APPM 5440: Solutions to Final Exam Review Problems: 6-10

6. Let $\left(\mathbb{X}, \tau_{X}\right)$ homeomorphic to $\left(\mathbb{Y}, \tau_{Y}\right)$ and $\left(\mathbb{Y}, \tau_{Y}\right)$ homeomorphic to $\left(\mathbb{Z}, \tau_{Z}\right)$ implies there exist homeomorphisms $f: \mathbb{X} \rightarrow \mathbb{Y}$ and $g: \mathbb{Y} \rightarrow \mathbb{Z}$.
Claim: The composition $g f$ is a homeomorphism from \mathbb{X} to \mathbb{Z}.
Proof of Claim:

- $g f$ is one-to-one: Suppose $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since g is a homeomorphism, g is one-to-one and so this implies that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Now since f is a homeomorphism, f is one-to-one, which implies that $x_{1}=x_{2}$. Hence, $g f$ is one-to-one.
- $g f$ is onto: Let $z \in Z$. Since g is a homeomorphism, g is onto, so there exists a $y \in \mathbb{Y}$ such that $g(y)=z$. Since f is a homeomorphism, f is onto and so there exists an $x \in \mathbb{X}$ such that $f(x)=y$. Thus, $g(f(x))=g(y)=z$, so $g f$ is onto.
- $g f$ is continuous: Take any $U \in \tau_{Z}$. Since g is a homeomorphism, g is continuous and hence $g^{-1}(U) \in \tau_{Y}$. Since f is a homeomorphism and $g^{-1}(U) \in \tau_{Y}, f^{-1}\left(g^{-1}(U)\right) \in \tau_{X}$. But, $(g f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right) \in \tau_{X}$, so $g f$ is continuous.
- $(g f)^{-1}$ is continuous: Take any $U \in \tau_{X}$. Since f is a homeomorphism, f^{-1} is continuous and so $f(U)$ which is the inverse image of $f^{-1}(U)$ is in τ_{Y}. Similarly, since g is a homeomorphism, g^{-1} is continuous and so $g(f(U))$ is the inverse image of $g^{-1}(f(U))$ is in τ_{Z}. But, the inverse image of U under $(g f)^{-1}$ is $g(f(U))$ which is in τ_{Z}, so $(g f)^{-1}$ is continuous.

Hence, $g f$ is a homeomorphism.
7. Let \mathbb{X} be a finite dimensional space and let $T: \mathbb{X} \rightarrow \mathbb{Y}$ be a linear operator. We want to show that there exists some $M>0$ such that $\|T x\| \leq M\|x\|$ for all $x \in \mathbb{X}$.
Let $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ be a basis for \mathbb{X}.
Take any $x \in \mathbb{X}$. Then x can be written as $x=\sum_{i=1}^{k} \alpha_{i} b_{i}$ for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}$.
Then

$$
\begin{gathered}
\|T x\|=\left\|T\left(\sum_{i=1}^{k} \alpha_{i} b_{i}\right)\right\|=\left\|\sum_{i=1}^{k} \alpha_{i} T b_{i}\right\| \leq \sum_{i=1}^{k}\left|\alpha_{i}\right|\left\|T b_{i}\right\| \\
\leq\left(\max _{1 \leq i \leq k}\left\|T b_{i}\right\|\right) \sum_{i=1}^{k}\left|\alpha_{i}\right|
\end{gathered}
$$

Recall that, for any finite dimensional vector space, there are constants $c, C>0$ such that

$$
c \sum_{i=1}^{k}\left|\alpha_{i}\right| \leq\|x\| \leq C \sum_{i=1}^{k}\left|\alpha_{i}\right| .
$$

So,

$$
\|T x\| \leq\left(\max _{1 \leq i \leq k}\left\|T b_{i}\right\|\right) \sum_{i=1}^{k}\left|\alpha_{i}\right| \leq\left(\max _{1 \leq i \leq k}\left\|T b_{i}\right\|\right) \frac{1}{c}\|x\| .
$$

So, define

$$
M=\left(\max _{1 \leq i \leq k}\left\|T b_{i}\right\|\right) \frac{1}{c}
$$

and we have $\|T x\| \leq M\|x\|$ for all $x \in \mathbb{X}$, as desired.
8. \Rightarrow Suppose that $\exists c>0$ such that $\|T x\| \geq c\|x\|$.

Let $\left(y_{n}\right)$ be a convergent sequence in $\operatorname{range}(T)$ with $y_{n} \rightarrow y \in \mathbb{Y}$. We want to show that $y \in \operatorname{range}(T)$.
For each n, $y_{n} \in \operatorname{range}(T) \Rightarrow \exists x_{n} \in \mathbb{X}$ such that $y_{n}=T x_{n}$.
$\left(y_{n}\right)$ convergent $\Rightarrow\left(y_{n}\right)$ Cauchy $\Rightarrow\left(x_{n}\right)$ Cauchy since

$$
\left\|x_{n}-x_{m}\right\| \leq \frac{1}{c}\left\|T\left(x_{n}-x_{m}\right)\right\|=\frac{1}{c}\left\|y_{n}-y_{m}\right\|
$$

$\left(x_{n}\right)$ Cauchy in \mathbb{X} and \mathbb{X} complete $\Rightarrow x_{n} \rightarrow x \in \mathbb{X}$.
T bounded $\Rightarrow T$ continuous \Rightarrow

$$
T x=T\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} y_{n}=y
$$

which implies that $y \in \operatorname{range}(T) . \sqrt{ }$
\Leftarrow Suppose that range (T) is closed.
Claim: A closed subspace of a Banach space is Banach.
Proof of Claim: Let \mathbb{X} be Banach and let C be a closed subset of \mathbb{X}. Let $\left(x_{n}\right)$ be a Cauchy sequence in C. Then $\left(x_{n}\right)$ is a Cauchy sequence in \mathbb{X} and since \mathbb{X} is Banach, $x_{n} \rightarrow x \in \mathbb{X}$. Since C is closed, every sequence in C that has a limit in \mathbb{X} has this limit in C. Thus, our arbitrary Cauchy sequence in C converges to a limit in C and therefore C is Banach.
So, $\operatorname{range}(T)$ closed and $\operatorname{range}(T) \subseteq \mathbb{Y}$ which is Banach $\Rightarrow \operatorname{range}(T)$ is Banach.
T is bounded is a one-to-one and onto the set range (T). Since \mathbb{X} and range (T) are Banach, we can apply the Open Mapping Theorem to say that $T^{-1}: \operatorname{range}(Y) \rightarrow \mathbb{X}$ is bounded.
Hence, $\exists M>0$ such that $\left\|T^{-1} y\right\| \leq M\|y\| \forall y \in \operatorname{range}(T)$.
Thus, for any $x \in \mathbb{X}$, let $y=T x$ which is obviously in $\operatorname{range}(T)$. So,

$$
\left\|T^{-1} T x\right\| \leq M\|T x\|
$$

which implies

$$
x \leq M\|T x\| .
$$

Take $c=1 / M$. Then we have that $\|T x\| \geq c\|x\|$ as desired.
9. First of all note that $\left\|T_{n}\right\| \rightarrow\|T\|$ is a convergence of real numbers! So

$$
\left|\left\|T_{n}\right\|-\|T\|\|=\|\right| \mid T_{n}-0\|-\| T-0\| \|
$$

where 0 is the zero element (an operator) of the linear space $B(\mathbb{X}, \mathbb{Y})$.
If we let $d(S, T)$ be the metric induced by the operator norm: $d(S, T):=\|S-T\|$, then we have So

$$
\begin{aligned}
\left\|\mid T_{n}\right\|-\|T\| \| & =\mid\left\|T_{n}-0\right\|-\|T-0\| \| \\
& =\left|d\left(T_{n}, 0\right)-d(T, 0)\right| \\
& \leq d\left(T_{n}, T\right)=\left|d\left(T_{n}, T\right)\right| \\
& =\left\|T_{n}-T\right\|
\end{aligned}
$$

10. (a) Let $x \in \mathbb{X}$ be finxed and non-zero. Consider the subspace \mathbb{Y} defined as all scalar multiples of x :

$$
\mathbb{Y}=\{\alpha x: \alpha \in \mathbb{R}\} .
$$

Note that this is a linear subspace of \mathbb{X}. (i.e. It contains 0 , and is closed under addition and scalar multiplication.)
Define $\psi: \mathbb{Y} \rightarrow \mathbb{R}$ as follows. For each $y \in \mathbb{Y}, y$ can bew written as $y=\alpha x$ for some $\alpha \in \mathbb{R}$. Define $\psi(y)=\psi(\alpha x)=\alpha\|x\|$.
Note that this is a linear map since

$$
\begin{aligned}
\psi\left(a_{1} y_{1}+a_{2} y_{2}\right) & =\psi\left(a_{1} \alpha_{1} x+a_{2} \alpha_{2} x\right) \\
& =\psi\left(\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}\right) x\right) \\
& =\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}\right)\|x\| \\
& =a_{1} \alpha_{1}\|x\|+a_{2} \alpha_{2}\|x\| \\
& =a_{1} \psi\left(y_{1}\right)+a_{2} \psi\left(y_{2}\right) .
\end{aligned}
$$

Furthermore, ψ is bounded since, for $y=\alpha x$

$$
|\psi(y)|=|\alpha|\|x\|=\|\alpha x\|=\|y\| .
$$

The operator norm is

$$
\|\psi\|=\sup _{\|y\| \neq 0} \frac{|\psi(y)|}{\|y\|}=\sup _{\alpha \neq 0} \frac{\alpha\|x\|}{\|\alpha x\|}==\sup _{\alpha \neq 0} \frac{\alpha\|x\|}{|\alpha|\|x\|}=\sup _{\alpha \neq 0} \frac{\alpha}{|\alpha|}=1 .
$$

By the Hahn-Banach Theorem, there exists a $\phi: \mathbb{X} \rightarrow \mathbb{R}$ such that $\phi(y)=\psi(y)$ for all $y \in \mathbb{Y}$, (That is, $\phi(\alpha x)=\alpha\|x\|$ for all $\alpha \in \mathbb{R}$.), and $\|\phi\|=\|\psi\|=1$.
Also, since the fixed x is in \mathbb{X} (since $x=1 \cdot x$), we have that $\phi(x)=\psi(x)=1 \cdot\|x\|=\|x\|$, as desired.
(b) Suppose that $x, y \in \mathbb{X}$ are such that $\phi(x)=\phi(y)$ for all $\phi \in \mathbb{X}^{*}$.

Suppose further that $x \neq y$. We will show that this results in a contradiction. Let $z:=x-y$ Then $z \neq 0$..
From part (a), there is a bounded linear functional $\phi \in \mathbb{X}^{*}$ such that $\|\phi\|=1$ and $\phi(z)=\|z\|$.
So,

$$
\phi(x)-\phi(y)=\phi(x-y)=\phi(z)=\|z\| \neq 0 .
$$

This contradicts the fact that $\phi(x)=\phi(y)$. Thus, we must have that $x=y$.

