
TECHNICAL NOTES AND SHORT PAPERS

Efficient Method for Solving Atomic
Schroedinger's Equation

By Sherwood Skillman

1. Introduction. One of the basic numerical problems in atomic quantum

theory is the solution of the Schroedinger's wave equation for a spherically sym-

metric potential. In practice, one is usually concerned with such potentials ob-

tained by the Hartree-Fock self-consistent fields [1] or by the Thomas-Fermi-Dirac

statistical field methods [2, 3].

This paper describes a highly efficient and rapidly convergent technique for

solving the radial Schroedinger's equation for an arbitrary atomic-like potential.

The method has been programmed for the IBM 650 computer and the numerical

results obtained are in good agreement both with pertinent experimental results

(x-ray term levels) and with previous theoretical work [4].

2. Problem Definition. The Schroedinger's wave equation in atomic units

(r in Bohr radii, E in Rydbergs) is given by

d^l = q(r)P(r) for    r^O
dr2

where

q(r) = V(r) - E + l(l + 1} .

In this equation P(r) is the radial wave function, V(r) is the potential energy,

and E is the desired eigenvalue satisfying the boundary conditions P(0) = 0 and

P( » ) = 0. The parameter Z, the angular-momentum number, is an integral num-

ber 0, 1, 2, 3, etc. These numerical values of I are usually designated as s, p, f,

d, etc. For each I, there is a set of eigenvalues satisfying the boundary values and

labeled by an integer n. The lowest state for each I value is taken as n = I + 1,

the principal quantum number, and for every value of n there is a distinct energy

value E. The various radial wave functions and associated eigenvalues are specified

using the subscript nl.

3. Integration Method. The integration mesh was made flexible for many dif-

ferent type atoms by choosing it as a function of the atomic structure. The inte-

grating variable x was made equal to r/p, where

3tt
M      4(6ttz)1/3

and z = the atomic number. It was found that Ax = .0025 was a satisfactory

starting step and the mesh could be doubled every 40 points. The potential values

were calculated for the same mesh using the Fermi-Thomas-Dirac equation and

the desired boundary conditions.
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METHOD   FOR  SOLVING  SCHROEDINGER S  EQUATION
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A method applicable only to a linear second-order differential equation which

lacks the first derivative was used to solve Schroedinger's equation. This method

introduced by Numerov [5] is approximately four times faster than the Runge-

Kutta-Gill procedure and the truncation error is proportional to /i6.

4. Matching Procedure. Schroedinger's equation is integrated outward to a

point where P(r) changes from a traveling-wave behavior to a damped-wave

behavior. The choice of this matching radius ßi is made dependent upon the value

of q(r), the kinetic energy, becoming negative. This choice makes the program

P2(r) drand

the logarithmic derivative of P(r) at r = Äi, (P'(r)/P(r))out are stored.

Then an inward integration is performed starting at R2 = (5 + l)Ri. At R2

the final normalized wave function is essentially zero, thus satisfying the second

boundary condition P( oo ) = 0. Since q in the neighborhood of R2 is essentially

a constant, a good approximation for P(R2) = e~B2^q<-R^- This value is then

used to start the inward integration, which is continued until Ri is reached. The
poo

values of /    P2(r) dr and (P'(Ri)/P(Ri))in sire calculated and stored.
Jr¡

5. Calculating Improved Eigenvalue. The difference at Ri between the values

of (P'/P)out and (P'/P) in is used to estimate what change in E, (AE), is neces-

sary to obtain a better match. For each trial eigenvalue an outward and an inward

integration is performed. A formula developed by Hartree (1) is then used to

obtain AE as follows :

I   PWout     +    P2(Ri)in   J LWout      V/i»J

The value AE is then added to the trial E and the process repeated

until | AE/E | < 10~5. The radial wave functions are then made continuous at Ri

and normalized.

6. Flow-Chart of Procedure. The main features of the program are outlined

in Fig. 1.

7. Convergence of Trial Eigenvalues. The program has been used in applica-

tions pertaining to the germanium, silicon, and cerium atoms and also the zinc-

sulfide and gallium-arsenide crystals. It has been used for the seven quantum

states Is, 2s, 3s, 2p, 3p, 5d, and 4f. Some typical eigenvalues convergence rates are

shown in Fig. 2, 3, and 4.

Radio Corporation of America,

David Sarnoff Research Center,

Princeton, New Jersey

1. D. R. Hartree, The Calculation of Atomic Structure, John Wiley & Sons, New York,
1957, p. 86.

2. P. Gombas, Encyclopedia of Physics, Vol. 36, Springer-Verlag, Berlin, 1956, p. 109.
3. N. H. March, Advances in Physics, Vol. 6, No. 1, 1957.
4. R. Latter, Physics Review 99, 1955, p. 510.
5. M. G. Salvadori & M. L. Baron, Numerical Methods in Engineering, Prentice-Hall,

Inc., New York, 1952, p. 118.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


