Similarly, since g is a
homeomorphism, g−1 is continuous and so g(f(U)) is the inverse image of g−1(f(U)) is
in τZ . But, the inverse image of U under (gf)−1 is g(f(U)) which is in τZ , so (gf)−1 is
continuous.

Hence, gf is a homeomorphism.

7. Let X be a finite dimensional space and let T : X→ Y be a linear operator. We want to show
that there exists some M > 0 such that ||Tx|| ≤M ||x|| for all x ∈ X.

Let {b1, b2, . . . , bk} be a basis for X.

Take any x ∈ X. Then x can be written as x =
∑k
i=1 αibi for some α1, α2, . . . , αk ∈ R.

Then
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Recall that, for any finite dimensional vector space, there are constants c, C > 0 such that
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So, define
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and we have ||Tx|| ≤M ||x|| for all x ∈ X, as desired.

8. ⇒ Suppose that ∃ c > 0 such that ||Tx|| ≥ c||x||.
Let (yn) be a convergent sequence in range(T ) with yn → y ∈ Y. We want to show that
y ∈ range(T ).

For each n, yn ∈ range(T ) ⇒ ∃ xn ∈ X such that yn = Txn.

(yn) convergent ⇒ (yn) Cauchy ⇒ (xn) Cauchy since

||xn − xm|| ≤
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c
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(xn) Cauchy in X and X complete ⇒ xn → x ∈ X.

T bounded ⇒ T continuous ⇒

Tx = T ( lim
n→∞

xn) = lim
n→∞

Txn = lim
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yn = y

which implies that y ∈ range(T ).
√

⇐ Suppose that range(T ) is closed.

Claim: A closed subspace of a Banach space is Banach.

Proof of Claim: Let X be Banach and let C be a closed subset of X. Let (xn) be a Cauchy
sequence in C. Then (xn) is a Cauchy sequence in X and since X is Banach, xn → x ∈ X.
Since C is closed, every sequence in C that has a limit in X has this limit in C. Thus, our
arbitrary Cauchy sequence in C converges to a limit in C and therefore C is Banach.

So, range(T ) closed and range(T ) ⊆ Y which is Banach ⇒ range(T ) is Banach.

T is bounded is a one-to-one and onto the set range(T ). Since X and range(T ) are Banach,
we can apply the Open Mapping Theorem to say that T−1 : range(Y )→ X is bounded.

Hence, ∃ M > 0 such that ||T−1y|| ≤M ||y|| ∀ y ∈ range(T ).

Thus, for any x ∈ X, let y = Tx which is obviously in range(T ). So,

||T−1Tx|| ≤M ||Tx||

which implies
x ≤M ||Tx||.

Take c = 1/M . Then we have that ||Tx|| ≥ c||x|| as desired.



9. First of all note that ||Tn|| → ||T || is a convergence of real numbers!

So
| ||Tn|| − ||T || | = | ||Tn − 0|| − ||T − 0|| |

where 0 is the zero element (an operator) of the linear space B(X,Y).

If we let d(S, T ) be the metric induced by the operator norm: d(S, T ) := ||S − T ||, then we
have So

| ||Tn|| − ||T || | = | ||Tn − 0|| − ||T − 0|| |

= | d(Tn, 0)− d(T, 0) |

≤ d(Tn, T ) = | d(Tn, T ) |

= ||Tn − T ||

10. (a) Let x ∈ X be finxed and non-zero. Consider the subspace Y defined as all scalar multiples
of x:

Y = {αx : α ∈ R}.

Note that this is a linear subspace of X. (i.e. It contains 0, and is closed under addition
and scalar multiplication.)

Define ψ : Y → R as follows. For each y ∈ Y, y can bew written as y = αx for some
α ∈ R. Define ψ(y) = ψ(αx) = α ||x||.
Note that this is a linear map since

ψ(a1y1 + a2y2) = ψ(a1α1x+ a2α2x)

= ψ((a1α1 + a2α2)x)

= (a1α1 + a2α2) ||x||

= a1α1 ||x||+ a2α2 ||x||

= a1ψ(y1) + a2ψ(y2).

Furthermore, ψ is bounded since, for y = αx

|ψ(y)| = |α| ||x|| = ||αx|| = ||y||.

The operator norm is
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By the Hahn-Banach Theorem, there exists a φ : X → R such that φ(y) = ψ(y) for all
y ∈ Y, (That is, φ(αx) = α||x|| for all α ∈ R.), and ||φ|| = ||ψ|| = 1.

Also, since the fixed x is in X (since x = 1 ·x), we have that φ(x) = ψ(x) = 1 · ||x|| = ||x||,
as desired.



(b) Suppose that x, y ∈ X are such that φ(x) = φ(y) for all φ ∈ X∗.
Suppose further that x 6= y. We will show that this results in a contradiction.

Let z := x− y Then z 6= 0..

From part (a), there is a bounded linear functional φ ∈ X∗ such that ||φ|| = 1 and
φ(z) = ||z||.
So,

φ(x)− φ(y) = φ(x− y) = φ(z) = ||z|| 6= 0.

This contradicts the fact that φ(x) = φ(y). Thus, we must have that x = y.


