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Preface

This textbook contains a pedagogical introduction to the theory of Green’s functions in
and out of equilibrium, and is accessible to students with a standard background in basic
quantum mechanics and complex analysis. Two main motivations prompted us to write a
monograph for beginners on this topic.

The first motivation is research oriented. With the advent of nanoscale physics and
ultrafast lasers it became possible to probe the correlation between particles in excited
quantum states. New fields of research like, e.g., molecular transport, nanoelectronics,
Josephson nanojunctions, attosecond physics, nonequilibrium phase transitions, ultracold
atomic gases in optical traps, optimal control theory, kinetics of Bose condensates, quan-
tum computation, etc. added to the already existing fields in mesoscopic physics and
nuclear physics. The Green’s function method is probably one of the most powerful and
versatile formalisms in physics, and its nonequilibrium version has already proven to be
extremely useful in several of the aforementioned contexts. Extending the method to deal
with the new emerging nonequilibrium phenomena holds promise to facilitate and quicken
our comprehension of the excited state properties of matter. At present, unfortunately, to
learn the nonequilibrium Green’s function formalism requires more e�ort than learning the
equilibrium (zero-temperature or Matsubara) formalism, despite the fact that nonequilibrium
Green’s functions are not more di�cult. This brings us to the second motivation.

The second motivation is educational in nature. As students we had to learn the method
of Green’s functions at zero temperature, with the normal-orderings and contractions of
Wick’s theorem, the adiabatic switching-on of the interaction, the Gell–Mann–Low theorem,
the Feynman diagrams, etc. Then we had to learn the finite-temperature or Matsubara
formalism where there is no need of normal-orderings to prove Wick’s theorem, and where
it is possible to prove a diagrammatic expansion without the adiabatic switching-on and
the Gell–Mann–Low theorem. The Matsubara formalism is often taught as a disconnected
topic but the diagrammatic expansion is exactly the same as that of the zero-temperature
formalism. Why do the two formalisms look the same? Why do we need more “assumptions”
in the zero-temperature formalism? And isn’t it enough to study the finite-temperature
formalism? After all zero temperature is just one possible temperature. When we became
post-docs we bumped into yet another version of Green’s functions, the nonequilibrium
Green’s functions or the so called Keldysh formalism. And again this was another di�erent
way to prove Wick’s theorem and the diagrammatic expansion. Furthermore, while several
excellent textbooks on the equilibrium formalisms are available, here the learning process is
considerably slowed down by the absence of introductory textbooks. There exist few review

xi
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xii Preface

articles on the Keldysh formalism and they are scattered over the years and the journals.
Students have to face di�erent jargons and di�erent notations, dig out original papers (not
all downloadable from the web), and have to find the answer to lots of typical newcomer
questions like, e.g., why is the diagrammatic expansion of the Keldysh formalism again the
same as that of the zero-temperature and Matsubara formalisms? How do we see that the
Keldysh formalism reduces to the zero-temperature formalism in equilibrium? How do we
introduce the temperature in the Keldysh formalism? It is easy to imagine the frustration
of many students during their early days of study of nonequilibrium Green’s functions. In
this book we introduce only one formalism, which we call the contour formalism, and we
do it using a very pedagogical style. The contour formalism is not more di�cult than the
zero-temperature, Matsubara or Keldysh formalism and we explicitly show how it reduces
to those under special conditions. Furthermore, the contour formalism provides a natural
answer to all previous questions. Thus the message is: there is no need to learn the same
thing three times.

Starting from basic quantum mechanics we introduce the contour Green’s function for-
malism step by step. The physical content of the Green’s function is discussed with par-
ticular attention to the time-dependent aspect and applied to di�erent physical systems
ranging from molecules and nanostructures to metals and insulators. With this powerful
tool at our disposal we then go through the Feynman diagrams, the theory of conserving
approximations, the Kadano�–Baym equations, the Luttinger–Ward variational functionals,
the Bethe–Salpeter equation, and the Hedin equations.

This book is not a collection of chapters on di�erent applications but a self-contained
introduction to mathematical and physical concepts of general use. As such, we have
preferred to refer to books, reviews and classical articles rather than to recent research
papers whenever this was possible. We have made a serious e�ort in organizing apparently
disconnected topics in a logical instead of chronological way, and in filling many small
gaps. The adjective “modern” in the title refers to the presentation more than to specific
applications. The overall goal of the present book is to derive a set of kinetic equations
governing the quantum dynamics of many identical particles and to develop perturbative as
well as nonperturbative approximation schemes for their solution.

About 600 pages may seem too many for a textbook on Green’s functions, so let us
justify this voluminousness. First of all there is not a single result which is not derived.
This means that we have inserted several intermediate steps to guide the reader through
every calculation. Secondly, for every formal development or new mathematical quantity
we present carefully selected examples which illustrate the physical content of what we are
doing. Sometimes the reader will find further supplementary discussion or explanations
printed in smaller type; these can be skipped at a first reading. Without examples and
illustrations (more than 250 figures) this book would be half the size but the actual under-
standing would probably be much less. The large number of examples compensates for the
moderate number of exercises. Thirdly, in the e�ort of writing a comprehensive presentation
of the various topics we came across several small subtleties which, if not addressed and
properly explained, could give rise to serious misunderstandings. We have therefore added
many remarks and clarifying discussions throughout the text.

The structure of the book is illustrated in Fig. 1 and can be roughly partitioned in three
parts: mathematical tools, approximation schemes, and applications. For a detailed list of
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Figure 1 Structure of the book

topics the reader can look at the table of contents. Of course the choice of topics reflects
our personal background and preferences. However, we feel reasonably confident to have
covered all fundamental aspects of Green’s function theory in and out of equilibrium. We
have tried to create a self-contained and self-study book capable of bringing the undergrad-
uate or PhD student to the level of approaching modern literature and enabling him/her to
model or solve new problems with physically justified approximations. If we are successful
in this endeavor it will be due to the enthusiastic and motivated students in Rome and
Jyväskylä to whom we had the privilege to teach part of this book. We thank them for their
feedback from which we indeed benefited enormously.

Speaking of thanks: our first and biggest thank you goes to Carl-Olof Almbladh and
Ulf von Barth who introduced us to the wonderful world of many-body perturbation the-
ory and Green’s function theory during our post-doc years in Lund. Only now that we
have been forced to deepen our understanding in order to explain these methods can we
fully appreciate all their “of-course-I-don’t-need-to-tell-you” or “you-probably-already-know”
answers to our questions. We are also thankful to Evert Jan Baerends, Michele Cini, and
Hardy Gross from whom we learned a large part of what today is our background in physics
and chemistry and with whom we undertook many exciting research projects. We wish to
express our gratitude to our PhD students, post-docs and local colleagues Klaas Giesbertz,
Petri Myöhänen, Enrico Perfetto, Michael Ruggenthaler, Niko Säkkinen, Adrian Stan, Riku
Tuovinen, and Anna-Maija Uimonen, for providing us with many valuable suggestions and
for helping out in generating several figures. The research on the Kadano�–Baym equations
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xiv Preface

and their implementation which forms the last chapter of the book would not have been
possible without the enthusiasm and the excellent numerical work of Nils Erik Dahlen. We
are indebted to Heiko Appel, Karsten Balzer, Michael Bonitz, Ra�aele Filosofi, Ari Harju,
Maria Hellgren, Stefan Kurth, Matti Manninen, Kristian Thygesen, and Claudio Verdozzi with
whom we had many inspiring and insightful discussions which either directly or indirectly
influenced part of the contents of the book. We further thank the Department of Physics
and the Nanoscience Center of the University of Jyväskylä and the Department of Physics
of the University of Rome Tor Vergata for creating a very pleasant and supportive environ-
ment for the writing of the book. Finally we would like to thank a large number of people,
too numerous to mention, in the research community who have shaped our view on many
scientific topics in and outside of many-body theory.
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Fundamental constants
Electron charge: e = −1 a.u. = 1.60217646× 10−19 Coulomb

Electron mass: me = 1 a.u. = 9.10938188× 10−31 kg

Planck constant: ~ = 1 a.u. = 1.054571× 10−34 Js = 6.58211× 10−16 eVs

Speed of light: c = 137 a.u. = 3× 105 km/s

Boltzmann constant: KB = 8.3× 10−5 eV/K

Basic quantities and relations

Bohr radius: aB = ~
2

mee2
= 1 a.u. = 0.5

◦
A

Electron gas density: n = (~pF)
3

3π2 = (pF being the Fermi momentum)

Electron gas radius: 1
n = 4π

3 (aBrs)
3, rs =

(9π/4)1/3

~aBpF

Plasma frequency: ωp =
√

4πe2n
me

(n being the electron gas density)

Rydberg R = e2

2aB
= 0.5 a.u. ≃ 13.6 eV

Bohr magneton µB = e~
2mec

= 3.649× 10−3 a.u. = 5.788× 10−5 eV/T

Room temperature (T ∼ 300 K) energy: KBT ∼ 1
40 eV

~c ∼ 197 MeV fm (1 fm = 10−15 m)

mec
2 = 0.5447 MeV
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1

Second quantization

1.1 Quantum mechanics of one particle

In quantum mechanics the physical state of a particle is described in terms of a ket |Ψ〉.
This ket belongs to a Hilbert space which is nothing but a vector space endowed with
an inner product. The dimension of the Hilbert space is essentially fixed by our physical
intuition; it is we who decide which kets are relevant for the description of the particle. For
instance, if we want to describe how a laser works we can choose those energy eigenkets
that get populated and depopulated and discard the rest. This selection of states leads to
the well-known description of a laser in terms of a three-level system, four-level system, etc.
A fundamental property following from the vector nature of the Hilbert space is that any
linear superposition of kets is another ket in the Hilbert space. In other words we can make
a linear superposition of physical states and the result is another physical state. In quantum
mechanics, however, it is only the “direction” of the ket that matters, so |Ψ〉 and C|Ψ〉
represent the same physical state for all complex numbers C . This redundancy prompts us
to work with normalized kets. What do we mean by that? We said before that there is an
inner product in the Hilbert space. Let us denote by 〈Φ|Ψ〉 = 〈Ψ|Φ〉∗ the inner product
between two kets |Ψ〉 and |Φ〉 of the Hilbert space. Then every ket has a real positive inner
product with itself

0 < 〈Ψ|Ψ〉 <∞.
A ket is said to be normalized if the inner product with itself is 1. Throughout this book we
always assume that a ket is normalized unless otherwise stated. Every ket can be normalized
by choosing the complex constant C = eiα/

√

〈Ψ|Ψ〉 with α an arbitrary real number. Thus,
the normalization fixes the ket of a physical state only modulo a phase factor. As we see
in Section 1.3, this freedom is at the basis of a fundamental property about the nature of
elementary particles. The notion of inner product also allows us to define the dual space
as the vector space of linear operators 〈Φ| which deliver the complex number 〈Φ|Ψ〉 when
acting on the ket |Ψ〉. The elements of the dual space are called bra and we can think of
the inner product as the action of a bra on a ket. The formulation of quantum mechanics
in terms of bras and kets is due to Dirac [1, 2] and turns out to be extremely useful.

According to the basic principles of quantum mechanics [2]:

• With every physical observable is associated a Hermitian operator whose eigenvalues
λ represent the outcome of an experimental measurement of the observable.

1
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2 1. Second quantization

Figure 1.1 Histogram of the normalized number of clicks of the detector in xn = n∆. The
height of the function corresponds to the probability |Ψn|2.

• If the particle is described by the ket |Ψ〉 then the probability of measuring λ is given
by

P (λ) = |〈λ|Ψ〉|2,
where |λ〉 is the eigenket of the operator with eigenvalue λ.

• The experimental measurement is so invasive that just after measurement the particle
collapses in the ket |λ〉.

Let us discuss the implications of these principles with an example. Suppose that we want to
measure the position of a particle living in a one-dimensional world. Then we can construct
a detector with the property that it clicks whenever the particle is no further away than,
say, ∆/2 from the position of the detector. We distribute these detectors on a uniform grid
xn = n∆, with n integers, so as to cover the entire one-dimensional world. The experiment
consists in preparing the particle in a state |Ψ〉 and in taking note of which detector clicks.
After the click we know for sure that the particle is in the interval xn ±∆/2, where xn is
the position of the detector that clicked. Repeating the experiment N ≫ 1 times, counting
the number of times that a given detector clicks and dividing the result by N we obtain the
probability that the particle is in the interval xn ±∆/2, see histogram of Fig. 1.1. Quantum
mechanics tells us that this probability is

P (n) = |〈n|Ψ〉|2,

where |n〉 is the ket describing the particle in the interval xn ± ∆/2. The experimental
setup does not allow us to say where exactly the particle is within this interval. In fact, it
does not make sense to speak about the exact position of the particle since it cannot be
measured. From the experimental output we could even argue that the one-dimensional
world is discrete! What we want to say is that in our experiment the “exact position” of the
particle is a mere speculative concept, like the gender, color or happiness of the particle.
These degrees of freedom may also exist but if they cannot be measured then we should
not include them in the description of the physical world. As scientists we can only assign
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1.1. Quantum mechanics of one particle 3

a ket |n〉 to the state of the particle just after measurement, and we can interpret this ket
as describing the particle in some discrete position. The probability of finding the particle
in |n′〉 just after the nth detector has clicked is zero for all n′ 6= n and unity for n′ = n,
and hence

〈n′|n〉 = δn′n. (1.1)

The kets |n〉 are orthonormal and it is easy to show that they form a basis of our Hilbert
space. Suppose by reductio ad absurdum that there exists another ket |χ〉 orthogonal
to all the |n〉. If the particle is described by this ket then the probability that the nth
detector clicks is |〈n|χ〉|2 = 0 for all n. This cannot be unless the particle is some-
where else outside the one-dimensional world, i.e., in a state not included in our original
description.

Let us continue to elaborate on the example of the particle in a one-dimensional world.
We said before that the kets |n〉 form a basis. Therefore any ket |Ψ〉 can be expanded in
terms of them

|Ψ〉 =
∑

n

Ψn|n〉. (1.2)

Since the basis is orthonormal the coe�cient Ψn is simply

Ψn = 〈n|Ψ〉, (1.3)

and its square modulus is exactly the probability P (n)

|Ψn|2 =

(
probability of finding the particle in

volume element ∆ around xn

)

.

It is important to appreciate the advantage of working with normalized kets. Since
〈Ψ|Ψ〉 = 1 then

∑

n

|Ψn|2 = 1, (1.4)

according to which the probability of finding the particle anywhere is unity. The interpreta-
tion of the |Ψn|2 as probabilities would not be possible if |Ψ〉 and |n〉 were not normalized.

Given an orthonormal basis the inner product of a normalized ket |Ψ〉 with a basis
ket gives the probability amplitude of having the particle in that ket.

Inserting (1.3) back into (1.2) we find the interesting relation

|Ψ〉 =
∑

n

〈n|Ψ〉 |n〉 =
∑

n

|n〉〈n|Ψ〉.

This relation is interesting because it is true for all |Ψ〉 and hence

∑

n

|n〉〈n| = 1̂, (1.5)
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4 1. Second quantization

with 1̂ the identity operator. Equation (1.5) is known as the completeness relation and
expresses the fact that the set {|n〉} is an orthonormal basis. Vice versa, any orthonormal
basis satisfies the completeness relation.

We now assume that we can construct more and more precise detectors and hence
reduce the range ∆. Then we can also refine the description of our particle by putting the
detectors closer and closer. In the limit ∆ → 0 the probability |Ψn|2 approaches zero and
it makes more sense to reason in terms of the probability density |Ψn|2/∆ of finding the
particle in xn. Let us rewrite (1.2) as

|Ψ〉 = ∆
∑

n

Ψn√
∆

|n〉√
∆
. (1.6)

We now define the continuous function Ψ(xn) and the continuous ket |xn〉 as

Ψ(xn) ≡ lim
∆→0

Ψn√
∆
, |xn〉 = lim

∆→0

|n〉√
∆
.

In this definition the limiting function Ψ(xn) is well defined while the limiting ket |xn〉 makes
mathematical sense only under an integral sign since the norm 〈xn|xn〉 = ∞. However,
we can still give to |xn〉 a precise physical meaning since in quantum mechanics only the
“direction” of a ket matters.1 With these definitions (1.6) can be seen as the Riemann sum of
Ψ(xn)|xn〉. In the limit ∆→ 0 the sum becomes an integral over x and we can write

|Ψ〉 =
∫

dx Ψ(x)|x〉.

The function Ψ(x) is usually called the wavefunction or the probability amplitude and its
square modulus |Ψ(x)|2 is the probability density of finding the particle in x, or equivalently

|Ψ(x)|2 dx =

(
probability of finding the particle

in volume element dx around x

)

.

In the continuum formulation the orthonormality relation (1.1) becomes

〈xn′ |xn〉 = lim
∆→0

δn′n

∆
= δ(xn′ − xn),

where δ(x) is the Dirac δ-function, see Appendix A. Similarly the completeness relation
becomes ∫

dx |x〉〈x| = 1̂.

The entire discussion can now easily be generalized to particles with spin in three (or
any other) dimensions. Let us denote by x = (rσ) the collective index for the position r and

1The formulation of quantum mechanics using non-normalizable states requires the extension of Hilbert spaces
to rigged Hilbert spaces. Readers interested in the mathematical foundations of this extension can consult, e.g.,
Ref. [3]. Here we simply note that in a rigged Hilbert space everything works just as in the more familiar Hilbert
space. We simply have to keep in mind that every divergent quantity comes from some continuous limit and that
in all physical quantities the divergency is cancelled by an infinitesimally small quantity.
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1.1. Quantum mechanics of one particle 5

the spin projection (say along the z axis) σ of the particle. If in every point of space we put
a spin-polarized detector which clicks only if the particle has spin σ then |x〉 is the state
of the particle just after the spin-polarized detector in r has clicked. The position-spin kets
|x〉 are orthonormal

〈x′|x〉 = δσ′σδ(r
′ − r) ≡ δ(x′ − x), (1.7)

and form a basis. Hence they satisfy the completeness relation which in this case reads

∫

dx |x〉〈x| = 1̂ (1.8)

Here and in the remainder of the book we use the symbol
∫

dx ≡
∑

σ

∫

dr

to signify a sum over spin and an integral over space. The expansion of a ket in this
continuous Hilbert space follows directly from the completeness relation

|Ψ〉 = 1̂|Ψ〉 =
∫

dx |x〉〈x|Ψ〉,

and the square modulus of the wavefunction Ψ(x) ≡ 〈x|Ψ〉 is the probability density of
finding the particle in x = (rσ),

|Ψ(x)|2 dr =

(
probability of finding the particle with spin σ

in volume element dr around r

)

.

So far we have only discussed the possible states of the particle and the physical
interpretation of the expansion coe�cients. To say something about the dynamics of the
particle we must know the Hamiltonian operator ĥ. A knowledge of the Hamiltonian in
quantum mechanics is analogous to a knowledge of the forces in Newtonian mechanics. In
Newtonian mechanics the dynamics of the particle is completely determined by the position
and velocity at a certain time and by the forces. In quantum mechanics the dynamics of
the wavefunction is completely determined by the wavefunction at a certain time and by ĥ.
The Hamiltonian operator ĥ ≡ h(r̂, p̂, Ŝ) will, in general, depend on the position operator

r̂, the momentum operator p̂ and the spin operator Ŝ . An example is the Hamiltonian for a
particle of mass m, charge q, and gyromagnetic ratio g moving in an external scalar potential
V , vector potential A and whose spin is coupled to the magnetic field B = ∇×A,

ĥ =
1

2m

(

p̂− q

c
A(r̂)

)2

+ qV (r̂)− gµBB(r̂) · Ŝ, (1.9)

with c the speed of light and µB the Bohr magneton. Unless otherwise stated, in this book
we use atomic units so that ~ = 1, c ∼ 1/137, the electron charge e = −1 and the
electron mass me = 1. Thus in (1.9) the Bohr magneton µB = e~

2mec
∼ 3.649 × 10−3, and

the charge and mass of the particles are measured in units of e and me respectively. To
distinguish operators from scalar or matrix quantities we always put the symbol “ ˆ ” (read
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6 1. Second quantization

“hat”) on them. The position–spin kets are eigenstates of the position operator and of the
z-component of the spin operator

r̂|x〉 = r|x〉, Ŝz|x〉 = σ|x〉,
with σ = −S,−S +1, . . . , S − 1, S for spin S particles. The eigenstates of the momentum
operator are instead the momentum–spin kets |pσ〉

p̂|pσ〉 = p|pσ〉.
These kets are also eigenstates of Ŝz with eigenvalue σ. The momentum–spin kets form
an orthonormal basis like the position–spin kets. The inner product between |x〉 = |rσ〉
and |pσ′〉 is proportional to δσσ′ times the plane wave eip·r. In this book we choose the
constant of proportionality to be unity so that

〈x|pσ′〉 = δσσ′〈r|p〉 with 〈r|p〉 = eip·r (1.10)

This inner product fixes uniquely the form of the completeness relation for the kets |pσ〉.
We have

〈p′σ′|pσ〉 = δσ′σ〈p′|p〉 = δσ′σ

∫

dr 〈p′|r〉〈r|p〉 = δσ′σ

∫

dr ei(p−p
′)·r

= (2π)3δσ′σδ(p
′ − p),

and therefore
∑

σ

∫
dp

(2π)3
|pσ〉〈pσ| = 1̂ (1.11)

as can easily be verified by acting with (1.11) on the ket |p′σ′〉 or on the bra 〈p′σ′|.
Before moving to the quantum mechanical description of many particles let us briefly

recall how to calculate the matrix elements of the Hamiltonian ĥ in the position–spin basis.
If |Ψ〉 is the ket of the particle then

〈x|p̂|Ψ〉 = −i∇〈x|Ψ〉 ⇒ 〈Ψ|p̂|x〉 = i〈Ψ|x〉←−∇,

where the arrow over the gradient specifies that ∇ acts on the quantity to its left. It follows
from these identities that

〈x|p̂|x′〉 = −iδσσ′∇δ(r− r′) = iδσσ′δ(r− r′)
←−
∇
′, (1.12)

where ∇
′ means that the gradient acts on the primed variable. Therefore, the matrix

element 〈x|ĥ|x′〉 with ĥ = h(r̂, p̂, Ŝ) can be written as

〈x|ĥ|x′〉 = hσσ′(r,−i∇,S)δ(r− r′) = δ(r− r′)hσσ′(r′, i
←−
∇
′,S) (1.13)

where S is the matrix of the spin operator with elements 〈σ|Ŝ|σ′〉 = Sσσ′ . For example,
for the one-particle Hamiltonian in (1.9) we have

hσσ′(r,−i∇,S) =
δσσ′

2m

(

−i∇− q

c
A(r)

)2

+ δσσ′qV (r)− gµBB(r) · Sσσ′ .

We use (1.13) over and over in the following chapters to recognize the matrix structure of
several equations.
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1.2. Quantum mechanics of many particles 7

Figure 1.2 Histogram of the normalized number of simultaneous clicks of the electron and
positron detectors in xn = n∆ and xm = m∆ respectively. The height of the function
corresponds to the probability |Ψnm|2.

1.2 Quantum mechanics of many particles

We want to generalize the concepts of the previous section to many particles. Let us first
discuss the case of distinguishable particles. Particles are called distinguishable if they di�er
in one or more of their properties, like mass, charge, spin, etc. Let us consider, for instance,
an electron and a positron in one dimension. These particles are distinguishable since the
charge of the positron is opposite to the charge of the electron. To measure the position of
the electron and the position of the positron at a certain time we put an electron-detector
and a positron-detector in every point xn = n∆ of the real axis and perform a coincidence
experiment. This means that we take note of the position of the electron-detector and of the
positron-detector only if they click at the same time. The result of the experiment is the pair
of points (xn, xm) where the first entry xn refers to the electron whereas the second entry
xm refers to the positron. Performing the experiment N ≫ 1 times, counting the number
of times that the pair (xn, xm) is measured and dividing the result by N we obtain the
probability that the electron is in xn and the positron in xm, see the histogram of Fig. 1.2.
According to quantum mechanics the electron–positron pair collapses in the ket |n〉|m〉 just
after measurement. This ket describes an electron in the interval xn ±∆/2 and a positron
in the interval xm ±∆/2. Therefore the probability of finding the electron–positron pair in
|n′〉|m′〉 is zero unless n′ = n and m′ = m, i.e.

( 〈n′|〈m′| ) ( |n〉|m〉 ) = δn′nδm′m.

The kets |n〉|m〉 are orthonormal and form a basis since if there was a ket |χ〉 orthogonal
to all of them then the electron–positron pair described by |χ〉 would not be on the real
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8 1. Second quantization

axis. The orthonormality of the basis is expressed by the completeness relation

∑

nm

( |n〉|m〉 ) ( 〈n|〈m| ) = 1̂.

This relation can be used to expand any ket as

|Ψ〉 = 1̂|Ψ〉 =
∑

nm

( |n〉|m〉 ) ( 〈n|〈m| ) |Ψ〉,

and if |Ψ〉 is normalized then the square modulus of the coe�cients Ψnm ≡ ( 〈n|〈m| ) |Ψ〉
is the probability represented in the histogram.

As in the previous section, we could refine the experiment by putting the detectors closer
and closer. We could also rethink the entire experiment in three (or any other) dimensions
and use spin-polarized detectors. We then arrive at the position–spin kets |x1〉|x2〉 for the
electron–positron pair with inner product

( 〈x′1|〈x′2| ) ( |x1〉|x2〉 ) = δ(x′1 − x1)δ(x
′
2 − x2),

from which we deduce the completeness relation
∫

dx1dx2 ( |x1〉|x2〉 ) ( 〈x1|〈x2| ) = 1̂.

The expansion of a generic ket is

|Ψ〉 =
∫

dx1dx2 ( |x1〉|x2〉 ) ( 〈x1|〈x2| ) |Ψ〉,

and if |Ψ〉 is normalized then the square modulus of the wavefunction Ψ(x1,x2) ≡
( 〈x1|〈x2| ) |Ψ〉 yields the probability density of finding the electron in x1 = (r1σ1)
and the positron in x2 = (r2σ2):

|Ψ(x1,x2)|2 dr1dr2 =





probability of finding the electron with spin σ1
in volume element dr1 around r1 and the positron

with spin σ2 in volume element dr2 around r2



.

The generalization to N distinguishable particles is now straightforward. The position–
spin ket |x1〉 . . . |xN 〉 describes the physical state in which the first particle is in x1, the
second particle is in |x2〉 etc. These kets form an orthonormal basis with inner product

( 〈x′1| . . . 〈x′N | ) ( |x1〉 . . . |xN 〉 ) = δ(x′1 − x1) . . . δ(x
′
N − xN ), (1.14)

and therefore the completeness relation reads
∫

dx1 . . . dxN ( |x1〉 . . . |xN 〉 ) ( 〈x1| . . . 〈xN | ) = 1̂.

Having discussed the Hilbert space for N distinguishable particles we now consider the
operators acting on the N -particle kets. We start with an example and consider again the
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1.2. Quantum mechanics of many particles 9

electron–positron pair. Suppose that we are interested in measuring the center-of-mass
position of the pair. The center-of-mass position is an observable quantity and hence,
associated with it, there exists an operator R̂CM. By definition the eigenstates of this
operator are the position–spin kets |x1〉|x2〉 and the corresponding eigenvalues are (r1 +

r2)/2, independent of the spin of the particles. The operator R̂CM is then the sum of the
position operator acting on the first particle and doing nothing to the second particle and
the position operator acting on the second particle and doing nothing to the first particle,
i.e.,

R̂CM =
1

2

(
r̂ ⊗ 1̂ + 1̂ ⊗ r̂

)
. (1.15)

The symbol “⊗” denotes the tensor product of operators acting on di�erent particles. For
instance

R̂CM|x1〉|x2〉 =
1

2

(
r̂|x1〉1̂|x2〉+ 1̂|x1〉r̂|x2〉

)
=

1

2
(r1 + r2)|x1〉|x2〉.

The generalization of the center-of-mass operator to N particles is rather voluminous,

R̂CM =
1

N



r̂ ⊗ 1̂ ⊗ . . .⊗ 1̂
︸ ︷︷ ︸

N−1 times

+ 1̂ ⊗ r̂ ⊗ . . .⊗ 1̂
︸ ︷︷ ︸

N−2 times

+ . . .+ 1̂ ⊗ 1̂ ⊗ . . .
︸ ︷︷ ︸

N−1 times

⊗ r̂



, (1.16)

and it is typically shortened as

R̂CM =
1

N

N∑

j=1

r̂j ,

where r̂j is the position operator acting on the jth particle and doing nothing to the other
particles. Similarly the noninteracting part of the Hamiltonian of N particles is typically
written as

Ĥ0 =

N∑

j=1

ĥj =

N∑

j=1

h(r̂j , p̂j , Ŝj), (1.17)

while the interaction part is written as

Ĥint =
1

2

N∑

i6=j

v(r̂i, r̂j), (1.18)

with v(r1, r2) the interparticle interaction. We observe that these operators depend explicitly
on the number of particles and are therefore di�cult to manipulate in problems where the
number of particles can fluctuate, as in systems at finite temperature. As we see later in
this chapter, another disadvantage is that the evaluation of their action on kets describing
identical particles is very lengthy. Fortunately, an incredible simplification occurs for identical
particles and the expressions for operators and kets become much lighter and easier to
manipulate. To appreciate this simplification, however, we first have to understand how the
quantum-mechanical formulation changes when the particles are identical.
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10 1. Second quantization

1.3 Quantum mechanics of many identical

particles

Two particles are called identical particles or indistinguishable particles if they have the
same internal properties, i.e., the same mass, charge, spin etc. For example two electrons
are two identical particles. To understand the qualitative di�erence between distinguishable
and identical particles let us perform the coincidence experiment of the previous section
for two electrons both with spin projection 1/2 and again in one dimension. At every point
xn = n∆ we put a spin-polarized electron-detector, and since the particles are identical we
need only one kind of detector. If the detectors in xn and xm click at the same time then
we can be sure that just after this time there is one electron around xn and another electron
around xm. Let us denote by |nm〉 the ket describing the physical state in which the two
electrons collapse after measurement.2 As the electrons are identical the natural question to
ask is: do the kets |nm〉 and |mn〉 correspond to two di�erent physical states? If the answer
were positive then we should be able to hear a di�erence in the clicks corresponding to
|nm〉 and |mn〉. For example in the case of the electron–positron pair we could make the
positron-click louder than the electron-click and hence distinguish the state |n〉|m〉 from
the state |m〉|n〉. However, in this case we only have electron-detectors and it is impossible
to distinguish which electron has made a given detector click. We therefore must assign to
|mn〉 the same physical state as to |nm〉. We would like to emphasize that the kets |nm〉
are not given by nature. It is we who decide to represent nature in terms of them. For our
representation of nature to make sense we must impose that |nm〉 and |mn〉 correspond
to the same physical state. In Section 1.1 we observed that the normalized ket of a physical
state is uniquely defined up to a phase factor and hence

|nm〉 = eiα|mn〉 for all n, m.

Using the above relation twice we find that e2iα = 1, or equivalently eiα = ±1. Consequently
the ket

|nm〉 = ±|mn〉 (1.19)

is either symmetric or antisymmetric under the interchange of the electron positions. This is
a fundamental property of nature: all particles can be grouped in two main classes. Particles
described by a symmetric ket are called bosons while those described by an antisymmetric
ket are called fermions. The electrons of our example are fermions. Here and in the rest of
the book the upper sign always refers to bosons whereas the lower sign refers to fermions.
In the case of fermions (1.19) implies |nn〉 = −|nn〉 and hence |nn〉 must be the null ket
|∅〉, i.e., it is not possible to create two fermions in the same position and with the same
spin. This peculiarity of fermions is known as the Pauli exclusion principle.

If we now repeat the coincidence experiment N ≫ 1 times, count the number of times
that the detectors click simultaneously in xn and xm and divide the result by N we can
draw the histograms of Fig. 1.3 for bosons and fermions. The probability is symmetric under
the interchange n ↔ m due to property (1.19). The fermions are easily recognizable since
the probability of finding them in the same place is zero.

2Note the di�erent notation with respect to the previous section where we used the ket |n〉|m〉 to describe the
first particle around xn and the second particle around xm.
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1.3. Quantum mechanics of many identical particles 11

Figure 1.3 Histogram of the normalized number of simultaneous clicks of the detector in
xn = n∆ and in xm = m∆ for (a) two bosons and (b) two fermions. The height of the
function corresponds to the probability |Ψnm|2.

In this book we learn how to deal with systems of many identical particles, like molecules
or solids, and therefore we do not always repeat that the particles are identical. By particles
we mean identical particles unless otherwise stated. Unlike the case of the electron–positron
pair the probability of measuring a particle in xn′ and the other in xm′ just after the
detectors in xn and xm have simultaneously clicked is zero unless n = n′ and m = m′ or
n = m′ and m = n′, and hence

〈n′m′|nm〉 = c1δn′nδm′m + c2δm′nδn′m. (1.20)

To fix the constants c1 and c2 we observe that

〈n′m′|nm〉 = ±〈n′m′|mn〉 = ±c1δn′mδm′n ± c2δm′mδn′n,

from which it follows that c1 = ±c2. Furthermore, since the kets are normalized we must
have for all n 6= m

1 = 〈nm|nm〉 = c1.

For n = m the ket |nn〉 exists only for bosons and one finds 〈nn|nn〉 = 2c1. It is therefore
more convenient to work with a non-normalized ket |nn〉 so that c1 = 1 in all cases. We
choose the normalization of the bosonic ket |nn〉 to be 2:

〈nn|nn〉 = 2. (1.21)

Putting everything together we can rewrite the inner product (1.20) as

〈n′m′|nm〉 = δn′nδm′m ± δm′nδn′m.

The inner product for the fermionic ket |nn〉 is automatically zero, in agreement with the
fact that |nn〉 = |∅〉.

Let us now come to the completeness relation in the Hilbert space of two particles.
Since |nm〉 = ±|mn〉 a basis in this space is given by the set {|nm〉} with n ≥ m. In
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12 1. Second quantization

other words the basis comprises only inequivalent configurations, meaning configurations
not related by a permutation of the coordinates. The elements of this set are orthogonal
and normalized except for the bosonic ket |nn〉 whose normalization is 2. Therefore, the
completeness relation reads

∑

n>m

|nm〉〈nm|+ 1

2

∑

n

|nn〉〈nn| = 1̂,

where the second sum does not contribute in the fermionic case. We can rewrite the
completeness relation as an unrestricted sum over all n and m using the (anti)symmetry
property (1.19). The resulting expression is

1

2

∑

nm

|nm〉〈nm| = 1̂,

which is much more elegant. The completeness relation can be used to expand any other
ket in the same Hilbert space,

|Ψ〉 = 1̂|Ψ〉 = 1

2

∑

nm

|nm〉〈nm|Ψ〉, (1.22)

and if |Ψ〉 is normalized then the square modulus of the coe�cients of the expansion
Ψnm ≡ 〈nm|Ψ〉 has the standard probabilistic interpretation

|Ψnm|2 =





probability of finding one particle in volume

element ∆ around xn and the other particle

in volume element ∆ around xm





for all n 6= m. For n = m we must remember that the normalization of the ket |nn〉 is 2
and therefore |Ψnn|2 gives twice the probability of finding two particles in the same place
(since the proper normalized ket is |nn〉/

√
2). Consequently

|Ψnn|2
2

=

(
probability of finding two particles in

volume element ∆ around xn

)

.

We can now refine the experiment by putting the detectors closer and closer. The
continuum limit works in exactly the same manner as in the previous two sections. We
rewrite the expansion (1.22) as

|Ψ〉 = 1

2
∆2
∑

nm

|nm〉
∆

Ψnm

∆
, (1.23)

and define the continuous wavefunction Ψ(xn, xm) and the continuous ket |xnxm〉 accord-
ing to

Ψ(xn, xm) = lim
∆→0

Ψnm

∆
, |xnxm〉 = lim

∆→0

|nm〉
∆

.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:04:48 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.003

Cambridge Books Online © Cambridge University Press, 2015



1.3. Quantum mechanics of many identical particles 13

The expansion (1.23) can then be seen as the Riemann sum of Ψ(xn, xm)|xnxm〉, and in
the limit ∆→ 0 the sum becomes the integral

|Ψ〉 = 1

2

∫

dxdx′ Ψ(x, x′)|xx′〉.

We can also derive the continuous representation of the completeness relation and the
continuous representation of the inner product between two basis kets. We have

lim
∆→0

1

2
∆2
∑

nm

|nm〉
∆

〈nm|
∆

=
1

2

∫

dxdx′|xx′〉〈xx′| = 1̂, (1.24)

and

lim
∆→0

〈n′m′|nm〉
∆2

= 〈xn′xm′ |xnxm〉
= δ(xn′ − xn)δ(xm′ − xm)± δ(xm′ − xn)δ(xn′ − xm). (1.25)

The generalization to higher dimensions and to particles with di�erent spin projections is
now straightforward. We define the position–spin ket |x1x2〉 as the ket of the physical state
in which the particles collapse after the simultaneous clicking of a spin-polarized detector
for particles of spin-projection σ1 placed in r1 and a spin-polarized detector for particles
of spin-projection σ2 placed in r2. The set of inequivalent configurations |x1x2〉 forms a
basis of the Hilbert space of two identical particles. In the following we refer to this space
as H2. In analogy with (1.25) the continuous kets have inner product

〈x′1x′2|x1x2〉 = δ(x′1 − x1)δ(x
′
2 − x2)± δ(x′1 − x2)δ(x

′
2 − x1)

=
∑

P

(±)P δ(x′1 − xP (1))δ(x
′
2 − xP (2)), (1.26)

where the upper/lower sign refers to bosons/fermions. The second line of this equation is an
equivalent way of rewriting the (anti)symmetric product of δ-functions. The sum runs over
the permutations P of (1, 2) which are the identity permutation (P (1), P (2)) = (1, 2) and
the interchange (P (1), P (2)) = (2, 1). The quantity (±)P is equal to +1 if the permutation
requires an even number of interchanges and ±1 if the permutation requires an odd number
of interchanges. In the fermionic case all position–spin kets have the same norm since (1.26)
implies

〈x1x2|x1x2〉 = δ(0)2 for fermions.

Due to the possibility in the bosonic case that two coordinates are identical the norms of
the position–spin kets are instead not all the same since

〈x1x2|x1x2〉 = δ(0)2 ×
{

1 if x1 6= x2

2 if x1 = x2
for bosons,

in agreement with (1.21).
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14 1. Second quantization

In complete analogy with (1.24) we can also write the completeness relation according to

1

2

∫

dx1dx2|x1x2〉〈x1x2| = 1̂. (1.27)

Then, any ket |Ψ〉 ∈ H2 can be expanded in the position–spin basis as

|Ψ〉 = 1̂|Ψ〉 = 1

2

∫

dx1dx2 |x1x2〉 〈x1x2|Ψ〉
︸ ︷︷ ︸

Ψ(x1,x2)

. (1.28)

If |Ψ〉 is normalized we can give a probability interpretation to the square modulus of the
wavefunction Ψ(x1,x2),

|Ψ(x1,x2)|2dr1dr2 =





probability of finding one particle with spin σ1 in

volume element dr1 around r1 and the other particle with

spin σ2 in volume element dr2 around a di�erent point r2



.

However, in the case x1 = x2 the above formula needs to be replaced by

|Ψ(x1,x1)|2
2

dr1dr2 =







probability of finding one particle with spin σ1 in

volume element dr1 around r1 and the other particle

with the same spin in volume element dr2 around

the same point r1






,

due to the di�erent normalization of the diagonal kets. We stress again that the above
probability interpretation follows from the normalization 〈Ψ|Ψ〉 = 1, which in the continuum
case reads [see (1.28)]

1 =
1

2

∫

dx1dx2 |Ψ(x1,x2)|2.

It should now be clear how to extend the above relations to the case of N identical
particles. We say that if the detector for a particle of spin-projection σ1 placed in r1, the
detector for a particle of spin-projection σ2 placed in r2, etc. all click at the same time
then the N -particle state collapses into the position-spin ket |x1 . . .xN 〉. Due to the nature
of identical particles this ket must have the symmetry property (as usual upper/lower sign
refers to bosons/fermions)

|xP (1) . . .xP (N)〉 = (±)P |x1 . . .xN 〉 (1.29)

where P is a permutation of the labels (1, . . . , N), and (±)P = 1 for even permutations
and ±1 for odd permutations (thus for bosons is always 1). A permutation is even/odd if the
number of interchanges is even/odd.3 Therefore, given the ket |x1 . . .xN 〉 with all di�erent
coordinates there are N ! equivalent configurations that represent the same physical state.
More generally, if the ket |x1 . . .xN 〉 has m1 coordinates equal to y1, m2 coordinates equal
to y2 6= y1, . . ., mM coordinates equal to yM 6= y1, . . . ,yM−1, with m1+ . . .+mM = N ,

3The reader can learn more on how to calculate the sign of a permutation in Appendix B.
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1.3. Quantum mechanics of many identical particles 15

then the number of equivalent configurations is N !/(m1! . . .mM !). In the fermionic case,
if two or more coordinates are the same then the ket |x1 . . .xN 〉 is the null ket |∅〉. The
set of position–spin kets corresponding to inequivalent configurations forms a basis in the
Hilbert space of N identical particles; we refer to this space as HN .

The inner product between two position–spin kets is

〈x′1 . . .x′N |x1 . . .xN 〉 =
∑

P

cP

N∏

j=1

δ(x′j − xP (j)),

where the cP s are numbers depending on the permutation P . As in the two-particle case,
the (anti)symmetry (1.29) of the position–spin kets requires that cP = c (±)P , and the
normalization of |x1 . . .xN 〉 with all di�erent coordinates fixes the constant c = 1. Hence

〈x′1 . . .x′N |x1 . . .xN 〉 =
∑

P

(±)P
N∏

j=1

δ(x′j − xP (j)) (1.30)

This is the familiar expression for the permanent/determinant |A |± of a N × N matrix A
(see Appendix B),

|A |± ≡
∑

P

(±)PA1P (1) . . . ANP (N).

Choosing the matrix elements of A to be Aij = δ(x′i − xj) we can rewrite (1.30) as

〈x′1 . . .x′N |x1 . . .xN 〉 =

∣
∣
∣
∣
∣
∣
∣
∣

δ(x′1 − x1) . . . δ(x′1 − xN )
. . . . .
. . . . .

δ(x′N − x1) . . . δ(x′N − xN )

∣
∣
∣
∣
∣
∣
∣
∣
±

. (1.31)

As in the two-particle case, these formulas are so elegant because we took the bosonic
kets at equal coordinates with a slightly di�erent normalization. Consider N bosons in M
di�erent coordinates of which m1 have coordinate y1, . . ., mM have coordinate yM (hence
m1 + . . .+mM = N ). Then the norm is given by

〈
m1

︷ ︸︸ ︷
y1 . . .y1 . . .

mM
︷ ︸︸ ︷
yM . . .yM |

m1
︷ ︸︸ ︷
y1 . . .y1 . . .

mM
︷ ︸︸ ︷
yM . . .yM 〉 = δ(0)Nm1!m2! . . .mM ! ,

as follows directly from (1.30).4 In the case of fermions, instead, all position–spin kets have
norm δ(0)N since it is not possible for two or more fermions to have the same coordinate.

Given the norm of the position–spin kets, the completeness relation for N particles is a
straightforward generalization of (1.27) and reads

1

N !

∫

dx1 . . . dxN |x1 . . .xN 〉〈x1 . . .xN | = 1̂ (1.32)

4According to (1.29) the order of the arguments in the inner product does not matter.
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16 1. Second quantization

Therefore the expansion of a ket |Ψ〉 ∈ HN can be written as

|Ψ〉 = 1̂|Ψ〉 = 1

N !

∫

dx1 . . . dxN |x1 . . .xN 〉 〈x1 . . .xN |Ψ〉
︸ ︷︷ ︸

Ψ(x1,...,xN )

,

which generalizes the expansion (1.28) to the case of N particles. The wavefunction
Ψ(x1, . . . ,xN ) is totally symmetric for bosons and totally antisymmetric for fermions due
to (1.29). If |Ψ〉 is normalized then the normalization of the wavefunction reads

1 = 〈Ψ|Ψ〉 = 1

N !

∫

dx1 . . . dxN |Ψ(x1, . . . ,xN )|2. (1.33)

The probabilistic interpretation of the square modulus of the wavefunction can be extracted
using the same line of reasoning as for the two-particle case

|Ψ(

m1
︷ ︸︸ ︷
y1 . . .y1 . . .

mM
︷ ︸︸ ︷
yM . . .yM )|2

m1! . . .mM !

M∏

j=1

dRj =








probability of finding

m1 particles in dR1 around y1

...
mM particles in dRM around yM







, (1.34)

where dRj is the product of volume elements

dRj ≡
m1+...+mj∏

i=m1+...+mj−1+1

dri.

When all coordinates are di�erent (1.34) tells us that the quantity |Ψ(x1, . . . ,xN )|2 dr1 . . . drN
is the probability of finding one particle in volume element dr1 around x1, . . . , and one
particle in volume element drN around xN . We could have absorbed the prefactor 1/N !
in (1.33) in the wavefunction (as is commonly done) but then we could not interpret the
quantity |Ψ(x1, . . . ,xN )|2dr1 . . . drN as the r.h.s. of (1.34) since this would amount to re-
garding equivalent configurations as distinguishable and consequently the probability would
be overestimated by a factor of N !.

The reader might wonder why we have been so punctilious about the possibility of having
more than one boson with the same position–spin coordinate, since these configurations
are of zero measure in the space of all configurations. However, such configurations are
the physically most relevant in bosonic systems at low temperature. Indeed bosons can
condense in states in which certain (continuum) quantum numbers are macroscopically
occupied and hence have a finite probability. A common example is the zero momentum
state of a free boson gas in three dimensions.

We close this section by illustrating a practical way to construct the N -particle position–
spin kets using the N -particle position–spin kets of distinguishable particles. The procedure
simply consists in forming (anti)symmetrized products of one-particle position–spin kets.
For instance, we have for the case of two particles

|x1x2〉 =
|x1〉|x2〉 ± |x2〉|x1〉√

2
, (1.35)
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1.4. Field operators 17

and more generally, for N particles

|x1 . . .xN 〉 =
1√
N !

∑

P

(±)P |xP (1)〉 . . . |xP (N)〉. (1.36)

Using the inner product (1.14) one can check directly that these states have inner product
(1.30). We refer to the above representation of the position–spin kets as kets in first quanti-
zation since it is the representation usually found in basic quantum mechanics books. Using
(1.36) we could proceed to calculate matrix elements of operators such as the center-of-mass
position, total energy, spin, angular momentum, density, etc. However, this involves rather
cumbersome expressions with a large number of terms di�ering only in the sign and the
order of the coordinates. In the next section we describe a formalism, known as second
quantization, that makes it easy to do such calculations e�ciently, as the position–spin ket
is represented by a single ket rather than by N ! products of one-particle kets as in (1.36).
As we shall see the merits of second quantization are the compactness of the expressions
and an enormous simplification in the calculation of the action of operators over states
in HN . This formalism further treats systems with di�erent numbers of identical particles
on the same footing and it is therefore well suited to study ionization processes, transport
phenomena, and finite temperature e�ects within the grand canonical ensemble of quantum
statistical physics.

1.4 Field operators

The advantage of the bra-and-ket notation invented by Dirac is twofold. First of all, it
provides a geometric interpretation of the physical states in Hilbert space as abstract kets
independent of the basis in which they are expanded. For example, it does not matter
whether we expand |Ψ〉 in terms of the position–spin kets or momentum–spin kets; |Ψ〉
remains the same although the expansion coe�cients in the two bases are di�erent. The
second advantage is that the abstract kets can be systematically generated by repeated
applications of a creation operator on the empty or zero-particle state. This approach forms
the basis of an elegant formalism known as second quantization, which we describe in detail
in this section.

To deal with many arbitrary identical particles we define a collection F of Hilbert spaces,
also known as Fock space, according to

F = {H0,H1, . . . ,HN , . . .},

with HN the Hilbert space for N identical particles. An arbitrary element of the Fock space
is a ket that can be written as

|Ψ〉 =
∞∑

N=0

cN |ΨN 〉, (1.37)

where |ΨN 〉 belongs to HN . The inner product between the ket (1.37) and another element
in the Fock space

|χ〉 =
∞∑

N=0

dN |χN 〉
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18 1. Second quantization

is defined as

〈χ|Ψ〉 ≡
∞∑

N=0

d∗NcN 〈χN |ΨN 〉,

where 〈χN |ΨN 〉 is the inner product in HN . This definition is dictated by common sense:
the probability of having M 6= N particles in a N -particle ket is zero and therefore kets
with di�erent number of particles are orthogonal, i.e., have zero overlap.

The Hilbert space H0 is the space with zero particles. Since an empty system has
no degrees of freedom, H0 is a one-dimensional space and we denote by |0〉 the only
normalized ket in H0,

〈0|0〉 = 1.

According to the expansion (1.37) the ket |0〉 has all cN = 0 except for c0. This state should
not be confused with the null ket |∅〉 which is defined as the state in Fock space with all
cN = 0 and, therefore, is not a physical state. The empty ket |0〉 is a physical state; indeed
the normalization 〈0|0〉 = 1 means that the probability of finding nothing in an empty space
is 1.

The goal of this section is to find a clever way to construct a basis for each Hilbert
space H1, H2, . . .. To accomplish this goal the central idea of the second quantization
formalism is to define a field operator ψ̂†(x) = ψ̂†(rσ) that generates the position-spin
kets by repeated action on the empty ket, i.e.,

|x1〉 = ψ̂†(x1)|0〉
|x1x2〉 = ψ̂†(x2)|x1〉 = ψ̂†(x2)ψ̂

†(x1)|0〉
|x1 . . .xN 〉 = ψ̂†(xN )|x1 . . .xN−1〉 = ψ̂†(xN ) . . . ψ̂†(x1)|0〉

(1.38)

Since an operator is uniquely defined from its action on a complete set of states in the
Hilbert space (the Fock space in our case), the above relations define the field operator
ψ̂†(x) for all x. The field operator ψ̂†(x) transforms a ket of HN into a ket of HN+1 for

all N , see Fig. 1.4(a). We may say that the field operator ψ̂†(x) creates a particle in x and
it is therefore called the creation operator. Since the position–spin kets change a plus or
minus sign under interchange of any two particles it follows that

ψ̂†(x)ψ̂†(y)|x1 . . .xN 〉 = |x1 . . .xN y x〉 = ±|x1 . . .xN xy〉
= ±ψ̂†(y)ψ̂†(x)|x1 . . .xN 〉,

where we recall that the upper sign in ± refers to bosons and the lower sign to fermions.
This identity is true for all x1, . . . ,xN and for all N , i.e., for all states in F , and hence

ψ̂†(x)ψ̂†(y) = ±ψ̂†(y)ψ̂†(x).

If we define the (anti)commutator between two generic operators Â and B̂ according to

[

Â, B̂
]

∓
= ÂB̂ ∓ B̂Â,
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1.4. Field operators 19

Figure 1.4 Action of the creation operator ψ̂† in (a), and of the annihilation operator ψ̂ in (b).

we can rewrite the above relation as

[

ψ̂†(x), ψ̂†(y)
]

∓
= 0 (1.39)

Corresponding to the operator ψ̂†(x) there is the adjoint operator ψ̂(x) [or equivalently

ψ̂†(x) is the adjoint of ψ̂(x)]. Let us recall the definition of adjoint operators. An operator
Ô† with the superscript “†” (read dagger) is the adjoint of the operator Ô if

〈χ|Ô|Ψ〉 = 〈Ψ|Ô†|χ〉∗

for all |χ〉 and |Ψ〉, which implies (Ô†)† = Ô. In particular, when Ô = ψ̂(x) we have

〈χ|ψ̂(x)|Ψ〉 = 〈Ψ|ψ̂†(x)|χ〉∗.

Since for any |Ψ〉 ∈ HN+1 the quantity 〈Ψ|ψ̂†(x)|χ〉 is zero for all |χ〉 with no components

in HN , the above equation implies that ψ̂(x)|Ψ〉 ∈ HN , i.e., the operator ψ̂(x) maps
the elements of HN+1 into elements of HN , see Fig. 1.4(b). Thus, whereas the operator
ψ̂†(x) adds a particle its adjoint operator ψ̂(x) removes a particle and, for this reason, it
is called the annihilation operator. Below we study its properties and how it acts on the
position–spin kets.

By taking the adjoint of the identity (1.39) we immediately obtain the (anti) commutation
relation

[

ψ̂(x), ψ̂(y)
]

∓
= 0 (1.40)

The action of ψ̂(x) on any state can be deduced from its definition as the adjoint of ψ̂†(x)
together with the inner product (1.31) between the position–spin kets. Let us illustrate this
first for the action on the empty ket |0〉. For any |Ψ〉 ∈ F ,

〈Ψ|ψ̂(x)|0〉 = 〈0|ψ̂†(x)|Ψ〉∗ = 0,
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20 1. Second quantization

since ψ̂†(x)|Ψ〉 contains at least one particle and is therefore orthogonal to |0〉. We conclude
that ψ̂(x)|0〉 is orthogonal to all |Ψ〉 in F and hence it must be equal to the null ket

ψ̂(x)|0〉 = |∅〉. (1.41)

The action of ψ̂(x) on the one-particle ket |y〉 can be inferred from (1.30) and (1.38); we
have

δ(y − x) = 〈y|x〉 = 〈y|ψ̂†(x)|0〉 = 〈0|ψ̂(x)|y〉∗.

Since ψ̂(x)|y〉 ∈ H0 it follows that

ψ̂(x)|y〉 = δ(y − x)|0〉. (1.42)

We see from this relation that the operator ψ̂(x) removes a particle from the state |y〉 when
x = y and otherwise yields zero.

The derivation of the action of ψ̂(x) on the empty ket and on the one-particle ket was

rather elementary. Let us now derive the action of ψ̂(x) on the general N -particle ket
|y1 . . .yN 〉. For this purpose we consider the matrix element

〈x1 . . .xN−1|ψ̂(xN )|y1 . . .yN 〉 = 〈x1 . . .xN |y1 . . .yN 〉. (1.43)

The overlap on the r.h.s. is given in (1.31); expanding the permanent/determinant along row
N (see Appendix B) we get

〈x1 . . .xN−1|ψ̂(xN )|y1 . . .yN 〉

=

N∑

k=1

(±)N+kδ(xN − yk)〈x1 . . .xN−1|y1 . . .yk−1yk+1 . . .yN 〉.

This expression is valid for any |x1 . . .xN−1〉 and since ψ̂(x) maps from HN only to HN−1
we conclude that

ψ̂(x)|y1 . . .yN 〉 =
N∑

k=1

(±)N+kδ(x− yk) |y1 . . .yk−1yk+1 . . .yN 〉 (1.44)

We have just derived an important equation for the action of the annihilation operator on
a position–spin ket. It correctly reduces to (1.42) when N = 1 and for N > 1 yields, for
example,

ψ̂(x)|y1y2〉 = δ(x− y2)|y1〉 ± δ(x− y1)|y2〉,
ψ̂(x)|y1y2y3〉 = δ(x− y3)|y1y2〉 ± δ(x− y2)|y1y3〉+ δ(x− y1)|y2y3〉.

So the annihilation operator removes sequentially a particle from every position–spin coor-
dinate while keeping the final result totally symmetric or antisymmetric in all y variables by
adjusting the signs of the prefactors. With the help of (1.44) we can derive a fundamental
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1.4. Field operators 21

(anti)commutation relation between the annihilation and creation operators. Acting on both
sides of (1.44) with ψ̂†(y) and denoting by |R〉 the ket on the r.h.s. we have

ψ̂†(y)ψ̂(x)|y1 . . .yN 〉 = ψ̂†(y)|R〉. (1.45)

Exchanging the order of the field operators in the l.h.s. of the above identity and using (1.44)
we find

ψ̂(x)ψ̂†(y)|y1 . . .yN 〉 = ψ̂(x)|y1 . . .yNy〉 = δ(x− y) |y1 . . .yN 〉

+

N∑

k=1

(±)N+1+kδ(x− yk) |y1 . . .yk−1yk+1 . . .yNy〉

= δ(x− y) |y1 . . .yN 〉 ± ψ̂†(y)|R〉. (1.46)

Subtraction and addition of (1.45) and (1.46) for bosons and fermions respectively then gives

[

ψ̂(x), ψ̂†(y)
]

∓
|y1 . . .yN 〉 = δ(x− y)|y1 . . .yN 〉,

which must be valid for all position–spin kets and for all N , and therefore

[

ψ̂(x), ψ̂†(y)
]

∓
= δ(x− y) (1.47)

The (anti)commutation relations (1.39), (1.40), and (1.47) are the main results of this section
and form the basis of most derivations in this book. As we shall see in Section 1.6, all many-
particle operators, like total energy, density, current, spin, etc., consist of simple expressions
in terms of the field operators ψ̂ and ψ̂†, and the calculation of their averages can easily
be performed with the help of the (anti)commutation relations. It is similar to the harmonic
oscillator of quantum mechanics: both the eigenstates and the operators are expressed in
terms of the raising and lowering operators â† and â, and to calculate all sorts of average
it is enough to know the commutation relations [â, â]− = [â†, â†]− = 0 and [â, â†]− = 1.
The di�erence with second quantization is that we have a “harmonic oscillator” for every x.
Using the (anti)commutation properties we can manipulate directly the kets and never have
to deal with the rather cumbersome expressions of the wavefunctions; the field operators
take care of the symmetry of the kets automatically. The great achievement of second
quantization is comparable to that of a programming language. When we program we use
a nice friendly text-editor to write a code which tells the computer what operations to do,
and we do not bother if the instructions given through the text-editor are correctly executed
by the machine. A bug in the code is an error in the text of the program (the way we
manipulate the field operators) and not an erroneous functioning of some logic gate (the
violation of the symmetry properties of the many-particle kets).

Exercise 1.1. We define the density operator

n̂(x) ≡ ψ̂†(x)ψ̂(x).
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22 1. Second quantization

Using the identities [ÂB̂, Ĉ]− = Â[B̂, Ĉ]−+[Â, Ĉ]−B̂ = Â[B̂, Ĉ]+− [Â, Ĉ]+B̂ prove the

following relations for fermionic and bosonic field operators:

[n̂(x), ψ̂(x′)]− = −δ(x− x′)ψ̂(x), (1.48)

[n̂(x), ψ̂†(x′)]− = δ(x− x′)ψ̂†(x). (1.49)

1.5 General basis states

In the previous section we learned how to construct states of many identical particles with a
given spin and position. The position–spin is, however, just one possible choice of quantum
number to characterize every single particle. We now show how the field operators can be
used to construct states of many identical particles in which every particle is labeled by
general quantum numbers, such as momentum, energy, etc.

Let us consider a normalized one-particle ket |n〉. The quantum number n = (sτ)
comprises an orbital quantum number s and the spin projection τ along some quantization
axis. Choosing the quantization axis of the spin to be the same as that of the position–spin
ket |x〉 = |rσ〉 the overlap between |n〉 and |x〉 is

〈x|n〉 ≡ ϕn(x) = ϕs(r)δτσ. (1.50)

The one-particle ket |n〉 can be expanded in the position–spin kets using the completeness
relation (1.8)

|n〉 =
∫

dx |x〉〈x|n〉 =
∫

dxϕn(x)|x〉 =
∫

dxϕn(x)ψ̂
†(x)|0〉. (1.51)

One can easily check that the normalization 〈n|n〉 = 1 is equivalent to saying that
∫
dx|ϕn(x)|2 = 1. From (1.51) we see that |n〉 is obtained by applying to the empty

ket |0〉 the operator

d̂†n ≡
∫

dxϕn(x)ψ̂
†(x) (1.52)

i.e., d̂†n|0〉 = |n〉. We may say that d̂†n creates a particle with quantum number n. Similarly,
if we take the adjoint of (1.52),

d̂n ≡
∫

dxϕ∗n(x)ψ̂(x) (1.53)

we obtain an operator that destroys a particle with quantum number n since

d̂n|n〉 = d̂nd̂
†
n|0〉 =

∫

dxdx′ϕ∗n(x)ϕn(x
′) ψ̂(x)ψ̂†(x′)|0〉
︸ ︷︷ ︸

δ(x−x′)|0〉

=

∫

dx |ϕn(x)|2|0〉 = |0〉.

The operators d̂n and d̂†n, being linear combinations of field operators at di�erent x, can
act on states with arbitrarily many particles. Below we derive some important relations for
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1.5. General basis states 23

the d̂-operators when the set {|n〉} forms an orthonormal basis in the one-particle Hilbert
space.

We can easily derive the important (anti)commutation relations using the corresponding
relations for the field operators

[

d̂n, d̂
†
m

]

∓
=

∫

dxdx′ ϕ∗n(x)ϕm(x′)
[

ψ̂(x), ψ̂†(x′)
]

∓
︸ ︷︷ ︸

δ(x−x′)

= 〈n|m〉 = δnm, (1.54)

and the more obvious ones
[

d̂n, d̂m

]

∓
=
[

d̂†n, d̂
†
m

]

∓
= 0, (1.55)

that follow similarly. It is worth noting that the d̂-operators obey the same (anti)commutation
relations as the field operators with the index n playing the role of x. This is a very important
observation since the results of the previous section relied only on the (anti)commutation
relations of ψ̂ and ψ̂†, and hence remain valid in this more general basis. To convince the
reader of this fact we derive some of the results of the previous section directly from the
(anti)commutation relations. We define the N -particle ket

|n1 . . . nN 〉 ≡ d̂†nN
. . . d̂†n1

|0〉 = d̂†nN
|n1 . . . nN−1〉, (1.56)

which has the symmetry property

|nP (1) . . . nP (N)〉 = (±)P |n1 . . . nN 〉,
as follows immediately from (1.55). Like the position–spin kets, the kets |n1 . . . nN 〉 span
the N -particle Hilbert space HN . The action of d̂n on |n1 . . . nN 〉 is similar to the action

of ψ̂(x) on |x1 . . .xN 〉. Using the (anti)commutation relation (1.54) we can move the d̂n-
operator through the string of d†-operators5

d̂n|n1 . . . nN 〉 =
([

d̂n, d̂
†
nN

]

∓
± d̂†nN

d̂n

)

|n1 . . . nN−1〉

= δnnN
|n1 . . . nN−1〉 ± d̂†nN

([

d̂n, d̂
†
nN−1

]

∓
± d̂†nN−1

d̂n

)

|n1 . . . nN−2〉

= δnnN
|n1 . . . nN−1〉 ± δnnN−1

|n1 . . . nN−2nN 〉

(±)2d̂†nN
d̂†nN−1

([

d̂n, d̂
†
nN−2

]

∓
± d̂†nN−2

d̂n

)

|n1 . . . nN−3〉

=
N∑

k=1

(±)N+kδnnk
|n1 . . . nk−1nk+1 . . . nN 〉. (1.57)

This result can also be used to calculate directly the overlap between two states of the
general basis. For example, for the case of two particles we have

〈n′1n′2|n1n2〉 = 〈n′1|d̂n′
2
|n1n2〉 = 〈n′1|

(
δn′

2n2
|n1〉 ± δn′

2n1
|n2〉

)

= δn′
1n1

δn′
2n2
± δn′

1n2
δn′

2n1
,

5Alternatively (1.57) can be derived from (1.44) together with the definitions of the d̂-operators.
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24 1. Second quantization

which is the analog of (1.26). More generally, for N particles we have

〈n′1 . . . n′N |n1 . . . nN 〉 =
∑

P

(±)P
N∏

j=1

δn′
j nP (j)

, (1.58)

which should be compared with the overlap 〈x′1 . . .x′N |x1 . . .xN 〉 in (1.30).
The states |n1 . . . nN 〉 are orthonormal (with the exception of the bosonic kets with two

or more equal quantum numbers) and can be used to construct a basis. In analogy with
(1.32) the completeness relation is

1

N !

∑

n1,...,nN

|n1 . . . nN 〉〈n1 . . . nN | = 1̂,

and hence the expansion of a ket |Ψ〉 belonging to HN reads

|Ψ〉 = 1̂|Ψ〉 = 1

N !

∑

n1,...,nN

|n1 . . . nN 〉 〈n1 . . . nN |Ψ〉
︸ ︷︷ ︸

Ψ(n1,...,nN )

. (1.59)

If |Ψ〉 is normalized then the coe�cients Ψ(n1, . . . , nN ) have the following probabilistic
interpretation

|Ψ(

m1
︷ ︸︸ ︷
n1 . . . n1 . . .

mM
︷ ︸︸ ︷
nM . . . nM )|2

m1! . . .mM !
=








probability of finding

m1 particles with quantum number n1
...

mM particles with quantum number nM







.

We have already observed that the d̂-operators obey the same (anti)commutation rela-
tions as the field operators provided that {|n〉} is an orthonormal basis in H1. Likewise we

can construct linear combinations of the d̂-operators that preserve the (anti)commutation
relations. It is left as an exercise for the reader to prove that the operators

ĉα =
∑

n

Uαnd̂n, ĉ†α =
∑

n

U∗αnd̂
†
n

obey
[

ĉα, ĉ
†
β

]

∓
= δαβ ,

provided that
Uαn ≡ 〈α|n〉

is the inner product between the elements of the original orthonormal basis {|n〉} and the
elements of another orthonormal basis {|α〉}. Indeed in this case the Uαn are the matrix
elements of a unitary matrix since

∑

n

UαnU
†
nβ =

∑

n

〈α|n〉〈n|β〉 = 〈α|β〉 = δαβ ,
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1.5. General basis states 25

where we use the completeness relation. In particular, when α = x we have Uxn = 〈x|n〉 =
ϕn(x) and we find that ĉx = ψ̂(x). We thus recover the field operators as

ψ̂(x) =
∑

n

ϕn(x)d̂n, ψ̂†(x) =
∑

n

ϕ∗n(x)d̂
†
n. (1.60)

These relations tell us that the expansion of the position–spin kets in terms of the kets
|n1 . . . nN 〉 is simply

|x1 . . .xN 〉 =
∑

n1...nN

ϕ∗n1
(x1) . . . ϕ

∗
nN

(xN )|n1 . . . nN 〉 (1.61)

Conversely, using (1.52) we can expand the general basis kets in terms of the position–spin
kets as

|n1 . . . nN 〉 =
∫

dx1 . . . dxN ϕn1
(x1) . . . ϕnN

(xN )|x1 . . .xN 〉 (1.62)

If we are given a state |Ψ〉 that is expanded in a general basis and we subsequently want
to calculate properties in position–spin space, such as the particle density or the current
density, we need to calculate the overlap between |n1 . . . nN 〉 and |x1 . . .xN 〉. This overlap
is the wavefunction for N particles with quantum numbers n1, . . . , nN

Ψn1...nN
(x1, . . . ,xN ) = 〈x1 . . .xN |n1 . . . nN 〉.

The explicit form of the wavefunction follows directly from the inner product (1.30) and from
the expansion (1.62), and reads

Ψn1...nN
(x1, . . . ,xN ) =

∑

P

(±)Pϕn1
(xP (1)) . . . ϕnN

(xP (N))

=

∣
∣
∣
∣
∣
∣
∣
∣

ϕn1
(x1) . . . ϕn1

(xN )
. . . . .
. . . . .

ϕnN
(x1) . . . ϕnN

(xN )

∣
∣
∣
∣
∣
∣
∣
∣
±

. (1.63)

Since for any matrix A we have |A |∓ = |AT |∓ with AT the transpose of A we can
equivalently write

Ψn1...nN
(x1, . . . ,xN ) =

∣
∣
∣
∣
∣
∣
∣
∣

ϕn1
(x1) . . . ϕnN

(x1)
. . . . .
. . . . .

ϕn1
(xN ) . . . ϕnN

(xN )

∣
∣
∣
∣
∣
∣
∣
∣
±

.

In the case of fermions the determinant is also known as the Slater determinant. For those
readers already familiar with Slater determinants we note that the absence on the r.h.s. of
the prefactor 1/

√
N ! is a consequence of forcing on the square modulus of the wavefunc-

tion a probability interpretation, as discussed in detail in Section 1.3. The actions of the
d̂-operators have a simple algebraic interpretation in terms of permanents or determinants.
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26 1. Second quantization

The action of the creation operator d̂†n on |n1 . . . nN 〉 in the position–spin representation,

i.e., 〈x1 . . .xN+1|d̂†n|n1 . . . nN 〉 simply amounts to adding a column with coordinate xN+1

and a row with wavefunction ϕn in (1.63). For the annihilation operator we have a similar
algebraic interpretation. Taking the inner product with 〈x1 . . .xN−1| of both sides of (1.57)
we get

〈x1 . . .xN−1|d̂n|n1 . . . nN 〉 =
N∑

k=1

(±1)N+k δnnk

×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ϕn1
(x1) . . . . . . ϕn1

(xN − 1) ϕn1
(xN )

...
...

...
...

...

ϕnk−1
(x1) . . . . . . ϕnk−1

(xN−1) ϕnk−1
(xN )

ϕnk
(x1) . . . . . . ϕnk

(xN−1) ϕnk
(xN )

ϕnk+1
(x1) . . . . . . ϕnk+1

(xN−1) ϕnk+1
(xN )

...
...

...
...

...

ϕnN
(x1) . . . . . . ϕnN

(xN−1) ϕnN
(xN )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

±

,

i.e., the action of the d̂n-operator amounts to deleting the last column and, if present, the
row with quantum number n from the permanent/determinant of (1.63), and otherwise yields
zero. Already at this stage the reader can appreciate how powerful it is to work with the
field operators and not to have anything to do with Slater determinants.

Exercise 1.2. Prove the inverse relations (1.60).

Exercise 1.3. Let |n〉 = |pτ〉 be a momentum–spin ket so that 〈x|pτ〉 = eip·rδστ , see
(1.10). Show that the (anti)commutation relation in (1.54) then reads

[

d̂pτ , d̂
†
p′τ ′

]

∓
= (2π)3δ(p− p′)δττ ′ , (1.64)

and that the expansion (1.60) of the field operators in terms of the d̂-operators is

ψ̂(x) =

∫
dp

(2π)3
eip·rd̂pσ, ψ̂†(x) =

∫
dp

(2π)3
e−ip·rd̂†pσ. (1.65)

1.6 Hamiltonian in second quantization

The field operators are useful not only to construct the kets of N identical particles but
also the operators acting on them. Let us consider again two identical particles and the
center-of-mass operator (1.15). In first quantization the ket |x1x2〉 is represented by the
(anti)symmetrized product (1.35) of one-particle kets. It is instructive to calculate the action
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1.6. Hamiltonian in second quantization 27

of R̂CM on |x1x2〉 to later appreciate the advantages of second quantization. We have

R̂CM
|x1〉|x2〉 ± |x2〉|x1〉√

2
=

1

2

r1|x1〉|x2〉 ± r2|x2〉|x1〉+ r2|x1〉|x2〉 ± r1|x2〉|x1〉√
2

=
1

2
(r1 + r2)

|x1〉|x2〉 ± |x2〉|x1〉√
2

. (1.66)

Throughout this book we use calligraphic letters for operators acting on kets written in
first quantization as opposed to operators (like the field operators) acting on kets written
in second quantization (like ψ̂†(xN ) . . . ψ̂†(x1)|0〉). We refer to the former as operators in
first quantization and to the latter as operators in second quantization. We now show that
the very same result (1.66) can be obtained if we write the center-of-mass operator as

R̂CM =
1

N̂

∫

dx r n̂(x),

where 1/N̂ is the inverse of the operator of the total number of particles

N̂ ≡
∫

dx n̂(x)

in which

n̂(x) = ψ̂†(x)ψ̂(x) (1.67)

is the so called density operator already introduced in Exercise 1.1. The origin of these names
for the operators n̂(x) and N̂ stems from the fact that |x1 . . .xN 〉 is an eigenket of the
density operator whose eigenvalue is exactly the density of N particles in the position–spin
coordinates x1, . . . ,xN . Indeed

n̂(x) ψ̂†(xN )ψ̂†(xN−1) . . . ψ̂
†(x1)|0〉

︸ ︷︷ ︸

|x1...xN 〉

=
[

n̂(x), ψ̂†(xN )
]

−
ψ̂†(xN−1) . . . ψ̂

†(x1)|0〉

+ ψ̂†(xN )
[

n̂(x), ψ̂†(xN−1)
]

−
. . . ψ̂†(x1)|0〉

...

+ ψ̂†(xN )ψ̂†(xN−1) . . .
[

n̂(x), ψ̂†(x1)
]

−
|0〉

=

(
N∑

i=1

δ(x− xi)

)

︸ ︷︷ ︸

density of N particles

in x1, . . . ,xN

|x1 . . .xN 〉, (1.68)

where we repeatedly use (1.49). This result tells us that any ket with N particles is an
eigenket of N̂ with eigenvalue N . By acting with R̂CM on |x1x2〉 = ψ̂†(x2)ψ̂

†(x1)|0〉 and
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28 1. Second quantization

taking into account (1.68) we find

R̂CM|x1x2〉 =
∫

dx r
1

2

(
2∑

i=1

δ(x− xi)

)

|x1x2〉 =
1

2
(r1 + r2)|x1x2〉.

Simple and elegant! Both the operator and the ket are easy to manipulate and their expres-
sions are undoubtedly shorter than the corresponding expressions in first quantization. A
further advantage of second quantization is that the operator R̂CM keeps the very same
form independently of the number of particles; using (1.68) it is straightforward to verify that

R̂CM|x1 . . .xN 〉 =
1

N

(
N∑

i=1

ri

)

|x1 . . .xN 〉.

On the contrary, R̂CM in (1.15) acts only on kets belonging to H2. For kets in HN the
center-of-mass operator in first quantization is given by (1.16). Thus, when working in Fock
space it would be more rigorous to specify on which Hilbert space R̂CM acts. Denoting by
R̂CM(N) the operator in (1.16) we can write down the relation between operators in first
and second quantization as

R̂CM =

∞∑

N=0

R̂CM(N),

with the extra rule that R̂CM(N) yields the null ket when acting on a state of HM 6=N . In
this book, however, we are not so meticulous with the notation. The Hilbert space on which
operators in first quantization act is clear from the context.

The goal of this section is to extend the above example to general operators and in
particular to derive an expression for the many-particle Hamiltonian Ĥ = Ĥ0 + Ĥint.
According to (1.17) the matrix element of the noninteracting Hamiltonian Ĥ0 between a
position–spin ket and a generic ket |Ψ〉 is

〈x1 . . .xN |Ĥ0|Ψ〉 =
N∑

j=1

∑

σ′

hσjσ′(rj ,−i∇j ,S)Ψ(x1, . . . ,xj−1, rjσ
′,xj+1, . . . ,xN ).

(1.69)
It is worth observing that for N = 1 this expression reduces to

〈x|Ĥ0|Ψ〉 =
∑

σ′

hσσ′(r,−i∇,S)Ψ(rσ′),

which agrees with (1.13) when |Ψ〉 = |x′′〉 since in this case Ψ(rσ′) = 〈rσ′|r′′σ′′〉 =
δ(r − r′′)δσ′σ′′ . Similarly, we see from (1.18) that the matrix element of the interaction
Hamiltonian Ĥint between a position–spin ket and a generic ket |Ψ〉 is

〈x1 . . .xN |Ĥint|Ψ〉 =
1

2

N∑

i6=j

v(xi,xj)Ψ(x1, . . . ,xN ). (1.70)

In (1.70) we considered the more general case of spin-dependent interactions v(x1,x2),
according to which the interaction energy between a particle in r1 and a particle in r2
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1.6. Hamiltonian in second quantization 29

depends also on the spin orientation σ1 and σ2 of these particles. Now the question is:
how can we express Ĥ0 and Ĥint in terms of field operators?

We start our discussion with the noninteracting Hamiltonian. For pedagogical purposes
we derive the operator Ĥ0 in second quantization in two di�erent ways.

Derivation 1 : In first quantization the noninteracting Hamiltonian Ĥ0 of a system of N
particles each described by ĥ is given in (1.17). The first-quantization eigenkets of Ĥ0 are
obtained by forming (anti)symmetrized products of one-particle eigenkets of ĥ and look like

|n1 . . . nN 〉 =
1√
N !

∑

P

(±)P |nP (1)〉 . . . |nP (N)〉, (1.71)

with
ĥ|n〉 = ǫn|n〉.

We leave as an exercise for the reader to show that

Ĥ0|n1 . . . nN 〉 = (ǫn1
+ . . .+ ǫnN

) |n1 . . . nN 〉.

The proof of this identity involves the same kinds of manipulation used to derive (1.66). To
carry them out is useful to appreciate the simplicity of second quantization. We show below
that in second quantization the noninteracting Hamiltonian Ĥ0 takes the compact form

Ĥ0 =

∫

dxdx′ ψ̂†(x)〈x|ĥ|x′〉ψ̂(x′) (1.72)

independently of the number of particles. We prove (1.72) by showing that the second
quantization ket |n1 . . . nN 〉 is an eigenket of Ĥ0 with eigenvalue ǫn1

+ . . .+ǫnN
. In second

quantization |n1 . . . nN 〉 = d̂†nN
. . . d̂†n1

|0〉, with the d̂-operators defined in (1.52) and (1.53). It

is then natural to express Ĥ0 in terms of the d̂-operators. Inserting a completeness relation
between ĥ and |x′〉 we find

Ĥ0 =
∑

n

∫

dxdx′ ψ̂†(x)〈x|ĥ|n〉〈n|x′〉ψ̂(x′)

=
∑

n

ǫn

∫

dx ψ̂†(x) 〈x|n〉
︸ ︷︷ ︸

ϕn(x)

∫

dx′ 〈n|x′〉
︸ ︷︷ ︸

ϕ∗
n(x

′)

ψ̂(x′) =
∑

n

ǫnd̂
†
nd̂n, (1.73)

where we use ĥ|n〉 = ǫn|n〉. The d̂-operators bring the Hamiltonian into a diagonal form, i.e.,

none of the o�-diagonal combinations d̂†ndm with m 6= n appears in Ĥ0. The occupation
operator

n̂n ≡ d̂†nd̂n (1.74)

is the analog of the density operator n̂(x) in the position–spin basis; it counts how many
particles have quantum number n. Using the (anti)commutation relations (1.54) and (1.55) it
is easy to prove that

[

n̂n, d̂
†
m

]

−
= δnmd̂

†
m,

[

n̂n, d̂m

]

−
= −δnmd̂m, (1.75)
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30 1. Second quantization

which should be compared with the relations (1.48) and (1.49). The action of Ĥ0 on
|n1 . . . nN 〉 is then

Ĥ0 d̂
†
nN
d̂†nN−1

. . . d̂†n1
|0〉

︸ ︷︷ ︸

|n1...nN 〉

=
∑

n

ǫn

([

n̂n, d̂
†
nN

]

−
d̂†nN−1

. . . d̂†n1
|0〉

+ d̂†nN

[

n̂n, d̂
†
nN−1

]

−
. . . d̂†n1

|0〉
...

+ d̂†nN
d̂†nN−1

. . .
[

n̂n, d̂
†
n1

]

−
|0〉
)

= (ǫn1
+ . . .+ ǫnN

) d̂†nN
d̂†nN−1

. . . d̂†n1
|0〉. (1.76)

This is exactly the result we wanted to prove: the Hamiltonian Ĥ0 is the correct second-
quantized form of Ĥ0. We can write Ĥ0 in di�erent ways using the matrix elements (1.13)
of ĥ. For instance

Ĥ0 =
∑

σσ′

∫

dr ψ̂†(rσ)hσσ′(r,−i∇,S)ψ̂(rσ′), (1.77)

or, equivalently,

Ĥ0 =
∑

σσ′

∫

dr ψ̂†(rσ)hσσ′(r, i
←−
∇,S)ψ̂(rσ′). (1.78)

In these expressions the action of the gradient ∇ on a field operator is a formal expression
which makes sense only when we sandwich Ĥ0 with a bra and a ket. For instance

〈χ|ψ̂†(rσ)∇ψ̂(rσ′)|Ψ〉 ≡ lim
r′→r

∇
′〈χ|ψ̂†(rσ)ψ̂(r′σ′)|Ψ〉, (1.79)

where ∇
′ is the gradient with respect to the primed variable. It is important to observe

that for any arbitrary large but finite system the physical states have no particles at infinity.
Therefore, if |χ〉 and |Ψ〉 are physical states then (1.79) vanishes when |r| → ∞. More gen-

erally, the sandwich of a string of field operators ψ̂†(x1) . . . ψ̂
†(xN )ψ̂(y1) . . . ψ̂(yM ) with

two physical states vanishes when one of the coordinates of the field operators approaches
infinity. The equivalence between (1.77) and (1.78) has to be understood as an equivalence
between the sandwich of the corresponding r.h.s. with physical states. Consider for example
ĥ = p̂2/2m. Equating the r.h.s. of (1.77) and (1.78) we get

∑

σ

∫

dr ψ̂†(rσ)

[

−∇
2

2m
ψ̂(rσ)

]

=
∑

σ

∫

dr

[

−∇
2

2m
ψ̂†(rσ)

]

ψ̂(rσ).

This is an equality only provided that the integration by part produces a vanishing boundary
term, i.e., only provided that for any two physical states |χ〉 and |Ψ〉 the quantity in (1.79)
vanishes when |r| → ∞.
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1.6. Hamiltonian in second quantization 31

Derivation 2 : The second derivation consists in showing that the matrix elements of
(1.77) or (1.78) are given by (1.69). Using (1.44) we find

〈x1 . . .xN |ψ̂†(rσ)hσσ′(r,−i∇,S)ψ̂(rσ′)|Ψ〉

= lim
r′→r

hσσ′(r′,−i∇′,S)
N∑

j=1

(±)N+jδ(xj − x)〈x1 . . .xj−1xj+1 . . .xN |ψ̂(x′)|Ψ〉

= lim
r′→r

hσσ′(r′,−i∇′,S)
N∑

j=1

δ(xj − x)Ψ(x1, . . .xj−1,x
′,xj+1, . . . ,xN ),

where we use the fact that it requires N − j interchanges to put x′ at position between
xj−1 and xj+1. Summing over σ, σ′ and integrating over r we get

〈x1 . . .xN |Ĥ0|Ψ〉 =
N∑

j=1

∑

σ′

lim
r′→rj

hσjσ′(r′,−i∇′,S)Ψ(x1, . . .xj−1,x
′,xj+1, . . . ,xN ),

which coincides with the matrix element (1.69). Here and in the following we call one-body
operators those operators in second quantization that can be written as a quadratic form
of the field operators. The Hamiltonian Ĥ0 as well as the center-of-mass position operator
R̂CM are one-body operators.

From (1.76) it is evident that one-body Hamiltonians can only describe noninteracting
systems since the eigenvalues are the sum of one-particle eigenvalues, and the latter do not
depend on the position of the other particles. If there is an interaction v(x1,x2) between
one particle in x1 and another particle in x2 the corresponding interaction energy operator
Ĥint cannot be a one-body operator. The energy to put a particle in a given point depends
on where the other particles are located. Suppose that there is a particle in x1. Then if
we want to put a particle in x2 we must pay an energy v(x1,x2). The addition of another
particle in x3 will cost an energy v(x1,x3) + v(x2,x3). In general if we have N particles
in x1, . . . ,xN the total interaction energy is

∑

i<j v(xi,xj) =
1
2

∑

i6=j v(xi,xj). To derive

the form of Ĥint in second quantization we simply note that the ket |x1 . . .xN 〉 is an
eigenket of Ĥint with eigenvalue 1

2

∑

i6=j v(xi,xj), i.e.,

Ĥint|x1 . . .xN 〉 =




1

2

∑

i6=j

v(xi,xj)



 |x1 . . .xN 〉. (1.80)

Equivalently (1.80) follows directly from the matrix element (1.70), which is valid for all |Ψ〉.
Due to the presence of a double sum in (1.80) the operator Ĥint must be a quartic form in
the field operators. In (1.68) we proved that |x1 . . .xN 〉 is an eigenket of the density operator
n̂(x) with eigenvalue

∑

i δ(x− xi). This implies that |x1 . . .xN 〉 is also an eigenket of the
operator n̂(x)n̂(x′) with eigenvalue

∑

i,j δ(x − xi)δ(x
′ − xj). Thus, taking into account

that the double sum in (1.80) does not contain terms with i = j, the interaction energy
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32 1. Second quantization

operator is given by

Ĥint =
1

2

∫

dx dx′ v(x,x′)n̂(x)n̂(x′)− 1

2

∫

dx v(x,x)n̂(x)

=
1

2

∫

dx dx′ v(x,x′)
(

ψ̂†(x)ψ̂(x)ψ̂†(x′)ψ̂(x′)− δ(x− x′)ψ̂†(x)ψ̂(x)
)

=
1

2

∫

dx dx′ v(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x). (1.81)

In the last equality we first use the (anti)commutation relation (1.47) to cancel the term
proportional to δ(x − x′), and then (1.40) to exchange the operators ψ̂(x) and ψ̂(x′). It
is easy to verify that the action of Ĥint on |x1 . . .xN 〉 yields (1.80). Like the one-body
Hamiltonian Ĥ0, the interaction energy operator keeps the very same form independently
of the number of particles. We call two-body operators those operators that can be written
as a quartic form of the field operators and, in general, n-body operators those operators
that contain a string of n field operators ψ̂† followed by a string of n field operators ψ̂.

The total Hamiltonian of a system of interacting identical particles is the sum of Ĥ0 and
Ĥint and reads

Ĥ=

∫

dxdx′ ψ̂†(x)〈x|ĥ|x′〉ψ̂(x′) + 1

2

∫

dx dx′v(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x) (1.82)

Equation (1.82) is the main result of this section. To calculate the action of Ĥ on a ket |Ψ〉
we only need to know the (anti)commutation relations since |Ψ〉 can always be expanded in

terms of ψ̂†(x1) . . . ψ̂
†(xN )|0〉. Equivalently, given a convenient one-body basis {|n〉} we

may work with the d̂-operators. This is done by expressing Ĥ in terms of the d̂-operators,
expanding |Ψ〉 on the basis d̂†n1

. . . d̂†nN
|0〉 and then using the (anti)commutation relations

(1.54) and (1.55). To express Ĥ in terms of the d̂-operators we simply substitute the expansion
(1.60) in (1.82) and find

Ĥ =
∑

ij

hij d̂
†
i d̂j

︸ ︷︷ ︸

Ĥ0

+
1

2

∑

ijmn

vijmnd̂
†
i d̂
†
j d̂md̂n

︸ ︷︷ ︸

Ĥint

, (1.83)

with

hij = 〈i|ĥ|j〉 =
∑

σσ′

∫

drϕ∗i (rσ)hσσ′(r,−i∇,S)ϕj(rσ
′) = h∗ji, (1.84)

and the so called Coulomb integrals6

vijmn =

∫

dx dx′ ϕ∗i (x)ϕ
∗
j (x
′)v(x,x′)ϕm(x′)ϕn(x). (1.85)

In the new basis the single-particle Hamiltonian in first quantization can be written in the
ket-bra form

ĥ =
∑

ij

hij |i〉〈j|, (1.86)

as can easily be checked by taking the matrix element 〈i|ĥ|j〉 and comparing with (1.84).

6In fact the nomenclature Coulomb integral is appropriate only if v is the Coulomb interaction.
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1.6. Hamiltonian in second quantization 33

We recall that the quantum numbers of the general basis comprise an orbital and a spin
quantum number. For later purposes it is instructive to highlight the spin structure in (1.83).
We write the quantum numbers i, j,m, n as

i = s1σ1, j = s2σ2, m = s3σ3, n = s4σ4.

Then the one-body part reads

Ĥ0 =
∑

s1s2
σ1σ2

hs1σ1 s2σ2
d̂†s1σ1

d̂s2σ2
.

In the absence of magnetic fields or spin-orbit coupling h does not depend on S and hence
its matrix elements are diagonal in spin space hij = δσ1σ2

hs1s2 . In this case Ĥ0 takes the
simpler form

Ĥ0 =
∑

s1s2

∑

σ

hs1s2 d̂
†
s1σd̂s2σ, (1.87)

where hs1s2 is the spatial integral in (1.84) with the functions ϕs(r) defined in (1.50). For
interparticle interactions v(x1,x2) = v(r1, r2) which are independent of spin the interac-
tion Hamiltonian can be manipulated in a similar manner. From (1.85) we see that vijmn

vanishes if j and m have di�erent spin projection (σ2 6= σ3) or if i and n have di�erent
spin projection (σ1 6= σ4), i.e.,

vijmn = δσ2σ3
δσ1σ4

vs1s2s3s4 ,

where vs1s2s3s4 is the spatial integral in (1.85) with the functions ϕs(r). Inserting this form
of the interaction into Ĥint we find

Ĥint =
1

2

∑

s1s2s3s4
σσ′

vs1s2s3s4 d̂
†
s1σd̂

†
s2σ′ d̂s3σ′ d̂s4σ. (1.88)

We propose below a few simple exercises to practice with operators in second quanti-
zation. In the next chapter we illustrate physically relevant examples and use some of the
identities from the exercises to acquire familiarity with this new formalism.

Exercise 1.4. Let n̂n ≡ d̂†nd̂n be the occupation operator for particles with quantum

number n, see (1.74). Prove that in the fermionic case

n̂2n = n̂n, (1.89)

and hence that the eigenvalues of n̂n are either 0 or 1, i.e., it is not possible to create two

fermions in the same state |n〉. This is a direct consequence of the Pauli exclusion principle.

Exercise 1.5. Prove that the total number of particle operator N̂ =
∫
dx ψ̂†(x)ψ̂(x) can

also be written as N̂ =
∑

n d̂
†
nd̂n for any orthonormal basis |n〉. Calculate the action of N̂

on a generic ket |ΨN 〉 with N particles (|ΨN 〉 ∈ HN ) and prove that

N̂ |ΨN 〉 = N |ΨN 〉.
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34 1. Second quantization

Exercise 1.6. Prove that N̂ commutes with Ĥ0 and Ĥint, i.e.,

[N̂ , Ĥ0]− = [N̂ , Ĥint]− = 0. (1.90)

This means that the eigenkets of Ĥ can be chosen as kets with a fixed number of particles.

Exercise 1.7. Let n = sσ and σ =↑, ↓ be the spin projection for fermions of spin 1/2. We

consider the operators

Ŝz
s ≡

1

2
(n̂s↑ − n̂s↓), Ŝ+

s ≡ d̂†s↑d̂s↓, Ŝ−s ≡ d̂†s↓d̂s↑ = (Ŝ+
s )†. (1.91)

Using the anticommutation relations prove that the action of the above operators on the kets

|sσ〉 ≡ d̂†sσ|0〉 is

Ŝz
s |s ↑〉 =

1

2
|s ↑〉, Ŝ+

s |s ↑〉 = |∅〉, Ŝ−s |s ↑〉 = |s ↓〉,

and

Ŝz
s |s ↓〉 = −

1

2
|s ↓〉, Ŝ+

s |s ↓〉 = |s ↑〉, Ŝ−s |s ↓〉 = |∅〉.

To what operators do Ŝz
s , Ŝ

+
s , Ŝ−s correspond?

Exercise 1.8. Let us define the spin operators along the x and y directions as

Ŝx
s ≡

1

2
(Ŝ+

s + Ŝ−s ), Ŝy
s ≡

1

2i
(Ŝ+

s − Ŝ−s ),

and the spin–density operator Ŝz
s along the z direction as in (1.91). Prove that these operators

can also be written as

Ŝj
s =

1

2

∑

σσ′

d̂†sσσ
j
σσ′ d̂sσ′ , j = x, y, z, (1.92)

with

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

,

the Pauli matrices. Using the anticommutation relations verify also that

[Ŝi
s, Ŝ

j
s′ ]− = iδss′

∑

k=x,y,z

εijkŜ
k
s ,

where εijk is the Levi–Civita tensor.7

7The Levi–Civita tensor is zero if at least two indices are equal and otherwise

εP (1)P (2)P (3) = (−)P ,

where P is an arbitrary permutation of the indices 1, 2, 3.
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1.7. Density matrices and quantum averages 35

1.7 Density matrices and quantum averages

We have already stressed several times that if we know the ket |Ψ〉, which means if we know
the wavefunction Ψ(x1, . . . ,xN ) = 〈x1 . . .xN |Ψ〉, then we can use the (anti)commutation
rules of the field operators to calculate any quantum average 〈Ψ|Ô|Ψ〉, where Ô is an
operator in second quantization. Most operators of physical interest are one- or two-body
operators (or in any case n-body operators with n≪ N ). For the averages of these operators
a full knowledge of the wavefunction is redundant, as we now show. Consider for instance
the most general one-body operator

Ô =

∫

dxdy O(x,y) ψ̂†(x)ψ̂(y).

To calculate the quantum average over the state |Ψ〉 we must evaluate the quantum average

〈Ψ|ψ̂†(x)ψ̂(y)|Ψ〉 for all x and y. This quantity can be seen as the inner product between

the states ψ̂(x)|Ψ〉 and ψ̂(y)|Ψ〉 which both contain (N − 1) particles. We therefore have

〈Ψ|ψ̂†(x)ψ̂(y)|Ψ〉 = 〈Ψ|ψ̂†(x)1̂ψ̂(y)|Ψ〉

=
1

(N − 1)!

∫

dx1 . . . dxN−1〈Ψ|x1 . . .xN−1x〉〈x1 . . .xN−1y|Ψ〉

=
1

(N − 1)!

∫

dx1 . . . dxN−1Ψ
∗(x1, . . . ,xN−1,x)Ψ(x1, . . . ,xN−1,y), (1.93)

where in the second line we used the completeness relation (1.32) as well as the definition
of the field operators, according to which

ψ̂†(x)|x1 . . .xN−1〉 = |x1 . . .xN−1x〉.

We thus see that to calculate 〈Ψ|Ô|Ψ〉 it is enough to know the integral over all coordinates
except one of the product of the wavefunction with itself. The quantity

Γ1(y;x) ≡ 〈Ψ|ψ̂†(x)ψ̂(y)|Ψ〉

is called the one-particle density matrix. Sometimes we use the alternative notation

n(y,x) = Γ1(y;x),

since the one-particle density matrix is the generalization of the quantum average of the
density operator

n(x) = 〈Ψ|n̂(x)|Ψ〉 = 〈Ψ|ψ̂†(x)ψ̂(x)|Ψ〉 = n(x,x).

From a knowledge of the one-particle density matrix we can, in particular, calculate the
quantum average of the noninteracting Hamiltonian Ĥ0

〈Ψ|Ĥ0|Ψ〉 =
∫

dxdy〈x|ĥ|y〉Γ1(y;x).

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:04:48 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.003

Cambridge Books Online © Cambridge University Press, 2015



36 1. Second quantization

Taking for example the Hamiltonian ĥ with matrix elements (1.13) we find

〈Ψ|Ĥ0|Ψ〉 =
∑

σ′σ

∫

dr hσ′σ(r,−i∇,S) Γ1(rσ; r
′σ′)

∣
∣
∣
∣
r′=r

.

The one-particle density matrix is Hermitian in the position–spin indices, i.e.,

Γ1(y;x) = Γ∗1(x;y)

and its trace equals the number of particles in the state |Ψ〉
∫

dx Γ1(x,x) =

∫

dx n(x) = N (1.94)

The eigenfunctions φk of Γ1 are defined as the solution of the eigenvalue problem
∫

dxΓ1(y;x)φk(x) = nkφk(y) (1.95)

and are called the natural orbitals. The natural orbitals can always be chosen orthonormal
and their set forms a basis in the one-particle Hilbert space. The eigenvalues nk can be
interpreted as the occupation of the natural orbitals for the following reasons. First, they
sum up to N due to (1.94), i.e.,

∑

k

nk = N.

Second, if we multiply both sides of (1.95) by φ∗k(y) and integrate over y we find

nk =

∫

dxdy φ∗k(y) 〈Ψ|ψ̂†(x)ψ̂(y)|Ψ〉
︸ ︷︷ ︸

Γ1(y;x)

φk(x) = 〈Ψ|d̂†kd̂k|Ψ〉,

where the d̂-operators are defined as in (1.52) and (1.53). Thus nk is the quantum average of
the occupation operator of the kth natural orbital. In fermionic systems the eigenvalues of
d̂†kd̂k are either 0 or 1, see (1.89), and therefore8

0 ≤ nk ≤ 1.

Finally, if the state |Ψ〉 = |m1 . . .mN 〉 is the permanent/determinant of N functions be-
longing to some orthonormal basis ϕm(x) = 〈x|m〉 then the natural orbitals are simply the
functions of the basis, i.e., φk = ϕk , as can easily be checked. If the quantum number k
appears Nk times in the string m1 . . .mN then the eigenvalues nk are equal to Nk .

Let us continue our discussion on quantum averages by considering two-body operators.
The most general form of a two-body operator is

Ô =

∫

dxdx′dydy′ O(x,x′,y,y′) ψ̂†(x)ψ̂†(x′)ψ̂(y′)ψ̂(y).

8Any fermionic ket |Ψ〉 can be written as the linear combination of two eigenkets |Ψ0〉, |Ψ1〉 of the occupation
operator d̂†kd̂k with eigenvalues 0 and 1 respectively: |Ψ〉 = α|Ψ0〉 + β|Ψ1〉. Then 〈Ψ|d̂†kd̂k|Ψ〉 = |β|2 ≤ 1

since the normalization of |Ψ〉 requires that |α|2 + |β|2 = 1.
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1.7. Density matrices and quantum averages 37

To evaluate 〈Ψ|Ô|Ψ〉 we need to know the two-particle density-matrix

Γ2(y,y
′;x,x′) ≡ 〈Ψ|ψ̂†(x)ψ̂†(x′)ψ̂(y′)ψ̂(y)|Ψ〉

for all y,y′,x,x′. Note that for notational convenience the order of the first two arguments
of Γ2 is reversed with respect to the string of the ψ̂ operators. As before we can see Γ2 as
the inner product between two states with (N − 2) particles and therefore

Γ2(y,y
′;x,x′) =

1

(N − 2)!

∫

dx1 . . . dxN−2 Ψ
∗(x1, . . . ,xN−2,x

′,x)

×Ψ(x1, . . . ,xN−2,y
′,y). (1.96)

Thus, to calculate 〈Ψ|Ô|Ψ〉 we do not need the full N -particle wavefunction; it is enough
to know the integral over all coordinates except two of the product of the wavefunction with
itself. In particular, the quantum average of the interaction Hamiltonian over the state |Ψ〉
reads

〈Ψ|Ĥint|Ψ〉 =
1

2

∫

dxdx′ v(x,x′)Γ2(x,x
′;x,x′). (1.97)

It is instructive to derive a few properties of the density matrices. We start by introducing
a generalization of Γ1 and Γ2 which is the n-particle density matrix

Γn(y1, . . . ,yn;x1, . . . ,xn) = 〈Ψ|ψ̂†(x1) . . . ψ̂
†(xn)ψ̂(yn) . . . ψ̂(y1)|Ψ〉.

If the ket |Ψ〉 describes N particles then Γn = 0 for all n > N . For n = N we have

ΓN (y1, . . . ,yN ;x1, . . . ,xN ) = 〈Ψ|ψ̂†(x1) . . . ψ̂
†(xN )|0〉〈0|ψ̂(yN ) . . . ψ̂(y1)|Ψ〉

= 〈Ψ|xN . . .x1〉〈yN . . .y1|Ψ〉
= Ψ∗(x1, . . . ,xN )Ψ(y1, . . . ,yN ),

where we use the fact that acting with N annihilation operators on |Ψ〉 produces the
zero-particle ket |0〉 and we further use the (anti)symmetry of the wavefunction in the last
equality. So the N -particle density matrix is simply the product of two wavefunctions. The
(N − 1)-particle density matrix can be obtained by integrating out one coordinate. Setting
yN = xN we have

∫

dxNΓN (y1, . . . ,yN−1,xN ;x1, . . . ,xN )

= 〈Ψ|ψ̂†(x1) . . . ψ̂
†(xN−1)

(∫

dxN ψ̂†(xN )ψ̂(xN )

)

︸ ︷︷ ︸

N̂

ψ̂(yN−1) . . . ψ̂(y1)|Ψ〉

= 〈Ψ|ψ̂†(x1) . . . ψ̂
†(xN−1)ψ̂(yN−1) . . . ψ̂(y1)|Ψ〉

= ΓN−1(y1, . . . ,yN−1;x1, . . . ,xN−1),

where we use the fact that the operator N̂ acts on a one-particle state. We can continue
this procedure and integrate out coordinate yN−1 = xN−1. We then obtain again an
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38 1. Second quantization

expression involving the operator N̂ that now acts on a two-particle state finally yielding
2ΓN−2. Subsequently integrating out more coordinates we find

Γk(y1, . . . ,yk;x1, . . . ,xk)

=
1

(N − k)!

∫

dxk+1 . . . dxN ΓN (y1, . . . ,yk,xk+1, . . . ,xN ;x1, . . . ,xN ).

We see that the k-particle density matrices are simply obtained by integrating N − k
coordinates out of the N -particle density matrix. In particular for k = 1, 2 the above
results coincide with (1.93) and (1.96). In Appendix C we derive further properties of the
density matrices and discuss how one can give them a probability interpretation.

Before concluding the section we would like to draw the attention of the reader to an
important point. In many physical situations one is interested in calculating the ground-state
energy of the Hamiltonian Ĥ = Ĥ0 + Ĥint. From basic courses of quantum mechanics we
know that this energy can be obtained, in principle, by minimizing the quantity 〈Ψ|Ĥ|Ψ〉
over all possible (normalized) N -particle states |Ψ〉. This is in general a formidable task
since the wavefunction Ψ(x1, . . . ,xN ) depends on N coordinates. We have just learned,
however, that

〈Ψ|Ĥ|Ψ〉 =
∫

dxdy 〈x|ĥ|y〉Γ1(y;x) +
1

2

∫

dxdx′ v(x,x′)Γ2(x,x
′;x,x′).

Could we not minimize the quantum average of the Hamiltonian with respect to Γ1 and Γ2?
This would be a great achievement since Γ1 and Γ2 depend only on 2 and 4 coordinates
respectively. Unfortunately the answer to the question is, at present, negative. While we
know the constraints to construct physical one-particle density matrices (for instance for
fermions Γ1 must be Hermitian with eigenvalues between 0 and 1 that sum up to N ) we
still do not know the constraints for Γ2 [4]. In this book we learn how to approximate Γ1

and Γ2. As we shall see the density matrices are not the most natural objects to work with.
We therefore introduce other quantities called Green’s functions from which to extract the
density matrices and much more.
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2

Getting familiar with second

quantization: model Hamiltonians

2.1 Model Hamiltonians

In all practical calculations the properties of a many-particle system are extracted by using a
finite number of (physically relevant) single-particle basis functions. For instance, in systems
like crystals or molecules the electrons are attracted by the positive charge of the nuclei
and it is reasonable to expect that a few localized orbitals around each nucleus provide a
good-enough basis set. If we think of the H2 molecule the simplest description consists in
taking one basis function ϕn=1σ for an electron of spin σ localized around the first nucleus
and another one ϕn=2σ for an electron of spin σ localized around the second nucleus, see
the schematic representation below.

If the set {ϕn} is not complete in H1 then the expansion (1.60) is an approximation for
the field operators. The approximate field operators satisfy approximate (anti)commutation
relations. Let us show this with an example. We consider a space grid in three-dimensional
space with uniform grid spacing ∆. To each grid point rs = (xs, ys, zs) we assign a basis
function that is constant in a cube of linear dimension ∆ centered in rs, see Fig. 2.1(a).
These basis functions are orthonormal and have the following mathematical structure

ϕn=sσs
(rσ) = δσσs

θxs
(x)θys

(y)θzs(z)

∆3/2
, (2.1)

with the Heaviside function θa(x) = θ( 12∆ − |a − x|), see Fig. 2.1(b), and the prefactor

1/∆3/2 which guarantees the correct normalization. For any finite grid spacing ∆ the set

39
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40 2. Getting familiar with second quantization: model Hamiltonians

(a) (b)

Figure 2.1 (a) Space grid with vertices (grid points) in rs. To each grid point is assigned a
basis function as described in the main text. (b) The piecewise function used to construct
the approximate basis.

{ϕn} is not a complete set. However, if the physical properties of the system vary on a
length scale much larger than ∆ then the use of the approximate field operators,

ψ̂†(rσ) ∼ ψ̂†∆(rσ) =
∑

s

θxs
(x)θys

(y)θzs(z)

∆3/2
d̂†sσ,

is expected to work fine. The (anti)commutation relation for these approximate field opera-
tors is

[

ψ̂∆(x), ψ̂
†
∆(x

′)
]

∓
= δσσ′

∑

ss′

θxs
(x)θys

(y)θzs(z)θxs′
(x′)θys′

(y′)θzs′ (z
′)

∆3

[

d̂s,σ, d̂
†
s′,σ

]

∓
︸ ︷︷ ︸

δss′

.

Thus we see that the (anti)commutator is zero if r and r′ belong to di�erent cubes and is
equal to δσσ′/∆3 otherwise. The accuracy of the results can be checked by increasing the
number of basis functions. In our example this corresponds to reducing the spacing ∆.
Indeed, in the limit ∆ → 0 the product θxs

(x)θxs
(x′)/∆ → δ(x − x′) and similarly for y

and z, and hence the (anti)commutator approaches the exact result

[

ψ̂∆(x), ψ̂
†
∆(x

′)
]

∓
−−−→
∆→0

δσσ′δ(x− x′)δ(y − y′)δ(z − z′) = δ(x− x′).

In this chapter we discuss how to choose a proper set of basis functions for some rele-
vant physical systems, construct the corresponding Hamiltonians, and derive a few elemen-
tary results. The aim of the following sections is not to provide an exhaustive presentation
of these model Hamiltonians, something that would require a monograph for each model,
but rather to become familiar with the formalism of second quantization. We think that the
best way to learn how to manipulate the field operators is by seeing them at work.
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2.2. Pariser–Parr–Pople model 41

Figure 2.2 Representation of the benzene molecule C6H6 with a pz orbital for each carbon
atom. We recall that the electronic configuration of carbon is 1s22s22p2 and that in the
benzene geometry the 2s, 2px, 2py orbitals hybridize to form three sp2 orbitals [8]. The
latter share an electron with the nearest hydrogen as well as with the two nearest neighbour
carbons.

2.2 Pariser–Parr–Pople model

A popular model Hamiltonian often employed to describe organic molecules is the so called
Pariser–Parr–Pople model or simply the PPP model [5, 6]. We give here an elementary
derivation of the PPP model and refer the reader to more specialized textbooks for a careful
justification of the simplifications involved [7]. As a concrete example we consider an atomic
ring like, e.g., the benzene molecule C6H6 of Fig. 2.2, but the basic ideas can be used for
other molecular geometries as well. If we are interested in the low energy physics of the
system, such as for instance its ground-state properties, we can assume that the inner shell
electrons are “frozen” in their molecular orbitals while the outer shell electrons are free to
wander around the molecule. In the case of benzene we may consider as frozen the two 1s
electrons of each carbon atom C as well as the three electrons of the in-plane sp2 orbitals
which form σ-bonds with the hydrogen atom H and with the two nearest carbon atoms. For
the description of the remaining six electrons (one per C–H unit) we could limit ourselves to
use a pz orbital for each carbon atom. In general the problem is always to find a minimal set
of functions to describe the dynamics of the “free” (also called valence) electrons responsible
for the low-energy excitations.

Let us assign a single orbital to each atomic position Rs of the ring

ϕ̃sτ (rσ) = δστf(r−Rs),

where s = 1, . . . , N and N is the number of atoms in the ring. The function f(r) is
localized around r = 0; an example could be the exponential function e−α|r|, see Fig. 2.3.
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42 2. Getting familiar with second quantization: model Hamiltonians

Figure 2.3 Orbitals ϕ̃sτ localized around the atomic position Rs of the atomic ring.

The set of functions {ϕ̃sτ} is, in general, not an orthonormal set since the overlap matrix

Sss′ =

∫

dx ϕ̃∗sτ (x)ϕ̃s′τ (x) =

∫

dr f∗(r−Rs)f(r−Rs′)

may have nonvanishing o�-diagonal elements. A simple way to orthonormalize the set {ϕ̃sτ}
without losing the local character of the functions is the following. The overlap matrix is
Hermitian and positive-definite,1 meaning that all its eigenvalues λk are larger than zero. Let
D = diag(λ1, λ2, . . .) and U be the unitary matrix which brings S into its diagonal form,
i.e., S = UDU †. We define the square root of the matrix S according to

S1/2 = UD1/2U † with D1/2 = diag(
√

λ1,
√

λ2, . . .).

The matrix S1/2 is also Hermitian and positive-definite and can easily be inverted

S−1/2 = UD−1/2U † with D−1/2 = diag

(
1√
λ1
,

1√
λ2
, . . .

)

.

We then construct the new set of functions

ϕsτ (x) =
∑

s′

ϕ̃s′τ (x)S
−1/2
s′s

whose overlap is

∫

dxϕ∗s1τ1(x)ϕs2τ2(x) =
∑

s′s′′

∫

dxS
−1/2
s1s′

ϕ̃∗s′τ1(x)ϕ̃s′′τ2(x)S
−1/2
s′′s2

= δτ1τ2(S
−1/2SS−1/2)s1s2 = δτ1τ2δs1s2 .

1The positive definiteness of S follows from its definition. Given an arbitrary vector with components vs we
have

∑

ss′

v∗sSss′vs′ =

∫

dx

(

∑

s

v∗s ϕ̃
∗
sτ (x)

)(

∑

s′

vs′ ϕ̃s′τ (x)

)

> 0.
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2.2. Pariser–Parr–Pople model 43

The set {ϕsτ} is therefore orthonormal. If the o�-diagonal elements of the overlap matrix
are small compared to unity then the new functions are only slightly delocalized. Consider
for instance an overlap matrix of the form

S =














1 δ 0 0 . . . δ
δ 1 δ 0 0

0 δ 1
. . . 0

0 0
. . .

. . .
. . .

...
...

. . . 1 δ
δ 0 0 . . . δ 1














= 1̂ +∆,

according to which we only have an overlap of amount δ ≪ 1 between nearest neighbor
atoms (note that the matrix element S1N = SN1 = δ since atom N is the nearest neighbor
of atom 1). To first order in δ the inverse of the square root of S is

S−1/2 = (1̂ +∆)−1/2 ∼ 1̂ − 1

2
∆,

and therefore the new functions are slightly spread over the nearest neighbor atoms

ϕsτ (x) = ϕ̃sτ (x)−
δ

2
ϕ̃s+1τ (x)−

δ

2
ϕ̃s−1τ (x), (2.2)

where it is understood that the index s ± N must be identified with s. The orthonormal
functions {ϕsτ} are our set over which to expand the field operators

ψ̂†(x) ∼
∑

sτ

ϕ∗sτ (x)d̂
†
sτ ,

with

d̂†sτ =

∫

dxϕsτ (x)ψ̂
†(x),

and similar relations for the adjoint operators. The d̂-operators satisfy the anti-commutation
relations (1.54) since {ϕsτ} is an orthonormal set. Inserting the approximate expansion of
the field operators into the Hamiltonian Ĥ we obtain an approximate Hamiltonian. This
Hamiltonian looks like (1.83) but the sums are restricted to the incomplete set of quantum
numbers s. In this way the original field operators ψ̂(x) and ψ̂†(x) get replaced by a

finite (or at most countable) number of d̂-operators. The parameters hij and vijmn of
the approximate Hamiltonian depend on the specific choice of basis functions and on the
microscopic details of the system such as, e.g., the mass and charge of the particles (we
remind the reader that in this book we work in atomic units so that for electrons me =
−e = 1), the scalar and vector potentials, the interparticle interaction, etc. Once these
parameters are given, the approximate Hamiltonian is fully specified and we refer to it as
the model Hamiltonian. Below we estimate the parameters hij and vijmn for the set {ϕsτ}
in (2.2) and for an atomic ring like benzene.
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44 2. Getting familiar with second quantization: model Hamiltonians

Let us write the functions (2.2) as a product of an orbital and a spin part: ϕsτ (rσ) =
δστϕs(r). Since the ϕs(r)s are localized around the atomic position Rs the dominant
Coulomb integrals vs1s2s3s4 are those with s1 = s4 and s2 = s3, see (1.85). We therefore
make the approximation

vs1s2s3s4 ∼ δs1s4δs2s3
∫

drdr′|ϕs1(r)|2v(r, r′)|ϕs2(r
′)|2

︸ ︷︷ ︸

vs1s2

. (2.3)

The quantity vs1s2 equals the classical interaction energy between the charge distributions
|ϕs1 |2 and |ϕs2 |2. For the Coulomb interaction v(r, r′) = 1/|r − r′| we can further
approximate the integral vs1s2 when s1 6= s2 as

vs1s2 ∼
1

|Rs1 −Rs2 |
, (2.4)

since in the neighborhood of |Rs1 − Rs2 | the function 1/r is slowly varying and can be
considered constant. Inserting these results into (1.88) we obtain the model form of the
interaction operator

Ĥint =
1

2

∑

ss′

σσ′

vss′ d̂
†
sσd̂
†
s′σ′ d̂s′σ′ d̂sσ =

1

2

∑

s6=s′

vss′ n̂sn̂s′ +
∑

s

vssn̂s↑n̂s↓, (2.5)

with nsσ = d̂†sσd̂sσ the occupation operator that counts how many electrons (0 or 1) are in
the spin-orbital ϕsσ and n̂s ≡ n̂s↑ + n̂s↓.2

By the same overlap argument we can neglect all matrix elements hss′ between atomic
sites that are not nearest neighbors (we are implicitly assuming that hsσ s′σ′ = δσσ′hss′ ).
Let 〈ss′〉 denote the couples of nearest neighbor atomic sites. Then the noninteracting part
(1.87) of the Hamiltonian takes the form

Ĥ0 =
∑

s

hssn̂s +
∑

〈ss′〉

∑

σ

hss′ d̂
†
sσd̂s′σ.

In the present case the coe�cients hss′ are given by

hss′ = 〈sσ|ĥ|s′σ〉 =
∫

drϕ∗s(r)

[

−∇
2

2
− V (r)

]

ϕs′(r).

The potential V (r) in this expression is the sum of the electrostatic potentials between an
electron in r and the atomic nuclei in Rs, i.e.,

V (r) = +
∑

s

Zs

|r−Rs|
,

2In writing the first term on the r.h.s. of (2.5) we use the fact that for sσ 6= s′σ′ the operator d̂sσ commutes

with d̂†
s′σ′ d̂s′σ′ . For the second term we further took into account that for s = s′ and σ = σ′ the product

d̂sσ d̂sσ = 0.
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2.3. Noninteracting models 45

where Zs is the e�ective nuclear positive charge of atom s, i.e., the sum of the bare nuclear
charge and the screening charge of the frozen electrons. Let us manipulate the diagonal
elements hss. Using the explicit form of the potential we can write

hss = ǫs + βs,

with

ǫs =

∫

drϕ∗s(r)

[

−∇
2

2
− Zs

|r−Rs|

]

ϕs(r),

and

βs = −
∑

s′ 6=s

∫

dr |ϕs(r)|2
Zs′

|r−Rs′ |
.

Since |ϕs|2 is the charge distribution of an electron localized in Rs we can, as before,
approximately write

βs ∼ −
∑

s′ 6=s

Zs′

|Rs −Rs′ |
= −

∑

s′ 6=s

Zs′vss′ ,

where we use (2.4). Inserting these results into Ĥ0 and adding Ĥint we find the PPP model
Hamiltonian

Ĥ = Ĥ0 + Ĥint =
∑

s

ǫsn̂s +
∑

〈ss′〉

∑

σ

hss′ d̂
†
sσd̂s′σ

+
1

2

∑

s6=s′

vss′(n̂s − Zs)(n̂s′ − Zs′) +
∑

s

vssn̂s↑n̂s↓,

where we have also added the constant 1
2

∑

s6=s′ vss′ZsZs′ corresponding to the electro-
static energy of the screened nuclei. If the ground state |Ψ0〉 has exactly Zs electrons on
atom s, i.e., n̂s|Ψ0〉 = Zs|Ψ0〉 for all s, then the only interaction energy comes from the
last term. In general, however, this is not the case since for |Ψ0〉 to be an eigenstate of all
n̂s it must be |Ψ0〉 = |s1σ1 s2σ2 . . .〉. This state is an eigenstate of Ĥ only provided that
the o�-diagonal elements hss′ = 0, which is satisfied when the atoms are infinitely far apart
from each other.

The purpose of deriving the PPP model was mainly pedagogical. Every model Hamiltonian
in the scientific literature has similar underlying assumptions and approximations. Most of
these models cannot be solved exactly despite the fact that the Hamiltonian is undoubtedly
simpler than the original continuum Hamiltonian. In the next sections we discuss other
examples of model Hamiltonians suitable for describing other physical systems.

2.3 Noninteracting models

We discussed in Section 1.6 how to find eigenvalues and eigenvectors of the noninteracting
Hamiltonian Ĥ0. In the absence of interactions the many-particle problem reduces to a
single-particle problem. The interparticle interaction makes our life much more complicated
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46 2. Getting familiar with second quantization: model Hamiltonians

Figure 2.4 Crystal structure of graphene: a unit cell with two carbon atoms (a and b) repeated
periodically along the directions v+ and v− to form a honeycomb lattice. For illustrative
purposes some unit cells have been labeled with the two-dimensional vector of integers
n = (n1, n2).

(and interesting) and we have to resort to approximative methods in order to make progress.
The zeroth order approximation consists of neglecting the interparticle interaction altogether;
how much physics can we capture in this way? The answer to this question clearly depends
on the system at hand and on the physical properties that interest us. It turns out that in
nature some physical properties of some systems are not so sensitive to the interparticle
interaction. For instance, a noninteracting treatment of crystals is, in many cases, enough
to assess whether the crystal is a metal or an insulator. In this section we consider two
paradigmatic examples of noninteracting models.

2.3.1 Bloch theorem and band structure

A crystal consists of a unit cell repeated periodically in three, two, or one dimensions. Each
unit cell contains the same (finite) number of atoms arranged in the same geometry. An
example is graphene, i.e., a planar structure of sp2-bonded carbon atoms arranged in a
honeycomb lattice as illustrated in Fig. 2.4. In this case the unit cell consists of two carbon
atoms, a and b in the figure, repeated periodically along the directions v+ and v−. The unit
cells can be labeled with a vector of integers n = (n1, . . . , nd) where d is the dimension
of the crystal, see again Fig. 2.4. The expansion of the vector n over the orthonormal basis
{ei} with (ei)j = δij reads

n =
d∑

i=1

niei.

Two unit cells with labels n and n′ are nearest neighbor if |n − n′| = 1. As for the PPP
model we assign to each unit cell a set of localized orbitals {ϕnsσ} which we assume

already orthonormal and denote by d̂†nsσ and d̂nsσ , the creation and annihilation operators
for electrons in the orbital ϕnsσ . The index s runs over all orbitals of a given unit cell. In
the case of graphene we may assign a single pz orbital to each carbon, so s = 1, 2.
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2.3. Noninteracting models 47

In the absence of magnetic fields or other couplings that break the spin symmetry, the
matrix elements of ĥ are

hnsσ n′s′σ′ = δσσ′hnsn′s′ .

If we choose orbitals localized around the atomic positions then the matrix elements hnsn′s′

are very small for |n − n′| ≫ 1. We then discard hnsn′s′ unless n and n′ are nearest
neighbors. The periodicity of a crystal is reflected in the fact that the unit cell Hamiltonian
hnsns′ , as well as the Hamiltonian connecting two nearest neighbor cells hnsn±eis′ , does
not depend on n. We therefore define the matrices

hss′ ≡ hnsns′ , (2.6)

and

Ti,ss′ ≡ hn+eisns′ , ⇒ T †i,ss′ = h∗n+eis′ ns = hnsn+eis′

= hn−eisns′ . (2.7)

With these definitions our model for the noninteracting Hamiltonian of a crystal takes the
form

Ĥ0 =
∑

nσ

∑

ss′

(

hss′ d̂
†
nsσd̂ns′σ +

d∑

i=1

Ti,ss′ d̂
†
n+eisσd̂ns′σ + T †i,ss′ d̂

†
n−eisσd̂ns′σ

)

.

To better visualize the matrix structure of Ĥ0 we introduce the vector of d̂-operators

d̂†nσ ≡ (d̂†n1σ, d̂
†
n2σ, . . .), d̂nσ = (d̂†n1σ, d̂

†
n2σ, . . .)

†,

and rewrite Ĥ0 in terms of the product between these vectors and the matrices h, Ti and
T †i ,

Ĥ0 =
∑

nσ

(

d̂†nσ h d̂nσ +
d∑

i=1

d̂
†
n+eiσ Ti d̂nσ + d̂

†
n−eiσ T

†
i d̂nσ

)

. (2.8)

The strategy to find the one-particle eigenvalues of Ĥ0 consists of considering a finite
block of the crystal and then letting the volume of the block go to infinity. This block is, for
convenience, chosen as a parallelepiped with edges given by d linearly independent vectors
of integers N1, . . . ,Nd each radiating from a given unit cell. Without loss of generality we
can choose the radiating unit cell at the origin. The set Vb of all unit cells contained in the
block is then

Vb =

{

n :
n ·Ni

Ni ·Ni
< 1 for all i

}

. (2.9)

In the case of a one-dimensional crystal we can choose only one vector N1 = N and the unit
cells of the block n = n ∈ Vb are those with n = 0, 1, . . . , N − 1. For the two-dimensional
graphene, instead, we may choose, e.g., N1 = (N, 0) and N2 = (0,M) or N1 = (N,N)
and N2 = (M,−M) or any other couple of linearly independent vectors. When the volume
of the block tends to infinity the eigenvalues of the crystal are independent of the choice
of the block. Interestingly, however, the procedure below allows us to know the eigenvalues
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48 2. Getting familiar with second quantization: model Hamiltonians

of Ĥ0 for any finite N1, . . . ,Nd, and hence to have access to the eigenvalues of blocks of
di�erent shapes. We come back to this aspect at the end of the section. To simplify the
mathematical treatment we impose periodic boundary conditions along N1, . . . ,Nd, i.e.,
we “wrap” the block onto itself forming a ring in d = 1, a torus in d = 2, etc. This choice
of boundary conditions is known as the Born–von Karman (BvK) boundary condition and
turns out to be very convenient. Other kinds of boundary condition would lead to the same
results in the limit of large Vb. The BvK condition implies that the cells n and n +Ni are
actually the same cell and we therefore make the identifications

d̂
†
n+Niσ

≡ d̂†nσ, d̂n+Niσ ≡ d̂nσ, (2.10)

for all Ni.
We are now in the position to show how the diagonalization procedure works. Consider

the Hamiltonian (2.8) in which the sum over n is restricted to unit cells in Vb and the
identification (2.10) holds for all boundary terms with one d̂-operator outside Vb. To bring
Ĥ0 into a diagonal form we must find a suitable linear combination of the d̂-operators that
preserves the anti-commutation relations, as discussed in Section 1.6. For this purpose we
construct the matrix U with elements

Unk =
1

√

|Vb|
eik·n, (2.11)

where |Vb| is the number of unit cells in Vb. In (2.11) the row index runs over all n ∈ Vb

whereas the column index runs over all vectors k = (k1, . . . , kd) with components −π <
ki ≤ π and, more importantly, fulfilling

k ·Ni = 2πmi, with mi integers. (2.12)

We leave it as an exercise for the reader to prove that the number of k vectors with these
properties is exactly |Vb| and hence that U is a square matrix. Due to property (2.12) the
quantity Unk is periodic in n with periods N1, . . . ,Nd. It is this periodicity that we now
exploit to prove that U is unitary. Consider the following set of equalities

eik
′
1

∑

n∈Vb

U∗nk Unk′ =
∑

n∈Vb

U∗nk Un+e1k′

=
∑

n∈Vb

U∗n−e1k
Unk′

= eik1

∑

n∈Vb

U∗nk Unk′ ,

and the likes with k′2, . . . , k
′
d. In the second line of the above identities we use the fact that

the sum over all n ∈ Vb of a periodic function f(n) is the same as the sum of f(n− e1).
For the left and the right hand side of these equations to be the same we must either have
k = k′ or ∑

n

U∗nk Unk′ = 0 for k 6= k′.
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2.3. Noninteracting models 49

Since for k = k′ the sum
∑

n U
∗
nk Unk = 1, the matrix U is unitary and hence the operators

ĉkσ =
1

√

|Vb|
∑

n∈Vb

e−ik·n d̂nσ, ĉ
†
kσ =

1
√

|Vb|
∑

n∈Vb

eik·n d̂†nσ,

preserve the anti-commutation relations. The inverse relations read

d̂nσ =
1

√

|Vb|
∑

k

eik·n ĉkσ, d̂†nσ =
1

√

|Vb|
∑

k

e−ik·n ĉ
†
kσ,

and the reader can easily check that due to property (2.12) the d̂-operators satisfy the BvK
boundary conditions (2.10). Inserting these inverse relations into (2.8) (in which the sum is
restricted to n ∈ Vb) we get the Hamiltonian

Ĥ0 =
∑

kσ

ĉ
†
kσ

(

h+

d∑

i=1

(Tie
−iki + T †i e

iki)

)

︸ ︷︷ ︸

hk

ĉkσ.

In this expression the matrix hk is Hermitian and can be diagonalized. Let ǫkν be the
eigenvalues of hk and uk be the unitary matrix that brings hk into the diagonal form, i.e.,
hk = ukdiag(ǫk1, ǫk2, . . .)u

†
k. The unitary matrix uk has the dimension of the number of

orbitals in the unit cell and should not be confused with the matrix U whose dimension
is |Vb|. We now perform a further change of basis and construct the following linear
combinations of the ĉ-operators with fixed k vector

b̂kσ = u†kĉkσ, b̂
†
kσ = ĉ

†
kσuk.

Denoting by ukν(s) = (uk)sν the (s, ν) matrix element of uk the explicit form of the

b̂-operators is

b̂kνσ =
∑

s

u∗kν(s)ĉksσ, b̂†kνσ =
∑

s

ukν(s)ĉ
†
ksσ.

With these definitions the Hamiltonian Ĥ0 takes the desired form since

Ĥ0 =
∑

kσ

ĉ
†
kσuk diag(ǫk1, ǫk2, . . .)u

†
kĉkσ

=
∑

kνσ

ǫkν b̂
†
kνσ b̂kνσ.

We have derived the Bloch theorem: the one-particle eigenvalues of Ĥ0 are obtained by
diagonalizing hk for all k and the corresponding one-particle eigenkets |kνσ〉 = b̂†kνσ|0〉
have overlap with the original basis functions |nsσ′〉 = d†nsσ′ |0〉 given by

ψkνσ(nsσ
′) = 〈nsσ′|kνσ〉 = δσσ′

√

|Vb|
eik·n ukν(s), (2.13)
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50 2. Getting familiar with second quantization: model Hamiltonians

Figure 2.5 (a) A ring with N unit cells. (b) Eigenvalues of the ring Hamiltonian with t = −1
and ǫ = 2 for di�erent numbers N of unit cells. The eigenvalues with N = 61 and 121 are
shifted upward by 1 and 2 respectively.

which is a plane-wave with di�erent amplitudes on di�erent atoms of the same unit cell.
When the volume of the block |Vb| → ∞ the eigenvalues ǫkν become a continuum called a
band.3 We then have a band for each ν and the total number of bands coincides with the
number of localized orbitals per unit cell. Each crystal is characterized by its band structure
and, as we see in Section 6.3.4, the band structure can be experimentally measured. If
we choose the localized basis functions to be of the form (2.1) and subsequently we want
to increase the accuracy of the calculations by reducing the spacing ∆, then in the limit
∆ → 0 the quantities ukν(s) → ukν(r) become continuous functions of the position
r in the cell. These functions can be periodically extended to all space by imposing a
requirement that they assume the same value in the same point of all unit cells. In the
literature the periodic functions ukν(r) are called Bloch functions. Below we illustrate some
elementary applications of this general framework.

One-band model: The simplest example is a one-dimensional crystal with one orbital
per unit cell, see Fig. 2.5(a). Then the matrices h ≡ ǫ and T ≡ t are 1× 1 matrices and the
one-particle eigenvalues are

ǫk = ǫ+ te−ik + teik = ǫ+ 2t cos k. (2.14)

If the number N of unit cells is, e.g., odd, then the one-dimensional k vector takes the

values k = 2πm/N with m = − (N−1)
2 , . . . , (N−1)2 , as follows from (2.12). The eigenvalues

(2.14) are displayed in Fig. 2.5(b) for di�erent N . It is clear that when N →∞ they become
a continuum and form one band.

Two-band model: Another example of a one-dimensional crystal is shown in Fig. 2.6(a).
Each unit cell consists of two di�erent atoms, a and b in the figure. We assign a single
orbital per atom and neglect all o�-diagonal matrix elements except those connecting atoms

3For |Vb| → ∞ the index k becomes a continuous index in accordance with (2.12).
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2.3. Noninteracting models 51

Figure 2.6 (a) A ring with N unit cells and two atoms per cell. (b) Eigenvalues of the ring
Hamiltonian with t = −1, ǫ = 2 and ∆ = 1/2 for di�erent numbers N of unit cells.

of type a to atoms of type b. For simplicity we also consider the case that the distance
between two nearest neighbor atoms is everywhere the same along the crystal. Then the
matrices h and T are 2× 2 matrices with the following structure

h =

(
ǫ+∆ t
t ǫ−∆

)

, T =

(
0 t
0 0

)

,

where ∆ is an energy parameter that takes into account the di�erent nature of the atoms.
The structure of Tss′ = hn+1s ns′ , see (2.7), can be derived by checking the overlap between
atom s in cell n+1 and atom s′ in cell n. For instance, if we take cell 2 we see from Fig. 2.6(a)
that atom a has overlap with atom b in cell 1, hence Tab = t, but it does not have overlap
with atom a in cell 1, hence Taa = 0. On the other hand atom b in cell 2 does not have
overlap with any atom in cell 1, and hence Tba = Tbb = 0. The eigenvalues of

hk = h+ Te−ik + T †eik =

(
ǫ+∆ t(1 + e−ik)

t(1 + eik) ǫ−∆

)

are
ǫk± = ǫ±

√

∆2 + 2t2(1 + cos k), (2.15)

and are displayed in Fig. 2.6(b) for di�erent numbers N of unit cells. As in the previous

example, the values of k have the form 2πm/N with m = − (N−1)
2 , . . . , (N−1)2 for odd

N . When N → ∞ the ǫk± become a continuum and form two bands separated by an
energy gap of width 2∆. If the crystal contains two electrons per unit cell then the lower
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52 2. Getting familiar with second quantization: model Hamiltonians

band is fully occupied whereas the upper band is empty. In this situation we must provide
a minimum energy 2∆ to excite one electron in an empty state; the crystal behaves like an
insulator if the gap is large and like a semiconductor if the gap is small. It is also worth
noting that for ∆ = 0 we recover the previous example but with 2N atoms rather than N .

Graphene: Another important example that we wish to discuss is the two-dimensional
crystal with which we opened this section. Graphene is a single layer of graphite and, as
such, not easy to isolate. It was not until 2004 that graphene was experimentally realized
by transferring a single layer of graphite onto a silicon dioxide substrate [9], an achievement
which was rewarded with the Nobel prize in physics in 2010. The coupling between the
graphene and the substrate is very weak and does not alter the electrical properties of the
graphene. Before 2004 experimentalists were already able to produce tubes of graphene
with a diameter of few nanometers. These carbon nanotubes can be considered as an
infinitely long graphene strip wrapped onto a cylinder. Due to their mechanical (strong and
sti�) and electrical properties, carbon nanotubes are among the most studied systems at
the time of writing this book. There exist several kinds of nanotube depending on how
the strip is wrapped. The wrapping is specified by a pair of integers (P,Q) so that atoms
separated by Pv+ + Qv− are identified. Below we consider the armchair nanotubes for
which (P,Q) = (N,N) and hence the axis of the tube is parallel to v+ − v−.

Let us define the vector N1 = (N,N) and the vector parallel to the tube axis N2 =
(M,−M). The armchair nanotube is recovered when M → ∞. For simplicity we assign a
single pz orbital to each carbon atom and consider only those o�-diagonal matrix elements
that connect atoms a to atoms b. From Fig. 2.4 we then see that the matrices h, T1 and T2
must have the form4

h =

(
0 t
t 0

)

, T1 =

(
0 t
0 0

)

, T2 =

(
0 t
0 0

)

.

The eigenvalues of

hk = h+

2∑

i=1

(Tie
−iki + T †i e

iki) =

(
0 t(1 + e−ik1 + e−ik2)

t(1 + eik1 + eik2) 0

)

can easily be calculated and read

ǫk± = ±t
√

1 + 4 cos
k1 − k2

2

(

cos
k1 − k2

2
+ cos

k1 + k2
2

)

.

The possible values of k belong to a square with vertices in (±π,±π) and fulfill (2.12), i.e.,

k ·N1 = N(k1 + k2) = 2πm1,

k ·N2 = M(k1 − k2) = 2πm2. (2.16)

4The addition of a constant energy to the diagonal elements of h simply leads to a rigid shift of the eigenvalues.
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2.3. Noninteracting models 53

Figure 2.7 (a) Equivalent domain of k vectors. The grey areas with the same roman numbers
are separated either by the vector (2π, 0) or by the vector (0, 2π). (b) Eigenvalues of a
(5, 5) armchair nanotube. The thick lines correspond to the valence band (below zero) and
the conduction band (above zero). All bands in between the top and the conduction band
and in between the bottom and the valence band are doubly degenerate.

From these relations it is evident that an equivalent domain of k vectors, like the one
illustrated in Fig. 2.7(a), is more convenient for our analysis. This equivalent domain is a
rectangle tilted by π/4, with the short edge equal to

√
2π and the long edge equal to 2

√
2π.

If we define kx = k1 + k2 and ky = k1 − k2 then −2π < kx ≤ 2π and −π < ky ≤ π and
hence

kx = 2π
m1

N
, with m1 = −N + 1, . . . , N

ky = 2π
m2

M
, with m2 = − (M − 1)

2
, . . . ,

M − 1

2
,

for odd M . The reader can easily check that the number of k is the same as the number
of atoms in the graphene block. In the limit M → ∞ the quantum number ky becomes
a continuous index and we obtain 2 × 2N one-dimensional bands corresponding to the
number of carbon atoms in the transverse direction,5

ǫkykx± = ±t
√

1 + 4 cos
ky
2

(

cos
ky
2

+ cos
kx
2

)

.

The set of all carbon atoms in the transverse direction can be considered as the unit cell of
the one-dimensional crystal, which is the nanotube.

In Fig. 2.7(b) we plot the eigenvalues ǫkykx± for the (N,N) = (5, 5) armchair nanotube.
Since the neutral nanotube has one electron per atom, all bands with negative energy are

5In this example the quantum number kx together with the sign ± of the eigenvalues plays the role of the
band index ν .
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54 2. Getting familiar with second quantization: model Hamiltonians

fully occupied. It is noteworthy that the highest occupied band (valence band) and the
lowest unoccupied band (conduction band) touch only in two points. Around these points
the energy dispersion is linear and the electrons behave as if they were relativistic [10].
Increasing the diameter of the nanotube also, kx becomes a continuous index and the ǫk±
become the eigenvalues of the two-dimensional graphene. In this limit the ǫk± form two
two-dimensional bands which still touch in only two points. Due to its so peculiar band
structure graphene is classified as a semi-metal, that is a crystal with properties between a
metal and a semiconductor.

Exercise 2.1. Show that the eigenvalues (2.15) with ∆ = 0 coincide with the eigenvalues

(2.14) of the simple ring with 2N atoms.

Exercise 2.2. Consider the one-dimensional crystal below

with matrices h =

(
ǫ

√
2t√

2t ǫ

)

and T =

(
t
√
2 t

0 0

)

. Show that for t > 0 the two

bands are

ǫk1 = ǫ− 2t,

ǫk2 = ǫ+ 2t+ 2t cos k,

with k ∈ (−π, π). The first band is therefore perfectly flat. If we have half an electron

per unit cell then the ground state is highly degenerate. For instance, the states obtained

by occupying each k-level of the flat band with an electron of either spin up or down all

have the same energy. This degeneracy is lifted by the electron–electron interaction and the

ground state turns out to be the one in which all electrons have parallel spins. The crystal is

then a ferromagnet. The ferromagnetism in flat-band crystals has been proposed by Mielke

and Tasaki [11–13] and is usually called flat-band ferromagnetism.

2.3.2 Fano model

The Fano model is ubiquitous in condensed matter physics as it represents the simplest
schematization of a discrete state “interacting” with a continuum of states. It was originally
introduced by Fano to explain a universal asymmetric line-shape observed in the absorption
spectrum of several physical systems [14]. We introduce it here to model an atom or a
molecule adsorbed on the surface of a metal, see the schematic illustration below.
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2.3. Noninteracting models 55

Let |ǫQ〉 be the single-particle energy eigenket of the metal, where Q is a quantum
number (continuous or discrete) that accounts for the degeneracy of the eigenvalue ǫ. In
this section the spin index carried by states and operators is understood since everything is
diagonal in spin space. Equivalently, we can think of fermions with spin zero. For the atom
we consider only a single localized orbital and denote by |ǫ0〉 the corresponding ket. For
large distances between the atom and the surface the Hamiltonian of the system is the sum
of the Hamiltonian Ĥmet of the metal and the Hamiltonian Ĥat of the atom

Ĥmet + Ĥat =

∫

dǫ dQ ǫ d̂†ǫQd̂ǫQ + ǫ0 d̂
†
0d̂0,

where the d̂-operators create or annihilate electrons and hence satisfy the anti-commutation
relations [

d̂ǫQ, d̂
†
ǫ′Q′

]

+
= δ(ǫ− ǫ′)δ(Q−Q′),

[

d̂0, d̂
†
0

]

+
= 1.

When the atom approaches the surface the overlap TǫQ ≡ 〈ǫQ|ĥ|ǫ0〉 increases and cannot
be neglected any longer. In this regime the Hamiltonian of the system becomes

Ĥ0 = Ĥmet + Ĥat +

∫

dǫ dQ
(

TǫQd̂
†
ǫQd̂0 + T ∗ǫQd̂

†
0d̂ǫQ

)

. (2.17)

This is the general structure of the Fano model. It is common (and for later purposes also
instructive) to discretize the continuum of states by retaining only one state |ǫkQk〉 in the
volume element ∆ǫ∆Q. Then, for small volume elements the Fano Hamiltonian can be
approximated as

Ĥ0 =
∑

k

ǫkd̂
†
kd̂k + ǫ0d̂

†
0d̂0 +

∑

k

(

Tkd̂
†
kd̂0 + T ∗k d̂

†
0d̂k

)

, (2.18)

where the discrete d̂-operators satisfy the anti-commutation relations
[

d̂k, d̂k′

]

+
= δkk′ . To

recover the continuum limit we establish the correspondence

Tk =
√

∆ǫ∆Q TǫkQk
(2.19)

for the o�-diagonal matrix elements of ĥ, and

d̂k =
√

∆ǫ∆Q d̂ǫkQk
, d̂†k =

√

∆ǫ∆Q d̂†ǫkQk
,

for the fermionic operators. Letting ∆ǫ∆Q → 0 the discrete Hamiltonian (2.18) reduces to
the continuum Hamiltonian (2.17) and

[

d̂ǫkQk
, d̂†ǫk′Qk′

]

+
=

δkk′

∆ǫ∆Q
→ δ(ǫ− ǫ′)δ(Q−Q′).

We now calculate the atomic occupation n0 for a given Fermi energy ǫF, which is the
energy of the highest occupied level of the metal. Let |λ〉 be the single-particle eigenkets of
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56 2. Getting familiar with second quantization: model Hamiltonians

Ĥ0 with eigenenergies ǫλ. The corresponding annihilation and creation operators ĉλ and ĉ†λ
are a linear combination of the original d̂-operators as discussed in Section 1.5,

ĉ†λ = 〈ǫ0|λ〉 d̂†0 +
∑

k

〈k|λ〉 d̂†k,

and with a similar equation for the adjoint. The ground state |Φ0〉 of the system is obtained
by occupying all the |λ〉s with energies ǫλ ≤ ǫF and reads

|Φ0〉 =
∏

λ:ǫλ≤ǫF
ĉ†λ |0〉. (2.20)

To calculate the atomic occupation n0 = 〈Φ0|d̂†0d̂0|Φ0〉 we evaluate the ket d̂0|Φ0〉 by
moving the operator d̂0 through the string of ĉ†-operators, as we did in (1.57). The di�erence
here is that the anti-commutator is [d̂0, ĉ

†
λ]+ = 〈ǫ0|λ〉 rather than a Kronecker delta. We

then find
d̂0|Φ0〉 =

∑

λ

(−)pλ〈ǫ0|λ〉
∏

λ′ 6=λ

ĉ†λ′ |0〉,

where the sum and the product are restricted to states below the Fermi energy. The integer
pλ in the above equation refers to the position of ĉ†λ in the string of operators (2.20),
in agreement with (1.57). The atomic occupation n0 is the inner product of the many-
particle state d̂0|Φ0〉 with itself. In this inner product all cross terms vanish since they are

proportional to the inner product of states with di�erent strings of ĉ†λ operators, see (1.58).

Taking into account that
∏

λ′ 6=λ ĉ
†
λ′ |0〉 is normalized to 1 for every λ we obtain the intuitive

result
n0 =

∑

λ:ǫλ≤ǫF
|〈ǫ0|λ〉|2; (2.21)

the atomic occupation is the sum over all occupied states of the probability of finding an
electron in |ǫ0〉.

From (2.21) it seems that we need to know the eigenkets |λ〉 and eigenenergies ǫλ in
order to determine n0. We now show that this is not strictly the case. Let us rewrite n0 as

n0 =

∫ ǫF

−∞

dω

2π

∑

λ

2πδ(ω − ǫλ)|〈ǫ0|λ〉|2. (2.22)

The eigenkets |λ〉 satisfy ĥ|λ〉 = ǫλ|λ〉 where ĥ is the one-particle Hamiltonian in first

quantization. For the Fano model ĥ has the following ket-bra form:

ĥ =
∑

k

ǫk|k〉〈k|+ ǫ0|ǫ0〉〈ǫ0|+
∑

k

(
Tk|k〉〈ǫ0|+ T ∗k |ǫ0〉〈k|

)
,

where we use (1.86). Then

∑

λ

δ(ω − ǫλ)|〈ǫ0|λ〉|2 =
∑

λ

〈ǫ0|δ(ω − ĥ)|λ〉〈λ|ǫ0〉 = 〈ǫ0|δ(ω − ĥ)|ǫ0〉,
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2.3. Noninteracting models 57

where we use the completeness relation
∑

λ |λ〉〈λ| = 1̂. Inserting this result into (2.22) we
get

n0 =

∫ ǫF

−∞

dω

2π
〈ǫ0|2πδ(ω − ĥ)|ǫ0〉.

This is our first encounter with the spectral function (first quantization) operator

Â(ω) ≡ 2πδ(ω − ĥ) = i

[
1

ω − ĥ+ iη
− 1

ω − ĥ− iη

]

.

In the second equality η is an infinitesimally small positive constant and we used the Cauchy
relation

1

ω − ǫ± iη
= P

1

ω − ǫ ∓ iπδ(ω − ǫ) (2.23)

where P denotes the principal part. Thus we can calculate n0 if we find a way to determine
the matrix element A00(ω) = 〈ǫ0|Â(ω)|ǫ0〉 of the spectral function. As we see in Chapter 6,
this matrix element can be interpreted as the probability that an electron in |ǫ0〉 has energy
ω.6

To determine A00(ω) we separate ĥ = Ê+ T̂ into a sum of the metal+atom Hamiltonian
Ê and the o�-diagonal part T̂ , and use the identity

1

ζ − ĥ
=

1

ζ − Ê
+

1

ζ − ĥ
T̂ 1

ζ − Ê
, (2.24)

where ζ is an arbitrary complex number. This identity can easily be verified by multiplying
both sides from the left by (ζ−ĥ). Sandwiching of (2.24) between 〈ǫ0| and |ǫ0〉 and between
〈ǫ0| and |k〉 we find

〈ǫ0|
1

ζ − ĥ
|ǫ0〉 =

1

ζ − ǫ0
+
∑

k

Tk 〈ǫ0|
1

ζ − ĥ
|k〉 1

ζ − ǫ0
,

〈ǫ0|
1

ζ − ĥ
|k〉 = T ∗k 〈ǫ0|

1

ζ − ĥ
|ǫ0〉

1

ζ − ǫk
.

Substituting the second of these equations into the first we arrive at the following important
result

〈ǫ0|
1

ζ − ĥ
|ǫ0〉 =

1

ζ − ǫ0 − Σem(ζ)
, with Σem(ζ) =

∑

k

|Tk|2
ζ − ǫk

. (2.25)

The embedding self-energy Σem(ζ) appears because the atom is not isolated; we can think
of it as a correction to the atomic level ǫ0 induced by the presence of the metal. Taking
ζ = ω + iη we can separate Σem(ζ) into a real and an imaginary part,

Σem(ω + iη) =
∑

k

|Tk|2
ω − ǫk + iη

= P
∑

k

|Tk|2
ω − ǫk

︸ ︷︷ ︸

Λ(ω)

− i

2
2π
∑

k

|Tk|2δ(ω − ǫk)
︸ ︷︷ ︸

Γ(ω)

. (2.26)

6For the time being we observe that this interpretation is supported by the normalization condition
∫

dω
2π
A00(ω) = 1, i.e., the probability that the electron has energy between −∞ and ∞ is 1.
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58 2. Getting familiar with second quantization: model Hamiltonians

The real and imaginary parts are not independent but instead related by a Hilbert transfor-
mation

Λ(ω) = P

∫
dω′

2π

Γ(ω′)

ω − ω′ ,

as can be verified by inserting the explicit expression for Γ(ω) into the r.h.s.. In conclusion,
we have obtained an expression for n0 in terms of the quantity Γ(ω) only

n0 =

∫ ǫF

−∞

dω

2π
A00(ω)

=

∫ ǫF

−∞

dω

2π
i

[
1

ω + iη − ǫ0 − Σem(ω + iη)
− 1

ω − iη − ǫ0 − Σem(ω − iη)

]

= −2
∫ ǫF

−∞

dω

2π
Im

1

ω − ǫ0 − Λ(ω) + i
2Γ(ω) + iη

. (2.27)

If the coupling Tk between the atom and the metal is weak then Λ and Γ are small and
the dominant contribution to the above integral comes from a region around ǫ0. In the
continuum limit the function Γ(ω) is a smooth function since

Γ(ω)→ 2π

∫

dǫ dQ |TǫQ|2δ(ω − ǫ) = 2π

∫

dQ |TωQ|2, (2.28)

and in the integral (2.27) we can approximate Γ(ω) by a constant Γ = Γ(ǫ0). This approxi-
mation is known as the Wide Band Limit Approximation (WBLA) since for the r.h.s. of (2.28)
to be ω independent the spectrum of the metal must extend from −∞ and +∞. For a
Γ(ω) = Γ independent of ω the Hilbert transform Λ(ω) vanishes and the formula for the
atomic occupation simplifies to7

n0 =

∫ ǫF

−∞

dω

2π

Γ

(ω − ǫ0)2 + Γ2/4
.

We thus see that in the WBLA n0 is the integral up to the Fermi energy of a Lorentzian of
width Γ centered at ǫ0. The atomic level is occupied (n0 ∼ 1) if ǫ0 < ǫF + Γ, whereas it is
empty (n0 ∼ 0) if ǫ0 > ǫF+Γ. This result should be compared with the atomic limit, Γ = 0,
corresponding to the isolated atom. In this limit the Lorentzian becomes a δ-function since

lim
Γ→0

1

π

Γ/2

(ω − ǫ0)2 + Γ2/4
= δ(ω − ǫ0),

as follows immediately from the Cauchy relation (2.23). In the atomic limit the atomic
occupation is exactly 1 for ǫ0 < ǫF and zero otherwise. We say that the presence of the
metal broadens the sharp atomic level and transforms it into a resonance of finite width as
illustrated in Fig. 2.8. This broadening is a general feature of discrete levels “interacting” or
“in contact” with a continuum and it is observed in interacting systems as well.

7Since Γ(ω) = Γ for all ω we can discard the infinitesimal η in the denominator of (2.27).
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2.4. Hubbard model 59

Figure 2.8 (a) The metallic band and the sharp level in the atomic limit. (b) The metallic
band and the spectral function A00 for finite Γ.

2.4 Hubbard model

The Hubbard model was originally introduced to describe transition metals and rare-earth
metals, i.e., solids composed of atoms with very localized outer electrons (d or f shells).
In these materials the degree of localization of the outer-electron orbitals is so high that
the Coulomb integrals vs1s2s3s4 can be approximated as in (2.3) with the diagonal elements
Us ≡ vss about an order of magnitude larger than the o�-diagonal ones. For this reason
Hubbard, in a milestone paper from 1963 [15], included only the diagonal interaction Us in
his treatment and wrote the model Hamiltonian

Ĥ = Ĥ0 + Ĥint =
∑

σ

∑

ss′

hss′ d̂
†
sσd̂s′σ +

∑

s

Usn̂s↑n̂s↓, (2.29)

that today carries his name. In this Hamiltonian the sums run over the lattice position s of
the nuclei, the d̂-operators are fermionic annihilation and creation operators for electrons
with the usual anti-commutation relations

[

d̂sσ, d̂
†
s′σ′

]

+
= δσσ′δss′ ,

[

d̂sσ, d̂s′σ′

]

+
= 0,

and n̂sσ = d̂†sσd̂sσ is the occupation operator for electrons in s with spin σ. The matrix
elements hss′ are typically set to zero if the distance between s and s′ exceeds a few lattice
spacings. In the context of model Hamiltonians the o�-diagonal matrix elements hss′ are
also called hopping integrals or simply hoppings since they multiply the operator d̂†sσd̂s′σ ,
which destroys an electron in s′ and creates an electron in s, an operation that can be
pictured as the hopping of an electron from s′ to s. It is interesting to note that in the
Hubbard model two electrons interact only if they occupy the same atomic site (and of
course have opposite spins).

To gain some insight into the physics of the Hubbard model we compare two limiting
situations, i.e., Ĥint = 0 and Ĥ0 = 0. We see that electrons behave as “waves” if Ĥint = 0
and as “particles” if Ĥ0 = 0; how they behave when both Ĥ0 and Ĥint are nonzero is a
fascinating problem intimately related to wave–particle dualism. To readers interested in the
physics of the Hubbard model we suggest the review article in Ref. [16] and the books in
Refs. [17, 18].
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60 2. Getting familiar with second quantization: model Hamiltonians

For Ĥint = 0 the Hubbard Hamiltonian describes noninteracting electrons on a lattice.
Let |kσ〉 = c†kσ|0〉 be the one-particle eigenkets with energies ǫk . If we order the energies
ǫk ≤ ǫk+1, the state of lowest energy with N↑/↓ electrons of spin up/down is

|Φ〉 =
N↑∏

k=1

N↓∏

k′=1

ĉ†k↑ĉ
†
k′↓|0〉 with Ĥ0|Φ〉 =





N↑∑

k=1

ǫk +

N↓∑

k′=1

ǫk′



 |Φ〉. (2.30)

We can say that in |Φ〉 the electrons behave as “waves” since they have probability 0 or
1 of being in a delocalized state |kσ〉. The N -particle ground state of Ĥ0 is obtained
by minimizing the eigenvalue in (2.30) with respect to N↑ and N↓ under the constraint

N↑+N↓ = N . For nondegenerate energies ǫk < ǫk+1, the ground state of Ĥ0 with an even
number N of electrons is unique and reads

|Φ0〉 =
N/2
∏

k=1

ĉ†k↑ĉ
†
k↓|0〉. (2.31)

We leave it as an exercise for the reader to show that |Φ0〉 is also an eigenstate of the total
spin operators [see (1.92)],

Ŝ = (Ŝx, Ŝy, Ŝz) ≡
∑

s

Ŝs =
∑

s

(Ŝx
s , Ŝ

y
s , Ŝ

z
s )

with vanishing eigenvalue, i.e., it is a singlet.
If we perturb the system with a weak external magnetic field B along, say, the z axis

and discard the coupling to the orbital motion, the noninteracting part of the Hamiltonian
changes to

Ĥ0 → Ĥ0 − gµBŜ ·B = Ĥ0 −
1

2
gµBB(N̂↑ − N̂↓), (2.32)

with g the electron gyromagnetic ratio, µB the Bohr magneton, and N̂σ =
∑

s n̂sσ the
operator for the total number of particles of spin σ. The eigenkets (2.30) are also eigenkets
of this new Hamiltonian but with a di�erent eigenvalue

(Ĥ0 − gµBŜ ·B)|Φ〉 =





N↑∑

k=1

(ǫk −
1

2
gµBB) +

N↓∑

k′=1

(ǫk′ +
1

2
gµBB)



 |Φ〉.

Thus, in the presence of an external magnetic field the state (2.31) is no longer the lowest
in energy since for, e.g., B > 0, it becomes energetically convenient to have more electrons
of spin up than of spin down. This is the typical behavior of a Pauli paramagnet, that is a
system whose total spin is zero for B = 0 and grows parallel to B for B 6= 0.8

Next we discuss the case Ĥ0 = 0. The Hamiltonian Ĥint is already in a diagonal form
and the generic eigenket can be written as

|ΦXY 〉 =
∏

s∈X

∏

s′∈Y
d̂†s↑d̂

†
s′↓|0〉,

8The Pauli paramagnetic behavior is due to the spin degrees of freedom and it is therefore distinct from the
paramagnetic behavior due to the orbital degrees of freedom, see Section 3.4.
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2.4. Hubbard model 61

where X and Y are two arbitrary collections of atomic sites. We can say that in |ΦXY 〉
the electrons behave like “particles” since they have probability 0 or 1 of being on a given
atomic site. The energy eigenvalue of |ΦXY 〉 is

EXY =
∑

s∈X∩Y
Us.

The ground state(s) for a given number N = N↑ +N↓ of electrons can be constructed by
choosing X and Y that minimize the energy EXY . Denoting by NV the total number of
atomic sites, we have that for N ≤ NV all states with X ∩ Y = ∅ are ground states (with
zero energy) and, again, the system behaves like a Pauli paramagnet.

In conclusion, neither Ĥ0 nor Ĥint favors any kind of magnetic order. However, their
sum Ĥ0+Ĥint sometimes does. In Section 2.5 we illustrate an example of this phenomenon.

2.4.1 Particle–hole symmetry: application to
the Hubbard dimer

In this section we solve explicitly the Hubbard model with only two sites, the so called
Hubbard dimer, with Hamiltonian

Ĥ = T
∑

σ

(d̂†1σd̂2σ + d̂†2σd̂1σ) + U (n̂1↑n̂1↓ + n̂2↑n̂2↓) .

This Hamiltonian belongs to a general class of Hubbard Hamiltonians defined on bipartite
lattices, i.e., lattices that can be divided into two sets of sites A and B with hoppings only
from sites of A to sites of B and vice versa, i.e.,

Ĥbip =
∑

σ

∑

s∈A
s′∈B

(
hss′ d̂

†
sσd̂s′σ + hs′sd̂

†
s′σd̂sσ

)
+
∑

s

Usn̂s↑n̂s↓.

In the Hubbard dimer A is site 1 and B is site 2 and h12 = T . If the lattice is bipartite and if
hss′ = hs′s and Us = U is independent of s, the Hubbard Hamiltonian enjoys an interesting
particle–hole symmetry which can be used to simplify the calculation of eigenvalues and
eigenkets. Let us first explain what this symmetry is. The fermionic operators

b̂sσ ≡







d̂†sσ s ∈ A

−d̂†sσ s ∈ B

satisfy the same anti-commutation relations as the original d̂ operators, and in terms of
them Ĥbip becomes

Ĥbip = −
∑

σ

∑

s∈A
s′∈B

(
hss′ b̂sσ b̂

†
s′σ + hs′sb̂s′σ b̂

†
sσ

)
+ U

∑

s

b̂s↑b̂
†
s↑b̂s↓b̂

†
s↓

=
∑

σ

∑

s∈A
s′∈B

(
hss′ b̂

†
sσ b̂s′σ + hs′sb̂

†
s′σ b̂sσ

)
+ U

∑

s

n̂
(b)
s↑ n̂

(b)
s↓ − UN̂ (b) + UNV,
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62 2. Getting familiar with second quantization: model Hamiltonians

where n̂
(b)
sσ = b̂†sσ b̂sσ , N̂

(b) =
∑

sσ n̂
(b)
sσ and NV is the total number of sites. Except for the

last two terms, which both commute with the first two terms, the Hamiltonian written with
the b̂-operators is identical to the Hamiltonian written with the d̂-operators. This means that
if

|Ψ〉 =
∑

s1...sN↑

∑

s′1...s
′
N↓

Ψ(s1↑, . . . , sN↑
↑, s′1↓, . . . , s′N↓

↓) d̂†s1↑ . . . d̂
†
sN↑
↑d̂
†
s′1↓

. . . d̂†s′N↓
↓|0〉

is an eigenstate of Ĥbip with Nσ electrons of spin σ and energy E, then the state |Ψ(b)〉
obtained from |Ψ〉 by replacing the d̂-operators with the b̂-operators and the empty ket |0〉
with the empty ket |0(b)〉 of the b̂-operators is also an eigenstate of Ĥbip but with energy
E − U(N↑ +N↓) + UNV. The empty ket |0(b)〉 is by definition the ket for which

b̂sσ|0(b)〉 = 0 for all s and σ.

Recalling the definition of the b̂-operators, this is equivalent to saying that d̂†sσ|0(b)〉 = 0 for
all s and σ, i.e., the ket |0(b)〉 is the full ket with one electron of spin up and down on every
site. Thus the state |Ψ(b)〉 can alternatively be written as a linear combination of products

of annihilation d̂-operators acting on the full ket. The number of electrons of spin σ in
|Ψ(b)〉 is therefore NV − Nσ . In conclusion we can say that if E is an eigenvalue of Ĥbip

with Nσ electrons of spin σ then E − U(N↑ +N↓) + UNV is also an eigenvalue of Ĥbip

but with NV − Nσ electrons of spin σ. The relation between the corresponding eigenkets
is that the empty ket is replaced by the full ket and the creation operators are replaced by
the annihilation operators.

Let us now return to the Hubbard dimer. The Fock space F = H0⊕H1⊕H2⊕H3⊕H4

is in this case finite because we cannot have more than four electrons. The zero-particle
Hilbert space H0 contains only the empty ket which is an eigenket of Ĥ with eigenvalue 0.
In H1 we have four possible kets |iσ〉 = d̂†iσ|0〉 with i = 1, 2. They are all eigenkets of the

interaction operator with eigenvalue 0. Furthermore the matrix 〈iσ|Ĥ|jσ′〉 = δσσ′hij is spin

diagonal. The eigenvalues of h =

(
0 T
T 0

)

are ±T and the corresponding eigenvectors are

1√
2
(1,±1). Thus, the one-particle eigenkets of the Hubbard dimer are 1√

2
(d̂†1σ ± d̂†2σ)|0〉,

see also Table 2.1. Let us now consider the two-particle Hilbert space H2. If both electrons
have spin σ then the only possible ket is d̂†1σd̂

†
2σ|0〉 due to the Pauli exclusion principle.

The reader can easily verify that this ket is an eigenket of Ĥ with eigenvalue 0. In particular
it is also an eigenket of the interaction Hamiltonian with eigenvalue 0 since the electrons
have parallel spin. On the other hand, if the electrons have opposite spin then we have four
possible kets:

|Ψ1〉 = d̂†1↑d̂
†
1↓|0〉, |Ψ2〉 = d̂†2↑d̂

†
2↓|0〉, |Ψ3〉 = d̂†1↑d̂

†
2↓|0〉, |Ψ4〉 = d̂†1↓d̂

†
2↑|0〉.
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2.4. Hubbard model 63

Space Eigenvalues Eigenkets

H0 0 |0〉

H1 ±T 1√
2
(d̂†1σ ± d̂†2σ)|0〉

H2

0

0

0

U

E3 = 1
2 (U −∆)

E4 = 1
2 (U +∆)

d̂†1↑d̂
†
2↑|0〉

d̂†1↓d̂
†
2↓|0〉

d̂†1↑d̂
†
2↓ + d̂†1↓d̂

†
2↑√

2
|0〉

d̂†1↑d̂
†
1↓ − d̂

†
2↑d̂
†
2↓√

2
|0〉

E3d̂
†
1↑d̂
†
1↓ + E3d̂

†
2↑d̂
†
2↓ + 2T d̂†1↑d̂

†
2↓ − 2T d̂†1↓d̂

†
2↑

√

2E2
3 + 8T 2

|0〉

E4d̂
†
1↑d̂
†
1↓ + E4d̂

†
2↑d̂
†
2↓ + 2T d̂†1↑d̂

†
2↓ − 2T d̂†1↓d̂

†
2↑

√

2E2
4 + 8T 2

|0〉

H3 ±T + U 1√
2
(d̂†1σd̂

†
2↑d̂
†
2↓ ± d̂

†
1↑d̂
†
1↓d̂
†
2σ)|0〉

H4 2U d̂†1↑d̂
†
1↓d̂
†
2↑d̂
†
2↓|0〉

Table 2.1 Eigenvalues and normalized eigenkets of the Hubbard dimer in the di�erent Hilbert
spaces. In the table the quantity ∆ =

√
16T 2 + U2.

The Hamiltonian does not couple these states to those with parallel spin. Therefore, we can
calculate the remaining eigenvalues and eigenkets in H2 by diagonalizing the matrix h2 with
elements (h2)ij = 〈Ψi|Ĥ|Ψj〉. After some simple algebra one finds

h2 =







U 0 T −T
0 U T −T
T T 0 0
−T −T 0 0






.
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64 2. Getting familiar with second quantization: model Hamiltonians

This matrix has eigenvalues E1 = 0, E2 = U , E3 = 1
2 (U −∆), and E4 = 1

2 (U +∆) where

∆ =
√
16T 2 + U2. Let us take, e.g., U > 0 so that E3 < 0 and E4 > 0. The normalized

eigenkets corresponding to these eigenvalues are reported in Table 2.1. The occurrence of
the zero eigenvalue E1 should not come as a surprise. The Hamiltonian commutes with the
total spin operator Ŝ2 = (Ŝ1 + Ŝ2) · (Ŝ1 + Ŝ2), as well as with Ŝz = Ŝz

1 + Ŝz
2 (the spin

operators were defined in (1.92)). Therefore the degenerate eigenkets of Ĥ must belong to
spin multiplets. It is easy to see that the three eigenkets with vanishing eigenvalue belong
to a triplet whereas the eigenkets with eigenvalues E2, E3 and E4 are singlets. To conclude
our analysis we must calculate the eigenkets and eigenvalues with three and four particles.
This can be done using the particle–hole symmetry and the results are reported in Table 2.1.

It is interesting to observe that when T → 0 the eigenvalues in H2 become 0 (4 times
degenerate) and U (two times degenerate). This is the dissociation limit which corresponds
to pulling the two atomic sites infinitely far apart. The results agree with our physical
intuition; if two isolated (Hubbard) atoms have one electron each (either with spin up or
down) then the energy is zero whereas if both electrons are on the same atom then the
energy is U .

Exercise 2.3. Consider a chain of N sites, s = 1, . . . , N , with Tss′ = T if s and s′ are
nearest neighbor and zero otherwise. The one-body Hamiltonian is

Ĥ0 = T
∑

σ

N−1∑

s=1

(d̂†sσd̂s+1σ + d̂†s+1σd̂sσ).

Prove that the single particle eigenkets of Ĥ0 are

|kσ〉 = ĉ†kσ|0〉 =
∑

s

√

2

N + 1
sin

(
πks

N + 1

)

d̂†sσ|0〉,

with k = 1, . . . , N , and have eigenvalues ǫk = 2T cos( πk
N+1 ).

Exercise 2.4. Let N̂σ =
∑

s d̂
†
sσd̂sσ be the operator for the total number of particles of

spin σ and Ŝj =
∑

s Ŝ
j
s be the total spin operators, where the spin density operators are

defined in (1.92). Show that these operators commute with both Ĥ0 and Ĥint in (2.29).

2.5 Heisenberg model

A model system in which the number N of electrons is identical to the number NV of
space-orbitals basis-functions is said to be half-filled, since the maximum possible value of
N is 2NV. In the half-filled Hubbard model, when the Us are much larger than the hss′ ,
states with two electrons on the same site have very high energy. It would then be useful to
construct an e�ective theory in the truncated space of states with one single electron per
atomic site

|Φ{σ}〉 =
∏

s

d̂†sσ(s)|0〉, (2.33)
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2.5. Heisenberg model 65

where σ(s) =↑, ↓ is a collection of spin indices. The kets (2.33) are eigenkets of Ĥint in
(2.29) with eigenvalue zero and of N̂ with eigenvalue NV. Their number is equal to the

number of possible spin configurations, that is 2NV . Since Ĥint is positive semidefinite the
kets |Φ{σ}〉 form a basis in the ground (lowest energy) subspace of Ĥint. To construct
an e�ective low-energy theory we need to understand how the states (2.33) are mixed by
the one-body part Ĥ0 of the Hubbard Hamiltonian (2.29). Let us start by separating the
matrix h into a diagonal part, ǫs = hss, and an o�-diagonal part Tss′ = hss′ for s 6= s′. For
simplicity, in the discussion below we set the diagonal elements ǫs = 0. If |Ψ〉 is an eigenket
of the full Hamiltonian Ĥ = Ĥ0 + Ĥint with energy E then the eigenvalue equation can be
written as

|Ψ〉 = 1

E − Ĥint

Ĥ0|Ψ〉. (2.34)

We now approximate |Ψ〉 as a linear combination of the |Φ{σ}〉. Then, the action of

(E − Ĥint)
−1Ĥ0 on |Ψ〉 yields a linear combination of kets with a doubly occupied site.9

Since these kets are orthogonal to |Ψ〉 we iterate (2.34) so as to generate an eigenvalue
problem in the subspace of the |Φ{σ}〉

〈Φ{σ}|Ψ〉 = 〈Φ{σ}|
1

E − Ĥint

Ĥ0
1

E − Ĥint

Ĥ0|Ψ〉, |Ψ〉 =
∑

{σ}
α{σ}|Φ{σ}〉. (2.35)

This eigenvalue equation tells us how Ĥ0 lifts the ground-state degeneracy to second order
in Ĥ0. To evaluate the r.h.s. we consider a generic term in Ĥ0|Ψ〉, say, d̂†s↑d̂s′↑|Φ{σ}〉
with s 6= s′ (recall that ǫs = 0). This term corresponds to removing an electron of spin
up from s′ and creating an electron of spin up in s. If the spin configuration {σ} is such

that σ(s′) =↑ and σ(s) =↓ the ket d̂†s↑d̂s′↑|Φ{σ}〉 has the site s occupied by two electrons

(of opposite spin) and the site s′ empty; in all other cases d̂†s↑d̂s′↑|Φ{σ}〉 = |∅〉 since we
cannot remove an electron of spin up from s′ if σ(s′) =↓ and we cannot create an electron
of spin up in s if there is one already, i.e., σ(s) =↑. From this observation we conclude

that d̂†s↑d̂s′↑|Φ{σ}〉 is either an eigenket of Ĥint with eigenvalue Us or the null ket. Similar

considerations apply to d̂†s↓d̂s′↓|Φ{σ}〉. Therefore, we can write

1

E − Ĥint

Ĥ0|Ψ〉 =
∑

σ

∑

ss′

Tss′

E − Us
d̂†sσd̂s′σ|Ψ〉 ∼ −

∑

σ

∑

ss′

Tss′

Us
d̂†sσd̂s′σ|Ψ〉,

where in the last step we use the fact that the Us are much larger than E.10 Inserting this
result into (2.35) and taking into account that 〈Φ{σ}|(E − Ĥint)

−1 = 〈Φ{σ}|/E we find the
eigenvalue equation

E〈Φ{σ}|Ψ〉 = 〈Φ{σ}| −
∑

σσ′

∑

ss′

∑

rr′

Trr′Tss′

Us
d̂†rσ′ d̂r′σ′ d̂†sσd̂s′σ

︸ ︷︷ ︸

Ĥeff

|Ψ〉. (2.36)

9If the reader does not see that this is the case, it becomes clear in a few lines.
10We remind the reader that E is the correction to the degenerate ground-state energy due to the presence of

Ĥ0 and therefore E → 0 for Tss′ → 0.
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66 2. Getting familiar with second quantization: model Hamiltonians

The eigenvalues E of the e�ective Hamiltonian Ĥeff in the subspace of the |Φ{σ}〉 are the
second-order corrections of the highly degenerate ground-state energy. We now show that
in the subspace of the |Φ{σ}〉 the e�ective Hamiltonian takes a very elegant form.

The terms of Ĥeff |Ψ〉 that have a nonvanishing inner product with the |Φ{σ}〉 are those
generated by removing an electron from s′ (which then remains empty), creating an electron
of the same spin in s (which becomes doubly occupied), removing the same electron or the
one with opposite spin from r′ = s and creating it back in r = s′, see the illustration below.

In (2.36) we can therefore restrict the sums to r′ = s and r = s′. In doing so the e�ective
Hamiltonian simplifies to

Ĥeff ≡ −
∑

σσ′

∑

ss′

Ts′sTss′

Us
d̂†s′σ′ d̂sσ′ d̂†sσd̂s′σ

= −
∑

σσ′

∑

ss′

|Tss′ |2
Us

(δσσ′ n̂s′σ − d̂†s′σ′ d̂s′σd̂
†
sσd̂sσ′).

Using the definition (1.91) of the spin density operators we can perform the sum over σ, σ′

and rewrite the e�ective Hamiltonian as

Ĥeff = −
∑

ss′

|Tss′ |2
Us

(

n̂s′↑ + n̂s′↓ − n̂s′↑n̂s↑ − n̂s′↓n̂s↓ − Ŝ+
s′ Ŝ
−
s − Ŝ−s′ Ŝ+

s

)

.

The above equation can be further manipulated to obtain a physically transparent formula.
In the subspace of the |Φ{σ}〉 the operator n̂s′↑ + n̂s′↓ is always 1. This implies that

Ŝz
s = 1

2 (n̂s↑ − n̂s↓) = n̂s↑ − 1
2 = −n̂s↓ + 1

2 , and hence n̂s′↑n̂s↑ + n̂s′↓n̂s↓ = 2Ŝz
s′ Ŝ

z
s + 1

2 .

In conclusion, Ĥeff can be expressed solely in terms of the spin density operators

Ĥeff =
∑

ss′

Jss′(Ŝs · Ŝs′ −
1

4
), with Jss′ = |Tss′ |2

(
1

Us
+

1

Us′

)

.

This e�ective Hamiltonian is known as the Heisenberg model [19] and tells us that the
interaction between two electrons frozen in their atomic positions has the same form as the
interaction between two magnetic moments. There is, however, an important di�erence.
The coupling constants Jss′ are not proportional to µ2

B (square of the Bohr magneton).
The origin of the Heisenberg spin–spin interaction is purely quantum mechanical and has
no classical analogue; it stems from virtual transitions where an electron hops to another
occupied site and then hops back with the same or opposite spin.
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2.6. BCS model and the exact Richardson solution 67

Since Jss′ > 0 the Heisenberg Hamiltonian favors those configurations in which the
electron spins in s and s′ point in opposite directions. For instance, in a one-dimensional
chain with sites s = −∞, . . . ,−1, 0, 1, . . .∞ and Tss′ = T for |s − s′| = 1 and zero

otherwise, the ground-state average 〈Ψ|Ŝs · Ŝs′ |Ψ〉 = (−)s−s′f(s − s′) with f(s − s′) >
0. This means that the spin magnetization is staggered and the system behaves like an
antiferromagnet. The Heisenberg model is a clear example of how the subtle interplay
between the tendency towards localization brought about by Ĥint and delocalization due to
Ĥ0 favors some kind of magnetic order.

Exercise 2.5. Calculate the ground state average 〈Ψ|Ŝs · Ŝs′ |Ψ〉 of the Heisenberg dimer

Ĥeff = J Ŝ1 · Ŝ2 for s, s′ = 1, 2.

2.6 BCS model and the exact Richardson solution

The BCS model was introduced by Bardeen, Cooper, and Schrie�er in 1957 [20] to explain the
phenomenon of superconductivity in metals at low enough temperatures. In the simplest
version of the BCS model two electrons in the energy eigenstates ϕk↑(rσ) = δσ↑ϕk(r) and
ϕk↓(rσ) = δσ↓ϕ∗k(r) interact and after scattering end up in another couple of states ϕk′↑
and ϕk′↓.11 The probability for this process is assumed to be independent of k and k′ and,
furthermore, all other scattering processes are discarded. We refer the reader to the original
paper for the microscopic justification of these assumptions. Denoting by ǫk the single
particle eigenenergies, the BCS Hamiltonian reads

Ĥ = Ĥ0 + Ĥint =
∑

kσ

ǫk ĉ
†
kσ ĉkσ − v

∑

kk′

ĉ†k↑ĉ
†
k↓ĉk′↓ĉk′↑, (2.37)

where v is the so called scattering amplitude and the sum runs over a set of one-particle
states like, e.g., the Bloch states of Section 2.3.1. The operators ĉ†kσ create an electron in

ϕkσ and satisfy the usual anti-commutation relations
[

ĉkσ, ĉ
†
k′σ′

]

+
= δσσ′δkk′ . The BCS

model is usually treated within the so called BCS approximation, according to which the
ground state is a superposition of states with di�erent numbers of electrons. That this is
certainly an approximation follows from the fact that Ĥ commutes with the total number
of particle operator N̂ , and hence the exact ground state has a well defined number of
electrons. Nevertheless, in macroscopic systems the fluctuations around the average value
of N̂ tend to zero in the thermodynamic limit, and the BCS approximation is, in these
cases, very accurate. The BCS approximation breaks down in small systems, like, e.g., in
superconducting aluminum nanograins [21]. Starting from the mid-nineties, the experimental
progress in characterizing superconducting nanostructures has renewed interest in the BCS
model beyond the BCS approximation. In the e�ort of constructing new approximation
schemes, a series of old papers in nuclear physics containing the exact solution of the BCS
model came to light. It just happens that the Hamiltonian (2.37) also describes a system
of nucleons with an e�ective nucleon–nucleon interaction v; in this context it is known

11The state ϕk↓(rσ) is the time-reverse of ϕk↑(rσ).
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68 2. Getting familiar with second quantization: model Hamiltonians

as the pairing model. In the mid-sixties Richardson derived a set of algebraic equations to
calculate all eigenstates and eigenvalues of the pairing model [22]. His work is today enjoying
an increasing popularity. Below we derive the Richardson solution of the BCS model.

The first important observation is that Ĥint acts only on doubly occupied k-states. This
means that given a many-particle ket |Ψ〉 in which a k-state is occupied by a single electron
(either with spin up or down), the ket Ĥ|Ψ〉 also has the k-state occupied by a single
electron. In other words the singly occupied states remain blocked from participating in
the dynamics. The labels of these states are therefore good quantum numbers. Let B be a
subset of k-states whose number is |B|. Then, a generic eigenket of Ĥ has the form

|Ψ(N)
B 〉 =

∏

k∈B
ĉ†k σ(k)|Ψ(N)〉,

with σ(k) =↑, ↓ a collection of spin indices and |Ψ(N)〉 a 2N -electron ket whose general
form is

|Ψ(N)〉 =
∑

k1...kN /∈B
αk1...kN

b̂†k1
. . . b̂†kN

|0〉, (2.38)

where b̂†k ≡ ĉ†k↑ĉ
†
k↓ are electron-pair creation operators or simply pair operators. Since

b̂†k b̂
†
k = 0 we can restrict the sum in (2.38) to k1 6= k2 6= . . . 6= kN . Furthermore b̂†k b̂

†
k′ =

b̂†k′ b̂
†
k and hence the amplitudes αk1...kN

are symmetric under a permutation of the indices

k1, . . . , kN . The eigenket |Ψ(N)
B 〉 describes 2N + |B| electrons, |B| of which are in singly-

occupied k-states and contribute EB =
∑

k∈B ǫk to the energy, and the remaining N pairs
of electrons are distributed among the remaining unblocked k-states. Since the dynamics of
the blocked electrons is trivial, in the following we shall assume B = ∅.

The key to solving the BCS model is the commutation relation between the pair operators

[

b̂k, b̂
†
k′

]

−
= δkk′(1− n̂k↑ − n̂k↓),

[

b̂k, b̂k′

]

−
=
[

b̂†k, b̂
†
k′

]

−
= 0,

with n̂kσ = ĉ†kσ ĉkσ the occupation operator. In the Hilbert space of states (2.38) one can
discard the term n̂k↑ + n̂k↓ in the commutator since k1 6= k2 6= . . . 6= kN and hence

b̂k b̂
†
k1
b̂†k2

. . . b̂†kN
|0〉 =

[

b̂k, b̂
†
k1

]

−
b̂†k2

. . . b̂†kN
|0〉+ b̂†k1

[

b̂k, b̂
†
k2

]

−
. . . b̂†kN

|0〉

+ . . .+ b̂†k1
b̂†k2

. . .
[

b̂k, b̂
†
kN

]

−
|0〉

= δkk1
b̂†k2
b̂†k3

. . . b̂†kN
|0〉+ δkk2

b̂†k1
b̂†k3

. . . b̂†kN
|0〉

+ . . .+ δkkN
b̂†k1
b̂†k2

. . . b̂†kN−1
|0〉, (2.39)

which is the same result as (1.57) for bosonic operators. This is not, a posteriori, surprising
since b̂†k creates two electrons in a singlet state. These pair singlets are known as the Cooper
pairs in honour of Cooper who first recognized the formation of bound states in a fermionic
system with attractive interactions [23]. The analogy between Cooper pairs and bosons is,
however, not so strict: we cannot create two Cooper pairs in the same state while we can
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2.6. BCS model and the exact Richardson solution 69

certainly do it for two bosons. We may say that Cooper pairs are hard core bosons since we
cannot find two or more of them in the same state.

To understand the logic of the Richardson solution we start with the simplest nontrivial
case, i.e., a number N = 2 of pairs

|Ψ(2)〉 =
∑

p6=q

αpq b̂
†
pb̂
†
q|0〉,

with αpq = αqp. Using (2.39) we find

Ĥ|Ψ(2)〉 =
∑

p6=q

αpq



(2ǫp + 2ǫq)b̂
†
pb̂
†
q − v

∑

k 6=q

b̂†k b̂
†
q − v

∑

k 6=p

b̂†pb̂
†
k



 |0〉.

Renaming the indices k ↔ p in the first sum and k ↔ q in the second sum, we can easily
extract from Ĥ|Ψ(2)〉 = E|Ψ(2)〉 an eigenvalue equation for the amplitudes αpq ,

(2ǫp + 2ǫq)αpq − v
∑

k 6=q

αkq − v
∑

k 6=p

αpk = Eαpq. (2.40)

The constraint in the sums is reminiscent of the fact that there cannot be more than one
pair in a k-state. It is this constraint that renders the problem complicated since for a pair
to stay in k no other pair must be there. Nevertheless (2.40) still admits a simple solution!
The idea is to reduce (2.40) to two coupled eigenvalue equations. We therefore make the
ansatz

αpq = α(1)
p α(2)

q + α(1)
q α(2)

p ,

which entails the symmetry property αpq = αqp, and write the energy E as the sum of two
pair energies E = E1 + E2. Then, the eigenvalue equation (2.40) becomes

{α(2)
q (2ǫp − E1)α

(1)
p + α(1)

q (2ǫp − E2)α
(2)
p }+ {p↔ q}

= v

(

{α(2)
q

∑

k

α
(1)
k + α(1)

q

∑

k

α
(2)
k }+ {p↔ q}

)

− 2v(α(1)
p α(2)

p + α(1)
q α(2)

q ), (2.41)

where on the r.h.s. we have extended the sums to all ks and subtracted the extra term.
Without this extra term (2.41) is solved by the amplitudes

α(1)
p =

1

2ǫp − E1
, α(2)

p =
1

2ǫp − E2
, (2.42)

with Ei a root of
∑

k

1

2ǫk − Ei
=

1

v
.

This solution would correspond to two independent pairs since α
(1)
p does not depend on

α
(2)
p . The inclusion of the extra term does not change the structure (2.42) of the αs but,

instead, changes the equation that determines the Ei. Indeed, from (2.42) it follows that

α(1)
p α(2)

p =
α
(2)
p − α(1)

p

E2 − E1
,
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70 2. Getting familiar with second quantization: model Hamiltonians

and therefore (2.41) can be rewritten as
{

α(2)
q

(

(2ǫp − E1)α
(1)
p − v

∑

k

α
(1)
k +

2v

E2 − E1

)}

+ {p↔ q}

+

{

α(1)
q

(

(2ǫp − E2)α
(2)
p − v

∑

k

α
(2)
k −

2v

E2 − E1

)}

+ {p↔ q} = 0.

We have shown that (2.42) is a solution, provided that the pair energies E1 and E2 are the
roots of the coupled system of algebraic equations

∑

k

1

2ǫk − E1
=

1

v
+

2

E2 − E1
,

∑

k

1

2ǫk − E2
=

1

v
+

2

E1 − E2
.

The generalization to N pairs is tedious but straightforward. (In the remaining part of
this section we do not introduce concepts or formulas needed for the following chapters.
Therefore, the reader can, if not interested, move forward to the next section.) Let |Ψ(N)〉
be the N -pair eigenket of Ĥ and {k}i be the set {k1, .., ki−1, ki+1, .., kN} in which the ki
state is removed. The eigenvalue equation for the symmetric tensor αk1...kN

reads

(
N∑

i=1

2ǫki

)

αk1...kN
− v

N∑

i=1

∑

p6={k}i

αk1...ki−1 p ki+1...kN
= Eαk1...kN

.

As in the case of two pairs, the sum over p on the l.h.s. is constrained and some extra work
must be done to make the equation separable. The ansatz is

αk1...kN
=
∑

P

α
(1)
kP (1)

. . . α
(N)
kP (N)

=
∑

P

N∏

i=1

α
(i)
kP (i)

,

where the sum is over all permutations of (1, . . . , N), and E = E1+ . . .+EN . Substitution
into the eigenvalue equation leads to

∑

P

N∑

i=1






(

N∏

l 6=i

α
(l)
kP (l)

)

[

(2ǫkP (i)
− Ei)α

(i)
kP (i)

− v
∑

p

α(i)
p

]

+ v

N∑

j 6=i

(

N∏

l 6=i,j

α
(l)
kP (l)

) α
(i)
kP (j)

α
(j)
kP (j)






= 0, (2.43)

where, as in the example with N = 2, the last term is what we have to subtract to perform
the unconstrained sum over p. We look for solutions of the form

α
(i)
k =

1

2ǫk − Ei
, (2.44)
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2.7. Holstein model 71

from which it follows that the product of two pair amplitudes with the same k can be
written as

α
(i)
k α

(j)
k =

α
(j)
k − α

(i)
k

Ej − Ei
.

We use this identity for some manipulation of the last term in (2.43)

v
∑

P

N∑

i=1

N∑

j 6=i





N∏

l 6=i,j

α
(l)
kP (l)




α
(j)
kP (j)

− α(i)
kP (j)

Ej − Ei
= 2v

∑

P

N∑

i=1





N∏

l 6=i

α
(l)
kP (l)





N∑

j 6=i

1

Ej − Ei
,

a result which allows us to decouple the eigenvalue equation

∑

P

N∑

i=1





N∏

l 6=i

α
(l)
kP (l)







(2ǫkP (i)
− Ei)α

(i)
kP (i)

− v
∑

p

α(i)
p + 2v

∑

j 6=i

1

Ej − Ei



 = 0.

Therefore the amplitudes (2.44) are solutions provided that the pair-energies Ei are the roots
of the coupled system of algebraic equations

1

vi
≡ 1

v
+ 2

∑

j 6=i

1

Ej − Ei
=
∑

k

1

2ǫk − Ei
(2.45)

The system (2.45) can be regarded as a generalization of the eigenvalue equation for a single
pair, where the e�ective scattering amplitude vi depends on the relative distribution of
all other pairs. Numerical solutions show that with increasing v some of the Ei become
complex; however, they always occur in complex conjugate pairs, so that the total energy E
remains real.

2.7 Holstein model

The motion of an electron in a crystal (in particular an ionic crystal) causes a displacement
of the nuclei and, therefore, di�ers quite substantially from the motion through a rigid
nuclear structure. Consider an electron in some point of the crystal: as a result of the
attractive interaction the nuclei move toward new positions and create a potential well for
the electron. If the well is deep enough and if the electron is su�ciently slow this e�ect
causes self-trapping of the electron: the electron cannot move unless accompanied by the
well, also called a polarization cloud. The quasi-particle which consists of the electron and
of the surrounding polarization cloud is called the polaron.

Depending on the nature of the material, the electron–nuclear interaction gives rise to
di�erent kinds of polaron, small or large, heavy or light, etc. In ionic crystals (like sodium
chloride) the electron–nuclear interaction is long ranged and a popular model to describe
the polaron features is the Fröhlich model [24]. In 1955 Feynman proposed a variational
solution in which the polaron was considered as an electron bound to a particle of mass M
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72 2. Getting familiar with second quantization: model Hamiltonians

by a spring of elastic constant K [25]. The Feynman solution is in good agreement with the
numerical results for both strong and weak electron–nuclear coupling, and hence it provides
a good physical picture of the polaron behavior in these regimes. Other physically relevant
models leading to the formation of polarons are the Su–Schrie�er–Heeger model [26] for
conducting polymers (originally polyacetylene) and the Holstein model [27] for molecular
crystals (originally one-dimensional). Below we discuss the Holstein model.

Let us consider electrons moving along a chain of diatomic molecules whose center of
mass and orientations are fixed whereas the intra-nuclear distance can vary. The Hamiltonian
of the system can be regarded as the sum of the molecular chain Hamiltonian ĤC, the
electron Hamiltonian Ĥel and the Hamiltonian Ĥint that describes the interaction between
the electrons and the nuclei. Assuming that the potential energy of a single molecule in the
chain is not too di�erent from that of the isolated molecule, and approximating the latter
with the energy of a harmonic oscillator of frequency ω0, the Hamiltonian of the molecular
chain takes the form

ĤC =
∑

s

(
p̂2s
2M

+
1

2
Mω2

0 x̂
2
s

)

,

with x̂s the intra-molecular distance (measured with respect to the equilibrium position)
operator of the sth molecule, p̂s the corresponding conjugate momentum, and M the

relative mass. Introducing the lowering operators âs =
√

Mω0

2 (x̂s +
i

Mω0
p̂s) and raising

operators â†s =
√

Mω0

2 (x̂s − i
Mω0

p̂s) with bosonic commutation relations [âs, â
†
s′ ]− = δss′

and [âs, âs′ ]− = 0, the chain Hamiltonian can be rewritten as

ĤC =
∑

s

ω0(â
†
sâs +

1

2
).

We wish here to include a few words on the physical meaning of the bosonic operators â†s
and âs. First of all it is important to stress that they do not create or destroy the molecules
but quanta of vibrations. These quanta can be labeled with their energy (in our case the
energy is the same for all oscillators) or with their position (the center of mass xs of the
molecules) and have, therefore, the same degrees of freedom as a “particle” of spin zero.
In solid-state physics these “particles” are called phonons or, if the molecule is isolated,
vibrons. Let us elaborate on this “particle” interpretation by considering a one-dimensional
harmonic oscillator. In quantum mechanics the energy eigenket |j〉 describes one particle
(either a fermion or a boson) in the jth energy level. Within the above interpretation
of the vibrational quanta the ket |j〉 corresponds to a state with j phonons since |j〉 =
1√
j!
(â†)j |0〉; in particular the ground state |0〉, which describes one particle in the lowest

energy eigenstate, corresponds to zero phonons. Even more “exotic” is the new interpretation
of ket |x〉 that in quantum mechanics describes one particle in the position x. Indeed,
|x〉 = ∑

j |j〉〈j|x〉 and therefore it is a linear combination of kets with di�erent numbers
of phonons. Accordingly, an eigenstate of the position operator is obtained by acting with
the operator Â†(x) ≡∑j〈j|x〉 1√

j!
(â†)j on the zero phonons ket |0〉. The interpretation of

the quantum of vibration as a bosonic particle has been and continues to be a very fruitful
idea. After the scientific revolutions of special relativity and quantum mechanics, scientists
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2.7. Holstein model 73

started to look for a quantum theory consistent with relativistic mechanics.12 In the attempt
to construct such a theory Dirac proposed a relativistic equation for the wavefunction [28].
The Dirac equation, however, led to a new interpretation of the electrons. The electrons,
and more generally the fermions, can be seen as the vibrational quanta of some fermionic
oscillator in the same way as the phonons, and more generally the bosons, are the vibrational
quanta of some bosonic oscillator. Of course to describe a particle in three-dimensional
space we need many oscillators, as in the Holstein model. In a continuum description the
operator â is labeled with the continuous variable r, âs → â(r), and it becomes what is
called a quantum field. The origin of the name quantum field stems from the fact that
to every point in space is assigned a quantity, as is done with the classical electric field
E(r) or magnetic field B(r), but this quantity is an operator. Similarly, the fermions are
described by some fermionic quantum field. For these reasons the relativistic generalization
of quantum mechanics is called quantum field theory [29–34].

Let us continue with the description of the Holstein model and derive an approximation
for the interaction between the electrons and the vibrational quanta of the molecules. We
denote by E(x) the ground state energy of the isolated molecule with one more electron
(molecular ion). Due to the presence of the extra electron, E(x) is not stationary at the
equilibrium position x = 0 of the isolated charge-neutral molecule. For small x we can
expand the energy to linear order and write E(x) = −g√2Mω0 x,

13 where the constant
g > 0 governs the strength of the coupling. Due to the minus sign the presence of the
electron causes a force F = −dE/dx > 0 which tends to increase the interatomic distance
in the molecule, as shown in the schematic representation below.

If we discard the corrections induced by the presence of the other molecules the interaction
Hamiltonian can then be modeled as

Ĥint = −g
√

2Mω0

∑

sσ

d̂†sσd̂sσx̂s = −g
∑

sσ

d̂†sσd̂sσ(âs + â†s),

where the d̂sσ operator destroys an electron of spin σ on the sth molecule and therefore
d̂†sσd̂sσ is simply the occupation operator that counts how many electrons (0 or 1) of spin σ

sit on the sth molecule. It is also important to say that the fermionic operators d̂ commute
with the bosonic operators â.

Finally we need to model the Hamiltonian Ĥel which describes “free” electrons moving
along the chain. Since the orthonormal functions ϕsσ that define the d̂-operators are
localized around the sth molecule we neglect all matrix elements Tss′ ≡ 〈sσ|ĥ|s′σ〉 except
those for which |s − s′| = 1 (nearest neighbor molecules). The diagonal matrix elements

12We recall that the original Schrödinger equation is invariant under Galilean transformation but not under the
more fundamental Lorentz transformations.

13The zeroth order term leads to a trivial shift of the total energy for any fixed number of electrons and it is
therefore ignored.
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74 2. Getting familiar with second quantization: model Hamiltonians

can be ignored as well since ǫs ≡ 〈sσ|ĥ|sσ〉 does not depend on s; these matrix elements
simply give rise to a constant energy shift for any fixed number of electrons. In conclusion
we have

Ĥel = T
∑

sσ

(d̂†sσd̂s+1σ + d̂†s+1σd̂sσ),

with T = Tss±1. The Hamiltonian that defines the Holstein model is

Ĥ = ĤC + Ĥint + Ĥel. (2.46)

This Hamiltonian commutes with the operator N̂el =
∑

sσ d̂
†
sσd̂sσ of the total number

of electrons but it does not commute with the operator N̂ph =
∑

s â
†
sâs of the total

number of phonons due to the presence of Ĥint. The eigenstates of Ĥ are therefore linear
combinations of kets with a fixed number of electrons and di�erent number of phonons.
Despite its simplicity the Holstein model cannot be solved exactly and one has to resort to
approximations.

2.7.1 Peierls instability

A common approximation is the so called adiabatic approximation which considers the mass
M infinitely large. Nuclei of large mass move so slowly that the electrons have ample time to
readjust their wavefunctions in the configuration of minimum energy, i.e., the ground state.
In terms of the elastic constant K = Mω2

0 and the coupling g̃ = g
√
2Mω0 the Holstein

model in the adiabatic approximation reads

Ĥad = T
∑

sσ

(d̂†sσd̂s+1σ + d̂†s+1σd̂sσ)− g̃
∑

sσ

d̂†sσd̂sσx̂s +
1

2
K
∑

s

x̂2s.

The adiabatic Hamiltonian is much simpler than the original one since [Ĥad, x̂s]− = 0 for
all s, and hence the eigenvalues of the position operators are good quantum numbers. We
then introduce the operators

Â†s(x) ≡
∑

j

〈j|x〉 1√
j!
(â†s)

j

that create an eigenket of x̂s with eigenvalue x when acting on the empty ket |0〉. The
general eigenket of Ĥad has the form

Â†1(x1)Â
†
2(x2) . . . |Φel, {xs}〉,

where |Φel, {xs}〉 is a pure electronic ket (obtained by acting with the d̂†-operators over the
empty ket) obeying the eigenvalue equation

(

Ĥel − g̃
∑

sσ

xsd̂
†
sσd̂sσ

)

|Φel, {xs}〉 = E({xs})|Φel, {xs}〉. (2.47)

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:05:03 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.004

Cambridge Books Online © Cambridge University Press, 2015



2.7. Holstein model 75

If |Φel, {xs}〉 is the ground state of (2.47) with energy E0({xs}), the lowest energy of Ĥad

is obtained by minimizing

E0({xs}) +
1

2
K
∑

s

x2s

over the space of all possible configurations x1, x2, . . . Even though the Hamiltonian in (2.47)
is a one-body operator, and hence it does not take long to calculate E0({xs}) for a given
set of xs, the minimization of a function of many variables is, in general, a complicated
task. The best we can do to gain some physical insight is to calculate E0({xs}) for some
“reasonable” configuration and then compare the results.

Let us consider, for instance, a molecular ring with 2N molecules and 2N electrons
(half-filling), N of spin up and N of spin down. It is intuitive to expect that in the ground
state the nuclear displacement is uniform, xs = x for all s, since the ring is invariant under
(discrete) rotations. If so, we could calculate the ground-state energy by finding the x that
minimize the total energy. For a uniform displacement the Hamiltonian in (2.47) becomes

Ĥel − g̃x
2N∑

s=1

∑

σ

d̂†sσd̂sσ = Ĥel − g̃xN̂el,

and from the result (2.14) we know that the single particle eigenenergies of this Hamiltonian
are ǫk = −g̃x + 2T cos k with k = 2πm/2N . Therefore, the lowest energy of Ĥad (with
2N electrons) in the subspace of uniform displacements is the minimum of

Eunif(x) = 2×
[

N
2∑

m=−N
2 +1

2T cos
2πm

2N

]
− 2Ng̃x+

2NKx2

2
,

where, for simplicity, we have assumed that N is even and that T < 0. In this formula the
factor of 2 multiplying the first term on the r.h.s. comes from spin.

Intuition is not always a good guide. Below we show that the lowest energy of Ĥad in
the subspace of dimerized configurations xs = y+(−)sx is always lower than the minimum
of Eunif(x). In the dimerized case the electronic operator in (2.47) can be written as

Ĥel − g̃yN̂el − g̃x
2N∑

s=1

∑

σ

(−)sd̂†sσd̂sσ.

We have already encountered this Hamiltonian in Section 2.3.1. It describes the ring of
Fig. 2.6(a) with ǫ = −g̃y, ∆ = g̃x, T = t and N unit cells. Using the one-particle
eigenvalues given in (2.15) we find that the lowest energy of Ĥad (with 2N electrons) in the
subspace of dimerized configurations is the minimum of

Edim(x, y) = −2×





N
2∑

m=−N
2 +1

√

(g̃x)2 + 2T 2(1 + cos
2πm

N
)



− 2Ng̃y

+
NK

2

[
(y + x)2 + (y − x)2

]
.
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76 2. Getting familiar with second quantization: model Hamiltonians

Figure 2.9 Uniform and dimerized energy densities eunif(x) = Eunif(x)/2N and
edim(x, y) = Edim(x, y)/2N for a ring of 100 molecules and T = −1, K = 2. In
the left panel g̃ = 1 while in the right panel g̃ = 8. The minimum of the dimerized energy
edim(x, y) is always the lowest when y is close to the minimum of the uniform energy
eunif(y).

In Fig. 2.9 we show Eunif(x)/2N and Edim(x, y)/2N as a function of x and for di�erent
values of y. In all cases there exist values of y for which the dimerized configuration
has lower energy. This phenomenon is called the Peierls instability [35]: a periodic one-
dimensional molecular crystal is unstable towards dimerization since the energy gain in
opening a gap in the electronic spectrum is always larger than the elastic energy loss.

2.7.2 Lang–Firsov transformation: the heavy polaron

Let us go back to the original Holstein Hamiltonian and consider another limiting case,
i.e., g ≫ T . In this strong coupling regime the low-energy states have localized electrons.
Indeed, if a state has a localized electron of spin σ on site s then the average of the
occupation operator n̂sσ is close to 1 and hence the energy gain in stretching the molecule
is maximized. In order to treat Ĥel as a perturbation it is convenient to perform a unitary
transformation of the electron and phonon operators so to bring ĤC + Ĥint into a diagonal
form. This unitary transformation is known as the Lang–Firsov transformation [36] and reads

p̂sσ = eiŜ d̂sσe
−iŜ , b̂s = eiŜ âse

−iŜ , (2.48)

where Ŝ is the following Hermitian operator

Ŝ = −i g
ω0

∑

sσ

n̂sσ(â
†
s − âs).
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2.7. Holstein model 77

Since the transformation is unitary the new operators obey the same (anti)commutation re-

lations as the old ones, which in our case means
[

p̂sσ, p̂
†
s′σ′

]

+
= δss′δσσ′ and

[

b̂s, b̂
†
s′

]

−
=

δss′ . To express the old operators in terms of the new ones we use the following trick.

Let Ô be a generic operator and F̂α(Ô) ≡ eiαŜÔe−iαŜ . This transformation is unitary for
every real α and has the properties:

(1) F̂0(Ô) = Ô,

(2) F̂α(Ô
†) = F̂ †α(Ô),

(3) F̂α(Ô1 + Ô2) = F̂α(Ô1) + F̂α(Ô2),

(4) F̂α(Ô1Ô2) = F̂α(Ô1)F̂α(Ô2).

Furthermore, the derivative with respect to α is simply

F̂ ′α(Ô) = i [Ŝ, F̂α(Ô)] = i eiαŜ [Ŝ, Ô] e−iαŜ .

We now show how to invert (2.48) by calculating F̂ ′α(Ô) with Ô either the fermionic

d̂-operators or the bosonic â-operators.
The commutators we are interested in are

[Ŝ, d̂sσ] = i
g

ω0
d̂sσ(â

†
s − âs), ⇒ [Ŝ, d̂†sσ] = −i

g

ω0
d̂†sσ(â

†
s − âs), (2.49)

and
[Ŝ, âs] = i

g

ω0

∑

σ

n̂sσ, ⇒ [Ŝ, â†s] = i
g

ω0

∑

σ

n̂sσ. (2.50)

From (2.50) it follows that [property (3)] F̂ ′α(â
†
s − âs) = 0 and hence F̂α(â

†
s − âs) =

F̂0(â
†
s − âs) = â†s − âs [property (1)] does not depend on α. This independence allows us

to integrate the equation for the electron operators. From the first relation in (2.49) we find

F̂ ′α(d̂sσ) = −
g

ω0
F̂α(d̂sσ(â

†
s − âs)) = −

g

ω0
F̂α(d̂sσ)(â

†
s − âs),

where in the last equality we use property (4). Taking into account that F̂0(d̂sσ) = d̂sσ the
solution of the di�erential equation is

F̂α(d̂sσ) = d̂sσe
−α g

ω0
(â†

s−âs) property (2)
=⇒ F̂α(d̂

†
sσ) = d̂†sσe

α g
ω0

(â†
s−âs).

Having the transformed electron operators we can calculate the transformed phonon oper-
ators. We use the result in (2.50) and the fact that F̂α(n̂sσ) = F̂α(d̂

†
sσ)F̂α(d̂sσ) = n̂sσ does

not depend on α; then we find F̂ ′α(âs) = − g
ω0

∑

σ n̂sσ . Integrating over α we eventually
obtain [property (1)]

F̂α(âs) = âs − α
g

ω0

∑

σ

n̂sσ
property (2)

=⇒ F̂α(â
†
s) = â†s − α

g

ω0

∑

σ

n̂sσ.
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78 2. Getting familiar with second quantization: model Hamiltonians

The transformed operators in (2.48) follow from the above identities with α = 1 and the
inverse transformation reads

d̂sσ = p̂sσe
g
ω0

(b̂†s−b̂s), âs = b̂s +
g

ω0

∑

σ

n̂sσ. (2.51)

These results are physically sound. The unitary transformation Ŝ is the exponential of an
operator proportional to the sum of the momentum operators, p̂s ∝ (â†s− âs), and therefore
it is similar to a translation operator. As a consequence the new position operator is shifted;
this follows from the second relation in (2.51) which implies

F̂1(x̂s) =
b̂†s + b̂s√
2Mω0

=
â†s + âs√
2Mω0

︸ ︷︷ ︸

x̂s

−2 g
ω0

∑

σ n̂sσ√
2Mω0

.

Upon substitution of (2.51) in the Holstein Hamiltonian (2.46) we find

ĤC + Ĥint = ω0

∑

s

(b̂†sb̂s +
1

2
)− g2

ω0

∑

s

(
∑

σ

n̂sσ

)2

,

and
Ĥel = T

∑

sσ

(

B̂†sB̂s+1p̂
†
sσp̂s+1σ + B̂†s+1B̂sp̂

†
s+1σ p̂sσ

)

,

where we defined B̂s ≡ e
g
ω0

(b̂†s−b̂s). As anticipated the zeroth order Hamiltonian ĤC+ Ĥint

is diagonalized by the Lang–Firsov transformation. The eigenstates consist of a given number
of transformed electrons and of transformed phonons. For instance, if X is the set of
molecules hosting a transformed electron of spin ↑ and Y is the set of molecules hosting a
transformed electron of spin ↓, then the ket

|Φ〉 =
∏

s∈X
p̂†s↑

∏

s′∈Y
p̂†s′↓

∏

r

(b̂†r)
mr |0〉

is an eigenket of ĤC + Ĥint with eigenvalue

E = ω0

∑

r

(mr +
1

2
)− g2

ω0
(|X|+ |Y |+ 2|X ∩ Y |),

where |X|, |Y | is the number of elements in the set X , Y . We refer to the transformed
electrons as the polarons since the action of p̂†sσ on the empty ket |0〉 generates an electron
of spin σ in the sth molecule surrounded by a cloud of phonons.

In the subspace with only one polaron, say of spin up, all kets with no transformed
phonons, |Φs〉 ≡ p̂†s↑|0〉, have the same energy −g2/ω0, which is also the lowest possible
energy. This means that the ground state is degenerate; a ket of the ground-state multiplet
describes a still electron trapped in s by the polarization cloud. The ground state degeneracy
is lifted by the perturbation Ĥel. To first order the splitting is given by the eigenvalues of

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:05:03 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.004

Cambridge Books Online © Cambridge University Press, 2015



2.7. Holstein model 79

the matrix 〈Φs|Ĥel|Φs′〉. Since the polarons can only hop to nearest neighbor molecules
the matrix elements are zero unless s′ = s± 1, in which case

〈Φs|Ĥel|Φs±1〉 = T 〈0|B̂†sB̂s±1|0〉.

To evaluate the matrix element on the r.h.s. we make use of the Baker–Campbell–Hausdor�
formula.14 Recalling the definition of the B̂ operators we have

B̂†sB̂s±1|0〉 = e−
g
ω0

b̂†se
g
ω0

b̂se
− g2

2ω2
0 e

g
ω0

b̂†s±1e−
g
ω0

b̂s±1e
− g2

2ω2
0 |0〉

= e
− g2

ω2
0 e−

g
ω0

b̂†se
g
ω0

b̂†s±1 |0〉, (2.52)

where in the last step we use the fact that the b̂ operators with di�erent indices commute

and that for any constant α the ket eαb̂s |0〉 = ∑

k
1
k! (αb̂s)

k|0〉 = |0〉, since b̂s|0〉 = |∅〉.
Taylor expanding the exponentials in (2.52) and multiplying by the bra 〈0| it is evident
that only the zeroth order terms remain. Hence 〈0|B̂†sB̂s±1|0〉 = exp(−g2/ω2

0 ) which, as
expected, does not depend on s. We conclude that

〈Φs|Ĥel|Φs′〉 = Teff(δs,s′+1 + δs,s′−1), Teff ≡ Te
− g2

ω2
0 . (2.53)

For rings with N molecular sites the eigenvalues of the matrix (2.53) are ǫk = 2Teff cos k, as
we saw in (2.14). In the large N limit the variable k = 2πm/N as well as the eigenvalues ǫk
become a continuum and we can extract the e�ective mass of the polaron. This is typically
done by comparing the energy dispersion ǫk (at low energies) with the energy dispersion
p2/(2m∗) of a free particle of mass m∗ and momentum p. In our case the momentum is
the crystal momentum p = k/a ∈ (−π/a, π/a), with a the equilibrium distance between
two neighboring molecules. Assuming, e.g., T < 0, the lowest energies are those with k ≪ 1
and hence we can approximate ǫk as ǫk=ap ∼ 2Teff + |Teff |a2p2, from which it follows that
the polaron mass is

m∗ =
eg

2/ω2
0

2|T |a2 .

Thus, in the strong coupling regime the polaron mass increases exponentially with the
coupling g. The polaron is heavy and the molecular deformations are localized around it.

14Given two operators Â and B̂ the Baker–Campbell–Hausdor� formula is the solution to Ĉ = ln(eÂeB̂)

or, equivalently, eĈ = eÂeB̂ . There is no closed expression for the solution of this problem. However, if the
commutator [Â, B̂] = c1̂ then

eÂ+B̂ = eÂeB̂e−
c
2 .
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3

Time-dependent problems and

equations of motion

3.1 Introduction

After the excursion of Chapter 2 on model systems we now go back to the general second-
quantized Hamiltonian (1.82) and specialize the discussion to common physical situations.
The operator ĥ typically describes a particle of mass m and charge q in an external electro-
magnetic field and reads

ĥ =
1

2m

(

p̂− q

c
A(r̂)

)2

+ qV (r̂)− gµBB(r̂) · Ŝ, (3.1)

with V the scalar potential, A the vector potential, and B = ∇×A the magnetic field. In
(3.1) the constant c is the speed of light while g and µB are the gyromagnetic ratio and the
Bohr magneton respectively, see also (1.9). The many-body Hamiltonian Ĥ in (1.82) with ĥ
from (3.1) describes a system of interacting identical particles in some external static field.
If we consider a molecule, in the absence of a magnetic field a standard choice for the
potentials is A(r) = 0 and V (r) =

∑

i Zi/|r −Ri|, with Zi being the charge of the ith
nucleus at position Ri. In the next chapters we develop approximation schemes to calculate
equilibrium properties, like total energies, ionization energies, spectral functions, charge
and current distributions, etc. of these systems. We are, however, especially interested
in situations where at some time t0 a time-dependent perturbation is switched on. For
instance, one could change the electromagnetic field and study how the particles move
under the influence of a time-dependent electric field E(r, t) and magnetic field B(r, t)
with

E(r, t) = −∇V (r, t)− 1

c

∂

∂t
A(r, t),

B(r, t) = ∇×A(r, t),

and, of course, V (r, t ≤ t0) = V (r) and A(r, t ≤ t0) = A(r). In this case ĥ → ĥ(t)
becomes time-dependent through its dependence on the external potentials. Consequently
the full Hamiltonian (1.82) also acquires a time dependence, Ĥ → Ĥ(t) = Ĥ0(t) + Ĥint.

81

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:05:16 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.005

Cambridge Books Online © Cambridge University Press, 2015



82 3. Time-dependent problems and equations of motion

The time evolution of the system is governed by the Schrödinger equation

i
d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 (3.2)

with |Ψ(t)〉 the ket of the system at time t. The Schrödinger equation is a first-order
di�erential equation in time and, therefore, |Ψ(t)〉 is uniquely determined once the initial
ket |Ψ(t0)〉 is given. For time-independent Hamiltonians Ĥ(t) = Ĥ(t0) for all times t and
(3.2) is solved by

|Ψ(t)〉 = e−iĤ(t0)(t−t0)|Ψ(t0)〉. (3.3)

How does this solution change when Ĥ(t) is time dependent?

3.2 Evolution operator

To generalize (3.3) we look for an operator Û(t, t0) which maps |Ψ(t0)〉 into |Ψ(t)〉:

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉. (3.4)

The operator Û(t, t0) must be unitary since the time-dependent Schrödinger equation pre-
serves the norm of the states, i.e., 〈Ψ(t)|Ψ(t)〉 = 〈Ψ(t0)|Ψ(t0)〉.

Let us discuss first the case t > t0. We start by considering a Hamiltonian Ĥ(t) which is
piecewise constant, i.e., Ĥ(t) = Ĥ(tp) for tp < t ≤ tp+1, where the tp are times at which
the Hamiltonian changes suddenly. If we know the ket at time t0 then we can calculate the
ket at time t ∈ (tn, tn+1) by using (3.3) repeatedly

|Ψ(t)〉 = e−iĤ(tn)(t−tn)|Ψ(tn)〉 = e−iĤ(tn)(t−tn)e−iĤ(tn−1)(tn−tn−1)|Ψ(tn−1)〉
= e−iĤ(tn)(t−tn)e−iĤ(tn−1)(tn−tn−1) . . . e−iĤ(t0)(t1−t0)|Ψ(t0)〉. (3.5)

As expected, the operator acting on |Ψ(t0)〉 is unitary since it is the product of unitary
operators. It is important to observe the order of the operators: the exponential calculated
with Hamiltonian Ĥ(tp) is on the left of all exponentials calculated with Ĥ(tq) if tp > tq
(tp later than tq ). Equation (3.5) takes a simpler form when the times tp are equally spaced,
i.e., tp = t0 + p∆t with ∆t some given time interval. Then, tp − tp−1 = ∆t for all p and
hence

|Ψ(tn+1)〉 = e−iĤ(tn)∆te−iĤ(tn−1)∆t . . . e−iĤ(t0)∆t |Ψ(t0)〉. (3.6)

At this point it is natural to introduce the so called chronological ordering operator or time
ordering operator T . Despite its name T is not an operator in the usual sense,1 like the
Hamiltonian or the density operator, but rather a rule which establishes how to rearrange
products of operators. We define the chronologically ordered product of m Hamiltonians at
times tm ≥ . . . ≥ t1 as

T
{

Ĥ(tP (m))Ĥ(tP (m−1)) . . . Ĥ(tP (1))
}

= Ĥ(tm)Ĥ(tm−1) . . . Ĥ(t1), (3.7)

1Note that the symbol T for the chronological ordering operator does not have a “hat.”
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3.2. Evolution operator 83

for all permutations P of (1, . . . ,m−1,m). The action of T is to rearrange the Hamiltonians
according to the two ls rule: later times go to the left. Since the order of the Hamiltonians in
the T product is irrelevant, under the T sign they can be treated as commuting operators.
This observation can be used to rewrite (3.6) in a more compact and useful form. Indeed,
in (3.6) the Hamiltonians are already chronologically ordered and hence nothing changes if
we act with the T operator on the product of the exponentials, i.e.,

|Ψ(tn+1)〉 = T
{

e−iĤ(tn)∆te−iĤ(tn−1)∆t . . . e−iĤ(t0)∆t

}

|Ψ(t0)〉. (3.8)

The equivalence between (3.6) and (3.8) can easily be checked by expanding the exponentials
in power series and by taking into account that the action of the T operator on Hamiltonians
with the same time argument is unambiguously defined since these Hamiltonians commute.
For instance, in the case of only two exponentials

e−iĤ(t1)∆te−iĤ(t0)∆t =
∞∑

m,n=0

(−i∆t)
n

n!

(−i∆t)
m

m!
Ĥ(t1)

nĤ(t0)
m,

and we see that the action of T does not change this expression. We now recall that
according to the Baker–Campbell–Hausdor� formula for two commuting operators Â and B̂
the product exp(Â) exp(B̂) is equal to exp(Â + B̂) (see also footnote 14 in Section 2.7.2).
Under the T sign Ĥ(tp) commutes with Ĥ(tq) for all p and q and therefore

|Ψ(tn+1)〉 = T
{

e−i∆t

∑n
p=0 Ĥ(tp)

}

|Ψ(t0)〉, (3.9)

which is a very nice result.
We are now in the position to answer the general question of how to solve (3.2) for time-

dependent Hamiltonians. Let t > t0 be the time at which we want to know the time-evolved
ket |Ψ(t)〉. We divide the interval (t0, t) into n+1 equal sub-intervals (tp, tp+1 = tp +∆t)
with ∆t = (t− t0)/(n+ 1) as shown in the figure below.

If n is large enough the Hamiltonian Ĥ(t) ∼ Ĥ(tp) for t ∈ (tp, tp+1) and |Ψ(t)〉 is
approximately given by (3.9). Increasing n, and hence reducing ∆t, the approximated ket
|Ψ(t)〉 approaches the exact one and eventually coincides with it when n → ∞. We
conclude that the general solution of (3.2) can be written as

|Ψ(t)〉 = lim
n→∞

T
{

e−i∆t

∑n
p=0 Ĥ(tp)

}

|Ψ(t0)〉 = T
{

e
−i

∫ t
t0

dt̄ Ĥ(t̄)
}

|Ψ(t0)〉. (3.10)

The operator in (3.4) is therefore

Û(t, t0) ≡ T
{

e
−i

∫ t
t0

dt̄ Ĥ(t̄)
}

, (3.11)
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84 3. Time-dependent problems and equations of motion

and is usually called the evolution operator. The evolution operator obeys a simple di�er-
ential equation. Inserting the solution (3.10) into the time-dependent Schrödinger equation
(3.2) we find i ddt Û(t, t0)|Ψ(t0)〉 = Ĥ(t)Û(t, t0)|Ψ(t0)〉 and since this must be true for all
initial states |Ψ(t0)〉 we find

i
d

dt
Û(t, t0) = Ĥ(t)Û(t, t0), Û(t0, t0) = 1̂, (3.12)

with 1̂ the identity operator. The di�erential equation in (3.12) together with the initial
condition at t0 determines uniquely Û(t, t0). We can use (3.12) for an alternative proof of
(3.11). We integrate (3.12) between t0 and t and take into account that Û(t0, t0) = 1̂,

Û(t, t0) = 1̂ − i

∫ t

t0

dt1 Ĥ(t1)Û(t1, t0).

This integral equation contains the same information as (3.12). This is a completely general
fact: a first order di�erential equation endowed with a boundary condition can always be
written as an integral equation which automatically incorporates the boundary condition.
We can now replace the evolution operator under the integral sign with the whole r.h.s. and
iterate. In doing so we find

Û(t, t0) = 1̂ − i

∫ t

t0

dt1 Ĥ(t1) + (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2 Ĥ(t1)Ĥ(t2)Û(t2, t0)

=

∞∑

k=0

(−i)k
∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tk−1

t0

dtk Ĥ(t1)Ĥ(t2) . . . Ĥ(tk).

The product of the Hamiltonians is chronologically time-ordered since we integrate tj be-
tween t0 and tj−1 for all j. Therefore nothing changes if we act with T on the r.h.s.. We
now remind the reader that under the T sign the Hamiltonians can be treated as commuting
operators and hence

Û(t, t0) =

∞∑

k=0

(−i)k
k!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtk T
{

Ĥ(t1)Ĥ(t2) . . . Ĥ(tk)
}

= T
{

e
−i

∫ t
t0

dt̄Ĥ(t̄)
}

, (3.13)

where in the first equality we have extended the domain of integration from (t0, tj−1) to
(t0, t) for all tjs and divided by k!, i.e., the number of identical contributions generated by
the extension of the domain.2

2For the k-dimensional integral on a hypercube we have
∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtk f(t1, . . . , tk) =
∑

P

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tk−1

t0

dtk f(tP (1), . . . , tP (k)),

where the sum over P runs over all permutations of (1, . . . , k). In the special case of a totally symmetric function
f , i.e., f(tP (1), . . . , tP (k)) = f(t1, . . . , tk), the above identity reduces to

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtk f(t1, . . . , tk) = k!

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tk−1

t0

dtk f(t1, . . . , tk).

This is the case of the time-ordered product of Hamiltonians in (3.13).
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3.2. Evolution operator 85

Next we consider the evolution operator Û(t, t0) for t < t0, or equivalently Û(t0, t)
for t > t0 (since t and t0 are two arbitrary times, Û(t < t0, t0) is given by Û(t0, t > t0)
after renaming the times t → t0 and t0 → t). By definition the evolution operator has the
property

Û(t3, t2)Û(t2, t1) = Û(t3, t1), (3.14)

from which it follows that Û(t0, t)Û(t, t0) = 1̂. This result can be used to find the explicit
expression of Û(t0, t). Taking into account (3.10) we have

lim
n→∞

Û(t0, t)e
−iĤ(tn)∆te−iĤ(tn−1)∆t . . . e−iĤ(t0)∆t = 1̂.

We then see by inspection that

Û(t0, t) = lim
n→∞

eiĤ(t0)∆t . . . eiĤ(tn−1)∆teiĤ(tn)∆t

= T̄
{

e
i
∫ t
t0

dt̄ Ĥ(t̄)
}

,

where we have introduced the anti-chronological ordering operator or anti-time ordering
operator T̄ whose action is to move the operators with later times to the right. The operator
Û(t0, t) can be interpreted as the operator that evolves a ket backward in time from t to t0.

To summarize, the main result of this section is

Û(t2, t1) =







T
{

e−i
∫ t2
t1

dt̄Ĥ(t̄)
}

t2 > t1

T̄
{

e+i
∫ t1
t2

dt̄Ĥ(t̄)
}

t2 < t1

(3.15)

Exercise 3.1. Show that

T̄
{

e
i
∫ t
t0

dt̄ Ĥ(t̄)
}

= T
{

e−i
∫ 2t−t0
t dt̄ Ĥ′(t̄)

}

,

where Ĥ ′(t̄) = −Ĥ(2t− t̄).

Exercise 3.2. Consider the Hamiltonian of a forced harmonic oscillator

Ĥ(t) = ωd̂†d̂+ f(t)(d̂† + d̂),

where f(t) is a real function of time and [d̂, d̂†]− = 1. Let |Φn〉 = (d̂†)n√
n!
|0〉 be the

normalized eigenstates of d̂†d̂ with eigenvalues n. Show that the ket

|Ψn(t)〉 = e−iα(t)ey(t)d̂
†−y∗(t)d̂ |Φn〉

is normalized to 1 for any real function α(t) and for any complex function y(t). Then

show that this ket also satisfies the time-dependent Schrödinger equation i ddt |Ψn(t)〉 =
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86 3. Time-dependent problems and equations of motion

Ĥ(t)|Ψn(t)〉 with boundary condition |Ψn(t0)〉 = |Φn〉, provided that the functions α(t)
and y(t) satisfy the di�erential equations

dy

dt
+ iωy = −if, dα

dt
= (n+ |y|2)ω + (y + y∗)f +

i

2

(

y
dy∗

dt
− dy

dt
y∗
)

,

with boundary conditions y(t0) = 0 and α(t0) = 0. From these results prove that the

evolution operator is given by

Û(t, t0) = e
i
∫ t
t0

dt1
∫ t1
t0

dt2 f(t1)f(t2) sin[ω(t1−t2)] ey(t)d̂
†−y∗(t)d̂ e−iωd̂†d̂ (t−t0),

with y(t) = −ie−iωt
∫ t

t0
dt′f(t′)eiωt′ . Useful relations to solve this exercise are

d̂ eyd̂
†

= eyd̂
†

(d̂+ y), d̂†e−y
∗d̂ = e−y

∗d̂(d̂† + y∗), eyd̂
†−y∗d̂ = eyd̂

†

e−y
∗d̂e−|y|

2/2.

3.3 Equations of motion for operators in the

Heisenberg picture

In quantum mechanics we associate with any observable quantity O a Hermitian operator Ô,
and an experimental measurement of O yields one of the eigenvalues of Ô. The probability
of measuring one of these eigenvalues depends on the state of the system at the time
of measurement. If |Ψ(t)〉 is the normalized ket describing the system at time t then the
probability of measuring the eigenvalue λi is Pi(t) = |〈Ψi|Ψ(t)〉|2, with |Ψi〉 the normalized
eigenket of Ô with eigenvalue λi, i.e., Ô|Ψi〉 = λi|Ψi〉. The same is true if the observable
quantity depends explicitly on time, as, e.g., the time-dependent Hamiltonian introduced
in the previous sections. In this case the eigenvalues and eigenkets of Ô(t) depend on t,
λi → λi(t) and |Ψi〉 → |Ψi(t)〉, and the probability of measuring λi(t) at time t becomes
Pi(t) = |〈Ψi(t)|Ψ(t)〉|2. Note that |Ψi(t)〉 is not the time evolved ket |Ψi〉 but instead the
ith eigenket of the operator Ô(t) which can have any time dependence. The knowledge of
all probabilities can be used to construct a dynamical quantum average of the observable
O according to

∑

i λi(t)Pi(t). This quantity represents the average of the outcomes of
an experimental measurement performed in N → ∞ independent systems all in the same
state |Ψ(t)〉. Using the completeness relation

∑

i |Ψi(t)〉〈Ψi(t)| = 1̂ (which is valid for all
t) the dynamical quantum average can be rewritten as

∑

i

λi(t)Pi(t) =
∑

i

λi(t)〈Ψ(t)|Ψi(t)〉〈Ψi(t)|Ψ(t)〉

=
∑

i

〈Ψ(t)|Ô(t)|Ψi(t)〉〈Ψi(t)|Ψ(t)〉

= 〈Ψ(t)|Ô(t)|Ψ(t)〉.

The dynamical quantum average is the expectation value of Ô(t) over the state of the
system at time t. The enormous amount of information that can be extracted from the
dynamical averages prompts us to develop mathematical techniques for their calculation. In
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3.3. Equations of motion for operators in the Heisenberg picture 87

the remainder of this chapter we introduce some fundamental concepts and derive a few
important identities to lay down the basis of a very powerful mathematical apparatus.

From the results of the previous section we know that the time-evolved ket |Ψ(t)〉 =
Û(t, t0)|Ψ(t0)〉 and therefore the expectation value 〈Ψ(t)|Ô(t)|Ψ(t)〉 can also be written
as 〈Ψ(t0)|Û(t0, t)Ô(t)Û(t, t0)|Ψ(t0)〉. This leads us to introduce the notion of operators
in the Heisenberg picture. An operator Ô(t) in the Heisenberg picture is denoted by ÔH(t)
and is defined according to

ÔH(t) ≡ Û(t0, t)Ô(t)Û(t, t0) (3.16)

We will apply the above definition not only to those operators associated with observable
quantities but to all operators, including the field operators. For instance, the density
operator n̂(x) = ψ̂†(x)ψ̂(x) is associated with an observable quantity and is written in
terms of two field operators which also admit a Heisenberg picture

n̂H(x, t) = Û(t0, t)ψ̂
†(x)ψ̂(x)Û(t, t0) = Û(t0, t)ψ̂

†(x) Û(t, t0)Û(t0, t)
︸ ︷︷ ︸

1̂

ψ̂(x)Û(t, t0)

= ψ̂†H(x, t)ψ̂H(x, t). (3.17)

From (3.17) it is evident that the Heisenberg picture of the product of two operators Ô =
Ô1Ô2 is simply the product of the two operators in the Heisenberg picture, i.e., ÔH(t) =
Ô1,H(t)Ô2,H(t). An important consequence of this fact is that operators in the Heisenberg
picture at equal times satisfy the same (anti)commutation relations as the original operators.
In particular for the field operators we have

[

ψ̂H(x, t), ψ̂†H(x′, t)
]

∓
= δ(x− x′).

Operators in the Heisenberg picture obey a simple equation of motion. Taking into
account (3.12) we find

i
d

dt
ÔH(t) = −Û(t0, t)Ĥ(t)Ô(t)Û(t, t0) + Û(t0, t)Ô(t)Ĥ(t)Û(t, t0)

+ Û(t0, t)

(

i
d

dt
Ô(t)

)

Û(t, t0). (3.18)

For operators independent of time the last term vanishes. In most textbooks the last term
is also written as i ∂∂t ÔH(t) where the symbol of partial derivative signifies that only the

derivative with respect to the explicit time dependence of Ô(t) must be taken. In this book
we use the same notation. The first two terms can be rewritten in two equivalent ways. The
first, and most obvious, one is Û(t0, t)[Ô(t), Ĥ(t)]−Û(t, t0). We could, alternatively, insert
the identity operator 1̂ = Û(t, t0)Û(t0, t) between the Hamiltonian and Ô(t) in order to
have both operators in the Heisenberg picture. Thus

i
d

dt
ÔH(t) = Û(t0, t)

[

Ô(t), Ĥ(t)
]

−
Û(t, t0) + i

∂

∂t
ÔH(t)

=
[

ÔH(t), ĤH(t)
]

−
+ i

∂

∂t
ÔH(t). (3.19)
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88 3. Time-dependent problems and equations of motion

In second quantization all operators are expressed in terms of field operators ψ̂(x),

ψ̂†(x) and hence the equations of motion for ψ̂H(x, t) and ψ̂†H(x, t) play a very special
role; they actually constitute the seed of the formalism that we develop in the next chapters.
Due to their importance we derive them below. Let us consider the many-body Hamiltonian
(1.82) with some time-dependent one-body part ĥ(t)

Ĥ(t) =
∑

σσ′

∫

dr ψ̂†(rσ)hσσ′(r,−i∇,S, t)ψ̂(rσ′)

︸ ︷︷ ︸

Ĥ0(t)

+
1

2

∫

dx dx′ v(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x). (3.20)

Since the field operators have no explicit time dependence, the last term in (3.19) vanishes
and we only need to evaluate the commutators between ψ̂(x), ψ̂†(x) and the Hamiltonian.

Let us start with the fermionic field operator ψ̂(x). Using the identity
[

ψ̂(x), ÂB̂
]

−
=
[

ψ̂(x), Â
]

+
B̂ − Â

[

ψ̂(x), B̂
]

+

with
Â = ψ̂†(r′σ′), B̂ =

∑

σ′′

hσ′σ′′(r′,−i∇′,S, t)ψ̂(r′σ′′),

and taking into account that
[

ψ̂(x), B̂
]

+
= 0 since

[

ψ̂(x), ψ̂(x′)
]

+
= 0, we find

[

ψ̂(rσ), Ĥ0(t)
]

−
=
∑

σ′

hσσ′(r,−i∇,S, t)ψ̂(rσ′).

The evaluation of
[

ψ̂(x), Ĥint

]

−
is also a simple exercise. Indeed

[

ψ̂(x), ψ̂†(x′)ψ̂†(x′′)ψ̂(x′′)ψ̂(x′)
]

−
=
[

ψ̂(x), ψ̂†(x′)ψ̂†(x′′)
]

−
ψ̂(x′′)ψ̂(x′)

=
(

δ(x− x′)ψ̂†(x′′)− δ(x− x′′)ψ̂†(x′)
)

ψ̂(x′′)ψ̂(x′),

and therefore
[

ψ̂(x), Ĥint

]

−
=

1

2

∫

dx′′v(x,x′′)ψ̂†(x′′)ψ̂(x′′)ψ̂(x)− 1

2

∫

dx′v(x′,x)ψ̂†(x′)ψ̂(x)ψ̂(x′)

=

∫

dx′v(x,x′)n̂(x′)ψ̂(x),

where in the last step we use the symmetry property v(x,x′) = v(x′,x). Substituting these
results in (3.19), the equation of motion for the field operator reads

i
d

dt
ψ̂H(x, t) =

∑

σ′

hσσ′(r,−i∇,S, t)ψ̂H(rσ′, t) +

∫

dx′v(x,x′)n̂H(x′, t)ψ̂H(x, t)

(3.21)
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3.4. Continuity equation: paramagnetic and diamagnetic currents 89

The equation of motion for ψ̂†H(x, t) can be obtained from the adjoint of the equation
above and reads

i
d

dt
ψ̂†H(x, t) = −

∑

σ′

ψ̂†H(rσ′, t)hσ′σ(r, i
←−
∇,S, t)−

∫

dx′v(x,x′)ψ̂†H(x, t)n̂H(x′, t)

(3.22)

In the next sections we use (3.21) and (3.22) to derive the equation of motion of other
physically relevant operators like the density and the total momentum of the system. These
results are exact and hence provide important benchmarks to check the quality of an
approximation.

Exercise 3.3. Show that the same equations of motion (3.21) and (3.22) are valid for the

bosonic field operators.

Exercise 3.4. Show that for a system of identical particles in an external time-dependent

electromagnetic field with

hσσ′(r,−i∇,S, t) = δσσ′

[
1

2m

(

−i∇− q

c
A(r, t)

)2

+ qV (r, t)

]

, (3.23)

the equations of motion of the field operators are invariant under the gauge transformation

A(r, t)→ A(r, t) +∇Λ(r, t)

V (r, t)→ V (r, t)− 1

c

∂

∂t
Λ(r, t)

ψ̂H(x, t)→ ψ̂H(x, t) exp
[

i
q

c
Λ(r, t)

]

(3.24)

3.4 Continuity equation: paramagnetic and

diamagnetic currents

Let us consider a system of interacting and identical particles under the influence of an
external time-dependent electromagnetic field. The one-body part of the Hamiltonian is
given by the first term of (3.20) with h(r,−i∇,S, t) as in (3.23). The equation of motion for

the density operator n̂H(x, t) = ψ̂†H(x, t)ψ̂H(x, t) can easily be obtained using (3.21) and
(3.22) since3

i
d

dt
n̂H =

(

i
d

dt
ψ̂†H

)

ψ̂H + ψ̂†H

(

i
d

dt
ψ̂H

)

.

On the r.h.s. the terms containing the scalar potential V and the interaction v cancel. This
cancellation is a direct consequence of the fact that the operator

∫
dx′V (r′, t)n̂(x′) in

3In the rest of this section we omit the arguments of the operators as well as of the scalar and vector potentials
if there is no ambiguity.
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90 3. Time-dependent problems and equations of motion

Ĥ0(t) as well as Ĥint are expressed in terms of the density only, see (1.81), and therefore
commute with n̂(x). To calculate the remaining terms we write

(

±i∇− q

c
A
)2

= −∇2 ∓ iq

c
(∇ ·A)∓ 2iq

c
A ·∇+

q2

c2
A2, (3.25)

from which it follows that the term proportional to A2 also cancels (like the scalar potential,
this term is coupled to the density operator).4 Collecting the remaining terms we find

d

dt
n̂H =

1

2mi

[(

∇2ψ̂†H

)

ψ̂H − ψ̂†H
(

∇2ψ̂H

)]

+
q

mc

[

n̂H∇+
(

∇ψ̂†H

)

ψ̂H + ψ̂†H

(

∇ψ̂H

)]

·A.

The first term on the r.h.s can be written as minus the divergence of the paramagnetic
current density operator

ĵ(x) ≡ 1

2mi

[

ψ̂†(x)
(

∇ψ̂(x)
)

−
(

∇ψ̂†(x)
)

ψ̂(x)
]

(3.26)

in the Heisenberg picture, while the second term can be written as minus the divergence of
the diamagnetic current density operator

ĵd(x, t) ≡ −
q

mc
n̂(x)A(r, t) (3.27)

also in the Heisenberg picture. Note that the diamagnetic current depends explicitly on time
through the time dependence of the vector potential. The resulting equation of motion for
the density n̂H(x, t) is known as the continuity equation

d

dt
n̂H(x, t) = −∇ ·

[

ĵH(x, t) + ĵd,H(x, t)
]

(3.28)

The origin of the names paramagnetic and diamagnetic current stems from the behavior
of the orbital magnetic moment that these currents generate when the system is exposed
to a magnetic field. To make these definitions less abstract let us a consider a system of
noninteracting particles and rewrite the Hamiltonian Ĥ0 using the identity (3.25) together
with the rearrangement

1

mi
ψ̂†(∇ψ̂) ·A = ĵ ·A+

1

2mi
(∇n̂) ·A.

We find

Ĥ0 = − 1

2m

∫

ψ̂†∇2ψ̂− q
c

∫

ĵ ·A+

∫

n̂

(

qV +
q2

2mc2
A2

)

+
iq

2mc

∫

∇ · (n̂A). (3.29)

4Equation (3.25) can easily be verified by applying the di�erential operator to a test function.
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3.4. Continuity equation: paramagnetic and diamagnetic currents 91

Equation (3.29) is an exact manipulation of the original Ĥ0.
5 We now specialize the discus-

sion to situations with no electric field, E = 0, and with a static and uniform magnetic field
B. A possible gauge for the scalar and vector potentials is V = 0 and A(r) = − 1

2 r ×B.
Substituting these potentials in (3.29) we find a coupling between B and the currents

Ĥ0 = − 1

2m

∫

ψ̂†∇2ψ̂ −
∫ (

m̂+
1

2
m̂d

)

·B +
iq

2mc

∫

∇ · (n̂A), (3.30)

where we define the magnetic moments

m̂(x) ≡ q

2c
r× ĵ(x), m̂d(x, t) ≡

q

2c
r× ĵd(x, t),

generated by the paramagnetic and diamagnetic currents. In (3.30) we use the identity
a · (b × c) = −(b × a) · c, with a, b, and c three arbitrary vectors. The negative sign in
front of the coupling m̂ · B energetically favors configurations in which the paramagnetic
moment is large and aligned along B, a behavior similar to the total spin magnetization in
a Pauli paramagnet. This explains the name “paramagnetic current.” On the contrary the
diamagnetic moment tends, by definition, to be aligned in the opposite direction since

m̂d =
q

2c
r× ĵd = − q2

2mc2
n̂ [r×A]

=
q2

4mc2
n̂ [r× (r×B)]

=
q2

4mc2
n̂ [r(r ·B)− r2B],

and hence, denoting by θ the angle between r and B,

m̂d ·B = − q2

4mc2
n̂ (rB)2(1− cos2 θ) ≤ 0.

This explains the name “diamagnetic current.” The minus sign in front of the coupling m̂d ·B
in (3.30) favors configurations in which the diamagnetic moment is small. It should be said,
however, that there are important physical situations in which the diamagnetic contribution is
the dominant one. For instance, in solids composed of atoms with filled shells the average of
m̂ over the ground state is zero and the system is called a Larmor diamagnet. Furthermore,
interactions among particles may change drastically the relative contribution between the
paramagnetic and diamagnetic moments. A system is said to exhibit perfect diamagnetism
if the magnetic field generated by the total magnetic moment M = m+md cancels exactly
the external magnetic field B. An example perfect diamagnet is a bulk superconductor in

5A brief comment about the last term is in order. For any arbitrary large but finite system all many-body kets
|Ψi〉 relevant to its description yield matrix elements of the density operator 〈Ψi|n̂(r)|Ψj〉 that vanish at large r

(no particles at infinity). Then, the total divergence in the last term of (3.29) does not contribute to the quantum
averages and can be discarded.
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92 3. Time-dependent problems and equations of motion

which B is expelled outside the bulk by the diamagnetic currents, a phenomenon known
as the Meissner e�ect. As a final remark we observe that neither the paramagnetic nor the
diamagnetic current density operator is invariant under the gauge transformation (3.24). On
the contrary the current density operator

Ĵ(x, t) = ĵ(x) + ĵd(x, t) (3.31)

in the Heisenberg picture, ĴH(x, t), is gauge invariant and hence observable.

Exercise 3.5. Show that

[
Ĵ(x, t), n̂(x′)

]

− = − i

m
n̂(x)∇δ(x− x′).

Exercise 3.6. Show that under the gauge transformation (3.24)

ĵH(x, t)→ ĵH(x, t) +
q

mc
n̂H(x, t)∇Λ(r, t),

ĵd,H(x, t)→ ĵd,H(x, t)− q

mc
n̂H(x, t)∇Λ(r, t).

3.5 Lorentz Force

From the continuity equation it follows that the dynamical quantum average of the current
density operator Ĵ(x, t) is the particle flux, and hence the operator

P̂(t) ≡ m
∫

dx Ĵ(x, t) (3.32)

is the total momentum operator. Consequently, the time derivative of P̂H(t) is the total
force acting on the system. For particles of charge q in an external electromagnetic field this
force is the Lorentz force. In this section we see how the Lorentz force comes out from our
equations.

The calculation of i ddt P̂H can be performed along the same lines as the continuity

equation. We proceed by first evaluating i ddt ĵd,H , then i ddt ĵH and finally integrating over
all space and spin the sum of the two. The equation of motion for the diamagnetic current
density follows directly from the continuity equation and reads

i
d

dt
ĵd,H =

iq

mc
A(∇ · ĴH)− iq

mc
n̂H

d

dt
A. (3.33)

The equation of motion for the paramagnetic current density is slightly more complicated.
It is convenient to work in components and define fk=x,y,x as the components of a generic
vector function f and ∂k=x,y,z as the partial derivative with respect to x, y, and z. The
kth component of the paramagnetic current density (3.26) in the Heisenberg picture is
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3.5. Lorentz Force 93

ĵk,H = 1
2mi [ψ̂

†
H(∂kψ̂H) − (∂kψ̂

†
H)ψ̂H ]. To calculate its time derivative we rewrite the

equations of motion (3.21) and (3.22) for the field operators as

i
d

dt
ψ̂H = i

d

dt
ψ̂H

∣
∣
∣
∣
V=A=0

+
iq

mc

∑

p

[

Ap∂p +
1

2
(∂pAp)

]

ψ̂H + w ψ̂H ,

i
d

dt
ψ̂†H = i

d

dt
ψ̂†H

∣
∣
∣
∣
V=A=0

+
iq

mc

∑

p

[

Ap∂p +
1

2
(∂pAp)

]

ψ̂†H − w ψ̂†H ,

where the first term is defined as the contribution to the derivative which does not explicitly
depend on the scalar and vector potentials (there is, of course, an implicit dependence
through the evolution operator Û in the field operators ψ̂H and ψ̂†H ). Furthermore the
function w is defined as

w(r, t) = qV (r, t) +
q2

2mc2
A2(r, t). (3.34)

We can evaluate i ddt ĵk,H in a systematic way by collecting the terms which do not depend
on V and A, the terms linear in A and the terms proportional to w. We find

i
d

dt
ĵk,H = i

d

dt
ĵk,H

∣
∣
∣
∣
V=A=0

+
iq

mc

∑

p

[

∂p(Ap ĵk,H) + (∂kAp)ĵp,H

]

− i

m
n̂H∂kw. (3.35)

It is not di�cult to show that

i
d

dt
ĵk,H

∣
∣
∣
∣
V=A=0

= −i
∑

p

∂pT̂pk,H − iŴk,H ,

where the momentum–stress tensor operator T̂pk = T̂kp reads

T̂pk =
1

2m2

[

(∂kψ̂
†)(∂pψ̂) + (∂pψ̂

†)(∂kψ̂)−
1

2
∂k∂pn̂

]

, (3.36)

while the operator Ŵk(x) is given by

Ŵk(x, t) =
1

m

∫

dx′ψ̂†(x)ψ̂†(x′)(∂kv(x,x
′))ψ̂(x′)ψ̂(x)

= i
[

ĵk(x), Ĥint

]

−
.

The equation of motion for the current density operator ĴH follows by adding (3.33) to
(3.35). After some algebra one finds

i
d

dt
Ĵk,H =

iq

m
n̂H

[

−∂kV −
1

c

d

dt
Ak

]

+
iq

mc

∑

p

Ĵp,H [∂kAp − ∂pAk]

− i
∑

p

∂p

[

T̂pk,H −
q

mc
(AkĴp,H +Apĵk,H)

]

− iŴk,H . (3.37)
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94 3. Time-dependent problems and equations of motion

In the first row we recognize the kth component of the electric field E as well as the kth
component of the vector product ĴH × (∇ × A) = ĴH × B.6 The equation of motion

for P̂H is obtained by integrating (3.37) over all space and spin. The first two terms give
∫
(q n̂HE+ q

c ĴH×B) which is exactly the operator of the Lorentz force, as expected. What

about the remaining terms? Let us start by discussing Ŵk,H . The interparticle interaction
v(x,x′) is symmetric under the interchange x↔ x′. Moreover, to not exert a net force on
the system v must depend only on the di�erence r− r′, a requirement that guarantees the
conservation of P̂H in the absence of external fields.7 Taking into account these properties
we have ∂kv(x,x

′) = −∂′kv(x,x′) = −∂′kv(x′,x) where ∂′k is the partial derivative with
respect to x′, y′, z′. Therefore ∂kv(x,x

′) is antisymmetric under the interchange x ↔ x′

and consequently the integral over all space of Ŵk,H is zero. No further simplifications
occur upon integration and hence the Lorentz force operator is recovered only modulo the
total divergence of another operator [first term in the second row of (3.37)]. This fact should
not worry the reader. Operators themselves are not measurable; it is the quantum average
of an operator that can be compared to an experimental result. As already mentioned in
footnote 5 of the previous section, for any large but finite system the probability of finding
a particle far away from the system is vanishingly small for all physical states. Therefore, in
an average sense the total divergence does not contribute and we can write

d

dt
〈P̂H〉 =

∫ (

q〈n̂H〉E+
q

c
〈ĴH〉 ×B

)

(3.38)

where 〈Ô〉 denotes the quantum average of the operator Ô over some physical state.

6Given three arbitrary vectors a, b, and c the kth component of a× (b× c) can be obtained as follows

[a× (b× c)]k =
∑

pq

εkpqap(b× c)q

=
∑

pq

∑

lm

εkpqεqlmapblcm =
∑

plm

(δklδpm − δkmδpl)apblcm

=
∑

p

(apbkcp − apbpck),

where we use the identity
∑

q εkpqεqlm = (δklδpm − δkmδpl) for the contraction of two Levi–Civita tensors.
7These properties do not imply a dependence on |r − r′| only. For instance v(x,x′) = δσσ′/(y − y′)2

is symmetric, depends only on r − r′ but cannot be written as a function of |r − r′| only. In the special (and
physically relevant) case that v(x,x′) depends only on |r−r′| then the internal torque is zero and also the angular
momentum is conserved.
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4

The contour idea

4.1 Time-dependent quantum averages

In the previous chapter we discussed how to calculate the time-dependent quantum average
of an operator Ô(t) at time t when the system is prepared in the state |Ψ(t0)〉 ≡ |Ψ0〉 at
time t0: if the time evolution is governed by the Schrödinger equation (3.2) the expectation
value, O(t), is given by

O(t) = 〈Ψ(t)|Ô(t)|Ψ(t)〉 = 〈Ψ0|Û(t0, t)Ô(t)Û(t, t0)|Ψ0〉,

with Û the evolution operator (3.15). We may say that O(t) is the overlap between the initial
bra 〈Ψ0| and a ket obtained by evolving |Ψ0〉 from t0 to t, after which the operator Ô(t)
acts, and then evolving the ket backward from t to t0.

For t > t0 the evolution operator Û(t, t0) is expressed in terms of the chronological
ordering operator while Û(t0, t) is in terms of the anti-chronological ordering operator.
Inserting their explicit expressions in O(t) we find

O(t) = 〈Ψ0|T̄
{

e−i
∫ t0
t dt̄ Ĥ(t̄)

}

Ô(t) T
{

e
−i

∫ t
t0

dt̄ Ĥ(t̄)
}

|Ψ0〉. (4.1)

The structure of the r.h.s. is particularly interesting. Reading the operators from left to right
we note that inside the T operator all Hamiltonians are ordered with later time arguments
to the left, the latest time being t. Then the operator Ô(t) appears and to its left all
Hamiltonians inside the T̄ operator ordered with earlier time arguments to the left, the
earliest time being t0. The main purpose of this section is to elucidate the mathematical
structure of (4.1) and to introduce a convenient notation to manipulate chronologically and
anti-chronologically ordered products of operators.

If we expand the exponentials in (4.1) in powers of the Hamiltonian then a generic term
of the expansion consists of integrals over time of operators like

T̄
{

Ĥ(t1) . . . Ĥ(tn)
}

Ô(t) T
{

Ĥ(t′1) . . . Ĥ(t′m)
}

, (4.2)

where all {ti} and {t′i} have values between t0 and t.1 This quantity can be rewritten in a

1We remind the reader that by construction the (anti)-time-ordered operator acting on the multiple integral of
Hamiltonians is the multiple integral of the (anti)time-ordered operator acting on the Hamiltonians, see for instance
(3.13). In other words T

∫

. . . ≡
∫

T . . . and T̄
∫

. . . ≡
∫

T̄ . . .

95
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96 4. The contour idea

Figure 4.1 The oriented contour γ in the complex time plane as described in the main text.
The contour consists of a forward and a backward branch along the real axis between t0
and t. The branches are displaced from the real axis only for graphical purposes. According
to the orientation the point z2 is later than the point z1.

more convenient way by introducing a few new definitions. We start by defining the oriented
“contour”

γ ≡ (t0, t)
︸ ︷︷ ︸

γ−

⊕ (t, t0)
︸ ︷︷ ︸

γ+

, (4.3)

which goes from t0 to t and then back to t0. The contour γ consists of two paths: a forward
branch γ− and a backward branch γ+ as shown in Fig. 4.1. A generic point z′ of γ can lie
either on γ− or on γ+ and once the branch is specified it can assume any value between
t0 and t. We denote by z′ = t′− the point of γ lying on the branch γ− with value t′ and by
z′ = t′+ the point of γ lying on the branch γ+ with value t′. Having defined γ we introduce
operators with arguments on the contour according to

Â(z′) ≡
{
Â−(t′) if z′ = t′−
Â+(t

′) if z′ = t′+
. (4.4)

In general, the operator Â(z′) on the forward branch (Â−(t′)) can be di�erent from the
operator on the backward branch (Â+(t

′)). We further define a suitable ordering operator
for the product of many operators with arguments on γ. Let T be the contour ordering
operator which moves operators with “later” contour-arguments to the left. Then for every
permutation P of the times zm later than zm−1 later than zm−2 . . . later than z1 we have

T
{

Âm(zP (m))Âm−1(zP (m−1)) . . . Â1(zP (1))
}

= Âm(zm)Âm−1(zm−1) . . . Â1(z1),

which should be compared with (3.7). A point z2 is later than a point z1 if z1 is closer to
the starting point, see again Fig. 4.1. In particular a point on the backward branch is always
later than a point on the forward branch. Furthermore, due to the orientation, if t1 > t2
then t1− is later than t2− while t1+ is earlier than t2+. Thus, T acts like the chronological
ordering operator for arguments on γ− and like the anti-chronological ordering operator for
arguments on γ+. The definition of T , however, also allows us to consider other cases. For
example, given two operators Â(z1) and B̂(z2) with argument on the contour we have the
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4.1. Time-dependent quantum averages 97

following possibilities:

T
{

Â(z1)B̂(z2)
}

=







T
{

Â−(t1)B̂−(t2)
}

if z1 = t1− and z2 = t2−

Â+(t1)B̂−(t2) if z1 = t1+ and z2 = t2−
B̂+(t2)Â−(t1) if z1 = t1− and z2 = t2+

T̄
{

Â+(t1)B̂+(t2)
}

if z1 = t1+ and z2 = t2+

. (4.5)

Operators on the contour and the contour ordering operator can be used to rewrite (4.2)
in a compact form. We define the Hamiltonian and the operator Ô with arguments on γ
according to

Ĥ(z′ = t′±) ≡ Ĥ(t′), Ô(z′ = t′±) ≡ Ô(t′). (4.6)

Both the Hamiltonian and Ô are the same on the forward and backward branches, and they
equal the corresponding operators with real-time argument; this is a special case of (4.4)
with Â− = Â+. In this book the field operators, and hence all operators associated with
observable quantities (like the density, current, energy, etc.), with argument on the contour
are defined as in (4.6), i.e., they are the same on the two branches of γ and they equal
the corresponding operators with real-time argument. Since the field operators carry no
dependence on time we have

ψ̂(x, z = t±) ≡ ψ̂(x), ψ̂†(x, z = t±) ≡ ψ̂†(x) (4.7)

and hence, for instance, the density with argument on the contour is

n̂(x, z) = ψ̂†(x, z)ψ̂(x, z) = ψ̂†(x)ψ̂(x) = n̂(x),

the diamagnetic current with arguments on the contour is

ĵd(x, z) = −
q

mc
n̂(x, z)A(x, z) = − q

mc
n̂(x)A(x, t),

etc. Examples of operators which take di�erent values on the forward and backward branch
can be constructed as in (4.5): let Ô1(z1) and Ô2(z2) be such that Ô1(z1 = t1±) = Ô1(t1)
and Ô2(z2 = t2±) = Ô2(t2). Then, for any fixed value of z2 the operator

Â(z1) ≡ T
{

Ô1(z1)Ô2(z2)
}

is, in general, di�erent on the two branches, see again (4.5). Notice the slight abuse of
notation in (4.6) and (4.7). The same symbol Ĥ (or Ô) is used for the operator with
argument on the contour and for the operator with real times. There is, however, no risk of
ambiguity as long as we always specify the argument: from now on we use the letter z for
variables on γ. With the definition (4.6) we can rewrite (4.2) as

T
{

Ĥ(t1+) . . . Ĥ(tn+)Ô(t±)Ĥ(t′1−) . . . Ĥ(t′m−)
}

, (4.8)

where the argument of the operator Ô can be either t+ or t−. This result is only the first
of a series of simplifications entailed by our new definitions.
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98 4. The contour idea

Figure 4.2 The three possible locations of z2 and z1 for z2 later than z1. The domain of
integration is highlighted with bold lines.

We can proceed further by introducing the contour integral between two points z1 and
z2 on γ in the same way as the standard integral along any contour. If z2 is later than z1,
see Fig. 4.2, then we have

∫ z2

z1

dz̄ Â(z̄) =







∫ t2
t1
dt̄ Â−(t̄) if z1 = t1− and z2 = t2−

∫ t

t1
dt̄ Â−(t̄) +

∫ t2
t
dt̄ Â+(t̄) if z1 = t1− and z2 = t2+

∫ t2
t1
dt̄ Â+(t̄) if z1 = t1+ and z2 = t2+

,

while if z2 is earlier than z1
∫ z2

z1

dz̄ Â(z̄) = −
∫ z1

z2

dz̄ Â(z̄).

In this definition z̄ is the integration variable along γ and not the complex conjugate of z.
The latter is denoted by z∗. The generic term of the expansion (4.1) is obtained by integrating
the operator (4.2) over all {ti} between t and t0 and over all {t′i} between t0 and t. Taking
into account that (4.2) is equivalent to (4.8) and using the definition of the contour integral
we can write

∫ t0

t

dt1 . . . dtn

∫ t

t0

dt′1 . . . dt
′
m T̄

{

Ĥ(t1) . . . Ĥ(tn)
}

Ô(t) T
{

Ĥ(t′1) . . . Ĥ(t′m)
}

=

∫

γ+

dz1 . . . dzn

∫

γ−

dz′1 . . . dz
′
m T

{

Ĥ(z1) . . . Ĥ(zn)Ô(t±)Ĥ(z′1) . . . Ĥ(z′m)
}

,
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4.1. Time-dependent quantum averages 99

Figure 4.3 The extended oriented contour γ described in the main text with a forward and
a backward branch between t0 and ∞. For any physical time t we have two points t± on γ
at the same distance from t0.

where the symbol
∫

γ+
signifies that the integral is between t+ and t0+ while the symbol

∫

γ−
signifies that the integral is between t0− and t−.2 Using this general result for all the

terms of the expansion we can rewrite the time-dependent quantum average (4.1) as

O(t) = 〈Ψ0|T
{

e
−i

∫

γ+
dz̄ Ĥ(z̄)

Ô(t±)e
−i

∫

γ−
dz̄ Ĥ(z̄)

}

|Ψ0〉.

Next we use the fact that operators inside the T sign can be treated as commuting operators
(as for the chronological or anti-chronological ordering operators), and hence

O(t) = 〈Ψ0|T
{

e−i
∫

γ
dz̄ Ĥ(z̄)Ô(t±)

}

|Ψ0〉, (4.9)

where
∫

γ
=
∫

γ−
+
∫

γ+
is the contour integral between t0− and t0+. Equation (4.9) is, at the

moment, no more than a compact way to rewrite O(t). As we shall see, however, the new
notation is extremely useful to manipulate more complicated quantities. We emphasize that
in (4.9) Ô(t) is not the operator in the Heisenberg picture [the latter is denoted by ÔH(t)].

The contour γ has an aesthetically unpleasant feature: its length depends on t. It would
be desirable to have a formula similar to (4.9) but in terms of a universal contour that does
not change when we vary the time. Let us explore the implications of extending γ up to
infinity, as shown in Fig. 4.3. We evaluate the contour ordered product in (4.9), with γ the
extended contour, when the operator Ô is placed in the position t±

T
{

e−i
∫

γ
dz̄ Ĥ(z̄) Ô(t−)

}

= Û(t0,∞)Û(∞, t)Ô(t)Û(t, t0) = Û(t0, t)Ô(t)Û(t, t0),

and similarly

T
{

e−i
∫

γ
dz̄ Ĥ(z̄) Ô(t+)

}

= Û(t0, t)Ô(t)Û(t,∞)Û(∞, t0) = Û(t0, t)Ô(t)Û(t, t0).

Thus, the expectation value O(t) in (4.9) does not change if we extend the contour γ
as in Fig. 4.3. The extended contour γ is commonly referred to as the Keldysh contour
in honour of Keldysh who developed the “contour idea” in the context of nonequilibrium
Green’s functions in a classic paper from 1964 [37]. It should be said, however, that the idea

2Considering the orientation of the contour the notation is very intuitive.
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100 4. The contour idea

of using the contour γ of Fig. 4.3 (which over the years has been named in several di�erent
ways such as “round trip contour”, “closed loop contour”, etc.) was first presented by
Schwinger a few years earlier in 1961 [38]. For this reason the contour γ is sometimes called
the Schwinger–Keldysh contour. Schwinger’s paper [38] deals with a study of the Brownian
motion of a quantum oscillator in external fields and even though his idea is completely
general (like most of his ideas) the modern nonequilibrium Green’s function formalism is
much closer to that developed independently by Keldysh.3 In the following we simply use
the name contour since, as we see in the next section, other authors also came up with the
“contour idea” independently and more or less at the same time. Furthermore, we do not
give a chronological presentation of the formalism but, rather, a logical presentation. As we
see, all Green’s function formalisms usually treated as independent naturally follow from a
single one.

Let us continue and go back to (4.9). An important remark about this equation concerns
the explicit time dependence of Ô(t). If the operator does not depend on time we can
safely write Ô(t) = Ô in (4.1). However, if we do so in (4.9) it is not clear where to place
the operator Ô when acted upon by T . The reason to keep the contour argument even for
operators that do not have an explicit time dependence (like the field operators) stems from
the need to specify their position along the contour, thus rendering unambiguous the action
of T . Once the operators are ordered we can omit the time arguments if there is no time
dependence.

Finally, we observe that the l.h.s. in (4.9) contains the physical time t while the r.h.s.
contains operators with arguments on γ. We can transform (4.9) into an identity between
quantities on the contour if we define O(t±) ≡ O(t). In this way (4.9) takes the elegant
form

O(z) = 〈Ψ0|T
{

e−i
∫

γ
dz̄ Ĥ(z̄) Ô(z)

}

|Ψ0〉 (4.10)

In (4.10) the contour argument z can be either t− or t+ and according to (4.9) our definition
is consistent since O(t−) = O(t+) = O(t).

4.2 Time-dependent ensemble averages

So far we have used the term system to denote an isolated system of particles. In reality,
however, it is not possible to completely isolate the system from the surrounding environ-
ment; the isolated system is an idealization. The interaction, no matter how weak, between
the system and the environment renders a description in terms of one single many-body
state impossible. The approach of quantum statistical physics to this problem consists in
assigning a probability wn ∈ [0, 1] of finding the system at time t0 in the state |χn〉, with∑

n wn = 1. The states |χn〉 are normalized, 〈χn|χn〉 = 1, but they may not be orthogonal
and they may have di�erent energies, momentum, spin, and also di�erent numbers of par-
ticles. The underlying idea is to describe the system+environment in terms of the isolated

3For an interesting historical review on the status of Russian science in nonequilibrium physics in the fifties and
early sixties see the article by Keldysh in Ref. [39].
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4.2. Time-dependent ensemble averages 101

system only, and to account for the interaction with the environment through the probability
distribution wn. The latter, of course, depends on the features of the environment itself. It
is important to stress that such probabilistic description is not a consequence of the quan-
tum limitations imposed by the Heisenberg principle. There are no theoretical limitations
to how well a system can be isolated. Furthermore, for a perfectly isolated system there
are no theoretical limitations to the accuracy with which one can determine its quantum
state. In quantum mechanics a state is uniquely characterized by a complete set of quantum
numbers and these quantum numbers are the eigenvalues of a complete set of commuting
operators. Thus, it is in principle possible to measure at the same time the value of all
these operators and to determine the exact state of the system. In the language of statistical
physics we then say that the system is in a pure state since the probabilities wn are all zero
except for a single wn which is 1.

The ensemble average of an operator Ô(t) at time t0 is defined in the most natural way
as

O(t0) =
∑

n

wn〈χn|Ô(t0)|χn〉, (4.11)

and reduces to the quantum average previously introduced in the case of pure states. If we
imagine an ensemble of identical and isolated systems each in a di�erent pure state |χn〉,
then the ensemble average is the result of calculating the weighted sum of the quantum
averages 〈χn|Ô(t0)|χn〉 with weights wn. Ensemble averages incorporate the interaction
between the system and the environment.

The ensemble average leads us to introduce an extremely useful quantity called the
density matrix operator ρ̂ which contains all the statistical information

ρ̂ =
∑

n

wn|χn〉〈χn|. (4.12)

The density matrix operator is self-adjoint, ρ̂ = ρ̂†, and positive-semidefinite since

〈Ψ|ρ̂|Ψ〉 =
∑

n

wn|〈Ψ|χn〉|2 ≥ 0,

for all states |Ψ〉. Denoting by |Ψk〉 a generic basis of orthonormal states, we can rewrite
the ensemble average (4.11) in terms of ρ̂ as4

O(t0) =
∑

k

∑

n

wn〈χn|Ψk〉〈Ψk|Ô(t0)|χn〉 =
∑

k

〈Ψk|Ô(t0)ρ̂|Ψk〉

= Tr
[

Ô(t0) ρ̂
]

= Tr
[

ρ̂ Ô(t0)
]

, (4.13)

where the symbol Tr denotes a trace over all many-body states, i.e., a trace in the Fock
space F . If Ô(t0) = 1̂ then from (4.11) O(t0) = 1 since the |χn〉s are normalized and we
have the property

Tr [ρ̂] = 1.

4We recall that the states |χn〉 may not be orthogonal.
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102 4. The contour idea

Choosing the kets |Ψk〉 to be the eigenkets of ρ̂ with eigenvalues ρk , we can write ρ̂ =
∑

k ρk|Ψk〉〈Ψk|. The eigenvalues ρk are non-negative (since ρ̂ is positive-semidefinite) and
sum up to 1, meaning that ρk ∈ [0, 1] and hence that Tr

[
ρ̂2
]
≤ 1. The most general

expression for the ρk which incorporates the above constraints is

ρk =
e−xk

∑

p e
−xp

,

where xk are real (positive or negative) numbers. In particular if ρk = 0 then xk =∞. For
reasons that soon become clear we write xk = βEM

k , where β is a real positive constant,

and construct the operator ĤM according to5

ĤM =
∑

k

EM
k |Ψk〉〈Ψk|.

The density matrix operator can then be written as

ρ̂ =
∑

k

e−βE
M
k

Z
|Ψk〉〈Ψk| =

e−βĤ
M

Z
(4.14)

with the partition function

Z ≡
∑

k

e−βE
M
k = Tr

[

e−βĤ
M
]

(4.15)

For example if we number the |Ψk〉 with an integer k = 0, 1, 2, . . . and if ρ̂ = ρ1|Ψ1〉〈Ψ1|+
ρ5|Ψ5〉〈Ψ5| then

ĤM = EM
1 |Ψ1〉〈Ψ1|+EM

5 |Ψ5〉〈Ψ5|+ lim
E→∞

E
∑

k 6=1,5

|Ψk〉〈Ψk|,







EM
1 = − 1

β ln(ρ1Z)

EM
5 = − 1

β ln(ρ5Z)
.

In the special case of pure states, ρ̂ = |Ψ0〉〈Ψ0|, we could either take EM
k → ∞ for all

k 6= 0 or alternatively we could take EM
k finite but larger than EM

0 and β →∞ since

lim
β→∞

ρ̂ = lim
β→∞

∑

k e
−βEM

k |Ψk〉〈Ψk|
∑

k e
−βEM

k

= |Ψ0〉〈Ψ0|. (4.16)

For operators ĤM with degenerate ground states (4.16) reduces instead to an equally weighted
ensemble of degenerate ground states.

In general the expression of ĤM in terms of field operators is a complicated linear
combination of one-body, two-body, three-body, etc. operators. However, in most physical

5The superscript “M” stands for “Matsubara” since quantities with this superscript have to do with the initial
preparation of the system. Matsubara put forward a perturbative formalism, described in the next chapter, to
evaluate the ensemble averages of operators at the initial time t0.
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4.2. Time-dependent ensemble averages 103

situations the density matrix ρ̂ is chosen to describe a system in thermodynamic equilibrium
at a given temperature T and chemical potential µ. This density matrix can be determined
by maximizing the entropy of the system with the constraints that the average energy and
number of particles are fixed, see Appendix D. The resulting ρ̂ can be written as in (4.14)
with

ĤM = Ĥ − µN̂ and β =
1

KBT
,

where Ĥ is the Hamiltonian of the system and KB is the Boltzmann constant. Thus for
Hamiltonians as in (1.82) the operator ĤM is the sum of a one-body and two-body operators.

Let us now address the question how the ensemble averages evolve in time. According to
the statistical picture outlined above we have to evolve each system of the ensemble and then
calculate the weighted sum of the time-dependent quantum averages 〈χn(t)|Ô(t)|χn(t)〉
with weights wn. The systems of the ensemble are all identical and hence described by the
same Hamiltonian Ĥ(z). Using the same logic that led to (4.10) we then find

O(z) =
∑

n

wn〈χn|Û(t0, t)Ô(t)Û(t, t0)|χn〉 = Tr
[

ρ̂ Û(t0, t)Ô(t)Û(t, t0)
]

= Tr
[

ρ̂ T
{

e−i
∫

γ
dz̄ Ĥ(z̄) Ô(z)

}]

, (4.17)

and taking into account the representation (4.14) for the density matrix operator

O(z) =
Tr
[

e−βĤ
M T

{

e−i
∫

γ
dz̄ Ĥ(z̄) Ô(z)

}]

Tr
[

e−βĤM
] . (4.18)

Two observations are now in order:
(1) The contour ordered product

T
{

e−i
∫

γ
dz̄ Ĥ(z̄)

}

= Û(t0,∞)Û(∞, t0) = 1̂, (4.19)

and can therefore be inserted inside the trace in the denominator of (4.18).
(2) The exponential of ĤM can be written as

e−βĤ
M

= e−i
∫

γM dz̄ ĤM

,

where γM is any contour in the complex plane starting in za and ending in zb with the only
constraint that

zb − za = −iβ
Using the observations (1) and (2) in (4.18) we find

O(z) =
Tr
[

e−i
∫

γM dz̄ĤMT
{

e−i
∫

γ
dz̄ Ĥ(z̄) Ô(z)

}]

Tr
[

e−i
∫

γM dz̄ĤMT
{

e−i
∫

γ
dz̄ Ĥ(z̄)

}] . (4.20)

This is a very interesting formula. Performing a statistical average is similar to performing a
time propagation as they are both described by the exponential of a “Hamiltonian” operator.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:05:38 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.006

Cambridge Books Online © Cambridge University Press, 2015



104 4. The contour idea

Figure 4.4 Two examples of the extension of the original contour. In (a) a vertical track going
from t0 to t0− iβ has been added and, according to the orientation, any point on this track
is later than a point on the forward or backward branch. In (b) any point between za and
t0− (t0+ and zb) is earlier (later) than a point on the forward or backward branch.

In particular the statistical average is equivalent to a time propagation along the complex
path γM. The complex time evolution can be incorporated inside the contour ordering
operator provided that we connect γM to the original contour and define Ĥ(z) = ĤM

for any z on γM. Two examples of such contours are given in Fig. 4.4.6 The idea of a
contour with a complex path γM which incorporates the information on how the system
is initially prepared was proposed for the first time in 1960 by Konstantinov and Perel’ [40]
and subsequently developed by several authors, see e.g. Refs. [41, 42]. According to the
orientation displayed in the figure, a point on γM lying between za and t0− is earlier than
any point lying on the forward or backward branch (there are no such points for the contour
of Fig. 4.4(a)). Similarly, a point on γM lying between t0+ and zb is later than any point
lying on the forward or backward branch. We use this observation and the cyclic property
of the trace to rewrite the numerator of (4.20) as

Tr
[

e
−i

∫ zb
t0+

dz̄ĤM

T
{

e−i
∫

γ
dz̄ Ĥ(z̄)Ô(z)

}

e−i
∫ t0−
za dz̄ĤM

]

=Tr
[

T
{

e−i
∫

γM⊕γ
dz̄ Ĥ(z̄)Ô(z)

}]

,

where γM⊕γ denotes a Konstantinov–Perel’ contour of Fig. 4.4 and T is the contour ordering
operator along γM⊕γ. From now on we simply denote by γ the Konstantinov–Perel’ contour,
i.e.,

γ = γ− ⊕ γ+ ⊕ γM,

with γ− the forward branch and γ+ the backward branch. Furthermore, in the remainder of
the book we simply refer to γ as the contour. Performing the same manipulations for the

6Strictly speaking it is not necessary to connect γM to the horizontal branches since we can define an ordering
also for disconnected contours by saying, e.g., that all points on a piece are earlier or later than all points on the
other piece. The fundamental motivation for us to connect γM is explained at the end of Section 5.1. For the time
being let us say that it is an aesthetically appealing choice.
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4.2. Time-dependent ensemble averages 105

denominator of (4.20) we get

O(z) =
Tr
[

T
{

e−i
∫

γ
dz̄ Ĥ(z̄) Ô(z)

}]

Tr
[

T
{

e−i
∫

γ
dz̄ Ĥ(z̄)

}] (4.21)

Equation (4.21) is the main result of this section.
We have already shown that if z lies on the forward/backward branch then (4.21) yields

the time-dependent ensemble average of the observable O(t). Does (4.21) make any sense
if z lies on γM? In general it does not since the operator Ô(z) itself is not defined in this
case. In the absence of a definition for Ô(z) when z ∈ γM we can always invent one. A
natural definition would be

Ô(z ∈ γM) ≡ ÔM, (4.22)

which is the same operator for every point z ∈ γM and hence it is compatible with our
definition of Ĥ(z ∈ γM) = ĤM. Throughout this book we use the superscript “M” to
indicate the constant value of the Hamiltonian or of any other operator (both in first and
second quantization) along the path γM,

ĤM ≡ Ĥ(z ∈ γM), ĥM ≡ ĥ(z ∈ γM), ÔM ≡ Ô(z ∈ γM). (4.23)

We often consider the case ÔM = Ô(t0) except for the Hamiltonian which we take as
ĤM = Ĥ(t0) − µN̂ . However, the formalism itself is not restricted to these situations.
In some of the applications of the following chapters we use this freedom for studying
systems initially prepared in an excited configuration. It is important to stress again that the
definition (4.22) is operative only after the operators have been ordered along the contour.
Inside the T -product all operators must have a contour argument, also those operators with
no explicit time dependence. Having a definition for Ô(z) for all z on the contour we can
calculate what (4.21) yields for z ∈ γM. Taking into account (4.19) we find

O(z ∈ γM) =
Tr
[

e−i
∫ zb
z

dz̄Ĥ(z̄)ÔMe−i
∫ z
za

dz̄Ĥ(z̄)
]

Tr
[

e−βĤM
] =

Tr
[

e−βĤ
M

ÔM
]

Z
, (4.24)

where we have used the cyclic property of the trace. The r.h.s. is independent of z and for
systems in thermodynamic equilibrium coincides with the thermal average of the observable
OM.

Let us summarize what we have derived so far. In (4.21) the variable z lies on the contour
γ of Fig. 4.4; the r.h.s. gives the time-dependent ensemble average of Ô(t) when z = t±
lies on the forward or backward branch, and the ensemble average of ÔM when z lies on
γM.

We conclude this section with an observation. We have already explained that the
system-environment interaction is taken into account by assigning a density matrix ρ̂ or
equivalently an operator ĤM. This corresponds to having an ensemble of identical and
isolated systems with probabilities wn. In calculating a time-dependent ensemble average,
however, each of these systems evolves as an isolated system. To understand the implications
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106 4. The contour idea

of this procedure we consider an environment at zero temperature, so that the density
matrix is simply ρ̂ = |Ψ0〉〈Ψ0| with |Ψ0〉 the ground state of the system. Suppose that
we switch on a perturbation which we switch o� after a time T . In the real world, the
average of any observable quantity will go back to its original value for t ≫ T due to the
interaction with the environment. Strictly speaking this is not what our definition of time-
dependent ensemble average predicts. The average 〈Ψ0(t)|Ô|Ψ0(t)〉 corresponds to the
following thought experiment: the system is initially in contact with the environment at zero
temperature (and hence in its ground state), then it is disconnected from the environment
and it is left to evolve as an isolated system [40]. In other words the e�ects of the system–
environment interaction are included only through the initial configuration but are discarded
during the time propagation. In particular, if we inject energy in the system (as we do
when we perturb it) there is no way to dissipate it. It is therefore important to keep in
mind that the results of our calculations are valid up to times much shorter than the typical
relaxation time of the system–environment interaction. To overcome this limitation one
should explicitly include the system–environment interaction in the formalism. This leads to
a stochastic formulation of the problem [43] which is outside the scope of the present book.

4.3 Initial equilibrium and adiabatic switching

The actual evaluation of (4.21) is, in general, a very di�cult task. The formula involves
the trace over the full Fock space F of the product of several operators.7 As we shall
see, we can make progress whenever Ĥ(z) is the sum of a one-body operator Ĥ0(z),
which is typically easy to deal with, and an interaction energy operator Ĥint(z) which is,
in some sense, “small” and can therefore be treated perturbatively. The derivation of the
perturbative scheme to calculate (4.21) is the topic of the next chapter. In this section we
look for alternative ways of including Ĥint(z) along the contour without altering the exact
result. Depending on the problem at hand it can be advantageous to use one formula or
the other when dealing with Ĥint perturbatively. The alternative formulas, however, are valid
only under some extra assumptions.

We consider a system initially in equilibrium at a given temperature and chemical po-
tential so that

ĤM = ĤM
0 + Ĥint with ĤM

0 = Ĥ0 − µN̂.

The curious reader can generalize the following discussion to more exotic initial preparations.
As usual we take t0 to be the time at which the Hamiltonian

Ĥ → Ĥ(t) = Ĥ0(t) + Ĥint

acquires some time dependence. To be concrete we also choose the contour of Fig. 4.4(a).
In Fig. 4.5(a) we illustrate how the Hamiltonian Ĥ(z) appearing in (4.21) changes along the
contour.

The adiabatic assumption is based on the idea that one can generate the density matrix
ρ̂ with Hamiltonian ĤM starting from the density matrix ρ̂0 with Hamiltonian ĤM

0 and then

7The product of several operators stems from the Taylor expansion of the exponential.
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4.3. Initial equilibrium and adiabatic switching 107

Figure 4.5 Contours and Hamiltonian Ĥ(z) for: (a) the exact formula, (b) the adiabatic
formula, and (c) the zero-temperature formula with β →∞.

switching on the interaction adiabatically, i.e.,

ρ̂ =
e−βĤ

M

Z
= Ûη(t0,−∞)

e−βĤ
M
0

Z0
Ûη(−∞, t0) = Ûη(t0,−∞) ρ̂0 Ûη(−∞, t0), (4.25)

where Ûη is the real-time evolution operator with Hamiltonian

Ĥη(t) = Ĥ0 + e−η|t−t0|Ĥint,

and η is an infinitesimally small positive constant. This Hamiltonian coincides with the
noninteracting Hamiltonian when t → −∞ and with the full interacting Hamiltonian when
t = t0. Mathematically the adiabatic assumption is supported by the Gell-Mann–Low
theorem [44, 45] according to which if β → ∞ and ĤM

0 has a nondegenerate ground state
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108 4. The contour idea

|Φ0〉 (hence ρ̂0 = |Φ0〉〈Φ0|) then Ûη(t0,−∞)|Φ0〉 ≡ |Ψ0〉 is an eigenstate8 of ĤM (hence
ρ̂ = |Ψ0〉〈Ψ0|). In general the validity of the adiabatic assumption should be checked case
by case. Under the adiabatic assumption we can rewrite the time-dependent ensemble
average in (4.17) as

O(z = t±) = Tr
[

ρ̂ Û(t0, t)Ô(t)Û(t, t0)
]

= Tr
[

ρ̂0 Ûη(−∞, t0) Û(t0, t)Ô(t)Û(t, t0)Ûη(t0,−∞)
]

, (4.26)

where the cyclic property of the trace has been used. Similarly to what we did in the
previous sections we can cast (4.26) in terms of a contour-ordered product of operators.
Consider the contour γa of Fig. 4.5(b) which is essentially the same contour of Fig. 4.5(a)
where t0 → −∞. If the Hamiltonian changes along the contour as

Ĥ(t±) =

{
Ĥη(t) = Ĥ0 + e−η|t−t0|Ĥint for t < t0
Ĥ(t) = Ĥ0(t) + Ĥint for t > t0

Ĥ(z ∈ γM) = ĤM
0 = Ĥ0 − µN̂,

then (4.26) takes the same form as (4.21) in which γ → γa and the Hamiltonian goes into the
Hamiltonian of Fig. 4.5(b)

O(z) =
Tr
[

T
{

e−i
∫

γa
dz̄ Ĥ(z̄) Ô(z)

}]

Tr
[

T
{

e−i
∫

γa
dz̄ Ĥ(z̄)

}] (adiabatic assumption). (4.27)

We refer to this way of calculating time-dependent ensemble averages as the adiabatic
formula. This is exactly the formula used by Keldysh in his original paper [37]. The adiabatic
formula is correct only provided that the adiabatic assumption is fulfilled. The adiabatic
formula gives the noninteracting ensemble average of the operator Ô if z ∈ γM.

We can derive yet another expression of the ensemble average of the operator Ô for
systems unperturbed by external driving fields and hence described by a Hamiltonian Ĥ(t >
t0) = Ĥ independent of time. In this case, for any finite time t we can approximate Û(t, t0)
with Ûη(t, t0) since we can always choose η ≪ 1/|t− t0|. If we do so in (4.26) we get

O(z = t±) = Tr
[

ρ̂0 Ûη(−∞, t)Ô(t)Ûη(t,−∞)
]

. (4.28)

According to the adiabatic assumption we can generate the interacting ρ̂ starting from
the noninteracting ρ̂0 and then propagating forward in time from −∞ to t0 using the
evolution operator Ûη . If so then ρ could also be generated starting from ρ̂0 and then

propagating backward in time from ∞ to t0 using the same evolution operator Ûη since

Ĥη(t0 −∆t) = Ĥη(t0 +∆t). In other words

ρ̂ = Ûη(t0,∞) ρ̂0 Ûη(∞, t0).
8The state |Ψ0〉 is not necessarily the ground state.
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4.3. Initial equilibrium and adiabatic switching 109

Comparing this equation with (4.25) we conclude that

ρ̂0 = Ûη(−∞,∞) ρ̂0 Ûη(∞,−∞). (4.29)

Now it may be reasonable to expect that this identity is fulfilled because every eigenstate
|Φk〉 of ρ̂0 goes back to |Φk〉 by switching on and o� the interaction adiabatically, i.e.,

〈Φk|Ûη(∞,−∞) = eiαk〈Φk|. (4.30)

This expectation is generally wrong due to the occurrence of level crossings and degeneracies
in the spectrum of Ĥη .

9 However, if ρ̂0 = |Φ0〉〈Φ0| is a pure state then (4.29) implies that
(4.30) with k = 0 is satisfied.10 For ρ̂0 to be a pure state we must take the zero-temperature
limit β →∞ and have a nondegenerate ground state |Φ0〉 of ĤM

0 . We refer to the adiabatic
assumption in combination with equilibrium at zero temperature and with the condition
of no ground-state degeneracy as the zero-temperature assumption. The zero-temperature
assumption can be used to manipulate (4.28) a little more. Since |Φ0〉 is nondegenerate we
have

lim
β→∞

ρ̂0 = |Φ0〉〈Φ0| =
|Φ0〉〈Φ0|Ûη(∞,−∞)

〈Φ0|Ûη(∞,−∞)|Φ0〉
= lim

β→∞

e−βĤ
M
0 Ûη(∞,−∞)

Tr
[

e−βĤ
M
0 Ûη(∞,−∞)

] .

Inserting this result into (4.28) we find

lim
β→∞

O(z = t±) = lim
β→∞

Tr
[

e−βĤ
M
0 Ûη(∞, t)Ô(t)Ûη(t,−∞)

]

Tr
[

e−βĤ
M
0 Ûη(∞,−∞)

] . (4.31)

If we now rewrite the exponential e−βĤ
M
0 as exp[−i

∫

γM
dz̄ ĤM

0 ] and construct the contour

γ0 which starts at −∞, goes all the way to ∞ and then down to ∞− iβ we see that (4.31)
again has the same mathematical structure as (4.21) in which γ → γ0 and the Hamiltonian
along the contour changes as illustrated in Fig. 4.5(c). It is worth noting that the contour γ0
has the special property of having only a forward branch. We refer to this way of calculat-
ing ensemble averages as the zero-temperature formula. The zero-temperature formula is
correct only provided that the zero-temperature assumption is fulfilled. This is certainly not
the case if the Hamiltonian of the system is time dependent. There is indeed no reason to
expect that by switching on and o� the interaction the system goes back to the same state

9Consider for instance a density matrix ρ̂0 = 1
2
(|Φ1〉〈Φ1| + |Φ2〉〈Φ2|). Then the most general solution of

(4.29) is not (4.30) but

〈Φ1|Ûη(∞,−∞) = eiα cos θ〈Φ1|+ sin θ〈Φ2|,
〈Φ2|Ûη(∞,−∞) = sin θ〈Φ1| − e−iα cos θ〈Φ2|,

with α and θ two arbitrary real numbers.
10For completeness we should mention that the phase factor α0 ∼ 1/η. This has no consequence in the

calculation of observable quantities but it may lead to instabilities when solving the time-dependent Schrödinger
equation numerically, see also Exercise 4.1.
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110 4. The contour idea

in the presence of external driving fields. Finally, we observe that the zero-temperature for-
mula, like the adiabatic formula, gives the noninteracting ensemble average of the operator
Ô if z ∈ γM.

To summarize, the average of the operator Ô can be calculated using the very same
formula (4.21) in which the contour and the Hamiltonian along the contour are each
one of those illustrated in Fig. 4.5. The equivalence between these di�erent flavours
of (4.21) relies on the validity of the adiabatic assumption or the zero-temperature
assumption.

Exercise 4.1. Consider the Hamiltonian of a bosonic harmonic oscillator, Ĥ = ωd̂†d̂, with

eigenstates |Φn〉 = (d̂†)n√
n!
|0〉 and eigenvalues nω. Consider switching on adiabatically the

perturbation Ĥ ′ = λ(d̂† + d̂) so that the total adiabatic Hamiltonian reads

Ĥη(t) = ωd̂†d̂+ e−η|t|λ(d̂† + d̂),

where η is an infinitesimally small energy. Using the results of Exercise 3.2 show that the state

Ûη(0,±∞)|Φn〉 is, up to an infinite phase factor, the normalized eigenstate of the shifted

harmonic oscillator, Ĥη(0) = ωd̂†d̂+λ(d̂†+ d̂), with eigenvalue nω−λ2/ω. We remind the

reader that the eigenstates of the shifted harmonic oscillator are |Ψn〉 = e−
λ
ω (d̂†−d̂)|Φn〉.

Exercise 4.2. Consider the noninteracting Hubbard model at zero temperature in the

presence of a magnetic field B along the z axis. The Hamiltonian is therefore Ĥ0 −
1
2gµBB(N̂↑ − N̂↓), see (2.32). Suppose that B > 0 is large enough such that the ground

state has more electrons of spin up than electrons of spin down. Show that starting from the

ground state of Ĥ0, hence with the same number of spin up and down electrons, and then

switching on the magnetic field adiabatically we never generate the spin-polarized ground

state.

4.4 Equations of motion on the contour

The interpretation of the density matrix operator as an evolution operator along a complex
path prompts us to extend the definition of the evolution operator. We define the contour
evolution operator Û(z2, z1) with z1, z2 belonging to some of the contours discussed in the
previous section as

Û(z2, z1) =







T
{

e
−i

∫ z2
z1

dz̄ Ĥ(z̄)
}

z2 later than z1

T̄
{

e
+i

∫ z1
z2

dz̄ Ĥ(z̄)
}

z2 earlier than z1

, (4.32)

where we introduce the anti-chronological contour ordering operator T̄ which rearranges
operators with later contour variables to the right. The contour evolution operator is unitary
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4.4. Equations of motion on the contour 111

only for z1 and z2 on the horizontal branches: if z1 and/or z2 lie on γM then Û is pro-
portional to the exponential of a Hermitian operator (like the density matrix operator). In

particular Û(zb, za) = e−βĤ
M

. The contour evolution operator has properties very similar
to the real-time evolution operator, namely:

(1) Û(z, z) = 1̂,

(2) Û(z3, z2)Û(z2, z1) = Û(z3, z1),

(3) Û satisfies a simple di�erential equation: if z is later than z0

i
d

dz
Û(z, z0) = T

{

i
d

dz
e
−i

∫ z
z0

dz̄ Ĥ(z̄)

}

= T
{

Ĥ(z)e
−i

∫ z
z0

dz̄ Ĥ(z̄)
}

= Ĥ(z)Û(z, z0),

(4.33)
and

i
d

dz
Û(z0, z) = T̄

{

i
d

dz
e
+i

∫ z
z0

dz̄ Ĥ(z̄)

}

= −T̄
{

Ĥ(z)e
+i

∫ z
z0

dz̄ Ĥ(z̄)
}

= −Û(z0, z)Ĥ(z).

(4.34)

In (4.33) we use the fact that T {Ĥ(z) . . .} = Ĥ(z)T {. . .} since the operators in {. . .} are
calculated at earlier times. A similar property has been used to obtain (4.34).

It goes without saying that the derivative with respect to z of an operator Â(z) with
argument on the contour is defined in the same way as the standard contour derivative. Let
z′ be a point on γ infinitesimally later than z. If z = t− (forward branch) we can write
z′ = (t+ ε)− and the distance between these two points is simply (z′ − z) = ε. Then

d

dz
Â(z) = lim

z′→z

Â(z′)− Â(z)
z′ − z = lim

ε→0

Â−(t+ ε)− Â−(t)
ε

=
d

dt
Â−(t). (4.35)

On the other hand, if z = t+ (backward branch) then a point infinitesimally later than z can
be written as z′ = (t− ε)+ and the distance is in this case (z′ − z) = −ε. Therefore

d

dz
Â(z) = lim

z′→z

Â(z′)− Â(z)
z′ − z = lim

ε→0

Â+(t− ε)− Â+(t)

−ε =
d

dt
Â+(t). (4.36)

From this result it follows that operators which are the same on the forward and backward
branch have a derivative which is also the same on the forward and backward branch. Finally
we consider the case z ∈ γM. For simplicity let γM be the vertical track of Fig. 4.4(a) so that
z = t0 − iτ (no extra complications arise from more general paths). A point infinitesimally
later than z can be written as z′ = t0 − i(τ + ε) so that the distance between these two
points is (z′ − z) = −iε. The derivative along the imaginary track is then

d

dz
Â(z) = lim

z′→z

Â(z′)− Â(z)
z′ − z = lim

ε→0

Â(t0 − i(τ + ε))− Â(t0 − iτ)

−iε = i
d

dτ
Â(t0 − iτ).

Equations (4.33) and (4.34) are di�erential equations along a contour. They have been
derived without using the property of unitarity and they should be compared with the
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112 4. The contour idea

di�erential equation (3.12) and its adjoint for the real-time evolution operator. The conclusion
is that Û(t2, t1) and Û(z2, z1) are closely related. In particular, taking into account that on
the forward/backward branch T orders the operators as the chronological/anti-chronological
ordering operator while T̄ orders them as the anti-chronological/chronological ordering
operator the reader can easily verify that

Û(t2, t1) = Û(t2−, t1−) = Û(t2+, t1+) (4.37)

The contour evolution operator can be used to rewrite the ensemble average (4.21) in an
alternative way. Let us denote by zi the initial point of the contour and by zf the final point
of the contour.11 Then

O(z) =
Tr
[

Û(zf , z) Ô(z) Û(z, zi)
]

Tr
[

Û(zf , zi)
] =

Tr
[

Û(zf , zi)Û(zi, z) Ô(z) Û(z, zi)
]

Tr
[

Û(zf , zi)
] .

Looking at this result it is natural to introduce the contour Heisenberg picture according to

ÔH(z) ≡ Û(zi, z) Ô(z) Û(z, zi) (4.38)

If z lies on the horizontal branches then the property (4.37) implies a simple relation between
the contour Heisenberg picture and the standard Heisenberg picture

ÔH(t+) = ÔH(t−) = ÔH(t),

where ÔH(t) is the operator in the standard Heisenberg picture.
The equation of motion for an operator in the contour Heisenberg picture is easily

derived from (4.33) and (4.34) and reads

i
d

dz
ÔH(z) = Û(zi, z) [Ô(z), Ĥ(z)] Û(z, zi) + i

∂

∂z
ÔH(z)

= [ÔH(z), ĤH(z)] + i
∂

∂z
ÔH(z), (4.39)

where the partial derivative is with respect to the explicit z-dependence of the operator
Ô(z). Equation (4.39) has exactly the same structure as the real-time equation of motion
(3.19). In particular for z = t± the r.h.s. of (4.39) is identical to the r.h.s. of (3.19) in which
t is replaced by z. This means that the equation of motion for the field operators on the
contour is given by (3.21) and (3.22) in which ψ̂H(x, t) → ψ̂H(x, z), ψ̂†H(x, t) → ψ̂†H(x, z).

For z ∈ γM the r.h.s. of (4.39) contains the commutator [ÔM, ĤM], see (4.22) and (4.23). We
define the field operators with argument on γM as

ψ̂(x, z ∈ γM) ≡ ψ̂(x), ψ̂†(x, z ∈ γM) ≡ ψ̂†(x) (4.40)

11The contour can be, e.g., that of Fig. 4.4(a), in which case zi = t0− and zf = t0 − iβ, or that of Fig. 4.4(b),
in which case zi = za and zf = zb, or also that of Fig. 4.5(c), in which case zi = −∞ and zf = ∞− iβ with
β →∞.
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4.4. Equations of motion on the contour 113

which together with (4.7) implies that the field operators are constant over the entire contour.
In order to keep the presentation suitable to that of an introductory book we only consider
systems prepared with an ĤM of the form

ĤM =

∫

dxdx′ψ̂†(x)〈x|ĥM|x′〉ψ̂(x′)
︸ ︷︷ ︸

ĤM
0

+
1

2

∫

dxdx′vM(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)
︸ ︷︷ ︸

ĤM
int

.

(4.41)
The generalization to more complicated ĤM with three-body or higher order interactions
is simply more tedious but it does not require more advanced mathematical tools. For our
purposes it is instructive enough to show that no complication arises when vM 6= v and
ĥM 6= ĥ− µ.12 With an ĤM of the form (4.41) the equation of motion for the field operators
on the entire contour can be written as [compare with (3.21) and (3.22)]

i
d

dz
ψ̂H(x, z) =

∑

σ′

hσσ′(r,−i∇,S, z)ψ̂H(rσ′, z)+

∫

dx′v(x,x′, z)n̂H(x′, z)ψ̂H(x, z),

(4.42)

−i d
dz
ψ̂†H(x, z) =

∑

σ′

ψ̂†H(rσ′, z)hσ′σ(r, i
←−
∇,S, z)+

∫

dx′v(x,x′, z)ψ̂†H(x, z)n̂H(x′, z),

(4.43)
with 





ĥ(z = t±) = ĥ(t)

ĥ(z ∈ γM) = ĥM







v(x,x′, t±) = v(x,x′, t)

v(x,x′, z ∈ γM) = vM(x,x′)
.

In this equation we include an explicit time-dependence in the interparticle interaction
v(x,x′, t±) = v(x,x′, t). The reader can easily verify that in the derivation of (3.21) and
(3.22) we do not make any use of the time-independence of v. This extension is useful to
deal with situations like those of the previous section in which the interaction was switched
on adiabatically.

Even though simple, the equations of motion for the field operators still look rather
complicated. We can unravel the underlying “matrix structure” using (1.13), which we rewrite
below for convenience

〈x|ĥ(z)|x′〉 = hσσ′(r,−i∇,S, z)δ(r− r′) = δ(r− r′)hσσ′(r′, i
←−
∇
′,S, z).

Then we see by inspection that (4.42) and (4.43) are equivalent to

i
d

dz
ψ̂H(x, z) =

∫

dx′〈x|ĥ(z)|x′〉ψ̂H(x′, z) +

∫

dx′v(x,x′, z)n̂H(x′, z)ψ̂H(x, z)

(4.44)

12If vM = v and ĥM = ĥ − µ then ĤM = Ĥ0 + Ĥint − µN̂ yields the density matrix of thermodynamic
equilibrium.
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114 4. The contour idea

−i d
dz
ψ̂†H(x, z) =

∫

dx′ψ̂†H(x′, z)〈x′|ĥ(z)|x〉+
∫

dx′v(x,x′, z)ψ̂†H(x, z)n̂H(x′, z)

(4.45)

These equations are valid for systems initially in equilibrium and then perturbed by external
fields as well as for more exotic situations like, for instance, an interacting system (v 6= 0)
prepared in a noninteracting configuration (vM = 0) or a noninteracting system (v = 0)
prepared in an interacting configuration (vM 6= 0) and then perturbed by external fields.
Finally we wish to emphasize that the operator ψ̂†H(x, z) is not the adjoint of ψ̂H(x, z) if

z ∈ γM since Û(z, zi) is not unitary in this case.

Exercise 4.3. Prove (4.37).

Exercise 4.4. Suppose that the interaction Hamiltonian contains also a three-body operator

Ĥint(z) =
1

2

∫

dx1dx2 v(x1,x2, z)ψ̂
†(x1)ψ̂

†(x2)ψ̂(x2)ψ̂(x1)

+
1

3

∫

dx1dx2dx3 v(x1,x2,x3, z)ψ̂
†(x1)ψ̂

†(x2)ψ̂
†(x3)ψ̂(x3)ψ̂(x2)ψ̂(x1),

(4.46)

where v(x1,x2,x3, z) is totally symmetric under a permutation of x1,x2,x3. Show that

the equation of motion for the field operator is

i
d

dz
ψ̂H(x, z) =

∫

dx1〈x|ĥ(z)|x1〉ψ̂H(x1, z) +

∫

dx1 v(x,x1, z)n̂H(x1, z)ψ̂H(x, z)

+

∫

dx1dx2 v(x1,x2,x, z)ψ̂
†
H(x1, z)ψ̂

†
H(x2, z)ψ̂H(x2, z)ψ̂H(x1, z)ψ̂H(x, z).

4.5 Operator correlators on the contour

In the previous sections we showed how to rewrite the time-dependent ensemble average
of an operator Ô(t) and derived the equation of motion for operators in the contour
Heisenberg picture. The main question that remains to be answered is: how can we calculate
O(t)? We have already mentioned that the di�culty lies in evaluating the exponential in
(4.21) and in taking the trace over the Fock space. For evaluation of the exponential a natural
way to proceed is to expand it in a Taylor series. This would lead to traces of time-ordered
strings of operators on the contour. These strings are of the general form

k̂(z1, . . . , zn) = T
{

Ô1(z1) . . . Ôn(zn)
}

, (4.47)

in which Ôk(zk) are operators located at position zk on the contour. Alternatively, we
could calculate O(t) by tracing with ρ̂ the equation of motion for ÔH(z) and then solv-
ing the resulting di�erential equation. However, as clearly shown in (4.44) and (4.45), the
time derivative generates new operators whose time derivative generates yet other and
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4.5. Operator correlators on the contour 115

more complex operators, and so on and so forth. As a result we are again back to
calculating the trace of strings of operators like (4.47), but this time with operators in
the contour Heisenberg picture. For instance the r.h.s. of (4.44) contains the operator

n̂H(x′, z)ψ̂H(x, z) = T
{

nH(x′, z+)ψ̂H(x, z)
}

where z+ is a contour time infinitesimally

later than z.
From the above discussion we conclude that if we want to calculate O(t) we must be

able to manipulate objects like (4.47). We refer to these strings of operators as the operator
correlators. As we shall see they play an important part in the subsequent development of
the perturbative scheme. The aim of this section is to discuss some of their basic properties.
At this stage it is not important what the origin of the time-dependence of the operators
is. We can take operators in the contour Heisenberg picture or consider any other arbitrary
time-dependence. It will not even be important what the actual shape of the contour is.
The only thing that matters in the derivations below is that the operators are under the
contour-ordered sign T .

The most natural way to find relations for the operator correlators is to di�erentiate them
with respect to their contour arguments. As we shall see this leads to a very useful set of
hierarchy equations. In order not to overcrowd our equations we introduce the abbreviation

Ôj ≡ Oj(zj).

The simplest example of an operator correlator is the contour ordered product of just two
operators [see also (4.5)]

T
{

Ô1Ô2

}

= θ(z1, z2)Ô1Ô2 + θ(z2, z1)Ô2Ô1, (4.48)

where θ(z1, z2) = 1 if z1 is later than z2 on the contour and zero otherwise. This θ-function
can be thought of as the Heaviside function on the contour. If we di�erentiate (4.48) with
respect to the contour variable z1 we obtain

d

dz1
T
{

Ô1Ô2

}

= δ(z1, z2)
[

Ô1, Ô2

]

−
+ T

{(
d

dz1
Ô1

)

Ô2

}

. (4.49)

In this formula we defined the Dirac δ-function on the contour in the obvious way

δ(z1, z2) ≡
d

dz1
θ(z1, z2) = −

d

dz2
θ(z1, z2).

By definition δ(z1, z2) is zero everywhere except in z1 = z2 where it is infinite. Furthermore,
for any operator Â(z) we have13

∫ zf

zi

dz̄ δ(z, z̄)Â(z̄) = Â(z).

13This identity can easily be checked with, e.g., an integration by parts. We have
∫ zf

zi

dz̄ δ(z, z̄)Â(z̄) = −
∫ zf

zi

dz̄ [
d

dz̄
θ(z, z̄)]Â(z̄)

= Â(zi) +

∫ zf

zi

dz̄ θ(z, z̄)
d

dz̄
Â(z̄) = Â(zi) + Â(z)− Â(zi).
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116 4. The contour idea

A nice feature of (4.49) is the equal time commutator between the two operators. Since
we can build any many-body operator from the field operators one of the most important
cases to consider is when Ô1 and Ô2 are field operators. In this case the commutator has
a simple value for bosons [either 0 or a δ-function, see (1.39), (1.40), and (1.47)] but has no
simple expression for fermions. A simple expression for fermions would be obtained if we
could replace the commutator with the anti-commutator. This can be readily achieved by
defining the time ordering of two fermionic field operators to be given by

T
{

Ô1Ô2

}

≡ θ(z1, z2)Ô1Ô2 − θ(z2, z1)Ô2Ô1,

where we introduce a minus sign in front of the last term. If we di�erentiate this expression
with respect to the time z1 we get

d

dz1
T
{

Ô1Ô2

}

= δ(z1, z2)
[

Ô1, Ô2

]

+
+ T

{(
d

dz1
Ô1

)

Ô2

}

,

where now the anti-commutator appears. In order for this nice property to be present
in general n-point correlators also we introduce the following generalized definition of the
contour-ordered product

T
{

Ô1 . . . Ôn

}

=
∑

P

(±)P θn(zP (1), . . . , zP (n))ÔP (1) . . . ÔP (n), (4.50)

where we sum over all permutations P of n variables and where the + sign refers to a string
of bosonic field operators and the − sign refers to a string of fermionic field operators. In
(4.50) we further define the n-time theta function θn to be

θn(z1, . . . , zn) =

{
1 if z1 > z2 > . . . > zn
0 otherwise

,

or equivalently
θn(z1, . . . , zn) = θ(z1, z2)θ(z2, z3) . . . θ(zn−1, zn).

From now on we interchangeably write “z1 > z2” or “z1 later than z2” as well as “z1 < z2”
or “z1 earlier than z2.” The definition (4.50) considers all possible orderings of the contour
times through the sum over P , and for a given set of times z1, . . . , zn only one term of the
sum survives. It follows from the definition that

T
{

Ô1 . . . Ôn

}

= (±)PT
{

ÔP (1) . . . ÔP (n)

}

.

In particular it follows that bosonic field operators commute within the contour-ordered
product whereas fermionic field operators anti-commute.

At this point we should observe that the contour ordering operator is ambiguously
defined if the operators have the same time variable. To cure this problem we introduce
the further rule that operators at equal times do not change their relative order after the
contour-ordering. Thus, for instance

T
{

ψ̂(x1, z)ψ̂(x2, z)
}

= ψ̂(x1)ψ̂(x2)
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4.5. Operator correlators on the contour 117

Figure 4.6 Graphical way to calculate the sign of a permutation.

or
T
{

ψ̂(x1, t−)ψ̂(x2, t
′
+)ψ̂

†(x3, t−)
}

= ±ψ̂(x2)ψ̂(x1)ψ̂
†(x3)

or
T
{

ψ̂(x1, z)ψ̂(x2, z)ψ̂
†(x2, z

+)ψ̂†(x1, z
+)
}

= ψ̂†(x2)ψ̂
†(x1)ψ̂(x1)ψ̂(x2),

where z+ is a time infinitesimally later than z. From the last example we easily deduce that
a composite operator which consists of M equal-time field operators, like the density or
the current or n̂(x)ψ̂(y), behaves like a bosonic/fermionic field operator for even/odd M
under the T sign. We use the general nomenclature bosonic/fermionic operators for these
kinds of composite operator. In particular, a string of Hamiltonians behaves like a set of
bosonic operators. Therefore, our generalized definition (4.50) is consistent with the earlier
definition in Section 4.1.

According to our new definition the derivative of the two-operator correlator is given by

d

dz1
T
{

Ô1Ô2

}

= δ(z1, z2)
[

Ô1, Ô2

]

∓
+ T

{(
d

dz1
Ô1

)

Ô2

}

, (4.51)

where the upper/lower sign refers to bosonic/fermionic operators. Let us generalize this
result to higher order operator correlators. For long strings of fermionic operators, finding
the sign of the prefactor in (4.50) can be awkward. However, there exists a very nice and
elegant graphical way to find the sign by the simple drawing of one diagram. Let us illustrate
it with an example. Consider the case of five fermionic operators Ô1 . . . Ô5 with the contour
variables z2 > z1 > z4 > z5 > z3. Then

T
{

Ô1Ô2Ô3Ô4Ô5

}

= −Ô2Ô1Ô4Ô5Ô3.

The reordering of these operators corresponds to the permutation

P (1, 2, 3, 4, 5) = (2, 1, 4, 5, 3)

and has sign −1. This permutation can be drawn graphically as in Fig. 4.6. The operators
Ô1 . . . Ô5 are denoted by dots and are ordered from top to bottom on a vertical line on the
left of the figure. The permuted operators ÔP (1) . . . ÔP (5) are similarly drawn on a vertical
line on the right of the figure with the latest time at the top and the earliest time at the

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:05:38 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.006

Cambridge Books Online © Cambridge University Press, 2015



118 4. The contour idea

bottom. We then connect the left dot i with the right dot i by a line. This line does not
have to be a straight line, it can be any curve as long as it does not extend beyond the left
and right boundaries of the graph. If we count the number of crossings nc then the sign
of the permutation is simply given by (−1)nc . Since in our case there are three crossings
the sign of the permutation is (−1)3 = −1. This graphical trick is explained in more detail
in Appendix B where it is also used to derive some useful relations for determinants and
permanents. It is readily seen that any interchange of neighboring operators on the left or
right vertical line increases or decreases the number of crossings by one. An interchange on
the left vertical line corresponds to transposing operators under the contour ordering sign.
For example, if we interchange the operators Ô3 and Ô4

T
{

Ô1Ô2Ô3Ô4Ô5

}

= −T
{

Ô1Ô2Ô4Ô3Ô5

}

(4.52)

in agreement with the fact that the number of crossings for the operator correlator on the
r.h.s. is 2. On the other hand, if we interchange two operators on the right vertical line we
change the contour-ordering. For instance, interchanging operators Ô1 and Ô2 on the right
will change the contour-ordering from z2 > z1 to z1 > z2. These operations and the graphs
as in Fig. 4.6 are very useful in proving relations involving contour-ordered products. We
can use these pictures to derive a generalization of (4.51).

We consider strings of only fermionic or only bosonic operators as the generalization to
mixed strings is straightforward. From (4.50) we see that the derivative of a time-ordered
product consists of a part where the Heaviside functions are di�erentiated and a part where
an operator is di�erentiated, i.e.,

d

dzk
T
{

Ô1 . . . Ôn

}

= ∂θzkT
{

Ô1 . . . Ôn

}

+ T
{

Ô1 . . . Ôk−1

(
d

dzk
Ôk

)

Ôk+1 . . . Ôn

}

,

(4.53)
where we define [46]

∂θzkT
{

Ô1 . . . Ôn

}

≡
∑

P

(±)P
(

d

dzk
θn(zP (1), . . . , zP (n))

)

ÔP (1) . . . ÔP (n). (4.54)

It remains to give a more explicit form to (4.54). Imagine that we have a given contour-
ordering of the operators as in Fig. 4.6 and that we subsequently change the time zk . As
previously explained, this corresponds to moving a dot on the right vertical line. When
zk moves along the contour the Heaviside function leads to a sudden change in the time-
ordering whenever zk passes another time zl. In such a case the derivative of the Heaviside
function gives a contribution proportional to δ(zk, zl). We only need to find what the
prefactor of this δ-function is and for this purpose we need to know how the correlator
behaves when zk is very close to zl. Let us start by moving the operator Ôl directly after
Ôk inside the contour ordering. This requires l − k − 1 interchanges when l > k and k − l
interchanges when k > l and therefore

T
{

Ô1 . . . Ôn

}

= (±)l−k−1T
{

Ô1 . . . ÔkÔlÔk+1 . . . Ôl−1Ôl+1 . . . Ôn

}

,

when l > k, and

T
{

Ô1 . . . Ôn

}

= (±)k−lT
{

Ô1 . . . Ôl−1Ôl+1 . . . ÔkÔlÔk+1 . . . Ôn

}

,
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4.5. Operator correlators on the contour 119

when k > l. The key observation is now that the operators Ôk and Ôl stay next to each
other after the contour-ordering since zk has been assumed to be very close to zl, and
therefore there is no other time zj between them. The sign of the permutation that achieves
this contour-ordering is therefore equal to the sign of the permutation Q of the subset of
operators not including Ôk and Ôl. This is easily seen graphically since the pair of lines
connecting the operators Ôk and Ôl to their images is always crossed an even number of
times. For instance, if we move 4 just below 1 in the left vertical line of Fig. 4.6 and then
shift the pair 1 and 4 in the right vertical line upward or downward we see that the number
of crossings nc always changes by an even number. Then for l > k and for zk just above
and below zl we can write

T
{

Ô1 . . . Ôn

}

= (±)l−k−1(±)Q
[

θ(zk, zl)ÔQ(1) . . . ÔkÔl . . . ÔQ(n)

± θ(zl, zk)ÔQ(1) . . . ÔlÔk . . . ÔQ(n)

]

.

We can now di�erentiate the Heaviside function with respect to zk and find that

∂θzkT
{

Ô1 . . . Ôn

}

=(±)l−k−1δ(zk, zl)(±)QÔQ(1) . . .
[

Ôk, Ôl

]

∓
. . . ÔQ(n)

=(±)l−k−1δ(zk, zl)T
{

Ô1 . . .
[

Ôk, Ôl

]

∓
Ôk+1 . . . Ôl−1Ôl+1 . . . Ôn

}

.

Due to the presence of the δ-function the (anti)commutator under the contour-ordering sign
can be regarded as a function of one time variable only and behaves like a bosonic operator.
Similarly for k > l we can, in exactly the same way, derive the equation

∂θzkT
{

Ô1 . . . Ôn

}

= (±)k−lδ(zk, zl)T
{

Ô1 . . . Ôl−1Ôl+1 . . .
[

Ôk, Ôl

]

∓
Ôk+1 . . . Ôn

}

.

These two equations are valid only for zk very close to zl. The general result for the
derivative (4.54) is obtained by summing over all possible values of l 6= k. This yields the
final expression

∂θzkT
{

Ô1 . . . Ôn

}

=

k−1∑

l=1

(±)k−lδ(zk, zl)T
{

Ô1 . . . Ôl−1Ôl+1 . . .
[

Ôk, Ôl

]

∓
Ôk+1 . . . Ôn

}

+

n∑

l=k+1

(±)l−k−1δ(zk, zl)T
{

Ô1 . . .
[

Ôk, Ôl

]

∓
Ôk+1 . . . Ôl−1Ôl+1 . . . Ôn

}

. (4.55)

This expression can be rewritten in various other ways since the (anti)commutator behaves
as a bosonic operator and can therefore be placed anywhere we like under the T sign.
Equation (4.53) together with (4.55) represents the generalization of (4.51). For example, if we
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120 4. The contour idea

di�erentiate the five-operator correlator in (4.52) with respect to z3 we get

d

dz3
T
{

Ô1Ô2Ô3Ô4Ô5

}

= δ(z3, z1)T
{

Ô2

[

Ô3, Ô1

]

∓
Ô4Ô5

}

± δ(z3, z2)T
{

Ô1

[

Ô3, Ô2

]

∓
Ô4Ô5

}

+ δ(z3, z4)T
{

Ô1Ô2

[

Ô3, Ô4

]

∓
Ô5

}

± δ(z3, z5)T
{

Ô1Ô2

[

Ô3, Ô5

]

∓
Ô4

}

+ T
{

Ô1Ô2

(
d

dz3
Ô3

)

Ô4Ô5

}

,

where the sign in front of each δ-function is simply given by the number of interchanges
required to shift the operators Ôl for l = 1, 2, 4, 5 directly after Ô3 inside the T product.

We have mentioned that an important application of (4.55) is when the operators Ôl

are the field operators in the contour Heisenberg picture. In this case the equal-time
(anti)commutator is a real number equal to either zero or a δ-function. Let us therefore
investigate how (4.55) simplifies if

[

Ôk(z), Ôl(z)
]

∓
= ckl(z)1̂, (4.56)

where ckl(z) is a scalar function of z and where on the l.h.s. we reinsert the explicit
time dependence of the operators to stress that (4.56) is valid only for the equal-time
(anti)commutator. Since the unit operator 1̂ commutes with all operators in Fock space
the (anti)commutators in (4.55) can be moved outside the contour-ordered product and we
obtain

∂θzkT
{

Ô1 . . . Ôn

}

=

k−1∑

l=1

(±)k−lδ(zk, zl)
[

Ôk, Ôl

]

∓
T
{
Ô1 . . .

⊓
Ôl . . .

⊓
Ôk . . . Ôn

}

+

n∑

l=k+1

(±)l−k−1δ(zk, zl)
[

Ôk, Ôl

]

∓
T
{
Ô1 . . .

⊓
Ôk . . .

⊓
Ôl . . . Ôn

}
, (4.57)

where the symbol ⊓ above an operator Ôk signifies that this operator is missing from the
list, for example

Ô1

⊓
Ô2 Ô3

⊓
Ô4 Ô5 = Ô1Ô3Ô5.

Equation (4.57) shows very clearly why it is useful to introduce the definition (4.50) of
the contour-ordering. If we had stuck to our original version of contour-ordering, then
(4.55) would still have been valid but with all prefactors + and, more importantly, with a
commutator also for fermionic operators. The unpleasant consequence of this fact would be
that for the fermionic field operators ψ and ψ† no simplification as in (4.57) can be made.
This is a nice example of something to keep in mind when learning new topics: definitions
are always introduced to simplify the calculations and never fall from the sky. To appreciate
the simplification entailed by the definition (4.50) we work out the time derivative of a string
of four field operators in the contour Heisenberg picture. Let us introduce a notation which
will be used throughout the book

i = xi, zi, j = xj , zj , . . .
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4.5. Operator correlators on the contour 121

as well as

i′ = x′i, z
′
i, j′ = x′j , z

′
j , . . .

and

ī = x̄i, z̄i, j̄ = x̄j , z̄j , . . .

etc., to denote the collective position–spin–time coordinate, and

δ(j; k) ≡ δ(zj , zk)δ(xj − xk)

to denote the space–spin–time δ-function. Then (4.57) together with (4.53) tells us, for
instance, that

d

dz2
T
{

ψ̂H(1)ψ̂H(2)ψ̂†H(3)ψ̂†H(4)
}

= T
{

ψ̂H(1)

(
d

dz2
ψ̂H(2)

)

ψ̂†H(3)ψ̂†H(4)

}

+ δ(2; 3)T
{

ψ̂H(1)ψ̂†H(4)
}

± δ(2; 4)T
{

ψ̂H(1)ψ̂†H(3)
}

,

where we take into account that the equal-time (anti)commutator between ψ̂H(2) and ψ̂H(1)
vanishes.

At the beginning of the section we showed that the operator correlators k̂ appear nat-
urally in the expansion of the contour-ordered exponential and in the equations of motion.
Thus, the operators Ôk are typically composite operators corresponding to observable quan-
tities and, as such, with an equal number of creation and annihilation field operators. Let
us therefore define the special correlators

Ĝn(1, . . . , n; 1
′, . . . , n′) ≡ 1

in
T
{

ψ̂H(1) . . . ψ̂H(n)ψ̂†H(n′) . . . ψ̂†H(1′)
}

, (4.58)

where the primed j′ = x′j , z
′
j and unprimed j = xj , zj coordinates label creation and

annihilation field operators respectively (which can be either all bosonic or all fermionic). As
we shall see the prefactor 1/in in this equation is a useful convention. For the case n = 0
we define Ĝ0 ≡ 1̂. We can derive an extremely useful set of coupled equations for these
operator correlators using (4.53) and (4.57) with the identification

Ôj =

{
ψ̂H(j) for j = 1, . . . , n

ψ̂†H((2n− j + 1)′) for j = n+ 1, . . . , 2n
.

After some relabeling we easily find

i
d

dzk
Ĝn(1, . . . , n; 1

′, . . . , n′)

=
1

in
T
{

ψ̂H(1) . . .

(

i
d

dzk
ψ̂H(k)

)

. . . ψ̂H(n)ψ̂†H(n′) . . . ψ̂†H(1′)

}

+

n∑

j=1

(±)k+j δ(k; j′) Ĝn−1(1, . . .
⊓
k . . . , n; 1

′, . . .
⊓
j′ . . . , n′) (4.59)
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122 4. The contour idea

and

−i d
dz′k

Ĝn(1, . . . , n; 1
′, . . . , n′)

=
1

in
T
{

ψ̂H(1) . . . ψ̂H(n)ψ̂†H(n′) . . .

(

−i d
dz′k

ψ̂†H(k′)

)

. . . ψ̂†H(1′)

}

+

n∑

j=1

(±)k+j δ(j; k′) Ĝn−1(1, . . .
⊓
j . . . , n; 1′, . . .

⊓
k′ . . . , n′). (4.60)

Indeed the shift of, e.g., ψ̂†H(j′) just after ψ̂H(k) in (4.59) requires (n − j) + (n − k)
interchanges and (±)(n−j)+(n−k) = (±)k+j . The terms involving the time-derivatives of
the field operators can be worked out from (4.44) and (4.45). In order not to generate
formulas which are too voluminous, we assume that ĥ is diagonal in spin space so that

〈x1|ĥ(z1)|x2〉 = h(1)δ(x1 − x2) = δ(x1 − x2)h(2), (4.61)

with h(1) = h(r1,−i∇1,S1, z1) when it acts on quantities to its right and h(1) =

h(r1, i
←−
∇1,S1, z1) when it acts on quantities to its left. The extension to arbitrary ma-

trix elements 〈x1|ĥ(z1)|x2〉 is straightforward. Using (4.61) the equations of motion (4.44)
and (4.45) can be rewritten in the following compact form

i
d

dzk
ψ̂H(k) = h(k)ψ̂H(k) +

∫

d1̄ v(k, 1̄)n̂H(1̄)ψ̂H(k), (4.62)

−i d
dz′k

ψ̂†H(k′) = ψ̂†H(k′)h(k′) +

∫

d1̄ v(k′, 1̄)ψ̂†H(k′)n̂H(1̄), (4.63)

where we introduce the definition

v(i; j) ≡ δ(zi, zj)v(xi,xj , zi).

The r.h.s. of the equations of motion contains three field operators with the same time
argument. For instance in (4.62) we have

n̂H(1̄)ψ̂H(k) = ψ̂†H(1̄)ψ̂H(1̄)ψ̂H(k) = ±ψ̂†H(1̄)ψ̂H(k)ψ̂H(1̄),

where we use the fact that field operators in the Heisenberg picture at equal times satisfy the
same (anti)commutation relations as the field operators. Inserting this composite operator
inside the contour ordering we would like to move the field operator ψ̂†H(1̄) to the right in

order to form a Ĝn. To make sure that after the reordering ψ̂†H(1̄) ends up to the left of

ψ̂H(1̄) and ψ̂H(k) we calculate it in 1̄+ = x̄1, z̄
+
1 , where z̄

+
1 is infinitesimally later than z̄1.

Inside the T sign we can then write

T
{

. . . n̂H(1̄)ψ̂H(k) . . .
}

= ±T
{

. . . ψ̂H(k)ψ̂H(1̄)ψ̂†H(1̄+) . . .
}

,

As ψ̂H(1̄)ψ̂†H(1̄+) is composed of an even number of field operators it behaves like a
bosonic operator inside the contour ordering and can therefore be placed wherever we like
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4.5. Operator correlators on the contour 123

without caring about the sign. With this trick the first term on the r.h.s. of (4.59) can be
written as

1

in
T
{

ψ̂H(1) . . .

(

i
d

dzk
ψ̂H(k)

)

. . . ψ̂H(n)ψ̂†H(n′) . . . ψ̂†H(1′)

}

= h(k)Ĝn(1, . . . , n; 1
′, . . . , n′)

± 1

in

∫

d1̄ v(k; 1̄) T
{

ψ̂H(1) . . . ψ̂H(n)ψ̂H(1̄)ψ̂†H(1̄+)ψ̂†H(n′) . . . ψ̂†H(1′)
}

= h(k)Ĝn(1, . . . , n; 1
′, . . . , n′)± i

∫

d1̄ v(k; 1̄) Ĝn+1(1, . . . , n, 1̄; 1, . . . , n
′, 1̄+).

A similar equation can be derived in a completely analogous way for the contour-ordered
product in (4.60). This time we write

T
{

. . . ψ̂†H(k′)n̂H(1̄) . . .
}

= ±T
{

. . . ψ̂H(1̄−)ψ̂†H(1̄)ψ̂†H(k′) . . .
}

where the time coordinate z̄−1 is infinitesimally earlier than z̄1. We again use that

ψ̂H(1̄−)ψ̂†H(1̄) is a bosonic operator, and hence it can be placed between ψ̂H(n) and

ψ̂†H(n′) without caring about the sign. Inserting these results into the equations of motion

for the Ĝn we find

[

i
d

dzk
− h(k)

]

Ĝn(1, . . . , n; 1
′, . . . , n′)

= ±i
∫

d1̄ v(k; 1̄) Ĝn+1(1, . . . , n, 1̄; 1
′, . . . , n′, 1̄+)

+
n∑

j=1

(±)k+j δ(k; j′) Ĝn−1(1, . . .
⊓
k . . . , n; 1

′, . . .
⊓
j′ . . . , n′)

(4.64)

and

Ĝn(1, . . . , n; 1
′, . . . , n′)

[

−i
←−
d

dz′k
− h(k′)

]

= ±i
∫

d1̄ v(k′; 1̄) Ĝn+1(1, . . . , n, 1̄
−; 1′, . . . , n′, 1̄)

+

n∑

j=1

(±)k+j δ(j; k′) Ĝn−1(1, . . .
⊓
j . . . , n; 1′, . . .

⊓
k′ . . . , n′)

(4.65)

where in the last equation the arrow over d/dz′k specifies that the derivative acts on the
quantity to its left. We have thus derived an infinite hierarchy of operator equations in
Fock space in which the derivative of Ĝn is expressed in terms of Ĝn−1 and Ĝn+1. These
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124 4. The contour idea

equations are very general as we made no assumptions on the particular shape of the
contour, which can be any of the contours encountered in the previous sections. We only
used an identity for the contour derivative of a string of contour ordered operators and the
equations of motion for ψ̂H and ψ̂†H . The equations (4.64) and (4.65) play a pivotal role in the
development of the theory. As we explain in the subsequent chapters the whole structure
of diagrammatic perturbation theory is encoded in them.

Exercise 4.5. Let Ôj ≡ Ôj(zj) be a set of composite operators consisting of an even or

odd number of fermion field operators. Show that a bosonic operator (even number) always

commutes within the contour-ordered product and that a fermionic operator (odd number)

anti-commutes with another fermionic operator. Let further z1 > z2 > . . . > zn. Show that

T
{

ÔP (1) . . . ÔP (n)

}

= (−1)F Ô1 . . . Ôn,

where P is a permutation of the labels and where F is the number of interchanges of

fermion operators in the permutation P that puts all the operators in the right order.

Exercise 4.6. Write down (4.64) and (4.65) in the case that the one-particle Hamilto-

nian 〈x|ĥ(z)|x′〉 is not diagonal in spin space, and even more generally in the case that

〈x|ĥ(z)|x′〉 is not diagonal in position space.

Exercise 4.7. How do (4.64) and (4.65) change if the interaction Hamiltonian contains a

three-body operator as in (4.46)?

Exercise 4.8. Consider the Hamiltonian on the contour

Ĥ(z) =

N∑

i=1

(

ωid̂
†
i d̂i + fi(z)x̂i

)

,

where x̂i = 1√
2
(d̂†i + d̂i) and the d̂-operators satisfy the bosonic commutation relations

[d̂i, d̂
†
j ]− = δij and [d̂i, d̂j ]− = [d̂†i , d̂

†
j ]− = 0. Show that the operator correlator

T {x̂1,H(z1) . . . x̂n,H(zn)}
satisfies the equation of motion
[
d2

dz2k
+ ω2

k

]

T {x̂1,H(z1) . . . x̂n,H(zn)}

= −ωkfk(z)T
{

x̂1,H(z1) . . .
⊓
x̂k,H (zk) . . . x̂n,H(zn)

}

− iωk

n∑

j 6=k

δ(j; k) T
{

x̂1,H(z1) . . .
⊓
x̂k,H (zk) . . .

⊓
x̂j,H (zj) . . . x̂n,H(zn)

}

,

where δ(j; k) = δjkδ(zj , zk). Why do we need a second order equation to obtain a closed

set of equations for these types of operator correlator?
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5

Many-particle Green’s functions

5.1 Martin–Schwinger hierarchy

In the previous chapter we derived the di�erential equations (4.64) and (4.65) for the operator
correlators Ĝn which form the building blocks to construct any other operator correlator.
This set of operator equations can be turned into a coupled set of di�erential equations

by taking the average with ρ̂ = e−βĤ
M

/Z . If we discuss a system that is initially in
thermodynamic equilibrium then ρ̂ is the grand canonical density matrix. More generally we
define the n-particle Green’s function Gn to be

Gn(1, . . . , n; 1
′, . . . , n′) ≡

Tr
[

e−βĤ
M

Ĝn(1, . . . , n; 1
′, . . . , n′)

]

Tr
[

e−βĤM
]

=
1

in

Tr
[

T
{

e−i
∫

γ
dz̄Ĥ(z̄)ψ̂(1) . . . ψ̂(n)ψ̂†(n′) . . . ψ̂†(1′)

}]

Tr
[

T
{

e−i
∫

γ
dz̄Ĥ(z̄)

}] .

(5.1)

In the second equality we use the definition of operators in the contour Heisenberg picture.
Consider, for instance, G1 with z1 < z′1. Then

e−βĤ
MT

{

ψ̂H(1)ψ̂†H(1′)
}

= ±Û(zf , zi)Û(zi, z
′
1)ψ̂
†(1′)Û(z′1, z1)ψ̂(1)Û(z1, zi)

= ±T
{

e−i
∫

γ
dz̄Ĥ(z̄)ψ̂†(1′)ψ̂(1)

}

= T
{

e−i
∫

γ
dz̄Ĥ(z̄)ψ̂(1)ψ̂†(1′)

}

,

where we take into account that e−βĤ
M

= Û(zf , zi) and that under the T sign the field
operators (anti)commute. Similar considerations apply to Gn. The Green’s function G1

at times z1 = z and z′1 = z+ infinitesimally later than z1 is the time-dependent ensemble

average of the operator ψ̂†(x′1)ψ̂(x1) (modulo a factor of i) from which we can calculate the
time-dependent ensemble average of any one-body operator. More generally, by choosing

125
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126 5. Many-particle Green’s functions

the contour arguments of Gn to be zi = z and z′i = z+ for all i we obtain the time-

dependent ensemble average of the operator ψ̂†(x′n)...ψ̂
†(x′1)ψ̂(x1)...ψ̂(xn) (modulo a

factor in) from which we can calculate the time-dependent ensemble average of any n-body
operator. At the initial time z = t0 these averages are the generalization to ensembles of
the n-particle density matrices introduced in Section 1.7.

It is worth observing that under the adiabatic assumption, see Section 4.3, we can
calculate the Green’s functions Gn from the second line of (5.1) in which γ → γa is the
adiabatic contour of Fig. 4.5(b) and the “adiabatic Hamiltonian” changes along the contour
as illustrated in the same figure. This is the same as saying that in the first line of (5.1)
we replace ĤM → ĤM

0 , take the arguments of Ĝn on γa and the field operators in
the Heisenberg picture with respect to the adiabatic Hamiltonian. These adiabatic Green’s
functions coincide with the exact ones when all contour arguments are larger than t0. The
proof of this statement is the same as the proof of the adiabatic formula (4.27). If we further
have a system in equilibrium at zero temperature then we can use the zero-temperature
assumption. The Green’s functions can then be calculated from the second line of (5.1) in
which γ → γ0 is the zero-temperature contour of Fig. 4.5(c) and the “zero-temperature
Hamiltonian” changes along the contour as illustrated in the same figure. Equivalently, the
zero-temperature Green’s functions can be calculated from the first line of (5.1) in which
ĤM → ĤM

0 , the arguments of Ĝn are on the contour γ0 and the field operators are
in the Heisenberg picture with respect to the zero-temperature Hamiltonian.1 These zero-
temperature Green’s functions coincide with the exact ones for contour arguments on the
forward branch, as can readily be verified by following the same logic as Section 4.3. Using
the (equal-time) adiabatic or zero-temperature Green’s functions corresponds to using the
adiabatic or zero-temperature formula for the time-dependent averages. The reader is
strongly encouraged to pause a while and get convinced of this fact. A useful exercise is,
e.g., to write the explicit expression of G1(x, z;x

′, z+) from both the first and second line of
(5.1) with γ one of the three contours of Fig. 4.5 (and, of course, with the Hamiltonian Ĥ(z)
as illustrated in these contours) and to show that they are the same under the corresponding
assumptions. The special appealing feature of writing the Green’s functions as in the second
line of (5.1) is that this formula nicely embodies all possible cases (exact, adiabatic and
zero-temperature ones), once we assign the form of γ and the way the Hamiltonian changes
along the contour.

Let us now come back to the di�erential equations (4.64) and (4.65). They have been
derived without any assumption on the shape of the contour and without any assumption on
the time-dependence of ĥ(z) and v(x,x′, z) along the contour. Therefore, no matter how
we define the Green’s functions Gn (to be the exact, the adiabatic, or the zero-temperature)
they satisfy the same kind of di�erential equations. To show it we simply multiply (4.64)

and (4.65) by the appropriate density matrix ρ̂ (equal to e−βĤ
M

/Z in the exact case and

equal to e−βĤ
M
0 /Z0 in the adiabatic and zero-temperature case), take the trace and use the

1We recall that under the zero-temperature assumption Ûη(−∞,∞)|Φ0〉 = e−iα0 |Φ0〉, where |Φ0〉 is the

ground state of ĤM
0 .
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5.1. Martin–Schwinger hierarchy 127

definition (5.1) to obtain the following system of coupled di�erential equations:

[

i
d

dzk
− h(k)

]

Gn(1, . . . , n; 1
′, . . . , n′)

= ±i
∫

d1̄ v(k; 1̄)Gn+1(1, . . . , n, 1̄; 1
′, . . . , n′, 1̄+)

+
n∑

j=1

(±)k+j δ(k; j′)Gn−1(1, . . .
⊓
k . . . , n; 1

′, . . .
⊓
j′ . . . , n′)

(5.2)

Gn(1, . . ., n; 1
′, . . . , n′)

[

−i
←−
d

dz′k
− h(k′)

]

= ±i
∫

d1̄ v(k′; 1̄)Gn+1(1, . . . , n, 1̄
−; 1′, . . . , n′, 1̄)

+

n∑

j=1

(±)k+j δ(j; k′)Gn−1(1, . . .
⊓
j . . . , n; 1′, . . .

⊓
k′ . . . , n′)

(5.3)

This set of equations is known as the Martin–Schwinger hierarchy [47] for the Green’s
functions. If we could solve it we would be able to calculate any time-dependent ensemble
average of any observable that we want. For example, the average of the density operator
and paramagnetic current density operator are given in terms of the one-particle Green’s
function G1 as

n(x, z) =
Tr
[

e−βĤ
M

ψ̂†H(x, z)ψ̂H(x, z)
]

Tr
[

e−βĤM
] = ±iG1(x, z;x, z

+) (5.4)

and [see (3.26)]

j(x, z) =
1

2mi

Tr
[

e−βĤ
M
(

ψ̂†H(x, z)(∇ψ̂H(x, z))− (∇ψ̂†H(x, z))ψ̂H(x, z)
)]

Tr
[

e−βĤM
]

= ±
(
∇−∇

′

2m
G(x, z;x′, z+)

)

x′=x

, (5.5)

while, for instance, the interaction energy is given in terms of the two-particle Green’s
function as2

Eint(z) =
1

2

∫

dxdx′ v(x,x′; z)
Tr
[

e−βĤ
M

ψ̂†H(x, z)ψ̂†H(x′, z)ψ̂H(x′, z)ψ̂H(x, z)
]

Tr
[

e−βĤM
]

= −1

2

∫

dxdx′ v(x,x′; z)G2(x
′, z,x, z;x′, z+,x, z+).

2Recall that under the T sign the order of operators with the same contour argument is preserved, see also
examples in Section 4.5.
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128 5. Many-particle Green’s functions

Choosing z on the vertical track we have the initial value of these observable quantities
while for z = t± on the horizontal branches we have their ensemble average at time t.
Moreover, according to the previous discussion, we can state that:

The exact, adiabatic, and zero-temperature formula corresponds to using the Gn

which solve the Martin–Schwinger hierarchy on the contours of Fig. 4.5 with a one-
particle Hamiltonian h and interaction v as specified in the same figure.

In all cases the task is therefore to solve the hierarchy. As with any set of di�eren-
tial equations their solution is unique provided we pose appropriate spatial and temporal
boundary conditions. These boundary conditions obviously depend on the physical problem
at hand. The spatial boundary conditions on the Green’s functions are determined directly
by the corresponding spatial boundary conditions on the many-body states of the system.
For instance, if we describe a finite system such as an isolated molecule we know that
the many-body wave-functions vanish at spatial infinity and hence we require the same for
the Green’s functions. For an infinite periodic crystal the many-body wave-functions are
invariant (modulo a phase factor) under translations over a lattice vector. For this case we
thus demand that the Green’s functions obey the same lattice-periodic symmetry in each of
their spatial coordinates since the physics of adding or removing a particle cannot depend
on the particular unit cell where we add or remove the particle, see Appendix E. Since the
di�erential equations are first order in the time-derivatives we also need one condition per
time-argument for each Green’s function Gn. From the definition (5.1) it follows that (we
derive these relations below)

Gn(1, . . . ,xk, zi, . . . , n; 1
′, . . . , n′) = ±Gn(1, . . . ,xk, zf , . . . , n; 1

′, . . . , n′)

Gn(1, . . . , n; 1
′, . . . ,x′k, zi, . . . , n

′) = ±Gn(1, . . . , n; 1
′, . . . ,x′k, zf , . . . , n

′)
(5.6)

with sign +/− for the bosonic/fermionic case. The Green’s functions are therefore (anti)pe-
riodic along the contour γ. The boundary conditions (5.6) are known as the Kubo–Martin–
Schwinger (KMS) relations [47, 48]. To derive these relations we consider only the numerator
of (5.1). Let us insert the value zf in the kth contour argument. Since zf is the latest time on
the contour, we have, using the cyclic property of the trace,3 the set of identities illustrated
in Fig. 5.1. In the figure the arrows indicate how the operator ψ̂(xk) moves from one step
to the next. The final result is that we have replaced the contour-argument zf by zi and
gained a sign (±)k−1(±)2n−k = ±1. One can similarly derive the second KMS relation for
a time-argument z′k . As we see in Section 5.3, these boundary conditions are su�cient to
determine a unique solution for the di�erential equations (5.2) and (5.3) provided that the
boundary points belong to the same connected contour on which the di�erential equations
are solved. It is indeed very important that the Martin–Schwinger hierarchy is valid on the
vertical track and that the vertical track is connected to the horizontal branches. If the
vertical track were not attached then there would be a unique solution on the vertical track,

3Since in the bosonic case [ψ(x), ψ†(x′)]− = δ(x − x′) it seems dubious to use the property Tr[ÂB̂] =

Tr[B̂Â] for field operators. However, under the trace the field operators are always multiplied by e−βĤM
and

the use of the cyclic property is allowed. For a mathematical discussion see Ref. [49].
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5.2. Truncation of the hierarchy 129

Figure 5.1 Proof of the KMS relations.

but there would be no unique solution on the horizontal branches, see Exercise 5.1. This
provides a posteriori yet another and more fundamental reason to attach the vertical track.

In the next section we show a few examples on how to calculate some approximate
Green’s functions using the hierarchy equations together with the boundary conditions.
Already at this early stage it is possible to introduce several quantities and concepts which are
used and further discussed in the following chapters. Following the derivations with pencil
and paper will facilitate understanding of Section 5.3 where we give an exact formal solution
of the hierarchy for the one- and two-particle Green’s function as an infinite expansion in
powers of the interparticle interaction v.

Exercise 5.1. In order to illustrate the importance of the KMS boundary conditions and of

connected domains when solving the Martin–Schwinger hierarchy consider the di�erential

equation

i
df(z)

dz
− ǫf(z) = g(z)

valid for z ∈ (0,−iβ) and z ∈ (1,∞) and with boundary condition f(0) = ±f(−iβ). This
equation has the same structure as the Martin–Schwinger hierarchy but the real domain

(1,∞) is disconnected from the imaginary domain (0,−iβ). Show that for any complex ǫ
with a nonvanishing real part the solution is unique in (0,−iβ) but not in (1,∞). Are there
imaginary values of ǫ for which the solution is not unique in (0,−iβ)?

5.2 Truncation of the hierarchy

The Martin–Schwinger hierarchy together with the KMS boundary conditions completely
define the many-body problem. It therefore remains to find ways to solve the hierarchy.
What we want to show here is that we can already get some useful approximations for the
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130 5. Many-particle Green’s functions

one- and two-particle Green’s functions by making a few physically inspired approximations
in the hierarchy equations. This leads to new equations for the Green’s functions that
depend on the Green’s functions themselves in a nonlinear way. The solutions are therefore
nonperturbative in the interaction strength v. Let us start by writing down the lowest order
equations of the hierarchy. For the one-particle Green’s function (or simply the Green’s
function), which we denote by G(1; 2) ≡ G1(1; 2), we have the two equations

[

i
d

dz1
− h(1)

]

G(1; 1′) = δ(1; 1′)± i

∫

d2 v(1; 2)G2(1, 2; 1
′, 2+), (5.7)

G(1; 1′)

[

−i
←−
d

dz′1
− h(1′)

]

= δ(1; 1′)± i

∫

d2 v(1′; 2)G2(1, 2
−; 1′, 2). (5.8)

In the following we often refer to this couple of equations as the equations of motion for the
Green’s function. Similarly for the two-particle Green’s function we have the four equations
of motion:

[

i
d

dz1
− h(1)

]

G2(1, 2; 1
′, 2′) = δ(1; 1′)G(2; 2′)± δ(1; 2′)G(2; 1′)

± i

∫

d3 v(1; 3)G3(1, 2, 3; 1
′, 2′, 3+), (5.9)

[

i
d

dz2
− h(2)

]

G2(1, 2; 1
′, 2′) = ±δ(2; 1′)G(1; 2′) + δ(2; 2′)G(1; 1′)

± i

∫

d3 v(2; 3)G3(1, 2, 3; 1
′, 2′, 3+), (5.10)

G2(1, 2; 1
′, 2′)

[

−i
←−
d

dz′1
− h(1′)

]

= δ(1; 1′)G(2; 2′)± δ(2; 1′)G(1; 2′)

± i

∫

d3 v(1′; 3)G3(1, 2, 3
−; 1′, 2′, 3), (5.11)

G2(1, 2; 1
′, 2′)

[

−i
←−
d

dz′2
− h(2′)

]

= ±δ(1; 2′)G(2; 1′) + δ(2; 2′)G(1; 1′)

± i

∫

d3 v(2′; 3)G3(1, 2, 3
−; 1′, 2′, 3). (5.12)

The presence of the δ-functions on the right hand side of the equations of motion suggests
the following decomposition of the two-particle Green’s function:

G2(1, 2; 1
′, 2′) = G(1; 1′)G(2; 2′)±G(1; 2′)G(2; 1′) + Υ(1, 2; 1′, 2′), (5.13)

which implicitly defines the so called correlation function Υ. It is easy to see that if the
interaction v = 0 then the above G2 with Υ = 0 satisfies the equations of motion. Consider
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5.2. Truncation of the hierarchy 131

for instance (5.9); inserting G2 with Υ = 0 and using the equations of motion for G with
v = 0, the l.h.s. becomes
[

i
d

dz1
− h(1)

]
[
G(1; 1′)G(2; 2′)±G(1; 2′)G(2; 1′)

]
= δ(1; 1′)G(2; 2′)± δ(1; 2′)G(2; 1′),

which is the same as the r.h.s. of (5.9) for v = 0. Furthermore this G2 satisfies the KMS
boundary conditions whenever G does and therefore it is the exact noninteracting G2 if
we use the exact noninteracting G. This suggests that for weak interactions Υ ≈ 0. The
corresponding approximation

G2(1, 2; 1
′, 2′) = G(1; 1′)G(2; 2′)±G(1; 2′)G(2; 1′) (5.14)

is the so-called Hartree–Fock approximation to G2. This expression can be given a nice
physical interpretation if we choose a contour ordering. For instance, if z1, z2 > z′1, z

′
2

(here the inequality symbol “>” signifies “later than”) the two-particle Green’s function is
an object that describes the time-evolution of a many-body state to which we add two
particles at times z′1 and z′2 and remove them at times z1 and z2. For this reason G2 is
also sometimes called the two-particle propagator. Equation (5.14) then tells us that, if the
interaction between the particles is weak, the two-particle propagator can be approximately
written as the product of functions that describe how a single particle propagates when
added to the system. Due to the indistinguishability of the particles we do not know which
of the particles that we added at space–spin–time points 1 and 2 end up at points 1′ and 2′

and we therefore need to (anti)symmetrize the product for bosons/fermions. This explains
the form of (5.14). We come back to the Hartree–Fock approximation for G2 in Chapter 7.
We can now insert the Hartree–Fock G2 into the equations of motion (5.7) and (5.8) for G
and obtain
[

i
d

dz1
− h(1)

]

G(1; 1′) = δ(1; 1′)± i

∫

d2 v(1; 2)
[
G(1; 1′)G(2; 2+)±G(1; 2+)G(2; 1′)

]

= δ(1; 1′) +

∫

d2Σ(1; 2)G(2; 1′), (5.15)

G(1; 1′)

[

−i
←−
d

dz′1
− h(1′)

]

= δ(1; 1′)± i

∫

d2 v(1′; 2)
[
G(1; 1′)G(2−; 2)±G(1; 2)G(2−; 1′)

]

= δ(1; 1′) +

∫

d2G(1; 2)Σ(2; 1′), (5.16)

where the second equalities implicitly define the integral kernel Σ. The reader can easily
verify that

Σ(1; 2) = δ(1; 2)VH(1) + iv(1; 2)G(1; 2+)

with

VH(1) = ±i
∫

d3 v(1; 3)G(3; 3+) =

∫

dx3 v(x1,x3, z1)n(x3, z1)

by inserting Σ back in the equations of motion. In the equation above we take into
account that v(1; 3) = δ(z1, z3)v(x1,x3, z1) and that ±iG(x3, z1;x3, z

+
1 ) = n(x3, z1) is
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132 5. Many-particle Green’s functions

the density at space–spin–time point 3. The quantity VH is called the Hartree potential
and it should be an old acquaintance of the reader. The Hartree potential VH(x1, z1) has
a clear physical interpretation as the classical potential that a particle in x1 experiences
from a density distribution n of all the particles in the system (for Coulombic interactions
v(x1,x3, z1) = 1/|r1 − r3| the Hartree potential is the potential of classical electrostatics).
The Hartree potential is the first term of the integral kernel Σ which is known as the self-
energy. The second term in Σ is often called the Fock or exchange potential. This quantity
is local in time (due to the δ-function in the definition of v(1; 2)) but nonlocal in space and
therefore cannot be interpreted as a classical potential.

The equations (5.15) and (5.16) need to be solved self-consistently as the self-energy
depends on the Green’s function itself (nonlinear equations). The resulting approximated
Green’s function is therefore nonperturbative in v. In fact, we can write the solution in
integral form if we use the KMS boundary conditions. To do this we define the noninteracting
Green’s function G0 as the solution of the equations of motion with v = 0,

[

i
d

dz1
− h(1)

]

G0(1; 1
′) = δ(1; 1′), (5.17)

G0(1; 1
′)

[

−i
←−
d

dz′1
− h(1′)

]

= δ(1; 1′). (5.18)

As usual we need to solve these equations together with the KMS boundary conditions. We
then have
∫

d1G0(2; 1)

[

i
d

dz1
− h(1)

]

G(1; 1′)

=

∫

d1G0(2; 1)

[

−i
←−
d

dz1
− h(1)

]

G(1; 1′) + i

∫

dx1G0(2;x1, z1)G(x1, z1; 1
′)

∣
∣
∣
∣

z1=zf

z1=zi

=

∫

d1 δ(2; 1)G(1; 1′)

= G(2; 1′), (5.19)

where in the partial integration we use the fact that both G0 and G satisfy the KMS relations
so that the boundary term vanishes. In a similar manner one can show that

∫

d1′G(1; 1′)

[

−i
←−
d

dz′1
− h(1′)

]

G0(1
′; 2) = G(1; 2). (5.20)

If we now multiply (5.15) from the right and (5.16) from the left with G0 and use the above
identities we obtain the following two equivalent equations for G

G(1; 2) = G0(1; 2) +

∫

d3d4G0(1; 3)Σ(3; 4)G(4; 2),

G(1; 2) = G0(1; 2) +

∫

d3d4G(1; 3)Σ(3; 4)G0(4; 2).
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5.2. Truncation of the hierarchy 133

These equations are known as Dyson equations. The di�erence between the Dyson equa-
tions and the integro-di�erential equations (5.15) and (5.16) is that in the Dyson equations
the boundary conditions are incorporated through G0. As we see later in the book, the
Dyson equation is not only valid for the approximate case that we derived here but also
the exact Green’s function satisfies an equation of this form in which Σ depends in a much
more complicated but well-defined way on the Green’s function G. The Dyson equation is
therefore the formal solution of the Martin–Schwinger hierarchy for the one-particle Green’s
function.

Let us now see how to go beyond the Hartree–Fock approximation (5.14) for the two-
particle Green’s function. For this purpose we necessarily have to consider the correlation
function Υ. From the equations of motion for the one- and two-particle Green’s functions
(5.7) and (5.9) we find that if we act on (5.13) with [i d

dz1
− h(1)] we get

[

i
d

dz1
− h(1)

]

Υ(1, 2; 1′, 2′)= ±i
∫

d3 v(1; 3)
[
G3(1, 2, 3; 1

′, 2′, 3+)

−G2(1, 3; 1
′, 3+)G(2; 2′)∓G2(1, 3; 2

′, 3+)G(2; 1′)
]
. (5.21)

Now we use from the Martin–Schwinger hierarchy the following equation of motion for the
three-particle Green’s function:
[

i
d

dz2
− h(2)

]

G3(1, 2, 3; 1
′, 2′, 3′) = ±δ(2; 1′)G2(1, 3; 2, 3

′) + δ(2; 2′)G2(1, 3; 1
′, 3′)

± δ(2; 3′)G2(1, 3; 1
′, 2′)± i

∫

d4 v(2; 4)G4(1, 2, 3, 4; 1
′, 2′, 3′, 4+).

Acting on (5.21) with [i d
dz2
− h(2)] and further taking into account the equations of motion

for G we find
[

i
d

dz1
− h(1)

] [

i
d

dz2
− h(2)

]

Υ(1, 2; 1′, 2′) = iv(1; 2)G2(1, 2; 1
′, 2′)

−
∫

d4 v(1; 3)v(2; 4)
[
G4(1, 2, 3, 4; 1

′, 2′, 3+, 4+)−G2(1, 3; 1
′, 3+)G2(2, 4; 2

′, 4+)

∓G2(1, 3; 2
′, 3+)G2(2, 4; 1

′, 4+)
]
.

Since the last integral is at least one order higher in the interaction than the term directly
after the equal sign we neglect it. Our first approximation beyond Hartree–Fock is thus
given by

[

i
d

dz1
− h(1)

] [

i
d

dz2
− h(2)

]

Υ(1, 2; 1′, 2′) = iv(1; 2)G2(1, 2; 1
′, 2′).

By definition Υ satisfies the KMS boundary conditions and therefore we can solve this
equation doing the same integration as in (5.19). We then obtain the following explicit
expression

Υ(1, 2; 1′, 2′) = i

∫

d3d4G0(1; 3)G0(2; 4)v(3; 4)G2(3, 4; 1
′, 2′).
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134 5. Many-particle Green’s functions

This result together with (5.13) gives us an approximate (integral) equation for the two-particle
Green’s function beyond Hartree–Fock:

G2(1, 2; 1
′, 2′) = G(1; 1′)G(2; 2′)±G(1; 2′)G(2; 1′)

+ i

∫

d3d4G0(1; 3)G0(2; 4)v(3; 4)G2(3, 4; 1
′, 2′). (5.22)

To solve this equation we note that if we define the function S satisfying

S(1, 2; 3, 4) = δ(1; 3)δ(2; 4) + i

∫

d5d6G0(1; 5)G0(2; 6)v(5; 6)S(5, 6; 3, 4),

then the solution of (5.22) can be written as4

G2(1, 2; 1
′, 2′) =

∫

d3d4S(1, 2; 3, 4) [G(3; 1′)G(4; 2′)±G(3; 2′)G(4; 1′)] . (5.23)

In this expression S can be calculated from G0 only. The Green’s function G, instead, still
depends on G2 through the equations of motion (5.7) and (5.8). In these equations G2 is
always multiplied by the interaction and it is therefore convenient to define the function

T0(1, 2; 1
′, 2′) ≡ v(1; 2)S(1, 2; 1′, 2′),

which is also known as the T -matrix . Then (5.7) attains the form
[

i
d

dz1
− h(1)

]

G(1; 1′) = δ(1; 1′)

± i

∫

d2d3d4T0(1, 2; 3, 4)
[
G(3; 1′)G(4; 2+)±G(3; 2+)G(4; 1′)

]

= δ(1; 1′) +

∫

d3Σ(1; 3)G(3; 1′),

where this time the self-energy is defined as

Σ(1; 3) = ±i
∫

d2d4 [T0(1, 2; 3, 4)± T0(1, 2; 4, 3)]G(4; 2+). (5.24)

We have thus generated another self-consistent equation for G, the solution of which goes
beyond the Hartree–Fock approximation.

We could develop even more sophisticated approximations by truncating the hierarchy
at a higher level. It is clear, however, that this procedure is rather cumbersome and not
so systematic. In the next section we lay down the basic results to construct a powerful
approximation method to solve the Martin–Schwinger hierarchy. As we shall see the method
is not just a mathematical technique but also a new way of thinking of the many-body
problem.

4To prove this result one can iterate (5.22) to get an expansion of G2 in powers of v. Iterating in a similar way
the equation for S and inserting the resulting expansion in (5.23) one can verify that the terms are equal to those
of the expansion of G2 order by order in v. We do not give further details here since we work out the same
solution using diagrammatic techniques in Section 13.6.
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5.3. Exact solution of the hierarchy from Wick’s theorem 135

5.3 Exact solution of the hierarchy from

Wick’s theorem

It is clear from the previous section that the main di�culty in solving the hierarchy is due to
the coupling of the equation for Gn to those for Gn+1 and Gn−1. However, we note that
in the noninteracting case, v = 0, we have only a coupling to lower order Green’s functions
given by the equations

[

i
d

dzk
− h(k)

]

Gn(1, . . . , n; 1
′, . . . , n′)

=
n∑

j=1

(±)k+j δ(k; j′)Gn−1(1, . . .
⊓
k . . . , n; 1

′, . . .
⊓
j′ . . . , n′),

(5.25)

Gn(1, . . . , n; 1
′, . . . , n′)

[

−i
←−
d

dz′k
− h(k′)

]

=

n∑

j=1

(±)k+j δ(j; k′)Gn−1(1, . . .
⊓
j . . . , n; 1′, . . .

⊓
k′ . . . , n′).

(5.26)

In this case the hierarchy can be solved exactly. Below we prove that the solution is
simply [46, 47]

G0,n(1, . . . , n; 1
′, . . . , n′) =

∣
∣
∣
∣
∣
∣
∣

G0(1; 1
′) . . . G0(1;n

′)
...

...
G0(n; 1

′) . . . G0(n;n
′)

∣
∣
∣
∣
∣
∣
∣
±

(5.27)

where we add the subscript zero to denote noninteracting Green’s functions and define
G0 ≡ G0,1. As in Section 1.5, the quantity |A|±, where A is an n× n matrix with elements
Aij , is the permanent/determinant for bosons/fermions

|A|± ≡
∑

P

(±)PA1P (1) . . . AnP (n).

In (5.27) the matrix A has elements Aij = G0(i; j
′). To show that (5.27) is a solution of

the noninteracting Martin–Schwinger hierarchy we expand the permanent/determinant along
row k (see Appendix B) and find

G0,n(1, . . . , n; 1
′, . . . , n′) =

n∑

j=1

(±)k+jG0(k; j
′)G0,n−1(1, . . .

⊓
k . . . n; 1

′, . . .
⊓
j′ . . . , n′).

By acting from the left with [i d
dzk
− h(k)] we see immediately that this G0,n satisfies (5.25)

since the first equation of the hierarchy tells us that G0 satisfies (5.17). On the other hand,
expanding along column k we find

G0,n(1, . . . , n; 1
′, . . . , n′) =

n∑

j=1

(±)k+jG0(j; k
′)G0,n−1(1, . . .

⊓
j . . . , n; 1′, . . .

⊓
k′ . . . , n′),
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136 5. Many-particle Green’s functions

which can similarly be seen to satisfy the Martin–Schwinger hierarchy equations (5.26) using
(5.18). Therefore we conclude that (5.27) is a solution to the noninteracting Martin–Schwinger
hierarchy. However, since this is just a particular solution of the set of di�erential equations
we still need to check that it satisfies the KMS boundary conditions (5.6). This is readily
done. From (5.27) G0,n satisfies these conditions whenever G0 satisfies them as multiplying
G0 by a ±1 in a row or a column the permanent/determinant is multiplied by the same
factor. It is therefore su�cient to solve (5.17) and (5.18) with KMS boundary conditions to
obtain all G0,ns!

The result (5.27) is also known as Wick’s theorem [50] and it is exceedingly useful in
deriving diagrammatic perturbation theory. It seems somewhat of an exaggeration to give
the simple statement summarized in (5.27) the status of a theorem. The Wick theorem,
however, is usually derived in textbooks in a di�erent way which requires much more
e�ort and a separate discussion depending on whether we are working with the exact
Green’s function in equilibrium (also known as finite temperature Matsubara formalism)
or in nonequilibrium or with the adiabatic Green’s function or with the zero-temperature
Green’s function. The above derivation, apart from being shorter, is valid in all cases and
highlights the physical content of Wick’s theorem as a solution to a boundary value problem
for the Martin–Schwinger hierarchy (or equations of motion for the Green’s functions). To
recover the Wick theorem of preference it is enough to assign the corresponding contour
and the Hamiltonian along the contour. We comment more on how to recover the various
formalisms in Section 5.4.

The Wick theorem suggests that we can calculate the interacting n-particle Green’s
function by a brute force expansion in powers of the interaction. From the definition (5.1) it
follows that (omitting the arguments of the Green’s function)

Gn =
1

in

Tr
[

T
{

e−i
∫

γ
dz̄Ĥ0(z̄)e−i

∫

γ
dz̄Ĥint(z̄)ψ̂(1) . . . ψ̂†(1′)

}]

Tr
[

T
{

e−i
∫

γ
dz̄Ĥ0(z̄)e−i

∫

γ
dz̄Ĥint(z̄)

}] ,

where we split the Hamiltonian into a one-body part Ĥ0 and a two-body part Ĥint and we
used the property that Ĥ0 and Ĥint commute under the T sign. Expanding in powers of
Ĥint we get

Gn =
1

in

∞∑

k=0

(−i)k
k!

∫

γ
dz̄1 . . . dz̄k 〈T

{

Ĥint(z̄1) . . . Ĥint(z̄k)ψ̂(1) . . . ψ̂
†(1′)

}

〉0
∞∑

k=0

(−i)k
k!

∫

γ
dz̄1 . . . dz̄k 〈T

{

Ĥint(z̄1) . . . Ĥint(z̄k)
}

〉0
, (5.28)

where we introduce the short-hand notation

Tr
[

T
{

e−i
∫

γ
dz̄Ĥ0(z̄) . . .

}]

= 〈T {. . .}〉0,

according to which any string of operators can be inserted for the dots. We now recall that
Ĥint(z) is a two-body operator both on the horizontal branches and on the vertical track
of the contour, see Section 4.4. Therefore we can write

Ĥint(z) =
1

2

∫

dz′
∫

dxdx′v(x, z;x′, z′)ψ̂†(x, z+)ψ̂†(x′, z′+)ψ̂(x′, z′)ψ̂(x, z), (5.29)
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5.3. Exact solution of the hierarchy from Wick’s theorem 137

where

v(x, z;x′, z′) = δ(z, z′)

{
v(x,x′, t) if z = t± is on the horizontal branches of γ
vM(x,x′) if z is on the vertical track of γ

.

The reason for shifting the contour arguments of the ψ̂† operators from z, z′ to z+, z′+

in (5.29) stems from the possibility of moving the field operators freely under the T sign
without loosing the information that after the reordering the ψ̂† operators must be placed
to the left of the ψ̂ operators, see also below. Taking into account (5.29) and reordering
the field operators, (5.28) provides an expansion of Gn in terms of noninteracting Green’s
functions G0,m. Below we work out explicitly the case of the one- and two-particle Green’s
functions G ≡ G1 and G2 which are the ones most commonly used.

Let us start with the one-particle Green’s function. For notational convenience we denote
a = (xa, za) and b = (xb, zb) and rename all time-integration variables z̄k to zk . Then
(5.28) for n = 1 yields

G(a; b) =
1

i

∞∑

k=0

(−i)k
k!

∫

γ
dz1 . . . dzk 〈T

{

Ĥint(z1) . . . Ĥint(zk)ψ̂(a)ψ̂
†(b)

}

〉0
∞∑

k=0

(−i)k
k!

∫

γ
dz1 . . . dzk 〈T

{

Ĥint(z1) . . . Ĥint(zk)
}

〉0
. (5.30)

Using the explicit form (5.29) of the interaction Hamiltonian the numerator of this equation
can be rewritten as

∞∑

k=0

1

k!

(

− i

2

)k ∫

d1 . . . dk d1′ . . . dk′v(1; 1′) . . . v(k; k′)

× 〈T
{

ψ̂†(1+)ψ̂†(1′+)ψ̂(1′)ψ̂(1) . . . ψ̂†(k+)ψ̂†(k′+)ψ̂(k′)ψ̂(k)ψ̂(a)ψ̂†(b)
}

〉0.

We reorder the quantity in the bracket as follows

〈T
{

ψ̂(a)ψ̂(1)ψ̂(1′) . . . ψ̂(k)ψ̂(k′)ψ̂†(k′+)ψ̂†(k+) . . . ψ̂†(1′+)ψ̂†(1+)ψ̂†(b)
}

〉0,

which requires an even number of interchanges so there is no sign change. In this expression
we recognize the noninteracting (2k + 1)-particle Green’s function

G0,2k+1(a, 1, 1
′, . . . , k, k′; b, 1+, 1′+, . . . k+, k′+)

multiplied by i2k+1Z0.
5 Similarly, the kth order bracket of the denominator can be written

as the noninteracting 2k-particle Green’s function

G0,2k(1, 1
′, . . . , k, k′; 1+, 1′+, . . . k+, k′+)

5Recall that Z0 = e−βĤM
0 = Tr[T {e−i

∫

γ dz̄Ĥ0(z̄)}] is the noninteracting partition function.
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138 5. Many-particle Green’s functions

multiplied by i2kZ0. We therefore find that (5.30) is equivalent to

G(a; b) =

∞∑

k=0

1
k!

(
i
2

)k ∫
v(1; 1′) . . . v(k; k′)G0,2k+1(a, 1, 1

′, . . . ; b, 1+, 1′+, . . .)

∞∑

k=0

1
k!

(
i
2

)k ∫
v(1; 1′) . . . v(k; k′)G0,2k(1, 1′, . . . ; 1+, 1′+, . . .)

, (5.31)

where the integrals are over 1, 1′, . . . , k, k′. Next we observe that the G0,n can be de-
composed in products of noninteracting one-particle Green’s functions G0 using the Wick’s
theorem (5.27). We thus arrive at the following important formula

G(a; b) =

∞∑

k=0

1
k!

(
i
2

)k∫
v(1; 1′) .. v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(a; b) G0(a; 1
+) . . . G0(a; k

′+)
G0(1; b) G0(1; 1

+) . . . G0(1; k
′+)

...
...

. . .
...

G0(k
′; b) G0(k

′; 1+) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

∞∑

k=0

1
k!

(
i
2

)k∫
v(1; 1′) .. v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(1; 1
+) G0(1; 1

′+) . . . G0(1; k
′+)

G0(1
′; 1+) G0(1

′; 1′+) . . . G0(1
′; k′+)

...
...

. . .
...

G0(k
′; 1+) G0(k

′; 1′+) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

(5.32)

which is an exact expansion of the interacting G in terms of the noninteracting G0.
We can derive the expansion for the two-particle Green’s function in a similar way. We

have

G2 (a, b; c, d)

=
1

i2

∞∑

k=0

(−i)k
k!

∫

γ
dz1 . . . dzk〈T

{

Ĥint(z1) . . . Ĥint(zk)ψ̂(a)ψ̂(b)ψ̂
†(d)ψ̂†(c)

}

〉0
∞∑

k=0

(−i)k
k!

∫

γ
dz1 . . . dzk 〈T

{

Ĥint(z1) . . . Ĥint(zk)
}

〉0
.

(5.33)

Using again the explicit form (5.29) of the interaction Hamiltonian the numerator of (5.33)
can be rewritten as

∞∑

k=0

1

k!

(

− i

2

)2 ∫

d1 . . . dkd1′ . . . dk′v(1; 1′) . . . v(k; k′)

× 〈T
{

ψ̂†(1+)ψ̂†(1′+)ψ̂(1′)ψ̂(1) . . . ψ̂†(k+)ψ̂†(k′+)ψ̂(k′)ψ̂(k)

× ψ̂(a)ψ̂(b)ψ̂†(d)ψ̂†(c)
}

〉0.

Reordering the quantity in the bracket as

〈T
{

ψ̂(a)ψ̂(b)ψ̂(1)ψ̂(1′) . . . ψ̂(k)ψ̂(k′)ψ̂†(k′+)ψ̂†(k+) . . . ψ̂†(1′+)ψ̂†(1+)ψ̂†(d)ψ̂†(c)
}

〉0
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5.3. Exact solution of the hierarchy from Wick’s theorem 139

requires an even number of interchanges and we recognize the noninteracting (2k + 2)-
particle Green’s function

G0,2k+2(a, b, 1, 1
′ . . . , k, k′; c, d, 1+, 1′+, . . . , k+, k′+)

multiplied by i2k+2Z0. The denominator in (5.33) is the same as that of the one-particle
Green’s function in (5.30) and therefore G2 becomes

G2(a, b; c, d) =

∞∑

k=0

1
k!

(
i
2

)k ∫
v(1; 1′) . . . v(k; k′)G0,2k+2(a, b, 1, 1

′ . . . ; c, d, 1+, 1′+, . . .)

∞∑

k=0

1
k!

(
i
2

)k ∫
v(1; 1′) . . . v(k; k′)G0,2k(1, 1′, . . . ; 1+, 1′+, . . .)

,

where the integrals are over 1, 1′, . . . , k, k′. Using Wick’s theorem we can now transform
G2 into an exact perturbative expansion in terms of the noninteracting Green’s function G0:

G2(a, b; c, d)

=

∞∑

k=0

1
k!

(
i
2

)k∫
v(1; 1′) . . . v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(a; c) G0(a; d) . . . G0(a; k
′+)

G0(b; c) G0(b; d) . . . G0(b; k
′+)

...
...

. . .
...

G0(k
′; c) G0(k

′; d) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

∞∑

k=0

1
k!

(
i
2

)k∫
v(1; 1′) . . . v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(1; 1
+) G0(1; 1

′+) . . . G0(1; k
′+)

G0(1
′; 1+) G0(1

′; 1′+) . . . G0(1
′; k′+)

...
...

. . .
...

G0(k
′; 1+) G0(k

′; 1′+) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

(5.34)

In a similar way the reader can work out the equations for the higher order Green’s functions
as well as for the partition function Z which we write below:6

Z

Z0
=

∞∑

k=0

1

k!

(
i

2

)k∫

v(1; 1′) . . . v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(1; 1
+) G0(1; 1

′+) . . . G0(1; k
′+)

G0(1
′; 1+) G0(1

′; 1′+) . . . G0(1
′; k′+)

...
...

. . .
...

G0(k
′; 1+) G0(k

′; 1′+) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

(5.35)

Many-body perturbation theory (MBPT) is now completely defined. The evaluation of
(5.32) or (5.34) is a well-defined mathematical problem and there exist many useful tricks to
carry on the calculations in an e�cient way. In his memorable talk at the Pocono Manor
Inn in 1948 Feynman showed how to represent the cumbersome Wick expansion in terms

6The ratio Z/Z0 is simply the denominator of the formulas (5.32) and (5.34) for G and G2.
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140 5. Many-particle Green’s functions

of physically insightful diagrams [51], and since then the Feynman diagrams have become an
invaluable tool in many areas of physics. The Feynman diagrams give us a deep insight into
the microscopic scattering processes, help us to evaluate (5.32) or (5.34) more e�ciently, and
also provide us with techniques to resum certain classes of diagram to infinite order in the
interaction strength. These resummations are particularly important in bulk systems, where
diagrams can be divergent (as, e.g., in the case of the long-range Coulomb interaction), as
well as in finite systems. The expansion in powers of the interaction is indeed an asymptotic
expansion, meaning that the inclusion of diagrams beyond a certain order brings the sum
further and further away from the exact result, see e.g. Ref. [52] (for a brief introduction to
asymptotic expansions see Appendix F).

5.4 Finite and zero-temperature formalism from

the exact solution

In this section we discuss how di�erent versions of MBPT that are commonly used follow
as special cases of the perturbation theory developed in the previous section. Examples
of these formalisms are the finite temperature Matsubara formalism, the zero-temperature
formalism, the Keldysh formalism and the Konstantinov–Perel’ formalism. In most textbooks
these di�erent flavors of MBPT appear as disconnected topics even though the perturbative
terms have the same mathematical structure. This is not a coincidence but has its origin in
the Martin–Schwinger hierarchy as defined on the contour. We now demonstrate this fact
by discussing these formalisms one by one.

Konstantinov–Perel’ formalism
In the Konstantinov–Perel’ formalism the Green’s functions satisfy the Martin–Schwinger

hierarchy on the contour of Fig. 4.5(a) and, therefore, they are given by (5.32) and (5.34)
where the z-integrals run on the same contour. The averages calculated from these Green’s
functions at equal time, i.e., zi = z and z′i = z+ for all i, correspond to the exact formula
(4.21). We remind the reader that this formula yields the initial ensemble average for z on the
vertical track and the time-dependent ensemble average for z on the horizontal branches. It
is therefore clear that if we are interested in calculating time-dependent ensemble averages
up to a maximum time T we only need the Green’s functions with real time contour
arguments up to T . In this case it is su�cient to solve the Martin–Schwinger hierarchy over
a shrunken contour like the one illustrated below.
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5.4. Finite and zero-temperature formalism from the exact solution 141

The solution is again given by (5.32) and (5.34) but the z-integrals run over the shrunken
contour. This observation tells us that if the contour is longer than T then the terms with
integrals after T cancel o�. The cancellation is analogous to the one discussed in Section
4.2 where we showed that nothing changes in (4.9) if the contour extends all the way to +∞.

Matsubara formalism
The Matsubara formalism is used to calculate the initial ensemble average (4.24) and

it is typically applied to systems in equilibrium at finite temperature. For this reason the
Matsubara formalism is sometimes called the “finite-temperature formalism.” The crucial
observation here is that in order to calculate the initial averages we only need the Green’s
function with times on the vertical track. Then, according to the previous discussion, we
can take the time T = t0 and hence shrink the horizontal branches to a point leaving only
the vertical track. The corresponding Matsubara Green’s functions are given by the solution
of the Martin–Schwinger hierarchy on γM. The Matsubara formalism therefore consists of
expanding the Green’s functions as in (5.32) and (5.34) with the z-integrals restricted to the
vertical track. It is important to realize that no assumptions, like the adiabatic or the zero
temperature assumption, are made in this formalism. The Matsubara formalism is exact
but limited to initial (or equilibrium) averages. Note that not all equilibrium properties can
be extracted from the Matsubara Green’s functions. As we shall see, quantities like photo-
emission currents, hyper-polarizabilities and more generally high-order response properties
require a knowledge of equilibrium Green’s functions with real time contour arguments.

Keldysh formalism
The formalism originally used by Keldysh was based on the adiabatic assumption ac-

cording to which the interacting density matrix ρ̂ can be obtained from the noninteracting
ρ̂0 by an adiabatic switch-on of the interaction.7 Under this assumption we can calculate
time-dependent ensemble averages from the adiabatic Green’s functions, i.e., from the so-
lution of the Martin–Schwinger hierarchy on the contour γa of Fig. 4.5(b) with the adiabatic
Hamiltonian shown in the same figure. These adiabatic Green’s functions are again given
by (5.32) and (5.34) but the z-integrals run over γa and the Hamiltonian is the adiabatic
Hamiltonian. The important simplification entailed by the adiabatic assumption is that the
interaction v is zero on the vertical track, see again Fig. 4.5(b). Consequently in (5.32) and
(5.34) we can restrict the z-integrals to the horizontal branches. Like the exact formalism,
the adiabatic formalism can be used to deal with nonequilibrium situations in which the
external perturbing fields are switched on after time t0. In the special case of no external
fields we can calculate interacting equilibrium Green’s functions at any finite temperature
with real-time contour arguments. In contrast with the exact and Matsubara formalism,
however, the Green’s functions with imaginary time contour arguments are noninteracting
since on the vertical track we have ĤM

0 and not ĤM.

7As already observed this assumption is supported by the Gell-Mann–Low theorem [44].
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142 5. Many-particle Green’s functions

To summarize: the adiabatic Green’s functions can be expanded as in (5.32) or (5.34)
where the z-integrals run over the contour below:

Zero-temperature formalism
The zero-temperature formalism relies on the zero-temperature assumption according

to which the ground state of ĤM
0 evolves into the ground state of ĤM by adiabatically

switching on the interaction in the remote past or in the distant future. As already discussed
this assumption makes sense only in the absence of external fields. The corresponding zero-
temperature Green’s functions are the solution of the Martin–Schwinger hierarchy on the
contour γ0 of Fig. 4.5(c) where the Hamiltonian changes along the contour as shown in the
same figure. As in the adiabatic case, the interaction v of the zero-temperature Hamiltonian
vanishes along the vertical track and hence the z-integrals in the expansions (5.32) and (5.34)
can be restricted to a contour that goes from −∞ to ∞. The contour ordering on the
horizontal branch of γ0 is the same as the standard time-ordering. For this reason the zero-
temperature Green’s functions are also called time-ordered Green’s functions. The zero-
temperature formalism allows us to calculate interacting Green’s functions in equilibrium
at zero temperature with real-time contour arguments. It cannot, however, be used to
study systems out of equilibrium and/or at finite temperature. In some cases, however,
the zero-temperature formalism is used also at finite temperatures (finite β) as the finite
temperature corrections are small.8 This approximated formalism is sometimes referred to
as the real-time finite temperature formalism [45]. It is worth noting that in the real-time
finite-temperature formalism (as in the Keldysh formalism) the temperature enters in (5.32)
and (5.34) only through G0, which satisfies the KMS relations. In the Konstantinov–Perel’
formalism, on the other hand, the temperature enters through G0 and through the contour
integrals since the interaction is nonvanishing along the vertical track.

To summarize: the zero-temperature Green’s functions can be expanded as in (5.32) and
(5.34) where the z-integrals run over the contour below.

In conclusion, if one does not want to make the assumptions implicit in the last two
formalisms then there is no alternative but to use the full contour of Fig. 4.5(a). This is the
contour that we use in the remainder of the book. However, all derivations in the book rely

8At finite temperature the use of the contour γ0 implies the assumption that all eigenstates of ĤM
0 evolve into

themselves by adiabatically switching on and then o� the interaction, i.e., the satisfaction of (4.30).
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5.5. Langreth rules 143

exclusively on the solution of the Martin–Schwinger hierarchy and therefore can be directly
adapted to any formalism preferred by the reader by simply changing

∫

γbook

→
∫

γpreferred

in every integral with a contour symbol attached.
As a final remark we observe that the explicit form (5.2) and (5.3) of the Martin–Schwinger

hierarchy assumes the fact that ĤM and Ĥ(t) contain at most two-body operators. In
Appendix G we present an alternative approach to deal with general density matrices ρ̂ (or
equivalently with general ĤM). We also want to point out that if we are only interested
in the equal-time Gns, then we can easily derive an exact hierarchy for these quantities
starting from the Martin–Schwinger hierarchy. This is the so called BBGKY hierarchy and we
refer the reader to Appendix H for its derivation and further discussion.

5.5 Langreth rules

In the expansion of the interacting Green’s functions, see (5.32) or (5.34), convolutions like,
e.g.,

∫
d1̄G0(1, 1̄)G0(1̄, 2), or products like, e.g., G0(1; 2)G0(2; 1) appear. In order to

evaluate these formal expressions we must convert contour integrals into standard real-time
integrals, and products of functions on the contour into products of functions with real-
time arguments. The purpose of this section is to derive a set of identities to transform
contour convolutions and contour products into convolutions and products that can be
calculated analytically or implemented numerically. Some of these identities are known as
the analytic continuation rules or Langreth rules [53], while others, equally important, are
often ignored.9 We think that the name “analytic continuation rules” misleads the reader
into thinking that these rules are applicable only to analytic functions of the complex time.
The analyticity property is never used in the derivations below and, therefore, we prefer to
use the name “generalized Langreth rules” or simply “Langreth rules.” In this section we
present a comprehensive and self-contained derivation of all of them. Table 5.1 at the end
of the section summarizes the main results. For those readers who are not already familiar
with the formalism, we strongly recommend following this section with pencil and paper.

We specialize the discussion to two-point correlators (like the one-particle Green’s func-
tion)

k(z, z′) = Tr
[

ρ̂ k̂(z, z′)
]

= Tr
[

ρ̂ T
{

Ô1(z)Ô2(z
′)
}]

,

which are the ensemble average of the two-point operator correlators (4.47). Higher order
correlators are conceptually no more complicated and can be treated in a similar manner.
As in Section 4.5 we do not specify the origin of the z-dependence of the operators; they
could be operators with an explicit z-dependence or operators in the Heisenberg picture.
The important thing is that Ô(t+) = Ô(t−).10 Unless otherwise stated, here and in the
remainder of the book we always consider the contour of Fig. 4.5(a).

9This is due to the fact that MBPT is mostly used within the Keldysh (adiabatic) formalism, see Section 5.4.
10This property is, by definition, satisfied by the field operators ψ̂ and ψ̂† (and hence by arbitrary products of

field operators) as well as by the field operators ψ̂H and ψ̂†
H in the contour Heisenberg picture. See also the

discussion around equations (4.6) and (4.7).
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144 5. Many-particle Green’s functions

Due to the contour ordering k(z, z′) has the following structure:

k(z, z′) = θ(z, z′)k>(z, z′) + θ(z′, z)k<(z, z′),

with θ(z, z′) the Heaviside function on the contour and

k>(z, z′) = Tr
[

ρ̂ Ô1(z)Ô2(z
′)
]

, k<(z, z′) = ±Tr
[

ρ̂ Ô2(z
′)Ô1(z)

]

,

where the ± sign in k< is for bosonic/fermionic operators Ô1 and Ô2. It is important to
observe that the functions k> and k< are well defined for all z and z′ on the contour.
Furthermore, these functions have the important property that their value is independent of
whether z, z′ lie on the forward or backward branch

k≶(t+, z
′) = k≶(t−, z

′), k≶(z, t′+) = k≶(z, t′−) (5.36)

since Ôi(t+) = Ôi(t−) for both i = 1, 2. We say that a function k(z, z′) belongs to the
Keldysh space if it can be written as

k(z, z′) = kδ(z)δ(z, z′) + θ(z, z′)k>(z, z′) + θ(z′, z)k<(z, z′),

with k≶(z, z′) satisfying the properties (5.36), kδ(t+) = kδ(t−) ≡ kδ(t) and δ(z, z′) the
δ-function on the contour. We here observe that the δ-function on the contour is zero if
z and z′ lie on di�erent branches, δ(t±, t∓) = 0, and that, due to the orientation of the
contour, δ(t−, t′−) = δ(t− t′) whereas δ(t+, t′+) = −δ(t− t′), with δ(t− t′) the δ-function
on the real axis. The precise meaning of these identities is the following. From the definition
of δ-function on the contour, i.e.,

∫

γ
dz′δ(z, z′)f(z′) = f(z), and from the definition (4.4)

of functions on the contour we have for z = t−

f−(t) = f(t−) =

∫

γ

dz′δ(t−, z
′)f(z′) =

∫ ∞

t0

dt′ δ(t−, t
′
−)f(t

′
−) =

∫ ∞

t0

dt′ δ(t− t′)f−(t′),

whereas for z = t+

f+(t) = f(t+) =

∫

γ

dz′δ(t+, z
′)f(z′) =

∫ t0

∞
dt′ δ(t+, t

′
+)f(t

′
+) =−

∫ t0

∞
dt′ δ(t− t′)f+(t′).

In order to extract physical information from k(z, z′) we must evaluate this function
for all possible positions of z and z′ on the contour: both arguments on the horizontal
branches, one argument on the vertical track and the other on the horizontal branches or
both arguments on the vertical track. We define the greater and lesser Keldysh components
as the following functions on the real time axis

k>(t, t′) ≡ k(t+, t′−)
k<(t, t′) ≡ k(t−, t′+)

(5.37)
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5.5. Langreth rules 145

In other words k>(t, t′) is the real-time function with the values of the contour function
k>(z, z′).11 Similarly k<(t, t′) = k<(z, z′). From these considerations we see that the
equal-time greater and lesser functions can also be written as

k>(t, t) = k(z+, z) = k(z, z−), k<(t, t) = k(z, z+) = k(z−, z), (5.38)

where z+ (z−) is a contour point infinitesimally later (earlier) than the contour point z = t±,
which can lie either on the forward or backward branch. We sometimes use these alternative
expressions to calculate time-dependent ensemble averages.

We also define the left and right Keldysh components from k(z, z′) with one real time
t and one imaginary time t0 − iτ

k⌈(τ, t) ≡ k(t0 − iτ, t±)

k⌉(t, τ) ≡ k(t±, t0 − iτ)
(5.39)

The names “left” and “right” refer to the position of the vertical segment of the hooks “⌈” and
“⌉” with respect to the horizontal segment. In the definition of k⌈ and k⌉ we can arbitrarily
choose t+ or t− since t0 − iτ is later than both of them and k≶(z, z′) fulfills (5.36). In
(5.39) the notation has been chosen to help visualization of the contour arguments [54]. For
instance, the symbol “⌉” has a horizontal segment followed by a vertical one; accordingly,
k⌉ has a first argument which is real (and thus lies on the horizontal axis) and a second
argument which is imaginary (and lies on the vertical track). In a similar way we can explain
the use of the left symbol “⌈”. In the definition of the left and right functions we also
introduce a convention of denoting the real times with latin letters and the imaginary times
with greek letters. This convention is adopted throughout the book.

As we shall see it is also useful to define the Matsubara component kM(τ, τ ′) with both
contour arguments on the vertical track:

kM(τ, τ ′) ≡ k(t0 − iτ, t0 − iτ ′)

= δ(t0 − iτ, t0 − iτ ′)kδ(t0 − iτ) + kMr (τ, τ ′)
(5.40)

where

kMr (τ, τ ′) = θ(τ − τ ′)k>(t0 − iτ, t0 − iτ ′) + θ(τ ′ − τ)k<(t0 − iτ, t0 − iτ ′)

is the regular part of the function.12 To convert the δ-function on the vertical track into a
standard δ-function we again use the definition

f(t0 − iτ) =

∫

γ

dz′δ(t0 − iτ, z′)f(z′) (setting z′ = t0 − iτ ′)

= −i
∫ β

0

dτ ′δ(t0 − iτ, t0 − iτ ′)f(t0 − iτ ′),

11As already emphasized, k>(z, z′) is independent of whether z and z′ are on the forward or backward branch.
12In writing kMr we take into account that θ(t0 − iτ, t0 − iτ ′) is 1 if τ > τ ′ and zero otherwise, hence it is

equal to θ(τ − τ ′).
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146 5. Many-particle Green’s functions

Figure 5.2 Contour with t on the backward branch and t′ on the forward branch.

from which it follows that δ(t0 − iτ, t0 − iτ ′) = iδ(τ − τ ′). Thus, if we introduce the
short-hand notation kδ(τ) ≡ kδ(t0 − iτ), we can rewrite the Matsubara component as

kM(τ, τ ′) = iδ(τ − τ ′)kδ(τ) + kMr (τ, τ ′). (5.41)

The advantage of working with the Keldysh components is that k≶, k⌈,⌉ and kM are func-
tions of real variables (as opposed to contour variables) and therefore can be numerically
implemented, visualized, plotted, etc.; in other words the Keldysh components are easier to
handle. Furthermore, they encode all the information to reconstruct k≶(z, z′).

We now consider the convolution

c(z, z′) =

∫

γ

dz̄ a(z, z̄)b(z̄, z′) (5.42)

between two functions a(z, z′) and b(z, z′) in Keldysh space. It is easy to check that c(z, z′)
belongs to the Keldysh space as well. The question we ask is how to express the Keldysh
components of c in terms of the Keldysh components of a and b. We start by evaluating,
e.g., the greater component. From the definition (5.37) and with the help of Fig. 5.2 we can
write

c>(t, t′) = c(t+, t
′
−) = a(t+, t

′
−)b

δ(t′−) + aδ(t+)b(t+, t
′
−) +

∫ t′−

t0−

dz̄ a>(t+, z̄)b
<(z̄, t′−)

+

∫ t+

t′−

dz̄ a>(t+, z̄)b
>(z̄, t′−) +

∫ t0−iβ

t+

dz̄ a<(t+, z̄)b
>(z̄, t′−)

= a>(t, t′)bδ(t′) + aδ(t)b>(t, t′) +

∫ t′

t0

dt̄ a>(t, t̄)b<(t̄, t′)

+

∫ t

t′
dt̄ a>(t, t̄)b>(t̄, t′) +

∫ t0

t

dt̄ a<(t, t̄)b>(t̄, t′)− i

∫ β

0

dτ̄ a⌉(t, τ̄)b⌈(τ̄ , t′).

The first integral in the last line is an ordinary integral on the real axis and can be rewritten
as ∫ t

t′
dt̄ a>(t, t̄)b>(t̄, t′) =

∫ t0

t′
dt̄ a>(t, t̄)b>(t̄, t′) +

∫ t

t0

dt̄ a>(t, t̄)b>(t̄, t′),
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5.5. Langreth rules 147

which inserted in the previous expression leads to

c>(t, t′) = a>(t, t′)bδ(t′) + aδ(t)b>(t, t′)−
∫ t′

t0

dt̄ a>(t, t̄)[b>(t̄, t′)− b<(t̄, t′)]

+

∫ t

t0

dt̄ [a>(t, t̄)− a<(t, t̄)]b>(t̄, t′)− i

∫ β

0

dτ̄ a⌉(t, τ̄)b⌈(τ̄ , t′). (5.43)

We see that it is convenient to define two more Keldysh components with real-time
arguments

kR(t, t′) ≡ kδ(t)δ(t− t′) + θ(t− t′)[k>(t, t′)− k<(t, t′)] (5.44)

kA(t, t′) ≡ kδ(t)δ(t− t′)− θ(t′ − t)[k>(t, t′)− k<(t, t′)] (5.45)

with the real-time Heaviside function θ(t) = 1 for t > 0 and 0 otherwise. The retarded
component kR(t, t′) vanishes for t < t′, while the advanced component kA(t, t′) vanishes
for t > t′. The retarded and advanced functions can be used to rewrite (5.43) in a very
elegant form:

c>(t, t′) =

∫ ∞

t0

dt̄ [a>(t, t̄)bA(t̄, t′) + aR(t, t̄)b>(t̄, t′)]− i

∫ β

0

dτ̄ a⌉(t, τ̄)b⌈(τ̄ , t′).

This formula can be made even more compact if we introduce a short-hand notation for
convolutions between t0 and ∞, and for convolutions between 0 and β. For two arbitrary
functions f and g we define

f · g ≡
∫ ∞

t0

dt̄ f(t̄)g(t̄),

f ⋆ g ≡ −i
∫ β

0

dτ̄ f(τ̄)g(τ̄).

Then the formula for c> becomes

c> = a> · bA + aR · b> + a⌉ ⋆ b⌈ (5.46)

In a similar way we can extract the lesser component and find that

c< = a< · bA + aR · b< + a⌉ ⋆ b⌈ (5.47)

Equations (5.46) and (5.47) can be used to extract the retarded and advanced components
of c. Taking into account that the singular part cδ is simply the product aδbδ , and using the
definition (5.44) we find

cR(t, t′) = cδ(t)δ(t− t′) + θ(t− t′)[c>(t, t′)− c<(t, t′)]

= aδ(t)bδ(t)δ(t− t′) + θ(t− t′)
∫ ∞

t0

dt̄ aR(t, t̄)[b>(t̄, t′)− b<(t̄, t′)]

+ θ(t− t′)
∫ ∞

t0

dt̄ [a>(t, t̄)− a<(t, t̄)]bA(t̄, t′).
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148 5. Many-particle Green’s functions

Let us manipulate this expression a little. Similarly to the Matsubara component, we sep-
arate out the regular contribution from the retarded/advanced components: kR/A(t, t′) =

kδ(t)δ(t − t′) + k
R/A
r (t, t′). Then we observe that the last term on the r.h.s. vanishes

unless t ≥ t′ and that bA(t̄, t′) vanishes unless t′ ≥ t̄. We can, therefore, replace
[a>(t, t̄)−a<(t, t̄)] with θ(t− t̄)[a>(t, t̄)−a<(t, t̄)] = aRr (t, t̄) without changing the result.
Next we consider the second term on the r.h.s.. Writing aR as the sum of the singular and
regular contributions and taking into account that b> − b< = bRr − bAr we find

θ(t− t′)
∫ ∞

t0

dt̄ aR(t, t̄)[b>(t̄, t′)− b<(t̄, t′)]

= aδ(t)bRr (t, t
′) + θ(t− t′)

∫ ∞

t0

dt̄ aRr (t, t̄)[b
R
r (t̄, t

′)− bAr (t̄, t′)].

Collecting all these results, it is a matter of simple algebra to show that

cR = aR · bR (5.48)

Using similar manipulations it is possible to show that

cA = aA · bA (5.49)

It is worth noting that neither cR nor cA contains an integral along the vertical track of the
contour.

Another important component that can be constructed from the greater and lesser
functions is the time-ordered component. This is obtained by choosing both contour
arguments in k(z, z′) on the forward branch

kT(t, t′) ≡ k(t−, t′−) = kδ(t)δ(t− t′) + θ(t− t′)k>(t, t′) + θ(t′ − t)k<(t, t′) (5.50)

Similarly the anti-time-ordered component is obtained by choosing both z and z′ on the
backward branch

kT̄(t, t′) ≡ k(t+, t′+) = −kδ(t)δ(t− t′) + θ(t′ − t)k>(t, t′) + θ(t− t′)k<(t, t′) (5.51)

The reader can easily verify that

kT = k< + kR = k> + kA,

kT̄ = k> − kR = k< − kA.

Consequently, the time-ordered component of the convolution of two functions in Keldysh
space can be extracted using the results for c≶ and cR,A:

cT = c> + cA = aR · b> + a> · bA + aA · bA + a⌉ ⋆ b⌈

= aR · b> + aT · bA + a⌉ ⋆ b⌈

= [aT − a<] · b> + aT · [bT − b>] + a⌉ ⋆ b⌈

= aT · bT − a< · b> + a⌉ ⋆ b⌈.
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5.5. Langreth rules 149

Similar manipulations lead to

cT̄ = a> · b< − aT̄ · bT̄ + a⌉ ⋆ b⌈. (5.52)

Next we show how to express the right and left components c⌉ and c⌈. Let us start with
c⌉. In the definition (5.39) we choose, e.g., t− as the first argument of c. Then we find

c⌉(t, τ) = aδ(t−)b(t−, t0 − iτ) + a(t−, t0 − iτ)bδ(t0 − iτ)

+

∫ t−

t0−

dz̄ a>(t−, z̄)b
<(z̄, t0 − iτ) +

∫ t0+

t−

dz̄ a<(t−, z̄)b
<(z̄, t0 − iτ)

+

∫ t0−iτ

t0

dz̄ a<(t−, z̄)b
<(z̄, t0 − iτ) +

∫ t0−iβ

t0−iτ
dz̄ a<(t−, z̄)b

>(z̄, t0 − iτ)

= aδ(t)b⌉(t, τ) + a⌉(t, τ)bδ(τ) +

∫ t

t0

dt̄ [a>(t, t̄)− a<(t, t̄)]b⌉(t̄, τ)

− i

∫ β

0

dτ̄ a⌉(t, τ̄)bMr (τ̄ , τ).

Recalling the definition (5.44) of the retarded component and taking into account (5.41) we
arrive at the following compact formula

c⌉ = aR · b⌉ + a⌉ ⋆ bM (5.53)

The formula for c⌈ can be derived similarly and reads

c⌈ = a⌈ · bA + aM ⋆ b⌈ (5.54)

Finally, it is straightforward to prove that the Matsubara component of c is simply given by

cM = aM ⋆ bM (5.55)

since the integral along the forward branch cancels exactly the integral along the backward
branch. This last identity exhausts the Langreth rules for the convolutions of two functions
in Keldysh space. The results are summarized in the second column of Table 5.1.

There is another class of important identities which regards the product of two functions
in Keldysh space

c(z, z′) = a(z, z′)b(z′, z).

Unlike the convolution, the product does not always belong to the Keldysh space. If,
for instance, the singular part aδ is nonvanishing then the product c contains the term
δ(z, z′)aδ(z)b(z′, z). The problems with this term are: (1) if bδ is also nonvanishing then c
contains the square of a δ-function and hence it does not belong to the Keldysh space; and
(2) the function b(z′, z) is defined for z′ → z but exactly in z′ = z it can be discontinuous
and hence δ(z, z′)b(z′, z) is ill-defined. The product c is well defined only provided that
the singular parts aδ and bδ are identically zero, in which case c belongs to the Keldysh
space with cδ = 0. Below we consider only this sub-class of functions in Keldysh space. In
practice we never have to deal with a product of functions with a singular part.
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150 5. Many-particle Green’s functions

Definition c(z, z′) =
∫

γ dz̄ a(z, z̄)b(z̄, z′) c(z, z′) = a(z, z′)b(z′, z)

[aδ = bδ = 0]

k>(t, t′) = k(t+, t′−) c> = a> · bA + aR · b> + a⌉ ⋆ b⌈ c> = a>b<

k<(t, t′) = k(t−, t′+) c< = a< · bA + aR · b< + a⌉ ⋆ b⌈ c< = a<b>

kR(t, t′) = kδ(t)δ(t − t′)

+θ(t − t′)[k>(t, t′) − k<(t, t′)]
cR = aR · bR cR =

{

aRb< + a<bA

aRb> + a>bA

kA(t, t′) = kδ(t)δ(t − t′)

−θ(t′ − t)[k>(t, t′) − k<(t, t′)]
cA = aA · bA cA =

{

aAb< + a<bR

aAb> + a>bR

kT(t, t′) = k(t−, t′−) cT = aT · bT − a< · b> + a⌉ ⋆ b⌈ cT =

{

a<bT + aRb<

aTb> + a>bA

kT̄(t, t′) = k(t+, t′+) cT̄ = a> · b< − aT̄ · bT̄ + a⌉ ⋆ b⌈ cT̄ =

{

aT̄b< − a<bA

a>bT̄ − aRb>

k⌉(t, τ) = k(t±, t0 − iτ) c⌉ = aR · b⌉ + a⌉ ⋆ bM c⌉ = a⌉b⌈

k⌈(τ, t) = k(t0 − iτ, t±) c⌈ = a⌈ · bA + aM ⋆ b⌈ c⌈ = a⌈b⌉

kM(τ, τ′) = k(t0 − iτ, t0 − iτ′) cM = aM ⋆ bM cM = aMbM

Table 5.1 Definitions of Keldysh components (first column) and identities for the convolution
(second column) and the product (third column) of two functions in Keldysh space.

For nonsingular functions the Keldysh components of c can easily be extracted in terms
of those of a and b. The reader can check that

c>(t, t′) = a>(t, t′)b<(t′, t), c<(t, t′) = a<(t, t′)b>(t′, t),

c⌉(t, τ) = a⌉(t, τ)b⌈(τ, t), c⌈(τ, t) = a⌈(τ, t)b⌉(t, τ),

cM(τ, τ ′) = aM(τ, τ ′)bM(τ ′, τ).

The retarded/advanced component is then obtained using the above identities. Taking into
account that cδ = 0 we have

cR(t, t′) = θ(t− t′)[a>(t, t′)b<(t′, t)− a<(t, t′)b>(t′, t)].

We could eliminate the θ-function by adding and subtracting either a<b< or a>b> and
rearranging the terms. The final result is

cR(t, t′) = aR(t, t′)b<(t′, t) + a<(t, t′)bA(t′, t)

= aR(t, t′)b>(t′, t) + a>(t, t′)bA(t′, t).

Similarly one finds

cA(t, t′) = aA(t, t′)b<(t′, t) + a<(t, t′)bR(t′, t)

= aA(t, t′)b>(t′, t) + a>(t, t′)bR(t′, t).

The time-ordered and anti-time-ordered functions can be derived in a similar way, and the
reader can consult the third column of Table 5.1 for the complete list of identities.
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5.5. Langreth rules 151

Exercise 5.2. Let a(z, z′) = aδ(z)δ(z, z′) be a function in Keldysh space with only a

singular part. Show that the convolution c(z, z′) =
∫

γ
dz̄ a(z, z̄)b(z̄, z′) has the following

components:

c≶(t, t′) = aδ(t)b≶(t, t′), c⌉(t, τ) = aδ(t)b⌉(t, τ),

c⌈(τ, t) = aδ(τ)b⌈(τ, t), cM(τ, τ ′) = aδ(τ)bM(τ, τ ′).

Find also the components for the convolution c(z, z′) =
∫

γ
dz̄ b(z, z̄)a(z̄, z′).

Exercise 5.3. Let a, b, c, be three functions in Keldysh space with b(z, z′) = bδ(z)δ(z, z′).
Denoting by

d(z, z′) =

∫

γ

dz̄dz̄′a(z, z̄)b(z̄, z̄′)c(z̄′, z′)

the convolution between the three functions, show that

d≶(t, t′) =

∫ ∞

t0

dt̄
[

a≶(t, t̄)bδ(t̄)cA(t̄, t′) + aR(t, t̄)bδ(t̄)c≶(t̄, t′)
]

− i

∫ β

0

dτ̄a⌉(t, τ̄)bδ(τ̄)c⌈(τ̄ , t′).

Exercise 5.4. Let c be the convolution between two functions a and b in Keldysh space.

Show that
∫

γ

dz c(z, z±) = (−i)2
∫ β

0

dτdτ ′aM(τ, τ ′)bM(τ ′, τ±),

and hence the result involves only integrals along the imaginary track. Hint: use the fact

that in accordance with (5.38) c(z, z±) = c≷(t, t) for both z = t− and z = t+.

Exercise 5.5. Let a(z, z′) be a function in Keldysh space and f(z) a function on the

contour with f(t+) = f(t−) and f(t0 − iτ) = 0. Show that

∫

γ

dz′a(t±, z
′)f(z′) =

∫ ∞

t0

dt′aR(t, t′)f(t′),

and ∫

γ

dz′f(z′)a(z′, t±) =

∫ ∞

t0

dt′f(t′)aA(t′, t).
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6

One-particle Green’s function

In this chapter we get acquainted with the one-particle Green’s function G, or simply the
Green’s function. The chapter is divided in three parts. In the first part (Section 6.1) we
illustrate what kind of physical information can be extracted from the di�erent Keldysh
components of G. The aim of this first part is to introduce some general concepts without
being too formal. In the second part (Section 6.2) we calculate the noninteracting Green’s
function. Finally in the third part (Sections 6.3 and 6.4) we consider the interacting Green’s
function and derive several exact properties. We also discuss other physical (and measurable)
quantities that can be calculated from G and that are relevant to the analysis of the following
chapters.

6.1 What can we learn from G?

We start our overview with a preliminary discussion on the di�erent character of the space–
spin and time dependence in G(1; 2). In the Dirac formalism the time-dependent wavefunc-
tion Ψ(x, t) of a single particle is the inner product between the position–spin ket |x〉 and
the time evolved ket |Ψ(t)〉. In other words, the wavefunction Ψ(x, t) is the representation
of the ket |Ψ(t)〉 in the position–spin basis. Likewise, the Green’s function G(1; 2) can be
thought of as the representation in the position–spin basis of a (single-particle) operator in
first quantization

Ĝ(z1, z2) =
∫

dx1dx2 |x1〉G(1; 2)〈x2|,

with matrix elements

〈x1|Ĝ(z1, z2)|x2〉 = G(1; 2). (6.1)

It is important to appreciate the di�erence between Ĝ and the operator correlator Ĝ1 of
(4.58). The former is an operator in first quantization (and according to our notation is
denoted by a calligraphic letter) while the latter is an operator in Fock space. The Green’s
function operator Ĝ is a very useful quantity. Consider, for instance, the expansion (1.60) of
the field operators

ψ̂(x) =
∑

i

ϕi(x)d̂i, ψ̂†(x) =
∑

i

ϕ∗i (x)d̂
†
i ,

153
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154 6. One-particle Green’s function

over some more convenient basis for the problem at hand (if the new basis is not complete
the expansion is an approximated expansion). Then, it is also more convenient to work with
the Green’s function

Gji(z1, z2) =
1

i

Tr
[

e−βĤ
MT

{

d̂j,H(z1)d̂
†
i,H(z2)

}]

Tr
[

e−βĤM
] ,

rather than with G(1; 2). Now the point is that Gji(z1, z2) and G(1; 2) are just di�erent
matrix elements of the same Green’s function operator. Inserting the expansion of the field
operators in G(1; 2) we find

G(1; 2) =
∑

ji

ϕj(x1)Gji(z1, z2)ϕ
∗
i (x2) =

∑

ji

〈x1|j〉Gji(z1, z2)〈i|x2〉,

and comparing this equation with (6.1) we conclude that

Ĝ(z1, z2) =
∑

ji

|j〉Gji(z1, z2)〈i|,

from which the result
〈j|Ĝ(z1, z2)|i〉 = Gji(z1, z2)

follows directly. Another advantage of working with the Green’s function operator rather
than with its matrix elements is that one can cast the equations of motion in an invariant
form, i.e., in a form that is independent of the basis. The analogue in quantum mechanics
would be to work with kets rather than with wavefunctions. For simplicity, let us consider
the equations of motion of G for a system of noninteracting particles, Ĥint = 0,

i
d

dz1
G(1; 2)−

∫

d3h(1; 3)G(3; 2) = δ(1; 2), (6.2)

−i d
dz2

G(1; 2)−
∫

d3G(1; 3)h(3; 2) = δ(1; 2), (6.3)

where we define
h(1; 2) ≡ δ(z1, z2)〈x1|ĥ(z1)|x2〉.

Equations (6.2) and (6.3) are the generalization of (5.17) and (5.18) to single-particle Hamilto-
nians ĥ which are not diagonal in position–spin space. We see by inspection that (6.2) and
(6.3) are obtained by sandwiching with 〈x1| and |x2〉 the following equations for operators
in first quantization

[

i
d

dz1
− ĥ(z1)

]

Ĝ(z1, z2) = δ(z1, z2), (6.4)

Ĝ(z1, z2)
[

−i
←−
d

dz2
− ĥ(z2)

]

= δ(z1, z2). (6.5)

As usual the arrow over d/dz2 specifies that the derivative acts on the left. The operator
formulation helps us to visualize the structure of the equations of motion. In particular
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6.1. What can we learn from G? 155

we see that (6.5) resembles the adjoint of (6.4). From now on we refer to (6.5) as the
adjoint equation of motion.1 In a similar way one can construct the (n-particle) operator in
first quantization for the n-particle Green’s function and cast the whole Martin–Schwinger
hierarchy in an operator form. This, however, goes beyond the scope of the section; let us
go back to the Green’s function.

6.1.1 The inevitable emergence of memory

All the fundamental equations encountered so far are linear di�erential equations in time.
An example is the time-dependent Schrödinger equation according to which the state of
the system |Ψ(t + ∆t)〉 infinitesimally after the time t can be calculated from the state
of the system |Ψ(t)〉 at time t, see Section 3.2. This means that we do not need to
“remember” |Ψ(t′)〉 for all t′ < t in order to evolve the state from t to t + ∆t; the
time-dependent Schrödinger equation has no memory. Likewise, the Martin–Schwinger
hierarchy for the many-particle Green’s functions is a set of coupled di�erential equations in
(contour) time that can be used to calculate all the Gns from their values at an infinitesimally
earlier (contour) time. Again, there is no memory involved. The brute force solution of the
Schrödinger equation or of the Martin–Schwinger hierarchy is, however, not a viable route to
make progress. In the presence of many particles the huge number of degrees of freedom
of the state of the system (for the Schrödinger equation) or of the many-particle Green’s
functions G, G2, G3, . . . (for the Martin–Schwinger hierarchy) renders these equations
practically unsolvable. Luckily, we are typically not interested in the full knowledge of
these quantities. For instance, to calculate the density n(x, t) we only need to know the
Green’s function G, see (5.4). Then the question arises whether it is possible to construct
an exact e�ective equation for the quantities we are interested in by “embedding” all the
other degrees of freedom into such an e�ective equation. As we see below and later on
in this book the answer is a�rmative, but the embedding procedure inevitably leads to the
appearence of memory. This is a very profound concept and deserves a careful explanation.

Let us consider a system consisting of two subsystems coupled to each other. A possible
realization is the Fano model where the first subsystem is the atom and the second subsystem
is the metal, and the Hamiltonian for a single particle in first quantization is [see Section 2.3.2]

ĥ =
∑

k

ǫk|k〉〈k|
︸ ︷︷ ︸

metal

+ ǫ0|ǫ0〉〈ǫ0|
︸ ︷︷ ︸

atom

+
∑

k

(Tk|k〉〈ǫ0|+ T ∗k |ǫ0〉〈k|)
︸ ︷︷ ︸

coupling

. (6.6)

The evolution of a single-particle ket |Ψ〉 is determined by the time-dependent Schrödinger

equation i ddt |Ψ(t)〉 = ĥ|Ψ(t)〉. Taking the inner product of the Schrödinger equation with
〈ǫ0| and 〈k| we find a coupled system of equations for the amplitudes ϕ0(t) = 〈ǫ0|Ψ(t)〉

1 In fact (6.5) is the adjoint of (6.4) for any z1 and z2 on the horizontal branches of the contour. This is proved
in Chapter 9.
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156 6. One-particle Green’s function

and ϕk(t) = 〈k|Ψ(t)〉:

i
d

dt
ϕ0(t) = ǫ0ϕ0(t) +

∑

k

T ∗kϕk(t),

i
d

dt
ϕk(t) = ǫkϕk(t) + Tkϕ0(t).

The second equation can easily be solved for ϕk(t). The function

gRk (t, t0) = −iθ(t− t0)e−iǫk(t−t0) (6.7)

obeys2
[

i
d

dt
− ǫk

]

gRk (t, t0) = δ(t− t0),

and therefore for any t > t0

ϕk(t) = igRk (t, t0)ϕk(t0) +

∫ ∞

t0

dt′ gRk (t, t
′)Tkϕ0(t

′). (6.8)

The first term on the r.h.s. is the solution of the homogeneous equation and correctly
depends on the boundary condition. Taking into account that for t → t+0 the integral
vanishes (gRk (t, t

′) is zero for t′ > t), whereas gRk (t, t0)→ −i we see that (6.8) is an equality
in this limit. For times t > t0 the reader can verify that by acting with

[
i ddt − ǫk

]
on

both sides of (6.8) we recover the di�erential equation for ϕk . Substitution of (6.8) into the
equation for ϕ0(t) gives

[

i
d

dt
− ǫ0

]

ϕ0(t) = i
∑

k

T ∗k g
R
k (t, t0)ϕk(t0) +

∫ ∞

t0

dt′ ΣR
em(t, t

′)ϕ0(t
′), (6.9)

where we define the so-called (retarded) embedding self-energy

ΣR
em(t, t

′) =
∑

k

T ∗k g
R
k (t, t

′)Tk. (6.10)

The embedding self-energy takes into account that the particle can escape from the atom
at time t′, wander in the metal and then come back to the atom at time t. For the isolated
atom all the Tks vanish and the solution of (6.9) reduces to ϕ0(t) = e−iǫ0(t−t0)ϕ0(t0). The
important message carried by (6.9) is that we can propagate in time the atomic amplitude ϕ0

without knowing the metallic amplitudes ϕk (except for their value at the initial time). The
price to pay, however, is that (6.9) is an integro-di�erential equation with a memory kernel
given by the embedding self-energy: to calculate ϕ0(t) we must know ϕ0(t

′) at all previous
times. In other words, memory appears because we embedded the degrees of freedom of
one subsystem so as to have an exact e�ective equation for the degrees of freedom of the

2As we shall see, gRk (t, t′) is the retarded component of the Green’s function of a noninteracting system with

single-particle Hamiltonian ĥk = ǫk|k〉〈k|.
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6.1. What can we learn from G? 157

other subsystem. This result is completely general: the consequence of the embedding is
the appearence of a memory kernel.

It is instructive (and mandatory for a book on Green’s functions) to show how memory
appears in the Green’s function language. For this purpose we consider a noninteracting
system described by the Fano Hamiltonian ĥ in (6.6) and initially in equilibrium at a given
temperature and chemical potential. The Green’s function can be calculated from (6.4) and
(6.5) with

ĥ(z) =

{
ĥM = ĥ− µ for z = t0 − iτ

ĥ for z = t±
,

and by imposing the KMS boundary conditions. By sandwiching (6.4) with 〈ǫ0| and |ǫ0〉 and
with 〈k| and |ǫ0〉 we find the following coupled system of equations:

[

i
d

dz1
− h00(z1)

]

G00(z1, z2)−
∑

k

h0k(z1)Gk0(z1, z2) = δ(z1, z2),

[

i
d

dz1
− hkk(z1)

]

Gk0(z1, z2)− hk0(z1)G00(z1, z2) = 0,

with the obvious notation h00(z) = 〈ǫ0|ĥ(z)|ǫ0〉, h0k(z) = 〈ǫ0|ĥ(z)|k〉, etc., and similarly
for the Green’s function. As in the example on the single-particle wavefunction, we solve
the second of these equations by introducing the Green’s function g of the isolated metal
whose matrix elements gkk′ = δkk′gk obey

[

i
d

dz1
− hkk(z1)

]

gk(z1, z2) = δ(z1, z2),

with KMS boundary condition gk(t0−, z2) = ±gk(t0− iβ, z2) (upper/lower sign for bosons/
fermions). As we see in the next section, the retarded component of gk is exactly the
function in (6.7). We then have

Gk0(z1, z2) =

∫

γ

dz̄ gk(z1, z̄)TkG00(z̄, z2),

where we take into account that hk0(z) = Tk for all z. From this result the reason for
imposing the KMS boundary condition on gk should be clear: any other boundary condition
would have generated a Gk0 which would not fulfill the KMS relations. Substitution of Gk0

into the equation for G00 leads to an exact e�ective equation for the atomic Green’s function
[

i
d

dz1
− h00(z1)

]

G00(z1, z2)−
∫

γ

dz̄Σem(z1, z̄)G00(z̄, z2) = δ(z1, z2), (6.11)

where we define the embedding self-energy on the contour according to

Σem(z1, z2) =
∑

k

T ∗k gk(z1, z2)Tk.

The adjoint equation of (6.11) can be derived similarly. Once again, the embedding of the
metallic degrees of freedom leads to an equation for the atomic Green’s function that
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158 6. One-particle Green’s function

contains a memory kernel. Equation (6.11) can be solved without knowing Gk0 or Gkk′ ; we
may say that memory emerges when leaving out some information. The equations of motion
(6.4) and (6.5) clearly show that memory cannot emerge if all the matrix elements of the
Green’s function are taken into account.

Interacting systems are more complicated since the equations of motion for G involve
the two-particle Green’s function G2. Therefore, even considering all the matrix elements
of G, the equations of motion do not form a close set of equations for G. We can use the
equations of motion for G2 to express G2 in terms of G but these equations also involve
the three-particle Green’s function G3, so we should first determine G3. More generally,
the equations of motion couple Gn to Gn±1 and the problem of finding an exact e�ective
equation for G is rather complicated. Nevertheless, a formal solution exists and it has the
same mathematical structure as (6.11):

[

i
d

dz1
− ĥ(z1)

]

Ĝ(z1, z2)−
∫

γ

dz̄ Σ̂ (z1, z̄)Ĝ(z̄, z2) = δ(z1, z2). (6.12)

In this equation the memory kernel Σ̂ (a single-particle operator like Ĝ) depends only on
the Green’s function and is known as the many-body self-energy. We prove (6.12) in Chapter
9. For the moment it is important to appreciate that one more time, and in a completely
di�erent context, the embedding of degrees of freedom (all the Gn with n ≥ 2) leads to an
exact e�ective integro-di�erential equation for the Green’s function that contains a memory
kernel. Due to the same mathematical structure of (6.11) and (6.12), the solution of the Fano
model provides us with interesting physical information on the behavior of an interacting
many-body system.

6.1.2 Matsubara Green’s function and initial preparations

The Matsubara component of the Green’s function follows from Ĝ(z1, z2) by setting z1 =
t0 − iτ1 and z2 = t0 − iτ2. The generic matrix element then reads

GM
ji(τ1, τ2) =

1

i






θ(τ1 − τ2)

Tr
[

e(τ1−τ2−β)Ĥ
M

d̂je
(τ2−τ1)ĤM

d̂†i

]

Tr
[

e−βĤM
]

± θ(τ2 − τ1)
Tr
[

e(τ2−τ1−β)Ĥ
M

d̂†ie
(τ1−τ2)ĤM

d̂j

]

Tr
[

e−βĤM
]






, (6.13)

and does not contain any information on how the system evolves in time. Instead, it contains
information on how the system is initially prepared. As already pointed out in Chapter 4,
the initial state of the system can be the thermodynamic equilibrium state (in which case
ĤM = Ĥ(t0) − µN̂ ) or any other state. It is easy to show that from the equal-time
Matsubara Green’s function we can calculate the initial ensemble average of any one-body
operator

Ô =
∑

ij

Oij d̂
†
i d̂j , (6.14)
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6.1. What can we learn from G? 159

since

O =
Tr
[

e−βĤ
M

Ô
]

Tr
[

e−βĤM
] =

∑

ij

Oij

Tr
[

e−βĤ
M

d̂†i d̂j
]

Tr
[

e−βĤM
] = ± i

∑

ij

OijG
M
ji(τ, τ

+), (6.15)

with τ+ a time infinitesimally larger than τ . The r.h.s. is independent of τ since all matrix

elements of ĜM(τ1, τ2) depend on the time di�erence τ1−τ2 only. We further observe that
the KMS relations imply

ĜM(0, τ) = ±ĜM(β, τ), ĜM(τ, 0) = ±ĜM(τ, β), (6.16)

i.e., the Matsubara Green’s function is a periodic function for bosons and an antiperiodic
function for fermions and the period is given by the inverse temperature β. We can therefore
expand the Matsubara Green’s function in a Fourier series according to

ĜM(τ1, τ2) =
1

−iβ
∞∑

m=−∞
e−ωm(τ1−τ2)ĜM(ωm) (6.17)

with Matsubara frequencies

ωm =







2mπ
−iβ

for bosons

(2m+1)π
−iβ

for fermions

.

Let us calculate the coe�cients of the expansion for a noninteracting density matrix, i.e.,
for a density matrix with a one-body operator

ĤM =
∑

ij

hMij d̂
†
i d̂j .

Setting z1 = t0 − iτ1 and z2 = t0 − iτ2 in the equation of motion (6.4) we find

[

− d

dτ1
− ĥM

]

ĜM(τ1, τ2) = δ(−iτ1 + iτ2) = iδ(τ1 − τ2),

where in the last step we use δ(−iτ) = iδ(τ), see the discussion before (5.41). Inserting
(6.17) into the above equation and exploiting the identities (see Appendix A),

δ(τ) =
1

β

∞∑

m=−∞

{

e−i
2mπ
β τ

e−i
(2m+1)π

β τ
=

1

β

∞∑

m=−∞
e−ωmτ ,

we can easily extract the coe�cients

ĜM(ωm) =
1

ωm − ĥM
. (6.18)
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160 6. One-particle Green’s function

To familiarize ourselves with these new formulas we now calculate the occupation n0 of the
Fano model and show that the result agrees with (2.27).

The occupation operator for the atomic site in the Fano model is n̂0 = d̂†0d̂0, and from
(6.15) (lower sign for fermions) the ensemble average of n̂0 is

n0 = −iGM
00(τ, τ

+) =
−i
−iβ

∑

m

eηωmGM
00(ωm).

The second equality follows from (6.17) in which we set τ1 = τ and τ2 = τ+ = τ + η,
where η is an infinitesimal positive constant. We consider the system in thermodynamic
equilibrium at a given temperature and chemical potential so that ĥM = ĥ − µ. The
expansion coe�cients can be calculated from (6.18) following the same steps leading to
(2.25) and read

GM
00(ωm) = 〈ǫ0|

1

ωm − ĥM
|ǫ0〉 =

1

ωm + µ− ǫ0 − Σem(ωm + µ)
.

To evaluate their sum we use the following trick. We first observe that the function Q(ζ) ≡
GM

00(ζ) of the complex variable ζ is analytic everywhere except along the real axis3 where it
has poles (and/or branch-cuts when the spectrum ǫk becomes a continuum). For any such
function we can write

1

−iβ
∞∑

m=−∞
eηωmQ(ωm) =

∫

Γa

dζ

2π
f(ζ)eηζQ(ζ), (6.19)

where f(ζ) = 1/(eβζ + 1) is the Fermi function with simple poles in ζ = ωm and residues
−1/β, while Γa is the contour of Fig. 6.1(a) that encircles all Matsubara frequencies clock-
wisely.4 Taking into account that η > 0 we can deform the contour Γa into the contour Γb

of Fig. 6.1(b) since limζ→±∞ eηζf(ζ) = 0, thus obtaining

1

−iβ
∞∑

m=−∞
eηωmQ(ωm) = lim

δ→0+

[∫ ∞

−∞

dω

2π
f(ω)Q(ω − iδ) +

∫ −∞

∞

dω

2π
f(ω)Q(ω + iδ)

]

= lim
δ→0+

∫ ∞

−∞

dω

2π
f(ω) [Q(ω − iδ)−Q(ω + iδ)] .

3Suppose that the denominator of GM
00(ζ) vanishes for some complex ζ = x+ iy. Then, taking the imaginary

part of the denominator we find

y

(

1 +
∑

k

|Tk|2
(x+ µ− ǫ0)2 + y2

)

= 0,

which can be satisfied only for y = 0.
4Recall that the Cauchy residue theorem for a meromorphic function f(z) in a domain D states that

∮

γ
dzf(z) = 2πi

∑

j

lim
z→zj

(z − zj)f(z),

where γ is an anticlockwisely oriented contour in D and the sum runs over the simple poles zj of f(z) contained
in γ (a minus sign in front of the formula appears for clockwisely oriented contours like Γa).
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6.1. What can we learn from G? 161

Figure 6.1 Contours for evaluation of the sum
∑

m eηωmGM
00(ωm). The points displayed are

the fermionic Matsubara frequencies ωm = (2m+ 1)π/(−iβ).

Using the same notation as in (2.26) we have

lim
δ→0+

[GM
00(ω − iδ)−GM

00(ω + iδ)] = −2i Im 1

ω + µ− ǫ0 − Λ(ω + µ) + i
2Γ(ω + µ) + iδ

,

and hence

n0 = −2
∫ ∞

−∞

dω

2π
f(ω − µ) Im 1

ω − ǫ0 − Λ(ω) + i
2Γ(ω) + iδ

. (6.20)

This result generalizes (2.27) to finite temperatures and correctly reduces to (2.27) at zero
temperature.

6.1.3 Lesser/greater Green’s function: relaxation and
quasi-particles

To access the dynamical properties of a system it is necessary to know: (1) how the system
is initially prepared; and (2) how the system evolves in time. If we restrict ourselves to the
time-dependent ensemble average of one-body operators as in (6.14), both information (1)
and (2) are encoded in the lesser and greater Green’s functions which, by definition, read

G<
ji(t, t

′) = ∓ i
Tr
[

e−βĤ
M

d̂†i,H(t′)d̂j,H(t)
]

Tr
[

e−βĤM
] = ∓ i

∑

k

ρk〈Ψk|d̂†i,H(t′)d̂j,H(t)|Ψk〉, (6.21)

G>
ji(t, t

′) = − i
Tr
[

e−βĤ
M

d̂j,H(t)d̂†i,H(t′)
]

Tr
[

e−βĤM
] = − i

∑

k

ρk〈Ψk|d̂j,H(t)d̂†i,H(t′)|Ψk〉. (6.22)

The d̂-operators in these formulas are in the standard (as opposed to contour) Heisenberg
picture (3.16). In the second equalities we simply introduce a complete set of eigenkets |Ψk〉
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162 6. One-particle Green’s function

Figure 6.2 Representation of the states |Φ1〉 and |Φ2〉 appearing in (6.25).

of ĤM with eigenvalue EM
k so that ρk = e−βE

M
k /Z . It is straightforward to verify that the

greater/lesser Green’s function has the property

[G>
ji(t, t

′)]∗ = −G>
ij(t
′, t) [G<

ji(t, t
′)]∗ = −G<

ij(t
′, t) (6.23)

and consequently the retarded and advanced Green’s functions are related by

ĜR(t, t′) = θ(t− t′)
[

Ĝ>(t, t′)− Ĝ<(t, t′)
]

=
[

ĜA(t′, t)
]†

(6.24)

Below we discuss the lesser Green’s function and leave it as an exercise for the reader to go
through the same logical and mathematical steps in the case of the greater Green’s function.

A generic term of the sum in (6.21) contains the quantity

〈Ψk|d̂†i,H(t′)d̂j,H(t)|Ψk〉 = 〈Ψk|Û(t0, t
′)d̂†i

︸ ︷︷ ︸

〈Φ1|

Û(t′, t) d̂j Û(t, t0)|Ψk〉
︸ ︷︷ ︸

|Φ2〉

, (6.25)

with Û the evolution operator (3.15). This quantity is proportional to the probability amplitude
that evolving |Ψk〉 from t0 to t, then removing a particle with quantum number j and letting
the new state evolve from t to t′ (this state is |Φ2〉) we find the same state as evolving |Ψk〉
from t0 to t′, at which time a particle with quantum number i is removed (this state is
|Φ1〉), see Fig. 6.2. As suggested by the figure, when time passes the disturbance (removal
of a particle) “spreads” if j is not a good quantum number and, therefore, it is reasonable
to expect that the probability amplitude vanishes for |t − t′| → ∞ independently of the
quantum number i. Of course, this expectation makes sense provided that the system has
infinitely many degrees of freedom coupled to each other. If the system has only a finite
number of degrees of freedom (as, e.g., in the PPP model for benzene or in the Hubbard
dimer discussed in Chapter 2) then the probability amplitude exhibits an oscillatory behavior.
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6.1. What can we learn from G? 163

Let us go back to (6.25). We note that for t = t′ the disturbance has no time to
spread. In this special (but relevant) case the probability amplitude reduces to the overlap
between d̂j |Ψk(t)〉 and d̂i|Ψk(t)〉, where |Ψk(t)〉 = Û(t, t0)|Ψk〉. For i = j the overlap
becomes the probability of finding a particle with quantum number i when the system
is in |Ψk(t)〉, i.e., the overlap becomes the quantum average of the occupation operator

n̂i = d̂†i d̂i.
5 This is not surprising since the time-dependent ensemble average of n̂i is

ni(t) = ±iGii(z, z
+) = ±iG<

ii(t, t). More generally, the lesser Green’s function allows us
to calculate the time-dependent ensemble average of any one-body operator, since given an
operator Ô as in (6.14) we have

O(t) = ±i
∑

ij

OijG
<
ji(t, t). (6.26)

For t = t0 the average O(t0) must be equal to the initial average (6.15) and therefore

Ĝ<(t0, t0) = Ĝ
M
(τ, τ+) for all τ . (6.27)

This identity can also be directly deduced from the definition of the Matsubara and lesser
components of the Green’s function.

A special case that is worth discussing in more detail is a system with Hamiltonian
Ĥ(t) = Ĥ(t0) = Ĥ constant in time. The corresponding Green’s function can describe
either: (1) a system with Hamiltonian Ĥ ′ ≡ ĤM+µN̂ initially in thermodynamic equilibrium6

and then driven out of equilibrium by the sudden switch-on of a perturbation ∆Ĥ =
Ĥ − Ĥ ′, so that Ĥ(t > t0) = Ĥ ′ +∆Ĥ = Ĥ ; or (2) a system with Hamiltonian Ĥ initially
prepared in an excited (not necessarily stationary) configuration described by a density

matrix ρ̂ = e−βĤ
M

/Z . No matter what the physical situation, the evolution operator is a
simple exponential and (6.21) becomes

G<
ji(t, t

′) = ∓ i
∑

k

ρk〈Ψk|eiĤ(t′−t0)d̂†ie
−iĤ(t′−t)d̂je

−iĤ(t−t0)|Ψk〉. (6.28)

In general the lesser Green’s function is not a function of the time di�erence t− t′ only. This
is a consequence of the fact that if the |Ψk〉 are not eigenstates of Ĥ then their evolution
is not given by a multiplicative (time-dependent) phase factor.

Relaxation

From (6.28) we can discuss the “spreading” illustrated in Fig. 6.2 more quantitatively. Let
us consider again the Hamiltonian Ĥ of the Fano model. As in Section 2.3.2, we define ĉλ
(ĉ†λ) as the annihilation (creation) operators that bring the Hamiltonian into a diagonal form,

5It may be worth commenting on how a probability amplitude can become a probability. We show it with an
example. Given an unnormalized state |Ψ〉 [like |Φ1〉 or |Φ2〉 in (6.25)], the quantity 〈Ψ|Ψ〉 is proportional to the
probability amplitude of finding |Ψ〉 when the system is in |Ψ〉. Now if we write |Ψ〉 = |Ψ1〉〈Ψ2|Φ〉, with |Ψ1〉,
|Ψ2〉 and |Φ〉 normalized to 1 then 〈Ψ|Ψ〉 = |〈Ψ2|Φ〉|2 equals the probability of finding |Ψ2〉 when the system

is in |Φ〉. The reader can generalize this argument to the case in which |Ψ1〉〈Ψ2| is replaced by the operator d̂i.
6The equilibrium density matrix of a system with Hamiltonian Ĥ′ is ρ̂ = e−βĤM

/Z with ĤM = Ĥ′ − µN̂ .
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164 6. One-particle Green’s function

Ĥ =
∑

λ ǫλĉ
†
λĉλ. To calculate the lesser Green’s function G<

00 on the atomic site we expand

the operators d̂0 and d̂†0 in terms of the ĉ-operators (see Section 1.5),

d̂0 =
∑

λ

〈ǫ0|λ〉 ĉλ, d̂†0 =
∑

λ

〈λ|ǫ0〉 ĉ†λ,

and use the identities

ĉλ,H(t) = eiĤ(t−t0)ĉλe
−iĤ(t−t0) = e−iǫλ(t−t0)ĉλ,

ĉ†λ,H(t) = eiĤ(t−t0)ĉ†λe
−iĤ(t−t0) = eiǫλ(t−t0)ĉ†λ,

that follow directly from the equation of motion i ddt ĉλ,H(t) = [ĉλ,H(t), Ĥ ]− = ǫλĉλ,H(t)

and the like for ĉ†λ. Equation (6.28) then gives

G<
00(t, t

′) =
∑

λλ′

〈λ|ǫ0〉〈ǫ0|λ′〉 ei[ǫλ(t
′−t0)−ǫλ′ (t−t0)]G<

λ′λ(t0, t0)

= 〈ǫ0|e−iĥ(t−t0)Ĝ
<
(t0, t0) e

iĥ(t′−t0)|ǫ0〉, (6.29)

where ĥ is the single-particle Hamiltonian with eigenkets |λ〉 and eigenvalues ǫλ. We could

have gone through the same steps to calculate any matrix element of Ĝ<. Thus, more gener-
ally, given an arbitrary density matrix (or equivalently an arbitrary ĤM) the time dependence
of the lesser Green’s function of a system with Hamiltonian Ĥ(t > t0) =

∑

ij hij d̂
†
i d̂j is

given by

Ĝ<(t, t′) = e−iĥ(t−t0)Ĝ<(t0, t0) eiĥ(t
′−t0). (6.30)

As anticipated, the r.h.s. of (6.29) is an oscillatory function for systems with a finite
number of degrees of freedom (in the present case a finite number of single-particle eigen-

values ǫλ). If Ĝ
<
(t0, t0) is the lesser Green’s function of the Fano model in thermodynamic

equilibrium, then (6.29) solves the equation of motion (6.11) with z1 = t− and z2 = t′+, i.e.,

[

i
d

dt
− ǫ0

]

G<
00(t, t

′)−
∫ ∞

t0

dt̄
[
ΣR

em(t, t̄)G
<
00(t̄, t

′) + Σ<
em(t, t̄)G

A
00(t̄, t

′)
]

− (−i)
∫ β

0

dτ̄ Σ⌉em(t, τ̄)G
⌈
00(τ̄ , t

′) = 0, (6.31)

where we use the Langreth rules of Table 5.1 to evaluate the integral along the contour. It
is then clear that also the embedding self-energy must be an oscillatory function in finite
systems. Due to the formal similarity between (6.11) and (6.12) we can argue that in an
interacting system with a finite number of degrees of freedom the many-body self-energy is
an oscillatory function as well.7

When the spectrum ǫλ becomes a continuum (in the language of Section 2.3.2 this
occurs in the limit ∆ǫ∆Q→ 0) the sum over λ and λ′ in (6.29) becomes a double integral

7This is indeed the case but the reader must wait for the development of a perturbative many-body scheme in
order to make the above intuitive argument a rigorous statement.
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6.1. What can we learn from G? 165

and the lesser Green’s function takes the following mathematical form:

G<
00(t, t

′) =

∫

dλ dλ′ei[ǫλt
′−ǫλ′ t]f(λ, λ′), (6.32)

with f(λ, λ′) a function of the continuous quantum numbers λ and λ′. There is a standard
manipulation to transform these kinds of integral into energy integrals. Given a function
g(λ) of the quantum number λ we have

∫

dλ g(λ) =

∫
dω

2π

∫

dλ 2πδ(ω − ǫλ)g(λ)
︸ ︷︷ ︸

g̃(ω)

=

∫
dω

2π
g̃(ω). (6.33)

In the special case that g(λ) = g(ǫλ) depends on λ only through the eigenvalue ǫλ the
function g̃(ω) = D(ω)g(ω) where

D(ω) = 2π

∫

dλ δ(ω − ǫλ) (6.34)

is the density of single particle states with energy ω. Using this trick the double integral in
(6.32) can be rewritten as a double energy integral

G<
00(t, t

′) =

∫
dω

2π

dω′

2π
ei[ωt′−ω′t]f̃(ω, ω′).

At any fixed time t the r.h.s. of this equation approaches zero when t′ →∞, provided that
∫

dω′

2π e−iω
′tf̃(ω, ω′) is an integrable function of ω. In mathematics this result is known as

the Riemann–Lebesgue theorem.8 We thus find the anticipated result on the “spreading”:
a quantum number that is coupled to infinitely many other quantum numbers (and hence
it is not a good quantum number) propagates in time and distributes smoothly over all of
them. This is the case of the quantum number 0 which is coupled by the Hamiltonian to
all the quantum numbers λ, i.e., 〈λ|ĥ|0〉 6= 0 for all λ. The same argument can be used to
demonstrate that the r.h.s. of (6.32) vanishes at any fixed t′ when t → ∞. The “spreading”
of the removed particle resembles the relaxation process that takes place when a drop of
ink falls into a bucket of water, and for this reason we refer to it as the relaxation. We
deepen this aspect further in Section 6.3.4.

8According to the Riemann–Lebesgue theorem

lim
t→∞

∫

dω eiωtf(ω) = 0,

provided that f is an integrable function. An intuitive proof of this result consists in splitting the integral over ω
into the sum of integrals over a window ∆ω around ωn = n∆ω. If f(ω) is finite and ∆ω is small enough we
can approximate f(ω) ∼ f(ωn) in each window and write

lim
t→∞

∫

dω eiωtf(ω) ∼
∞
∑

n=−∞

f(ωn) lim
t→∞

∫ ωn+∆ω/2

ωn−∆ω/2
dω eiωt

=

∞
∑

n=−∞

f(ωn) lim
t→∞

2eiωnt sin(∆ωt/2)

t
= 0.
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166 6. One-particle Green’s function

Relaxation and memory

The equation of motion (6.31) tells us that for G<
00(t, t

′) to approach zero when |t− t′| → ∞
the self-energy Σem(t, t

′) must approach zero in the same limit. Vice versa we could state
that for relaxation to occur, the equation of motion for the “sub-system” Green’s function
(the atomic Green’s function of the Fano model or the full Green’s function of an interacting
system) must have memory and this memory must decay in time. A sub-system with no
memory or with an infinitely long memory does not, in general, relax. It is instructive to
re-consider the behavior of G<

00 from this new perspective. Below we discuss an elementary
example of both kinds of memory. Let us consider the equation of motion (6.31) with t′ = t0.
The advanced Green’s function vanishes for t̄ > t′ and hence the second term in the first
integral does not contribute, and (6.31) simplifies to

[

i
d

dt
− ǫ0

]

G<(t)−
∫ ∞

t0

dt̄ΣR
em(t, t̄)G

<(t̄) = f(t),

where we introduce the short-hand notation G<(t) ≡ G<
00(t, t0) and

f(t) = −i
∫ β

0

dτ̄ Σ⌉em(t, τ̄)G
⌈
00(τ̄ , t0).

Since G
⌈
00(τ̄ , t0) = GM

00(τ̄ , 0) the function f(t) is completely determined by the initial
density matrix and can be considered as an external driving force. The general solution of
the di�erential equation is the sum of the homogeneous solution G<

hom and of the particular
solution. The homogeneous solution satisfies

[

i
d

dt
− ǫ0

]

G<
hom(t)−

∫ ∞

t0

dt̄ΣR
em(t, t̄)G

<
hom(t̄) = 0. (6.35)

The explicit form of ΣR
em is obtained by inserting (6.7) into (6.10) and reads

ΣR
em(t, t

′) = −iθ(t− t′)
∑

k

|Tk|2e−iǫk(t−t
′) =

∫
dω

2π
e−iω(t−t′)

∑

k

|Tk|2
ω − ǫk + iη

, (6.36)

with η an infinitesimal positive constant. Note that the Fourier transform ΣR
em(ω) is equal

to the quantity Σem(ω + iη) already encountered in (2.26).

• Infinitely long memory: As an example of long memory kernels we consider the case
for which

ΣR
em(ω) =

∑

k

|Tk|2
ω − ǫk + iη

=
L

ω + iη
⇒ ΣR

em(t, t
′) = −iθ(t− t′)L.

The constant L must be a real positive constant for the imaginary part of L/(ω+ iη)
to be negative. Inserting this self-energy into (6.35) and di�erentiating once with
respect to t we find

[

i
d2

dt2
− ǫ0

d

dt
+ iL

]

G<
hom(t) = 0,
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6.1. What can we learn from G? 167

the solution of which is G<
hom(t) = Aeα+t +Beα−t with

α± =
ǫ0 ±

√

ǫ20 + 4L

2i
.

Both roots are purely imaginary and therefore G<
hom(t) does not vanish for large t,

i.e., there is no relaxation. Long memory kernels are typical of systems with a finite
number of degrees of freedom.

• No memory: An example of kernel with no memory is a ΣR
em(ω) independent of ω:

ΣR
em(ω) =

∑

k

|Tk|2
ω − ǫk + iη

= ΣR
em ⇒ ΣR

em(t, t
′) = δ(t− t′)ΣR

em.

A purely imaginary constant ΣR
em = −iΓ/2 corresponds to the WBLA encountered in

Section 2.3.2. Even though the WBLA generates a retarded kernel with no memory the
lesser component of the kernel decays smoothly in time.9 This remains true as long
as the constant ΣR

em has an imaginary part. On the contrary, for real ΣR
em the lesser

component of the kernel vanishes.10 Inserting the no-memory self-energy into (6.35)
we find for the homogeneous solution

G<
hom(t) = e−i(ǫ0+ΣR

em)(t−t0)G<
hom(t0).

We thus see that for real ΣR
em (no memory) there is no relaxation whereas in the WBLA

(ΣR
em = −iΓ/2) or for complex ΣR

em there is memory and, as expected, the Green’s
function decays (exponentially) in time.

Quasi-particles

Exploiting one more time the formal analogy between the Fano model and an interacting

many-particle system we could say that if the operator ĥ + Σ̂
R
(ω) has an eigenvalue ǫλ

with vanishing imaginary part, like the ǫ0 +ΣR
em of the previous example, then the creation

or annihilation of a particle with energy ǫλ is not followed by relaxation. In other words the
particle with energy ǫλ has an infinitely long life-time. In a truly noninteracting system these

particles always exist since the many-body self-energy Σ̂
R
(ω) = 0. In an interacting system

9In the next section we calculate all Keldysh components of the Green’s function of a noninteracting system.

The reader can then verify that g<k (t, t′) = ∓ if(ǫk − µ)e−iǫk(t−t′) and therefore

Σ<
em(t, t′) = ∓ i

∑

k

|Tk|2f(ǫk − µ)e−iǫk(t−t′) = ∓ i

∫

dω

2π
f(ω − µ)e−iω(t−t′)2π

∑

k

|Tk|2δ(ω − ǫk).

The sum inside the integral is proportional to the imaginary part of ΣR
em(ω). Thus, for a purely imaginary and

frequency-independent kernel (WBLA) Σ<
em(t, t′) ∝

∫

dωf(ω − µ)e−iω(t−t′) which vanishes only in the limit
|t− t′| → ∞.

10For the specific form (6.36) of the embedding self-energy it follows that if the constant ΣR
em is real then it

must be zero. This is due to the fact that Im[ΣR
em(ω)] = −π∑k |Tk|2δ(ω − ǫk) consists of a sum of terms

with the same sign. Thus, a real ΣR
em implies that all Tk vanish and hence ΣR

em = 0.
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168 6. One-particle Green’s function

almost all eigenvalues of ĥ+ Σ̂
R
(ω) have a finite imaginary part and hence the concept of

“particles” with well-defined energy must be abandoned. However, if the imaginary part is
small (with respect to some energy scale) these particles have a long life-time and behave
almost like normal particles. For this reason they are called quasi-particles. As we see in
Chapter 13, the concept of quasi-particles allows us to develop many useful and insightful
approximations.

6.2 Noninteracting Green’s function

In this section we calculate the Green’s function for a system of noninteracting particles that
is initially described by a noninteracting density matrix. This means that the Hamiltonian
along the contour is

Ĥ(z) =
∑

ij

hij(z)d̂
†
i d̂j =

∑

ij

〈i|ĥ(z)|j〉 d̂†i d̂j ,

with ĥ(z = t0− iτ) = ĥM the constant single-particle Hamiltonian along the imaginary track

and ĥ(z = t±) = ĥ(t) the single-particle Hamiltonian along the horizontal branches. The
noninteracting Green’s function operator satisfies the equations of motion (6.4) and (6.5). To
solve them, we write Ĝ as

Ĝ(z1, z2) = ÛL(z1)F̂(z1, z2)ÛR(z2),

where the (first quantization) operators ÛL/R(z) fulfill

i
d

dz
ÛL(z) = ĥ(z)ÛL(z), −i d

dz
ÛR(z) = ÛR(z)ĥ(z),

with boundary conditions ÛL(t0−) = ÛR(t0−) = 1̂. The structure of these equations is
the same as that of the evolution operator on the contour, compare with (4.33) and (4.34).
The explicit form of ÛL/R(z) is therefore the same as that in (4.32), i.e.,

ÛL(z) = T
{

e
−i

∫ z
t0−

dz̄ ĥ(z̄)
}

, ÛR(z) = T̄
{

e
+i

∫ z
t0−

dz̄ ĥ(z̄)
}

. (6.37)

The operator ÛL(z) can be seen as the single-particle forward evolution operator on the
contour (from t0− to z), whereas ÛR(z) can be seen as the single-particle backward evo-
lution operator on the contour (from z to t0−). This is also in agreement with the fact that
ÛL(z)ÛR(z) = ÛR(z)ÛL(z) = 1̂, which follows directly from their definition. Substituting
Ĝ into the equations of motion (6.4) and (6.5) we obtain the following di�erential equations
for F̂

i
d

dz1
F̂(z1, z2) = δ(z1, z2), −i d

dz2
F̂(z1, z2) = δ(z1, z2).

The most general solution of these di�erential equations is

F̂(z1, z2) = θ(z1, z2)F̂
>
+ θ(z2, z1)F̂

<
,
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6.2. Noninteracting Green’s function 169

where the constant operators F̂>
and F̂<

are constrained by

F̂> − F̂<
= −i 1̂. (6.38)

To determine F̂>
(or F̂<

) we can use one of the two KMS relations. Choosing, e.g.,

Ĝ(t0−, z′) = ±Ĝ(t0 − iβ, z′)

{
+ for bosons
− for fermions

,

it is straightforward to find

F̂<
= ± ÛL(t0 − iβ)F̂>

= ±e−βĥMF̂>
{

+ for bosons
− for fermions

.

Solving this equation for F̂>
and inserting the result into (6.38) we get

F̂<
= ∓ i

1

eβĥM ∓ 1̂

= ∓ if(ĥM),

where f(ω) = 1/[eβω∓1] is the Bose/Fermi function. Consequently, the operator F̂>
reads

F̂>
= ±i 1

e−βĥM ∓ 1
= −if̄(ĥM),

with f̄(ω) = 1 ± f(ω) = eβωf(ω). It is left as an exercise for the reader to show
that we would have got the same results using the other KMS relation, i.e., Ĝ(z, t0−) =
±Ĝ(z, t0 − iβ). To summarize, the noninteracting Green’s function can be written as

Ĝ(z1, z2) = −i ÛL(z1)
[

θ(z1, z2)f̄(ĥ
M)± θ(z2, z1)f(ĥM)

]

ÛR(z2) (6.39)

with ÛL/R given in (6.37). Having the Green’s function on the contour we can now extract
all its Keldysh components.

6.2.1 Matsubara component

The Matsubara Green’s function follows from (6.39) by setting z1 = t0−iτ1 and z2 = t0−iτ2
and reads

ĜM(τ1, τ2) = −i
[

θ(τ1 − τ2)f̄(ĥM)± θ(τ2 − τ1)f(ĥM)
]

e−(τ1−τ2)ĥ
M

(6.40)

where we make use of the fact that

ÛL(t0 − iτ) = e−τĥ
M

, ÛR(t0 − iτ) = eτĥ
M

,

which also implies that ÛL/R(t0 − iτ) commutes with ĥM. Inserting a complete set of

eigenkets |λM〉 of ĥM with eigenvalues ǫMλ the Matsubara Green’s function can also be
written as

ĜM(τ1, τ2) = −i
∑

λ

[
θ(τ1 − τ2)f̄(ǫMλ )± θ(τ2 − τ1)f(ǫMλ )

]
e−(τ1−τ2)ǫ

M
λ |λM〉〈λM|.
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170 6. One-particle Green’s function

This result should be compared with (6.17). For noninteracting density matrices the coe�-
cients of the expansion are given by (6.18) and hence

ĜM(τ1, τ2) =
1

−iβ
∞∑

m=−∞

e−ωm(τ1−τ2)

ωm − ĥM
(6.41)

We thus have two di�erent ways, (6.40) and (6.41), of writing the same quantity. We close
this section by proving the equivalence between them.

The strategy is to perform the sum over the Matsubara frequencies using a generalization
of (6.19). The Bose/Fermi function f(ζ) = 1/(eβζ ∓ 1) of the complex variable ζ has simple
poles in ζ = ωm with residues ±1/β (as usual upper/lower sign for bosons/fermions).
Therefore, given a function Q(ζ) analytic around all Matsubara frequencies we can write the
following two equivalent identities

1

−iβ
∞∑

m=−∞
Q(ωm)e−ωmτ =

∫

Γa

dζ

2π
Q(ζ)e−ζτ ×







∓f(ζ)

−eβζf(ζ)
. (6.42)

The functions in the first and second row of the curly bracket yield the same value in
ζ = ωm since eβωm = ±1. The contour Γa must encircle all the Matsubara frequencies
clockwisely without including any singularity (pole or branch point) of Q, i.e., Q must be
analytic inside Γa. In particular we consider functions Q with singularities only in ζ = ǫMλ .
Then, for fermionic systems we can choose the contour Γa as shown in Fig. 6.1(a). The
bosonic case is a bit more subtle since the Matsubara frequency ω0 = 0 lies on the real
axis and hence the contour Γa does not exist if Q has a singularity in ζ = 0. At any finite
temperature, however, the lowest eigenvalue of ĥM must be strictly positive for otherwise
both (6.40) and (6.41) are ill-defined.11 Thus Q(ζ) has no poles in ζ = 0 and a possible
choice of contour Γa is illustrated in Fig. 6.3(a). Next, we observe that if β > τ > 0
we could use the bottom identity in (6.42) and deform the contour as shown in Fig. 6.1(b)
(for fermions) and Fig. 6.3(b) for bosons since limζ→±∞ e(β−τ)ζf(ζ) = 0. On the contrary,
if 0 > τ > −β we could use the top identity and still deform the contour as shown in Fig.
6.1(b) (for fermions) and Fig. 6.3(b) (for bosons) since limζ→±∞ e−τζf(ζ) = 0. We then
conclude that

1

−iβ
∞∑

m=−∞
Q(ωm)e−ωmτ =

∫

Γb

dζ

2π
Q(ζ)e−ζτ

[
−θ(τ)eβζf(ζ)∓ θ(−τ)f(ζ)

]
(6.43)

11In bosonic systems the lowest eigenvalue ǫM0 = ǫ0 − µ of ĥM approaches zero when β →∞ as ǫM0 ∼ 1/β

so that the product βǫM0 remains finite. If the energy spectrum of ĥM is continuous and if the density of single-
particle states D(ω), see (6.34), vanishes when ω → 0 then all bosons have the same quantum number ǫM0 in the
zero-temperature limit. This phenomenon is known as the Bose condensation. Thus, in physical bosonic systems
the density matrix ρ̂ can be of the form |Φ0〉〈Φ0| (pure state) only at zero temperature and only in the presence
of Bose condensation. Without Bose condensation ρ̂ is a mixture also at zero temperature, see Exercise 6.3.
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6.2. Noninteracting Green’s function 171

Figure 6.3 Contours for evaluation of the bosonic sum in (6.42). The points displayed are the
bosonic Matsubara frequencies ωm = 2mπ/(−iβ). The contour Γb contains all the poles
of the function Q(ζ).

Let us specialize this formula to the function Q(ζ) = 1/(ζ − ǫMλ ). Since the simple pole in
ζ = ǫMλ is inside Γb, the Cauchy residue theorem gives

1

−iβ
∞∑

m=−∞

e−ωmτ

ωm − ǫMλ
= −i

[
θ(τ)f̄(ǫMλ )± θ(−τ)f(ǫMλ )

]
e−τǫ

M
λ .

Multiplying both sides by |λM〉〈λM| and summing over λ we find the equivalence we were
looking for.

6.2.2 Lesser and greater components

The operators ÛL(z) and ÛR(z) evaluated for z on the forward/backward branch of the
contour reduce to the single-particle real-time evolution operators

ÛL(t±) ≡ Û(t) = T
{

e
−i

∫ t
t0

dt̄ ĥ(t̄)
}

,

ÛR(t±) = Û
†
(t),

with T the chronological ordering operator introduced in (3.7). The action of Û(t) on a
generic single-particle ket |Ψ〉 yields the time-evolved ket |Ψ(t)〉 which obeys the Schrödinger
equation i ddt |Ψ(t)〉 = ĥ(t)|Ψ(t)〉. The lesser component of the noninteracting Green’s func-
tion follows from (6.39) when setting z1 = t1− and z2 = t2+. We find

Ĝ<(t1, t2) = ∓ i Û(t1) f(ĥM) Û†(t2) (6.44)

Similarly, the greater component follows from (6.39) when setting z1 = t1+ and z2 = t2−
and reads

Ĝ>(t1, t2) = − i Û(t1) f̄(ĥM) Û†(t2) (6.45)
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172 6. One-particle Green’s function

Both Ĝ>(t1, t2) and Ĝ<(t1, t2) depend on the initial configuration through f(ĥM). This
should not come as a surprise since, e.g., the diagonal element ±iG<

ii(t, t) is the time-

dependent ensemble average of the occupation operator n̂i = d̂†i d̂i. The physical con-
tent of the lesser/greater Green’s function can be visualized more easily by inserting a
complete set of eigenstates of ĥM between the Bose/Fermi function and the evolution
operators:

Ĝ<(t1, t2) = ∓ i
∑

λ

f(ǫMλ ) Û(t1) |λM〉〈λM| Û
†
(t2)

= ∓ i
∑

λ

f(ǫMλ ) |λM(t1)〉 〈λM(t2)|.

In particular, the generic matrix element in the position–spin basis reads

G<(1; 2) = ∓ i
∑

λ

f(ǫMλ )ϕM
λ (x1, t1)ϕ

M∗
λ (x2, t2),

with ϕM
λ (x, t) = 〈x|λM(t)〉 the time-evolved eigenfunction of ĥM (a similar formula can

be derived for the greater component). Thus, the lesser (greater) Green’s function of a
noninteracting system can be constructed by populating the single-particle eigenfunctions
of ĥM according to the Bose/Fermi function f (f̄ ) and then evolving them according to the
time-dependent Schrödinger equation with Hamiltonian ĥ(t). The familiar result for the
time-dependent density is readily recovered

n(x, t) = ± iG<(x, t;x, t) =
∑

λ

f(ǫMλ ) |ϕM
λ (x, t)|2. (6.46)

The general dependence of ĥ(t) on time prevents us from doing more analytic manip-

ulations. Below we discuss the case in which ĥ(t) = ĥ is time independent. Then, the

evolution operator is simply Û(t) = exp[−iĥ(t− t0)] and (6.44) and (6.45) simplify to

Ĝ<(t1, t2) = ∓ i e−iĥ(t1−t0) f(ĥM) eiĥ(t2−t0),

Ĝ>(t1, t2) = − i e−iĥ(t1−t0) f̄(ĥM) eiĥ(t2−t0).

These results are a special case of (6.30) in which the Matsubara Hamiltonian ĤM is nonin-
teracting and described by ĥM. We also observe that the lesser and greater Green’s functions
are not functions of the time di�erence t1 − t2, in agreement with the discussion below
(6.28). The invariance under time translations requires that the system is prepared in an
eigenstate (or in a mixture of eigenstates) of ĥ, i.e., that ĥM commutes with ĥ. In this
case

Ĝ<(t1, t2) = ∓ i f(ĥM) e−iĥ(t1−t2),

Ĝ>(t1, t2) = − i f̄(ĥM) e−iĥ(t1−t2),
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6.2. Noninteracting Green’s function 173

and the dependence on t0 disappears. The time translational invariance allows us to define
the Fourier transform

Ĝ≶(t1, t2) =
∫
dω

2π
e−iω(t1−t2)Ĝ≶(ω), (6.47)

and we see by inspection that

Ĝ<(ω) = ∓2πi f(ĥM) δ(ω − ĥ) (6.48)

Ĝ>(ω) = −2πi f̄(ĥM) δ(ω − ĥ) = ±eβĥM Ĝ<(ω). (6.49)

6.2.3 All other components and a useful exercise

From a knowledge of the greater and lesser Green’s functions we can extract all the remaining
Keldysh components, see Table 5.1. By definition the retarded Green’s function is

ĜR(t1, t2) = θ(t1 − t2)[Ĝ
>
(t1, t2)− Ĝ

<
(t1, t2)] = −i θ(t1 − t2)Û(t1)Û

†
(t2)

= −i θ(t1 − t2)T
{

e−i
∫ t1
t2

dt̄ ĥ(t̄)
}

, (6.50)

whereas the advanced Green’s function reads

ĜA(t1, t2) = i θ(t2 − t1)T̄
{

ei
∫ t2
t1

dt̄ ĥ(t̄)
}

= [ĜR(t2, t1)]†. (6.51)

It is interesting to observe that the retarded/advanced noninteracting Green’s function does

not depend on the initial density matrix. This means that ĜR/A
does not change by varying

the initial number of particles or the distribution of the particles among the di�erent energy

levels. The information carried by ĜR,A
is the same as the information carried by the

single-particle evolution operator Û . We use this observation to rewrite Ĝ≶ in (6.44) and
(6.45) in terms of the retarded/advanced Green’s function

Ĝ≶(t1, t2) = Ĝ
R
(t1, t0)Ĝ

≶
(t0, t0)Ĝ

A
(t0, t2) (6.52)

Analogous relations can be derived for the left/right Green’s functions,

Ĝ⌉(t, τ) = ∓ i Û(t)f(ĥM)eτĥ
M

= i ĜR(t, t0)Ĝ
M
(0, τ), (6.53)

Ĝ⌈(τ, t) = −i e−τĥM

f̄(ĥM)Û†(t) = −i ĜM(τ, 0)ĜA(t0, t). (6.54)

Finally, the time-ordered Green’s function is

ĜT(t1, t2) = −i Û(t1)
[

θ(t1 − t2)f̄(ĥM)± θ(t2 − t1)f(ĥM)
]

Û†(t2).
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174 6. One-particle Green’s function

A useful exercise: As an application of all these new formulas and of the Langreth rules of Table
5.1 it is particularly instructive to discuss a case that is often encountered in physics. Suppose that the
single-particle Hamiltonian ĥ(z) is the sum of an operator ĥ0(z) which is easy to handle and another
operator ĥ1(z) which is problematic to deal with. To fix the ideas, we can take the Fano model and
say that ĥ0 is the metal+atom Hamiltonian whereas ĥ1 is the contact Hamiltonian between the two
subsystems. In these situations it is easier to work with the Keldysh Green’s function Ĝ0 of the ĥ0

system than with the full Green’s function Ĝ and, therefore, it makes sense to look for an expansion of
Ĝ in terms of Ĝ0. By definition Ĝ0 satisfies the equations of motion (6.4) and (6.5) with ĥ(z) = ĥ0(z)
and with KMS boundary conditions. Consequently, we can use Ĝ0 to convert the equations of motion
(6.4) and (6.5) for Ĝ into an integral equation that embodies the KMS relations

Ĝ(z, z′) = Ĝ0(z, z
′) +

∫

γ

dz̄ Ĝ0(z, z̄)ĥ1(z̄)Ĝ(z̄, z′).

The reader can verify the correctness of this equation by applying [i d
dz

− ĥ0(z)] to both sides.
These kinds of integral equation are known as the Dyson equations and in the following chapters we
encounter them many times.12 The Dyson equation is an iterative equation that allows us to expand Ĝ
in “powers” of Ĝ0 by replacing Ĝ on the r.h.s. with the whole r.h.s. ad infinitum:

Ĝ(z, z′) = Ĝ0(z, z
′) +

∫

γ

dz̄ Ĝ0(z, z̄)ĥ1(z̄)Ĝ0(z̄, z
′)

+

∫

γ

dz̄ dz̄′ Ĝ0(z, z̄)ĥ1(z̄)Ĝ0(z̄, z̄
′)ĥ1(z̄

′)Ĝ0(z̄
′, z′) + . . .

= Ĝ0(z, z
′) +

∫

γ

dz̄ Ĝ(z, z̄)ĥ1(z̄)Ĝ0(z̄, z
′),

where in the last step we resummed everything in an equivalent way. We refer to this equation as the
adjoint Dyson equation and to the one before as the left Dyson equation. The exercise consists in

using the Dyson equations to calculate, say, Ĝ<
and to verify that the result agrees with (6.52). Let us

define the singular operator in Keldsyh space ĥ1(z, z
′) = δ(z, z′)ĥ1(z). The Dyson equations contain

a convolution between three functions in Keldysh space. The Langreth rules of Table 5.1 applied to the
adjoint Dyson equation give

Ĝ<
= [δ + ĜR · ĥR

1 ] · Ĝ
<

0 + Ĝ< · ĥA
1 · ĜA

0 + Ĝ⌉
⋆ ĥM

1 ⋆ Ĝ⌈

0,

while the Dyson equation gives

ĜR/A
= ĜR/A

0 + ĜR/A

0 · ĥR/A
1 · ĜR/A

. (6.55)

The equation for Ĝ<
contains Ĝ⌉

which has one argument on the vertical track of the contour. Due
to this coupling the equations for the lesser, retarded and advanced Green’s functions do not form a

closed set unless ĥ1 vanishes on the vertical track. Let us bring all terms containing Ĝ<
onto the l.h.s.

Ĝ< · [δ − ĥA
1 · ĜA

0 ] = [δ + ĜR · ĥR
1 ] · Ĝ

<

0 + Ĝ⌉
⋆ ĥM

1 ⋆ Ĝ⌈

0.

To isolate Ĝ<
we observe that

[δ − ĥA
1 · ĜA

0 ] · [δ + ĥA
1 · ĜA

] = δ − ĥA
1 · [ĜA

0 + ĜA

0 · ĥA
1 · ĜA

] + ĥA
1 · ĜA

= δ,

12Our first encounter with a Dyson equation was in Section 5.2.
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6.2. Noninteracting Green’s function 175

where in the last step we use the advanced Dyson equation. Therefore

Ĝ<
= [δ + ĜR · ĥR

1 ] · Ĝ
<

0 · [δ + ĥA
1 · ĜA

] + Ĝ⌉
⋆ ĥM

1 ⋆ Ĝ⌈

0 · [δ + ĥA
1 · ĜA

].

From (6.52) and (6.54) we know that

Ĝ<

0 (t1, t2) = ĜR

0 (t1, t0)Ĝ
<

0 (t0, t0)Ĝ
A

0 (t0, t2), Ĝ⌈

0(τ, t) = −i ĜM

0 (τ, 0)ĜA

0 (t0, t);

substituting these results into the above formula for Ĝ<
and using the retarded/advanced Dyson

equation we find

Ĝ<
(t1, t2) = ĜR

(t1, t0)Ĝ
<

0 (t0, t0)Ĝ
A
(t0, t2)− i[Ĝ⌉

⋆ ĥM
1 ⋆ ĜM

0 ](t, 0)ĜA
(t0, t2). (6.56)

It is interesting to observe that if ĥM
1 = 0 then Ĝ<

0 (t0, t0) = Ĝ<
(t0, t0) and (6.52) would be recovered.

To proceed further we need an equation for the right Green’s function. Taking the right component of

the adjoint Dyson equation and using the identity (6.53) for Ĝ⌉

0 we find

Ĝ⌉
(t, τ) = iĜR

(t, t0)Ĝ
M

0 (0, τ) + [Ĝ⌉
⋆ ĥM

1 ⋆ ĜM

0 ](t, τ)

and hence
Ĝ⌉
⋆ [δ − ĥM

1 ⋆ ĜM

0 ](t, τ) = iĜR
(t, t0)Ĝ

M

0 (0, τ).

This equation can be solved for Ĝ⌉
. We have

[δ − ĥM
1 ⋆ ĜM

0 ] ⋆ [δ + ĥM
1 ⋆ ĜM

] = δ − ĥM
1 ⋆ [ĜM

0 + ĜM

0 ⋆ ĥM
1 ⋆ ĜM

] + ĥM
1 ⋆ ĜM

= δ,

where in the last step we use the fact that the Matsubara component of the Dyson equation is

ĜM
= ĜM

0 + ĜM

0 ⋆ ĥM
1 ⋆ ĜM

.

Therefore, the right Green’s function reads Ĝ⌉
(t, τ) = iĜR

(t, t0)Ĝ
M
(0, τ), which agrees with (6.53).

Substituting this result into (6.56) and taking into account that Ĝ<

0 (t0, t0) = ĜM

0 (0, 0+) [see (6.27)],
we find

Ĝ<
(t1, t2) = ĜR

(t1, t0)Ĝ
M

0 (0, 0+)ĜA
(t0, t2) + ĜR

(t, t0)[Ĝ
M
⋆ ĥM

1 ⋆ ĜM

0 ](0, 0+)ĜA
(t0, t2)

= ĜR
(t1, t0)Ĝ

M
(0, 0+)ĜA

(t0, t2),

which correctly agrees with (6.52).

We conclude this section by considering again a system with Hamiltonian ĥ(t) = ĥ
constant in time. Then, from (6.50) and (6.51) the retarded/advanced Green’s functions
become

ĜR(t1, t2) = −i θ(t1 − t2)e−iĥ(t1−t2),
ĜA(t1, t2) = +i θ(t2 − t1)e+iĥ(t2−t1),

which, as expected, depend only on the time di�erence t1− t2. This allows us to define the

Fourier transform of ĜR/A
according to

ĜR,A
(t1, t2) =

∫
dω

2π
e−iω(t1−t2)ĜR,A

(ω).
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176 6. One-particle Green’s function

The calculation of the Fourier transform ĜR,A
(ω) is most easily done by using the repre-

sentation of the Heaviside function

θ(t1 − t2) = i

∫
dω

2π

e−iω(t1−t2)

ω + iη
, (6.57)

with η an infinitesimal positive constant. We find

ĜR(t1, t2) =
∫
dω

2π

e−i(ω+ĥ)(t1−t2)

ω + iη
,

and changing the variable of integration ω → ω − ĥ we can identify the Fourier transform
with

ĜR(ω) = 1

ω − ĥ+ iη
=
∑

λ

|λ〉〈λ|
ω − ǫλ + iη

(6.58)

where the sum runs over a complete set of eigenkets |λ〉 of ĥ with eigenvalues ǫλ. To
calculate the Fourier transform of the advanced Green’s function we note that the property
(6.51) implies

ĜA(ω) = [ĜR(ω)]†

and hence

ĜA(ω) = 1

ω − ĥ− iη
=
∑

λ

|λ〉〈λ|
ω − ǫλ − iη

(6.59)

The retarded Green’s function is analytic in the upper half of the complex ω plane, whereas
the advanced Green’s function is analytic in its lower half. As we see in the next section,
this analytic structure is completely general since it is a direct consequence of causality:

ĜR(t1, t2) vanishes for t1 < t2 whereas ĜA(t1, t2) vanishes for t1 > t2.
The results (6.58) and (6.59) are interesting also for another reason. From the definition

of the retarded/advanced component of a Keldysh function we have the general relation
(omitting the time arguments)

ĜR − ĜA = Ĝ> − Ĝ<,

which tells us that the di�erence between the lesser and greater Green’s function can be
expressed in terms of the di�erence between the retarded and advanced Green’s function.
We now show that a system prepared in a stationary excited state has lesser and greater

Green’s functions that can separately be written in terms of ĜR − ĜA. For the system to be

in a stationary excited state the Hamiltonian ĥM must commute with ĥ. Then Ĝ≶ is given
by (6.48) and (6.49) which, taking into account (6.58) and (6.59) together with the Cauchy
relation (2.23), can also be written as

Ĝ<(ω) = ±f(ĥM)[ĜR(ω)− ĜA(ω)]
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6.2. Noninteracting Green’s function 177

Figure 6.4 Location of the poles of the time-ordered Green’s function for a system of
fermions at zero temperature.

Ĝ>(ω) = f̄(ĥM)[ĜR(ω)− ĜA(ω)]

In the special case when ĥM = ĥ− µ describes the system in thermodynamic equilibrium,
the above relations reduce to the so called fluctuation–dissipation theorem

Ĝ<(ω) = ±f(ω − µ)[ĜR(ω)− ĜA(ω)],
Ĝ>(ω) = f̄(ω − µ)[ĜR(ω)− ĜA(ω)].

As we see in the next section, the fluctuation–dissipation theorem is valid in interacting
systems as well.

Let us also calculate the time-ordered Green’s function for the case in which ĥM com-
mutes with ĥ. Using the results (6.48) and (6.49) as well as the representation (6.57) of the
Heaviside function we find

ĜT(t1, t2) =
∫
dω

2π
e−iω(t1−t2)

[

f̄(ĥM)

ω − ĥ+ iη
∓ f(ĥM)

ω − ĥ− iη

]

︸ ︷︷ ︸

ˆGT
(ω)

.

The Fourier transform of the time-ordered Green’s function has poles on both sides of
the complex plane. For fermions in equilibrium at zero temperature, ĥM = ĥ − ǫF, with
ǫF = limβ→∞ µ the Fermi energy, and f(ǫλ−µ) = θ(ǫF−ǫλ). The equilibrium configuration

corresponds to populating all eigenkets |λ〉 of ĥ with energy ǫλ < ǫF. Then

ĜT(ω) =
∑

ǫλ>ǫF

|λ〉〈λ|
ω − ǫλ + iη

+
∑

ǫλ<ǫF

|λ〉〈λ|
ω − ǫλ − iη

.
(fermions at

zero temperature)

As illustrated in Fig. 6.4, the poles of ĜT(ω) with real part smaller than ǫF lie on the upper
half of the complex ω-plane, whereas those with real part larger than ǫF lie on the lower
half of the complex ω-plane. This property is mantained in interacting systems as well.

Exercise 6.1. Consider a system of particles in one dimension with single-particle Hamil-

tonian ĥ = p̂2/2. Taking into account that the single-particle eigenkets are the momentum–

spin kets |pσ〉 with eigenvalue p2/2, use (6.58) to show that

〈xσ|ĜR(ω)|x′σ′〉 = δσσ′GR(x, x′;ω),
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178 6. One-particle Green’s function

with

GR(x, x′;ω) = − 1
√

2|ω|

{

i e i
√

2|ω| |x−x′| ω > 0

e−
√

2|ω| |x−x′| ω < 0
.

Exercise 6.2. Consider the same system of Exercise 6.1 in which a δ-like potential V̂ =
λδ(x̂), λ > 0, is added to the free Hamiltonian. Use the retarded Dyson equation (6.55) with

ĥR1 (t, t
′) = δ(t− t′)V̂ to show that the new Green’s function is given by

GR(x, x′;ω) = − 1
√

2|ω|







i e i
√

2|ω| |x−x′| + λe i
√

2|ω| ( |x|+|x′| )
√

2|ω|+ iλ
ω > 0

e−
√

2|ω| |x−x′| − λe−
√

2|ω| ( |x|+|x′| )
√

2|ω|+ λ
ω < 0

.

How does this result change if λ < 0? (Think about the formation of bound states.)

Exercise 6.3. Consider the single-level noninteracting Hamiltonian Ĥ = ǫ d̂†d̂ with eigen-

kets |Ψk〉 = (d†)k√
k!
|0〉 and eigenvalues Ek = kǫ. Show that if the average occupation

Tr[ ρ̂ d̂†d̂ ] = n then the density matrix in thermodynamic equilibrium reads

ρ̂ =
e−β(Ĥ−µN̂)

Tr
[

e−β(Ĥ−µN̂)
] =

∑

k

(
n

n±1

)k

|Ψk〉〈Ψk|
∑

k

(
n

n±1

)k
,

where the upper/lower sign applies to bosons/fermions and the sum over k runs between 0
and ∞ in the case of bosons and between 0 and 1 in the case of fermions. We then see

that in fermionic systems ρ̂ is a pure state for n→ 0 or n→ 1 whereas in bosonic systems

ρ̂ is a mixture of states for all values of n 6= 0.

6.3 Interacting Green’s function and

Lehmann representation

In this section we discuss the Green’s function of an interacting system with Hamiltonian
Ĥ(t) = Ĥ constant in time. The Lehmann representation of the n-particle Green’s function
Gn is simply a rewriting of the definition of Gn in which every evolution operator is
expanded over a complete set of eigenstates of Ĥ . The resulting expression is, in general,
rather cumbersome already for the one-particle Green’s function G; for instance in (6.28)
one should expand three evolution operators. Below we consider two special cases. The first
case is the equal-time Green’s function relevant to calculating the time-dependent ensemble
average of any one-body operator. The second case is the one treated in most textbooks
and pertains to systems initially in thermodynamic equilibrium, ĤM = Ĥ − µN̂ .
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6.3. Interacting Green’s function and Lehmann representation 179

6.3.1 Steady-states, persistent oscillations,
initial-state dependence

The most general form of the equal-time G< of a system with Hamiltonian Ĥ(t) = Ĥ is
given in (6.28) with t′ = t. Let us expand the evolution operators over a complete set of
eigenstates of Ĥ . The Hamiltonian Ĥ can have both discrete eigenkets |Ψl〉 with energy
El and continuous eigenkets |Ψα〉 with energy Eα. We normalize the former according to
〈Ψl|Ψl′〉 = δll′ and the latter according to 〈Ψα|Ψα′〉 = δ(α−α′), so that the completeness
relation reads

1̂ =
∑

l

|Ψl〉〈Ψl|+
∫

dα |Ψα〉〈Ψα|.

It is convenient to define the label a that runs over both discrete, a = l, and continuous,
a = α, eigenstates and use the short-hand notation 1̂ =

∫
da |Ψa〉〈Ψa|. Inserting in (6.28)

the completeness relation twice we obtain the Lehmann representation of the equal-time
G<,

G<
ji(t, t) =

∫

dada′ ei(Ea−Ea′ )tfji(a, a
′), (6.60)

with

fji(a, a
′) = ∓i〈Ψa′ |ρ̂|Ψa〉〈Ψa|d̂†i d̂j |Ψa′〉e−i(Ea−Ea′ )t0 = −f∗ij(a′, a)

and ρ̂ =
∑

k ρk|Ψk〉〈Ψk| the initial density matrix. No further analytic manipulations can
be performed for finite times t; this is why we stated before that the Lehmann representation
is a simple rewriting. Simplifications, however, do occur if we consider the limit of long
times, a limit which is relevant in several contexts of physics and especially of modern
physics like, e.g., quantum transport or ultracold gases. In these contexts one is interested
in studying the relaxation of a system which is either prepared in an excited configuration
or is perturbed by a time-independent driving field. This kind of relaxation has nothing to
do with the relaxation discussed in Section 6.1.3 and illustrated in Fig. 6.2. There we were
adding or removing a particle, here we are disturbing the system with external fields without
altering the number of particles. There the relaxation pertained to the behavior of G<(t, t′)
for large |t− t′|, here it pertains to the behavior of G<(t, t) for t much larger than the time
at which the external field is switched on. In order not to mix these two di�erent concepts
we refer to this new relaxation as the thermalization.

Splitting the integrals over a and a′ into a sum over discrete states and an inte-
gral over continuum states, (6.60) yields three di�erent kinds of contribution: discrete–
discrete, discrete–continuum, and continuum–continuum. The generic term of the discrete–
continuum contribution reads

∫

dα
[

ei(El−Eα)tfji(l, α)− e−i(El−Eα)tf∗ij(l, α)
]

=

∫
dω

2π

[

ei(El−ω)tf̃ji(l, ω)− e−i(El−ω)tf̃∗ij(l, ω)
]

,

where on the r.h.s. we have converted the integral over α into an integral over energy
using the same trick as in (6.33): f̃ji(l, ω) =

∫
dα 2πδ(ω − Eα)fji(l, α). In most physical
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180 6. One-particle Green’s function

situations the quantity f̃ji(l, ω) is an integrable function of ω and we can invoke the
Riemann–Lebesgue theorem to assert that the discrete–continuum contribution vanishes
when t→∞ [see discussion below (6.32)]. Then we have

lim
t→∞

G<
ji(t, t) = lim

t→∞

∑

ll′

ei(El−El′ )tfji(l, l
′)

+ lim
t→∞

∫

dαdα′ ei(Eα−Eα′ )tfji(α, α
′). (6.61)

The discrete–discrete contribution gives rise to persistent oscillations whose amplitude de-
pends on how the system is initially prepared. The analysis of the continuum–continuum
contribution requires a preliminary discussion on the possible mathematical structure of
fji(α, α

′). By definition

fji(α, α
′) = ∓i 〈Ψα′ |ρ̂ |Ψα〉〈Ψα|d̂†i d̂j |Ψα′〉e−i(Eα−Eα′ )t0 .

If ĤM commutes with Ĥ (as in the case of thermodynamic equilibrium) then we can choose
the |Ψα〉 to be also eigenkets of ĤM and hence of ρ̂ with eigenvalues ρα, and the above
formula simplifies to

fji(α, α
′) = ∓i δ(α− α′)ρα〈Ψα|d̂†i d̂j |Ψα〉.

This example tells us that the quantity fji(α, α
′) can be singular for α = α′. In general,

fji(α, α
′) can have di�erent kinds of singularity (not necessarily a δ-function). Here we only

discuss δ-like singularities; the interested reader can work out more general cases. We then
assume the following structure:

fji(α, α
′) = fδji(α)δ(α− α′) + fnsji (α, α

′),

with fns a nonsingular function. Inserting this fji into (6.61) and invoking one more time
the Riemann–Lebesgue theorem to prove that the term with fns vanishes, we arrive at the
very elegant result

lim
t→∞

G<
ji(t, t) = lim

t→∞

∑

ll′

ei(El−El′ )tfji(l, l
′) +

∫

dαfδji(α). (6.62)

The physics behind (6.62) is that a perfect destructive interference takes place for states with
|Eα−Eα′ | & 1/t (Riemann–Lebesgue theorem), and the continuum–continuum contribution
becomes time-independent for large t. We refer to this mechanism as the dephasing and
we call the continuum–continuum contribution the steady-state value. Mathematically it is
the dephasing that leads to thermalization.

At this point a natural question arises: how sensitive is the steady-state value to variations
of the initial preparation? The answer is relevant to understanding to what extent the
system remembers its initial state after the thermalization. The dependence of fδ on the
initial state is all contained in the matrix elements 〈Ψα|ρ̂|Ψα〉. We could speculate that if
ĤM → ĤM + L̂ with L̂ a “local” perturbation, then the singular part fδ does not change
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6.3. Interacting Green’s function and Lehmann representation 181

Figure 6.5 (a) The model described by the Hamiltonian (6.64). (b) Distribution of the single-
particle eigenvalues of Ĥ .

since L̂ can change the average

〈Ψα|ρ̂|Ψα〉 =
〈Ψα|e−β(Ĥ

M+L̂)|Ψα〉
Tr
[

e−β(ĤM+L̂)
] =

〈Ψα|e−βĤ
M |Ψα〉

Tr
[

e−βĤM
] +O(1/V)

only up to a term that scales with the inverse of the system volume V. Vice versa, we
would expect that a “global” perturbation Ĝ, ĤM → ĤM + Ĝ, a�ects fδ and hence the
steady-state value. Below we discuss two examples with the aim of rendering these intuitive
arguments more quantitative. In both examples we take Ĥ =

∑

λ ǫλĉ
†
λcλ as noninteracting

so that G<
ji(t, t) simplifies to [see (6.30)]

G<
ji(t, t) =

∑

λλ′

ei(ǫλ−ǫλ′ )t
(

〈j|λ′〉G<
λ′λ(t0, t0)〈λ|i〉 e−i(ǫλ−ǫλ′ )t0

)

︸ ︷︷ ︸

fji(λ,λ′)

. (6.63)

Local perturbations: Let us introduce an extension of the Fano model which will be
useful also for later purposes. The model consists of a two-level system (molecule) coupled
to a metal and is described by the Hamiltonian

Ĥ =

N∑

k=0

ǫkd̂
†
kd̂k

︸ ︷︷ ︸

metal

+ ǫ0
∑

i=a,b

d̂†i d̂i + T0(d̂
†
ad̂b + d̂†bd̂a)

︸ ︷︷ ︸

molecule

+

N∑

k=0

Tk(d̂
†
kd̂b + d̂†bd̂k)

︸ ︷︷ ︸

coupling

, (6.64)

where the d̂-operators are fermionic operators. A schematic illustration of the model is
shown in Fig. 6.5(a). We take the energies ǫk of the metal to be equally spaced between 0

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:06:05 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.008

Cambridge Books Online © Cambridge University Press, 2015



182 6. One-particle Green’s function

and E, ǫk = (k/N)E, k = 1, . . . , N , and the couplings Tk = T/
√
N independent of k.13

In Fig. 6.5(b) we show the distribution of the single-particle eigenvalues ǫλ for ǫ0 = −E,
T0 = −E/4, T = −E/8 and N = 200; there are two discrete (bound-state) energies below
zero and, as expected, a very dense distribution in the region of the metallic spectrum.
When N → ∞ the bound-state energies converge to a value close to the value displayed
in the figure and the remaining energies form a continuum between 0 and E. Labeling the
bound-state energies with λ = 1, 2 we can isolate the discrete–discrete contribution from
the sum in (6.63),

G<
ji(t, t) =

2∑

λλ′=1

ei(ǫλ−ǫλ′ )tfji(λ, λ
′) + δG<

ji(t, t), (6.65)

where δG< contains the discrete–continuum part as well as the continuum–continuum
part. In the first term of this expression the sum over λ = λ′ yields a time-independent
contribution that carries information on the initial state, whereas the sum over λ 6= λ′ is
responsible for persistent oscillations whose amplitude depends on the initial state but whose
frequency depends only on the parameters of Ĥ ; the frequency is therefore insensitive to
a change of the initial configuration. The second term in (6.65) should instead approach a
constant in the limit t→∞. Below we solve the model numerically, check the correctness
of our predictions and address the issue whether limt→∞ δG<(t, t) depends on the initial
state or not.

We prepare the system in the ground state (β →∞) of the operator ĤM. The quantities
β and ĤM specify the initial preparation of the system through the relation with the density

matrix ρ̂ = e−βĤ
M

/Z . Below we consider ĤM = Ĥ −µN̂ with Ĥ identical to (6.64) but ǫ0
is replaced by ǫM0 .14 We choose ǫM0 larger than ǫ0 and set the Fermi energy µ = ǫF = E/4.
Figure 6.6(a) shows the time-dependent occupation nb(t) = −iG<

bb(t, t) of the b molecular
site for ǫM0 = −(1/4)E and ǫM0 = −(4/10)E (we recall that ǫ0 = −E). The calculations
have been performed with a large but finite N . The results agree with the N → ∞ limit
up to a time tmax ∼ N/E; for t > tmax the dephasing is no longer e�ective. As expected,
the initial occupation nb(0) is larger for the more attractive ǫM0 . After some transient time
we observe the development of persistent oscillations whose frequency is the same for both
initial states and is given by |ǫ1 − ǫ2|, with ǫ1, ǫ2 the bound-state energies appearing in
(6.65). On the contrary, the amplitude of the oscillations as well as the average value of the
occupation depends on the initial state [55]. In accordance with (6.65), the average value of
the occupation when t→∞ is given by

n∞b = lim
t→∞

1

t

∫ t

0

dt′ nb(t
′) = −i

2∑

λ=1

fbb(λ, λ) + lim
t→∞

−iδG<
bb(t, t)

︸ ︷︷ ︸

δnb(t)

.

13To have a sensible limit when N →∞ the couplings must scale as 1/
√
N , see (2.19).

14This physical situation is identical to the situation in which the system is in thermodynamic equilibrium at zero
temperature with an initial potential on the molecule given by ǫM0 , and then it is driven out of equilibrium by the
sudden switch-on of an external potential δǫ0 = ǫ0 − ǫM0 on the molecule, see also discussion above (6.28).
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6.3. Interacting Green’s function and Lehmann representation 183

Figure 6.6 (a) Time-dependent occupation of the b molecular site, and (b) the same quantity
from which the discrete–discrete contribution has been subtracted. The system is initially in
the ground state of the Hamiltonian (6.64) with ǫ0 → ǫM0 . The curves refer to ǫM0 = −(1/4)E
(solid) and ǫM0 = −(4/10)E (dashed). The rest of the parameters are ǫ0 = −E, T0 = −E/4,
T = −E/8, Fermi energy µ = ǫF = E/4, and N = 200.

In order to disentangle the initial-state dependence in n∞b we display δnb(t) in Fig. 6.6(b). In
both cases δnb(t) approaches the same steady-state value, i.e., the continuum–continuum
contribution is insensitive to how the system is prepared. This fact agrees with the intuitive
picture discussed before: the two Hamiltonians ĤM di�er by a local perturbation of the
form L̂ = δǫM0

∑

i=a,b d̂
†
i d̂i and hence the bulk (metallic) averages of the initial density

matrix are independent of the value of δǫM0 . Having an explicit example we can also provide
a formal proof. The steady-state value of δnb(t) is given by the singular part of fbb(λ, λ

′)
with λ, λ′ the labels of two continuum eigenstates. The quantity fbb(λ, λ

′) is defined in
(6.63) and the dependence on the initial state is all contained in G<

λλ′(t0, t0) = GM
λλ′(τ, τ+),

see (6.27). We can calculate GM
λλ′ by taking the zero-temperature limit, β → ∞, of (6.41)

where
ĥM = ĥ− µ1̂ + L̂, L̂ = (ǫM0 − ǫ0)

∑

i=a,b

|i〉〈i|,

and ĥ is the single-particle Hamiltonian at positive times. Using the, by now, familiar identity

1

ωm − ĥM
=

1

(ωm + µ)− ĥ

[

1̂ + L̂ 1

ωm − ĥM

]

,

we find

GM
λλ′(τ, τ+) = lim

β→∞

1

−iβ
∞∑

m=−∞

eηωm

(ωm + µ)− ǫλ

[

δ(λ− λ′) + 〈λ|L̂ 1

ωm − ĥM
|λ′〉
]

.
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184 6. One-particle Green’s function

Figure 6.7 (a) Representation of a system consisting of two coupled rings. (b) Time-
dependent occupation for two di�erent initial values of the transverse coupling TM

⊥ /T‖ =
0.7, 1.1. The rest of the parameters are (in units of T‖) ǫ = 2, T⊥ = 1, Fermi energy ǫF = 0
and N = 1000.

The first term in the square bracket is singular and independent of ǫM0 . The second term is
instead a smooth function of λ and λ′ since the overlap 〈λ|i = a, b〉 between a continuum
state and a localized state is a smooth function of λ.

Global perturbations: The system of Fig. 6.7(a) belongs to the class of systems that can
be diagonalized exactly using the Bloch theorem of Section 2.3.1. The unit cell consists of
an up, u, and a down, d, site and the matrices h and T in (2.6) and (2.7) are 2× 2 matrices
with the following structure

h =

(
ǫ T⊥
T⊥ −ǫ

)

, T =

(
T‖ 0
0 −T‖

)

.

It is a simple exercise to show that the eigenvalues of hk = h + Te−ik + T †eik are

ǫk± = ±ǫk with ǫk =
√

(ǫ+ 2T‖ cos k)2 + T 2
⊥ > 0. For rings of N sites k takes the

values k = 2πm/N where, for odd N , m = − (N−1)
2 , . . . , (N−1)2 . In the limit N → ∞

the eigenvalues form two bands separated by a finite energy gap and no discrete states are
present. We denote by |k±〉 the single-particle eigenkets with energy ǫk±. In accordance
with the Bloch theorem, the amplitudes 〈ju|k±〉 and 〈jd|k±〉 on the jth site of the up
and down ring are given by the eigenvectors of hk multiplied by the normalized plane wave
eikj/

√
N . Assuming ǫ ≥ 2|T‖| and T⊥ > 0 the reader can verify that these amplitudes are

(
〈ju|k±〉
〈jd|k±〉

)

=
eikj√
N

1√
2

( √
1± cos θk

±
√
1∓ cos θk

)

, cos θk =
ǫ+ 2T‖ cos k

ǫk
≥ 0, (6.66)

and that the eigenkets are correctly normalized, 〈kν|k′ν′〉 = δkk′δνν′ .
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6.3. Interacting Green’s function and Lehmann representation 185

We intend to study the evolution of the system starting from the ground state of the
same Hamiltonian but with a di�erent T⊥, i.e., T⊥ → TM

⊥ . Let us take the Fermi energy
ǫF = 0 (bottom band fully occupied) and calculate the occupation nju(t) on the jth site of
the upper ring (due to rotational invariance the density does not depend on j). We use the
natural convention that quantities calculated with TM

⊥ instead of T⊥ carry the superscript
“M”. We then have

nju(t) =
∑

k

∣
∣
∣〈ju|e−iĥt|kM−〉

∣
∣
∣

2

︸ ︷︷ ︸

|ϕM
k−(ju,t)|2

=
∑

k

∣
∣
∣
∣
∣

∑

k′ν

e−iǫk′νt〈ju|k′ν〉〈k′ν|kM−〉
∣
∣
∣
∣
∣

2

, (6.67)

since only the eigenkets |kM−〉 with negative energies contribute to the density. The overlap
between |kM−〉 and the eigenkets |kν〉 of Ĥ can be deduced from (6.66),

〈k′ ± |kM−〉 = δkk′

2

[√

(1± cos θk)(1− cos θMk )∓
√

(1∓ cos θk)(1 + cos θMk )

]

.

Inserting this result into (6.67), using (6.66) and recalling that ǫk± = ±ǫk , after some
elementary algebra we arrive at the result below

nju(t) =
1

2N

∑

k

[
(1− cos θMk ) + 2 sin θk sin(θk − θMk ) sin2(ǫkt)

]
,

with sin θk = T⊥/ǫk > 0 and the like for sin θMk . We see that for TM
⊥ = T⊥, and hence

θk = θMk , the second term in the square bracket vanishes and the occupation equals the
ground-state occupation at all times, as it should. In Fig. 6.7(b) we plot nju(t) for two
di�erent initial configurations corresponding to TM

⊥ /T‖ = 0.7 and 1.1, whereas at positive
times T⊥/T‖ = 1. As in the previous example, we use a finite N = 1000 so as to
reproduce the N →∞ results up to times tmax ∼ N/T‖. The occupation exhibits damped
oscillations and eventually attains a steady-state value, in agreement with the fact that there
are no discrete states. The limit n∞ju = limt→∞ nju(t) does, however, depend on TM

⊥ ,
i.e., on the initial state. This behavior should be compared with the behavior of δnb(t) in
Fig. 6.6(b): in that case the value δn∞b was independent of the initial state. This example

confirms our intuitive expectation that if ĤM → ĤM + Ĝ with Ĝ a global perturbation,
then the memory of the initial state is not washed out in the long-time limit.

To conclude, we observe that many interesting physical problems fall into the class of
global perturbations. Later in this book we investigate the quantum transport problem: two
bulk metals connected by a nanoscale junction are initially in equilibrium and then driven
out of equilibrium by the sudden switch-on of a bias. Denoting by Ĥeq the Hamiltonian of

the unperturbed system and by ĤV the bias perturbation we have ĤM = Ĥeq − µN̂ and

Ĥ = Ĥeq + ĤV . We could, however, look at the problem from a di�erent (but equivalent)

perspective: the system is initially prepared in an excited configuration of Ĥ which is
described by ĤM = Ĥ − ĤV − µN̂ . Since the bias is a global perturbation we expect that
the steady-state depends on the initial state, i.e., on the bias.
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186 6. One-particle Green’s function

6.3.2 Fluctuation–dissipation theorem and other
exact properties

Systems prepared in a stationary excited configuration of Ĥ are described by a Matsubara
operator ĤM that commutes with Ĥ , i.e., [ĤM, Ĥ]− = 0. To this class of initial states
belongs the equilibrium state for which ĤM = Ĥ − µN̂ . The eigenkets |Ψk〉 of ĤM in
(6.21) and (6.22) can then be chosen to be also eigenkets of Ĥ with eigenvalue Ek , and the
general formula for the lesser and greater Green’s function simplifies to

G<
ji(t, t

′) = ∓ i
∑

k

ρk〈Ψk|d̂†ie−i(Ĥ−Ek)(t
′−t)d̂j |Ψk〉, (6.68)

G>
ji(t, t

′) = − i
∑

k

ρk〈Ψk|d̂je−i(Ĥ−Ek)(t−t′)d̂†i |Ψk〉. (6.69)

As expected, all matrix elements of Ĝ≶(t, t′) depend only on the di�erence t − t′ and,
therefore, can be Fourier transformed as in (6.47). In Fourier space the relation between

Ĝ≶(ω) and ĜR/A
(ω) is particularly elegant. Using the representation (6.57) of the Heaviside

function we have

ĜR(t, t′) = i

∫
dω

2π

e−iω(t−t′)

ω + iη

∫
dω′

2π
e−iω

′(t−t′)
[

Ĝ>(ω′)− Ĝ<(ω′)
]

,

from which it follows that

ĜR(ω) = i

∫
dω′

2π

Ĝ>(ω′)− Ĝ<(ω′)
ω − ω′ + iη

. (6.70)

For the Fourier transform of the advanced Green’s function we observe that (6.24) implies

ĜA(ω) = [ĜR(ω)]† and hence

ĜA(ω) = i

∫
dω′

2π

Ĝ>(ω′)− Ĝ<(ω′)
ω − ω′ − iη

, (6.71)

where we take into account that the operator i[Ĝ>(ω′)− Ĝ<(ω′)] is self-adjoint, see (6.23).
Going back to (6.68) and (6.69) we expand the evolution operator over a complete set of

eigenstates of Ĥ and obtain the Lehmann representation

G<
ji(t, t

′) = ∓ i
∑

pk

ρk Φ
∗
pk(i)Φpk(j)e

−i(Ep−Ek)(t
′−t) (6.72)

G>
ji(t, t

′) = − i
∑

pk

ρk Φkp(j)Φ
∗
kp(i)e

−i(Ep−Ek)(t−t′) (6.73)

where we define the amplitudes

Φkp(i) = 〈Ψk|d̂i|Ψp〉. (6.74)
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6.3. Interacting Green’s function and Lehmann representation 187

For these amplitudes to be di�erent from zero, |Ψp〉 must contain one particle more than
|Ψk〉. To gain some insight into the physical meaning of the Φkp let us consider a noninter-

acting Hamiltonian Ĥ =
∑

λ ĉ
†
λĉλ. Then, the generic eigenket with N particles is

|Ψk〉 = ĉ†λ1
. . . ĉ†λN

|0〉,

and the only nonvanishing amplitudes are those with |Ψp〉 = ĉ†λ|Ψk〉, i.e., |Ψp〉 must be an
eigenket with N + 1 particles, N of which are in the energy levels λ1, . . . , λN . In this case

Φkp(i) = 〈Ψk|d̂iĉ†λ|Ψk〉 = Cϕλ(i)

is proportional to the wavefunction of the λth single-particle eigenstate;15 in particular, if
d̂i is the field operator ψ̂(x) then Φkp(x) = Cϕλ(x). In interacting systems the Φkp

cannot be identified with a single-particle eigenfunction. Nevertheless, they satisfy a single-
particle Schrödinger-like equation that we now derive. Let Ĥ =

∑

ij hij d̂
†
i d̂j + Ĥint be the

Hamiltonian of the interacting system and consider the sandwich of the commutator

[

d̂i, Ĥ
]

−
=
∑

j

hij d̂j +
[

d̂i, Ĥint

]

−

with the states 〈Ψk| and |Ψp〉. Taking into account the definition (6.74) we find

∑

j

hijΦkp(j) +
∑

q

[Φkq(i)Iqp − IkqΦqp(i)] = (Ep − Ek)Φkp(i),

where
Iqp = 〈Ψq|Ĥint|Ψp〉.

For Ĥint = 0 the single-particle Schrödinger-like equation is solved by Ep − Ek = ǫλ and
Φkp(i) = ϕλ(i), in agreement with the discussion above. In the general case we refer to
the Φkp(i) as the quasi-particle wavefunctions.

From (6.72) and (6.73) we can immediately read the Fourier transform of the lesser and
greater Green’s functions

G<
ji(ω) = ∓ 2πi

∑

pk

ρk Φ
∗
pk(i)Φpk(j)δ(ω − Ek + Ep) (6.75)

G>
ji(ω) = − 2πi

∑

pk

ρk Φkp(j)Φ
∗
kp(i)δ(ω − Ep + Ek) (6.76)

The diagonal elements of iG≶ have a well defined sign for all frequencies ω:

iG>
jj(ω) ≥ 0, iG<

jj(ω)
≥ 0 for bosons

≤ 0 for fermions
. (6.77)

15The constant of proportionality C is 1 for fermions and nλ! for bosons, where nλ is the number of bosons
in the λth energy level, see Chapter 1.
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188 6. One-particle Green’s function

Substituting these results into (6.70) and (6.71) we find

G
R/A
ji (ω) =

∑

pk

Φkp(j)Φ
∗
kp(i)

ω − Ep + Ek ± iη
[ ρk ∓ ρp ] (6.78)

where in G< we renamed the summation indices k ↔ p. We see that the Fourier transform
of the retarded Green’s function is analytic in the upper half of the complex ω plane whereas
the Fourier transform of the advanced Green’s function is analytic in the lower half of the
complex ω plane, in agreement with the results of Section 6.2.3.

The Fourier transforms can be used to derive an important result for systems in thermo-
dynamic equilibrium, ĤM = Ĥ − µN̂ . In this case

ρk =
e−β(Ek−µNk)

Tr
[

e−β(Ĥ−µN̂)
] = e−β(Ek−Ep)+βµ(Nk−Np)ρp,

with Nk the number of particles in the state |Ψk〉. Substituting this result into G>, renaming
the summation indices k ↔ p and taking into account that the only nonvanishing Φkp are
those for which Nk −Np = −1, we find

Ĝ>(ω) = ±eβ(ω−µ)Ĝ<(ω) (6.79)

Next we recall that by the very same definition of retarded/advanced functions

Ĝ>(ω)− Ĝ<(ω) = ĜR(ω)− ĜA(ω).

The combination of these last two identities leads to the fluctuation–dissipation theorem

Ĝ<(ω) = ±f(ω − µ)[ĜR(ω)− ĜA(ω)] (6.80)

Ĝ>(ω) = f̄(ω − µ)[ĜR(ω)− ĜA(ω)] (6.81)

which was previously demonstrated only for noninteracting particles. There also exists
another way of deriving (6.79) and hence the fluctuation–dissipation theorem. By definition
the left Green’s function is

G
⌈
ji(τ, t

′)=−i
∑

k

ρk〈Ψk|ei(Ĥ−µN̂)(−iτ)d̂je
−i(Ĥ−µN̂)(−iτ)

︸ ︷︷ ︸

d̂j,H(t0−iτ)

eiĤ(t′−t0)d̂†ie
−iĤ(t′−t0)

︸ ︷︷ ︸

d̂†
i,H(t′)

|Ψk〉,

= −ieµτ
∑

k

ρk〈Ψk|d̂je−i(Ĥ−Ek)(t0−iτ−t′)d̂†i |Ψk〉,

and comparing this result with (6.69) we conclude that

Ĝ⌈(τ, t′) = eµτ Ĝ>(t0 − iτ, t′).
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6.3. Interacting Green’s function and Lehmann representation 189

A similar relation can be derived for the lesser and right Green’s function

Ĝ⌉(t, τ) = e−µτ Ĝ<(t, t0 − iτ).

Combining these results with the KMS relations we find

Ĝ<(t0, t′) = Ĝ(t0−, t′+)
= ± Ĝ(t0 − iβ, t′+)

= ±Ĝ⌈(β, t′)
= ±eµβĜ>(t0 − iβ, t′).

Taking the Fourier transform of both sides, we recover (6.79).
For systems in thermodynamic equilibrium we can also derive an important relation

between the Matsubara Green’s function and the retarded/advanced Green’s function. The
starting point is the formula (6.13). Expanding the exponentials in a complete set of eigen-
states of ĤM = Ĥ − µN̂ we find

GM
ji(τ1,τ2)=

1

i

∑

kp

ρp

[

θ(τ1 − τ2)eβ(E
M
p −EM

k )± θ(τ2 − τ1)
]

e−(τ1−τ2)(E
M
p −EM

k )Φkp(j)Φ
∗
kp(i),

where EM
p = Ep − µNp. To obtain this result we have simply renamed the summation

indices k ↔ p in the first term and used the fact that ρk = eβ(E
M
p −EM

k )ρp. In Section 6.2.1
we proved the identity (recall that f̄(E) = eβEf(E))

1

−iβ
∞∑

m=−∞

e−ωmτ

ωm − E
=

1

i

[
θ(τ)eβE ± θ(−τ)

]
f(E)e−τE .

The r.h.s. of this equation has precisely the same structure appearing in GM. Therefore we
can rewrite the Matsubara Green’s function as

GM
ji(τ1, τ2) =

1

−iβ
∞∑

m=−∞
e−ωm(τ1−τ2)

∑

kp

ρp
f(EM

p − EM
k )

Φkp(j)Φ
∗
kp(i)

ωm − EM
p + EM

k
︸ ︷︷ ︸

GM
ji(ωm)

.

Let us manipulate this formula. We have

ρp
f(EM

p − EM
k )

= ρp

(

eβ(E
M
p −EM

k ) ∓ 1
)

= ρk ∓ ρp.

Furthermore, the only nonvanishing terms in the sum over p and k are those for which
Np −Nk = 1 and hence

EM
p − EM

k = Ep − Ek − µ(Np −Nk) = Ep − Ek − µ.
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190 6. One-particle Green’s function

Inserting these results into the formula for GM we find

GM
ji(ωm) =

∑

kp

Φkp(j)Φ
∗
kp(i)

ωm + µ− Ep + Ek
[ ρk ∓ ρp ]

and a comparison with (6.78) leads to the important relation

ĜM(ζ) =

{

ĜR(ζ + µ) for Im[ζ] > 0

ĜA(ζ + µ) for Im[ζ] < 0
. (6.82)

Thus ĜM(ζ) is analytic everywhere except along the real axis where it can have poles
or branch points. The reader can easily check that (6.82) agrees with the formulas (6.18)
and (6.58), (6.59) for noninteracting Green’s functions. In particular (6.82) implies that for
ζ = ω ± iη

ĜM(ω ± iη) = ĜR/A
(ω + µ) (6.83)

according to which ĜM has a discontinuity given by the di�erence ĜR − ĜA when the
complex frequency crosses the real axis.

6.3.3 Spectral function and probability interpretation

The Lehmann representation (6.72) and (6.73) simplifies further for systems that are initially
in a pure state and hence ρ̂ = |ΨN,0〉〈ΨN,0|. In the discussion that follows the eigenstate

|ΨN,0〉 with eigenenergy EN,0 can be either the ground state or an excited state of Ĥ with

N particles. We denote by |ΨN±1,m〉 the eigenstates of Ĥ with N ± 1 particles and define
the quasi-particle wavefunctions Pm and the quasi-hole wavefunctions Qm according to

Pm(i) = 〈ΨN,0|d̂i|ΨN+1,m〉, Qm(i) = 〈ΨN−1,m|d̂i|ΨN,0〉. (6.84)

Then, the lesser and greater Green’s functions become

G<
ji(t, t

′) = ∓ i
∑

m

Qm(j)Q∗m(i)e−i(EN−1,m−EN,0)(t
′−t), (6.85)

G>
ji(t, t

′) = − i
∑

m

Pm(j)P ∗m(i)e−i(EN+1,m−EN,0)(t−t′), (6.86)

where EN±1,m is the energy eigenvalue of |ΨN±1,m〉. From (6.85) we see that the probability
amplitude analyzed in Fig. 6.2 can be written as the sum of oscillatory functions whose
frequency (EN,0−EN−1,m) corresponds to a possible ionization energy (also called removal
energy) of the system. Similarly, the probability amplitude (described by G>) that by adding
a particle with quantum number i at time t′ and then evolving until t we find the same state
as evolving until t and then adding a particle with quantum number j, can be written as the
sum of oscillatory functions whose frequency (EN+1,m − EN,0) corresponds to a possible
a�nity (also called addition energy) of the system.
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6.3. Interacting Green’s function and Lehmann representation 191

It is especially interesting to look at the Fourier transforms of these functions:

G<
ji(ω) = ∓2πi

∑

m

Qm(j)Q∗m(i) δ(ω − [EN,0 − EN−1,m]) (6.87)

G>
ji(ω) = −2πi

∑

m

Pm(j)P ∗m(i) δ(ω − [EN+1,m − EN,0]) (6.88)

The Fourier transform of G< is peaked at the removal energies whereas the Fourier transform
of G> is peaked at the addition energies. We can say that by removing (adding) a particle
the system gets excited in a combination of eigenstates with one particle less (one particle

more). In noninteracting systems the matrix elements G
≶
λλ′(ω) in the basis that diagonalizes

ĥ can be extracted from (6.48) and (6.49) and read

G<
λλ′(ω) = ∓δλλ′2πif(ǫMλ )δ(ω − ǫλ), G>

λλ′(ω) = −δλλ′2πif̄(ǫMλ )δ(ω − ǫλ).
Thus, the removal (addition) of a particle with quantum number λ excites the system in only
one way since the lesser (greater) Green’s function is peaked at the removal (addition) energy
ǫλ and is zero otherwise. This property reflects the fact that in a noninteracting system there
exist stationary single-particle states, i.e., states in which the particle is not scattered by any
other particle and hence its energy is well defined or, equivalently, its life-time is infinitely
long. Instead the removal (addition) of a particle with quantum numbers other than λ does
not generate an excitation with a well-defined energy, and the matrix elements G<

ji (G>
ji)

exhibit peaks at all possible energies ǫλ with weights proportional to the product of overlaps
〈j|λ〉〈λ|i〉. Interacting systems behave in a similar way since there exist no good single-
particle quantum numbers; a particle scatters with all the other particles and its energy
cannot be sharply defined. It would be useful to construct a frequency-dependent operator
Â(ω) whose average Ajj(ω) = 〈j|Â(ω)|j〉 contains information about the probability for
an added/removed particle with quantum number j to have energy ω. From the above
discussion a natural proposal for this operator is

Â(ω) = i [Ĝ>(ω)− Ĝ<(ω)] = i [ĜR(ω)− ĜA(ω)] (6.89)

In noninteracting systems16 we have Â(ω) = 2πδ(ω − ĥ) and hence

Ajj(ω) = 2π
∑

λ

|〈j|λ〉|2δ(ω − ǫλ) ≥ 0. (6.90)

The standard interpretation of this result is that the probability for a particle with quantum
number j to have energy ω is zero unless ω is one of the single-particle energies, in which
case the probability is proportional to |〈j|λ〉|2. This interpretation is sound also for another
reason. The probability that the particle has energy ω in the range (−∞,∞) should be 1
for any j, and indeed from (6.90) we have

∫
dω

2π
Ajj(ω) =

∑

λ

|〈j|λ〉|2 = 1.

16See also the discussion in Section 2.3.2.
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192 6. One-particle Green’s function

Furthermore, the sum over the complete set j of Ajj(ω) should correspond to the density
of states with energy ω and indeed

D(ω) =
∑

j

Ajj(ω) = 2π
∑

λ

δ(ω − ǫλ),

which agrees with (6.34). A suitable name for the operator Â(ω) is spectral function operator,
since it contains information on the energy spectrum of a single particle. The spectral
function is a very useful mathematical quantity but the above probabilistic interpretation is
questionable. Is Ajj(ω) the probability that a removed particle or an added particle with
quantum number j has energy ω? Are we sure that Ajj(ω) ≥ 0 also in the interacting case?

In the interacting case the matrix element Ajj(ω) can be derived from (6.87) and (6.88)
and reads

Ajj(ω) = 2π

[
∑

m

|Pm(j)|2δ(ω − [EN+1,m − EN,0])

∓
∑

m

|Qm(j)|2δ(ω − [EN,0 − EN−1,m])

]

. (6.91)

A comparison with (6.90) shows how natural it is to interpret the functions Pm and Qm

as quasi-particle and quasi-hole wavefunctions. In fermionic systems Ajj(ω) ≥ 0 but in
bosonic systems Ajj(ω) can be negative since the second term on the r.h.s. of (6.91) is
nonpositive. For instance one can show that the spectral function of the bosonic Hubbard
model is negative for some ωs [56, 57], see also Exercise 6.8. As we see in the next section,
the particle and hole contributions to A(ω) can be measured separately and therefore the
quantities iG>(ω) > 0 and ±iG<(ω) > 0, see (6.77), are more fundamental than A(ω).
Even though these quantities do not integrate to unity we can always normalize them and
interpret iG>(ω) as the probability that an added particle has energy ω and ±iG<(ω) as
the probability that a removed particle has energy ω.

Despite the nonpositivity of the bosonic spectral function the normalization condition is
fulfilled for both fermions and bosons. Upon integration of (6.91) over ω we end up with the
sums

∑

m |Pm(j)|2 and
∑

m |Qm(j)|2. From the definitions (6.84) it is easy to see that

∑

m

|Pm(j)|2 = 〈ΦN,0|d̂j d̂†j |ΦN,0〉,
∑

m

|Qm(j)|2 = 〈ΦN,0|d̂†j d̂j |ΦN,0〉,

and hence ∫
dω

2π
Ajj(ω) = 〈ΦN,0|

[

d̂j , d̂
†
j

]

∓
|ΦN,0〉 = 1.

More generally, the integral of the matrix elements of the spectral function operator satisfies
the sum rule

∫
dω

2π
Aji(ω) = δji (6.92)

which can be verified similarly. The reader can also derive this result in the position–spin
basis; using the field operators instead of the d̂-operators the matrix elements of Â are
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6.3. Interacting Green’s function and Lehmann representation 193

functions A(x,x′;ω) of the position–spin coordinates, and the r.h.s. of the sum rule (6.92)
is replaced by δ(x− x′).

We have discussed the physical interpretation of Â only for systems in a pure state.
However the definition (6.89) makes sense for any initial configuration such that [ĤM, Ĥ]− =
0, like for instance the equilibrium configuration at finite temperature. In this case G< and
G> are given by (6.75) and (6.76), and the curious reader can easily generalize the previous
discussion as well as check that (6.92) is still satisfied. It is important to stress that for
systems in thermodynamic equilibrium the knowledge of Â is enough to calculate all Keldysh
components of Ĝ with real-time arguments. From (6.70) and (6.71) we have

ĜR(ω) =
∫
dω′

2π

Â(ω′)
ω − ω′ + iη

ĜA(ω) =
∫
dω′

2π

Â(ω′)
ω − ω′ − iη

(6.93)

and from the fluctuation–dissipation theorem (6.80) and (6.81)

Ĝ<(ω) = ∓if(ω − µ)Â(ω) Ĝ>(ω) = −if̄(ω − µ)Â(ω) (6.94)

In a zero temperature fermionic system the function f(ω − µ) = θ(µ − ω) and hence the
spectral function has peaks only at the addition energies for ω > µ and peaks only at the
removal energies for ω < µ . This nice separation is not possible at finite temperature. We
further observe that if we write the retarded/advanced Green’s functions as the sum of a
Hermitian and anti-Hermitean quantity:

ĜR/A
(ω) = Ĉ(ω)∓ i

2
Â(ω),

then (6.93) implies that Ĉ and Â are connected by a Hilbert transformation, similarly to the
real and imaginary part of the embedding self-energy in (2.26). As we see, this is a general
property of several many-body quantities.

Finally, we point out that the shape of the spectral function can be used to predict the
time-dependent behavior of the Green’s function and vice versa. If a matrix element of
the spectral function has δ-like peaks, like the Aλλ(ω) = 2πδ(ω − ǫλ) of a noninteracting
system or like the Aji(ω) of a finite system, then the corresponding matrix element of the
Green’s function oscillates in time. As already discussed in Section 6.1.3, for the Green’s

function G
≶
ji(t, t

′) to decay with |t − t′| the quantum numbers j and i must be coupled
to infinitely many degrees of freedom. This occurs both in macroscopic noninteracting
systems, if j and i are not good quantum numbers (e.g., |j〉 = |ǫ0〉 in the Fano model), or in
macroscopic interacting systems. The e�ect of the coupling is to broaden the δ-like peaks,
thus giving a finite lifetime to (almost) every single-particle excitation. This can be seen
in (6.90) (for noninteracting systems) and (6.91) (for interacting systems); Ajj(ω) becomes
a continuous function of ω since the sum over discrete states becomes an integral over a
continuum of states. The transition from sharp δ-like peaks to a continuous function often
generates some consternation. In Appendix I we show that there is nothing mysterious in
this transition. Our first example of a continuous, broadened spectral function has been the
Lorentzian A00(ω) of the Fano model, see Fig. 2.8. In the next section we discuss a second
instructive example in which the broadening is induced by the interaction.
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194 6. One-particle Green’s function

Figure 6.8 A photoemission experiment. After absorption of the photon γ of energy ω0 the
system is left in an excited state formed by the photoelectron and N − 1 electrons in the
sth excited state.

6.3.4 Photoemission experiments and interaction e�ects

At the moment the spectral function is a pure mathematical object providing information
on the underlying physical system (we have seen that it has δ-like peaks at the removal and
addition energies). Can we also relate it to some measurable quantity? In this section we
show that the spectral function can be measured with a photoemission experiment.

Let us start by considering a system of electrons (fermionic system). A photoemission
experiment consists in irradiating the system with light of frequency ω0 > 0 and then
measuring the number of ejected electrons (or photoelectrons) with energy ǫ, see Fig. 6.8.
Without loss of generality we can set the threshold of the continuum (scattering) states
to zero so that ǫ > 0. Due to energy conservation, EN,0 + ω0 = EN−1,s + ǫ where
EN,0 is the energy of the initially unperturbed system with N particles and EN−1,s is the
energy of the sth excited state in which the system is left after the photoelectron has been
kicked out.17 Clearly, if the frequency ω0 is smaller than EN−1,0 − EN,0, with EN−1,0
the ground-state energy of the system with N − 1 particles, no electron will be ejected.
Let us develop a simple theory to calculate the result of a photoemission experiment.
The electromagnetic field is described by a monochromatic vector potential A(r, t) =
A(r)eiω0t + A∗(r)e−iω0t. Experimentally one observes that the photocurrent (number of
ejected electrons per unit time) is proportional to the intensity of the electromagnetic field,
and hence we can discard the A2 term appearing in the single-particle Hamiltonian (3.1). The
time-dependent perturbation which couples the light to the electrons is then proportional
to p̂ ·A(r̂, t) +A(r̂, t) · p̂. Expanding the field operators over some convenient basis the
most general form of this perturbation in second quantization reads

Ĥl−e(t) =
∑

ij

(hije
iω0t + h∗ije

−iω0t)d̂†i d̂j .

According to the Fermi Golden rule18 the probability per unit time of the transition from the
initial state |ΨN,0〉 with energy EN,0 to an excited state |ΨN,m〉 with energy EN,m is given

17Even though in most experiments the system is initially in its ground state our treatment is applicable also to
situations in which EN,0 refers to some excited state, read again the beginning of Section 6.3.3.

18In Chapter 14 we present a pedagogical derivation of the Fermi Golden rule and clarify several subtle points.
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6.3. Interacting Green’s function and Lehmann representation 195

by

P0→m = 2π
∣
∣〈ΨN,m|

∑

ij

h∗ij d̂
†
i d̂j |ΨN,0〉

∣
∣
2
δ(ω0 − [EN,m − EN,0]).

The photocurrent Iph(ǫ) with electrons of energy ǫ is proportional to the sum of all the

transition probabilities with excited states |ΨN,m〉 = d̂†ǫ |ΨN−1,s〉. These states describe an
electron outside the system with energy ǫ and N − 1 electrons inside the system in the
sth excited state, see again Fig. 6.8. For energies ǫ su�ciently large the photoelectron does
not feel the presence of the N − 1 electrons left behind and therefore |ΨN,m〉 is simply
obtained by creating the photoelectron over the interacting (N − 1)-particle excited state. If
we restrict ourselves to these kinds of excited state and rename the corresponding transition
probability P0→m = Ps(ǫ) we see that the index i of the perturbation must be equal to ǫ
for Ps(ǫ) not to vanish.19 We then have

Ps(ǫ) = 2π
∣
∣〈ΨN−1,s|

∑

j

h∗ǫj d̂j |ΨN,0〉
∣
∣
2
δ(ω0 − ǫ− [EN−1,s − EN,0]).

Summing over all the excited states of the N − 1 particle system and comparing the result
with (6.87) we obtain

Iph(ǫ) ∝
∑

s

Ps(ǫ) = −i
∑

jj′

h∗ǫjhǫj′G
<
jj′(ǫ− ω0). (6.95)

Thus the photocurrent is proportional to −iG<(ǫ− ω0). If the system is initially in equilib-
rium at zero temperature then EN,0 is the energy of the ground-state, and the photocurrent
is proportional to the spectral function at energies ǫ − ω0 < µ, see the observation below
(6.94).20

In a noninteracting system, Iph(ǫ) 6= 0 provided that ǫ−ω0 is one of the eigenenergies ǫλ
of the occupied single-particle states and the matrix element hǫλ 6= 0. Consider for example
a crystal. Here the quantum number λ = kν , see Section 2.3.1 and also Appendix E, and
due to momentum conservation hǫλ 6= 0 only if k is the di�erence between the momentum
of the incoming photon and the momentum q of the ejected electron. Photoemission
experiments can therefore be used to measure the energy of electrons with a given crystal
momentum, or equivalently the band structure of the crystal, by resolving the photocurrent
in the momentum q of the photoelectron [58]: Iph(ǫ) =

∫
dq Iph(ǫ,q). In the real

world electrons interact with each other but the concept of band structure remains a very
useful concept since the removal of electrons with a given crystal momentum generates one
main excitation with a long lifetime.21 Consequently, the photocurrent Iph(ǫ,q) remains a
peaked function of ǫ for a given q, although the position of the peak is in general di�erent
from that of the “noninteracting crystal.” The development of perturbative methods for
including interaction e�ects in the Green’s function is crucial to improving the results of

19The ground state |ΨN,0〉 does not contain photoelectrons.
20At zero temperature µ = EN,0 − EN−1,0 ≡ I is the ionization potential and therefore Iph(ǫ) = 0 for

ω0 < ǫ− I , as expected.
21In particular, the excitation generated by removal of an electron with momentum on the Fermi surface has an

infinitely long lifetime and hence the corresponding matrix element of the spectral function has a sharp δ-peak,
see also Section 15.5.4.
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196 6. One-particle Green’s function

Figure 6.9 A model system in which a two-level molecule is weakly coupled to a metallic
chain and the electrons in the molecule interact with electrons in the first r atomic sites of
the chain.

a noninteracting treatment, and hence to deepen our understanding of interacting many-
particle systems.

If we had started from a system of bosons we could have gone through the same logical
and mathematical steps as before, to then get the same expression for the photocurrent in
terms of a sum of transition probabilities Ps(ǫ). In the bosonic case, however, the sum over
all s of Ps(ǫ) gives a linear combination of +iG<

jj′(ǫ − ω0). Thus the sign of the bosonic
photocurrent is opposite to the sign of the hole part of Ajj′(ǫ−ω0). This argument provides
a physical explanation of the possible nonpositivity of the bosonic spectral function.

The outcome of a photoemission experiment relates the photocurrent to G< indepen-
dently of the statistics of the particles. To have access to G> we must perform an inverse
photoemission experiment. This experiment consists in directing a beam of particles of
well-defined energy at the sample. The incident particles penetrate the surface and decay
in low-energy unoccupied states by emitting photons. With considerations similar to those
of a photoemission experiment we can develop a simple theory to determine the number
of emitted photons of energy ω0. Not surprisingly the result is proportional to G>. Thus
G> and G< can be separately measured and interpreted. Below we calculate the spectral
function of a molecule adsorbed on a surface, and show that the interparticle interaction
can modify substantially the noninteracting spectral properties.

Let us consider the Hamiltonian (6.64) in which a repulsive interaction between the
electrons is included. For simplicity we treat the electrons as spinless particles since the
qualitative results are independent of spin; the reader can easily extend the analysis by
including the spin degrees of freedom. We model the metal as a one-dimensional chain with
N atomic sites and label with 1 the atom of the metal that is closest to the molecule, see
Fig. 6.9. The repulsion between an electron in the molecule and an electron in the metal is
taken to be a constant U if the electron in the metal lies in one of the first r atomic sites
and zero otherwise

Ĥint = U
( ∑

i=a,b

n̂i

︸ ︷︷ ︸

N̂mol

−1
) (∑

j≤r
n̂j

︸ ︷︷ ︸

N̂r

−N̄r

)
. (6.96)

In this formula 1 and N̄r are the ground-state values of the number of electrons on the
molecule and on the first r atomic sites.22 This form of the interaction guarantees that

22We are therefore implicitly assigning a Fermi energy for which there is only one electron on the molecule. Since
in nature every physical system is charge neutral, our model describes a molecule with an e�ective nuclear charge
equal to 1.
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6.3. Interacting Green’s function and Lehmann representation 197

if the two subsystems are charge neutral then there is no interaction between them. To
avoid unnecessary complications we neglect the interaction between two electrons in the
molecule and between two electrons in the metal; we further assume that the coupling
between the molecule and the metal is very small so that Tk ∼ 0 for all k. The Hamiltonian
that describes the system is then

Ĥ = T

N−1∑

j=1

(d̂†j d̂j+1 + d̂†j+1d̂j)

︸ ︷︷ ︸

Ĥmet

+ ǫ0
∑

i=a,b

d̂†i d̂i + T0(d̂
†
ad̂b + d̂†bd̂a)

︸ ︷︷ ︸

Ĥmol

+Ĥint. (6.97)

A similar Hamiltonian but with Tk 6= 0 was originally introduced by Nozières and De
Dominicis to study X-ray absorption/emission of metals [59]. In this context the discrete levels
do not describe a molecule but the deep core hole left behind by the emitted electron, and
the model is known as the interacting resonant level model. More recently the Hamiltonian
(6.97) has been proposed [60] to illustrate the importance of polarization e�ects in the
renormalization of the quasi-particle levels of molecules on metal surfaces, see also Refs.
[61, 62]. This is the context that we should have in mind in the following analysis.

Our first observation is that the operator N̂mol =
∑

i=a,b d̂
†
i d̂i commutes with Ĥ and

therefore the many-body eigenstates of Ĥ have a well defined number of electrons on the
molecule. We denote by ĉH,L = 1√

2
(d̂a± d̂b) the operators that bring Ĥmol = (ǫH ĉ

†
H ĉH +

ǫLĉ
†
LĉL) into a diagonal form, with the single-particle molecular energies ǫH = ǫ0 − |T0|,

ǫL = ǫ0 + |T0|. Recalling the philosophy behind the idea of working with a finite basis set
(see Section 2.1), these energies should correspond to the most relevant physical states of
the molecule, which are the Highest Occupied Molecular Orbital (HOMO) and the Lowest
Unoccupied Molecular Orbital (LUMO). Hence, the ground state of the system has one
electron on the HOMO level and zero electrons on the LUMO level. The eigenstates of Ĥ
with one electron on the HOMO level can be written as |Ψ〉 = ĉ†H |Ψmet〉, where |Ψmet〉
is a many-body state with no electrons in the molecule, i.e., ĉH |Ψmet〉 = ĉL|Ψmet〉 = |∅〉.
From the eigenvalue equation Ĥ|Ψ〉 = E|Ψ〉 it is easy to see that |Ψmet〉 must satisfy the
equation

Ĥmet|Ψmet〉 = (E − ǫH)|Ψmet〉. (6.98)

The operator Ĥmet =
∑

ij hmet,ij d̂
†
i d̂j is a one-body operator that can be diagonalized in

the usual manner: we find the eigenkets |λ〉 of ĥmet with eigenvalues ǫλ, construct the

operators ĉλ =
∑

j〈λ|j〉 d̂j and rewrite Ĥmet =
∑

λ ǫλĉ
†
λĉλ. Then, the eigenstates of (6.98)

with M electrons have the form |Ψmet〉 = ĉ†λM
. . . ĉ†λ1

|0〉 = |λ1 . . . λM 〉 with eigenvalues
E−ǫH = ǫλ1

+ . . .+ǫλM
. In particular, the ground state |Ψmet,0〉 is obtained by populating

the lowest M energy levels.

Having described the model and its eigenstates we now study the probability AHH(ω)
that an electron on the HOMO level has energy ω. Let us order the single-particle energies
ǫλ of Ĥmet as ǫ1 ≤ ǫ2 ≤ . . . ≤ ǫN . Then, the ground state |Ψ0〉 = ĉ†H |Ψmet,0〉 of Ĥ with
M electrons in the metal has energy E0 = ǫH + ǫ1 + . . . + ǫM . The lesser and greater
components of the Green’s function with ρ̂ = |Ψ0〉〈Ψ0| can be calculated from (6.68) and
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198 6. One-particle Green’s function

(6.69) and read

G<
HH(t, t′) = i 〈Ψ0|ĉ†He−i(Ĥ−E0)(t

′−t)ĉH |Ψ0〉 = i 〈Ψmet,0|e−i(Ĥ
−
met−E0)(t

′−t)|Ψmet,0〉,

(6.99)

with Ĥ−met = Ĥmet − U(N̂r − N̄r), and

G>
HH(t, t′) = −i 〈Ψ0|ĉHe−i(Ĥ−E0)(t−t′)ĉ†H |Ψ0〉 = 0, (6.100)

where in this last equation we take into account that there cannot be two electrons in the
HOMO level due to the Pauli exclusion principle (ĉ†H ĉ

†
H = 0) and hence ĉ†H|Ψ0〉 = 0.23

Taking into account that G>
HH = 0 the spectral function AHH(ω) = −iG<

HH(ω), and from
(6.99) it follows that

AHH(ω) = 2π〈Ψmet,0|δ(ω − E0 + Ĥ−met)|Ψmet,0〉.

For U = 0 (no interaction) |Ψmet,0〉 is an eigenstate of Ĥ−met with eigenvalue E0 − ǫH and
hence AHH(ω) = 2πδ(ω − ǫH), i.e., an electron on the HOMO level has a well-defined
energy and hence an infinitely long lifetime. For U 6= 0 an operative way to calculate
AHH(ω) consists in using the single particle eigenkets |λ−〉 of ĥ−met with eigenvalues ǫ−λ in
order to expand |Ψmet,0〉 as [see (1.59)]

|Ψmet,0〉 =
1

M !

∑

λ1...λM

|λ−1 . . . λ−M 〉〈λ−1 . . . λ−M |Ψmet,0〉.

By construction the M -electron kets |λ−1 . . . λ−M 〉 are eigenstates of Ĥ−met with eigenvalues
ǫ−λ1

+ . . .+ ǫ−λM
+ UN̄r and therefore

AHH(ω) = − 2

M !

∑

λ1...λM

Im
|〈λ−1 . . . λ−M |1 . . .M〉|2

ω − E0 + ǫ−λ1
+ . . .+ ǫ−λM

+ UN̄r + iη
, (6.101)

where we use the identity δ(ω) = − 1
π Im

1
ω+iη and, as usual, the limit η → 0 is understood.

In order to plot AHH(ω) we take a finite but small η so that the sharp δ-peaks become
Lorentzians of width η.

23It is interesting to observe that G<
HH is obtained by evolving in time |Ψmet,0〉 = |1 . . .M〉 with the

Hamiltonian Ĥ−
met and then by taking the overlap with |Ψmet,0〉. Due to the one-body nature of Ĥ−

met =
∑

ij h
−
met,ij d̂

†
i d̂j+UN̄r we have e−iĤ−

mett|1 . . .M〉 = e−iUN̄rt|1(t) . . .M(t)〉, where |λ(t)〉 = e−iĥ−
mett|λ〉

is the time-evolved single-particle ket (since e−iĥ−
mett is unitary then the states |λ(t)〉 form an orthonormal basis

at any time). Then, according to (1.63), G<
HH can also be written as a Slater determinant since

〈1 . . .M |1(t) . . .M(t)〉 =

∣

∣

∣

∣

∣

∣

∣

∣

〈1|1(t)〉 . . . 〈1|M(t)〉
. . . . .
. . . . .

〈M |1(t)〉 . . . 〈M |M(t)〉

∣

∣

∣

∣

∣

∣

∣

∣

−

.
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6.3. Interacting Green’s function and Lehmann representation 199

Figure 6.10 Top-left: Spectral function at filling factor M/N = 1/5, interaction U = 0.5 for
di�erent chain lengths N = 5, 15, 25. The curves for N = 15, 25 are shifted upward.
Top-right: Spectral function with filling factor M/N = 1/5, chain length N = 25 for
di�erent interactions U = 0, 1, 2. The curves for U = 1, 2 are shifted upward. Bottom:
Ground states density of Ĥmet − UN̂r for filling factor M/N = 1/5 and U = 0, 1, 2.
All energies are in units of |T |, the range of the interaction r = 3, and the parameter
η = 0.04.

Let us start our analysis by fixing the interaction parameter U = 0.5, the range r = 3
and the filling factor M/N = 1/5 (average electron density in the metal). In the top-left
panel of Fig. 6.10 we show the spectral function (in logarithmic scale) for di�erent length
chains N . For N = 5 there is only one electron in the metal (M = 1) and we expect
five peaks, in agreement with the bottom curve (even though one peak is hardly visible).
With increasing N the number of peaks grow and already for N = 25 we can anticipate
the N → ∞ behavior: the peaks become denser and denser and eventually merge to
form a continuum. Thus, the probability that an electron on the HOMO level has energy ω
becomes a continuous function of ω. The transition from sharp δ-like peaks at finite N to
a continuous function for N →∞ is addressed in Appendix I. There we show that it is just
a matter of taking the limit N →∞ and η → 0 in the proper order.

The top-right panel of Fig. 6.10 illustrates how the spectral function varies by increasing
the interaction. We are here in the large N limit (N = 25) with a range r = 3 and a filling
factor M/N = 1/5. For U = 0 the spectral function exhibits one single peak, in agreement
with the fact that the HOMO state is, in this case, an eigenstate of Ĥ . With increasing U
the HOMO peak broadens and new structures appear in di�erent spectral regions. This
figure clearly shows the e�ect of the interactions: due to the fact that an electron in the
molecule can scatter with an electron in the metal the energy of a single particle state cannot
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200 6. One-particle Green’s function

be sharply defined. In the figure we also see that the position of the ionization energy24

I = E0−minλ1,...,λM
(ǫ−λ1

+ . . .+ ǫ−λM
)−UN̄r moves to the right as U increases, meaning

that the electron repulsion lowers the ground-state energy of the system without the HOMO
electron. To understand this increase in the ionization energy we show in the bottom panel
of Fig. 6.10 the ground-state electronic density nj of Ĥ−met as a function of the atomic site
j for di�erent values of U . The U = 0 curve can also be seen as the ground-state density
of the chain with the HOMO electron. In the proximity of the molecule (first three sites of
the chain) the ground-state density without the HOMO electron is always larger than that
with the HOMO electron (image charge e�ect). This is due to the fact that by removing an
electron from the HOMO the molecule becomes positively charged and hence electrons in
the metal are attracted by the molecule. Equivalently, we can say that the positive charge
on the molecule induces an attractive potential −UN̂r on the first r sites of the metal.
The surplus of metallic charge binds with the missing HOMO electron (HOMO hole), thereby
lowering the energy of the system with one particle less.

To estimate I we may use the Hellmann–Feynman theorem. Let us define Ĥmet(u) =
Ĥmet+uN̂r with ground state |Ψmet,0(u)〉 and ground energy Emet,0(u). Then the ioniza-
tion energy can be written as

I(U) = ǫH + Emet,0(0)
︸ ︷︷ ︸

E0

−Emet,0(−U)− UN̄r

= ǫH − UN̄r +

∫ 0

−U
du 〈Ψmet,0(u)|

∂Ĥmet(u)

∂u
|Ψmet,0(u)〉

= ǫH − UN̄r +

∫ 0

−U
duNr(u),

where Nr(u) = 〈Ψmet,0(u)|N̂r|Ψmet,0(u)〉 is the quantum average of N̂r over the ground
state with interaction u. Since Nr(−|u|) > Nr(0) = N̄r , the ionization energy increases
with the strength of the repulsion

We could follow the same steps to calculate the spectral function ALL(ω) of the LUMO
level. In this case G<

LL(t, t
′) = 0 while

G>
LL(t, t

′) = −i〈Ψmet,0|e−i(ǫL+ǫH+Ĥ+
met−E0)(t−t′)|Ψmet,0〉,

where Ĥ+
met = Ĥmet + U(N̂r − N̄r) is the metal Hamiltonian with one electron more on

the molecule. Then

ALL(ω) = 2π〈Ψmet,0|δ(ω − ǫL − ǫH − Ĥ+
met + E0)|Ψmet,0〉. (6.102)

As expected ALL(ω) = 2πδ(ω − ǫL) in the noninteracting case (U = 0). In the
interacting case we can calculate the a�nity25 (or removal energy) A(U) using again the

24In our case the ionization energy is the di�erence between the ground-state energy of the system with M + 1
electrons, which is E0, and the ground-state energy of the system with M electrons all in the metal.

25In our case the a�nity is the di�erence between the ground state energy with M + 2 electrons (M of which
are in the metal) and the ground state energy E0 with M + 1 electrons.
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6.3. Interacting Green’s function and Lehmann representation 201

Hellmann–Feynman theorem. Since the ground-state energy of the system with two elec-
trons on the molecule is ǫL + ǫH + Emet,0(U)− UN̄r , we have

A(U) = ǫL + ǫH + Emet,0(U)− UN̄r − E0 = ǫL − UN̄r + Emet,0(U)− Emet,0(0)

= ǫL − UN̄r +

∫ U

0

duNr(u).

For positive u, Nr(u) < N̄r and the a�nity decreases with the strength of the interation. We
can interpret the di�erence A− I as the renormalized gap between the LUMO and HOMO
levels. This di�erence corresponds to the distance between the peaks of ALL + AHH and
equals ǫL − ǫH = 2|T0| for U = 0. Our analysis shows that electron correlations are
responsible for closing the gap between the HOMO and LUMO levels. We come back to the
physical mechanisms behind the reduction of the gap in Section 13.3.1.

Exercise 6.4. Using the results of Exercise 6.2 show that the spectral function A(x, x′;ω) =
i
[
GR(x, x′;ω)−GA(x, x′;ω)

]
of a noninteracting system of particles with single-particle

Hamiltonian ĥ = p̂2/2 + λδ(x̂) is given by

A(x, x′;ω) =
2√
2ω

{

cos(
√
2ω|x− x′|) + λ

2ω + λ2
Im
[

(
√
2ω − iλ)e i

√
2ω ( |x|+|x′| )

]}

for ω > 0 and A(x, x′;ω) = 0 for ω < 0. Show further that A(x, x;ω) ≥ 0.

Exercise 6.5. Consider the spectral function of Exercise 6.4. Use the fluctuation–dissipation

theorem to show that the density n(xσ) = ±i
∫

dω
2πG

<(x, x;ω) for particles in position x
with spin σ is given by

n(xσ) = 2

∫ ∞

0

dq

2π

1

eβ(
q2

2 −µ) ∓ 1

{

1 + λ
q sin(2q|x|)− λ cos(2q|x|)

q2 + λ2

}

.

Further show that

lim
x→±∞

n(xσ) =

∫ ∞

−∞

dq

2π

1

eβ(
q2

2 −µ) ∓ 1
= n0,

where n0 is the density per spin of the homogeneous system, i.e., with λ = 0.

Exercise 6.6. Consider the density of Exercise 6.5 for fermions at zero temperature. In this

case the Fermi function limβ→∞(eβ(
q2

2 −µ) +1)−1 is unity for |q| < pF and zero otherwise,

where the Fermi momentum pF =
√
2µ. Show that pF = πn0 and that the density at the

origin is given by

n(0σ) = n0

[

1− λ

pF
arctan(

pF
λ
)

]

.

Show further that for λ→∞ the density profile becomes

n(xσ) = n0

[

1− sin(2pF|x|)
2pF|x|

]

.

Therefore the density exhibits spatial oscillations with wavevector 2pF. These are known as

the Friedel oscillations. How does this result change for λ→ −∞?
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202 6. One-particle Green’s function

Exercise 6.7. Show that the current of photons of energy ω0 in an inverse photoemission

experiment can be expressed solely in terms of G>.

Exercise 6.8. Consider a single-level bosonic Hamiltonian Ĥ = E(n̂) where n̂ = d̂†d̂
is the occupation operator and E(x) is an arbitrary real function of x. Show that in

thermodynamic equilibrium the spectral function is

A(ω) = 2π
∞∑

k=0

(k + 1) [ρk − ρk+1] δ(ω − E(k + 1) + E(k)),

with ρk = e−β(E(k)−µk)/Z and Z the partition function. From this result we see that if

E(k + 1) − µ < E(k) for some k then [ρk − ρk+1] < 0 and hence the spectral function

can be negative for some frequency.

Exercise 6.9. Show that for a system of fermions the diagonal matrix element GR
jj(ζ) is

nonvanishing in the upper half of the complex ζ plane. Similarly GA
jj(ζ) is nonvanishing in

the lower half of the complex ζ plane. Hint: calculate the imaginary part from (6.93) and

use the fact that Ajj(ω) ≥ 0.

Exercise 6.10. Show that the eigenvalues of the Hermitian matrices iG>
ij(ω) and ±iG<

ij(ω)
are non-negative for all ω. This is a generalization of the property (6.77). Show also that for

fermionic systems the eigenvalues of the spectral function are non-negative. Hint: use the

fact that if the expectation value of a Hermitian operator is non-negative for all states then

its eigenvalues are non-negative.

6.4 Total energy from the Galitskii–Migdal formula

In our introductory discussion on the lesser and greater Green’s function we showed that
the time-dependent ensemble average of any one-body operator can be computed from the

equal-time lesser Green’s function Ĝ<(t, t), see (6.26). In this section we show that from

a knowledge of the full Ĝ<(t, t′) we can also calculate the time-dependent energy of the
system. This result is highly nontrivial since the Hamiltonian contains an interaction part
that is a two-body operator.

Let us start by clarifying a point which is often the source of some confusion: how is the
total energy operator defined in the presence of a time-dependent external field? This is a
very general question and, as such, the answer cannot depend on the details of the system.
We, therefore, consider the simple case of a quantum mechanical particle in free space with
Hamiltonian ĥ = p̂2/2m. At time t0 we switch on an external electromagnetic field and
ask the question: how does the energy of the particle change in time? Let |Ψ(t)〉 be the
ket of the particle at time t. The time evolution is governed by the Schrödinger equation
i ddt |Ψ(t)〉 = ĥ(t)|Ψ(t)〉 with

ĥ(t) =
1

2m

(

p̂− q

c
A(r̂, t)

)2

+ qV (r̂, t).

Is the energy of the particle given by the average over |Ψ(t)〉 of p̂2/2m (which describes the

original system with no external fields) or of the full Hamiltonian ĥ(t)? The correct answer

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:06:05 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.008

Cambridge Books Online © Cambridge University Press, 2015



6.4. Total energy from the Galitskii–Migdal formula 203

is neither of the two. The average of ĥ(t) must be ruled out since it contains the coupling
energy between the particle and the external field qV (r̂, t). Our system is a free particle
and therefore its energy is simply the average of the kinetic energy operator, i.e., the velocity
operator squared over 2m. In the presence of a vector potential, however, the velocity
operator is [p̂ − q

cA(r̂, t)] and not just p̂. We conclude that the energy of the system at

time t must be calculated by averaging the operator 1
2m

(
p̂− q

cA(r̂, t)
)2

= ĥ(t)− qV (r̂, t)
over |Ψ(t)〉. Further evidence in favour of the above choice comes from the fact that
all physical quantities must be invariant under a gauge transformation. For the case of a
single particle the gauge transformation A → A + ∇Λ, V → V − 1

c
∂
∂tΛ implies that

the ket changes according to |Ψ(t)〉 → exp
[
i qcΛ(r̂, t)

]
|Ψ(t)〉, see (3.24). The reader can

easily verify that neither 〈Ψ(t)|p̂2/2m|Ψ(t)〉 nor 〈Ψ(t)|ĥ(t)|Ψ(t)〉 is gauge invariant, while

〈Ψ(t)|ĥ(t)− qV (r̂, t)|Ψ(t)〉 is.
Let us now apply the same reasoning to a system of interacting identical particles with

Hamiltonian Ĥ(t) = Ĥ0(t) + Ĥint. According to the previous discussion the energy of the
system at a generic time t1, ES(t1), is the time-dependent ensemble average of the operator

ĤS(t1) ≡ Ĥ(t1)− q
∫

dx1 n̂(x1)δV (1),

where δV (1) = V (r1, t1) − V (r1) is the di�erence between the total potential at time t1
and the initial potential, i.e., δV (1) is the external potential. Then we have

ES(z1) =
∑

k

ρk〈Ψk|Û(t0−, z1)

[∫

dx1dx2 ψ̂
†(x1)〈x1|ĥS(z1)|x2〉ψ̂(x2)

+
1

2

∫

dx1dx2 v(x1,x2) ψ̂
†(x1)ψ̂

†(x2)ψ̂(x2)ψ̂(x1)

]

Û(z1, t0−)|Ψk〉,

where ĥS(z1) = ĥ(z1) − qδV (r̂1, z1) is the single-particle Hamiltonian of the system. We
remind the reader that the energy ES(t1) as a function of the physical time t1 is given by
ES(t1±), see again (4.10). The reason for introducing the contour time z1 is that we now
recognize on the r.h.s. the one- and two-particle Green’s functions with a precise order of
the contour-time variables. It is easy to show that

ES(z1) = ±i
∫

dx1d2hS(1; 2)G(2; 1
+)− 1

2

∫

dx1d2 v(1; 2)G2(1, 2; 1
+, 2+). (6.103)

The particular form of the second integral allows us to express ES in terms of G only.
Adding the equation of motion for G to its adjoint [see (5.7) and (5.8)] and then setting
2 = 1+ we find

[(

i
d

dz1
− i

d

dz2

)

G(1; 2)

]

2=1+
−
∫

d3
[
h(1; 3)G(3; 1+) +G(1; 3+)h(3; 1)

]

= ±2i
∫

d3 v(1; 3)G2(1, 3; 1
+, 3+).
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204 6. One-particle Green’s function

Inserting this result into ES(z1) we arrive at the very interesting formula

ES(z1) = ±i
∫

dx1〈x1|
[

ĥS(z1)−
1

2
ĥ(z1)

]

Ĝ(z1, z+1 )|x1〉

± i

4

∫

dx1

[(

i
d

dz1
− i

d

dz2

)

〈x1|Ĝ(z1, z2)|x1〉
]

z2=z+
1

. (6.104)

This formula yields the initial energy of the system EM
S when z1 = t0 − iτ1 and the time-

dependent energy ES(t1) when z1 = t1±. In the former case ĥS(z1) = ĥ(z1) = ĥM and
expanding Ĝ in the Matsubara series (6.17) we get

EM
S = ± i

2

1

−iβ
∑

m

eηωm

∫

dx 〈x|(ωm + ĥM)ĜM(ωm)|x〉 (6.105)

For the time-dependent energy ES(t) we recall that ĥS(t) = ĥ(t) − qδV (r̂, t) and hence
from (6.104) with z1 = t±

ES(t) = ±
i

4

∫

dx 〈x|
(

i
d

dt
− i

d

dt′
+ 2ĥ(t)

)

Ĝ<(t, t′)|x〉
∣
∣
∣
∣
t′=t

− q
∫

dxn(x, t)δV (r, t).

In the special case that the Hamiltonian Ĥ(t) = Ĥ does not depend on time (hence
δV = 0) and the system is initially in a stationary excited configuration of Ĥ , the lesser

Green’s function depends on the time di�erence t− t′ only. Then, Fourier transforming Ĝ<
as in (6.47) the energy simplifies to

ES = ± i

2

∫
dω

2π

∫

dx 〈x|(ω + ĥ)Ĝ<(ω)|x〉 (6.106)

This result represents a generalization of the so-called Galitskii–Migdal formula since it is
valid not only for systems initially in thermodynamic equilibrium but also for systems in a
stationary excited configuration. In the case of thermodynamic equilibrium EM

S = ES−µN ,
and hence (6.106) provides an alternative formula to (6.105) for calculation of the initial energy.

As an example of stationary excited configuration we consider the case of noninteracting
systems. Then the lesser Green’s function is given by (6.48), and (6.106) yields

ES =
∑

λ

f(ǫMλ )ǫλ; (6.107)

the energy of the system is the weighted sum of the single-particle energies. As expected,
the equilibrium energy is recovered for ĥM = ĥ− µ. In general, however, we can calculate
the energy of an arbitrary excited configuration by a proper choice of ĥM. We use (6.107) in
Section 7.3.2 to study the spin-polarized ground-state of an electron gas.
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7

Mean field approximations

7.1 Introduction

The e�ect of interparticle interactions is to correlate the motion of a particle to the motion
of all the other particles. For the two-body interactions considered so far, the action of Ĥint

on a many-body ket |Φ〉 = d̂†n1
d̂†n2

. . . |0〉 (one particle in ϕn1
, another one in ϕn2

and so
on) yields a linear combination of kets in which at most two particles have changed their
state. This implies that the matrix element 〈Φ′|Ĥint|Φ〉 is zero for all those |Φ′〉 di�ering
from |Φ〉 by more than two d̂† operators. We may say that a particle can scatter at most with
another particle, and after the scattering the two particles end up in new states. Therefore if
we know how two particles propagate in the system, i.e., if we know G2, then we can deduce
how a single particle propagates in the system, i.e., we can determine G. This is another
way to understand the appearance of G2 in the equation of motion for G. We emphasize
that this is true only for two-body interactions. For an interaction Hamiltonian that is an
n-body operator, i.e., an interaction Hamiltonian that is a linear combination of products of
2n field operators, the scattering involves n particles and the equations of motion for G
contain the n-particle Green’s function Gn.

Since from any approximate G2 we can extract an approximate G, let us use some
physical intuition to generate reasonable approximations to G2. For the time being we
ignore the fact that the particles are identical and suppose that among them there exist two
“special” ones which cannot interact directly. These two special particles feel the presence
of all other particles but they are insensitive to their mutual position. Then, the probability
amplitude for the first particle to go from 1′ to 1 and the second particle to go from 2′ to
2 is simply the product of the probability amplitudes of the two separate events, or in the
Green’s function language

G2(1, 2; 1
′, 2′) ∼ G2,H(1, 2; 1

′, 2′) ≡ eiαG(1; 1′)G(2; 2′). (7.1)

If we represent the Green’s function G(1; 1′) with a line going from 1′ to 1 and the two-
particle Green’s function G2(1, 2; 1

′, 2′) with two lines that start in 1′ and 2′, enter a square
where processes of arbitrary complexity can occur and go out in 1 and 2, then (7.1) can be
represented diagrammatically as in Fig. 7.1. The phase factor eiα in (7.1) can be determined
by observing that G2(1, 2; 1

+, 2+) is the ensemble average of −n̂H(1)n̂H(2) and hence

lim
2→1

G2(1, 2; 1
+, 2+) = real negative number.

205
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206 7. Mean field approximations

Figure 7.1 Hartree approximation to the two-particle Green’s function.

Evaluating the r.h.s. of (7.1) in the same point and taking into account that G(1; 1+) =
∓in(1) (upper/lower sign for bosons/fermions) is a negative/positive imaginary number we
conclude that eiα = 1. As we see in Chapter 10, the approximation (7.1) can also be derived
from the perturbative formula (5.34) which naturally fixes the phase factor eiα to be 1. The
approximation (7.1) with eiα = 1 is known as the Hartree approximation and neglects the
direct interaction between two particles.

The Hartree approximation also ignores that the particles are identical. In the exact
case, for two identical particles initially in (1′, 2′) it is not possible to distinguish the event
in which they will be detected in (1, 2) from the event in which they will be detected in
(2, 1). Quantum mechanics teaches us that if an event can occur through two di�erent paths
then the total probability amplitude is the sum of the probability amplitudes of each path.
In the Green’s function language this leads to the so called Hartree–Fock approximation for
the two-particle Green’s function,

G2(1, 2; 1
′, 2′) ∼ G2,HF(1, 2; 1

′, 2′) ≡ G(1; 1′)G(2; 2′) + eiβG(1; 2′)G(2; 1′), (7.2)

whose diagrammatic representation is illustrated in Fig. 7.2. The phase factor eiβ can be
determined using the symmetry properties of G2. From the general definition (5.1) we have
G2(1, 2; 1

′, 2′) = ±G2(1, 2; 2
′, 1′) where the upper/lower sign applies to bosons/fermions,

and hence eiβ = ±1. We have recovered the approximation (5.14). The Hartree–Fock
approximation (like the Hartree approximation) can also be deduced from the perturbative
formula (5.34).

Both the Hartree and Hartree–Fock approximations neglect the direct interaction between
two particles, see also the discussion in Section 5.2. In these approximations a particle
moves like a free particle under the influence of an e�ective potential which depends on the
position of all the other particles. This is precisely the idea of a mean field approximation:
to include the e�ects of the interaction through an e�ective potential. In bulk systems this
idea makes sense if there are so many particles, or equivalently if the density is so high, that
we can treat the interaction of a particle with all the other particles as an e�ective average
interaction, i.e., as an e�ective field. In the next sections we calculate the Green’s function
G at the Hartree and Hartree–Fock level and apply the general results to some concrete
examples. We further give a mathematical form to the e�ective potential and explore the
physical content as well as the limitations of these approximations.
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7.2. Hartree approximation 207

Figure 7.2 Hartree–Fock approximation to the two-particle Green’s function.

7.2 Hartree approximation

Let us consider a system of identical particles with mass m and charge q. Substituting the
Hartree approximation (7.1) into the equation of motion (5.7) for G we find

i
d

dz1
G(1; 2)−

∫

d3 [h(1; 3) + qVH(1)δ(1; 3)]G(3; 2) = δ(1; 2), (7.3)

where we consider the general case of a single-particle Hamiltonian ĥ which is nondiagonal
in space and spin, h(1; 3) = δ(z1, z3)〈x1|ĥ|x3〉, and where

VH(1) = VH(x1, z1) = ±
i

q

∫

d3 v(1; 3)G(3; 3+) =
1

q

∫

d3 v(1; 3)n(3), (7.4)

is the e�ective potential of the Hartree approximation, also known as the Hartree poten-
tial. For Coulombic interactions v(1; 2) = q2δ(z1, z2)/|r1 − r2|, and the Hartree potential
coincides with the classical potential generated by a density distribution n(1) = n(x1, z1):

VH(1) = q

∫

dx
n(x, z1)

|r1 − r| (for Coulombic interactions). (7.5)

Equations (7.3) and (7.4) form a system of coupled equations for the Green’s function. In
practical calculations they are solved by making an initial (and reasonable) guess for the
Green’s function, G(0), which is then used to determine an initial guess for the Hartree

potential, V
(0)
H , using (7.4); V

(0)
H is then inserted in (7.3) to obtain a new Green’s function

G(1) which is then used in (7.4) to determine a new Hartree potential V
(1)
H and so on and so

forth until convergence is achieved. In other words the Green’s function must be calculated
self-consistently since the operator acting on G depends on G itself.

For evaluation of both the Green’s function and the Hartree potential we describe a
method based on solving a system of coupled equations for single-particle wavefunctions.
Except for the fact that VH depends on G, the equation of motion (7.3) is formally identical
to the equation of motion of noninteracting particles. The general solution is therefore
obtained as described in Section 6.2 by replacing ĥ(z) with

ĥH(z) ≡ ĥ(z) + qV̂H(z),

where

V̂H(z) =

∫

dx1dx2 |x1〉δ(x1 − x2)VH(x1, z)〈x2|

=

∫

dx |x〉VH(x, z)〈x|, (7.6)
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208 7. Mean field approximations

is the Hartree potential operator in first quantization. The reader can easily check that (7.3)
can be written as (6.4) with ĥH in place of ĥ. By definition V̂H(z) is a constant operator

along the imaginary track (z = t0 − iτ ) which we denote by V̂M

H , consistently with our
notation.

7.2.1 Hartree equations

Let us consider an interacting system initially in equilibrium in some external potential
V (x = rσ) which depends on both the position and the spin projection along the z axis

(the inclusion of a vector potential is straightforward). The single-particle Hamiltonian ĥM is
then

ĥM = ĥ− µ =
p̂2

2m
+ qV (r̂, Ŝz)− µ,

and the interaction vM = v. To calculate the Green’s function we first need to solve the
eigenvalue problem

(

ĥM + qV̂M

H

)

|λ〉 = (ǫλ − µ)|λ〉,

where (ǫλ − µ) = ǫMλ are the single-particle eigenvalues of (ĥM + qV̂M

H ) = ĥMH and
|λ〉 = |λM〉 are the corresponding eigenkets. In order to lighten the notation we here omit
the superscript “M” in the eigenkets. By sandwiching the eigenvalue equation with the bra
〈x| we find

[

−∇
2

2m
+ qV (x) + qV M

H (x)

]

ϕλ(x) = ǫλϕλ(x) (7.7)

where according to (7.4) and to the formula (6.46) for the density of noninteracting particles,

V M
H (x) =

1

q

∫

dx′ v(x,x′)

n(x′)
︷ ︸︸ ︷
∑

ν

f(ǫν − µ)|ϕν(x
′)|2 (7.8)

The coupled equations (7.7) and (7.8) for the single-particle wavefunctions {ϕλ} are known as
the Hartree equations [63]. Note that the Hartree wavefunctions {ϕλ} form an orthonormal

basis since they are the eigenfunctions of the Hermitian operator ĥM + qV̂M

H .

Zero temperature fermions

In a system of fermions at zero temperature, only states with energy ǫλ < µ contribute to
the sum over λ in (7.8). The number of these states, say N , is the number of fermions in
the system. For N = 1 the exact solution of the problem is the same as the noninteracting
solution since one single fermion cannot interact with itself. Does the Hartree approximation
give the exact result for N = 1? The Hartree equation for the occupied wave function of a
single fermion reads

[

−∇
2

2m
+ qV (x) +

∫

dx′ v(x,x′)|ϕ(x′)|2
]

ϕ(x) = ǫϕ(x), (7.9)
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7.2. Hartree approximation 209

which di�ers from the noninteracting eigenvalue equation. Thus the Hartree approximation
is not exact even for N = 1 since the Hartree potential is equal to the classical potential
generated by the fermion itself. This is an intrinsic feature of the Hartree approximation
known as the self-interaction error: each fermion feels the potential generated by itself. The
self-interaction error varies as 1/N and it is therefore vanishingly small in bulk systems but
it can be rather large in finite systems. As we shall see, the Hartree–Fock approximation
cures this problem for the occupied states.

Zero temperature bosons

In bosonic systems at zero temperature bosons can condense in the lowest energy level ϕ,
meaning that all occupied ϕλ in (7.7) collapse in the same wavefunction ϕ. Then, as for
one single fermion at zero temperature, the Hartree equations reduce to a single nonlinear
equation

[

−∇
2

2m
+ qV (x) +N

∫

dx′ v(x,x′)|ϕ(x′)|2
]

ϕ(x) = ǫϕ(x), (7.10)

where N is the number of bosons in the system. Also the bosonic case su�ers from the
self-interaction error. In particular for N = 1 the above equation does not reduce to the
eigenvalue equation for one single boson. As we shall see the Hartree–Fock approximation
does not cure this problem in bosonic systems.

If we multiply (7.10) by
√
N and define ϕ̃ =

√
Nϕ we obtain exactly (7.9). These kinds

of equation are called nonlinear Schrödinger equations. A renowned physical example of a
nonlinear Schrödinger equation is that of a system of hard-core bosons with interparticle
interaction v(x,x′) = v0δ(x− x′). In this case (7.10) becomes

[

−∇
2

2m
+ qV (x) + v0|ϕ̃(x)|2

]

ϕ̃(x) = ǫϕ̃(x),

which is called the Gross–Pitaevskii equation [64, 65]. The Gross–Pitaevskii equation is today
enjoying increasing popularity due to recent experimental advances in trapping and cooling
weakly interacting atoms using lasers. The first ever observation of a Bose condensate dates
back to 1995, and since then many groups have been able to reproduce this remarkable
phenomenon. For a review on Bose condensation in these systems see Ref. [66].

Total energy in the Hartree approximation

We have already pointed out that in the Hartree approximation the particles behave as free
particles. Then we would (naively) expect that the total energy of the system in thermody-
namic equilibrium is the noninteracting energy (6.107) with single-particle Hartree energies
ǫλ and occupations fλ ≡ f(ǫMλ ) = f(ǫλ − µ). This is, however, not so! Let us clarify this
subtle point. If we multiply (7.7) by ϕ∗λ(x) and integrate over x we can express the generic
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210 7. Mean field approximations

eigenvalue in terms of the matrix elements of ĥ+ qV̂M

H ,

ǫλ = hλλ +

∫

dxdx′ v(x,x′)n(x′)|ϕλ(x)|2

= hλλ +
∑

ν

fν

∫

dxdx′ ϕ∗λ(x)ϕ
∗
ν(x
′)v(x,x′)ϕν(x

′)ϕλ(x)

= hλλ +
∑

ν

fνvλννλ,

where we use the definitions (1.84) and (1.85). Let us now evaluate the total energy. In (6.106)
ĥ is the time-independent single-particle Hamiltonian and not the single-particle Hartree

Hamiltonian. The latter is ĥH ≡ ĥ + qV̂H = ĥ + qV̂M

H , where we have taken into account

that in equilibrium V̂H(t) = V̂
M

H . In the Hartree approximation

Ĝ<(ω) = ∓2πi f(ĥMH ) δ(ω − ĥH),

and using
∫
dx〈x| . . . |x〉 = ∑

λ〈λ| . . . |λ〉 (invariance of the trace under unitary transfor-
mations) we find

E =
1

2

∫
dω

2π

∑

λ

〈λ|(ĥ+ ω)f(ĥ+ qV̂M

H − µ
︸ ︷︷ ︸

ĥM
H

) 2π δ(ω − [ĥ+ qV̂M

H
︸ ︷︷ ︸

ĥH

])|λ〉

=
1

2

∑

λ

fλ〈λ|ĥ+ ǫλ|λ〉 =
∑

λ

fλǫλ −
1

2

∑

λν

fλfνvλννλ, (7.11)

where in the last equality we express hλλ in terms of ǫλ and the Coulomb integrals. Why
does this energy di�er from the energy of a truly noninteracting system? The explanation
of this apparent paradox is simple. The eigenvalue ǫλ contains the interaction energy vλννλ
between a particle in ϕλ and a particle in ϕν . If we sum over all λ this interaction energy
is counted twice. In (7.11) the double counting is correctly removed by subtracting the last
term.

Time-dependent Hartree equations

Once the equilibrium problem is solved we can construct the Matsubara Green’s function
as, e.g., in (6.40). For all other components, however, we need to propagate the eigenstates
of ĥMH in time. If the interacting system is exposed to a time-dependent electromagnetic

field then the single particle Hamiltonian ĥ(t) is time-dependent and so will be the Hartree

Hamiltonian ĥH(t) = ĥ(t)+qV̂H(t). The evolution is governed by the Schrödinger equation

i ddt |λ(t)〉 = ĥH(t)|λ(t)〉 with |λ(t0)〉 = |λ〉 the eigenkets of ĥMH . By sandwiching the
time-dependent Schrödinger equation with the bra 〈x| we get

i
d

dt
ϕλ(x, t) =

[
1

2m

(

−i∇− q

c
A(r, t)

)2

+ qV (x, t) + qVH(x, t)

]

ϕλ(x, t), (7.12)

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:06:33 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.009

Cambridge Books Online © Cambridge University Press, 2015



7.2. Hartree approximation 211

where A and V are the external time-dependent vector and scalar potentials.1 The time-
dependent Hartree potential is given in (7.4); expressing the density in terms of the time-
evolved eigenfunctions we have

VH(x, t) =
1

q

∫

dx′ v(x,x′)

n(x′,t)
︷ ︸︸ ︷
∑

λ

f(ǫλ − µ)|ϕλ(x
′, t)|2 . (7.13)

The coupled equations (7.12) and (7.13) for the wavefunctions ϕλ(x, t) are known as the
time-dependent Hartree equations. For the unperturbed system the Hartree equations are
solved by ϕλ(x, t) = e−iǫλtϕλ(x), as they should be.

7.2.2 Electron gas

The electron gas is a system of interacting electrons (spin 1/2 fermions) with single-

particle Hamiltonian ĥ(t) = ĥ = p̂2/2 and with a spin-independent interparticle interaction
v(x1,x2) = v(r1 − r2). The reader can consult Refs. [45, 67] for a detailed and thorough
presentation of the physics of the electron gas. Below we consider the electron gas in ther-
modynamic equilibrium so that ĥM = ĥ− µ and vM = v. The full Hamiltonian Ĥ0 + Ĥint

is invariant under space and time translations and consequently all physical quantities have
the same property. In particular the electron density per spin n(x, z) = n/2 is independent
of x and z and so is the Hartree potential2

VH(1) = −
∫

dx v(x1,x)
n

2
= −

∑

σ

∫

dr v(r1 − r)
n

2
≡ −nṽ0, (7.14)

where ṽ0 is the Fourier transform ṽp =
∫
dr e−ip·r v(r) with p = 0. The eigenkets of the

Hartree Hamiltonian ĥMH = ĥ−V̂M

H −µ are the momentum–spin kets |pσ〉 with eigenenergy
p2/2 + nṽ0 − µ. The lesser Green’s function can then be calculated using (6.48) and reads

Ĝ<(ω) = 2πi
∑

σ

∫
dp

(2π)3
|pσ〉〈pσ| δ(ω −

p2

2 − nṽ0)
eβ(

p2

2 +nṽ0−µ) + 1
,

from which we can extract the value n of the density

n

2
= −i 〈x|Ĝ<(t, t)|x〉 = −i

∫
dω

2π
〈rσ|Ĝ<(ω)|rσ〉

=

∫
dp

(2π)3
1

eβ(
p2

2 +nṽ0−µ) + 1
, (7.15)

where we use 〈r|p〉 = eip·r, see (1.10). For any given initial temperature T = 1/(KBβ) and
chemical potential µ, (7.15) provides a self-consistent equation for the density. Thus, for an

1For simplicity in (7.12) the coupling between the time-dependent magnetic field and the spin degrees of freedom
has not been included.

2We recall that in our units the electron charge q = e = −1 while the electron mass m = me = 1.
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212 7. Mean field approximations

electron gas the solution of the Hartree equations reduces to the solution of (7.15): once
n is known the Hartree problem is solved. The solution of (7.15) when ṽ0 > 0 (repulsive
interaction) deserves comment. The r.h.s. is a decreasing function of n, as can easily be
checked by taking the derivative with respect to n. Consequently the self-consistent density
is always smaller than the noninteracting density. For the interacting system to have the
same density as the noninteracting system we have to increase µ, i.e., the free-energy per
electron. This agrees with our intuitive picture that the energy needed to bring together
interacting particles increases with the strength of the repulsion. Of course the opposite is
true for attractive (ṽ0 < 0) interactions.

From the above result we also expect that the pressure of the interacting system is larger
or smaller than that of the noninteracting system depending on whether the interaction is
repulsive or attractive [68]. We recall that the pressure P is obtained from the density n by
performing the integral (see Appendix D)

P (β, µ) =

∫ µ

−∞
dµ′ n(β, µ′) ⇒ dP = ndµ, (7.16)

where n(β, µ) is the density given by the solution of (7.15). In the low density limit βµ →
−∞ and the self-consistent equation (7.15) simplifies to

n(β, µ) = 2

∫
dp

(2π)3
e−β(

p2

2 +nṽ0−µ) = 2
e−β(nṽ0−µ)
√

(2πβ)3
.

Di�erentiating the above equation at fixed β we get dn = −βṽ0ndn+βndµ from which we
find dµ = ṽ0dn+ 1

β
dn
n . Substituting this result into (7.16) and integrating over n between 0

and n we deduce the equation of state for an electron gas in the Hartree approximation

P = nKBT +
1

2
ṽ0n

2, (7.17)

where we use the fact that the pressure at zero density vanishes. The correction to the
equation of state P = nKBT (noninteracting system) is positive in the repulsive case and
negative otherwise, as expected. However, in the attractive case the result does not make
sense for too low temperatures. The derivative of P with respect to n should always be
positive since

(
∂P

∂n

)

T

=

(
∂P

∂µ

)

T

(
∂µ

∂n

)

T

= n

(
∂µ

∂n

)

T

> 0.

The inequality follows from the positivity of the density n and of the derivative

(
∂µ

∂n

)−1

T

=

(
∂n

∂µ

)

T

=
1

V

∂

∂µ

Tr
[

e−β(Ĥ−µN̂)N̂
]

Tr
[

e−β(Ĥ−µN̂)
] =

β

V
〈
(

N̂ −N
)2

〉,

where 〈. . .〉 denotes the ensemble average. If we take the derivative of (7.17) we find

(
∂P

∂n

)

T

= KBT + ṽ0n,
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7.2. Hartree approximation 213

which becomes negative for temperatures T < Tc ≡ −ṽ0n/KB. This meaningless result
does actually contain some physical information. As the temperature decreases from values
above Tc, the derivative (∂P/∂n)T approaches zero from positive values and hence the
fluctuation in the number of particles, 〈(N̂ − N)2〉, diverges in this limit. Typically the
occurrence of large fluctuations in physical quantities signals the occurrence of an instability.
In fact, the electron gas with attractive interparticle interaction undergoes a phase transition
at su�ciently low temperatures, turning into a superconductor.

It is also interesting to observe that (7.17) has the form of the van der Waals equation
(P − αn2)(V − Vexc) = nVKBT with α a constant, V the volume of the system and
Vexc the exclusion volume, i.e., the hard-core impenetrable volume of the particles. In
the Hartree approximation α = − 1

2 ṽ0 while Vexc = 0. The fact that Vexc = 0 is somehow
expected. As already pointed out the Hartree approximation treats the particles as e�ectively
independent, meaning that two particles can near each other without expending energy. To
have a nonvanishing exclusion volume we must go beyond the mean field approximation
and introduce correlations in the two-particle Green’s function.3

The free nature of the electrons in the Hartree approximation is most evident from the
spectral function. From the definition (6.89) we find

〈pσ|Â(ω)|p′σ′〉 = 2πδσσ′δ(p− p′)δ(ω − p2

2
− nṽ0).

According to our interpretation of the spectral function, the above result tells us that an

electron with definite momentum and spin has a well-defined energy, ǫp = p2

2 + nṽ0, and
hence an infinitely long life-time. This is possible only provided that there is no scattering
between the electrons.

7.2.3 Quantum discharge of a capacitor

During recent decades, the size of electronic circuits has been continuously reduced. Today,
systems like quantum wires and quantum dots are routinely produced on the nanometer
scale. The seemingly ultimate limit of miniaturization has been achieved by several exper-
imental groups who have been able to place single molecules between two macroscopic
electrodes [69, 70]. In this section we start discussing the quantum properties of the electric
current flowing through nanoscale structures. The motivation for discussing this system is
two-fold. First, we can apply the Hartree approximation in a modern context, and second
we introduce a paradigmatic model Hamiltonian which is used later to illustrate the physical
content of more sophisticated approximations.

Let us consider a classical capacitor of capacitance C whose plates are connected by
a wire of resistance R, see Fig. 7.3(a). At time t0 we change the potential of one plate by
V0 and a current I(t) will instantaneously start to flow. According to the Kirchho� laws
Rİ(t) = −I(t)/C and hence I(t) = I0e

−t/RC with I0 = V0/R. How does this classical
picture change when the plates are connected by a molecule or by some other kind of
nanoscale junction? To answer this question quantum modeling of the problem is needed.

Let {ϕkα} be the basis functions for an electron, or more generally a fermion of charge
q, in the α = L (left) and α = R (right) plates, and {ϕm} be the basis functions for

3This is nicely discussed in Ref. [68].
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214 7. Mean field approximations

Figure 7.3 Capacitor whose plates are connected by a wire of resistance R (a), and by a
nanojunction like, e.g., a molecule or a quantum dot (b).

a fermion in the nanojunction (molecule). Without loss of generality we can choose the
{ϕkα} as the eigenstates of the one-body Hamiltonian of the α plate with energy ǫkα. The
most general one-body Hamiltonian of the whole system can then be written as

Ĥ0 =
∑

kα

ǫkαn̂kα +
∑

mn

Tmnd̂
†
md̂n +

∑

m,kα

(Tmkαd̂
†
md̂kα + Tkαmd̂

†
kαd̂m), (7.18)

where n̂kα ≡ d̂†kαd̂kα is the occupation operator for fermions in ϕkα. In (7.18) the first
term refers to the plates (or electrodes), the second term to the nanojunction, while the last
term describes the contact between the di�erent parts of the system, see Fig. 7.3(b). This
Hamiltonian can also be regarded as a generalization of the Fano model of Section 2.3.2 to
finite systems (atoms or molecules) with many localized orbitals and in contact with more
than one continuum of states.

To model the interaction we assume that the plates are symmetric and hence that the
electrostatic forces vanish when the number of fermions in the left plate, NL, and in the right
plate, NR, are equal. The simplest interaction Hamiltonian with such a physical ingredient
is

Ĥint =
v0
2
(N̂L − N̂R)

2

=
v0
2
(N̂L + N̂R) +

v0
2

∑

kk′

[
∑

α

d̂†kαd̂
†
k′αd̂k′αd̂kα − 2d̂†kLd̂

†
k′Rd̂k′Rd̂kL

]

, (7.19)

with N̂α =
∑

k n̂kα the total number of particle operators in electrode α. We can relate the
interaction energy v0 > 0 to the capacitance C by calculating the energy cost to transfer
one fermion from L to R. Starting from the equilibrium configuration NL = NR = N
(zero interaction energy), the energy cost to reach the configuration with NL = N − 1 and
NR = N + 1 is 2v0. In classical electrostatics the same process costs an energy of q2/2C
and therefore v0 = q2/4C. Can the resistance R also be related to the parameters of the
Hamiltonian? The resistance of a bulk conductor originates from the inelastic scattering
between the electrons and the lattice vibrations (phonons). In our model Hamiltonian we
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7.2. Hartree approximation 215

did not include the electron–phonon interaction and hence we should (naively) expect that
R = 0. As we shall see, however, in the quantum world there is a minimum value of the
resistance below which it is not possible to go.

The total Hamiltonian Ĥ = Ĥ0 + Ĥint describes a system of interacting particles that
can be treated within the Hartree approximation. The first step is to express the Hartree
potential operator in the {ϕi} basis with i ∈ {kα} (for the α electrode) or i ∈ {m} (for the
molecule). From (7.6) and (7.4) we easily obtain the following general formula

〈i|qV̂M

H |j〉 = −i
∫

dx1dx2〈i|x1〉v(x1,x2)〈x2|Ĝ
<
(t0, t0)|x2〉〈x1|j〉

= −i
∑

pq

vipqj〈q|Ĝ
<
(t0, t0)|p〉, (7.20)

with the Coulomb integrals vipqj defined as in (1.85). For the present problem the vipqj can
be extracted from the second row of (7.19). Indeed, the second term has exactly the same
structure as the second term in (1.83) and therefore

vipqj = v0δijδpq ×







1 i = kα, p = k′α′ and α = α′

−1 i = kα, p = k′α′ and α 6= α′

0 otherwise
. (7.21)

The first term in the second row of (7.19) is a one-body operator that can be absorbed in
Ĥ0 by shifting the single-particle energies ǫkα → ǫkα + v0/2. If we now insert the vipqj of
(7.21) into (7.20) we can readily derive that

qV̂M

H = v0(NL −NR)
∑

k

( |kL〉〈kL| − |kR〉〈kR| ). (7.22)

Thus the Hartree potential depends only on the average number of particles Nα in electrode
α = L,R and not on how the particles distribute over the basis functions {ϕkα}.

We are interested in calculating the current flowing between the plates when the system
is initially in the equilibrium configuration of Ĥ0+Ĥint and then is driven out of equilibrium
by a bias. Then the single-particle Hartree Hamiltonian along the imaginary track is ĥMH =

ĥ + qV̂M

H − µ while at positive times ĥH(t) = ĥ + qV̂H(t) + qV̂(t), with V̂(t) the external
potential (bias). To keep the mathematical complications at a minimum without altering the
qualitative picture we use only one basis ket |ǫ0〉 for the molecule and introduce the short-
hand notation ǫ0 ≡ T00 for the onsite energy and Tkα ≡ T0 kα = T ∗kα 0 for the hopping

parameters. The single-particle Hamiltonian ĥ for this simplified version of the model is

ĥ = Ê + T̂ ,







Ê =
∑

kα ǫkα|kα〉〈kα|+ ǫ0|ǫ0〉〈ǫ0|

T̂ =
∑

kα(Tkα|ǫ0〉〈kα|+ T ∗kα|kα〉〈ǫ0|)
,

where Ê describes the di�erent parts of the system while T̂ accounts for the contacts
between them.
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216 7. Mean field approximations

Equilibrium problem

In equilibrium the bias V̂(t) = 0 and all real-time Green’s functions depend only on the
time di�erence. The self-consistent equation for the number of particles Nα is

Nα = −i
∑

k

〈kα|Ĝ<(t, t)|kα〉 = −i
∫
dω

2π

∑

k

〈kα|Ĝ<(ω)|kα〉. (7.23)

The basis functions ϕkα are not eigenfunctions of the Hartree Hamiltonian and therefore

the evaluation of the matrix elements 〈kα|Ĝ<(ω)|kα〉 is less trivial than in the example of
the electron gas. Our strategy is to use the fluctuation–dissipation theorem (6.80) and to
exploit the identity [see also (2.24)]

1

ω − ĥH ± iη
︸ ︷︷ ︸

ˆGR,A
(ω)

=
1

ω − (Ê + qV̂M

H )± iη
+

1

ω − (Ê + qV̂M

H )± iη
T̂ 1

ω − ĥH ± iη
, (7.24)

to determine the matrix elements of the retarded/advanced Green’s function. An alternative
strategy would be to work with the Matsubara Green’s function. Indeed, Nα can also be
written as

Nα = −i
∑

k

〈kα|ĜM(τ, τ+)|kα〉 = 1

β

∞∑

m=−∞

∑

k

eωmη〈kα| 1

ωm − ĥMH
|kα〉,

and then the identity (7.24) with ω ± iη → ωm − µ could be used to determine all matrix
elements. We follow the first route here, since the formulas that we derive are relevant to
the time-dependent case as well. The reader can, however, verify that the second route
leads to the very same results.

As usual we denote by Gij the matrix element 〈i|Ĝ|j〉 of the Green’s function. The
sandwich of (7.24) with 〈kα| and |ǫ0〉 and with 〈ǫ0| and |ǫ0〉 yields the following linear
system of coupled equations for the matrix elements of the retarded Green’s function (similar
relations can be obtained for the advanced Green’s function):

GR
kα 0(ω) =

T ∗kα
ω − ǫ̃kα + iη

GR
00(ω), (7.25)

GR
00(ω) =

1

ω − ǫ0 + iη
+

1

ω − ǫ0 + iη

∑

kα

TkαG
R
kα 0(ω), (7.26)

where we define the eigenvalues of Ê + qV̂M

H as [see (7.22)]

ǫ̃kL = ǫkL + v0(NL −NR), ǫ̃kR = ǫkR + v0(NR −NL).

Substituting (7.25) into (7.26) we arrive at the solution

GR
00(ω) =

1

ω − ǫ0 − ΣR
em(ω) + iη

,
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7.2. Hartree approximation 217

where

ΣR
em(ω) =

∑

kα

|Tkα|2
ω − ǫ̃kα + iη

= P
∑

kα

|Tkα|2
ω − ǫ̃kα

︸ ︷︷ ︸

Λ(ω)

− i

2
2π
∑

kα

|Tkα|2δ(ω − ǫ̃kα)
︸ ︷︷ ︸

Γ(ω)

(7.27)

is the retarded embedding self-energy. In (7.27) the embedding self-energy is separated into
a real [Λ(ω)] and imaginary [− 1

2Γ(ω)] part using the Cauchy relation (2.23). The embedding
self-energy accounts for processes in which a particle in ϕ0 hops to ϕkα (with amplitude
T ∗kα), stays in the α electrode for some time (the denominator in (7.27) is the Fourier
transform of the propagator θ(t)e−iǫ̃kαt) and then hops back in ϕ0 (with amplitude Tkα).
In other words, the embedding self-energy appears because the nanojunction is open, i.e.,
it can exchange particles and energy with the electrodes. Notice that GR

00 reduces to the
Green’s function of the isolated molecule for ΣR

em = 0.
At this point we simplify the problem further by making the Wide Band Limit Approxima-

tion (WBLA) already discussed in the context of the Fano model. In the WBLA Γ(ω) ∼ Γ is
a constant independent of frequency and hence the real part Λ(ω) vanishes. Consequently
the embedding self-energy ΣR

em(ω) = − i
2Γ is a pure imaginary number and the retarded

Green’s function of the molecule simplifies to

GR
00(ω) =

1

ω − ǫ0 + i
2Γ
.

The WBLA is a good approximation provided that the applied bias is much smaller than the
energy scale over which Γ(ω) varies.

Let us now evaluate the sum
∑

kG
R
kα kα(ω) [needed to calculate the r.h.s. of the self-

consistent equation (7.23)] in the WBLA. We denote by Γα the α contribution to Γ resulting
from summing over k at fixed α in (7.27). From the identity (7.24) and its adjoint it is a
matter of simple algebra to show that

GR
kα pβ(ω) =

δαβδkp
ω − ǫ̃kα + iη

+
T ∗kα

ω − ǫ̃kα + iη
GR

00(ω)
Tpβ

ω − ǫ̃pβ + iη
.

Setting pβ = kα and summing over k we find

∑

k

GR
kα kα(ω) =

∑

k

1

ω − ǫ̃kα + iη
+GR

00(ω)
∑

k

|Tkα|2
(ω − ǫ̃kα + iη)2

︸ ︷︷ ︸

=0 in WBLA

.

The second term is proportional to the ω-derivative of the α contribution to the embedding
self-energy which, in our case, is simply − i

2Γα. Thus the second term vanishes in the WBLA
and the self-consistent equations (7.23) reduce to

NL =
∑

k

f(ǫkL+ v0(NL−NR)−µ), NR =
∑

k

f(ǫkR + v0(NR−NL)−µ). (7.28)

These equations can be seen as a generalization of the self-consistent equation (7.15) for the
electron gas. We also notice that in the WBLA the nanojunction plays no role in determining
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218 7. Mean field approximations

the self-consistent densities: the particles distribute as if the plates of the capacitor were
perfectly isolated (all hopping parameters equal zero). This is due to the macroscopic size
of the plates as compared to the size of the molecule.

Solving (7.28) for NL and NR amounts to determining the Hartree Hamiltonian and
hence all equilibrium Green’s functions in the Hartree approximation. Before moving to
the time-dependent problem we wish to observe that the matrix element of the spectral
function operator

〈ǫ0|Â(ω)|ǫ0〉 = −2Im 〈ǫ0|Ĝ
R
(ω)|ǫ0〉 =

Γ

[(ω − ǫ0)2 + Γ2/4]

is a Lorentzian centered around ǫ0. How do we reconcile this result with the fact that in the
Hartree approximation the particles behave as free particles and hence have well-defined
energies? The answer is the same as in the case of noninteracting systems. The state ϕ0

is not an eigenstate of the Hartree Hamiltonian and hence it does not have a well-defined
energy: a particle in ϕ0 has a finite probability of having any energy, the most probable
energy being ǫ0. In the limit Γ → 0 (no contacts between the plates and the molecule)
the Lorentzian approaches a δ-function in agreement with the fact that ϕ0 becomes an
eigenstate with eigenvalue ǫ0. As we saw in Section 6.3.4 the e�ect of the interparticle
interaction is to broaden all matrix elements of the spectral function and hence to destroy
the single-particle picture. In order to capture this e�ect, however, we must go beyond the
mean-field description.

Time-dependent problem

In analogy with the classical example we switch on a bias V̂(t) in, e.g., the left plate, and drive
the system out of equilibrium. The time-dependent perturbation in second quantization
reads

ĤV (t) = qV0(t)N̂L, (7.29)

and the total Hamiltonian at times t > t0 is Ĥ(t) = Ĥ0 + Ĥint + ĤV (t). A current will
start flowing through the molecule till the potential energy di�erence between the L and R
plates is leveled out. The electric current Iα from the plate α is given by the change of Nα

per unit time multiplied by the charge q of the particles, Iα(t) = q d
dtNα(t). Since Nα(t)

is the ensemble average of the number operator in the Heisenberg picture, N̂α,H(t), its

time derivative is the ensemble average of the commutator [N̂α,H(t), ĤH(t)]−, see (3.19).

The operator N̂α commutes with Ĥint, ĤV (t) and with all the terms of Ĥ0 except the one
describing the contacts between the molecule and the plates [third term in (7.18)]. It is a
matter of simple algebra to show that

[

N̂α, Ĥ(t)
]

−
=
∑

k

[

n̂kα, Ĥ(t)
]

−
=
∑

k

(

−Tkαd̂†0d̂kα + T ∗kαd̂
†
kαd̂0

)

,

and therefore

Iα(t) = 2q
∑

k

Re
[
TkαG

<
kα 0(t, t)

]
, (7.30)
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7.2. Hartree approximation 219

where we take into account that the lesser Green’s function is anti-Hermitian, see (6.23). The
above formula is an exact result that relates the current to the lesser Green’s function. It
is natural to ask whether or not (7.30) preserves its form when Nα(t) is not exact but it
rather comes from the Hartree approximation. We can answer this question by subtracting
the Hartree equation of motion from its adjoint
[

i
d

dz
+ i

d

dz′

]

Ĝ(z, z′) =
(

ĥ(z) + qV̂H(z)
)

Ĝ(z, z′)− Ĝ(z, z′)
(

ĥ(z′) + qV̂H(z
′)
)

,

where ĥ(z) = ĥ + qV̂(z) is the biased Hamiltonian. Setting z = t− and z′ = t+ the

l.h.s. becomes the total derivative i ddt Ĝ
<
(t, t). Therefore, if we sandwich with 〈kα| and

|kα〉 and sum over k we obtain the equation for d
dtNα(t) in the Hartree approximation.

In this equation the terms containing the Hartree potential V̂H cancel out and the current
formula (7.30) is recovered. More generally, for an approximate two-particle Green’s function
G2 to reproduce the current formula (7.30) it is crucial that the terms originating from
G2 cancel out when calculating d

dtNα(t) as above. The approximations that preserve the
continuity equation as well as other basic conservation laws are known as the conserving
approximations, and the Hartree approximation is one of them. In Chapters 8 and 9 we
develop a simple and elegant formalism to recognize whether an approximation is conserving
or not. This formalism also provides us with a systematic way to generate conserving
approximations of increasing accuracy.

We continue our analysis by evaluating the current Iα(t) in (7.30) to linear order in
the bias V̂(t). This can be done in several di�erent ways.4 Here we present an instructive
derivation which requires use of the Langreth rules. Let us write the time-dependent Hartree
Hamiltonian as the sum of the equilibrium Hamiltonian ĥH(t0) and the time-dependent
operator qδV̂eff(t) ≡ qV̂(t) + qδV̂H(t), where V̂(t) = V0(t)

∑

k |kL〉〈kL| is the external

bias while δV̂H(t) = V̂H(t)− V̂H(t0) is the change of the Hartree potential induced by the
bias. The equation of motion for the Green’s function can be integrated using the equilibrium
Green’s function Ĝeq. The result is the following integral equation on the contour:

Ĝ(z, z′) = Ĝeq(z, z′) +
∫

γ

dz̄ Ĝeq(z, z̄) qδV̂eff(z̄) Ĝ(z̄, z′). (7.31)

We can easily verify that the above Ĝ satisfies the Hartree equation of motion by acting with
[i d
dz − ĥH(t0)] on both sides and by taking into account that, by definition,

[

i
d

dz
− ĥH(t0)

]

Ĝeq(z, z′) = δ(z, z′).

Equation (7.31) is a special case of the Dyson equation whose main distinctive feature is the
possibility of expanding the full Green’s function in “powers” of some other Green’s function
(Ĝeq in this case) by iterations, i.e., by replacing the Ĝ in the last term of the r.h.s. with the
whole r.h.s.5

4A thorough discussion on linear response theory is presented in Chapters 14 and 15.
5Another example of the Dyson equation is equation (7.24) for the Fourier transform of the retarded/advanced

Green’s function. A Dyson equation similar to (7.31) was also derived in the useful exercise of Section 6.2.3.
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220 7. Mean field approximations

We observe that for V0(t) = 0 (zero bias) the Hartree potential does not change and
hence δV̂eff(z) = 0, which implies Ĝ = Ĝeq, as expected. It is also important to observe

that in (7.31) the information on the boundary conditions is all contained in Ĝeq: the Green’s

function Ĝ fulfills the same KMS boundary conditions as the equilibrium Green’s function.
To first order in δV̂eff the change δĜ = Ĝ − Ĝeq follows from the first iteration of (7.31):

δĜ(z, z′) =
∫

γ

dz̄ Ĝeq(z, z̄) qδV̂eff(z̄) Ĝeq(z̄, z′). (7.32)

To calculate the components of δĜ relevant to the current we sandwich (7.32) with 〈kα| and
|ǫ0〉, set z = t−, z′ = t+ and use the Langreth rules of Table 5.1. The r.h.s. of (7.32) can be
seen as the convolution of three functions in Keldysh space, one of which, δ(z, z′)δV̂eff(z),
has only a singular part. Taking into account that δV̂eff(t0−iτ) (vertical track of the contour)
vanishes we find [see Exercise 5.3]

δG<
kα 0(t, t) =

∑

pβ

∫ ∞

t0

dt̄
[

GR
kα pβ(t, t̄)G

<
pβ 0(t̄, t) +G<

kαpβ(t, t̄)G
A
pβ 0(t̄, t)

]

qδVβ(t̄),

(7.33)
with the e�ective potential [see (7.22)]

qδVL(t) = qV0(t) + v0 (δNL(t)− δNR(t)),

qδVR(t) = v0 (δNR(t)− δNL(t)).

On the r.h.s. of (7.33) the Green’s functions are equilibrium Green’s functions and depend
only on the time di�erence ∆t = t− t̄. Inserting (7.33) in the current formula (7.30) we find

Iα(t) = 2q2
∑

β

∫ t

t0

dt̄ Re
[

C
(1)
αβ (∆t) + C

(2)
αβ (∆t)

]

δVβ(t̄), (7.34)

with

C
(1)
αβ (∆t) =

∫
dω

2π

dω′

2π
e−i(ω−ω

′)∆t

∑

kp

TkαG
R
kα pβ(ω)G

<
pβ 0(ω

′),

C
(2)
αβ (∆t) =

∫
dω

2π

dω′

2π
e−i(ω−ω

′)∆t

∑

kp

TkαG
<
kαpβ(ω)G

A
pβ 0(ω

′).

The calculation of the kernels C(1) and C(2) can easily be carried out by inserting the ex-
plicit expression of the matrix elements of the retarded/advanced Green’s function previously
derived, and by using the fluctuation–dissipation theorem for the lesser Green’s function. In
doing so the following structures appear

∑

p

|Tpβ |2
(ω − ǫ̃pβ ± iη)(ω′ − ǫ̃pβ ± iη)

=

∑

p
|Tpβ |2

ω−ǫ̃pβ±iη −
∑

p
|Tpβ |2

ω′−ǫ̃pβ±iη
ω′ − ω = 0,

∑

p

|Tpβ |2
(ω − ǫ̃pβ + iη)(ω′ − ǫ̃pβ − iη)

=

∑

p
|Tpβ |2

ω−ǫ̃pβ+iη −
∑

p
|Tpβ |2

ω′−ǫ̃pβ−iη
ω′ − ω − 2iη

=
−iΓβ

ω′ − ω − 2iη
,
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7.2. Hartree approximation 221

where we take into account that in the WBLA the β contribution to the embedding self-
energy is a purely imaginary constant. Performing the sum over k and then integrating over
one of the frequencies,6 we find

C
(1)
αβ (∆t) = Γα

∫
dω

2π

f(ω − µ)
ω − ζ0

(

δαβ −
i

2
Γβ

1− ei(ω−ζ∗
0 )∆t

ω − ζ∗0

)

,

C
(2)
αβ (∆t) = −Γα

∫
dω

2π

f(ω − µ)
ω − ζ0

(

δαβ −
i

2
Γβ

1

ω − ζ∗0

)(

1− e−i(ω−ζ0)∆t

)

,

where ζ0 = ǫ0 + i
2Γ. Inserting these results into (7.34) we obtain the following integral

equation:

Iα(t) = 2q2Γα

∑

β

∫ t

t0

dt̄ Re

[∫
dω

2π
f(ω − µ)e

i(ω−ζ∗
0 )∆t

ω − ζ∗0

(

δαβ + i
Γβ

ω − ζ0

)]

δVβ(t̄).

(7.35)
The integral of Iα(t) between t0 and t yields the variation of the number of particles in
electrode α at time t. The e�ective potential δVβ can therefore be expressed in terms of
the currents as

qδVL(t) = qV0(t) +
v0
q

∫ t

t0

dt̄ (IL(t̄)− IR(t̄)),

qδVR(t) =
v0
q

∫ t

t0

dt̄ (IR(t̄)− IL(t̄)).
(7.36)

Equations (7.35) and (7.36) form a system of coupled integral equations for the time depen-
dent current in the Hartree approximation. Let us discuss their physical content.

We focus on a sudden switch-on process V0(t) = θ(t)V0 in order to compare the results
with those of the classical case. For noninteracting fermions v0 = 0 and the equations
decouple. In this case the current can be calculated by solving the integral in (7.35) with
δVR = 0 and δVL = V0. The results are shown in Fig. 7.4. Three main features capture
our attention. First, in contrast to the classical case the current does not start flowing
instantaneously. Second, the current reaches a constant value after some damping time
τd ∼ 1/Γ. During the transient we observe oscillations of frequency |ǫ0 − µ| due to virtual
transitions between the Fermi level µ and the molecular level ǫ0. In the classical case v0 = 0
corresponds to C = ∞ and hence I(t) = V0/R at all times, i.e., the steady-state value is
reached immediately after the switch-on of the bias. Third, the long-time limit of the current
is finite despite the absence of dissipative mechanisms leading to a finite resistance. This
is the anticipated quantum behavior: the microscopic cross-section of the nanojunction
prevents a macroscopic number of fermions from passing through it [54, 71]. The steady-

state value of the current, I
(S)
α , can be obtained from (7.35) in the limit t → ∞. Since the

kernel in the square bracket vanishes when ∆t → ∞ we can safely extend the integral to

6The integral over the frequency is done by closing the contour in the upper or lower complex ω-plane.
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222 7. Mean field approximations

Figure 7.4 Time-dependent current in units of the steady current (7.37) for noninteracting
particles. The model parameters are T = 0 (zero temperature), µ = 0, ΓL = ΓR = 1
and bias V0 = 1. The transient oscillations have frequency |ǫ0 − µ| and are due to
virtual transitions between the Fermi level µ and the molecular level ǫ0. At the steady-state
IL(t) = −IR(t) as it should.

t0 = −∞, thus finding

I
(S)
R = 2q2ΓLΓR

∫
dω

2π
Re

[
f(ω − µ)

(ω − ζ∗0 )2(ω − ζ0)

]

V0 −−−→
T→0

q2

2π

ΓLΓR

(ǫ0 − µ)2 + (Γ/2)2
V0,

(7.37)

where in the last step the zero temperature limit has been taken. The resistance R =

V0/I
(S)
R is minimum when the on-site energy ǫ0 is aligned to the Fermi energy µ and the

molecule is symmetrically coupled to the plates, ΓL = ΓR = Γ/2. The minimum of R at
ǫ0 = µ is physically sound. Indeed for small biases only fermions close to the Fermi energy
contribute to the current and the probability of being reflected is minimum when their
energy matches the height of the molecular barrier, i.e., ǫ0. The inverse of the minimum
resistance for particles with unit charge is denoted by σ0 and is called the quantum of
conductance. From (7.37) we have σ0 = 1

2π , or reinserting the fundamental constants
σ0 = e2/h = 1/(25 kOhm), with −|e| the electric charge and h the Planck constant.

The interacting results obtained by solving numerically (7.35) and (7.36) are shown in Fig.
7.5 where the left/right currents (a), and e�ective potentials (b), are calculated for di�erent
values of the interaction strength v0. As in the classical case, the currents are exponentially
damped and approach zero when the potential energy di�erence vanishes. The damping
is in remarkably good agreement with that of a classical circuit having resistance R =

V0/I
(S)
R = 2π [from (7.37) with the parameters of the figure] and capacitance C = q2/4v0.

The classical current I(t)/I
(S)
R = e−t/RC is shown in panel (a) with a thin line. Finally we

note that the present microscopic approach allows for appreciating the delay of IR(t) with
respect to IL(t) near t = 0 (the left current starts much faster than the right current). This
is due to the finite speed vF (Fermi velocity) of the particles: a perturbation in a point P
produces a change in P ′ after a time ∼ (distance between P and P ′)/vF.
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7.2. Hartree approximation 223

Figure 7.5 Time-dependent Hartree current in units of the steady current (7.37) (a), and
e�ective potential (b), for v0 = 0.0, 0.3, 0.9. The model parameters are T = 0 (zero
temperature), µ = 0, ΓL = ΓR = 1, ǫ0 = 0, q = −1 and bias V0 = 1. In panel (a) the
current of a classical circuit is shown with thin lines.

Exercise 7.1. Consider the time-dependent Gross–Pitaevskii equation in one dimension

with V = A = 0:

i
d

dt
ϕ(x, t) = − 1

2m

d2

dx2
ϕ(x, t) + v0|ϕ(x, t)|2ϕ(x, t),

where for simplicity we omit the spin index. Show that for v0 > 0 a possible solution of the

Gross–Pitaevskii equation is

ϕ(x, t) = tanh [
√
mv0(x− vt)] e

i
[

mvx−
(

m v2

2 +v0

)

t
]

,

whereas for v0 < 0 a possible solution is

ϕ(x, t) = sech
[√−mv0(x− vt)

]
e
i
[

mvx−
(

m v2

2 +
v0
2

)

t
]

,

where v is an arbitrary velocity. These solutions are solitary waves, or solitons. Indeed the

function |ϕ(x, t)|2 propagates in the medium with velocity v without changing its profile.

Readers interested in the theory of solitons should consult Ref. [72].

Exercise 7.2. Using (6.106) show that the energy of the electron gas in the Hartree ap-

proximation is given by

E = V

[

1

2
ṽ0n

2 + 2

∫
dp

(2π)3
p2/2

eβ(
p2

2 +ṽ0n−µ) + 1

]

,

where V is the volume of the system.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:06:33 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.009

Cambridge Books Online © Cambridge University Press, 2015



224 7. Mean field approximations

Exercise 7.3. Using (7.15) plot µ as a function of temperature T for di�erent values of the

density n and check that the plots are consistent with the result βµ→ −∞ for n→ 0.

Exercise 7.4. Calculate the steady-state current I
(S)
L from (7.35) with v0 = 0 and show

that I
(S)
L = −I(S)

R with I
(S)
R given in (7.37).

Exercise 7.5. Calculate the time-dependent occupation n0(t) = −iδG<
00(t, t) from (7.32)

and show that the total number of particles is conserved, i.e.,

q
dn0(t)

dt
= −IL(t)− IR(t).

7.3 Hartree–Fock approximation

The main advance of the Hartree–Fock approximation over the Hartree approximation is
the incorporation of exchange e�ects: the two-particle Green’s function G2,HF has the
same symmetry properties of the exact G2 under the interchange of the space–spin–time
arguments. If we approximate G2 with (7.2) in the equation of motion for the Green’s
function we find

i
d

dz1
G(1; 2)−

∫

d3
[
h(1; 3) + qVH(1)δ(1; 3) + iv(1; 3)G(1; 3+)

]
G(3; 2) = δ(1; 2).

(7.38)
We notice at once an important di�erence with respect to the Hartree approximation. The
quantity qVH(1)δ(1; 2) is proportional to δ(r1 − r2)δ(z1, z2), i.e., it is local both in time
and space, while the quantity

v(1; 2)G(1; 2+) = δ(z1, z2)v(x1,x2)G(x1, z1;x2; z
+
1 )

is local in time but is not local in space. Does this di�erence constitute a conceptual
complication? We show below that it does not: what we know about noninteracting Green’s
functions is still enough. We define the Hartree–Fock potential as

VHF(x1,x2, z) =

[

δ(x1 − x2)VH(x1, z) +
i

q
v(x1,x2)G(x1, z;x2, z

+)

]

=
1

q
δ(x1 − x2)

∫

dx v(x1,x)n(x, z)±
1

q
v(x1,x2)n(x1,x2, z), (7.39)

where

n(x1,x2, z) = ±iG(x1, z;x2, z
+)

is the time-dependent one-particle density matrix. We also introduce the Hartree–Fock
potential operator in first quantization in the usual manner

V̂HF(z) =

∫

dx1dx2 |x1〉VHF(x1,x2, z)〈x2|. (7.40)
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7.3. Hartree–Fock approximation 225

We then see that (7.38) is the sandwich with 〈x1| and |x2〉 of the following equation for
operators in first quantization

[

i
d

dz1
− ĥ(z1)− qV̂HF(z1)

]

Ĝ(z1, z2) = δ(z1, z2), (7.41)

which has exactly the same structure as the equation of motion of a noninteracting Green’s
function! This is a completely general result: given an equation of the form

i
d

dz1
G(1; 2)−

∫

d3 [h(1; 3) + Σ(1; 3)]G(3; 2) = δ(1; 2), (7.42)

with Σ(1; 2) = δ(z1, z2)E(x1,x2, z1), we can define the operator

Ê(z) =
∫

dx1dx2 |x1〉E(x1,x2, z)〈x2|,

and recognize that (7.42) is the sandwich with 〈x1| and |x2〉 of
[

i
d

dz1
− ĥ(z1)− Ê(z1)

]

Ĝ(z1, z2) = δ(z1, z2). (7.43)

More generally, any approximation to G2 leading to an equation like (7.43) is a mean-field ap-
proximation, which discards the direct interaction between the particles. The corresponding
mean-field G has the same structure as that of a noninteracting G. In the next chapters we
develop a perturbative approach to approximate G2, and we show that any approximation
beyond Hartree–Fock leads to an equation of motion of the form (7.42) but with a Σ that is
nonlocal in time.

The Green’s function in (7.41) must be solved self-consistently and, as in the Hartree
approximation, this can be done by solving a set of coupled equations for single-particle
wavefunctions. These equations are known as the Hartree–Fock equations and are derived
below.

7.3.1 Hartree–Fock equations

The Hartree–Fock G can be calculated as in Section 6.2 by replacing ĥ(z) with

ĥHF(z) = ĥ(z) + qV̂HF(z). (7.44)

Along the imaginary track the Hartree–Fock potential operator is a constant operator that

is denoted by V̂M

HF. We again specialize the discussion to particles of mass m and charge
q initially in equilibrium in some external potential V (x).7 The single-particle Hamiltonian

which describes this situation is therefore ĥM = p̂2/(2m) + qV (r̂, Ŝz) − µ and the inter-
action is vM = v. The first step consists in finding the kets |λ〉 which solve the eigenvalue
problem

[

ĥM + qV̂M

HF

]

|λ〉 = (ǫλ − µ)|λ〉.
7The inclusion of vector potentials and spin–flip interactions is straightforward.
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226 7. Mean field approximations

By sandwiching with the bra 〈x| and using the explicit form of ĥM, the eigenvalue equation
reads

[

−∇
2

2m
+ qV (x)

]

ϕλ(x) +

∫

dx′ qV M
HF(x,x

′)ϕλ(x
′) = ǫλϕλ(x) (7.45)

with

V M
HF(x,x

′) = δ(x− x′)V M
H (x)± 1

q
v(x,x′)

∑

ν

f(ǫν − µ)ϕν(x)ϕ
∗
ν(x
′) (7.46)

and the Hartree potential V M
H given in (7.8). In (7.46) we use the result (6.40) according to

which

G(x, t0 − iτ ;x′, t0 − iτ+) = GM(x, τ ;x′, τ+) = ∓i
∑

ν

f(ǫν − µ)〈x|ϕν〉〈ϕν |x′〉.

We thus obtain a coupled system of nonlinear equations for the eigenfunctions ϕλ. These
equations are known as the Hartree–Fock equations [73, 74]. As usual the upper/lower sign
in (7.46) refers to bosons/fermions.

We have already mentioned that the Hartree–Fock approximation cures the self-inter-
action problem in fermionic systems. Using (7.46) the second term on the l.h.s. of (7.45)
becomes
∫

dx′ qV M
HF(x,x

′)ϕλ(x
′) =

∑

ν

f(ǫν − µ)
∫

dx′ v(x,x′)

×
[
|ϕν(x

′)|2ϕλ(x)± ϕν(x)ϕ
∗
ν(x
′)ϕλ(x

′)
]
. (7.47)

The term ν = λ in the above sum vanishes for fermions while it yields twice the Hartree
contribution for bosons. Thus, for a system of bosons at zero temperature the Hartree–Fock
equations are identical to the Hartree equations (7.10) with N → 2N . It is also noteworthy
that if the interaction is spin-independent, i.e., v(x1,x2) = v(r1 − r2), the second term in
the square bracket vanishes unless ν and λ have the same spin projection. In other words
there are no exchange contributions coming from particles of di�erent spin projection.

Once the equilibrium problem is solved we can construct the Matsubara Green’s func-
tion. For all other Keldysh components we must propagate the |λ〉s in time according to the

Schrödinger equation i ddt |λ(t)〉 = [ĥ(t) + qV̂HF(t)]|λ(t)〉 with initial conditions |λ(t0)〉 =
|λ〉. By sandwiching again with 〈x| we find the so called time-dependent Hartree–Fock equa-
tions. They are simply obtained from the static equations (7.45) by replacing [−∇2/(2m) +
qV (x)] with the time-dependent single-particle Hamiltonian h(r,−i∇,S, t), the static wave-
functions ϕλ(x) with the time-evolved wavefunctions ϕλ(x, t), the static Hartree–Fock po-
tential V M

HF(x,x
′) with the time-dependent Hartree–Fock potential VHF(x,x

′, t), and ǫλ
with i ddt .

Total energy in the Hartree–Fock approximation

In thermodynamic equilibrium (ĥM = ĥ − µ and vM = v) the single-particle Hamiltonian
ĥ(t) = ĥ is independent of time. As a consequence the Hartree–Fock Hamiltonian ĥHF =
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7.3. Hartree–Fock approximation 227

ĥ+ qV̂HF = ĥ+ qV̂M

HF is also independent of time and the lesser Green’s function reads

Ĝ<(ω) = ∓2πi f(ĥ+ qV̂M

HF − µ
︸ ︷︷ ︸

ĥM
HF

) δ(ω − [ĥ+ qV̂M

HF
︸ ︷︷ ︸

ĥHF

]).

Substituting this Ĝ< in (6.106) and inserting a complete set of eigenstates of ĥ + qV̂M

HF we
get

E =
∑

λ

fλ

[

ǫλ −
1

2

∫

dx〈x|qV̂M

HF|λ〉〈λ|x〉
]

=
∑

λ

fλ

[

ǫλ −
1

2

∑

ν

fν(vλννλ ± vλνλν)
]

, fλ ≡ f(ǫλ − µ), (7.48)

where in the last equality we use (7.47). As expected, the total energy is not the weighted
sum of the single-particle Hartree–Fock energies, see discussion below (7.11). It is instructive
to express the ǫλs in terms of hλλ and Coulomb integrals. If we multiply (7.45) by ϕ∗λ(x)
and integrate over x we obtain

ǫλ = hλλ +
∑

ν

fν(vλννλ ± vλνλν), (7.49)

from which it is evident that the self-interaction energy, i.e., the contribution λ = ν in the
sum, vanishes in the case of fermions.

Koopmans’ theorem

Since the total energy E 6=∑λ fλǫλ we cannot interpret the ǫλ as the energy of a particle.
Can we still give a physical interpretation to the ǫλ? To answer this question we insert (7.49)
into (7.48) and find

E =
∑

λ

fλhλλ +
1

2

∑

λν

fλfν(vλννλ ± vλνλν). (7.50)

We now consider an ultrafast ionization process in which the particle in the ρth level is
suddenly taken infinitely far away from the system. If we measure the energy of the ionized
system before it has time to relax to some lower energy state we find

Eρ =
∑

λ6=ρ

fλhλλ +
1

2

∑

λν 6=ρ

fλfν(vλννλ ± vλνλν).

The di�erence between the initial energy E and the energy Eρ is

E − Eρ = fρhρρ +
1

2
fρfρ(vρρρρ ± vρρρρ)

+
1

2

∑

ν 6=ρ

fρfν(vρννρ ± vρνρν) +
1

2

∑

λ6=ρ

fλfρ(vλρρλ ± vλρλρ).
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228 7. Mean field approximations

Using the symmetry vijkl = vjilk of the Coulomb integrals we can rewrite E − Eρ in the
following compact form:

E − Eρ = fρ

[

ǫρ −
1

2
fρ(vρρρρ ± vρρρρ)

]

.

Thus, for a system of fermions the eigenvalue ǫρ multiplied by the occupation fρ is the
di�erence between the energy of the initial system and the energy of the ionized and
unrelaxed system. At zero temperature we expect that the removal of a particle from the
highest occupied level (HOMO) does not cause a dramatic relaxation, and hence ǫρHOMO

should provide a good estimate of the ionization energy. This result is known as Koopmans’
theorem. For a system of bosons a similar interpretation is not possible.

7.3.2 Coulombic electron gas and spin-polarized solutions

Let us consider again an electron gas in equilibrium with single-particle Hamiltonian ĥM =
p̂2/2−V0−µ where V0 is a constant energy shift (for electrons q = −1). Due to translational

invariance the eigenkets of ĥM − V̂M

HF are the momentum-spin kets |pσ〉:
[

ĥM − V̂M

HF

]

|pσ〉 = (ǫp − µ)|pσ〉. (7.51)

The Matsubara Green’s function (needed to evaluate V̂M

HF) is given in (6.40) and reads

GM(x1, τ ;x2, τ
+) = i

∑

σ

∫
dk

(2π)3
fk〈x1|kσ〉〈kσ|x2〉, (7.52)

where we use the short-hand notation fk ≡ f(ǫk−µ) and insert the completeness relation
(1.11). Fourier transforming the interparticle interaction

v(r1 − r2) =

∫
dq

(2π)3
eiq·(r1−r2)ṽq =

∫
dq

(2π)3
ṽq〈r1|q〉〈q|r2〉,

and using the identity 〈r1|k〉〈r1|q〉 = 〈r1|k+ q〉 we can rewrite the Hartree–Fock operator
(7.40) in a diagonal form

V̂M

HF =

∫

dx1dx2 |x1〉〈x1|
[

−nṽ0 +
∑

σ

∫
dkdq

(2π)6
|qσ〉fkṽq−k〈qσ|

]

|x2〉〈x2|

=
∑

σ

∫
dq

(2π)3
|qσ〉

[

−nṽ0 +
∫

dk

(2π)3
fkṽq−k

]

〈qσ|. (7.53)

Substituting this result into the eigenvalue equation (7.51) we obtain the following expression
for ǫp:

ǫp =
p2

2
− V0 + nṽ0 −

∫
dk

(2π)3
fkṽp−k.
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7.3. Hartree–Fock approximation 229

The total energy is the integral over all momenta of ǫp minus one half the interaction energy
weighted with the Fermi function [see (7.48)]

E = 2V

∫
dp

(2π)3
fp

[
p2

2
− V0 +

1

2
nṽ0 −

1

2

∫
dk

(2π)3
fkṽp−k

]

, (7.54)

where the factor of 2 comes from spin, and where V is the volume of the system.
Let us specialize these formulas to the Coulombic interaction v(r1 − r2) = 1/|r1 − r2|.

The Fourier transform is in this case ṽp = 4π/p2 and hence ṽ0 diverges! Is this physical? The
answer is yes. In the absence of any positive charge that attracts and binds the electrons
together, the energy that we must spend to put an extra electron in a box containing a
macroscopic number of electrons is infinite. We therefore consider the physical situation in
which the space is permeated by a uniform density nb = n of positive charge, in such a
way that the whole system is charge neutral. Then the potential V0 felt by an electron in r is
V0 = nb

∫
dr1 v(r − r1) = nṽ0 which is also divergent, and the single-particle eigenvalues

turn out to be finite

ǫp =
p2

2
− 4π

∫
dk

(2π)3
fk

|p− k|2 . (7.55)

The energy E is, however, still divergent. This is due to the fact that E contains only the elec-
tronic energy. Adding to E the energy of the positive background Eb =

1
2

∫
dr1dr2n

2
b/|r1−

r2| = 1
2Vn

2ṽ0, the total energy of the system electrons+background is finite and reads8

Etot = E + Eb = V

∫
dp

(2π)3
fp

[

2
p2

2
− 4π

∫
dk

(2π)3
fk

|p− k|2
]

. (7.56)

Let us evaluate (7.55) and (7.56) at zero temperature.
At zero temperature the chemical potential µ coincides with the Fermi energy ǫF and we

can write fp = θ(ǫF − ǫp). The eigenstates with energy below ǫF are filled while the others
are empty. The density (per spin) is therefore

n

2
=

∫
dp

(2π)3
θ(ǫF − ǫp) = p3F/(6π

2), (7.57)

where pF is the Fermi momentum, i.e., the value of the modulus of p for which ǫp = ǫF.
Note that the Fermi momentum is the same as that of a noninteracting gas with the same
density. As we see in Section 11.6 this result is a general consequence of the conserving
nature of the Hartree–Fock approximation. We also observe that the eigenvalue ǫp in (7.55)
depends only on p = |p|. This is true for all interactions v(r1 − r2) that are invariant
under rotations. The calculation of the integral in (7.55) can be performed by expanding
|p − k|2 = p2 + k2 − 2kp cos θ (with θ the angle between p and k) and changing the
measure from cartesian to polar coordinates dk = dϕd(cos θ)dk k2. The integral of the
angular part yields

4π

∫
dk

(2π)3
fk

|p− k|2 =
1

πp

∫ pF

0

dk k ln

∣
∣
∣
∣

p+ k

p− k

∣
∣
∣
∣
=
pF
πx

∫ 1

0

dy y ln

∣
∣
∣
∣

x+ y

x− y

∣
∣
∣
∣
,

8Take into account that the density of the electron gas is given by n = 2
∫ dp

(2π)3
fp.
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230 7. Mean field approximations

Figure 7.6 Left panel. The function F (x) whose derivative diverges in x = 1. Middle
panel. Comparison between the free-electron eigenvalues and the Hartree–Fock eigenvalues
in units of p2F. Right panel. Density of states D(ω)/2π in units of pF (energy is in units of
p2F). In the middle and right panel pF = 1 which corresponds to rs ∼ 1.92.

where in the last equality we introduce the dimensionless variables x = p/pF and y = k/pF.
The remaining integral is a standard logarithmic integral

I(a, b) ≡
∫ 1

0

dy y ln

∣
∣
∣
∣

b+ ay

b− ay

∣
∣
∣
∣
=
b

a
+

1

2
(1− b2

a2
) ln

∣
∣
∣
∣

b+ a

b− a

∣
∣
∣
∣
, (7.58)

and we thus arrive at the result

4π

∫
dk

(2π)3
fk

|p− k|2 =
2pF
π
F (

p

pF
), (7.59)

where

F (x) =
1

2
+

1− x2
4x

ln

∣
∣
∣
∣

1 + x

1− x

∣
∣
∣
∣
. (7.60)

The function F (x) as well as a comparison between the free-electron eigenvalue p2/2 and
the Hartree–Fock eigenvalue ǫp is shown in Fig. 7.6 for pF = 1. The exchange contribution
lowers the free-electron eigenvalues:

ǫp =
p2

2
︸ ︷︷ ︸

free

→ ǫp =
p2

2
− 2pF

π
F (

p

pF
)

︸ ︷︷ ︸

Hartree−Fock

. (7.61)

This is a very important result since it provides a (partial) explanation of the stability of
matter. Without the exchange correction the electrons would behave as free particles and
hence they could easily escape from a solid. We can calculate the binding energy due to the
exchange term by substituting (7.59) into (7.56) with fp = θ(ǫF− ǫp). Changing the measure
from cartesian to polar coordinates and exploiting the analytic result,

∫

dxx(1− x2) ln
∣
∣
∣
∣

1 + x

1− x

∣
∣
∣
∣
=

1

2
x− 1

6
x3 − 1

4
(1− x2)2 ln

∣
∣
∣
∣

1 + x

1− x

∣
∣
∣
∣
,
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7.3. Hartree–Fock approximation 231

we find that the total energy at zero temperature is

Etot = nV

[
3

5

p2F
2
− 3

4

pF
π

]

(7.62)

It is common to express this result in terms of the “average distance” between the electrons.
This simply means that if there is one electron in a sphere of radius R then the density of
the gas is n−1 = 4

3πR
3. Writing the radius R = rsaB in units of the Bohr radius aB =

1 a.u. and taking into account that pF = (3π2n)1/3 [see (7.57)] we find pF = ( 9π4 )
1
3

1
rs

and
hence

Etot

nV
=

1

2

[
2.21

r2s
− 0.916

rs

]

(in atomic units) (7.63)

Most metals have rs in the range 2−6 and therefore the exchange energy gives an important
contribution to the binding energy.9

So far so good, but the Hartree–Fock approximation also su�ers serious problems. For
instance, the density of states D(ω) defined in (6.34) is

D(ω) = 2π

∫
dp

(2π)3
δ(ω − ǫp) =

1

π

∫

dp p2
δ(p− p(ω))
|∂ǫp/∂p|p(ω)

=
p2(ω)

π

∣
∣
∣
∣

dǫp
dp

∣
∣
∣
∣

−1

p(ω)

,

with p(ω) the value of the momentum p for which ǫp = ω. In the noninteracting gas p(ω) =√
2ω and the density of states is proportional to

√
ω. In the Hartree–Fock approximation

D(ω) is zero at the Fermi energy, see Fig. 7.6, due to the divergence of the derivative
of F (x) in x = 1. This is in neat contrast to experimentally observed density of states
of metals which are smooth and finite across ǫF. Another problem of the Hartree–Fock
approximation is the overestimation of the band-widths of metals and of the band-gaps of
semiconductors and insulators. These deficiencies are due to the lack of screening e�ects.
As the interparticle interaction is repulsive an electron pushes away electrons around it and
remains surrounded by a positive charge (coming from the positive background charge).
The consequence of the screening is that the e�ective repulsion between two electrons is
reduced (and, as we shall see, retarded).

A further problem of the Hartree–Fock approximation that we wish to discuss is related to
the stability of the solution. Consider preparing the system in a di�erent initial configuration
by changing the single-particle Hamiltonian ĥM under the constraint that ĥMHF and ĥHF(t0)

commute.10 Then the eigenkets |λ〉 of ĥMHF are also eigenkets of ĥHF(t0) with eigenvalues ǫλ.
The time-evolved kets |λ(t)〉 = e−iǫλ(t−t0)|λ〉 are the self-consistent solution of the time-

dependent Hartree–Fock equations since in this case ĥHF(t) = ĥHF(t0) is time-independent

and, at the same time, i ddt |λ(t)〉 = ĥHF(t)|λ(t)〉. The corresponding real-time Green’s
function depends only on the time di�erence and hence it describes an excited stationary
configuration. According to (6.48) the lesser Green’s function is obtained by populating the
kets |λ〉 with occupations f(ǫMλ ) and, in principle, may give a total energy which is lower

9The dimensionless radius rs is also called the Wigner–Seitz radius.
10Recall that ĥM specifies the initial preparation and does not have to represent the physical Hamiltonian ĥ of the

system. In thermodynamic equilibrium ĥM = ĥ− µ. Any other choice of ĥM describes an excited configuration.
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232 7. Mean field approximations

than (7.62). If so the Hartree–Fock approximation is unstable and this instability indicates
either that the approximation is not a good approximation or that the system would like
to rearrange the electrons in a di�erent way. Changing the Hamiltonian ĥM and checking
the stability of an approximation is a very common procedure to assess the quality of the
approximation and/or to understand if the ground state of the system has the same symmetry
as the noninteracting ground state. Let us illustrate how it works with an example. As a trial
single-particle Hamiltonian we consider

ĥM = ĥ+
∑

σ

∫
dp

(2π)3
ǫσ|pσ〉〈pσ| − µ, ĥ = p̂2/2− V0. (7.64)

As we shall see shortly, this choice of ĥM corresponds to an initial configuration with
di�erent number of spin up and down electrons. We are therefore exploring the possibility
that a spin-polarized electron gas has lower energy than the spin-unpolarized one.

Having broken the spin symmetry, the single particle eigenvalues of the Hartree–Fock

Hamiltonian ĥMHF = ĥM − V̂M

HF are spin dependent. The extra term in (7.64), however, does
not break the translational invariance and therefore the momentum–spin kets |pσ〉 are still

good eigenkets. The Matsubara Green’s function needed to calculate V̂M

HF reads

GM(x1, τ ;x2, τ
+) = i

∑

σ

∫
dk

(2π)3
fkσ〈x1|kσ〉〈kσ|x2〉,

where fkσ = θ(ǫF − ǫkσ − ǫσ) and ǫkσ + ǫσ − ǫF are the eigenvalues of ĥMHF. Inserting
this result into the Hartree–Fock potential (7.39) we find the following Hartree–Fock potential
operator [compare with (7.53)]

V̂M

HF =
∑

σ

∫
dq

(2π)3
|qσ〉

[

−(n↑ + n↓)ṽ0 +

∫
dk

(2π)3
fkσ ṽq−k

]

〈qσ|,

with nσ =
∫

dp
(2π)3 fpσ the uniform density for electrons of spin σ. Since we are at zero

temperature, nσ = p3Fσ/(6π
2) where the spin-dependent Fermi momentum is defined as

the solution of ǫpσ = ǫF− ǫσ ; thus we can treat either ǫσ or nσ or pFσ as the independent
variable.

The Hartree–Fock Hamiltonian at positive times is time-independent and given by

ĥHF =
p̂2

2
− V0 − V̂

M

HF,

with eigenvalues ǫpσ . We consider again Coulombic interactions and neutralize the system

with a positive background charge nb = n↑+n↓. Then the eigenvalues of ĥHF are given by

ǫpσ =
p2

2
− 2pFσ

π
F (

p

pFσ
),
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7.3. Hartree–Fock approximation 233

Figure 7.7 Energy density of the electron gas for the spin polarized Hartree–Fock approxi-
mation.

and we find

Ĝ<(ω) = 2πif(ĥMHF)δ(ω − ĥHF)

= 2πi
∑

σ

∫
dp

(2π)3
|pσ〉fpσ δ

(

ω − p2

2
+

2pFσ
π

F (
p

pFσ
)

)

︸ ︷︷ ︸

δ(ω−ǫpσ)

〈pσ|.

The total energy of the spin-polarized electron gas can readily be obtained using (6.106) and
reads

Etot = V

∑

σ

∫
dp

(2π)3
fpσ

[
p2

2
− pFσ

π
F (

p

pFσ
)

]

= V

∑

σ

nσ

[
3

5

p2Fσ
2
− 3

4

pFσ
π

]

.

Let us study what this formula predicts at fixed n↑ + n↓ ≡ n. If we define the spin
polarization x = (n↑ − n↓)/n we can write n↑ =

n
2 (1 + x) and n↓ =

n
2 (1− x), and hence

we can express Etot in terms of n and x only (recall that pFσ = (6π2nσ)
1/3). In Fig. 7.7

we plot Etot/(nV) as a function of the spin polarization x for values of rs =
(

3
4πn

)1/3
. For

small rs the state of minimum energy is spin-unpolarized since the energy has a minimum
in x = 0. However, by increasing rs, or equivalently by decreasing the density, the system
prefers to break the spin symmetry and to relax in a spin-polarized state. The tendency
toward spin-polarized solutions at small densities can be easily understood. The exchange
interaction between two electrons is negative if the electrons have the same spin and it is
zero otherwise [see discussion below (7.47)]. Consider a spin-unpolarized electron gas and
flip the spin of one electron. Due to the Pauli exclusion principle, particles with the same
spin cannot occupy the same level and therefore after the spin-flip we must put the electron
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234 7. Mean field approximations

into a state with momentum larger than pF. If the density is small this increase in kinetic
energy is lower than the exchange energy gain. Then we can lower the energy further by
flipping the spin of another electron and then of another one and so on and so forth until
we start to expend too much kinetic energy. If the fraction of flipped spin is finite then
the more stable solution is spin-polarized. The results in Fig. 7.7 predict that the transition
from spin-unpolarized to spin-polarized solutions occurs at a critical value of rs between 5
and 6 (the precise value is rs = 5.45). This critical value is very unphysical since it is in the
range of the rss of ordinary metals (ferromagnetic materials have rs an order of magnitude
larger).

Exercise 7.6. The atoms of a simple metal have Z electrons (or holes) in the conduction

band. Since 1 gram of protons corresponds to NA = 0.6 × 1024 protons (NA is Avogadro’s

number) the density of conduction electrons per cubic centimeter is n = NAρ(Z/A) where
ρ is the density of the metal measured in g/cm3 and A is the mass number (number of

protons plus neutrons) of the element. Calculate rs = ( 3
4πn )

1/3 for Cu, Ag, Au, Al, Ga using

the following values for Z : ZCu = 1, ZAg = 1, ZAu = 1, ZAl = 3, ZGa = 3. Take the

values of ρ and A from the periodic table. In all cases rs is between 2 and 3. Looking at the

number of outer-shell electrons in these elements try to justify the choice of the numbers

Z .

Exercise 7.7. Consider a system of fermions. Show that in the Hartree–Fock approximation

Γ2(x,x
′;x,x′) = n(x)n(x′)− |n(x,x′)|2,

where Γ2 is the two-particle density matrix defined in Section 1.7. In Appendix C we

show that Γ2 is the probability of finding a particle at x and another at x′. Therefore

Γ2 approaches the independent product of probabilities n(x)n(x′) for |r − r′| → ∞. A

measure of the correlation between the particles is provided by the pair correlation function

g(x,x′) = Γ2(x,x
′;x,x′)/n(x)n(x′). In the Hartree–Fock approximation

g(x,x′) = 1− |n(x,x
′)|2

n(x)n(x′)
.

In an electron gas the Hartree–Fock pair correlation function is equal to (1 − δσσ′) for

r = r′ and approaches 1 for |r − r′| → ∞, see Appendix C. Thus electrons far away are

uncorrelated while electrons that are close to each other are correlated only through the

Pauli principle. The reader can find more on the pair correlation function in the electron

gas in Refs. [67, 75, 76].
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8

Conserving approximations:

two-particle Green’s function

8.1 Introduction

In this and the next two chapters we lay down the basis to go beyond the Hartree–Fock
approximation. We develop a powerful approximation method with two main distinctive
features. The first feature is that the approximations are conserving. A major di�culty in
the theory of nonequilibrium processes consists in generating approximate Green’s functions
yielding a particle density n(x, t) and a current density J(x, t) which satisfy the continuity
equation, or a total momentum P(t) and a Lorentz force F(t) which is the time-derivative
of P(t), or a total energy E(t) and a total power which is the time-derivative of E(t),
etc. All these fundamental relations express the conservation of some physical quantity.
In equilibrium the current is zero and hence the density is conserved, i.e., it is the same
at all times; the force is zero and hence the momentum is conserved; the power fed into
the system is zero and hence the energy is conserved, etc. The second important feature
is that every approximation has a clear physical interpretation. In Chapter 7 we showed
that the two-particle Green’s function in the Hartree and Hartree–Fock approximation can
be represented diagrammatically as in Fig. 7.1 and Fig. 7.2 respectively. In these diagrams
two particles propagate from (1′, 2′) to (1, 2) as if there was no interaction. Accordingly,
the Green’s function in both approximations has the structure of a noninteracting G. The
diagrammatic representation turns out to be extremely useful to visualize the scattering pro-
cesses contained in an approximation and then to convert these processes into mathematical
expressions. Without being too rigorous we could already give a taste of how the diagram-
matic formalism works, just to show how intuitive and simple it is. Suppose that there is
a region of space where the particle density is smaller than everywhere else. Then we do
not expect a mean-field approximation to work in this region since the concept of e�ective
potential is not justified for low densities. We therefore must construct an approximation
that takes into account the direct interaction between the particles. This means that the
propagation from (1′, 2′) to (1, 2) must take into account possible intermediate scatterings
in (3, 4) as illustrated in Fig. 8.1. In the first diagram two particles propagate from (1′, 2′) to
(3, 4) and then scatter. The scattering is caused by the interaction (wiggly line) v(3; 4), and
after scattering the propagation continues until the particles arrive in (1, 2). The second

235
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236 8. Conserving approximations: two-particle Green’s function

Figure 8.1 Direct scattering between two particles.

diagram contains the same physical information but the final state (1, 2) is exchanged with
(2, 1). As in the Hartree–Fock case the second diagram guarantees that G2 has the correct
symmetry under the interchange of its arguments. If we now associate a Green’s function
with each straight line and an interparticle interaction with each wiggly line we may try to
improve over the Hartree–Fock approximation by adding to G2,HF a term proportional to
the diagrams in Fig. 8.1, i.e.,

∫

d3d4 v(3; 4) [G(1; 3)G(3; 1′)G(2; 4)G(4; 2′)±G(1; 4)G(4; 2′)G(2; 3)G(3; 1′)] ,

whose dominant contribution comes from the integral over the low density region. This is,
in essence, how new physical mechanisms can be incorporated in an approximation within
the diagrammatic approach. There are, of course, plenty of other diagrams that we can
dream up and that may be relevant to the problem at hand; Fig. 8.1 does not exhaust all
possible scattering processes. For instance, the particles may interact one more time before
reaching the final state, see Fig. 8.2(a). Another possibility is that the particle in 3′ interacts
“with itself” in 4′ and during the propagation between 3′ and 4′ scatters with the particle
from 2′, see Fig. 8.2(b). This process seems a bit bizarre, but as we shall see it exists.

The diagrammatic approach is very appealing but, at this stage, not rigorous. There
are several questions that we can ask: what are the exact rules to convert a diagram
into a formula? How should we choose the diagrams so as to have an approximation
which is conserving? And also: what is the prefactor in front of each diagram? Is there
a systematic way to include all possible diagrams? Including all possible diagrams with an
appropriate prefactor do we get the exact Green’s function? To answer all these questions
we proceed as follows. In this chapter we establish the conditions for an approximate G2

to yield a conserving Green’s function. Then, in Chapter 9 we show that G2 is not the most
natural object to construct a conserving approximation and introduce a much more suitable
quantity, i.e., the self-energy. The self-energy also has a diagrammatic representation and
the rules to convert a diagram into a formula are given. Finally, in Chapter 10 we describe
a method to construct the exact self-energy in terms of the Green’s function and the
interparticle interaction.
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8.2. Conditions on the approximate G2 237

Figure 8.2 Examples of other scattering processes.

8.2 Conditions on the approximate G2

We consider a system of interacting particles with mass m and charge q under the influence
of an external electromagnetic field. The single-particle Hamiltonian is

h(1; 2) = 〈x1|ĥ(z1)|x2〉δ(z1, z2) =
[

1

2m
(−iD1)

2 + qV (1)

]

δ(1; 2), (8.1)

with the gauge-invariant derivative

D1 ≡∇1 − i
q

c
A(1). (8.2)

The fields A(1) and V (1) are the vector and scalar potentials. The single-particle Hamil-

tonian ĥ is the same on the forward and backward branch, and it is time-independent
along the imaginary track of the contour. Therefore, the scalar and vector potentials with
arguments on the contour are defined as

A(x, z = t±) = A(x, t), A(x, z = t0 − iτ) = A(x), (8.3)

and
V (x, z = t±) = V (x, t), V (x, z = t0 − iτ) = V (x). (8.4)

We observe that neither A nor V has an actual dependence on spin. In the following we
use either V (x, z) or V (r, z) to represent the scalar potential and either A(x, z) or A(r, z)
to represent the vector potential. The choice of r or x is dictated by the principle of having
the notation as light as possible.

The equations of motion for the Green’s function with h(1; 2) from (8.1) read

[ i
d

dz1
+

1
2mD2

1−qV (1)
︷ ︸︸ ︷

∇2
1

2m
− iq

2mc
[(∇1 ·A(1)) + 2A(1)·∇1]− w(1) ]G(1; 2)

= δ(1; 2)± i

∫

d3 v(1; 3)G2(1, 3; 2, 3
+), (8.5)

[ −i d
dz2

+

1
2m (D2

2)
∗−qV (2)

︷ ︸︸ ︷

∇2
2

2m
+

iq

2mc
[(∇2 ·A(2)) + 2A(2)·∇2]− w(2) ]G(1; 2)

= δ(1; 2)± i

∫

d3 G2(1, 3
−; 2, 3)v(3; 2), (8.6)
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238 8. Conserving approximations: two-particle Green’s function

where we have introduced the short-hand notation [see also (3.34)]

w(1) = qV (1) +
q2

2mc2
A2(1).

As always in this book the upper/lower sign refers to bosons/fermions. In what follows we
shall prove that if the approximate two-particle Green’s function fulfills:

(A1) the symmetry condition

G2(1, 2; 1
+, 2+) = G2(2, 1; 2

+, 1+),

(A2) the same boundary conditions as the exact G2,

then the approximate G obtained from (8.5) and (8.6) satisfies all conservation laws. This
important result was derived by Baym and Kadano� in 1961 [77]. As we shall see, condition
(A2) is needed only to prove the energy conservation law. For all other conservation laws
condition (A1) is enough. Note that condition (A1) is a special case of the more general
symmetry property of the two-particle Green’s function,

G2(1, 2; 3, 4) = G2(2, 1; 4, 3), (8.7)

which follows directly from the definition (5.1).

Exercise 8.1. Show that both the Hartree and Hartree–Fock approximations fulfill (A1) and

(A2).

8.3 Continuity equation

Subtracting (8.6) from (8.5) and writing ∇2
1 −∇2

2 = (∇1 +∇2) · (∇1 −∇2) we find
[

i
d

dz1
+ i

d

dz2

]

G(1; 2) + (∇1 +∇2) ·
∇1 −∇2

2m
G(1; 2)

− iq

2mc
[(∇1 ·A(1)) + (∇2 ·A(2)) + 2A(1)·∇1 + 2A(2)·∇2]G(1; 2)

− [w(1)− w(2)]G(1; 2) = ±i
∫

d3 [v(1; 3)G2(1, 3; 2, 3
+)− v(2; 3)G2(1, 3

−; 2, 3)].

(8.8)

This is an important equation since it constitutes the starting point to prove all conservation
laws. We can extract an equation for the density by setting 2 = 1+ = (x1, z

+
1 ). Then the

first term on the l.h.s. becomes the derivative of the density

i
d

dz1
G(1; 1+) = ± d

dz1
n(1).

The second and the third term can be grouped to form a total divergence

2nd + 3rd term = ∇1 ·
[(

∇1 −∇2

2m
G(1; 2)

)

2=1+
− iq

mc
A(1)G(1; 1+)

]

. (8.9)
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8.3. Continuity equation 239

It is easy to see that the remaining terms cancel out. In particular the term containing
G2 vanishes for all approximate two-particle Green’s functions since v is local in time and
hence

[v(1; 3)G2(1, 3; 1
+, 3+)−G2(1, 3

−; 1+, 3)v(1+; 3)] = 0.

In fact, the conservation of the number of particles is a direct consequence of the equations
of motion alone. The time-dependent ensemble averages of the paramagnetic and diamag-
netic current density operators are expressed in terms of the Green’s function according to
[see (5.4) and (5.5)]

j(1) = ±
(
∇1 −∇2

2m
G(1; 2)

)

2=1+
, (8.10)

and

jd(1) = −
q

mc
A(1)n(1) = ∓ iq

mc
A(1)G(1; 1+).

Hence the r.h.s. of (8.9) is the divergence of the total current density J(1) = j(1) + jd(1)
already defined in (3.31). We thus derive the continuity equation

d

dz1
n(1) +∇1 · J(1) = 0, (8.11)

which tells us that accumulation of charge in a certain region of space is related to current
flow. This is certainly an important relation that one wants to have satisfied in nonequilib-
rium systems such as, e.g., the quantum discharge of a capacitor discussed in Section 7.2.3.

The reader may not expect to find that the continuity equation (8.11) is an equation on
the contour instead of an equation on the real time axis. Does (8.11) contain the same
information as the continuity equation on the real time axis? Strictly speaking (8.11) contains
some more information, even though the extra information is rather obvious. It is instructive
to analyze (8.11) in detail since the same analysis is valid for other physical quantities. To
extract physical information from (8.11) we let the contour variable z1 lie on a di�erent part
of the contour. For z1 = t1− on the forward branch we have

d

dz1
n(x1, z1) = lim

ǫ→0

n(x1, (t1 + ǫ)−)− n(x1, t1−)

ǫ
= lim

ǫ→0

n(x1, t1 + ǫ)− n(x1, t1)

ǫ

=
d

dt1
n(x1, t1) = −∇1 · J(x1, t1),

and similarly for z1 = t1+ on the backward branch

d

dz1
n(x1, z1) = lim

ǫ→0

n(x1, (t1 − ǫ)+)− n(x1, t1+)

−ǫ = lim
ǫ→0

n(x1, t1 − ǫ)− n(x1, t1)

−ǫ
=

d

dt1
n(x1, t1) = −∇1 · J(x1, t1).

In these two equations we use the definition of the derivative on the contour, see Section 4.4,
as well as that for all operators Ô(t) built from the field operators, like the density and the
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240 8. Conserving approximations: two-particle Green’s function

current density, the time-dependent ensemble average O(t±) = O(t). The continuity
equation on the contour contains the same information as the continuity equation on the
real time axis when z1 lies on the horizontal branches. The extra information contained in
(8.11) comes from z1 on the vertical track. In this case both the density and the current
density are independent of z1 and the continuity equation reduces to ∇1 · J(1) = 0. This
result tells us that for a system in equilibrium the current density is divergenceless, and
hence there can be no density fluctuations in any portion of the system.

The continuity equation expresses the local conservation of particles, since it is a dif-
ferential equation for the density n(x1, z1) in the point x1. The time-derivative of the
local momentum, angular momentum, or energy is not a total divergence. For instance the
time-derivative of the local momentum P(1) = mJ(1) is a total divergence plus the local
Lorentz force, see Section 3.5. Below we prove that momentum, angular momentum, and
energy are conserved in a global sense, i.e., we prove the conservation laws for the integral
of the corresponding local quantities.

8.4 Momentum conservation law

We saw in (3.32) that the total momentum of a system is the integral over all space and spin
of the current density J multiplied by the mass of the particles

P(t) ≡ m
∫

dxJ(x, t).

To calculate the time derivative of P we calculate separately the time derivative of j (para-
magnetic current density) and jd (diamagnetic current density). We introduce the shorthand
notation f1 = f(1) for a scalar function and f1,p = fp(1) for the pth component of a
vector function f(1). Then, using the Einstein convention of summing of repeated indices
we can rewrite (8.8) as

[

i
d

dz1
+ i

d

dz2

]

G(1; 2) + (∂1,p + ∂2,p)
∂1,p − ∂2,p

2m
G(1; 2)

− iq

2mc
[(∂1,pA1,p) + (∂2,pA2,p) + 2A1,p∂1,p + 2A2,p∂2,p]G(1; 2)

−[w1 − w2]G(1; 2) = ±i
∫

d3 [v(1; 3)G2(1, 3; 2, 3
+)− v(2; 3)G2(1, 3

−; 2, 3)],

(8.12)

where ∂1,p is the pth component of ∇1. To obtain an equation for the paramagnetic current
density we act on (8.12) with (∂1,k − ∂2,k)/2m and evaluate the result in 2 = 1+. The first
term in (8.12) yields

[(
∂1,k − ∂2,k

2m

)(

i
d

dz1
+ i

d

dz2

)

G(1; 2)

]

2=1+
= i

d

dz1

[
∂1,k − ∂2,k

2m
G(1; 2)

]

2=1+
= ±i d

dz1
j1,k,

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:06:48 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.010

Cambridge Books Online © Cambridge University Press, 2015



8.4. Momentum conservation law 241

where we use (8.10). The second term of (8.12) gives a total divergence since

∂1,k − ∂2,k
2m

(∂1,p + ∂2,p)
∂1,p − ∂2,p

2m
G(1; 2)

∣
∣
∣
∣
2=1+

= ∂1,p

[
∂1,k − ∂2,k

2m

∂1,p − ∂2,p
2m

G(1; 2)

]

2=1+
.

It is easy to show that the quantity in the square bracket is proportional to the time-
dependent ensemble average of the momentum stress-tensor operator defined in (3.36).
Next we consider the second row of (8.12). For any continuous function f the quantity
(∂1,k − ∂2,k)(f1 + f2) vanishes in 2 = 1+. Therefore the first two terms give

− iq

2mc

[

[(∂1,pA1,p) + (∂2,pA2,p)]
∂1,k − ∂2,k

2m
G(1; 2)

]

2=1+
= ∓ iq

mc
(∂1,pA1,p)j1,k. (8.13)

For the last two terms we use the identity

(∂1,k − ∂2,k)(A1,p∂1,p +A2,p∂2,p) = (∂1,kA1,p)∂1,p − (∂2,kA2,p)∂2,p

+(A1,p∂1,p +A2,p∂2,p)(∂1,k − ∂2,k),
and find

− iq

mc

[
∂1,k − ∂2,k

2m
(A1,p∂1,p +A2,p∂2,p)G(1; 2)

]

2=1+

= ∓ iq

mc
[j1,p(∂1,kA1,p) +A1,p(∂1,pj1,k)] .

Note that adding (8.13) to the second term on the r.h.s. of this equation we get a total
divergence. Finally, the last two terms on the l.h.s of (8.12) yield

−
[
∂1,k − ∂2,k

2m
[w1 − w2]G(1; 2)

]

2=1+
= ± i

m
n1∂1,kw1

= ± iq

m
n1

(

∂1,kV1 +
q

mc2
A1,p∂1,kA1,p

)

.

Putting together all these results we obtain the equation for the paramagnetic current density

d

dz1
j1,k =

q

mc
J1,p∂1,kA1,p −

q

m
n1∂1,kV1 + total divergence

+

∫

d3

[
∂1,k − ∂2,k

2m
[v(1; 3)G2(1, 3; 2, 3

+)− v(2; 3)G2(1, 3
−; 2, 3)]

]

2=1+
︸ ︷︷ ︸

1
m

∫

d3 [∂1,kv(1;3)]G2(1,3;1+,3+)

.

The derivative of the diamagnetic current density follows directly from the continuity equa-
tion and reads

d

dz1
(jd)1,k = − q

mc
n1

d

dz1
A1,k +

q

mc
A1,k∂1,pJ1,p

= − q

mc
n1

d

dz1
A1,k −

q

mc
J1,p∂1,pA1,k +

q

mc
∂1,p(A1,kJ1,p)
︸ ︷︷ ︸

total divergence

.
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242 8. Conserving approximations: two-particle Green’s function

Summing the last two equations we find the equation for the current density:

d

dz1
J1,k =

q

m
n1

(

−∂1,kV1 −
1

c

d

dz1
A1,k

)

+
q

mc
J1,p (∂1,kA1,p − ∂1,pA1,k)

+ total divergence +
1

m

∫

d3 [∂1,kv(1; 3)]G2(1, 3; 1
+, 3+). (8.14)

In the first row we recognize the kth component of the electric field and the kth component
of the vector product between J and the magnetic field, see (3.37) and the discussion below.
Upon integration over x1 the total divergence does not contribute and we end up with

d

dz1
P(z1) =

∫

dx1

(

qn(1)E(1) +
q

c
J(1)×B(1)

)

+
1

m

∫

dx1dx3 [∇1v(x1,x3)]G2(1, 3; 1
+, 3+)

∣
∣
∣
∣
z3=z1

,

where we use the fact that the interparticle interaction is local in time, v(1; 2) = δ(z1, z2)
v(x1,x2). We thus see that if the last term on the r.h.s. vanishes then the derivative of
the total momentum coincides with the total applied force, and hence the approximation to
the two-particle Green’s function is conserving. The vanishing of the last term is a direct
consequence of the symmetry condition (A1): under the interchange 1↔ 3 the G2 does not
change while the gradient of v picks up a minus sign, see again the discussion below (3.37).

8.5 Angular momentum conservation law

The angular momentum of a system is conserved if the Hamiltonian is invariant under
rotations. In the absence of external electromagnetic fields (A = V = 0) this invariance
requires that the interparticle interaction v(x1,x2) depends only on the distance |r1 − r2|.
Below we show that for such interparticle interactions the time-derivative of the total angular
momentum

L(t) ≡ m
∫

dx r× J(x, t)

is the total applied torque provided that the approximate G2 satisfies the symmetry condition
(A1).

We start by rewriting (8.14) in terms of the local Lorentz force F(1) ≡ qn(1)E(1) +
q
c J(1)×B(1) given by the first two terms on the r.h.s.:

m
d

dz1
J1,k = F1,k ±

i

m
∂1,p

[
∂1,k − ∂2,k

2

∂1,p − ∂2,p
2

G(1; 2)

]

2=1+

+
q

c
∂1,p [A1,pj1,k +A1,kJ1,p] +

∫

d3 [∂1,kv(1; 3)]G2(1, 3; 1
+, 3+), (8.15)

where we have explicitly written down the total divergence (2nd and 3rd term). The lth
component of the angular momentum is obtained by integrating over space and spin the
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8.6. Energy conservation law 243

lth component of [r1 × J(1)]l = εlikr1,iJ1,k , where εlik is the Levi–Civita tensor and
summation over repeated indices is understood. Let us consider the total divergence. The
second term is the derivative of a symmetric function of k and p. The third term is also the
derivative of a symmetric function of k and p since

A1,pj1,k +A1,kJ1,p = A1,pj1,k +A1,kj1,p −
q

mc
n1A1,kA1,p.

We now show that the quantity εlikr1,i∂1,pS1,kp is a total divergence for every symmetric
function S1,kp = S1,pk , and therefore this quantity vanishes upon integration over space.
We have

εlikr1,i∂1,pS1,kp = ∂1,p [εlikr1,iS1,kp]− εlikS1,kp ∂1,pr1,i
︸ ︷︷ ︸

δpi

= ∂1,p [εlikr1,iS1,kp]− εlikS1,ki,

and the last term is zero due to the symmetry of S. Therefore, multiplying (8.15) by εlikr1,i,
integrating over x1 and reintroducing the vector notation we find

d

dz1
L(z1) =

∫

dx1(r1 × F(1)) +

∫

dx1dx3 (r1×[∇1v(x1,x3)])G2(1, 3; 1
+, 3+)

∣
∣
∣
∣
z3=z1

.

The first term on the r.h.s. is the total torque applied to the system. Hence the angular
momentum is conserved provided that the last term vanishes. Exploiting the symmetry
condition (A1) and the antisymmetry of the gradient of v we have

∫

dx1dx3(r1 × [∇1v(x1,x3)])G2(1, 3; 1
+, 3+)

∣
∣
∣
∣
z3=z1

=
1

2

∫

dx1dx3((r1 − r3)× [∇1v(x1,x3)])G2(1, 3; 1
+, 3+)

∣
∣
∣
∣
z3=z1

.

Now recall that we are considering an interparticle interaction v(x1,x3) which depends only
on the distance |r1 − r3|. For any function f(|r|) the quantity r ×∇f(|r|) is zero since
∇f(|r|) is parallel to r. In conclusion the term with G2 vanishes and the approximation is
conserving.

8.6 Energy conservation law

According to the discussion in Section 6.4 the energy of the system at a generic time t1,
ES(t1), is the time-dependent ensemble average of the operator

ĤS(t1) ≡ Ĥ(t1)− q
∫

dx1 n̂(x1)δV (1),

where δV (1) = V (r1, t1) − V (r1) is the external potential. Before showing that any
approximate G2 fulfilling conditions (A1) and (A2) is energy conserving we derive the exact
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244 8. Conserving approximations: two-particle Green’s function

equation for d
dt1
ES(t1), since this is the equation that we must reproduce using the Green’s

function approach.
We write the density matrix operator as ρ̂ =

∑

k ρk|Ψk〉〈Ψk|. The time-dependent

ensemble average of ĤS(t1) is then

ES(t1) =
∑

k

ρk〈Ψk(t1)|Ĥ(t1)− q
∫

dx1 n̂(x1)δV (1)|Ψk(t1)〉

=
∑

k

ρk〈Ψk(t1)|Ĥ(t1)|Ψk(t1)〉 − q
∫

dx1 n(1)δV (1).

To calculate the time derivative of the first term we must di�erentiate the bras 〈Ψk(t1)|,
the kets |Ψk(t1)〉, as well as the Hamiltonian operator. Since all kets |Ψk(t1)〉 evolve
according to the same Schrödinger equation, i ddt |Ψk(t)〉 = Ĥ(t)|Ψk(t)〉, the term coming

from d
dt1
〈Ψk(t1)| cancels the term coming from d

dt1
|Ψk(t1)〉. The time derivative of Ĥ(t1)

is the same as the time derivative of the noninteracting Hamiltonian Ĥ0(t1) (the physical
interaction is independent of time). Writing Ĥ0(t1) as in (3.29) we find

d

dt1
ES(t1) =

∫

dx1

[

−q
c
j(1) · dA(1)

dt1
+ qn(1)

d

dt1

(

δV (1) +
q

2mc2
A2(1)

)]

− q d

dt1

∫

dx1 n(1)δV (1)

=

∫

dx1

[

−q
c
J(1) · dA(1)

dt1
− qδV (1)

d

dt1
n(1)

]

.

The last term can be further manipulated using the continuity equation and integrating by
parts; we thus arrive at the following important result

d

dt1
ES(t1) =

∫

dx1 qJ(1) ·Eext(1), (8.16)

with Eext = −∇δV − 1
c

d
dtA the external electric field. The r.h.s. of (8.16) is the scalar

product between the current density and the Lorentz force, i.e., it is the power fed into the
system (the magnetic field generates a force orthogonal to J and hence does not contribute
to the power). Below we prove that (8.16) is satisfied by those Gs obtained from (8.5) and
(8.6) with a G2 fulfilling conditions (A1) and (A2).

The proof of energy conservation is a nice example of the importance of using the most
convenient notation when carrying out lengthy calculations. We start from (6.103) which
expresses the energy of the system in terms of G and G2:

ES(z1) = ±i
∫

dx1〈x1|ĥS(z1)Ĝ(z1, z+1 )|x1〉
︸ ︷︷ ︸

Eone(z1)

−1

2

∫

dx1d3 v(1; 3)G2(1, 3; 1
+, 3+)

︸ ︷︷ ︸

Eint(z1)

, (8.17)

with
ĥS(z1) ≡ ĥ(z1)− qδV (r̂, z1),
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8.6. Energy conservation law 245

the single-particle Hamiltonian of the original system. In (8.17) the energy Eone is the one-
body part of the total energy, i.e., the sum of the kinetic and potential energy whereas Eint

is the interaction energy. Since Eone is a trace in the one-particle Hilbert space, below we
often use the cyclic property to rearrange expressions in the most convenient way. The
derivative of Eone(z1) is the sum of two contributions: one containing the derivative of

ĥS(z1) and another containing the derivative of Ĝ(z1, z+1 ). To calculate the derivative of the
latter we use the equations of motion (5.7) and (5.8). Subtracting the second equation from
the first and setting z2 = z+1 we find

d

dz1
〈x2|Ĝ(z1, z+1 )|x1〉 = 〈x2|

(
d

dz1
+

d

dz2

)

Ĝ(z1, z2)|x1〉
∣
∣
∣
∣
z2=z+

1

= −i 〈x2|
[

ĥ(z1), Ĝ(z1, z+1 )
]

−
|x1〉

±
∫

d3
[
v(1; 3)G2(1, 3; 2, 3

+)− v(2; 3)G2(1, 3
−; 2, 3)

]
∣
∣
∣
∣
z2=z+

1

.

The derivative of Eone(z1) can then be rewritten as

d

dz1
Eone(z1) = P (z1) +Wone(z1),

with

P (z1) = ±i
∫

dx1〈x1|
(

dĥS(z1)

dz1
− i
[

ĥS(z1), ĥ(z1)
]

−

)

Ĝ(z1, z+1 )|x1〉, (8.18)

and

Wone(z1) = i

∫

dx1dx2d3 〈x1|ĥS(z1)|x2〉

×
[
v(1; 3)G2(1, 3; 2, 3

+)− v(2; 3)G2(1, 3
−; 2, 3)

]

z2=z+
1
.

In (8.18) the cyclic property of the trace has been used, Tr
[

Â[B̂, Ĉ]−
]

= Tr
[

[Â, B̂]−Ĉ
]

.

We now show that P (z1) is exactly the power fed into the system. Let us manipulate the
operator to the left of Ĝ(z1, z+1 ). We have

dĥS(z1)

dz1
=

d

dz1

[
1

2m

(

p̂2 − q

c
p̂ ·A(r̂, z1)−

q

c
A(r̂, z1) · p̂+

q2

c2
A2(r̂, z1)

)

+ qV (r̂)

]

= − q

2mc
p̂ · dA(r̂, z1)

dz1
− q

2mc

dA(r̂, z1)

dz1
· p̂+

q2

mc2
A(r̂, z1) ·

dA(r̂, z1)

dz1
.

Taking into account that the commutator between the momentum operator p̂ and an arbi-
trary function f(r̂) of the position operator is [p̂, f(r̂)] = −i∇f(r̂), we also have

−i
[

ĥS(z1), ĥ(z1)
]

−
= −iq

[

ĥS(z1), δV (r̂, z1)
]

−

= − q

2m
p̂ ·∇δV (r̂, z1)−

q

2m
∇δV (r̂, z1) · p̂+

q2

mc
A(r̂, z1) ·∇δV (r̂, z1).
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246 8. Conserving approximations: two-particle Green’s function

Putting these results together we find

dĥS(z1)

dz1
− i
[

ĥS(z1), ĥ(z1)
]

−

= q

(
p̂ ·Eext(r̂, z1) +Eext(r̂, z1) · p̂

2m
− q

mc
A(r̂, z1) ·Eext(r̂, z1)

)

, (8.19)

where Eext(r̂, z1) = −∇δV (r̂, z1) − 1
c

d
dz1

A(r̂, z1) is the external electric field operator.
Inserting (8.19) into (8.18) we get

P (z1) = ±iq
∫

dx1〈x1|

[

p̂, Ĝ(z1, z+1 )
]

+

2m
− q

mc
A(r̂, z1)Ĝ(z1, z+1 )|x1〉 ·Eext(1)

=

∫

dx1 qJ(1) ·Eext(1),

where we first use the cyclic property of the trace and then, in the last equality, the
identities (1.12) along with the formula (8.10) to express the anticommutator in terms of the
paramagnetic current density1

±i 〈x1|
p̂ Ĝ(z1, z+1 ) + Ĝ(z1, z+1 )p̂

2m
|x1〉 = ±

(
∇1 −∇2

2m
G(1; 2)

)

2=1+
= j(1).

The proof of energy conservation is then reduced to show that the sum of Wone(z1)
and

Wint(z1) ≡ dEint(z1)/dz1

vanishes. Using again the identities (1.12), the quantity Wone(z1) can be rewritten as follows:

Wone(z1) = i

∫

dx1d3
[

v(1; 3)G2(1, 3; 2, 3
+)hS(r2, i

←−
∇2, z1)

−v(2; 3)hS(r1,−i
−→
∇1, z1)G2(1, 3

−; 2, 3)
]

2=1+

= i

∫

dx1d3 v(1; 3)

[
D2

1 − (D2
2)
∗

2m
G2(1, 3; 2, 3

+)

]

2=1+
.

The quantity Wint(z1) can be separated into two contributions

Wint(z1) = −
1

2

∫

dx1d3

[
d

dz1
v(1; 3)

]

G2(1, 3; 1
+, 3+)

− 1

2

∫

dx1d3 v(1; 3)

[(
d

dz1
+

d

dz2

)

G2(1, 3; 2, 3
+)

]

2=1+
. (8.20)

1To prove this equation consider for instance the first term on the r.h.s. We have

〈x1|p̂ Ĝ(z1, z+1 )|x1〉 = lim
x2→x1

∫

dx3〈x1|p̂|x3〉〈x3|Ĝ(z1, z+1 )|x2〉

= −i lim
x2→x1

∫

dx3∇1δ(x1 − x3)〈x3|Ĝ(z1, z+1 )|x2〉

= −i lim
x2→x1

∇1〈x1|Ĝ(z1, z+1 )|x2〉 = −i ∇1G(1; 2)|2=1+ .
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8.6. Energy conservation law 247

Let us consider the first term on the r.h.s.. Since v(1; 3) = δ(z1 − z3)v(x1,x3) we have
d

dz1
v(1; 3) = − d

dz3
v(1; 3) and hence

−1

2

[
d

dz1
v(1; 3)

]

G2(1, 3; 1
+, 3+) =

1

2

d

dz3

[
v(1; 3)G2(1, 3; 1

+, 3+)
]

− 1

2
v(1; 3)

d

dz3
G2(1, 3; 1

+, 3+). (8.21)

We have arrived at a crucial point in our derivation. The first term on the r.h.s. of (8.21) is
a total derivative with respect to z3. Therefore the integral over z3 yields the di�erence of
v(1; 3)G2(1, 3; 1

+, 3+) evaluated in t0− and in t0 − iβ. The interparticle interaction is the
same in these two points since the contour δ-function is periodic: δ(−iτ) = δ(−iτ − iβ).
The same is true for the two-particle Green’s function due to condition (A2). Hence the
total derivative does not contribute. It is worth noting that this is the only place where
condition (A2) is used in the derivation. Let us now consider the second term in (8.21). Using
the symmetry condition (A1) it is easy to see that this term is equal to the integrand in the
second line of (8.20). In conclusion the sum W (z1) ≡Wone(z1) +Wint(z1) takes the form

W (z1) = i

∫

dx1d3 v(1; 3)

[(

i
d

dz1
+ i

d

dz2
+
D2

1 − (D2
2)
∗

2m

)

G2(1, 3; 2, 3
+)

]

2=1+
.

To show that W (z1) is zero is now straightforward. We multiply the equation of motion
(8.5) by [−i d

dz2
+ 1

2m (D2
2)
∗], the adjoint equation (8.6) by [i d

dz1
+ 1

2mD
2
1], subtract one from

the other and set 2 = 1+. The result is

−qV (1)

[(

i
d

dz1
+ i

d

dz2
+
D2

1 − (D2
2)
∗

2m

)

G(1; 2)

]

2=1+

= ±i
∫

d3 v(1; 3)

[(

i
d

dz1
+ i

d

dz2
+
D2

1 − (D2
2)
∗

2m

)

G2(1, 3; 2, 3
+)

]

2=1+
. (8.22)

The quantity to the right of qV (1) is the di�erence between (8.5) and (8.6) in 2 = 1+. From
Section 8.3 we know that this quantity is equal to ±[ d

dz1
n(1) + ∇1 · J(1)], which is zero

due to satisfaction of the continuity equation. Thus W (z1) vanishes since the integral over
3 vanishes for all x1. This concludes our proof of energy conservation.
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9

Conserving approximations:

self-energy

9.1 Self-energy and Dyson equations I

From the equations of motion of the Green’s function it emerges that the full knowledge of
G2 is redundant: it is indeed enough to know the two-particle Green’s function with the
second and fourth arguments in 3 and 3+, see again (8.5) and (8.6). This gives us a strong
reason to introduce a quantity that contains only the necessary information to determine G.
This quantity is called the self-energy Σ and is defined by

∫

d3Σ(1; 3)G(3; 2) = ±i
∫

d3 v(1; 3)G2(1, 3; 2, 3
+). (9.1)

The definition of the self-energy stems naturally from the equations of motion for G. Note
that (9.1) fixes Σ up to the addition of a function σ such that

∫
d3σ(1; 3)G(3; 2) = 0. As

we soon see, the only σ satisfying this constraint is σ = 0. Equation (9.1) allows us to cast
the equation of motion (8.5) in the form

i
d

dz1
G(1; 2)−

∫

d3 [h(1; 3) + Σ(1; 3)]G(3; 2) = δ(1; 2), (9.2)

with h(1; 3) = δ(z1, z3)〈x1|ĥ(z1)|x3〉. We have already encountered an equation of this
kind when we were playing with the Martin–Schwinger hierarchy in Section 5.2, see (5.15) and
(5.16), as well as in the context of the Hartree–Fock approximation in Section 7.3. In those
cases, however, we did not give a definition of the exact self-energy. Here we are saying that
(9.2) is an exact equation for G provided that the self-energy is defined as in (9.1). The self-
energy is the most natural object to describe the propagation of a particle in an interacting
medium. Moreover it has a clear physical interpretation. We can understand the origin of its
name from (9.2): Σ is added to h and their sum defines a sort of self-consistent Hamiltonian
(or energy operator) which accounts for the e�ects of the interparticle interaction. Since
the exact self-energy is nonlocal in time the energy operator h + Σ not only considers
the instantaneous position of the particle but also where the particle was. These kinds of
nonlocal (in time) e�ects are usually referred to as retardation e�ects. We discuss them
at length in the following chapters. We also observe that Σ is a function belonging to the

249
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250 9. Conserving approximations: self-energy

Keldysh space. Thus the equation of motion (9.2) contains a convolution on the contour
between two functions, G and Σ, in Keldysh space. To extract an equation for the lesser,
greater, etc. components we have to use the Langreth rules. How to solve the equations of
motion on the contour is discussed later in this chapter.

For the self-energy to be a useful quantity we must be able to express also the adjoint
equation of motion (8.6) in terms of Σ. This requires some manipulations. The strategy is
as follows. We first define the quantity Σ̃ from1

∫

d3G(1; 3)Σ̃(3; 2) = ±i
∫

d3G2(1, 3
−; 2, 3)v(3; 2), (9.3)

and then prove that Σ = Σ̃, so that (8.6) becomes

−i d
dz2

G(1; 2)−
∫

d3G(1; 3) [h(3; 2) + Σ(3; 2)] = δ(1; 2). (9.4)

To prove that Σ = Σ̃ we evaluate the two-particle Green’s function with the second and
fourth arguments in 3 and 3+

G2(1, 3; 2, 3
+) = ∓〈T

{

ψ̂H(1)n̂H(3)ψ̂†H(2)
}

〉,

where the shorthand notation 〈. . .〉 ≡ Tr[e−βĤ
M

. . .]/Tr[e−βĤ
M

] denotes the ensemble
average. If we define the operators2

γ̂H(1) ≡
∫

d3 v(1; 3)n̂H(3)ψ̂H(1),

γ̂†H(1) ≡
∫

d3 v(1; 3)ψ̂†H(1)n̂H(3),

then the definitions of Σ and Σ̃ can be rewritten as
∫

d3Σ(1; 3)G(3; 2) = −i 〈T
{

γ̂H(1)ψ̂†H(2)
}

〉, (9.5)

∫

d3G(1; 3)Σ̃(3; 2) = −i 〈T
{

ψ̂H(1)γ̂†H(2)
}

〉, (9.6)

where we use the fact that in the T product the field operators (anti)commute. The operators
γ̂H and γ̂†H should not be new to the reader; they also appear in the equations of motion
of the field operators and, of course, this is not a coincidence. Let us cast (4.44) and (4.45)
in terms of γ̂H and γ̂†H :

∫

d1

[

δ(4; 1) i
d

dz1
− h(4; 1)

]

ψ̂H(1) = γ̂H(4), (9.7)

1Like Σ, Σ̃ is also defined up to the addition of a function σ̃(3; 2) such that
∫

d3G(1; 3)σ̃(3; 2) = 0. We see
that the properties of G fix σ̃ = 0.

2The operator γ̂†H is the adjoint of γ̂H only for contour arguments on the horizontal branches.
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9.1. Self-energy and Dyson equations I 251

∫

d2 ψ̂†H(2)

[

−i
←−
d

dz2
δ(2; 4)− h(2; 4)

]

= γ̂†H(4). (9.8)

We now act on (9.5) from the right with [−i
←−
d

dz2
δ(2; 4)−h(2; 4)] and integrate over 2.3 Using

(9.4) in which Σ→ Σ̃ (since we have not yet proved that Σ = Σ̃) as well as (9.8) we get

Σ(1; 4) +

∫

d2d3Σ(1; 3)G(3; 2)Σ̃(2; 4) = δ(z1, z4)〈
[

γ̂H(x1, z1), ψ̂
†
H(x4, z1)

]

∓
〉

− i 〈T
{

γ̂H(1)γ̂†H(4)
}

〉. (9.9)

The (anti)commutator in the first term on the r.h.s. originates from the derivative of the
contour θ-functions implicit in the T product (as always the upper/lower sign refers to
bosons/fermions). We see that if Σ is a solution of (9.9) then Σ + σ is a solution only for
σ = 0 (recall that

∫
d3σ(1; 3)G(3; 2) = 0). There is therefore only one solution of (9.1). A

similar equation can be derived by acting on (9.6) from the left with [δ(4; 1)i d
dz1
− h(4; 1)]

and integrating over 1. Taking into account (9.2) and (9.7) we get

Σ̃(4; 2) +

∫

d1d3Σ(4; 1)G(1; 3)Σ̃(3; 2) = δ(z2, z4)〈
[

ψ̂H(x4, z2), γ̂
†
H(x2, z2)

]

∓
〉

− i 〈T
{

γ̂H(4)γ̂†H(2)
}

〉, (9.10)

from which we also deduce that for Σ̃ and Σ̃ + σ̃ both to be solutions of (9.10) σ̃ must be
zero. Comparing (9.9) with (9.10) we conclude that the di�erence between Σ and Σ̃ is

Σ(1; 2)− Σ̃(1; 2) = δ(z1, z2)〈
[

γ̂H(x1, z1), ψ̂
†
H(x2, z1)

]

∓
−
[

ψ̂H(x1, z1), γ̂
†
H(x2, z1)

]

∓
〉.

(9.11)

Let us calculate the first (anti)commutator on the r.h.s.. From the definition (4.38) of operators
in the contour Heisenberg picture we have

〈
[

γ̂H(x1, z1), ψ̂
†
H(x2, z1)

]

∓
〉 = 〈Û(t0−, z1)

[

γ̂(x1), ψ̂
†(x2)

]

∓
Û(z1, t0−)〉.

Using the identity
[

ÂB̂, Ĉ
]

∓
= Â

[

B̂, Ĉ
]

∓
±
[

Â, Ĉ
]

−
B̂

it is a matter of simple algebra to derive

[

γ̂(x1), ψ̂
†(x2)

]

∓
= δ(x1 − x2)

∫

dx3 v(x1,x3)n̂(x3)± v(x1,x2)ψ̂
†(x2)ψ̂(x1).

3We are assuming here that we can interchange integration and di�erentiation. In Appendix G we show how one
can alternatively treat initial correlations by shrinking the vertical track γM to a point. In this approach Σ acquires
a new singularity proportional to δ(z, t0−)−δ(z, t0+) and the operations of integration and di�erentiation cannot
be interchanged any longer. As a result Σ 6= Σ̃.
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252 9. Conserving approximations: self-energy

We leave it as an exercise for the reader to prove that the second (anti)comutator in (9.11)
yields exactly the same result, and hence Σ̃ = Σ.

Equation (9.9) is particularly interesting since it shows that the self-energy, as a function
in Keldysh space, has the following structure [41]:

Σ(1; 2) = δ(z1, z2)Σ
δ(x1,x2, z1) + θ(z1, z2)Σ

>(1; 2) + θ(z2, z1)Σ
<(1; 2), (9.12)

where the singular part Σδ is given by the first term on the r.h.s. of (9.9). Taking into
account the definition (7.39) of the Hartree–Fock potential we also see that Σδ = qVHF.
This is the result anticipated at the end of Section 7.3: any approximation beyond the
Hartree–Fock approximation leads to a nonlocal (in time) self-energy. We call ΣHF(1; 2) =
δ(z1, z2)Σ

δ(x1,x2, z1) the Hartree–Fock self-energy

ΣHF(1; 2) = ±i δ(1; 2)
∫

d3 v(1; 3)G(3; 3+) + i v(1; 2)G(1; 2+) (9.13)

and the remaining part

Σc(1; 2) = θ(z1, z2)Σ
>(1; 2) + θ(z2, z1)Σ

<(1; 2) (9.14)

the correlation self-energy. The correlation self-energy takes into account all e�ects beyond
mean-field theory. It is also important to observe that the exact self-energy satisfies the
same KMS relations as G, i.e.,

Σ(x1, z1;x2, t0−) = ±Σ(x1, z1;x2, t0 − iβ), (9.15)

Σ(x1, t0−;x2, z2) = ±Σ(x1, t0 − iβ;x2, z2). (9.16)

This result follows directly from the definition (9.1) and (9.3) and from the fact that both G
and G2 satisfy the KMS relations.

We conclude this section by stressing again that (9.2) and (9.4) are first-order integro-
di�erential equations (in the contour arguments) to be solved with the KMS boundary con-
ditions (5.6). Alternatively, we can define the noninteracting Green’s function G0 as the
solution of the noninteracting equations of motion (Σ = 0) with KMS boundary conditions,
and convert the integro-di�erential equations into two equivalent integral equations

G(1; 2) = G0(1; 2) +

∫

d3d4G0(1; 3)Σ(3; 4)G(4; 2)

= G0(1; 2) +

∫

d3d4G(1; 3)Σ(3; 4)G0(4; 2)

(9.17)

also known as the Dyson equations for the Green’s function. The reader can verify (9.17) by

acting with [δ(1′; 1)i d
dz1
−h(1′; 1)] and integrating over 1 or by acting with [−i

←−
d

dz2
δ(2; 2′)−

h(2; 2′)] and integrating over 2. The full interacting G which solves the Dyson equation has
the correct KMS boundary conditions built in automatically.
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9.2. Conditions on the approximate Σ 253

9.2 Conditions on the approximate Σ

The use of the self-energy instead of the two-particle Green’s function raises a natural
question: which conditions must an approximate Σ fulfill for the Green’s function of (9.2)
and (9.4) to be conserving? It is the purpose of this section to formulate the theory of
conserving approximations in terms of Σ. As we shall see, the self-energy has to fulfill
di�erent conditions for di�erent conservation laws, a fact that may discourage us from
developing the new formulation any further. Remarkably, however, all these conditions
follow from one single property: the theory of conserving approximations in terms of Σ
turns out to be extremely elegant.

We start our discussion by rewriting (8.8) in terms of the self-energy. Subtracting (9.4)
from (9.2) and using the explicit form (8.1) for h(1; 2) we find

[

i
d

dz1
+ i

d

dz2

]

G(1; 2) + (∇1 +∇2) ·
∇1 −∇2

2m
G(1; 2)

− iq

2mc
[(∇1 ·A(1)) + (∇2 ·A(2)) + 2A(1)·∇1 + 2A(2)·∇2]G(1; 2)

−[w(1)− w(2)]G(1; 2) =
∫

d3 [Σ(1; 3)G(3; 2)−G(1; 3)Σ(3; 2)] . (9.18)

Proceeding along the same lines as in Section 8.3 we get the following condition for the
satisfaction of the continuity equation:

(B1) :

∫

d3
[
Σ(1; 3)G(3; 1+)−G(1; 3)Σ(3; 1+)

]
= 0.

In a similar way we can easily derive the conditions for satisfaction of the momentum and
angular momentum conservation laws:

(B2) :

∫

dx1d3
[
Σ(1; 3)∇1G(3; 1

+)−G(1; 3)∇1Σ(3; 1
+)
]
= 0,

(B3) :

∫

dx1d3 r1×
[
Σ(1; 3)∇1G(3; 1

+)−G(1; 3)∇1Σ(3; 1
+)
]
= 0.

The condition for the energy conservation law is slightly more involved to derive but still
simple. The definition of the self-energy in (9.1) and the equivalent definition in (9.3) lead to
two equivalent formulas for the interaction energy Eint(z1) [second term on the r.h.s. of
(8.17)]:

Eint(z1) = ±
i

2

∫

dx1d3Σ(1; 3)G(3; 1
+) = ± i

2

∫

dx1d3G(1; 3)Σ(3; 1
+) (9.19)

These two formulas for Eint certainly give the same result when evaluated with the exact
self-energy (and hence with the exact G). For an approximate self-energy, however, the
equivalence between the two formulas is not guaranteed. The set of approximate self-
energies for which the two formulas are equivalent contains the set of self-energies which
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254 9. Conserving approximations: self-energy

preserve the continuity equation, see condition (B1). For the energy conservation law we
then assume that Σ fulfills (B1) and rewrite the interaction energy as the arithmetic average

Eint(z1) = ±
i

4

∫

dx1d3
[
Σ(1; 3)G(3; 1+) +G(1; 3)Σ(3; 1+)

]
.

The energy of the system is ES(z1) = Eone(z1)+Eint(z1), with Eone given by the first term
on the r.h.s. of (8.17). Proceeding along the same lines as in Section 8.6 we can calculate the
derivative of Eone(z1) and find that it is the sum of the power fed into the system, P (z1),
and a term Wone(z1) which reads

Wone(z1) = ±
∫

dx1dx2d3 〈x1|ĥS(z1)|x2〉
[
Σ(2; 3)G(3; 1+)−G(2; 3)Σ(3; 1+)

]
∣
∣
∣
∣
z2=z1

= ±
∫

dx1d3

[(

−D
2
2

2m
+ qV (x2)

)
[
Σ(2; 3)G(3; 1+)−G(2; 3)Σ(3; 1+)

]
]

2=1

.

The energy conservation law is satisfied provided that the sum Wone(z1) +
d

dz1
Eint(z1)

vanishes. Let us work out a simpler expression for Wone(z) and derive a more transparent
condition for the energy conservation law. In the definition of Wone the term with the
static scalar potential, qV (x2), vanishes due to condition (B1). The remaining term contains
the integral of the di�erence between [D2

1Σ(1; 3)]G(3; 1
+) and [D2

1G(1; 3)]Σ(3; 1
+). The

gauge invariant derivative D1 = ∇1−i qcA(1) can be treated similarly to the normal gradient
∇1 when integrating by parts. Indeed, given two functions f(1) and g(1) that vanish for
|r1| → ∞ we have

∫

dr1f(1)D
2
1g(1) = −

∫

dr1[D
∗
1f(1)] ·D1g(1) =

∫

dr1g(1)(D
2
1)
∗f(1). (9.20)

Integrating by parts [D2
1Σ(1; 3)]G(3; 1

+) with the help of (9.20), Wone(z1) can be rewritten
as

Wone(z1) = ±
∫

dx1d3

[(
D2

1

2m
G(1; 3)

)

Σ(3; 1+)− Σ(1; 3)

(
(D2

1)
∗

2m
G(3; 1+)

)]

.

This result can be further manipulated using the analog of (8.22) in which vG2 → ΣG. We
multiply the equation of motion (9.2) by [−i d

dz2
+ 1

2m (D2
2)
∗], the adjoint equation (9.4) by

[i d
dz1

+ 1
2m (D2

1)], subtract one from the other and set 2 = 1+. Then, taking into account
that Σ satisfies (B1) we find
∫

d3

{[(

i
d

dz1
+
D2

1

2m

)

G(1; 3)

]

Σ(3; 1+) + Σ(1; 3)

[(

i
d

dz1
− (D2

1)
∗

2m

)

G(3; 1+)

]}

= 0.

Thus we see that Wone(z1) can be expressed entirely in terms of the time derivatives of G.
The condition for the energy conservation law is: the self-energy must fulfill (B1) and must
give Wone(z1) +

d
dz1

Eint(z1) = 0, i.e.,

(B4) :

∫

dx1d3

{
1

4

d

dz1

[
Σ(1; 3)G(3; 1+) +G(1; 3)Σ(3; 1+)

]

−
[

Σ(1; 3)

(
d

dz1
G(3; 1+)

)

+

(
d

dz1
G(1; 3)

)

Σ(3; 1+)

]}

= 0.
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9.3. Φ functional 255

The conditions on the approximate Σ are very physical since 1, ∇1, r1×∇1 and d
dz1

are
the generators of gauge transformations, spatial translations, rotations, and time translations,
which are exactly the symmetries required for particle, momentum, angular momentum, and
energy conservation. The formulation in terms of the self-energy replaces conditions (A1)
and (A2) for G2 with conditions (B1), (B2), (B3), and (B4). In the next section we show that all
conditions of type (B) follow from one single property of the self-energy. Furthermore, if the
self-energy has this property then it automatically satisfies the KMS relations (9.15) and (9.16).

9.3 Φ functional

In 1962 Baym proposed a very simple prescription to generate a conserving self-energy [78].
To understand the principle behind the general idea we first make a few introductory
remarks. A close inspection of the (B) conditions reveals that they all contain quantities
like Σ(1; 3)η1G(3; 1

+) and G(1; 3)η1Σ(3; 1
+) where η1 is either a constant, or ∇1, or

r1 ×∇1, or a contour derivative. Let us consider one of these cases, say, η1 = ∇1. We
know that given a continuous function f(r1) and an infinitesimal vector ε the di�erence
δf(r1) = f(r1 + ε)− f(r1) is, to first order in ε, δf(r1) = ε ·∇1f(r1). Now consider a
functional F [f ] of the function f , i.e., an application that maps a function into a number.
What is the first-order variation of the functional when f → f + δf ? Using the appropriate
extension of the chain rule the answer is simply

δF = F [f + δf ]− F [f ] =
∫

dr1
δF [f ]

δf(r1)
δf(r1) = ε ·

∫

dr1
δF [f ]

δf(r1)
∇1f(r1).

More generally, for an infinitesimal variation of the function f that can be written as
δf(r1) = ε η1f(r1), the variation of the functional F is

δF = ε

∫

dr1Q(r1)η1f(r1),

with Q(r1) ≡ δF/δf(r1) the functional derivative of F . Thus, if the functional F is
symmetric under some transformation, i.e., if it does not change when adding to f the
variation δf , then

∫
dr1Q(r1)η1f(r1) = 0.

These considerations prompt us to look for a suitable functional Φ[G] of the Green’s
function G from which to obtain the self-energy as

Σ(1; 2) =
δΦ[G]

δG(2; 1+)
(9.21)

Indeed, if the functional is symmetric under some infinitesimal variation of the Green’s
function then

0 = δΦ =

∫

d1d2 Σ(1; 2)δG(2; 1+), (9.22)

which resembles very closely the structure of the (B) conditions. The functional Φ must, in
our case, be invariant under gauge transformations, space and time translations, and rota-
tions. These fundamental symmetries guarantee the conservation of particles, momentum,
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256 9. Conserving approximations: self-energy

energy, and angular momentum. Since every scattering process preserves these quantities
the functional Φ must be the amplitude, or the sum of amplitudes, of a scattering process.
Let us convert this intuitive argument into mathematical formulas.

We construct a functional of the Green’s function according to the following diagram-
matic rules (we come back to these rules in Chapter 11):

• Draw a diagram with a certain number of disconnected and oriented loops and a
certain number of wiggly lines starting from some point (vertex) of a loop and ending
in another point (vertex) of the same or of another loop. The resulting diagram must
be connected, i.e., there must be at least a wiggly line between two di�erent loops.4

• Label all vertices of the diagram with integer numbers 1, . . . , N , where N is the total
number of vertices.

• Associate with each wiggly line between vertex i and vertex j the interparticle inter-
action v(i; j).

• Associate with each oriented line going from vertex i to vertex j with no vertices in
between the Green’s function G(j; i+).

• The functional corresponding to this diagram is obtained by integrating over 1, . . . , N
the product of all interparticle interactions and Green’s functions.

We will demonstrate that a functional Φ[G] obtained by taking an arbitrary linear combi-
nation of functionals constructed according to the above diagrammatic rules yields, through
(9.21), a conserving self-energy. Let us first consider a few examples. Below we show the
only two diagrams with one interaction (wiggly) line:

(9.23)

The functionals corresponding to diagrams (a) and (b) are

Φa[G] =

∫

d1d2G(1; 1+)v(1; 2)G(2; 2+),

and

Φb[G] =

∫

d1d2G(1; 2+)v(1; 2)G(2; 1+).

It is important to realize that if G belongs to the Keldysh space then the contour integrals
reduce to integrals along the imaginary track since the forward branch is exactly cancelled
by the backward branch (see for instance Exercise 5.4). The functional Φ, however, is defined

4For a diagram with n loops to be connected the minimum number of wiggly lines is n− 1.
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9.3. Φ functional 257

Figure 9.1 Representation of the Hartree–Fock self-energy.

for any G. This is a crucial point. When we take the functional derivative we must allow
arbitrary variations of the Green’s function including those variations that bring G away
from the Keldysh space. For this reason we cannot reduce the contour integrals to the
vertical track, and a variation of Φ induced by a variation of G(1; 2) with z1 and/or z2
on the horizontal branches is, in general, di�erent from zero. In particular the variation
δΦ/δG = Σ evaluated at a Green’s function in Keldysh space is di�erent from zero. That
said, let us derive the form of the self-energy when Φ = αΦa+βΦb is a linear combination
of the above functionals. From (9.21) we have

Σ(1; 2) = α
δΦa[G]

δG(2; 1+)
+ β

δΦb[G]

δG(2; 1+)

= 2α δ(1; 2)

∫

d3 v(1; 3)G(3; 3+) + 2β v(1; 2)G(1; 2+). (9.24)

Comparing (9.24) with (9.13) we see that for α = ±i/2 and β = i/2 this self-energy coincides
with the Hartree–Fock self-energy. The self-energies which are functional derivatives of some
Φ are called Φ-derivable. The Hartree–Fock self-energy is therefore Φ-derivable. Like Φ,
Σ also has a diagrammatic representation. The rules to convert a diagram into a formula
are the same as for the Φ-diagrams, with the exception that we should not integrate over
those vertices that are the end-points of a curve. A diagrammatic representation of the
Hartree–Fock self-energy is given in Fig 9.1.

Examples of Φ-diagrams with two interaction lines are shown in Fig. 9.2, together with
the corresponding self-energies. From the diagrammatic representation we see that the
action of taking the functional derivative is the same as removing a G-line in all possible
ways. For instance, in the top Φ-diagram of Fig. 9.2 we can remove four di�erent G-lines.
This leads to four identical self-energy diagrams and hence to a factor of four in Σ. The
same is true for the bottom Φ-diagram in the same figure.

In Fig. 9.3 we show an example Φ-diagram with three interaction lines as well as the
diagrams of the corresponding self-energy. This example is important since the functional
derivative of Φ is not represented by only one diagram. A linear combination of the diagrams
in Fig. 9.3, with coe�cients that di�er from those of the figure by more than an overall
multiplicative constant, is not a Φ-derivable self-energy and hence it is not conserving. The
Φ-derivability property allows only special linear combinations of self-energy diagrams.

Let us now come back to the conserving nature of the Φ-derivable self-energies. The
first important property of a Φ-derivable Σ is that it satisfies the KMS relations (9.15) and
(9.16), provided that the Green’s function satisfies the KMS relations. This property follows
directly from the diagrammatic representation of Σ and it is crucial to prove condition
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258 9. Conserving approximations: self-energy

Figure 9.2 Φ-diagrams with two interaction lines and the corresponding Φ-derivable self-
energy diagrams.

Figure 9.3 Example of a Φ-diagram with three interaction lines (top). The corresponding
self-energy is also displayed (bottom).

(B4). The second property is that all (B) conditions follow from the invariance of Φ under
special variations of G. Consider the variation of G induced by the infinitesimal gauge
transformation

G(1; 2)→ eiΛ(1)G(1; 2)e−iΛ(2) ⇒ δG(1; 2) = i [Λ(1)− Λ(2)]G(1; 2), (9.25)

with Λ(x, t0−) = Λ(x, t0 − iβ) to preserve the KMS relations. This transformation leaves
Φ unchanged since with every vertex j of a Φ-diagram is associated an ingoing Green’s
function, G(. . . ; j+), and an outgoing Green’s function, G(j; . . .). Thus, from (9.22) we
find5

0 = δΦ[G] = i

∫

d1d2 Σ(1; 2)[Λ(2)− Λ(1)]G(2; 1+)

= −i
∫

d1d2
[
Σ(1; 2)G(2; 1+)−G(1; 2)Σ(2; 1+)

]
Λ(1), (9.26)

5The arguments of G and Σ in the second term of the second line of (9.26) can be understood as follows.
Renaming the integration variables 1 ↔ 2 in the first line of (9.26) we obtain the term G(1; 2+)Σ(2; 1). The
self-energy has, in general, a singular part δ(z2, z1)Σδ(x2,x1, z1) and a regular part (the correlation self-energy)
Σc(2; 1). The product G(1; 2+)δ(z2, z1)Σδ(x2,x1, z1) = G(1; 2)δ(z2, z

+
1 )Σδ(x2,x1, z1), while the product

of the Green’s function with the correlation self-energy gives the same result with or without the superscript “+”:
∫

d2G(1; 2+)Σc(2; 1) =
∫

d2G(1; 2)Σc(2; 1) =
∫

d2G(1; 2)Σc(2; 1+) since the point 1 = 2 has zero
measure in the domain of integration. Therefore

∫

d2G(1; 2+)Σ(2; 1) =
∫

d2G(1; 2)Σ(2; 1+).
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9.3. Φ functional 259

and due to the arbitrariness of Λ
∫

d2
[
Σ(1; 2)G(2; 1+)−G(1; 2)Σ(2; 1+)

]
= 0,

which is exactly condition (B1). For interparticle interactions v(x1,x2) which depend only
on the di�erence r1 − r2 the Φ functional is also invariant under the transformation

G(1; 2)→ G((r1 +R(z1))σ1, z1; (r2 +R(z2))σ2, z2),

with R(t0−) = R(t0 − iβ). A Φ-diagram contains an integral over all spatial coordinates
and hence the shift ri → ri − R(zi) brings the transformed G back to the original G
without changing v(i; j), since v(i; j)→ δ(zi, zj)v(ri−R(zi)− rj +R(zj)) = v(i; j) due
to the locality in time. To first order in R the variation in G is

δG(2; 1+) = [R(z2) ·∇2 +R(z1) ·∇1]G(2; 1
+),

and (9.22) yields

0 = δΦ =

∫

d1d2 Σ(1; 2) [R(z2) ·∇2 +R(z1) ·∇1]G(2; 1
+)

=

∫

d1d2
[
Σ(1; 2)∇1G(2; 1

+)−G(1; 2)∇1Σ(2; 1
+)
]
R(z1), (9.27)

where in the last equality we have performed an integration by part and renamed 1 ↔ 2.
Since (9.27) is true for all vector functions R(z), condition (B2) follows. Similarly, for
rotationally invariant interparticle interactions we can exploit the invariance of Φ under the
transformation

G(1; 2)→ G((R[α(z1)]r1)σ1, z1; (R[α(z2)]r2)σ2, z2), (9.28)

where R[α] is the 3 × 3 matrix which rotates a vector by an angle α, and α(t0−) =
α(t0 − iβ). To first order in α the variation of the spatial coordinates is δri = α× ri, and
again using (9.22) one can easily prove condition (B3). Finally, condition (B4) follows from
the invariance of Φ under the transformation

G(1; 2)→
(
dw(z1)

dz1

)1/4

G(r1σ1, w(z1); r2σ2, w(z2))

(
dw(z2)

dz2

)1/4

,

where w(z) is an invertible function for z on the contour with w(t0−) = t0− and w(t0 −
iβ) = t0 − iβ. This is an invariance since for every interaction line v(i; j) there are four
Gs that have the integration variables zi = zj in common.6 These four Gs supply a net
factor dw/dz that changes the measure from dz to dw. For the infinitesimal transformation
w(z) = z + ε(z) the variation in the Green’s function is, to first order,

δG(1; 2) =

{
1

4

[
dε(z1)

dz1
+
dε(z2)

dz2

]

+

[

ε(z1)
d

dz1
+ ε(z2)

d

dz2

]}

G(1; 2). (9.29)

6We recall that the interparticle interaction is local in time.
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260 9. Conserving approximations: self-energy

Inserting this variation into (9.22), integrating by parts and taking into account that the
self-energy satisfies the KMS relations we recover condition (B4).

In Chapter 11 we construct the exact functional Φ, i.e., the Φ whose functional derivative
is the exact self-energy. The exact Φ is the sum of an infinite number of diagrams each
multiplied by a well defined prefactor.

Exercise 9.1. Draw all possible Φ-diagrams with three interaction lines and calculate the

corresponding self-energies.

Exercise 9.2. Calculate to first order in α the variation δG from (9.28) and use (9.22) to

prove condition (B3).

Exercise 9.3. Prove condition (B4) from (9.29) and (9.22).

9.4 Kadano�–Baym equations

To solve the equations of motion (9.2) and (9.4) in practice we need to transform them into
ordinary integro-di�erential equations for quantities with real-time arguments (as opposed
to contour-time arguments). This can be done by taking the contour times of the Green’s
function and self-energy on di�erent branches of the contour and then using the Langreth
rules of Table 5.1. The Green’s function has no singular contribution, i.e., Gδ = 0 while the
self-energy has a singular contribution given by the Hartree–Fock part.

Let us define the self-energy operator in first quantization, Σ̂ , in a similar way as we
already have for the Green’s function and the Hartree–Fock potential:

Σ̂ (z1, z2) =

∫

dx1dx2 |x1〉Σ(1; 2)〈x2|,

and rewrite the equations of motion (9.2) and (9.4) in an operator form:

[

i
d

dz1
− ĥ(z1)

]

Ĝ(z1, z2) = δ(z1, z2) +

∫

γ

dz Σ̂ (z1, z)Ĝ(z, z2), (9.30)

Ĝ(z1, z2)
[

−i
←−
d

dz2
− ĥ(z2)

]

= δ(z1, z2) +

∫

γ

dz Ĝ(z1, z)Σ̂ (z, z2). (9.31)

These equations reduce to the equations of motion for the noninteracting Green’s function
operator (6.4) and (6.5) when Σ̂ = 0. In the interacting case (9.30) and (9.31) provide an
approximate solution for the Green’s function once an approximate functional form for the
self-energy Σ[G] is inserted. If the functional form Σ[G] is exact then the Green’s function
will be exact also.

Taking both arguments of Ĝ on the vertical track, z1,2 = t0 − iτ1,2, we obtain a pair of
integro-di�erential equations for the Matsubara Green’s function

[

− d

dτ1
− ĥM

]

ĜM(τ1, τ2) = iδ(τ1 − τ2) +
[

Σ̂
M
⋆ ĜM

]

(τ1, τ2), (9.32)
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9.4. Kadano�–Baym equations 261

ĜM(τ1, τ2)

[ ←−
d

dτ2
− ĥM

]

= iδ(τ1 − τ2) +
[

ĜM ⋆ Σ̂
M
]

(τ1, τ2). (9.33)

At this point it is important to recall the observation we made in Section 5.3. If we are
interested in calculating the Green’s function with real-time arguments up to a maximum
time T then we do not need a contour γ that goes all the way to ∞. It is enough that γ
reaches T . This implies that if the external vertices of a self-energy diagram are smaller than
T then all integrals over the internal vertices that go from T to∞ cancel with those from∞
to T . Consequently to calculate Σ̂ (z1, z2) with z1 and z2 up to a maximum real-time T we
only need the Green’s function Ĝ(z1, z2) with real-times up to T . In particular, to calculate

Σ̂
M

we can set T = t0 and therefore we only need Ĝ(z1, z2) with arguments on the vertical

track, i.e., we only need ĜM. Let us consider, for instance, the diagrams in Fig. 9.3; each
diagram contains the convolution of five Green’s functions, and for z1 and z2 on γM these
diagrams can be written as the convolution along γM of five Matsubara Green’s functions,
see (5.55). Another example is the diagram in the first row of Fig. 9.2. In this case we have to
integrate the vertices of the bubble over the entire contour; however, since the interaction
(wiggly lines) is local in time this integral reduces to G(x3, z1;x4, z2)G(x4, z2;x3, z1), which
is the product of two Matsubara Green’s functions when z1,2 = t0− iτ1,2. We then conclude

that (9.32) and (9.33) constitute a close system of equations for ĜM, i.e., there is no mixing

between ĜM and the other components of the Green’s function. We also infer that the two
equations are not independent. Since the single particle Hamiltonian ĥ(z) is constant along

the vertical track, ĜM(τ1, τ2) depends only on the di�erence τ1−τ2 and, consequently, Σ̂
M

also depends only on the time di�erence. Therefore one of the two equations is redundant.

Taking into account the KMS relations, we can expand ĜM and Σ̂
M

as

ĜM(τ1, τ2) =
1

−iβ
∞∑

m=−∞
e−ωm(τ1−τ2)ĜM(ωm),

Σ̂
M
(τ1, τ2) =

1

−iβ
∞∑

m=−∞
e−ωm(τ1−τ2)Σ̂

M
(ωm),

with ωm the Matsubara frequencies, and convert (9.32) and (9.33) into a system of algebraic

equations for the ĜM(ωm)s:

ĜM(ωm) =
1

ωm − ĥM − Σ̂
M
(ωm)

. (9.34)

In general Σ̂
M
(ωm) depends on all the Matsubara coe�cients {ĜM(ωn)}. Thus (9.34) is a

coupled system of equations for the unknown ĜM(ωn). The solution of this system is the
preliminary step to solving the equations of motion and it amounts to determining the initial
preparation.

With the Matsubara component at our disposal we can calculate all other components by
time-propagation. The equation for the right Green’s function is obtained by taking z1 = t−
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262 9. Conserving approximations: self-energy

or t+ and z2 = t0 − iτ in (9.30) and reads

[

i
d

dt
− ĥ(t)

]

Ĝ⌉(t, τ) =
[

Σ̂
R · Ĝ⌉ + Σ̂

⌉
⋆ ĜM

]

(t, τ) (9.35)

Similarly, for z1 = t0 − iτ and z2 = t− or t+ the equation of motion (9.31) yields

Ĝ⌈(τ, t)
[

−i
←−
d

dt
− ĥ(t)

]

=
[

Ĝ⌈ · Σ̂A
+ ĜM ⋆ Σ̂

⌈]
(τ, t) (9.36)

At fixed τ (9.35) and (9.36) are first order integro-di�erential equations in t which must be
solved with initial conditions

Ĝ⌉(0, τ) = ĜM(0, τ), Ĝ⌈(τ, 0) = ĜM(τ, 0). (9.37)

The retarded/advanced as well as the left/right components of the self-energy in (9.35) and
(9.36) depend not only on G⌉ and G⌈ but also on the lesser and greater Green’s functions.
Therefore, (9.35) and (9.36) do not form a close set of equations for G⌉ and G⌈. To close
the set we need the equations of motion for G≶. These can easily be obtained by setting
z1 = t1± and z2 = t2∓ in (9.30) and (9.31)

[

i
d

dt1
− ĥ(t1)

]

Ĝ≶(t1, t2) =
[

Σ̂
≶ · ĜA + Σ̂

R · Ĝ≶ + Σ̂
⌉
⋆ Ĝ⌈

]

(t1, t2) (9.38)

Ĝ≶(t1, t2)
[

−i
←−
d

dt2
− ĥ(t2)

]

=
[

Ĝ≶ · Σ̂A
+ ĜR · Σ̂≶

+ Ĝ⌉ ⋆ Σ̂ ⌈
]

(t1, t2) (9.39)

which must be solved with initial conditions

Ĝ<(t0, t0) = Ĝ
M
(0, 0+), Ĝ>(t0, t0) = Ĝ

M
(0+, 0). (9.40)

The set of equations (9.35), (9.36), (9.38), and (9.39) are known as the Kadano�–Baym equa-
tions [41, 68]. The Kadano�–Baym equations, together with the initial conditions (9.37)
and (9.40), completely determine the Green’s function with one and two real-times once
a choice for the self-energy is made. It is worth noticing that the Kadano�–Baym equa-
tions are invariant under a gauge transformation for any Φ-derivable self-energy. Indeed,
if G(1; 2) → eiΛ(1)G(1; 2)e−iΛ(2) then the self-energy Σ(1; 2) → eiΛ(1)Σ(1; 2)e−iΛ(2) as
follows directly from the structure of the self-energy diagrams.

Practical applications of the Kadano�–Baym equations are discussed in Chapter 16 where
we present results on the dynamics of interacting systems for di�erent approximate self-
energies. We still need to learn how to construct the self-energy before we can use these
equations. Nevertheless, we can already derive some exact relations that are of great help
in the actual implementation. From the definition of the Green’s function, we have already
derived the relation (6.23) which we rewrite below for convenience

Ĝ≶(t1, t2) = −
[

Ĝ≶(t2, t1)
]†

(9.41)
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9.4. Kadano�–Baym equations 263

In a similar way it is easy to show that (as always the upper/lower sign refers to bosons/
fermions)

Ĝ⌈(τ, t) = ∓
[

Ĝ⌉(t, β − τ)
]†

(9.42)

and

ĜM(τ1, τ2) = −
[

ĜM(τ1, τ2)
]†

(9.43)

These properties of the Green’s function can be transferred directly to the self-energy.
Consider, for instance, the adjoint of (9.32). Taking into account that the derivative of

ĜM(τ1, τ2) with respect to τ1 is minus the derivative with respect to τ2, and using (9.43), we
find

−ĜM(τ1, τ2)

[ ←−
d

dτ2
− ĥM

]

= −iδ(τ1 − τ2)− i

∫ β

0

dτ
(

−ĜM(τ, τ2)
) [

Σ̂
M
(τ1, τ)

]†
.

We rename the integration variable τ → τ1 + τ2 − τ . Then the argument of the Green’s
function becomes τ1 − τ while the argument of the self-energy becomes τ − τ2 (recall that
these quantities depend only on the time di�erence). Furthermore the domain of integration
remains (0, β) since G and Σ are (anti)periodic. Comparing the resulting equation with
(9.33) we conclude that

∫ β

0

dτ ĜM(τ1, τ)Σ̂
M
(τ, τ2) = −

∫ β

0

dτ ĜM(τ1, τ)
[

Σ̂
M
(τ, τ2)

]†
.

This equation must be true for all τ1 and τ2, and since ĜM is invertible, i.e., ĜM ⋆ Σ̂
M

= 0

only for Σ̂
M

= 0 [see Section 9.1], it follows that7

Σ̂
M
(τ1, τ2) = −

[

Σ̂
M
(τ1, τ2)

]†
(9.44)

Vice versa, if the self-energy satisfies (9.44) then the Matsubara Green’s function satisfies
(9.43). In a similar way we can deduce the relations between the left, right, lesser, greater
self-energy and the corresponding adjoint quantities. In this case, however, we must use the
four coupled equations (9.35), (9.36), (9.38), and (9.39) at the same time. The derivation is a
bit more lengthy but the final result is predictable. We therefore leave it as an exercise for
the reader to prove that

Σ̂
≶
(t1, t2) = −

[

Σ̂
≶
(t2, t1)

]†
(9.45)

Σ̂
⌈
(τ, t) = ∓

[

Σ̂
⌉
(t, β − τ)

]†
(9.46)

7We could also have derived (9.44) directly from (9.34).
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264 9. Conserving approximations: self-energy

In particular (9.45) implies

Σ̂
R
(t1, t2) =

[

Σ̂
A
(t2, t1)

]†
(9.47)

This last relation could have been deduced also from the retarded/advanced component of
the Dyson equation (9.17) together with the property (6.24). To summarize, the self-energy
has the same symmetry properties as the Green’s function under complex conjugation.

The r.h.s. of the Kadano�–Baym equations is a Keldysh component of either the convo-
lution

ÎL(z1, z2) ≡
∫

γ

dz Σ̂ (z1, z)Ĝ(z, z2),

or the convolution

ÎR(z1, z2) ≡
∫

γ

dz Ĝ(z1, z)Σ̂ (z, z2).

The quantities ÎL and ÎR belong to the Keldysh space and are usually referred to as the
collision integrals since they contain information on how the particles scatter. From the
above relations for G and Σ it follows that

Î⌈L(τ, t) = ∓
[

Î⌉R(t, β − τ)
]†
, (9.48)

Î≶L (t1, t2) = −
[

Î≶R(t2, t1)
]†
. (9.49)

Therefore, it is su�cient to calculate, say, Î<L , Î
>

R , and Î
⌈
L in order to solve the Kadano�–

Baym equations.
A final remark is concerned with the solution of the Kadano�–Baym equations for sys-

tems in equilibrium. We know that in this case Ĝ≶, and hence also Σ̂
≶
, depends on the

time di�erence only. However, it is not obvious at all that Ĝ≶(t1 − t2) can be a solution
of (9.38) and (9.39), since neither the two real-time convolutions between t0 and ∞ nor the
convolution along the vertical track depend on t1 − t2. Is there anything wrong with these
equations? Before answering we need to derive some exact properties of the self-energy for
systems in equilibrium.

Exercise 9.4. Prove (9.42) and (9.43).

Exercise 9.5. Prove (9.45) and (9.46).

9.5 Fluctuation–dissipation theorem for

the self-energy

Let us consider a system in equilibrium and hence with ĤM = Ĥ − µN̂ . In Section 6.3.2
we saw that the equilibrium Green’s function satisfies

Ĝ⌈(τ, t′) = eµτ Ĝ>(t0 − iτ, t′), Ĝ⌉(t, τ ′) = Ĝ<(t, t0 − iτ ′)e−µτ
′

. (9.50)
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9.5. Fluctuation–dissipation theorem for the self-energy 265

In a completely similar way one can also prove that

ĜM(τ, τ ′) =

{

eµτ Ĝ>(t0 − iτ, t0 − iτ ′)e−µτ
′

τ > τ ′

eµτ Ĝ<(t0 − iτ, t0 − iτ ′)e−µτ
′

τ < τ ′
. (9.51)

An alternative strategy to derive (9.50) and (9.51) consists in considering the Green’s function
Ĝµ of a system with constant Hamiltonian Ĥ(z) = ĤM = Ĥ−µN̂ along the entire contour.

The Green’s function Ĝµ di�ers from Ĝ since in Ĝ the Hamiltonian Ĥ(z) = Ĥ − µN̂ for z

on the vertical track and Ĥ(z) = Ĥ for z on the horizontal branches. The relation between
Ĝ and Ĝµ is

Ĝ(z, z′) = Ĝµ(z, z′)×







e−iµ(z−z
′) z, z′ on the horizontal branches

e−iµ(z−t0) z on the horizontal branches and z′ on γM

eiµ(z
′−t0) z on γM and z′ on the horizontal branches

1 z, z′ on γM

as it follows directly from

ei(Ĥ−µN̂)(t−t0) ψ̂(x) e−i(Ĥ−µN̂)(t−t0) = eiµ(t−t0) eiĤ(t−t0) ψ̂(x) e−iĤ(t−t0)

and the like for the creation operator. The crucial observation is that Ĝ≶µ (z, z′) depends
only on z − z′ for all z and z′ since the Hamiltonian is independent of z. This implies that

if we calculate Ĝ>µ (t0, t′) and then replace t0 → t0 − iτ we get

Ĝ>µ (t0 − iτ, t′) = Ĝ>µ (z = t0 − iτ, t′±) = Ĝ
⌈
µ(τ, t

′).

Using the relation between Ĝ and Ĝµ the first identity in (9.50) follows. The second identity
in (9.50) as well as the identity (9.51) can be deduced in a similar manner. This alternative
derivation allows us to prove a fluctuation–dissipation theorem for several many-body quan-

tities. We show here how it works for the self-energy. Like the Green’s function Ĝ≶µ (z, z′)
also the self-energy Σ̂

≶

µ (z, z
′) depends only on z − z′. Therefore if we calculate Σ̂

>

µ (t0, t
′)

and then replace t0 → t0 − iτ we get

Σ̂
>

µ (t0 − iτ, t′) = Σ̂
>

µ (z = t0 − iτ, t′±) = Σ̂
⌈
µ(τ, t

′).

Consider now a generic self-energy diagram for Σ̂µ. Expressing every Ĝµ in terms of Ĝ the

phase factors cancel out in all internal vertices. Consequently the relation between Σ̂µ and

Σ̂ is the same as the relation between Ĝµ and Ĝ. Combining this relation with the above

result we get Σ̂
⌈
(τ, t′) = eµτ Σ̂

>
(t0 − iτ, t′). In a similar way we can work out the other

combinations of contour arguments. In conclusion we have

Σ̂
⌈
(τ, t′) = eµτ Σ̂

>
(t0 − iτ, t′), Σ̂

⌉
(t, τ ′) = Σ̂

<
(t, t0 − iτ ′)e−µτ

′

, (9.52)
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266 9. Conserving approximations: self-energy

and

Σ̂
M
(τ, τ ′) =

{

eµτ Σ̂
>
(t0 − iτ, t0 − iτ ′)e−µτ

′

τ > τ ′

eµτ Σ̂
<
(t0 − iτ, t0 − iτ ′)e−µτ

′

τ < τ ′
. (9.53)

We can combine these relations with the KMS boundary conditions (9.15) and (9.16) to get

Σ̂
<
(t0, t

′) = Σ̂ (t0−, t
′
+)

= ± Σ̂ (t0 − iβ, t′+)

= ±Σ̂ ⌈(β, t′)
= ±eµβΣ̂>

(t0 − iβ, t′).

Fourier transforming both sides of this equation we find

Σ̂
>
(ω) = ±eβ(ω−µ)Σ̂<

(ω), (9.54)

which allows us to prove a fluctuation–dissipation theorem for the self-energy. If we define
the rate operator8

Γ̂ (ω) ≡ i[Σ̂
>
(ω)− Σ̂

<
(ω)] = i[Σ̂

R
(ω)− Σ̂

A
(ω)] (9.55)

then we can express the lesser and greater self-energy in terms of Γ̂ as follows

Σ̂
<
(ω) = ∓if(ω − µ)Γ̂ (ω)

Σ̂
>
(ω) = −if̄(ω − µ)Γ̂ (ω)

(9.56)

The rate operator is self-adjoint since the retarded self-energy is the adjoint of the advanced
self-energy, see (9.47). We further observe that in (9.55) we could replace Σ̂ → Σ̂ c since

Σ̂
≶

HF = 0 (or, equivalently Σ̂
R

HF − Σ̂
A

HF = 0). The rate operator for the self-energy is the
analogue of the spectral function operator for the Green’s function. From a knowledge of Γ̂
we can determine all Keldysh components of Σ̂ with real-time arguments. The lesser and
greater self-energies are obtained from (9.56). The retarded and advanced correlation self-

energies follow from the Fourier transform of Σ̂
R

c (t, t
′) = θ(t − t′)[Σ̂>

(t, t′) − Σ̂
<
(t, t′)]

and the like for Σ̂
A

c , and read

Σ̂
R/A

c (ω) =

∫
dω′

2π

Γ̂ (ω′)

ω − ω′ ± iη
(9.57)

Another important relation that we can derive in equilibrium pertains to the connection

between Σ̂
M

and Σ̂
R/A

. Taking the retarded/advanced component of the Dyson equation
(9.17) and Fourier transforming we find

ĜR/A
(ω) = ĜR/A

0 (ω) + ĜR/A

0 (ω)Σ̂
R/A

(ω)ĜR/A
(ω),

8The reason for the name “rate operator” becomes clear in Chapter 13.
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9.6. Recovering equilibrium from the Kadano�–Baym equations 267

where the noninteracting Green’s function is ĜR/A

0 (ω) = 1/(ω − ĥ ± iη), see (6.58) and

(6.59). Solving for ĜR/A
(ω) we get

ĜR/A
(ω) =

1

ω − ĥ− Σ̂
R/A

(ω)± iη
.

Comparing this result with (9.34) and using (6.82) we conclude that

Σ̂
M
(ζ) =

{

Σ̂
R
(ζ + µ) for Im[ζ] > 0

Σ̂
A
(ζ + µ) for Im[ζ] < 0

, (9.58)

which is the same relation satisfied by the Green’s function. In particular, for ζ = ω± iη we
find

Σ̂
M
(ω ± iη) = Σ̂

R/A
(ω + µ) (9.59)

We observe that for a system of fermions at zero temperature the Fermi function f(ω) =

θ(−ω). Assuming that Σ̂
≶
(ω) is a continuous function of ω, (9.56) implies Σ̂

≶
(µ) = 0 and

hence Γ̂ (µ) = 0. Consequently the retarded self-energy is equal to the advanced self-energy
for ω = µ. Then (9.59) tells us that the Matsubara Green’s function is continuous when the
complex frequency crosses the real axis in ω = 0.

9.6 Recovering equilibrium from the

Kadano�–Baym equations

The fluctuation–dissipation theorem for the Green’s function and the self-energy is all that
we need to show that in equilibrium the r.h.s. of (9.38) and (9.39) depends only on t1 − t2
and is independent of t0. In particular we can prove that

[

Σ̂
≶

c · Ĝ
A
+ Σ̂

R

c · Ĝ
≶
+ Σ̂

⌉
c⋆ Ĝ

⌈]
(t1, t2) =

∫
dω

2π
e−iω(t1−t2)

[

Σ̂
≶

c (ω)Ĝ
A
(ω) + Σ̂

R

c (ω)Ĝ
≶
(ω)
]

(9.60)
[

Ĝ≶· Σ̂A

c+ Ĝ
R· Σ̂≶

c+ Ĝ
⌉
⋆ Σ̂
⌈
c

]

(t1, t2) =

∫
dω

2π
e−iω(t1−t2)

[

Ĝ≶(ω)Σ̂A

c (ω) + Ĝ
R
(ω)Σ̂

≶

c (ω)
]

(9.61)
for all t0. In these equations we have replaced Σ̂ → Σ̂ c since

Σ̂
≶,⌈,⌉

= Σ̂
≶,⌈,⌉
c , Σ̂

R/A
= Σ̂

R/A

HF + Σ̂
R/A

c ,

and the products Σ̂
R

HF · Ĝ
≶

and Ĝ≶ · Σ̂A

HF depend only on the time di�erence when Ĝ≶

depends only on the time di�erence (Σ̂
R/A

HF is local in time). Thus, for our purposes it is
enough to prove (9.60) and (9.61). We should point out that standard derivations of (9.60)
and (9.61) typically require a few extra (but superfluous) assumptions. Either one uses the

adiabatic assumption, in which case Σ̂
⌉
c = Σ̂

⌈
c = 0 (since the self-energy vanishes along the
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268 9. Conserving approximations: self-energy

imaginary track) while the convolutions along the real-time axis become the r.h.s. of (9.60)
and (9.61) (since t0 → −∞). Or, alternatively, one assumes that

lim
t0→−∞

Σ̂
⌉
c(t, τ) = lim

t0→−∞
Σ̂
⌈
c(τ, t) = 0, (9.62)

which is often satisfied in systems with infinitely many degrees of freedom. However, in
systems with an arbitrary large but finite single-particle basis the Green’s function is an
oscillatory function and so is the self-energy, see again the discussion in Section 6.1.3.
Therefore (9.62) is not satisfied in real or model systems with a discrete spectrum. It is,
however, more important to realize that the standard derivations “prove” (9.60) and (9.61)
only for t0 → −∞. In the following we prove (9.60) and (9.61) for all t0 and without any
extra assumptions. The derivation below nicely illustrates how the apparent dependence on
t0 disappears. Equations (9.60) and (9.61) are therefore much more fundamental than they
are commonly thought to be.

Let us consider the lesser version of (9.60). The l.h.s. is the lesser component of the

collision integral Î<L (t1, t2). We use the identity (9.50) for Ĝ⌈ and the identity (9.52) for

Σ̂
⌉
= Σ̂

⌉
c. Expanding all Green’s functions and self-energies in Fourier integrals we get

Î<L (t1, t2) =
∫
dω1

2π

dω2

2π
e−iω1t1+iω2t2

[
∫ t2

t0

dt ei(ω1−ω2)tΣ̂
<

c (ω1)Ĝ
A
(ω2)

+

∫ t1

t0

dt ei(ω1−ω2)tΣ̂
R

c (ω1)Ĝ
<
(ω2)− i

∫ β

0

dτ e(ω1−ω2)(it0+τ)
Σ̂

<

c (ω1)Ĝ
>
(ω2)

]

.

For all these integrals to be well behaved when t0 → −∞ we give to ω1 a small negative
imaginary part, ω1 → ω1− iη/2, and to ω2 a small positive imaginary part, ω2 → ω2+iη/2.
This is just a regularization and it has nothing to do with the adiabatic assumption.9 With
this regularization (9.60) is easily recovered in the limit t0 → −∞. In the following we keep
t0 finite and show that (9.60) is still true. Performing the integrals over time, and using the
fluctuation–dissipation theorem to express everything in terms of retarded and advanced

9Suppose that we want to recover the result
∫ ∞

−∞
dt eiωt = 2πδ(ω)

from the integral I(T ) =
∫ T
−T dt e

iωt when T →∞. Then we can write

I(T ) =

∫ 0

−T
dt eiωt +

∫ T

0
dt eiωt =

∫ 0

−T
dt ei(ω−iη)t +

∫ T

0
dt ei(ω+iη)t,

where in the last step we have simply regularized the integral so that it is well behaved for T →∞. At the end of
the calculation we send η → 0. Performing the integral we find

I(T ) =
1− e−i(ω−iη)T

i(ω − iη)
+
ei(ω+iη)T − 1

i(ω + iη)
−−−−→
T→∞

1

i(ω − iη)
− 1

i(ω + iη)
.

Using the Cauchy relation 1/(ω ± iη) = P (1/ω)∓ iπδ(ω), with P the principal part, we recover the δ-function
result as the regularized limit of I(T ).
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9.6. Recovering equilibrium from the Kadano�–Baym equations 269

quantities, we find

Î<L (t1, t2) =
∫
dω1

2π

dω2

2π

e−iω1t1+iω2t2

i(ω1 − ω2 − iη)

×
[

±f1
(

ei(ω1−ω2)t2 − ei(ω1−ω2)t0
)(

Σ̂
R

c,1 − Σ̂
A

c,1

)

ĜA2

±f2
(

ei(ω1−ω2)t1 − ei(ω1−ω2)t0
)

Σ̂
R

c,1

(

ĜR2 − Ĝ
A

2

)

±f1f̄2
(

e(ω1−ω2)β − 1
)

ei(ω1−ω2)t0
(

Σ̂
R

c,1 − Σ̂
A

c,1

)(

ĜR2 − Ĝ
A

2

)]

, (9.63)

where we have introduced the short-hand notation f1 to denote the Bose/Fermi function
f(ω1) and similarly f2 = f(ω2) and mutatis mutandis the self-energy and the Green’s
function. Next we observe that

f1f̄2

(

e(ω1−ω2)β − 1
)

= f2 − f1.

Using this relation in (9.63) we achieve a considerable simplification since many terms cancel
out and we remain with

Î<L (t1, t2)=
∫
dω1

2π

dω2

2π

e−iω1t1+iω2t2

i(ω1 − ω2 − iη)

[

ei(ω1−ω2)t2Σ̂
<

c,1Ĝ
A

2 + ei(ω1−ω2)t1Σ̂
R

c,1Ĝ
<

2

− ei(ω1−ω2)t0Σ̂
<

c,1Ĝ
R

2 − ei(ω1−ω2)t0Σ̂
A

c,1Ĝ
<

2

]

. (9.64)

To get rid of the t0-dependence we exploit the identity

0 =

∫ t2

t0

dt Σ̂
<

c (t1, t)Ĝ
R
(t, t2),

which follows from the fact that the retarded Green’s function vanishes whenever its first
argument is smaller than the second. In Fourier space this identity looks much more
interesting since

0 =

∫
dω1

2π

dω2

2π

e−iω1t1+iω2t2

i(ω1 − ω2 − iη)

(

ei(ω1−ω2)t2 − ei(ω1−ω2)t0
)

Σ̂
<

c,1Ĝ
R

2 .

Thus, we see that we can replace t0 with t2 in the first term of the second line of (9.64). In
a similar way we can show that the second t0 in (9.64) can be replaced with t1 and hence
the collision integral can be rewritten as

Î<L (t1, t2) =
∫
dω1

2π
e−iω1(t1−t2)Σ̂

<

c (ω1)

∫
dω2

2π

i[ĜR(ω2)− Ĝ
A
(ω2)]

ω1 − ω2 − iη
︸ ︷︷ ︸

ˆGA
(ω1)

+

∫
dω2

2π
e−iω2(t1−t2)

∫
dω1

2π

i[Σ̂
R

c (ω1)− Σ̂
A

c (ω1)]

ω2 − ω1 + iη
︸ ︷︷ ︸

ˆ
Σ

R

c (ω2)

Ĝ<(ω2).
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270 9. Conserving approximations: self-energy

The quantities below the underbraces are the result of the frequency integral, see (6.93) and
(9.57). We have thus proved the lesser version of (9.60) for all t0. The reader can verify that
the greater version of (9.60) as well as (9.61) can be derived in a similar manner. We make
use of these relations in Chapter 13 to derive an exact expression for the interaction energy
in terms of a real-frequency integral of self-energies and Green’s functions.

9.7 Formal solution of the Kadano�–Baym

equations

The aim of solving the Kadano�–Baym equations is to obtain the lesser and greater Green’s
functions from which to calculate, e.g., the time-dependent ensemble average of any one-
body operator, the time-dependent total energy, the addition and removal energies, etc..
In this section we generalize the formal solution (6.52) to interacting systems using the
Dyson equation (i.e., the integral form of the Kadano�–Baym equations). From a practical
point of view it is much more advantageous to solve the Kadano�–Baym equations than
the integral Dyson equation. However, there exist situations for which the formal solution
simplifies considerably. As we shall see, the simplified solution is extremely useful to derive

analytic results and/or to set up numerical algorithms for calculating Ĝ≶ without explicitly
propagating the Green’s function in time.

We follow the derivation of Ref. [54]. The starting point is the Dyson equation (9.17) for
the Green’s function

Ĝ(z, z′) = Ĝ0(z, z′) +
∫

γ

dz̄dz̄′ Ĝ(z, z̄)Σ̂ (z̄, z̄′)Ĝ0(z̄′, z′), (9.65)

where Ĝ0 is the noninteracting Green’s function. We separate the self-energy Σ̂ = Σ̂HF+Σ̂ c

into the Hartree–Fock self-energy and the correlation self-energy (9.14). Then the Dyson
equation can be rewritten as

Ĝ(z, z′) = ĜHF(z, z
′) +

∫

γ

dz̄dz̄′ Ĝ(z, z̄)Σ̂ c(z̄, z̄
′)ĜHF(z̄

′, z′), (9.66)

with ĜHF the Hartree–Fock Green’s function. The equivalence between these two forms of

the Dyson equation can easily be verified by acting on (9.65) from the right with [−i
←−
d
dz′ −

ĥ(z′)] and on (9.66) from the right with [−i
←−
d
dz′ − ĥHF(z

′)]. In both cases the result is the
equation of motion (9.31). The advantage of using (9.66) is that the correlation self-energy
is nonlocal in time and, in macroscopic interacting systems, often decays to zero when the
separation between its time arguments approaches infinity. As we shall see this fact is at
the basis of an important simplification in the long-time limit. Using the Langreth rules the
lesser Green’s function reads

Ĝ< =
[

δ + ĜR · Σ̂R

c

]

· Ĝ<HF + Ĝ< · Σ̂A

c · Ĝ
A

HF +
[

ĜR · Σ̂<

c + Ĝ⌉ ⋆ Σ̂ ⌈c
]

· ĜAHF

+ ĜR · Σ̂ ⌉c ⋆ Ĝ
⌈
HF + Ĝ⌉ ⋆ Σ̂M

c ⋆ Ĝ⌈HF,
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9.7. Formal solution of the Kadano�–Baym equations 271

and solving for Ĝ<

Ĝ< =
[

δ + ĜR · Σ̂R

c

]

· Ĝ<HF ·
[

δ + Σ̂
A

c · Ĝ
A
]

+
[

ĜR · Σ̂<

c + Ĝ⌉ ⋆ Σ̂ ⌈c
]

· ĜA

+
[

ĜR · Σ̂ ⌉c ⋆ Ĝ
⌈
HF + Ĝ⌉ ⋆ Σ̂M

c ⋆ Ĝ⌈HF

]

·
[

δ + Σ̂
A

c · Ĝ
A
]

.

In obtaining this result we use the obvious identity (see also the useful exercise in Section
6.2.3) [

δ − Σ̂
A

c · Ĝ
A
]

·
[

δ + Σ̂
A

c · Ĝ
A

HF

]

= δ,

which is a direct consequence of the advanced Dyson equation. Next we observe that (6.52)
is valid for both noninteracting and mean-field Green’s functions and hence

Ĝ<HF(t, t
′) = ĜRHF(t, t0)Ĝ

<

HF(t0, t0)Ĝ
A

HF(t0, t
′), (9.67)

and similarly from (6.54)

Ĝ⌈HF(τ, t
′) = −iĜMHF(τ, 0)Ĝ

A

HF(t0, t
′).

Therefore

Ĝ<(t, t′) = ĜR(t, t0)Ĝ
<

HF(t0, t0)Ĝ
A
(t0, t

′) +
[

ĜR · Σ̂<

c · Ĝ
A
]

(t, t′)

+
[

Ĝ⌉ ⋆ Σ̂ ⌈c · Ĝ
A
]

(t, t′)− i
[

ĜR · Σ̂ ⌉c ⋆ Ĝ
M

HF + Ĝ⌉ ⋆ Σ̂M

c ⋆ ĜMHF

]

(t, t0)Ĝ
A
(t0, t

′).

In order to eliminate the right Green’s function from this equation we again use the Dyson
equation. The right component of (9.66) yields

Ĝ⌉ ⋆
[

δ − Σ̂
M

c ⋆ ĜMHF

]

=
[

δ + ĜR · Σ̂R

c

]

· Ĝ⌉HF + ĜR · Σ̂ ⌉c ⋆ Ĝ
M

HF.

Using the identity
[

δ − Σ̂
M

c ⋆ ĜM
]

·
[

δ + Σ̂
M

c ⋆ ĜMHF

]

= δ,

which follows from the Matsubara–Dyson equation, as well as (6.53) for Hartree–Fock Green’s
functions,

Ĝ⌉HF(t, τ) = iĜRHF(t, t0)Ĝ
M

HF(0, τ),

we find

Ĝ⌉(t, τ) = iĜR(t, t0)Ĝ
M
(0, τ) +

[

ĜR · Σ̂ ⌉c ⋆ Ĝ
M
]

(t, τ). (9.68)

Substituting this result in the equation for Ĝ< we obtain the generalization of (6.52)

Ĝ<(t, t′) = ĜR(t, t0)Ĝ
<
(t0, t0)Ĝ

A
(t0, t

′) +
[

ĜR ·
(

Σ̂
<

c + Σ̂
⌉
c ⋆ Ĝ

M
⋆ Σ̂
⌈
c

)

· ĜA
]

+ iĜR(t, t0)
[

ĜM⋆ Σ̂ ⌈c · Ĝ
A
]

(t0, t
′)− i

[

ĜR · Σ̂ ⌉c⋆ Ĝ
M
]

(t, t0)Ĝ
A
(t0, t

′)
(9.69)
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272 9. Conserving approximations: self-energy

The formula for the greater Green’s function is identical to (9.69) but with all the superscripts
“<” replaced by “>”. We see that for Σ̂ c = 0 only the first term survives, in agreement with
the fact that in this case the Green’s function is a mean-field Green’s function and hence
(9.67) holds. For nonvanishing correlation self-energies all terms must be retained and use

of (9.69) for calculation of Ĝ< is computationally very demanding due to the large number
of time convolutions involved.

It is important to clarify a point about the formal solution (9.69). Suppose that we have solved the

equilibrium problem and hence that we know ĜM
. Taking into account that ĜR/A

is defined in terms

of Ĝ≶
, couldn’t we use (9.68), (9.69) and the analogous equations for Ĝ⌈

and Ĝ>
to determine Ĝ≶

, Ĝ⌉

and Ĝ⌈
? If the answer were positive we would bump into a serious conundrum since these equations

do not know anything about the Hamiltonian at positive times! In other words we would have the
same Green’s function independently of the external fields. Thus the answer to the above question

must be negative and the equations (9.68), (9.69) and the like for Ĝ⌈
and Ĝ>

cannot be independent
from one another. We can easily show that this is the case in a system of noninteracting particles.
Here we have

Ĝ≶
(t, t′) = −[Ĝ>

(t, t0)− Ĝ<
(t, t0)] Ĝ

≶
(t0, t0) [Ĝ

>
(t0, t

′)− Ĝ<
(t0, t

′)],

where we have used ĜR
(t, t0) = Ĝ>

(t, t0)− Ĝ<
(t, t0) and ĜA

(t0, t
′) = −[Ĝ>

(t0, t
′)− Ĝ<

(t0, t
′)].

Now consider the above equation with, e.g., t′ = t0,

Ĝ<
(t, t0) = i [Ĝ>

(t, t0)− Ĝ<
(t, t0)] Ĝ

<
(t0, t0),

Ĝ>
(t, t0) = i [Ĝ>

(t, t0)− Ĝ<
(t, t0)] Ĝ

>
(t0, t0),

where we take into account that Ĝ>
(t0, t0)−Ĝ<

(t0, t0) = −i. This is a system of coupled equations

for Ĝ<
(t, t0) and Ĝ>

(t, t0). We see, however, that the system admits infinitely many solutions since

subtracting the first equation from the second we get a trivial identity. To conclude the set of

equations (9.68), (9.69) and the like for Ĝ⌈
and Ĝ>

it is not su�cient to calculate the Green’s function.

To form a complete system of equations we must include the retarded or advanced Dyson equation,

i.e., ĜR/A
= ĜR/A

HF + ĜR/A

HF · Σ̂R/A

c · ĜR/A
. This equation depends on the external fields through the

Hartree–Fock Green’s function and, therefore, it is certainly independent of the other equations.

There exist special circumstances in which a considerable simplification occurs. Suppose

that we are interested in the behavior of Ĝ< for times t, t′ much larger than t0. In most
macroscopic interacting systems the memory carried by Σ̂ c vanishes when the separation
between the time arguments increases. If so then the Green’s function vanishes also in the
same limit. This is the relaxation phenomenon discussed in Section 6.1.3 and amounts to
saying that initial correlations and initial-state dependences are washed out in the long-time
limit. In these cases only one term remains in (9.69):

lim
t,t′→∞

Ĝ≶(t, t′) =
[

ĜR · Σ̂≶

c · Ĝ
A
]

(t, t′). (9.70)

As we see in Chapter 13, this is an exact result for all times t, t′ and for both finite and
macroscopic systems provided that we are in thermodynamic equilibrium or, equivalently,
provided that the fluctuation–dissipation theorem is valid. In other words, for systems in

equilibrium all terms in (9.69) vanish except for the convolution ĜR · Σ̂≶

c · Ĝ
A
. For systems
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9.7. Formal solution of the Kadano�–Baym equations 273

out of equilibrium, instead, this simplification occurs only for long times and only for
systems with decaying memory.10 We further observe that if the Hamiltonian Ĥ(t) becomes
independent of time when t→∞ then it is reasonable to expect that the Green’s functions
and self-energies depend only on the time di�erence (for large times). In this case the
nonequilibrium Ĝ and Σ̂ can be Fourier transformed and the convolution in (9.70) becomes
a simple product in frequency space

Ĝ≶(ω) = ĜR(ω)Σ̂≶

c (ω)Ĝ
A
(ω). (9.71)

This result allows us to calculate steady-state quantities without solving the Kadano�–Baym
equations. Indeed, under the above simplifying assumptions the correlation self-energy with
real times can be written solely in terms of the Green’s function with real times. Consider
a generic self-energy diagram with external vertices on the forward or backward branches
at a distance t and t′ from the origin. If both t and t′ tend to infinity then all internal

convolutions along the imaginary track tend to zero. In this limit Σ̂
≶

c depends only on Ĝ<

and Ĝ>.11 Then (9.71) and the retarded or advanced Dyson equation,

ĜR/A
(ω) = ĜR/A

HF (ω) + ĜR/A

HF (ω)Σ̂
R/A

c (ω)ĜR/A
(ω), (9.72)

constitute a close set of coupled equations for Ĝ<(ω) and Ĝ>(ω) to be solved self-
consistently.

10The same reasoning can also be applied to special matrix elements of the Ĝ≶ of macroscopic noninteracting
systems like the G<

00 of the Fano model where the embedding self-energy plays the role of the correlation self-
energy, see Section 6.1.1.

11The dependence is, of course, determined by the approximation we make for the functional Φ.
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10

MBPT for the Green’s function

The Hartree and Hartree–Fock approximations introduced in Chapter 7 were based on mere
physical intuition. How to go beyond these approximations in a systematic way is the topic
of this chapter. We present an e�cient perturbative method to expand the Green’s function
and the self-energy in powers of the interparticle interaction. The starting point is the
formula (5.32) for the Green’s function, which we rewrite again for convenience:

G(a; b) =

∞∑

k=0

1
k!

(
i
2

)k∫
v(1; 1′) .. v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(a; b) G0(a; 1
+) . . . G0(a; k

′+)
G0(1; b) G0(1; 1

+) . . . G0(1; k
′+)

...
...

. . .
...

G0(k
′; b) G0(k

′; 1+) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

∞∑

k=0

1
k!

(
i
2

)k∫
v(1; 1′) .. v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(1; 1
+) G0(1; 1

′+) . . . G0(1; k
′+)

G0(1
′; 1+) G0(1

′; 1′+) . . . G0(1
′; k′+)

...
...

. . .
...

G0(k
′; 1+) G0(k

′; 1′+) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

.

(10.1)

This equation gives explicitly all the terms needed to calculate G to all orders in the interac-
tion strength. What we need to do is to find an e�cient way to collect them. We introduce
a graphical method which consists in representing every term of the MBPT expansion with
a diagram. This method was invented by Feynman in 1948 and has two main appealing fea-
tures. On the one hand, it is much easier to manipulate diagrams than lengthy and intricate
mathematical expressions. On the other hand, the Feynman diagrams explicitly unravel the
underlying physical content of the various terms of (10.1).

10.1 Getting started with Feynman diagrams

To get some experience with (10.1) let us work out some low order terms explicitly. We
start with the denominator which is the ratio Z/Z0 between the partition function of the

275
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276 10. MBPT for the Green’s function

interacting and noninteracting system, see (5.35). To first order we have

(
Z

Z0

)(1)

=
i

2

∫

d1d1′ v(1; 1′)

∣
∣
∣
∣

G0(1; 1
+) G0(1; 1

′+)
G0(1

′; 1+) G0(1
′; 1′+)

∣
∣
∣
∣
±

=
i

2

∫

d1d1′ v(1; 1′)
[
G0(1; 1

+)G0(1
′; 1′+)±G0(1; 1

′+)G0(1
′; 1+)

]
.

(10.2)

The basic idea of the Feynman diagrams is to provide a simple set of rules to convert
a drawing into a well defined mathematical quantity, like (10.2). Since (10.2) contains only
Green’s functions and interparticle interactions we must assign to G0 and v a graphical
object. We use the graphical notation already introduced in Section 9.3, according to which
a Green’s function G0(1; 2

+) is represented by an oriented line going from 2 to 1:

The Green’s function line is oriented to distinguish G0(1; 2
+) from G0(2; 1

+). The orien-
tation is, of course, a pure convention. We could have chosen the opposite orientation as
long as we consistently use the same orientation for all Green’s functions. The convention
above is the standard one. It stems from the intuitive picture that in G0(1; 2

+) we create a
particle in 2 and destroy it back in 1. Thus the particle “moves” from 2 to 1. The interaction
v(1; 2) is represented by a wiggly line:

which has no direction since v(1; 2) = v(2; 1). Then, the two terms in (10.2) have the
graphical form

where integration over all internal vertices (in this case 1 and 1′) is understood. The
diagrams above are exactly the same as those of the Hartree–Fock approximation (9.23) with
the di�erence that here the lines represent G0 instead of G. It is important to observe that
the infinitesimal contour-time shift in G0(1; 2

+) plays a role only when the starting and end
points of G are the same (as in the first diagram above), or when points 1 and 2 are joined
by an iteration line v(1; 2) = δ(z1, z2)v(x1,x2) (as in the second diagram above). In all
other cases we can safely discard the shift since z1 = z2 is a set of zero measure in the
integration domain.

In the remainder of the book we sometimes omit the infinitesimal shift. If a diagram
contains a Green’s function with the same contour-time arguments then the second
argument is understood to be infinitesimally later than the first.
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10.1. Getting started with Feynman diagrams 277

Figure 10.1 Some of the second-order diagrams of the MBPT expansion of Z/Z0.

It is also worth noting that the prefactor of the diagrams is determined by (10.2); it is (i/2)
for the first diagram and (±i/2) for the second diagram. More generally, to any order
in the interaction strength the prefactors follow directly from (10.1). We do not need to
come up with ad hoc solutions to fix them. From now on the prefactor of each diagram is
incorporated in the diagram itself, i.e., to each diagram corresponds an integral of Green’s
functions and interactions with the appropriate prefactor.

To evaluate the second order contribution to Z/Z0 we must expand the permanent/
determinant of a 4× 4 matrix which yields 4! = 24 terms,

(
Z

Z0

)(2)

=
1

2!

i2

22

∫

d1d1′d2d2′ v(1; 1′)v(2; 2′)

×
∑

P

(±)PG0(1;P (1))G0(1
′;P (1′))G0(2;P (2))G0(2

′;P (2′)). (10.3)

In Fig. 10.1 we show some of the diagrams originating from this expansion. Below each
diagram we indicate the permutation that generates it. The prefactor is simply 1

2! (
i
2 )

2

times the sign of the permutation. Going to higher order in v the number of diagrams
grows and their topology becomes increasingly more complicated. However, they all have a
common feature: their mathematical expression contains an integral over all vertices. We
refer to these diagrams as the vacuum diagrams.1 Thus, given a vacuum diagram the rules
to convert it into a mathematical expression are:

• Number all vertices and assign an interaction line v(i; j) to a wiggly line between j
and i and a Green’s function G0(i; j

+) to an oriented line from j to i.

1The Φ-diagrams of Section 9.3 are examples of vacuum diagrams.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:07:17 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.012

Cambridge Books Online © Cambridge University Press, 2015



278 10. MBPT for the Green’s function

Figure 10.2 First order diagrams for the numerator N(a; b). Below each diagram we report
the permutation that generates it. The arrows help to visualize the number of interchanges
(the first interchange is the arrow under the triple of labels).

• Integrate over all vertices and multiply by [(±)P 1
k! (

i
2 )

k], where (±)P is the sign of
the permutation and k is the number of interaction lines.

Let us now turn our attention to the numerator, N(a; b), of (10.1). To first-order in the
interaction strength we must evaluate the permanent/determinant of a 3 × 3 matrix. The
expansion along the first column leads to

N (1)(a; b) =
i

2
G0(a; b)

∫

d1d1′v(1; 1′)

∣
∣
∣
∣

G0(1; 1
+) G0(1; 1

′+)
G0(1

′; 1+) G0(1
′; 1′+)

∣
∣
∣
∣
±

± i

2

∫

d1d1′v(1; 1′)G0(1; b)

∣
∣
∣
∣

G0(a; 1
+) G0(a; 1

′+)
G0(1

′; 1+) G0(1
′; 1′+)

∣
∣
∣
∣
±

+
i

2

∫

d1d1′v(1; 1′)G0(1
′; b)

∣
∣
∣
∣

G0(a; 1
+) G0(a; 1

′+)
G0(1; 1

+) G0(1; 1
′+)

∣
∣
∣
∣
±
. (10.4)

To each term we can easily give a diagrammatic representation. In the first line of (10.4) we
recognize the ratio (Z/Z0)

(1) of (10.2) multiplied by G0(a; b). The corresponding diagrams
are simply those of (Z/Z0)

(1) with an extra line going from b to a. The remaining terms can
be drawn in a similar manner and the full set of diagrams (together with the corresponding
permutations) is shown in Fig. 10.2. The prefactor is simply (i/2) times the sign of the
permutation. The diagrams for N(a; b) are di�erent from the vacuum diagrams since there
are two external vertices (a and b) over which we do not integrate. We refer to these
diagrams as the Green’s function diagrams. The rules to convert a Green’s function diagram
into a mathematical expression are the same as those for the vacuum diagrams with the
exception that there is no integration over the external vertices. In contrast, a vacuum
diagram contains only internal vertices.
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10.2. Loop rule 279

At this point the only quantity which is a bit awkward to determine is the sign of the
permutation. It would be useful to have a simple rule to fix the sign by giving the diagram
a cursory glance. This is the topic of the next section.

Exercise 10.1. Calculate all the second-order terms of Z/Z0 and draw the corresponding

diagrams.

Exercise 10.2. Show that the diagrammatic representation of the last two lines of (10.4) is

the last four diagrams of Fig. 10.2.

10.2 Loop rule

From (10.1) or (10.3) we see that the sign of a diagram is determined by the sign of the
permutation that changes the second argument of the Green’s functions. In graphical terms
this amounts to a permutation of the starting points of the Green’s function lines of a
diagram. Since every permutation can be obtained by successive interchanges of pairs of
labels (i, j) we only need to investigate how such interchanges modify a diagram. A vacuum
diagram consists of a certain number of loops and, therefore, an interchange can occur
either between two starting points of the same loop or between two starting points of
di�erent loops. In the former case we have the generic situation:

in which we have interchanged the starting points 2 and 4 so that G0(1; 2)G0(2; 3)G0(3; 4)
G0(4; 1)→ G0(1; 4)G0(2; 3)G0(3; 2)G0(4; 1) and hence the number of loops increases by
one. In the latter case we have the generic situation:

in which we have interchanged the starting points 3 and 6 so that G0(1; 2)G0(2; 3)G0(3; 1)
G0(5; 4)G0(4; 6)G0(6; 5)→ G0(1; 2)G0(2; 6)G0(3; 1)G0(5; 4)G0(4; 3)G0(6; 5) and hence
the number of loops decreases by one. It is not di�cult to convince ourselves that this is
a general rule: an interchange of starting points changes the number of loops by one. For
a Green’s function diagram, in addition to the interchanges just considered, we have two
more possibilities: either the interchange occurs between two starting points on the path
connecting b to a or between a starting point on the path and a starting point on a loop. In
the first case we have the generic situation:

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:07:17 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.012

Cambridge Books Online © Cambridge University Press, 2015



280 10. MBPT for the Green’s function

in which we have interchanged the starting points 1 and 2, and the number of loops increases
by one. The reader can easily verify that the number of loops would have increased by one
also by an interchange of a and 2 or of a and 1. In the second case an interchange of, e.g.,
the starting points a and 3 leads to:

and the number of loops decreases by one. Again, this is completely general: an interchange
of starting points changes the number of loops by one. Taking into account that for the
identity permutation the sign of a diagram, be it a vacuum or a Green’s function diagram,
is + and the number of loops is even, we can state the so called loop rule: (±)P = (±)l
where l is the number of loops! As an example we show in Fig. 10.3 some of the 5! = 120
second-order Green’s function diagrams together with the corresponding permutation; in all
cases the loop rule is fulfilled. This example also shows that there are several diagrams [(a)
to (e)] which are products of a connected diagram (connected to a and b) and a vacuum
diagram. It turns out that the vacuum diagrams are cancelled out by the denominator of
the Green’s function in (10.1), thus leading to a large reduction of the number of diagrams
to be considered. Furthermore, there are diagrams that have the same numerical value
[e.g., (a)-(b)-(e), (c)-(d) and (f)-(g)]. This is due to a permutation and mirror symmetry of the
interaction lines v(j; j′). We can achieve a large reduction in the number of diagrams by
taking these symmetries into account. In the next two sections we discuss how to do it.

Exercise 10.3. Draw the G-diagram and the vacuum diagram of order n, i.e., with n
interaction lines, corresponding to the identity permutation.

10.3 Cancellation of disconnected diagrams

We have already observed that the number of terms generated by (10.1) grows very rapidly
when going to higher order in the interaction strength. In this section we show that the
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10.3. Cancellation of disconnected diagrams 281

Figure 10.3 Some of the second-order Green’s function diagrams and the corresponding
permutations.

disconnected vacuum diagrams of the numerator are exactly cancelled by the vacuum di-
agrams of the denominator. Let us start with an example. Consider the following three
Green’s function diagrams that are part of the expansion of the numerator of (10.1) to third
order:

They are all related by a permutation of the interaction lines v(i; i′)↔ v(j; j′) that preserves
the structure of two disjoint pieces which are: (piece 1) the connected Green’s function
diagram corresponding to the third diagram of Fig. 10.2, and (piece 2) the vacuum diagram
corresponding to the third diagram of Fig. 10.1. Furthermore, they all have the same prefactor
(±)4 1

3! (
i
2 )

3 so that their total contribution is

3× 1

3!

(
i

2

)3 ∫

[G0G0G0v]

∫

[G0G0G0G0vv], (10.5)

with the obvious notation that the first factor
∫
[G0G0G0v] refers to the Green’s function

diagram and the second factor
∫
[G0G0G0G0vv] refers to the vacuum diagram. Let us now

consider the product of diagrams
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282 10. MBPT for the Green’s function

As the first diagram is − i
2

∫
[G0G0G0v] and the second diagram is − 1

2!

(
i
2

)2 ∫
[G0G0G0

G0vv], their product equals the sum of the three diagrams above, i.e.,

This result is readily seen to be generally valid. To kth order there are

(
k
n

)

ways to

construct a given connected nth order Green’s function diagram out of the interaction lines

v(1; 1′), . . . , v(k; k′) which all give the same contribution G
(n)
c,i (a; b) =

∫
[G0 . . . G0v . . . v]i,

where i labels the given diagram. In our example

(
3
1

)

= 3. The remaining part V
(k−n)
j =

∫
[G0 . . . G0v . . . v]j is proportional to the jth vacuum diagram (consisting of one or more

disjoint pieces) of order k − n. Thus, the total contribution of the kth order term of the
numerator of (10.1) is

N (k)(a; b) =
1

k!

(
i

2

)k k∑

n=0

(
k
n

)
∑

i= G-connected
diagrams

∑

j=
vacuum
diagrams

(±)li+ljG
(n)
c,i (a; b)V

(k−n)
j

=

k∑

n=0

1

n!

(
i

2

)n ∑

i= G-connected
diagrams

(±)liG(n)
c,i (a; b)

× 1

(k − n)!

(
i

2

)k−n ∑

j=
vacuum
diagrams

(±)ljV (k−n)
j ,

where li and lj are the number of loops in the diagrams i and j. The third line in this
equation is exactly (Z/Z0)

(k−n). Therefore, if we denote by

G(n)
c (a; b) =

1

n!

(
i

2

)n ∑

i= G-connected
diagrams

(±)liG(n)
c,i (a; b)
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the sum of all nth order connected diagrams of N(a; b), we have

N(a; b) =

∞∑

k=0

k∑

n=0

G(n)
c (a; b)

(
Z

Z0

)(k−n)
=

∞∑

n=0

∞∑

k=n

G(n)
c (a; b)

(
Z

Z0

)(k−n)

=

(
Z

Z0

) ∞∑

n=0

G(n)
c (a; b).

We have just found the important and beautiful result that all vacuum diagrams of the
denominator of (10.1) are cancelled out by the disconnected part of the numerator! The
MBPT formula (10.1) simplifies to

G(a; b) =

∞∑

n=0

1

n!

(
i

2

)n∫

v(1; 1′) . . . v(n;n′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(a; b) G0(a; 1
+) . . . G0(a;n

′+)
G0(1; b) G0(1; 1

+) . . . G0(1;n
′+)

...
...

. . .
...

G0(n
′; b) G0(n

′; 1+) . . . G0(n
′;n′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣±
c

(10.6)

where the symbol | . . . |±
c
signifies that in the expansion of the permanent/determinant only

the terms represented by connected diagrams are retained.

10.4 Summing only the topologically inequivalent

diagrams

The cancellation of disconnected diagrams reduces drastically the number of terms in the
MBPT expansion of G, but we can do even better. If we write down the diagrams for G
we realize that there are still many connected diagrams with the same value. In first order,
for instance, the 3rd and 4th diagram as well as the 5th and 6th diagram of Fig. 10.2 clearly
lead to the same integrals, for only the labels 1 and 1′ are interchanged. In second order
each connected diagram comes in eight variants all with the same value. An example is
the diagrams of Fig. 10.4, in which (b) is obtained from (a) by mirroring the interaction
line v(1; 1′), (c) is obtained from (a) by mirroring the interaction line v(2; 2′), and (d) is
obtained from (a) by mirroring both interaction lines. For an nth order diagram we thus
have 2n such mirroring operations (22 = 4 in Fig. 10.2). The second row of the figure is
obtained by interchanging the interaction lines v(1; 1′) ↔ v(2; 2′) in the diagrams of the
first row. If we have n interaction lines then there are n! possible permutations (2! = 2
in Fig. 10.2). We conclude that there exist 2nn! diagrams with the same value to order n.
Since these diagrams are obtained by mirroring and permutations of interaction lines they
are also topologically equivalent, i.e., they are obtained from one another by a continuous
deformation. Therefore we only need to consider diagrams with di�erent topology and
multiply by 2nn! where n is the number of interaction lines. For these diagrams the new
value of the prefactor becomes

2nn!
1

n!

(
i

2

)n

(±)l = in(±)l,
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284 10. MBPT for the Green’s function

Figure 10.4 A class of eight equivalent second-order connected diagrams for the Green’s
function.

and (10.6) can be rewritten as

G(a; b) =

∞∑

n=0

in
∫

v(1; 1′) . . . v(n;n′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(a; b) G0(a; 1
+) . . . G0(a;n

′+)
G0(1; b) G0(1; 1

+) . . . G0(1;n
′+)

...
...

. . .
...

G0(n
′; b) G0(n

′; 1+) . . . G0(n
′;n′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣±
c
t.i.

(10.7)

where the symbol | . . . |±
c
t.i.

signifies that in the expansion of the permanent/determinant only

the terms represented by connected and topologically inequivalent diagrams are retained.
From now on we work only with these diagrams. Thus, the new rules to convert a Green’s
function diagram into a mathematical expression are:

• Number all vertices and assign an interaction line v(i; j) to a wiggly line between j
and i and a Green’s function G0(i; j

+) to an oriented line from j to i;

• Integrate over all internal vertices and multiply by in(±)l where l is the number of
loops and n is the number of interaction lines.

Using (10.7) we can easily expand the Green’s function to second order; the result is
shown in Fig. 10.5. We find two first-order diagrams and ten second-order diagrams. This
is an enormous simplification! Without using the cancellation of disconnected diagrams
and resummation of topologically equivalent diagrams the Green’s function to second-order
G(2) = (N (0)+N (1)+N (2))−(Z/Z0)

(1)(N (0)+N (1))+{[(Z/Z0)
(1)]2+(Z/Z0)

(2)}N (0)

would consist of (1 + 3! + 5!) + 2!(1 + 3!) + (2!)2 + 4! = 169 diagrams.
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10.5. Self-energy and Dyson equations II 285

Figure 10.5 MBPT expansion of the Green’s function to second order using the new Feynman
rules.

Exercise 10.4. Prove that G to second order in v is given by Fig. 10.5.

10.5 Self-energy and Dyson equations II

To reduce the number of diagrams further it is necessary to introduce a new quantity which,
as we shall see, turns out to be the self-energy Σ. It is clear from the diagrammatic structure
that the Green’s function has the general form

,

(10.8)

where the self-energy

The self-energy consists of all diagrams that do not break up into two disjoint pieces by
cutting a single G0-line. So, for instance, the 4th, 5th, 6th and 7th diagram of Fig. 10.5
belong to the third term on the r.h.s. of (10.8) while all diagrams in the second row of the
same figure belong to the second term. The self-energy diagrams are called one-particle
irreducible diagrams or simply irreducible diagrams. By construction Σ = Σ[G0, v] depends
on the noninteracting Green’s function G0 and on the interaction v. If we represent the
interacting Green’s function by an oriented double line

then we can rewrite (10.8) as
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286 10. MBPT for the Green’s function

(10.9)

or, equivalently,

(10.10)

Equations (10.9) and (10.10) are readily seen to generate (10.8) by iteration. The mathematical
expression of these equations is

G(1; 2) = G0(1; 2) +

∫

d3d4G0(1; 3)Σ(3; 4)G(4; 2)

= G0(1; 2) +

∫

d3d4G(1; 3)Σ(3; 4)G0(4; 2), (10.11)

which is identical to (9.17): we have again found the Dyson equation! However, whereas
in Chapter 9 we did not know how to construct approximations for the self-energy, in this
chapter we have learned how to use the Wick’s theorem to expand the self-energy to any
order in the interaction strength.

It is interesting to observe that the self-energy (in contrast to the Green’s function) does
not have a mathematical expression in terms of a contour-ordered average of operators.
The mathematical expression for Σ which is closest to a contour-ordered average can be
deduced from (9.9). Here the structure ΣGΣ is reducible and hence does not belong to Σ.
The first term on the r.h.s. of (9.9) is the singular (Hartree–Fock) part of the self-energy, see
(9.13). Consequently the correlation self-energy can be written as

Σc(1; 2) = −i 〈T
{

γ̂H(1)γ̂†H(2)
}

〉irr (10.12)

where 〈. . .〉irr signifies that in the Wick’s expansion of the average we only retain those
terms whose diagrammatic representation is an irreducible diagram [41].

Thanks to the introduction of the self-energy we can reduce the number of diagrams even
further since we only need to consider topologically inequivalent Σ-diagrams (these diagrams
are, by definition, connected and one-particle irreducible). Then the Dyson equation (10.11)
allows us to sum a large number of diagrams to infinite order. Indeed, a finite number of
Σ-diagrams implies an infinite number of Green’s function diagrams through (10.8).

For the diagrammatic construction of the self-energy the rules are the same as those for
the Green’s function. For instance, to first order we have

or in formulas

Σ(1)(1; 2) = ±i δ(1; 2)
∫

d3 v(1; 3)G0(3; 3
+) + i v(1; 2)G0(1; 2

+). (10.13)

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:07:17 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.012

Cambridge Books Online © Cambridge University Press, 2015



10.6. G-skeleton diagrams 287

Figure 10.6 Self-energy diagrams to second order in interaction strength.

This is exactly the Hartree–Fock self-energy of Fig. 9.1 [see also (9.13)] in which G has been
replaced by G0. According to our new convention the prefactor is now included in the
diagram and coincides with the prefactor derived heuristically in Section 7.1. As anticipated,
the perturbative expansion fixes the prefactors uniquely. In the Hartree term of (10.13) we
have also added a δ-function since in the corresponding Green’s function diagram (second
diagram of Fig. 10.5) we have 1 = 2. This applies to all self-energy diagrams that start and
end with the same interaction vertex (see, e.g., the 3rd and 6th diagram in the second row of
Fig. 10.5). The second-order self-energy diagrams are shown in Fig. 10.6. There are only six
diagrams to be considered against the ten second-order Green’s function diagrams. In the
next two sections we achieve another reduction in the number of diagrams by introducing
a very useful topological concept.

Exercise 10.5. Evaluate the r.h.s. of (10.12) to second order in the interaction v and show

that it is given by the sum of the 1st and 2nd diagrams in Fig. 10.6 (all other diagrams in

the same figure contain a δ(z1, z2) and hence they are part of the singular (Hartree–Fock)

self-energy).

10.6 G-skeleton diagrams

A G-skeleton diagram for the self-energy is obtained by removing all self-energy insertions
from a given diagram. A self-energy insertion is a piece that can be cut away from a diagram
by cutting two Green’s function lines. For example, the diagram below:

(10.14)

has four self-energy insertions residing inside the thin-dashed parabolic lines. The r.h.s.
highlights the structure of the diagram and implicitly defines the self-energy insertions Σi,
i = 1, 2, 3, 4. The G-skeleton diagram corresponding to (10.14) is therefore
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288 10. MBPT for the Green’s function

(10.15)

The G-skeleton diagrams allow us to express the self-energy in terms of the interacting
(dressed) Green’s function G rather than the noninteracting Green’s function G0. Consider
again the example (10.15). If we sum over all possible self-energy insertions we find

(10.16)

where each grey circle represents the exact self-energy. Thus, the sum over ni on the l.h.s.
gives the dressed G and the result is the G-skeleton diagram (10.15) in which G0 is replaced
by G. This procedure yields the self-energy Σ = Σs[G, v] as a functional of the interaction
v and of the dressed Green’s function G. The subscript “s” specifies that the functional
is constructed by taking only the G-skeleton diagram from the functional Σ = Σ[G0, v]
and then replacing G0 with G: Σ[G0, v] = Σs[G, v]. In the next chapter we show how
to use this result to construct the functional Φ[G] = Φ[G, v] whose functional derivative
with respect to G is the exact self-energy. Using G-skeleton diagrams we can write the
self-energy up to second order in the interaction as

(10.17)

There are only two G-skeleton diagrams of second order against the six diagrams in Fig.
10.6. The approximation for the self-energy corresponding to these four G-skeleton diagrams
is called the second-Born approximation.

For any given approximation to Σs[G, v] we can calculate an approximate Green’s func-
tion from the Dyson equation

G(1; 2) = G0(1; 2) +

∫

d3d4G0(1; 3)Σs[G, v](3; 4)G(4; 2)

= G0(1; 2) +

∫

d3d4G(1; 3)Σs[G, v](3; 4)G0(4; 2), (10.18)
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10.7. W -skeleton diagrams 289

which is a nonlinear integral equation for G. Alternatively, we could apply [δ(1′; 1)i d
dz1
−

h(1′; 1)] to the first row and integrate over 1, [−i
←−
d

dz2
δ(2; 2′)−h(2; 2′)] to the second row and

integrate over 2, and convert (10.18) into a coupled system of nonlinear integro-di�erential
equations,

∫

d1

[

δ(1′; 1) i
d

dz1
− h(1′; 1)

]

G(1; 2) = δ(1′; 2) +

∫

d4Σs[G, v](1
′; 4)G(4; 2), (10.19)

∫

d2 G(1; 2)

[

−i
←−
d

dz2
δ(2; 2′)− h(2; 2′)

]

= δ(1; 2′) +

∫

d3G(1; 3)Σs[G, v](3; 2
′), (10.20)

to be solved with the KMS boundary conditions. These equations are exactly the Kadano�–
Baym equations discussed in Section 9.4. From the results of the previous chapter we also
know that if the approximate self-energy is Φ-derivable then the Green’s function obtained
from (10.19) and (10.20) preserves all basic conservation laws. In particular, the solution
of the Kadano�–Baym equations with the exact self-energy (obtained by summing all the
G-skeleton self-energy diagrams) yields the exact Green’s function.

10.7 W -skeleton diagrams

The topological concept of G-skeleton diagrams can also be applied to the interaction lines
and leads to a further reduction of the number of diagrams. Let us call a piece of diagram
a polarization insertion if it can be cut away by cutting two interaction lines. For example

(10.21)

is a G-skeleton diagram with two polarization insertions

(10.22)

The polarization diagrams, like the ones above, must be one-interaction-line irreducible, i.e.,
they cannot break into two disjoint pieces by cutting an interaction line. Thus, even though
we could cut away the piece P1vP2 by cutting two interaction lines on the l.h.s. of (10.21),
the diagram P1vP2 is not a polarization diagram since it breaks into the disjoint pieces P1

and P2 by cutting the interaction line in the middle.

The polarization diagrams can be used to define the dressed or screened interaction
W according to
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290 10. MBPT for the Green’s function

(10.23)

In this diagrammatic equation P is the sum of all possible polarization diagrams. We refer
to P as the polarizability. Similarly to the self-energy, the polarizability can be considered
either as a functional of the noninteracting Green’s function G0 and the interaction v,
P = P [G0, v], or as a functional of the dressed G and v, P = Ps[G, v]. Equation (10.23)
has the form of the Dyson equation (10.8) for the Green’s function. In formulas it reads

W (1; 2) = v(1; 2) +

∫

v(1; 3)P (3; 4)v(4; 2) +

∫

v(1; 3)P (3; 4)v(4; 5)P (5; 6)v(6; 2) + . . .

= v(1; 2) +

∫

v(1; 3)P (3; 4)W (4; 2), (10.24)

where the integral is over all repeated variables.
Let us express Σs[G, v] in terms of the screened interaction W . We say that a diagram

is a W -skeleton diagram if it does not contain polarization insertions. Then the desired
expression for Σ is obtained by discarding all those diagrams which are not W -skeletonic in
the expansion (10.17), and then replacing v with W . The only diagram for which we should
not proceed with the replacement is the Hartree diagram [first diagram in (10.17)] since here
every polarization insertion is equivalent to a self-energy insertion, see for instance the third
diagram of Fig. 10.6. In the Hartree diagram the replacement v → W would lead to double
counting. Therefore

Σ = Σss[G,W ] = ΣH[G, v] + Σss,xc[G,W ], (10.25)

where ΣH[G, v] is the Hartree self-energy while the remaining part is the so called exchange-
correlation (XC) self-energy which includes the Fock (exchange) diagram and all other dia-
grams accounting for nonlocal in time e�ects (correlations), see again the discussion in
Section 6.1.1 and Section 7.3. The subscript “ss” specifies that to construct the functional
Σss or Σss,xc we must take into account only those self-energy diagrams which are skele-
tonic with respect to both Green’s function and interaction lines. The skeletonic expansion
of the self-energy in terms of G and W (up to third order in W ) is shown in Fig. 10.7(a).
Similarly, the MBPT expansion of the polarizability in terms of G and W is obtained by
taking only G- and W -skeleton diagrams and then replacing G0 → G and v → W . This
operation leads to a polarizability P = Pss[G,W ] which can be regarded as a functional of
G and W and whose expansion (up to second order in W ) is shown in Fig. 10.7(b).

The diagrammatic expansion in terms of W instead of v does not only have the math-
ematical advantage of reducing the number of diagrams. There is also a physical advan-
tage [79]. In bulk systems and for long-range interactions, like the Coulomb interaction, many
self-energy diagrams are divergent. The e�ect of the polarization insertions is to cut o�
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10.7. W -skeleton diagrams 291

Figure 10.7 MBPT expansion in terms of G and W of (a) the self-energy up to third order,
and (b) the polarization up to second order.

the long-range nature of v. Replacing v with W makes these diagrams finite and physically
interpretable. We see an example of divergent self-energy diagrams in Section 13.5.

From the diagrammatic structure of the polarization diagrams we see that

P (1; 2) = P (2; 1) (10.26)

and, as a consequence, also

W (1; 2) =W (2; 1) (10.27)

which tells us that the screened interaction between the particles is symmetric, as one
would expect. It is worth noting, however, that this symmetry property is not fulfilled by
every single diagram. For instance, the 3rd and 4th diagrams of Fig. 10.7(b) are, separately,
not symmetric. The symmetry is recovered only when they are summed. This is a general
property of the polarization diagrams: either they are symmetric or they come in pairs of
mutually reversed diagrams. By a reversed polarization diagram we mean the same diagram
in which the end points are interchanged. If we label the left and right vertices of the 3rd
and 4th diagrams of Fig. 10.7(b) with 1 and 2, then the 4th diagram with relabeled vertices
2 and 1 (reversed diagram) becomes identical to the 3rd diagram.
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292 10. MBPT for the Green’s function

Let us derive the diagrammatic rules for the polarization diagrams. In an nth order
Σ-diagram with n interaction lines the prefactor is in(±)l since every interaction line comes
with a factor i. We want to maintain the same diagrammatic rules when the bare interaction
v is replaced by W . Let us consider a screened interaction diagram Wk of the form, e.g.,
Wk = vPkv, where Pk is a polarization diagram. If Pk has m interaction lines then Wk

has m + 2 interaction lines. For Wk to have the prefactor i the prefactor of Pk must be
im+1(±)l, with l the number of loops in Pk . For example, the prefactors of the diagrams in
(10.22) are i(±)1 for P1 and i2(±)1 for P2.

The lowest order approximation one can make in Fig. 10.7 is Σss,xc(1; 2) = iG(1; 2+)
W (1; 2) (first diagram) and P (1; 2) = ±iG(1; 2)G(2; 1) (first diagram). This approximation
was introduced by Hedin in 1965 and is today known as the GW approximation [79]. The
GW approximation has been rather successful in describing the spectral properties of many
crystals [80] and is further discussed in the next chapters. In general, for any given choice of
diagrams in Σss[G,W ] and Pss[G,W ] we have to solve the Dyson equation (10.18) and (10.24)
simultaneously to find an approximation to G and W which, we stress again, corresponds
to the resummation of an infinite set of diagrams.

Exercise 10.6. Show that the G- and W -skeleton diagrams for Σ up to third-order in W
are those of Fig. 10.7(a) and that the G- and W -skeleton diagrams for P up to second-order

in W are those of Fig. 10.7(b).

10.8 Summary and Feynman rules

We finally summarize the achievements of this chapter. Rather than working out all diagrams
for the Green’s function it is more advantageous to work out the diagrams for the self-energy.
In this way many diagrams are already summed to infinite order by means of the Dyson
equation. The Feynman rules to construct the self-energy are:

(I) Undressed case: Σ = Σ[G0, v]

• Draw all topologically inequivalent self-energy diagrams using G0 and v. By definition
a self-energy diagram is connected and one-particle irreducible.

• If the diagram has n interaction lines and l loops then the prefactor is in(±)l.

• Integrate over all internal vertices of the diagram.

(II) Partially dressed case: Σ = Σs[G, v]

• Same as in (I) but in the first point we should consider only the G-skeleton diagrams
(no self-energy insertions) and replace G0 with G.
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10.8. Summary and Feynman rules 293

(III) Fully dressed case: Σ = Σss[G,W ], P = Pss[G,W ]

• Same as in (I) but in the first point we should consider only diagrams which are both
G-skeletonic (no self-energy insertions) and W -skeletonic (no polarization insertion),
and replace G0 with G and v with W .

• In this case we also need to construct the polarization diagrams. For m interaction
lines and l loops the prefactor of these diagrams is im+1(±)l.

The presentation of the diagrammatic expansion has been done with (1.82) as the ref-
erence Hamiltonian. For this Hamiltonian the building blocks of a diagram are the Green’s
function and the interaction, and they combine in the following manner:
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With the exception of special systems like, e.g., the electron gas, the evaluation of a generic
diagram with pencil and paper is essentially impossible and we must resort to computer
programs. In order to evaluate a diagram numerically, however, we must expand the field
operators over some discrete (and incomplete) basis. In this case the Green’s function
G(x, z;x′, z′) becomes a matrix Gii′(z, z

′), the self-energy Σ(x, z;x′, z′) becomes a ma-
trix Σii′(z, z

′), the interaction v(x,x′) becomes a four-index tensor (Coulomb integrals)
vijmn, the screened interaction W (x, z;x′, z′) becomes a four-index tensor Wijmn(z, z

′),
and also the polarizability P (x, z;x′, z′) becomes a four-index tensor Pijmn(z, z

′). The
diagrammatic rules to construct these quantities are exactly the same as those already de-
rived, and the entire discussion of this and the following chapters remains valid provided
that the building blocks (Green’s function and interaction) are combined according to
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294 10. MBPT for the Green’s function

We see that there is no di�erence in the time-label of a vertex since the interaction remains
local in time. On the other hand, the orbital–spin-label of every vertex duplicates, since
the orbital–spin-label of the G that enters a vertex is, in general, di�erent from the orbital–
spin-label of the G that exits from the same vertex. The matrix elements vijmn join the
outgoing Greens functions with entries i and j to the ingoing Green’s functions with entries
m and n. The labels (i, n) and (j,m) in vijmn correspond to basis functions calculated
in the same position–spin coordinate, see (1.85), and therefore must be placed next to each
other. For instance the self-energy up to second order in the interaction is (omitting the
time coordinates):

while the diagrammatic expansion of the screened interaction looks like:

where the diagrammatic expansion of the polarizability has the structure:

As in the continuum case, once a diagram has been drawn we must integrate the internal
times over the contour and sum the internal orbital–spin-labels over the discrete basis.
Remember that for spin-independent interactions the matrix elements vijmn are zero unless
the spin of i is equal to the spin of n and/or the spin of j is equal to the spin of m. This
implies that in the discrete case the spin is conserved at every vertex also, as it should be.
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11

MBPT and variational principles for

the grand potential

11.1 Linked cluster theorem

In the previous chapter we briefly discussed the diagrammatic expansion of the partition
function Z/Z0 in terms of G0 and v. We saw that this expansion involves the sum of
vacuum diagrams and we also enunciated the diagrammatic rules in Section 10.1. The
vacuum diagrams are either connected or consist of disjoint pieces which are, therefore,
proportional to the product of connected vacuum diagrams. It would be nice to get rid
of the disjoint pieces and to derive a formula for Z/Z0 in terms of connected diagrams
only. To show how this can be done let us start with an example. Consider the diagram

(11.1)

where we have used the Feynman rules of Section 10.1 to convert the diagram into the
mathematical expression on the r.h.s. Corresponding to this diagram there are several
others that yield the same value. For instance.

295
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296 11. MBPT and variational principles for the grand potential

These diagrams simply correspond to di�erent choices of the interaction lines v(k; k′) used
to draw the connected vacuum diagrams. Let us calculate how many of these diagrams
there are. To draw the top diagram in (11.1) we have to choose two interaction lines out

of five and this can be done in

(
5
2

)

= 10 ways. The middle diagram in (11.1) can then

be drawn by choosing two interaction lines out of the remaining three and hence we have
(
3
2

)

= 3 possibilities. Finally, the bottom diagram requires the choice of one interaction

line out of the only one remaining which can be done in only one way. Since the top and
middle diagrams have the same form, and the order in which we construct them does not
matter, we still have to divide by 2!. Indeed, in our construction the step

is the same as

We thus find 1
2!

(
5
2

)(
3
2

)

= 15 diagrams that yield the same value (11.1). It is now easy to

make this argument general.
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11.1. Linked cluster theorem 297

Let us label all the connected vacuum diagrams with an index i = 1, . . . ,∞ and denote
by Vc,i =

∫
[v . . . vG0 . . . G0]i the integral corresponding to the ith diagram. The number ni

of interaction lines in Vc,i is the order of the diagram. A general (and hence not necessarily
connected) vacuum diagram contains k1 times the diagram Vc,1, k2 times the diagram Vc,2
and so on, and therefore its order is

n = n1k1 + n2k2 + . . . ,

with k1, k2, . . . integers between 0 and ∞. There are

(
n
n1

)

ways to construct the first

diagram Vc,1,

(
n− n1
n1

)

ways to construct the second diagram Vc,1, etc. When we exhaust

the diagrams of type Vc,1 we can start drawing the diagrams Vc,2. The first diagram Vc,2

can be constructed in

(
n− n1k1

n2

)

ways, etc. Finally, we have to divide by k1!k2! . . . in

order to compensate for the di�erent order in which the same diagrams can be drawn. We
thus find that the vacuum diagram considered appears

1

k1!k2! . . .

(
n
n1

)(
n− n1
n1

)

. . .

(
n− n1k1

n2

)

. . . =
1

k1!k2! . . .

n!

(n1!)k1(n2!)k2 . . .

times in the perturbative expansion of Z/Z0. The total contribution of this type of diagram
to Z/Z0 is therefore

1

k1!k2! . . .

n!

(n1!)k1(n2!)k2 . . .

1

n!

(
i

2

)n

(±)l
∫

[ v . . . v
︸ ︷︷ ︸

n times

×G0 . . . G0
︸ ︷︷ ︸

2n times

]

=
1

k1!

[
1

n1!

(
i

2

)n1

(±)l1Vc,1
]k1 1

k2!

[
1

n2!

(
i

2

)n2

(±)l2Vc,2
]k2

. . . ,

where li is the number of loops in diagram Vc,i and l = k1l1 + k2l2 + . . . is the total
number of loops. We have obtained a product of separate connected vacuum diagrams

Dc,i ≡
1

ni!

(
i

2

)ni

(±)liVc,i

with the right prefactors. To calculate Z/Z0 we simply have to sum the above expression
over all ki between 0 and ∞:

Z

Z0
=
∞∑

k1=0

1

k1!
(Dc,1)

k1

∞∑

k2=0

1

k2!
(Dc,2)

k2 . . . = eDc,1+Dc,2+.... (11.2)

This elegant result is known as the linked cluster theorem, since it shows that for calculating
the partition function it is enough to consider connected vacuum diagrams. Another way to
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298 11. MBPT and variational principles for the grand potential

Figure 11.1 Expansion of lnZ up to second order in the interaction.

write (11.2) is

ln
Z

Z0
=
∑

i

Dc,i

=
∞∑

k=0

1

k!

(
i

2

)k∫

v(1; 1′) . . . v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(1; 1
+) G0(1; 1

′+) . . . G0(1; k
′+)

G0(1
′; 1+) G0(1

′; 1′+) . . . G0(1
′; k′+)

...
...

. . .
...

G0(k
′; 1+) G0(k

′; 1′+) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣±
c

(11.3)

where the integral is over all variables and the symbol | . . . |±
c
signifies that in the expansion

of the permanent/determinant only the terms represented by connected diagrams are re-
tained. As the logarithm of the partition function is related to the grand potential Ω through
the relation Ω = − 1

β lnZ , see Appendix D, the linked cluster theorem is a MBPT expansion
of Ω in terms of connected vacuum diagrams. In Fig. 11.1 we show the diagrammatic expan-
sion of lnZ up to second order in the interaction. There are two first-order diagrams and
20 second-order diagrams against the 4! = 24 second-order diagrams resulting from the
expansion of the permanent/determinant in (5.35). Thus, the achieved reduction is rather
modest.1 Nevertheless, there is still much symmetry in these diagrams. For instance the first
four second-order diagrams have the same numerical value; the same is true for the next
eight diagrams, for the last two diagrams of the third row, for the first four diagrams of the
last row and for the last two diagrams. We could therefore reduce the number of diagrams

1It should be noted, however, that 20 diagrams for lnZ correspond to infinitely many diagrams for Z = elnZ .
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11.2. Summing only the topologically inequivalent diagrams 299

further if we understand how many vacuum diagrams have the same topology. As we see
in the next section, this is less straightforward than for the Green’s function diagrams (see
Section 10.4) due to the absence of external vertices.

11.2 Summing only the topologically

inequivalent diagrams

In Section 10.4 we showed that each nth order connected diagram for the Green’s function
comes in 2nn! variants. An example was given in Fig. 10.4 where we drew eight topologically
equivalent second-order diagrams. Unfortunately, counting the number of variants in which
a vacuum diagram can appear is not as easy. For example, the last two diagrams of Fig. 11.1
are topologically equivalent; since there are no other diagrams with the same topology the
number of variants is, in this case, only two. For the first diagram in the last row of Fig. 11.1
the number of variants is four, for the first diagram in the third row of Fig. 11.1 the number
of variants is eight, etc. The smaller number of variants for some of the vacuum diagrams
is due to the fact that not all permutations and/or mirrorings of the interaction lines lead to
a di�erent vacuum diagram, i.e., to a di�erent term in the expansion (11.3). If we label the
internal vertices of the last two diagrams of Fig. 11.1:

(11.4)

we see that the simultaneous mirroring v(1; 2)→ v(2; 1) and v(3; 4)→ v(4; 3) maps each
diagram into itself while the single mirroring v(1; 2) → v(2; 1) or v(3; 4) → v(4; 3) maps
each diagram into the other. It is then clear that to solve the counting problem we must
count the symmetries of a given diagram.

Consider a generic vacuum diagram D of order k and label all its internal vertices from
1 to 2k. We define G to be the set of oriented Green’s function lines and V to be the set
of interaction lines. For the left diagram in (11.4) we have G = {(1; 3), (3; 1), (2; 4), (4; 2)}
and V = {(1; 2), (3; 4)}. Note that for a v-line (i; j) = (j; i) while for a G0-line we must
consider (i; j) and (j; i) as two di�erent elements. The mirrorings and permutations of
the v-lines give rise to 2kk! relabelings of the diagram D which map V to itself. If such a
relabeling also maps G into G we call it a symmetry and the total number of symmetries is
denoted by NS. For the left diagram in (11.4) we have the following symmetries:

s1(1, 2, 3, 4) = (1, 2, 3, 4) identity

s2(1, 2, 3, 4) = (2, 1, 4, 3) mirroring both interaction lines

s3(1, 2, 3, 4) = (3, 4, 1, 2) permutation of interaction lines

s4(1, 2, 3, 4) = (4, 3, 2, 1) s3 after s2

(11.5)

and hence NS = 4. It is easy to see that the set of relabeling forms a group of order 2kk!
and the set of symmetries form a subgroup of order NS. Let si, i = 1, . . . , NS be the
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300 11. MBPT and variational principles for the grand potential

symmetries of D. If we now take a relabeling g di�erent from these si we obtain a new
vacuum diagram D′. For instance, g(1, 2, 3, 4) = (2, 1, 3, 4) maps the left diagram of (11.4)
into the right diagram and vice versa. The diagram D′ also has NS symmetries s′i given by

s′i = g ◦ si ◦ g−1,

which map D′ into itself. Clearly s′i 6= s′j if si 6= sj . By taking another relabeling h
di�erent from si, s

′
i, i = 1, . . . , NS we obtain another vacuum diagram D′′ which also has

NS symmetries s′′i = h ◦ si ◦ h−1. Continuing in this way we finally obtain

N =
2kk!

NS

di�erent vacuum diagrams with the same topology. Thus, to know the number N of variants
we must determine the number NS of symmetries. Once NS is known the diagrammatic
expansion of lnZ can be performed by including only connected and topologically inequiv-
alent vacuum diagrams Vc =

∫
[v . . . vG0 . . . G0] with prefactor

2kk!

NS

1

k!

(
i

2

)k

(±)l = ik

NS
(±)l.

From now on we work only with connected and topologically inequivalent vacuum diagrams.
It is therefore convenient to change the Feynman rules for the vacuum diagrams similarly to
the way we did in Section 10.4 for the Green’s function:

• Number all vertices and assign an interaction line v(i; j) to a wiggly line between j
and i and a Green’s function G0(i; j

+) to an oriented line from j to i;

• Integrate over all vertices and multiply by ik(±)l where l is the number of loops and
k is the number of interaction lines.

These are the same Feynman rules as for the Green’s function diagrams. Since the
symmetry factor 1/NS is not included in the new rules each diagram will be explicitly
multiplied by 1/NS. For example, the diagrammatic expansion of lnZ up to second-order
in the interaction is represented as in Fig. 11.2. Note the drastic reduction of second-order
diagrams: from 20 in Fig. 11.1 to five in Fig. 11.2. The diagrammatic expansion of Fig. 11.2
is still an expansion in noninteracting Green’s functions G0. By analogy to what we did in
Chapter 10 we may try to expand lnZ in terms of the dressed Green’s function G. As we
shall see, however, the dressed expansion of lnZ is a bit more complicated than the dressed
expansion of Σ. In the next section we illustrate where the problem lies while in Section 11.4
we show how to overcome it.

11.3 How to construct the Φ functional

Let us consider the vacuum diagram
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11.3. How to construct the Φ functional 301

Figure 11.2 Expansion of lnZ up to second order in the interaction with the new Feynman
rules.

where the thin-dashed lines help to visualize the self-energy insertions. This diagram can be
regarded either as

or as

so that we could choose the G-skeleton diagram to be one of the following two diagrams:

Remember that a diagram is G-skeletonic if it cannot be broken into two disjoint pieces
by cutting two Green’s function lines, see Section 10.6. In the case of the Green’s function
diagrams this problem does not arise since there is a unique G-skeleton diagram with one
ingoing and one outgoing line. Due to this di�culty it is more convenient to proceed along
a new line of argument. We derive the dressed expansion of lnZ from the self-energy. For
this purpose we must establish the relation between a vacuum diagram and a self-energy
diagram. This relation at the same time provides us with a di�erent way of determining the
number of symmetries NS of a vacuum diagram.
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302 11. MBPT and variational principles for the grand potential

Let us start with some examples. The nonskeletonic vacuum diagram

consists of the set of G0-lines G = {(1; 1), (3; 2), (2; 3), (4; 4)} and the set of v-lines
V = {(1; 2), (3; 4)}. Except for the identity the only other symmetry of this diagram is

s(1, 2, 3, 4) = (4, 3, 2, 1),

which corresponds to a permutation followed by a simultaneous mirroring of the two
v-lines. We now study what happens when we remove a G0-line from the diagram above. If
we remove the G0-lines (2; 3) or (3; 2) we produce two topologically equivalent diagrams
with the structure below:

This is a reducible self-energy diagram since it can be broken into two disjoint pieces by
cutting a G0-line. The reducible self-energy Σr is simply the series (10.8) for the Green’s
function in which the external G0-lines are removed, i.e.,

Thus Σr contains all Σ-diagrams plus all diagrams that we can make by joining an arbitrary
number of Σ-diagrams with Green’s function lines. In terms of Σr we can rewrite the Dyson
equations (10.11) as

G(1; 2) = G0(1; 2) +

∫

d3d4G0(1; 3)Σr(3; 4)G0(4; 2), (11.6)

which implicitly defines the reducible self-energy. If we instead cut the G0-lines (1; 1) or
(4; 4) we obtain the third diagram of Fig. 10.6. This is a nonskeletonic self-energy diagram
since it is one-particle irreducible but contains a self-energy insertion.

A second example is the G-skeletonic vacuum diagram

(11.7)
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11.3. How to construct the Φ functional 303

which consists of the set of G0-lines G = {(2; 1), (3; 2), (4; 3), (5; 4), (6; 5), (1; 6)} and the
set of v-lines V = {(1; 5), (2; 4), (3; 6)}. The symmetries of this diagram are the identity
and

s(1, 2, 3, 4, 5, 6) = (4, 5, 6, 1, 2, 3), (11.8)

which corresponds to a permutation of the vertical v-lines followed by a mirroring of all the
v-lines.2 If we remove G0(5; 4) we obtain the diagram

(11.9)

which is a (G-skeletonic) self-energy diagram. A topologically equivalent diagram is obtained
if we remove the Green’s function G0(2; 1)

(11.10)

On the other hand, if we remove the Green’s function G0(4; 3) we obtain the diagram

which is again a (G-skeletonic) self-energy diagram but with a di�erent topology.
From these examples we see that by removing G0-lines from a vacuum diagram we

generate reducible self-energy diagrams of the same or di�erent topology. We call two
G0-lines equivalent if their removal leads to topologically equivalent Σr-diagrams. Since
the diagrams (11.9) and (11.10) have the same topology the G0-lines (2; 1) and (5; 4) are
equivalent. It is easy to verify that the diagram (11.7) splits into three classes of equivalent
lines

C1 = {(2; 1), (5; 4)}, C2 = {(3; 2), (6; 5)}, C3 = {(4; 3), (1; 6)},
which correspond to the self-energy diagrams

2Looking at (11.7), the simultaneous mirroring of the vertical v-lines may look like a symmetry since it corresponds
to rotating the diagram by 180 degrees along the axis passing through 3 and 6. However, this rotation also changes
the orientation of the G-lines. One can check that G is not a map to itself under the mirrorings v(1; 5)→ v(5; 1)
and v(2; 4)→ v(4; 2).
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304 11. MBPT and variational principles for the grand potential

already encountered in Fig. 9.3. We observe that all classes Ci contain a number of elements
equal to the number of symmetry operations. Furthermore, an element of class Ci can be
generated from one in the same class by applying the symmetry operation (11.8). We now
show that this fact is generally true: every vacuum diagram with NS symmetry operations
splits into classes of NS equivalent lines. This statement stems from the following three
properties:

• If s is a symmetry of a vacuum diagram D, then the G0-lines (i; j) and (s(i); s(j))
are equivalent.

Proof. By the symmetry s the diagram D is mapped onto a topologically equivalent
diagram D′ with relabeled vertices. Superimposing D and D′ it is evident that the
removal of line (i; j) from D gives the same reducible self-energy diagram as the
removal of line (s(i); s(j)) from D′.

• If two G0-lines (i; j) and (k; l) in a vacuum diagram D are equivalent then there
exists a symmetry operation s of D with the property (s(i); s(j)) = (k; l).

Proof. Let Σ
(i;j)
r and Σ

(k;l)
r be the reducible self-energy diagrams obtained by remov-

ing from D the G0-lines (i; j) and (k; l) respectively. By hypothesis the diagrams

Σ
(i;j)
r and Σ

(k;l)
r are topologically equivalent. Therefore, superimposing the two self-

energies we find a one-to-one mapping between the vertex labels that preserves the
topological structure. Hence, this mapping is a symmetry operation. For example,
by superimposing the diagrams (11.9) and (11.10) and comparing the labels we find the
one-to-one relation (4, 3, 2, 1, 6, 5) ↔ (1, 6, 5, 4, 3, 2) which is exactly the symmetry
operation (11.8).

• If a symmetry operation s of a vacuum diagram maps a G0-line to itself, i.e.,
(s(i); s(j)) = (i; j), then s must be the identity operation.

Proof. A symmetry must preserve the connectivity of the diagram and therefore it is
completely determined by the mapping of one vertex. For example the symmetry s2 in
(11.5) maps the vertex 1 into 2, i.e., s(1) = 2. Since in 1 a G0-line arrives from 3 and
1 is mapped to 2 in which a G0-line arrives from 4 then s(3) = 4. Furthermore, 1 is
connected to 2 by a v-line and hence s(2) = 1. Finally, in 2 a G0-line arrives from 4
and 2 is mapped to 1 in which a G0-line arrives from 3 and hence s(4) = 3. Similarly,
for the diagram in (11.7) the symmetry (11.8) maps the vertex 1 into 4, i.e., s(1) = 4.
Since in 1 a G0-line arrives from 6 and 1 is mapped to 4 in which a G0-line arrives
from 3 then s(6) = 3. In a similar way one can reconstruct the mapping of all the
remaining vertices. Thus, if a G0-line is mapped onto itself the symmetry operation
must be the identity.

From these properties it follows that a symmetry maps the classes into themselves
and that the elements of the same class are related by a symmetry operation. Since
for every symmetry (s(i); s(j)) 6= (i; j) unless s is the identity operation we must have
(s(i); s(j)) 6= (s′(i); s′(j)) for s 6= s′, for otherwise s−1 ◦ s′ = 1 and hence s = s′. Thus,
the application of two di�erent symmetry operations to a G0-line leads to di�erent G0-lines
in the same class. Consequently, all classes must contain the same number of elements and
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11.3. How to construct the Φ functional 305

this number equals the number of symmetries NS. Taking into account that in an nth order
diagram the number of G0-lines is 2n, the number of classes is given by

NC =
2n

NS
. (11.11)

For example, in the diagram (11.7) we have n = 3 and NS = 2, so there are NC = (2×3)/2 =
3 classes.

Our analysis has led to a di�erent way of calculating the symmetry number NS. Rather
than finding the permutations and mirrorings of interaction lines that do not change the
vacuum diagram we can count how many G0-lines yield the same Σr-diagram. Mathemat-
ically the act of removing a G0-line corresponds to taking the functional derivative of the
vacuum diagram with respect to G0. This was clearly illustrated in Section 9.3: the removal
of a G0-line from the vacuum diagrams of Fig. 9.2 generates the self-energy diagrams to the
right of the same figure multiplied by the symmetry factor NS = 4. Similarly, the removal
of a G0-line from the vacuum diagram of Fig. 9.3 generates the self-energy diagrams at the
bottom of the same figure multiplied by the symmetry factor NS = 2. Since the removal
of a G0-line reduces the number of loops by one we conclude that if Dc is a connected
vacuum diagram then

δ

δG0(2; 1+)

1

NS
Dc = ±Σ(Dc)

r (1; 2),

where Σ
(Dc)
r is a contribution to the reducible self-energy consisting of NC diagrams. For

instance, if Dc is the left (or right) diagram of (11.4) which has NS = 4 then we have

1

4
Dc =

1

4
× i2(±)2

∫

d1d2d3d4 v(1; 2)v(3; 4)G0(1; 3)G0(3; 1)G0(2; 4)G0(4; 2),

and its functional derivative with respect to G0(6; 5
+) gives

1

4

δDc

δG0(6; 5+)
= i2(±)2

∫

d2d4 v(5; 2)v(6; 4)G0(5; 6)G0(2; 4)G0(4; 2) = ±Σ(Dc)
r (5; 6),

where the self-energy Σ
(Dc)
r is the second diagram of Fig. 10.6 (NC = 1 in this case). Thus,

if we write
lnZ = lnZ0 ± Φr[G0, v], (11.12)

where Φr is plus/minus (for bosons/fermions), the sum of all connected and topologically
inequivalent vacuum diagrams each multiplied by the symmetry factor 1/NS, then we have

Σr(1; 2) = Σr[G0, v](1; 2) =
δΦr

δG0(2; 1+)
. (11.13)

In the second equality we emphasize that Σr is a functional of G0 and v. It is worth
stressing that (11.13) is an identity because the functional derivative of Φr contains all possible
reducible self-energy diagrams only once. If one diagram were missing then the vacuum
diagram obtained by closing the missing Σr-diagram with a G0-line would be connected
and topologically di�erent from all other diagrams in Φr , in contradiction of the hypothesis
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306 11. MBPT and variational principles for the grand potential

Figure 11.3 Expansion of the Φ functional.

that Φr contains all connected vacuum diagrams. Furthermore a Σr-diagram cannot be
generated by two di�erent vacuum diagrams, and hence there is no multiple counting in
(11.13).

Equation (11.13) establishes that the reducible self-energy can be obtained as the functional
derivative of a functional Φr with respect to G0. We can also go in the opposite direction
and “integrate” (11.13) to express Φr in terms of reducible self-energy diagrams. We know
that there are always NC topologically inequivalent Σr-diagrams originating from the same
vacuum diagram. Therefore, if we close these diagrams with a G0-line we obtain the same
vacuum diagram NC times multiplied by (±) due to the creation of a loop. From (11.11) we
have 1/(NCNS) = 1/2n and hence

Φr[G0, v] =

∞∑

n=1

1

2n

∫

d1d2 Σ(n)
r [G0, v](1; 2)G0(2; 1

+), (11.14)

where Σ
(n)
r denotes the sum of all reducible and topologically inequivalent self-energy

diagrams of order n.
An important consequence of this result is that it tells us how to construct the functional

Φ = Φ[G, v] whose functional derivative with respect to the dressed Green’s function G is
the self-energy Σ = Σs[G, v] introduced in Section 10.6:

Σ(1; 2) = Σs[G, v](1; 2) =
δΦ

δG(2; 1+)
. (11.15)

By the very same reasoning Φ[G, v] is plus/minus the sum of all connected, topologically
inequivalent and G-skeletonic vacuum diagrams each multiplied by the corresponding sym-
metry factor 1/NS and in which G0 → G, see Fig. 11.3. This is so because a nonskeletonic
vacuum diagram can only generate nonskeletonic and/or one-particle reducible Σr-diagrams
while a G-skeleton vacuum diagram generates only G-skeleton Σ-diagrams. The functional
Φ can be written in the same fashion as Φr , i.e.,

Φ[G, v] =

∞∑

n=1

1

2n

∫

d1d2 Σ(n)
s [G, v](1; 2)G(2; 1+), (11.16)
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11.4. Dressed expansion of the grand potential 307

where Σ
(n)
s is the sum of all topologically inequivalent and G-skeleton self-energy diagrams

of order n in which G0 → G. It is convenient to introduce the shorthand notation

trγ [fg] ≡
∫

d1d2 f(1; 2)g(2; 1) = trγ [gf ] (11.17)

for the trace over space and spin and for the convolution along the contour. Then the
expansion of Φ takes the compact form3

Φ[G, v] =

∞∑

n=1

1

2n
trγ

[

Σ(n)
s [G, v]G

]

(11.18)

In order to obtain an expression for lnZ in terms of the dressed Green’s function G
rather than G0 it is tempting to replace Φr[G0, v] with Φ[G, v] in (11.12). Unfortunately the
value of Φ[G, v] is not equal to Φr[G0, v] due to the double counting problem mentioned
at the beginning of the section. Nevertheless, it is possible to derive an exact and simple
formula for the correction Φr[G0, v]− Φ[G, v]; this is the topic of the next section.

11.4 Dressed expansion of the grand potential

Let us consider a system described by the Hamiltonian Ĥλ(z) with rescaled interaction
v → λv: Ĥλ(z) = Ĥ0(z) + λĤint(z). The grand potential for this Hamiltonian is

Ωλ = − 1

β
lnZλ = − 1

β
lnTr

[

e−βĤ
M
λ

]

= − 1

β
lnTr

[

T
{

e−i
∫

γ
dzĤλ(z)

}]

. (11.19)

The derivative of (11.19) with respect to λ is

dΩλ

dλ
=

i

β

∫

γ

dz1
Tr
[

T
{

e−i
∫

γ
dzĤλ(z)Ĥint(z1)

}]

Tr
[

T
{

e−i
∫

γ
dzĤλ(z)

}] =
i

β

∫

γ

dz1〈Ĥint(z1)〉λ, (11.20)

where we have introduced the short-hand notation

〈. . .〉λ = Tr
[

T
{

e−i
∫

γ
dzĤλ(z) . . .

}]

/Zλ,

in which any string of operators can be inserted in the dots. The integrand on the r.h.s.
of (11.20) multiplied by λ is the interaction energy Eint,λ(z1) with rescaled interaction. This
energy can be expressed in terms of the rescaled Green’s function Gλ and self-energy
Σλ = Σs[Gλ, λv] as

Eint,λ(z1) = λ〈Ĥint(z1)〉λ = ± i

2

∫

dx1d2 Σλ(1; 2)Gλ(2; 1
+), (11.21)

3We observe that the definition (11.17) with f = Σ and g = G is ambiguous only for the singular Hartree–Fock
self-energy since the Green’s function should then be evaluated at equal times. MBPT tells us how to interpret
(11.17) in this case: the second time argument of the Green’s function must be infinitesimally later than the first time
argument.
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308 11. MBPT and variational principles for the grand potential

in accordance with (9.19). Inserting this result into (11.20) and integrating over λ between 0
and 1 we find

Ω = Ω0 +
i

β

∫ 1

0

dλ

λ

∫

γ

dz1

(

± i

2

)∫

dx1d2 Σλ(1; 2)Gλ(2; 1
+)

= Ω0 ∓
1

2β

∫ 1

0

dλ

λ
trγ [ ΣλGλ ]. (11.22)

Equation (11.22) can be used to derive (11.14) in an alternative way. Since (omitting arguments and
integrals)

ΣG = Σ[G0 +G0ΣG0 +G0ΣG0ΣG0 + . . .]

= [Σ + ΣG0Σ+ ΣG0ΣG0Σ+ . . .]G0 = ΣrG0,

we can rewrite (11.22) as

Ω = Ω0 ∓
1

2β

∫ 1

0

dλ

λ
trγ [ Σr[G0, λv]G0 ]

= Ω0 ∓
1

2β

∞
∑

n=1

∫ 1

0

dλ

λ
λntrγ

[

Σ(n)
r [G0, v]G0

]

= Ω0 ∓
1

β

∞
∑

n=1

1

2n
trγ
[

Σ(n)
r [G0, v]G0

]

.

Multiplying both sides by −β and comparing with the definition of Φr in (11.12) we reobtain (11.14).

Let us now consider the functional Φ in (11.16) for a system with rescaled interaction λv:

Φ[Gλ, λv] =
∞∑

n=1

1

2n
trγ

[

Σ(n)
s [Gλ, λv]Gλ

]

=

∞∑

n=1

λn

2n
trγ

[

Σ(n)
s [Gλ, v]Gλ

]

.

The derivative of this expression with respect to λ gives

d

dλ
Φ[Gλ, λv] =

∞∑

n=1

λn−1

2
trγ

[

Σ(n)
s [Gλ, v]Gλ

]

+ trγ

[
δΦ[Gλ, λv]

δGλ

dGλ

dλ

]

= trγ

[
1

2λ
ΣλGλ +Σλ

dGλ

dλ

]

, (11.23)

where the first term originates from the variation of the interaction lines and the second
term from the variation of the Green’s function lines. The first term in (11.23) appears also in
(11.22), which can therefore be rewritten as

Ω = Ω0 ∓
1

β

∫ 1

0

dλ

(
d

dλ
Φ[Gλ, λv]− trγ

[

Σλ
dGλ

dλ

])

= Ω0 ∓
1

β
(Φ− trγ [ ΣG ])∓ 1

β

∫ 1

0

dλ trγ

[
dΣλ

dλ
Gλ

]

, (11.24)
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11.5. Luttinger–Ward and Klein functionals 309

where in the last equality we have integrated by parts and taken into account that Φ[Gλ, λv]
and Σλ vanish for λ = 0 while they equal Φ = Φ[G, v] and Σ = Σs[G, v] for λ = 1. To
calculate the last term we observe that4

d

dλ
trγ [ln(1−G0Σλ)] = −

d

dλ
trγ

[

G0Σλ +
1

2
G0ΣλG0Σλ +

1

3
G0ΣλG0ΣλG0Σλ + . . .

]

= −trγ
[

G0
dΣλ

dλ
+G0ΣλG0

dΣλ

dλ
+G0ΣλG0ΣλG0

dΣλ

dλ
+ . . .

]

= −trγ
[

Gλ
dΣλ

dλ

]

. (11.25)

Inserting this result in (11.24) we obtain an elegant formula for the grand potential,

β(Ω− Ω0) = ∓
{
Φ− trγ

[
ΣG+ ln(1−G0Σ)

] }
. (11.26)

This formula provides the MBPT expansion of Ω (and hence of lnZ) in terms of the dressed
Green’s function G since we know how to expand the functional Φ = Φ[G, v] and the
self-energy Σ = Σs[G, v] in G-skeleton diagrams.

11.5 Luttinger–Ward and Klein functionals

Equation (11.26) can also be regarded as the definition of a functional Ω[G, v] which takes
the value of the grand potential when G is the Green’s function of the underlying physical
system, i.e., G = G0 +G0ΣG. Any physical Green’s function belongs to the Keldysh space
and hence the contour integrals in (11.26) reduce to integrals along the imaginary track γM. If,
on the other hand, we evaluate Ω[G, v] at a G which does not belong to the Keldysh space
then the contour integrals cannot be reduced to integrals along γM and the full contour
must be considered. The functional Ω[G, v] was first introduced by Luttinger and Ward [81]
and we therefore refer to it as the Luttinger–Ward functional. To distinguish the functional
from the grand potential (which is a number) we denote the former by ΩLW[G, v]:

ΩLW[G, v] = Ω0 ∓
1

β

{
Φ[G, v]− trγ

[
Σs[G, v]G+ ln(1−G0Σs[G, v])

] }
(11.27)

A remarkable feature of the Luttinger–Ward (LW) functional is its variational property. If we
change the Green’s function from G to G+ δG then the change of ΩLW reads

δΩLW = ∓ 1

β

{
δΦ− trγ

[
δΣG+ΣδG− (G0 +G0ΣG0 + . . .)δΣ

] }
.

Since δΦ = trγ [ΣδG] we conclude that the variation δΩLW vanishes when (omitting argu-
ments and integrals)

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + . . . , (11.28)

4By definition the function of an operator Â is defined by its Taylor expansion and therefore − ln(1 − Â) =
∑

n
1
n
Ân.
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310 11. MBPT and variational principles for the grand potential

i.e., when G is the self-consistent solution of G = G0 + G0ΣG with Σ = Σs[G, v].
Therefore ΩLW equals the grand potential at the stationary point. We further observe that
the LW functional preserves the variational property for any approximate Φ provided that
the self-energy Σs[G, v] is calculated as the functional derivative of such Φ. In other words,
ΩLW is stationary at the approximate G which satisfies the Dyson equation (11.28) with
Σs[G, v] = δΦ[G, v]/δG.5 It is also worth stressing that in the functional ΩLW[G, v] there
is an explicit reference to the underlying physical system through the noninteracting Green’s
function G0, see last term in (11.27). This is not the case for the Φ functional (and hence
neither for the self-energy Σs[G, v]) for which a stationary principle would not make sense.6

The variational property of the LW functional naturally introduces a new concept to
tackle the equilibrium many-body problem. This concept is based on variational principles
instead of diagrammatic MBPT expansions. Since ΩLW is stationary with respect to changes
in G, the value of ΩLW at a Green’s function that deviates from the stationary G by δG
leads to an error in ΩLW which is only of second order in δG. Therefore the quality of the
results depend primarily on the chosen approximation for Φ. Note that although ΩLW is
stationary at the self-consistent G the stationary point does not have to be a minimum.7

Finally we observe that the advantage of calculating Ω from variational expressions such
as the LW functional is that in this way we avoid solving the Dyson equation. If the self-
consistent solution gives accurate Ω then the LW functional will produce approximations to
these grand potentials with much less computational e�ort [82, 83].

At this point we draw the attention of the reader to an interesting fact. The variational
schemes are by no means unique [84]. By adding to ΩLW any functional F [D], where

D[G, v](1; 2) = G(1; 2)−G0(1; 2)−
∫

d3d4G(1; 3)Σs[G, v](3; 4)G0(4; 2), (11.29)

obeying

F [D = 0] =

(
δF

δD

)

D=0

= 0, (11.30)

one obtains a new variational functional having the same stationary point and the same
value at the stationary point. It might, however, be designed to give a second derivative
which also vanishes at the stationary point (something that would be of utmost practical
value).

Choosing to add inside the curly brackets of (11.27) the functional

F [D] = trγ
[
ln(1 +DG−10 )−D←−G−10

]
, (11.31)

with
←−
G−10 (1; 2) = −i

←−
d

dz1
δ(1; 2) − h(1; 2) the di�erential operator (acting on quantities to

its left) for which
∫
d3 G0(1; 3)

←−
G−10 (3; 2) = δ(1; 2), leads to the functional

ΩK[G, v] = Ω0 ∓
1

β

{

Φ[G, v] + trγ

[

ln(G
←−
G−10 ) + 1−G←−G−10

]}

(11.32)

5From Chapter 9 we know that this Green’s function preserves all basic conservation laws.
6There is no reason for Φ to be stationary at the Green’s function of the physical system since Φ does not

know anything about it!
7In Ref. [82] it was shown that ΩLW is minimum at the stationary point when Φ is approximated by the infinite

sum of ring diagrams. This is the so called RPA approximation and it is discussed in detail in Section 15.5.
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11.5. Luttinger–Ward and Klein functionals 311

As the functional F in (11.31) has the desired properties (11.30), this new functional is stationary
at the Dyson equation and equals the grand potential at the stationary point. The functional
(11.32) was first proposed by Klein [85] and we refer to it as the Klein functional. The Klein
functional is much easier to evaluate and manipulate as compared to the LW functional but,
unfortunately, it is less stable (large second derivative) at the stationary point [83].

We conclude this section by showing that Ω0 can be written as

Ω0 = ∓ 1

β
trγ [ ln(−G0) ] (11.33)

according to which the Klein functional can also be written as

ΩK[G, v] = ∓
1

β

{

Φ[G, v] + trγ

[

ln(−G) + 1−G←−G−10

]}

. (11.34)

We start by calculating the trγ of an arbitrary power of G0

trγ [G
m
0 ] =

∫

dx〈x|
∫

γ

dz1 . . . dzm Ĝ0(z1, z2) . . . Ĝ0(zm, z+1 )|x〉

=

∫

dx〈x|(−i)m
∫ β

0

dτ1 . . . dτm Ĝ
M

0 (τ1, τ2) . . . Ĝ
M

0 (τm, τ
+
1 )|x〉,

where in the last step we use the fact that for any G0 in Keldysh space the integral along
the forward branch cancels the integral along the backward branch, see also Exercise 5.4.
Expanding the Matsubara Green’s function as in (6.17) and using the identity [see (A.5)]

∫ β

0

dτ e−(ωp−ωq)τ = βδpq,

we can rewrite the trace as

trγ [G
m
0 ] =

∞∑

p=−∞
eηωp

∫

dx〈x| 1

(ωp − ĥM)m
|x〉 =

∑

λ

∞∑

p=−∞
eηωp

1

(ωp − ǫMλ )m
,

with ǫMλ the eigenvalues of ĥM. Therefore we define

trγ [ ln(−G0) ] =
∑

λ

∞∑

p=−∞
eηωp ln

1

ǫMλ − ωp
.

To evaluate the sum over the Matsubara frequencies we use the trick (6.43) and get

trγ [ ln(−G0) ] = ∓(−iβ)
∑

λ

∫

Γb

dζ

2π
eηζf(ζ) ln

1

ǫMλ − ζ

= i
∑

λ

∫

Γb

dζ

2π

eηζ ln(1∓ e−βζ)
ζ − ǫMλ

= −
∑

λ

ln(1∓ e−βǫMλ ), (11.35)
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312 11. MBPT and variational principles for the grand potential

where we first perform an integration by parts and then uses the Cauchy residue theorem.
To relate this result to Ω0 we observe that

Z0 = Tr
[

e−βĤ
M
0

]

=
∏

λ

∑

n

e−βǫ
M
λ n =

∏

λ

(

1∓ e−βǫMλ
)∓1

,

where in the last equality we have taken into account that the sum over n runs between 0
and ∞ in the case of bosons and between 0 and 1 in the case of fermions. Therefore

Ω0 = − 1

β
lnZ0 = ± 1

β

∑

λ

ln(1∓ e−βǫMλ ).

Comparing this result with (11.35) we find (11.33).

11.6 Luttinger–Ward theorem

In this section we discuss a few nice consequences of the variational idea in combination
with conserving approximations. Using (11.33) the Luttinger–Ward functional can be rewritten
as

ΩLW = ∓ 1

β

{
Φ− trγ

[
ΣG+ ln(Σ−G−10 )

] }
,

where we omit the explicit dependence of Φ and Σ on G and v. If we evaluate this
functional for a physical Green’s function (hence belonging to the Keldysh space) then the
contour integrals reduce to integrals along the imaginary track. Expanding G and Σ in
Matsubara frequencies we find

ΩLW = ∓ 1

β
Φ± 1

β

∞∑

p=−∞
eηωp

∫

dx 〈x|Σ̂M
(ωp)Ĝ

M
(ωp) + ln

(

Σ̂
M
(ωp)− ωp + ĥM

)

|x〉,

where in the last term we use (6.18). From quantum statistical mechanics we know that
the total number of particles in the system is given by minus the derivative of the grand
potential Ω with respect to the chemical potential µ, see Appendix D. Is it true that for an
approximate self-energy (and hence for an approximate G)

N = −∂ΩLW

∂µ
? (11.36)

The answer is positive provided that Σ is Φ-derivable and that G is self-consistently calcu-
lated from the Dyson equation. In this case ΩLW is stationary with respect to changes in G
and therefore in (11.36) we only need to di�erentiate with respect to the explicit dependence
on µ. This dependence is contained in ĥM = ĥ− µ and therefore

−∂ΩLW

∂µ
= ∓ 1

β

∞∑

p=−∞
eηωp

∫

dx 〈x| −1
Σ̂

M
(ωp)− ωp + ĥM

|x〉

= ∓ 1

β

∞∑

p=−∞
eηωp

∫

dx 〈x|ĜM(ωp)|x〉

= ±i
∫

dxGM(x, τ ;x, τ+). (11.37)
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11.6. Luttinger–Ward theorem 313

The r.h.s. of (11.37) is exactly the total number of particles N calculated using the G for
which ΩLW is stationary. This result was obtained by Baym [78] and shows that conserving
approximations preserve (11.36).

Equation (11.36) has an interesting consequence in systems of fermions at zero tem-
perature. Let us rewrite the first line of (11.37) in a slightly di�erent form (lower sign for
fermions)

N = −∂ΩLW

∂µ
=

1

β

∞∑

p=−∞
eηωp

[
∂

∂ωp

∫

dx 〈x| ln
(

Σ̂
M
(ωp)− ωp + ĥM

)

|x〉

+

∫

dx 〈x|ĜM(ωp)
∂Σ̂

M
(ωp)

∂ωp
|x〉
]

. (11.38)

We now prove that at zero temperature the last term of this equation vanishes. For β →∞
the Matsubara frequency ωp = (2p+ 1)π/(−iβ) becomes a continuous variable ζ and the
sum over p becomes an integral over ζ . Since dζ ≡ ωp+1 − ωp = 2π/(−iβ) we have

lim
β→∞

1

β

∞∑

p=−∞

∫

dx 〈x|ĜM(ωp)
∂Σ̂

M
(ωp)

∂ωp
|x〉 = 1

2πi

∫ i∞

−i∞
dζ

∫

dx 〈x|ĜM(ζ)
∂Σ̂

M
(ζ)

∂ζ
|x〉

=
1

2πi

∫

dx

∫ i∞

−i∞
dζ 〈x| ∂

∂ζ

(

ĜM(ζ)Σ̂
M
(ζ)
)

︸ ︷︷ ︸

total derivative

−Σ̂M
(ζ)

∂ĜM(ζ)

∂ζ
|x〉

= − 1

2πi

∫

dx

∫ i∞

−i∞
dζ 〈x| δΦ

δĜM(ζ)

∂ĜM(ζ)

∂ζ
|x〉, (11.39)

where we have taken into account that the integral over ζ of the total derivative yields zero
and that the self-energy is Φ-derivable. We also set to unity the exponential factor eηζ

since the integral along the imaginary axis is convergent. Due to energy conservation every

Φ-diagram is invariant under the change ĜM(ζ)→ ĜM(ζ + δζ). Thus the variation δΦ = 0
under this transformation. However, the variation δΦ is formally given by the last line of
(11.39) which, therefore, must vanish.

To evaluate N we have to perform a sum over Matsubara frequencies. The argument of

the logarithm in (11.38) is −[ĜM(ωp)]
−1. Then we can again use the trick (6.43), where Γb is

the contour in Fig. 6.1, since ĜM(ζ) is analytic in the complex ζ plane except along the real

axis, see (6.82), and the eigenvalues of ĜM(ζ) are nonzero, see Exercise 6.9. We find

N = −
∫ ∞

−∞

dω

2πi
f(ω)eηω

∂

∂ω

∫

dx 〈x| ln
(

−ĜM(ω − iδ)
)

− ln
(

−ĜM(ω + iδ)
)

|x〉.

Integrating by parts and taking into account that in the zero temperature limit the derivative
of the Fermi function ∂f(ω)/∂ω = −δ(ω), we get

N =
1

2πi

∫

dx 〈x| ln
(

Σ̂
M
(−iδ) + iδ + ĥ− µ

)

− ln
(

Σ̂
M
(iδ)− iδ + ĥ− µ

)

|x〉, (11.40)
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314 11. MBPT and variational principles for the grand potential

where we insert back the explicit expression for ĜM in terms of Σ̂
M

and use the fact

that ĥM = ĥ − µ. According to (9.59) and the discussion below it we have Σ̂
M
(±iδ) =

Σ̂
R
(µ) = Σ̂

A
(µ), since the rate operator vanishes at ω = µ. This also implies that Σ̂

R
(µ)

is self-adjoint. Let us calculate (11.40) for an electron gas.

In the electron gas ĥ and Σ̂
R
are diagonal in the momentum–spin basis, i.e., ĥ|pσ〉 =

p2

2 |pσ〉 and Σ̂
R
(µ)|pσ〉 = ΣR(p, µ)|pσ〉. Inserting the completeness relation (1.11) in the

bracket 〈x| . . . |x〉 we find

N = 2
V

2πi

∫
dp

(2π)3

[

ln

(

ΣR(p, µ) + iδ +
p2

2
− µ

)

− ln

(

ΣR(p, µ)− iδ +
p2

2
− µ

)]

,

where the factor of 2 comes from spin and V =
∫
dr is the volume of the system. Since

ln(a± iδ) =

{
ln a a > 0
ln |a| ± iπ a < 0

we can rewrite the total number of particles at zero temperature as

N = 2V

∫
dp

(2π)3
θ(µ− p2

2
− ΣR(p, µ)) (11.41)

This result is known as the Luttinger–Ward theorem and is valid for any conserving approx-
imation. Equation (7.57) is an example of the Luttinger–Ward theorem in the Hartree–Fock
approximation (remember that the Fermi energy ǫF is the zero-temperature limit of the
chemical potential). Due to the rotational invariance, ǫp and ΣR(p, µ) depend only on the
modulus p = |p| of the momentum. If we define the Fermi momentum pF as the solution
of

µ− p2F
2
− ΣR(pF, µ) = 0, (11.42)

then the equation for the total number of particles reduces to

N

V
= n = 2

∫

p<pF

dp

(2π)3
=

p3F
3π2

. (11.43)

In Appendix K we show that the momentum distribution np (average number of electrons
with momentum p) is discontinuous at |p| = pF. Therefore, in an electron gas with N
particles the discontinuity in np occurs at the same Fermi momentum independently of the
interaction strength. However, the value of the chemical potential (or Fermi energy) yielding
the same number of particles in an interacting and noninteracting system is di�erent. This
fact has already been emphasized in the context of the Hartree approximation, see discussion
below (7.15).

11.7 Relation between the reducible polarizability

and the Φ functional

The LW functional is based on the MBPT expansion in terms of the dressed Green’s function
G and interaction v. For long-range interactions like the Coulomb interaction this is not
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11.7. Relation between the reducible polarizability and the Φ functional 315

necessarily the best choice of variables. For instance in bulk systems the most natural and
meaningful variable is the screened interaction W [79]. The aim of the next sections is to
construct a variational many body scheme in terms of G and W . To achieve this goal we
need a preliminary discussion on the relation between the so called reducible polarizability
or density response function χ and the Φ functional.

The reducible polarizability χ is defined diagrammatically in terms of the polarizability
P by the equation below:

(11.44)

In contrast to P -diagrams, χ-diagrams can be broken into two disjoint pieces by cutting an
interaction line. This is the reason for the adjective “reducible” in the name of χ (if it was
not for the widespread convention of using the letter χ we could have used the symbol Pr).
The Feynman rules to convert a χ-diagram into a mathematical expression are the same as
those for the polarizability, i.e., a prefactor im+1(±)l for a diagram with m interaction lines
and l loops. Using (11.44) in the Dyson equation for the screened interaction, see (10.24), we
obtain

W (1; 2) = v(1; 2) +

∫

d3d4 v(1; 3)χ(3; 4)v(4; 2). (11.45)

The reader should appreciate the analogy between (11.45) and the Dyson equation (11.6); due
to the presence of the reducible self-energy we replaced G→ G0 under the integral sign.

It is evident that if we close a χ-diagram with a v-line we obtain a vacuum diagram.
Vice versa, cutting o� a v-line in a vacuum diagram we obtain a χ-diagram, with only one
exception. The diagram which generates the Hartree self-energy (first diagram of Fig. 11.3)
is the only vacuum diagram to be one-interaction-line reducible. Therefore, cutting o� the
v-line from the Hartree diagram does not generate a χ-diagram and, conversely, no
χ-diagram can generate the Hartree diagram if closed with a v-line. We point out that
the “exceptional” vacuum diagrams would be infinitely many in a formulation in terms of
G0 rather than G since there would be infinitely many one-interaction-line reducible dia-
grams (consider, e.g., the first diagram in the second row of Fig. 11.2). This is the main
reason for us to present a formulation in terms of dressed vacuum diagrams.

As the operation of cutting o� a v-line corresponds to taking a functional derivative with
respect to v we expect that there is a simple relation between χ and δΦ/δv. This is indeed
the case even though we must be careful in defining the functional derivative with respect
to v. The di�culty that arises here, and that does not arise for the functional derivatives
with respect to G, has to do with the symmetry v(i; j) = v(j; i). When we take a functional
derivative we must allow for arbitrary variations of the interaction, including nonsymmetric
variations. To clarify this point consider the vacuum diagram (11.7). The integral associated
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316 11. MBPT and variational principles for the grand potential

with it is

V1 =

∫

v(1; 5)v(2; 4)v(3; 6)G(1; 6)G(6; 5)G(5; 4)G(4; 3)G(3; 2)G(2; 1),

where the integral is over all variables. Since v is symmetric we could also write the same
integral as

V2 =

∫

v(5; 1)v(2; 4)v(3; 6)G(1; 6)G(6; 5)G(5; 4)G(4; 3)G(3; 2)G(2; 1),

where in V2 we simply replace v(1; 5) → v(5; 1). For a symmetric interaction V1 = V2
but otherwise V1 is di�erent from V2. If we now take the functional derivative of V1 with
respect to v(a; b) and then evaluate the result for a symmetric interaction we get

δV1
δv(a; b)

=

∫

v(2; 4)v(3; 6)G(a; 6)G(6; b)G(b; 4)G(4; 3)G(3; 2)G(2; a)

+

∫

v(1; 5)v(3; 6)G(1; 6)G(6; 5)G(5; b)G(b; 3)G(3; a)G(a; 1)

+

∫

v(1; 5)v(2; 4)G(1; b)G(b; 5)G(5; 4)G(4; a)G(a; 2)G(2; 1)

= Iχ,1(a; b) + Iχ,2(a; b) + Iχ,3(a; b), (11.46)

which is proportional to the following sum of χ-diagrams:

+
a b

+
a ba b

(11.47)

On the other hand, if we take the functional derivative of V2 with respect to v(a; b) and
then evaluate the result for a symmetric interaction we get

δV2
δv(a; b)

= Iχ,1(b; a) + Iχ,2(a; b) + Iχ,3(a; b) = 2Iχ,2(a; b) + Iχ,3(a; b).

In the last equality we have taken into account that under the interchange a ↔ b the first
diagram in (11.47) [representing Iχ,1(a; b)] becomes identical to the second diagram. We
thus conclude that δV1/δv(a; b) 6= δV2/δv(a; b). To remove this ambiguity we define the
symmetric derivative

δ

δv(a; b)
. . .

∣
∣
∣
∣
S

=
1

2

[
δ

δv(a; b)
. . .+

δ

δv(b; a)
. . .

]

,

where any diagram can be inserted in the dots. The reader can easily check that δV1

δv(a;b)

∣
∣
∣
S
=

δV2

δv(a;b)

∣
∣
∣
S
. Clearly, there is not such a problem for δ/δG since G is not symmetric and hence

there is only one way to choose the arguments of G in a diagram.8

8Remember that even though the operation δ/δG is unambiguous, in this case also we must allow for arbitrary
variations of G including those variations that bring G away from the Keldysh space, see discussion before (9.24).
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11.7. Relation between the reducible polarizability and the Φ functional 317

We say that two χ-diagrams are related by a reversal symmetry if one diagram can be
obtained from the other by interchanging the external vertices. The first two diagrams in
(11.47) are clearly each the reversal of the other. Not all χ-diagrams become another diagram
after a reversal operation. For instance the third diagram in (11.47) is the reversal of itself.

In graphical terms the symmetric derivative corresponds to cutting a v-line, adding the
reversed diagram and dividing the result by 2. The operation of cutting and symmetrizing
allows us to define two v-lines as equivalent if they lead to the same χ-diagram(s). For
instance, cutting a v-line from the diagram (11.7) and then symmetrizing yields (up to a
prefactor):

3

2 1

6 by cutting (3;6)

4 5

Thus, the v-lines (1; 5) and (2; 4) are equivalent while (3; 6) is not equivalent to any other
line.

Similarly to the G-lines, the v-lines have the following properties:

• If s is a symmetry of a vacuum diagram then the v-lines (i; j) and (s(i); s(j)) are
equivalent;

• If two v-lines (i; j) and (k; l) in a vacuum diagram are equivalent then there exists a
symmetry such that (s(i), s(j)) = (k; l) [remember that for a v-line (i; j) = (j; i)].

The proof of both statements is identical to the proof for the Green’s function lines (see
Section 11.3) and it is left as an exercise for the reader. Let us explore the implications of
the above two properties. Consider a vacuum diagram with NS symmetry operations. Given
a v-line (i; j) there are two possibilities: (1) there exists a symmetry sR that reverses the
interaction line, i.e., sR(i) = j and sR(j) = i, or (2) the symmetry sR does not exist. In case
(1) by cutting (i; j) and symmetrizing we get a single χ-diagram which is the reversal of itself.
Then, by applying all NS symmetry operations to (i; j) we obtain only NS/2 topologically
equivalent χ-diagrams since the symmetry s and the symmetry s ◦ sR generate the same
χ-diagram and, obviously, s1 ◦sR 6= s2 ◦sR for s1 6= s2. For instance, the only symmetry of
the diagram (11.7) is a reversal symmetry of the v-line (3; 6) and consequently cutting (3; 6)
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318 11. MBPT and variational principles for the grand potential

and symmetrizing leads to only NS/2 = 2/2 = 1 diagram. In case (2) by cutting (i; j) and
symmetrizing we get two χ-diagrams which are the reversal of each other, and hence there
must be a symmetry sR that maps a diagram into the other. By applying the NS symmetry
operations to (i; j) we then obtain NS/2 couples of topologically equivalent χ-diagrams.

From this analysis it follows that if Dc is a connected vacuum diagram of order n with l
loops and Vc is the corresponding integral, Dc = in(±)lVc, we have

1

NS

δDc

δv(1; 2)

∣
∣
∣
∣
S

= in(±)l 1

NS

δVc
δv(1; 2)

∣
∣
∣
∣
S

=
1

2
χ(Dc)(1; 2),

where χ(Dc) is a contribution of order n − 1 to the reducible polarizability consisting
of n/(NS/2) = 2n/NS diagrams. Therefore, summing over all connected, topologically
inequivalent and G-skeleton vacuum diagrams each multiplied by the symmetry factor 1/NS,
with the exclusion of the Hartree diagram, we generate a functional from which to calculate
the full χ by a functional derivative. This functional is exactly ±(Φ− ΦH) where ΦH is the
Hartree functional:

ΦH[G, v] = ±
1

2
i (±)2

∫

d1d2G(1; 1+)v(1; 2)G(2; 2+).

The di�erence

Φxc[G, v] = Φ[G, v]− ΦH[G, v],

is the exchange-correlation (XC) part of the Φ functional (whose functional derivative yields
the XC self-energy). We can then write the important and elegant formula

δΦxc

δv(1; 2)

∣
∣
∣
∣
S

= ±1

2
χ(1; 2) (11.48)

11.8 Ψ functional

The result (11.48) constitutes the starting point to switch from the variables (G, v) to the
variables (G,W ). There is only one ingredient missing and that is the Ψ functional. Let
us construct the functional Ψ[G,W ] by removing from Φxc all diagrams which contain
polarization insertions and then replacing v → W . By the very same reasoning that led to
(11.15) and (11.48), the functional derivatives of Ψ with respect to G andW give the self-energy
and the polarizability

Σxc(1; 2) = Σss,xc[G,W ](1; 2) =
δΨ

δG(2; 1+)
(11.49)

P (1; 2) = Pss[G,W ](1; 2) = ±2 δΨ

δW (1; 2)

∣
∣
∣
∣
S

(11.50)
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11.8. Ψ functional 319

Similarly to (11.16), the Ψ functional can be expanded in G- and W -skeleton self-energy
diagrams as

Ψ[G,W ] =

∞∑

n=1

1

2n

∫

d1d2 Σ(n)
ss,xc[G,W ](1; 2)G(2, 1+)

=

∞∑

n=1

1

2n
trγ

[

Σ(n)
xc G

]

. (11.51)

An alternative expression in terms of G- and W -skeleton polarization diagrams can be
deduced from the obvious invariance Ψ[G,W ] = Ψ[α−1/2G,αW ]. Taking the derivative
with respect to α and evaluating the result in α = 1 we find

0 =
∂Ψ

∂α

∣
∣
∣
∣
α=1

= −1

2
trγ [ΣxcG]±

1

2
trγ [PW ].

By equating orders in W we then obtain

trγ

[

Σ(n)
xc G

]

= ±trγ
[

P (n−1)W
]

, (11.52)

and substitution into (11.51) gives

Ψ[G,W ] = ±
∞∑

n=1

1

2n
trγ

[

P (n−1)W
]

(11.53)

A word of caution about the equality (11.52) with n = 1 is required. The l.h.s. is simply the
Fock (or exchange) diagram and reads

i

∫

d1d2W (1; 2)G(1; 2+)G(2; 1+). (11.54)

Since the zeroth order polarizability is P (0)(1; 2) = ±iG(1; 2)G(2; 1), the r.h.s. of (11.52)
reads

i

∫

d1d2W (1; 2)G(1; 2)G(2; 1). (11.55)

These two expressions are the same only provided that W is not proportional to δ(z1, z2).
If W is approximated with, e.g., W (1; 2) ∼ δ(z1, z2)W (x1,x2) then (11.55) is not well
defined as it contains two Green’s functions with the same time arguments. The ambiguity
is resolved by (11.54) which tells us to evaluate the Green’s function with the second time
argument infinitesimally later than the first, i.e., G(1; 2)G(2; 1) → G(1; 2+)G(2; 1+). This
agrees with the general remark on notation in Section 10.1.

There is a simple relation between the Ψ functional and the Φ functional. Let W =
W [G, v] be the solution of W = v + vPW (Dyson equation (10.24) for the screened
interaction) with P = Pss[G,W ]. At the self-consistent W we have Pss[G,W ] = Ps[G, v]
and hence Σss[G,W ] = Σs[G, v].

9 If we rescale the interaction v → λv without changing

9This means that a Ψ-derivable self-energy is conserving provided that W is the self-consistent solution of the
Dyson equation.
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320 11. MBPT and variational principles for the grand potential

G, the self-consistent W changes to W [G,λv] ≡ λWλ. Then, the derivative of Ψ[G,λWλ]
with respect to λ is the sum of two contributions: one comes fromWλ and the other comes
from the explicit dependence on λ. The latter can be calculated in the same way as (11.23)
and therefore

d

dλ
Ψ[G,λWλ] = trγ

[
1

2λ
Σs,xc[G,λv]G±

1

2
λPs[G,λv]

dWλ

dλ

]

, (11.56)

where we use (11.50) for the last term. Next we separate out the Hartree contribution from
Φ and calculate the derivative of Φ[G,λv] with respect to λ

d

dλ
Φ[G,λv] =

d

dλ
ΦH[G,λv] + trγ

[
1

2λ
Σs,xc[G,λv]G

]

.

Comparing with (11.56) we get

d

dλ
Φ[G,λv] =

d

dλ
ΦH[G,λv] +

d

dλ
Ψ[G,λWλ]∓

1

2
trγ

[

λPs[G,λv]
dWλ

dλ

]

. (11.57)

The last term in this equation can be written as a total derivative with respect to λ using
the same trick leading to (11.25). For convenience we define Pλ ≡ Ps[G,λv]. Then we have

d

dλ
trγ [ln(1− vλPλ)] = −

d

dλ
trγ

[

v(λPλ) +
1

2
v(λPλ)v(λPλ) + . . .

]

= −trγ
[

v
d(λPλ)

dλ
+ v(λPλ)v

d(λPλ)

dλ
+ . . .

]

= −trγ
[

Wλ
d(λPλ)

dλ

]

= − d

dλ
trγ [WλλPλ] + trγ

[

λPλ
dWλ

dλ

]

.

Inserting this result into (11.57) and integrating over λ between 0 and 1 we eventually arrive
at the result

Φ[G, v] = ΦH[G, v] + Ψ[G,W ]∓ 1

2
trγ
[
WP + ln(1− vP )

]
(11.58)

with W =W [G, v] and P = Ps[G, v].

11.9 Screened functionals

We are now ready to formulate a variational many-body theory of the grand potential in
terms of the independent quantities G and W . First we observe that by inserting (11.58) into
(11.26) we obtain the doubly-dressed MBPT expansion of the grand potential

β(Ω− Ω0) = ∓
{

ΦH +Ψ− trγ
[
ΣG+ ln(1−G0Σ)

]
∓ 1

2
trγ
[
PW + ln(1− vP )

]
}

.

(11.59)
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11.9. Screened functionals 321

This formula provides the diagrammatic expansion of Ω in the variables G and W , since we
know how to expand the quantities Ψ, Σ, and P using skeletonic diagrams in G and W .

We can regard (11.59) as the definition of a functional Ω[G,W ] which equals the grand
potential when G and W are the Green’s function and the screened interaction of the
underlying physical system. This functional was first proposed in Ref. [86] and is denoted by
ΩsLW[G,W ] to distinguish it from the grand potential Ω which is a number (sLW stands for
screened Luttinger–Ward). We then have

ΩsLW[G,W ] = Ω0 ∓
1

β

{
ΦH[G, v] + Ψ[G,W ]

− trγ
[
Σss[G,W ]G+ ln(1−G0Σss[G,W ])

]

∓ 1

2
trγ
[
Pss[G,W ]W + ln(1− vPss[G,W ])

]}
. (11.60)

A precursor of this functional can be found in Appendix B of Hedin’s work [79]. The
possibility of constructing W -based variational schemes is also implicit in earlier works by
De Dominicis and Martin [87,88]. The variation of the sLW functional induced by a variation
δG and δW is

δΩsLW = ∓ 1

β

{
δΦH + δΨ− trγ

[
ΣδG+GδΣ− (G0 +G0ΣG0 + . . .)δΣ

]

∓1

2
trγ
[
PδW +WδP − (v + vPv + . . .)δP

]}
.

Taking into account that δΦH = trγ [ΣHδG] and that δΨ = trγ [ΣxcδG ± 1
2PδW ] we see

that the sLW functional is stationary when

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + . . .

and
W = v + vPv + vPvPv + . . . ,

i.e., when G is the self-consistent Green’s function G = G0 + G0ΣG and W is the self-
consistent screened interaction W = v + vPW . At the stationary point ΩsLW = Ω.

Just as in the case of the LW functional we can add to the sLW functional any F [D]
which fulfills (11.30). The resulting functional is stationary in the same point and it takes
the same value at the stationary point. If we add the functional (11.31), with D = D[G,W ]
defined in (11.29) in which Σs[G, v] → Σss[G,W ], we obtain the Klein version of the sLW
functional

ΩsK = Ω0 ∓
1

β

{
ΦH +Ψ+ trγ

[
ln(G

←−
G−10 ) + 1−G←−G−10

]
∓ 1

2
trγ
[
PW + ln(1− vP )

]}
,

where the functional dependence of the various quantities is understood. There is, however,
an additional freedom which we can use to design more stable functionals [84]. We can add
an arbitrary functional K[Q] of a functional Q[G,W ] defined by

Q[G,W ](1; 2) =W (1; 2)− v(1; 2)−
∫

d3d4W (1; 2)Pss[G,W ](3; 4)v(4; 2),
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322 11. MBPT and variational principles for the grand potential

with the properties

K[Q = 0] =

(
δK

δQ

)

Q=0

= 0.

We then obtain a new functional for the grand potential with the same stationary point and
the same value at the stationary point. Choosing to add inside the curly bracket of (11.60)
the functional

K[Q] = ±1

2
trγ
[
ln(1 +Q←−v −1)−Q←−v −1

]
,

with←−v −1(1; 2) the di�erential operator (acting on quantities to its left) for which
∫
d3 v(1; 3)←−v −1(3; 2) = δ(1; 2),10 we find

ΩssK = Ω0 ∓
1

β

{
ΦH +Ψ− trγ

[
ΣG+ ln(1−G0Σ)

]
∓ 1

2
trγ
[
ln(Wv−1) + 1−Wv−1

]}
.

Here, ssK stands for the simple version of the screened Klein functional based on the
construction of Ref. [86], see also Refs. [84, 89].

We conclude this section by pointing out that conserving approximations to Σ not only
have the merit of preserving basic conservation laws. At zero temperature the grand potential
equals the ground-state energy EM

S of a system with Hamiltonian ĤM. A further advantage
of conserving approximations is that the energy calculated from EM

S = limβ→∞ Ω, with Ω
any of the grand potential functionals previously discussed, or calculated from the Galitskii–
Migdal formula (6.105), is the same provided that Σ is conserving. Indeed, the derivation
of the Galitskii–Migdal formula is based on the sole assumption that G satisfies the Dyson
equation for some Σ. Therefore, if Σ = δΦ/δG and if G is calculated self-consistently from
G = G0 +G0ΣG then the two methods yield the same result. Other interesting properties
of conserving approximations are, e.g., the Luttinger–Ward theorem, the satisfaction of the
virial theorem, see Appendix J, the discontinuity of the momentum distribution in a zero-
temperature electron gas, see Appendix K, and the Ward identities, see Chapter 15.

10For instance for the Coulomb interaction v(1, 2) = δ(z1, z2)/|r1 − r2| and for particles of spin 0 we have
←−v −1(1; 2) = 1

4π
δ(z1, z2)δ(r1 − r2)

←−∇2
2.
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12

MBPT for the two-particle

Green’s function

We complete our presentation of MBPT by discussing the two-particle Green’s function G2.
At the end of this chapter the reader will have the necessary tools to extend the diagrammatic
techniques to the general n-particle Green’s function. In most cases a knowledge of G and
G2 is su�cient to determine the physical quantities in which one is usually interested. There
exist situations, however, which necessitate the calculation of higher order Green’s functions.
For instance the G3 is needed to study the nucleon–nucleon interaction in deuterium [90]
or the Coster–Kronig preceded Auger processes in solids [91]. Note that in a three-particle
system with two-body interactions the expansion of G3 can be cast in the form of a recursive
relation known as the Faddeev equation [92].

12.1 Diagrams for G2 and loop rule

The expansion of G2 in terms of the noninteracting Green’s function G0 and interaction v
is given in (5.34) which we write again below:

G2(a, b; c, d)

=

∞∑

k=0

1
k!

(
i
2

)k∫
v(1; 1′) . . . v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(a; c) G0(a; d) . . . G0(a; k
′+)

G0(b; c) G0(b; d) . . . G0(b; k
′+)

...
...

. . .
...

G0(k
′; c) G0(k

′; d) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

∞∑

k=0

1
k!

(
i
2

)k∫
v(1; 1′) . . . v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(1; 1
+) G0(1; 1

′+) . . . G0(1; k
′+)

G0(1
′; 1+) G0(1

′; 1′+) . . . G0(1
′; k′+)

...
...

. . .
...

G0(k
′; 1+) G0(k

′; 1′+) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣
±

.

(12.1)

The MBPT for the two-particle Green’s function is completely defined by (12.1). To see
what kind of simplifications we can make let us familiarize ourselves with the diagrammatic

323
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324 12. MBPT for the two-particle Green’s function

Figure 12.1 The 24 first-order diagrams of the numerator of G2. The diagrams Nj and N
′
j are

obtained one from the other by a mirroring of the interaction lines. The last four diagrams
can be written as the product of a G2-diagram and a vacuum diagram.

representation of the various terms. Let N(a, b; c, d) be the numerator of (12.1). To zeroth
order in the interaction, N is

N (0)(a, b; c, d) =

∣
∣
∣
∣

G0(a; c) G0(a; d)
G0(b; c) G0(b; d)

∣
∣
∣
∣
= G0(a; c)G0(b; d)±G0(a; d)G0(b; c). (12.2)

This is precisely the Hartree–Fock approximation to G2 derived heuristically in Section 7.1
where G is replaced by G0. The two terms in the r.h.s. of (12.2) are represented by the
diagrams below:

(12.3)

where the prefactor is incorporated in the diagrams and is given by the sign of the
permutation. The calculation of N(a, b; c, d) to first order requires expansion of the
permanent/determinant of a 4 × 4 matrix. This yields 4! = 24 terms whose diagram-
matic representation is displayed in Fig. 12.1. The prefactor of each diagram is (i/2) times
the sign of the permutation and N (1)(a, b; c, d) is simply the sum of all of them. Going
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12.1. Diagrams for G2 and loop rule 325

to higher order we generate diagrams with four external vertices a, b, c, d and a certain
number of interaction lines. The prefactor of an nth order diagram is 1

n! (i/2)
n(±)P with

(±)P the sign of the permutation. It would be useful to have a graphical method (similar
to the loop rule for the Green’s function) to determine the sign of a diagram. If we have n
interaction lines then the identity permutation gives the diagram

(12.4)

whose sign is +. A subsequent permutation that interchanges c and d gives the diagram

(12.5)

whose sign is (±). Any subsequent interchange starting from (12.4) or (12.5) always changes
the number of loops by one but keeps the vertices (a, c) and (b, d) in (12.4) or (a, d) and
(b, c) in (12.5) connected. We then consider a G2-diagram for G2(a, b; c, d) with l′ loops.
By closing this diagram with the Green’s function lines G0(c; a) and G0(d; b)

we obtain a diagram with a number of loops l = l′ + 2 if the G2-diagram originates from
(12.4) [and hence (a, c) and (b, d) are connected] and l = l′+1 if the G2-diagram originates
from (12.5) [and hence (a, d) and (b, c) are connected].1 Therefore, the sign of a diagram can
easily be fixed according to the loop rule for the two-particle Green’s function

(±)P = (±)l,
1Note that these diagrams are not vacuum diagrams. The closing G-lines are used only for graphical purposes

to count the number of loops.
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326 12. MBPT for the two-particle Green’s function

where l is the number of loops of the closed G2-diagram. In the next section we show how
to reduce the number of diagrams by exploiting their symmetry properties as well as the
topological notion of skeleton diagrams.

Exercise 12.1. Show that the diagrams in Fig. 12.1 correspond to the 24 terms of the

expansion of N (1)(a, b; c, d).

12.2 Bethe–Salpeter equation

Similarly to the one-particle Green’s function, the vacuum diagrams appearing in the
numerator N(a, b; c, d) are cancelled out by the denominator of (12.1). For instance the
last four diagrams in Fig. 12.1 can be discarded. Then we can rewrite (12.1) without the
denominator provided that we retain only connected G2-diagrams in the expansion of N
(a G2-diagram is connected if it does not contain vacuum diagrams). To first order G2 is
the sum of the two diagrams in (12.3) and the first 20 diagrams in Fig. 12.1. The number of
diagrams can be further reduced by taking into account that any permutation or mirroring
of the interaction lines leads to a topologically equivalent diagram. Thus, to order n each
diagram appears in 2nn! variants. For n = 1 the number of variants is 2 as it is clearly
illustrated in Fig. 12.1. Here the diagrams Nj and N ′j with j = 1, . . . , 10 are obtained from
one another by mirroring the interaction line v(1; 1′) → v(1′; 1). In conclusion, the MBPT
formula (12.1) for G2 simplifies to

G2(a, b; c, d) =
∞∑

k=0

in
∫

v(1; 1′) . . . v(k; k′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

G0(a; c) G0(a; d) . . . G0(a; k
′+)

G0(b; c) G0(b; d) . . . G0(b; k
′+)

...
...

. . .
...

G0(k
′; c) G0(k

′; d) . . . G0(k
′; k′+)

∣
∣
∣
∣
∣
∣
∣
∣
∣±
c
t.i.

,

(12.6)

where the symbol | . . . |±
c
t.i.

signifies that in the expansion of the permanent/determinant only

the terms represented by connected and topologically inequivalent diagrams are retained. In
this way the number of first order diagrams reduces from 20 to 10.

From (12.6) we see that it is convenient to change the Feynman rules for calculating the
prefactors. From now on we use the following Feynman rules for the G2-diagrams:

• Number all vertices and assign an interaction line v(i; j) to a wiggly line between j
and i and a Green’s function G0(i; j

+) to an oriented line from j to i;

• Integrate over all internal vertices and multiply by in(±)l where n is the number of
interaction lines and l is the number of loops in the closed G2-diagram.

The expansion (12.6) contains also diagrams with self-energy insertions, see Fig. 12.1. A
further reduction in the number of diagrams can be achieved by expanding G2 in terms
of the dressed Green’s function G. This means to remove from (12.6) all diagrams with
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12.2. Bethe–Salpeter equation 327

self-energy insertions and then replace G0 with G. In this way the expansion of G2 to first
order in the interaction contains only four diagrams and reads

(12.7)

This first order approximation to G2 generates the second-Born approximation (10.17) for Σ
through the relation (9.1), which we rewrite below for convenience

∫

d3Σ(1; 3)G(3; 2) = ±i
∫

d3 v(1; 3)G2(1, 3; 2, 3
+). (12.8)

Finally, we could remove from (12.6) all diagrams with polarization insertions and then replace
v with W . Keeping only G- and W -skeleton diagrams, (12.6) provides us with an expansion
of G2 in terms of the dressed Green’s function G and interaction W . Below we investigate
the structure of the expansion of G2 in G-skeleton diagrams and postpone to Section 12.5
the expansion in G- and W -skeleton diagrams.

We represent G2(1, 2; 3, 4) as a grey square with two outgoing lines starting from
opposite vertices of the square and ending in 1 and 2, and two ingoing lines starting from
3 and 4 and ending in the remaining vertices of the square:

(12.9)

This diagrammatic representation is unambiguous if we specify that the third variable (which
is 3 in this case) is located to the right of an imaginary oriented line connecting diagonally
the first to the second variable (1 and 2 in this case). Indeed, the only other possible source
of ambiguity is which variable is first; looking at (12.9) we could say that it represents either
G2(1, 2; 3, 4) or G2(2; 1; 4, 3). However, the exact as well as any conserving approximation
to G2 is such that G2(1, 2; 3, 4) = G2(2; 1; 4, 3), and therefore we do not need to bother
about which variable is first. From the G-skeletonic expansion it follows that the general
structure of G2 is

(12.10)

or, in formula,

G2(1, 2; 3, 4) = G(1; 3)G(2; 4)±G(1; 4)G(2; 3)

+

∫

G(1; 1′)G(3′; 3)Kr(1
′, 2′; 3′, 4′)G(4′; 4)G(2; 2′), (12.11)
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328 12. MBPT for the two-particle Green’s function

Figure 12.2 Diagrams for the kernel Kr up to second order in the interaction.

where the kernel Kr is represented by the square grid and accounts for all G2-diagrams
of order larger than zero. These diagrams are all connected since if the piece with external
vertices, say, 1 and 3 were disconnected from the piece with external vertices 2 and 4 [like
the first diagram in (12.10)] then there would certainly be a self-energy insertion. The rules
to assign the variables to the square grid Kr(1, 2; 3, 4) are the same as those for G2: the
first two variables 1 and 2 label the opposite vertices with an outgoing line and the third
variable 3 labels the vertex located to the right of an imaginary oriented line going from 1
to 2. The diagrams for Kr up to second order in the interaction are shown in Fig. 12.2. The
Feynman rules to convert them into mathematical expressions are the same as those for G2

(see beginning of the section). The only extra rule is that if two external vertices i and j
coincide, as in the first eight diagrams of Fig. 12.2, then we must multiply the diagram by
δ(i; j). This is the same rule that we introduced for the Hartree self-energy diagram, see
discussion below (10.13).

From Fig. 12.2 we see that in the 4th, 5th, 6th, and 9th diagram the vertices 1 and
3 can be disconnected from the vertices 2 and 4 by cutting two G-lines. The remaining
diagrams are instead two-particle irreducible since (1, 3) and (2, 4) cannot be disjoint by
cutting two G-lines. This is the reason for the subscript r in the kernel Kr which contains
also two-particle reducible diagrams and can therefore be called a reducible kernel. Let us
denote by K the irreducible kernel.

K is obtained from Kr by removing all two-particle reducible diagrams. The Feyn-
man rules for K are identical to the Feynman rules for Kr .
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12.2. Bethe–Salpeter equation 329

A generic Kr-diagram has the structure K(1)GGK(2)GG . . .K(n) with the K(i) two-
particle irreducible diagrams. Let us check how the sign of a Kr-diagram is related to the
sign of the constituent K(i) irreducible diagrams. Let l be the number of loops of a closed
Kr-diagram with the structure K(1)GGK(2)

where the irreducible kernels are represented by a square with vertical stripes. We see that
the closed K(1)-diagram and K(2)-diagram are obtained from the above diagram by an
interchange of the starting points of the connecting GG-double-lines

Since a single interchange adds or removes a loop we conclude that (±)l = (±)l1+l2+1

where l1 and l2 are the number of loops in the closed diagrams K(1) and K(2). This
property is readily seen to be general. If Kr = K(1)GGK(2)GG . . .K(n) contains n
irreducible kernels with signs (±)li , then the sign of the Kr-diagram is (±)l1+...+ln+n−1.
Thus we can alternatively formulate the Feynman rule for the prefactor of a Kr-diagram as:

• If Kr = K(1)GGK(2)GG . . .K(n) with K(i) irreducible diagrams of order ki and
sign (±)li , then the prefactor of Kr is

ik1+...+kn(±)l1+...+ln+n−1.

In other words every GG-double-line contributes with a (±) to the overall sign.

Let us consider few examples. For the 4th Kr-diagram of Fig. 12.2 the prefactor is

i2(±)l = i2(±)3 = ± i2. (12.12)

The same diagram can be written as K(1)GGK(2) where K(1)(1, 2; 3, 4) = prefactor ×
δ(1; 3)δ(2; 4) v(1; 2) and K(2) = K(1). Since the closed K(1)-diagram has two loops the
prefactor of K(1) is

i(±)l1 = i(±)2 = i.

The K(2)-diagram has the same prefactor and since we have only one GG-double-line
the overall prefactor will be ± i2 in agreement with (12.12). A second example is the 5th
Kr-diagram of Fig. 12.2 whose prefactor is

i2(±)l = i2(±)2 = i2. (12.13)

This diagram also has the structure K(1)GGK(2) where K(1) is the same as before while
K(2)(1, 2; 3, 4) = prefactor× δ(1; 4)δ(2; 3)v(1; 3). Since the closed K(2)-diagram has one
loop the prefactor of K(2) is

i(±)l2 = i(±)1 = ± i.
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330 12. MBPT for the two-particle Green’s function

Again the product of the prefactors of K(1) and K(2) times the (±) sign coming from
the GG-double-line agrees with the prefactor (12.13). Therefore we can write the following
Dyson-like equation for the reducible kernel (integral over primed variables is understood)

Kr(1, 2; 3, 4) = K(1, 2; 3, 4)±
∫

K(1, 2′; 3, 4′)G(4′; 1′)G(3′; 2′)Kr(1
′, 2; 3′, 4), (12.14)

which is represented by the diagrammatic equation (remember that every GG-double-line
contributes with a ±)

(12.15)

Equation (12.14) is known as the Bethe–Salpeter equation for the reducible kernel. Inserting
(12.15) into (12.10) we find

with the grey blob

L(1, 2; 3, 4) ≡ ±
[
G2(1, 2; 3, 4)−G(1; 3)G(2; 4)

]
. (12.16)

The function L fulfills the diagrammatic equation

or, in formulas (integral over primed variables is understood),

L(1, 2; 3, 4) = G(1; 4)G(2; 3)±
∫

G(1; 1′)G(3′; 3)K(1′, 2′; 3′, 4′)L(4′, 2; 2′, 4) (12.17)

The reader can easily check the correctness of these equations by iterating them. We refer
to L as the two-particle XC function since it is obtained from G2 by subtracting the Hartree
diagram.

There are several reasons for introducing yet another quantity like L. On one hand we
see that by setting 4 = 2 and 3 = 1 the L-diagrams are the same as the χ-diagrams, with
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12.3. Excitons 331

χ the reducible polarizability defined in Section 11.7. In fact, the two quantities di�er by just
a prefactor that can be deduced by comparing the Feynman rules for the polarizability with
the Feynman rules for G2. A polarization diagram of order n has prefactor in+1(±)l while
the same diagram seen as an L-diagram in the limit 4→ 2 and 3→ 1 has prefactor in(±)l
times the sign (±) which comes from the definition of L, see (12.16). Thus the relation
between χ and L is

χ(1; 2) = ±iL(1, 2; 1, 2) (12.18)

This equation is not well defined if L(1, 2; 1, 2) is calculated as the di�erence between G2

and GG. The reason is that in GG both Green’s functions have the same time arguments. As
already emphasized several times, these kinds of ambiguity are always removed by shifting
the arguments of the starting points. The precise way of writing the relation between
χ and L is χ(1; 2) = ±iL(1, 2; 1+, 2+). However, if L is defined as the solution of
the Bethe–Salpeter equation or as the sum of all G2-diagrams with the exception of the
Hartree diagram then (12.18) is well defined. Another reason for defining L is that it contains
information on how the Green’s function changes G → G + δG after a change in the
single-particle Hamiltonian h→ h+ δh. In Chapter 15 we prove the important relation

δG(1; 3) =

∫

d2d4 L(1, 2; 3, 4) δh(4; 2). (12.19)

This identity allows us to study all possible linear response properties of a system.
Equation (12.17) is known as the Bethe–Salpeter equation for L. One of the most success-

ful applications of the Bethe–Salpeter equation is the description of the optical spectra of
semiconductors and insulators. Experimentally the optical spectrum of a system is obtained
by irradiating a sample with photons of energy ω and then measuring the intensity of the
absorbed light as a function of ω. In semiconductors or insulators a photon of high enough
energy can excite an electron from the valence band to the conduction band. The lack of an
electron in the valence band can be seen as a hole, i.e., a particle of positive charge, which
is then attracted by the excited electron. This particle–hole pair can form a stable excited
state known as the exciton [93], and in correspondence with its energy the optical spectrum
exhibits a peak. In the next section we use a simplified model to show how to locate the
position of the excitonic peaks using the Bethe–Salpeter equation.

Exercise 12.2. Show that the vacuum diagrams in N are cancelled out by the denominator

of (12.1).

Exercise 12.3. Show that (12.8) is an identity with G2 given by (12.7) and Σ given by the

second-Born approximation.

Exercise 12.4. Show that the diagrams of Kr to second-order in v are all those illustrated

in Fig. 12.2.

12.3 Excitons

Let us consider an insulator in the ground state with the valence band fully occupied and the
conduction band completely empty, see Fig. 12.3(a). If the insulator is transparent to light of
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332 12. MBPT for the two-particle Green’s function

frequency ω then quantities like density, current, etc. remain unperturbed. Conversely, the
absorption of light induces a change in these observable quantities. The time-dependent
ensemble average of any one-body operator can be calculated from G<(x1, t,x2, t) =
G(x1, z,x2, z

+) through (6.26) and hence its variation can be calculated from the variation
δG(x1, z,x2, z

+). The coupling between the electrons and the external electromagnetic

field is contained in δh(1; 2) = δ(z1, z2)〈x1|δĥ(z1)|x2〉 and is local in time. Therefore,
from (12.19) it follows that the knowledge of

L(x1,x2,x3,x4; z, z
′) ≡ L(x1, z,x2, z

′;x3, z,x4, z
′) (12.20)

is enough to calculate the variations of density, current, etc. We have

δG(x1, z,x3, z
+) =

∫

dx2dx4

∫

γ

dz̄ L(x1,x2,x3,x4; z, z̄)〈x4|δĥ(z̄)|x2〉,

and setting z = t− or z = t+ we find (see Exercise 5.5)

δG<(x1, t,x3, t) =

∫

dx2dx4

∫ ∞

t0

dt̄ LR(x1,x2,x3,x4; t, t̄)〈x4|δĥ(t̄)|x2〉. (12.21)

The choice of the time arguments in (12.20) corresponds to z1 = z3 = z and z2 = z4 = z′

in the diagrams above (12.17). The lowest order diagram describes the propagation of a free
particle–hole pair since either z is earlier than z′ or it is the other way around. In higher
order diagrams the particle interacts with the hole in many di�erent ways depending on the
approximation to the kernel K . Thus L can be interpreted as the interacting particle–hole
propagator in a similar way as, e.g., G< has been interpreted as a hole propagator, see
Section 6.1.3. An exciton is a bound (or quasi-bound) particle–hole excitation and, if it exists,
the Fourier transform of L exhibits a peak at the exciton binding energy. Below we derive
an equation for L based on a physically sound approximation for K .

Due to the presence of a gap between the bands, low energy excitations are strongly
suppressed and the ground state is “rigid.” We then approximate G with the noninteracting
Green’s function G0, i.e., we ignore the e�ects of multiple self-energy insertions. For the ker-
nel K we assume that the interaction is weak and consider the lowest order approximation
in v given by the first two diagrams of Fig. 12.2 (lower sign for fermions):

(12.22)

Plugging this K in the Bethe–Salpeter equation (12.17) and replacing G → G0 we find the
following approximate equation for L (integral over primed variables is understood)

L(1, 2; 3, 4) = L0(1, 2; 3, 4) + i

∫

L0(1, 2
′; 3, 1′)v(1′; 2′)L(1′, 2; 2′, 4)

− i

∫

L0(1, 1
′; 3, 1′)v(1′; 2′)L(2′, 2; 2′, 4), (12.23)
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12.3. Excitons 333

Figure 12.3 (a) Representation of the light absorption in an insulator with an electron which
is promoted from the valence band to the conduction band and the hole left behind. (b)
Diagrams for L when the kernel is approximated as in (12.22).

with L0(1, 2; 3, 4) = G0(1; 4)G0(2; 3). The diagrammatic content of (12.23) is illustrated in
Fig. 12.3(b). Setting in this equation z1 = z3 = z and z2 = z4 = z′ and using the definition
(12.20) we get

L(x1,x2 , x3,x4; z, z
′) = L0(x1,x2,x3,x4; z, z

′)

+ i

∫

dx′1dx
′
2

∫

dz̄ L0(x1,x
′
2;x3,x

′
1; z, z̄)v(x

′
1,x
′
2)L(x

′
1,x2,x

′
2,x4; z̄, z

′)

− i

∫

dx′1dx
′
2

∫

dz̄ L0(x1,x
′
1;x3,x

′
1; z, z̄)v(x

′
1,x
′
2)L(x

′
2,x2,x

′
2,x4; z̄, z

′).

This is an identity between functions in Keldysh space and contains a convolution along the
contour. We can easily extract the retarded component from the Langreth rules of Table
5.1 and subsequently Fourier transform. Indeed both L and L0 depend only on the time
di�erence since the insulator is in equilibrium. The result is

LR(x1,x2 , x3,x4;ω) = LR
0 (x1,x2,x3,x4;ω)

+ i

∫

dx′1dx
′
2 L

R
0 (x1,x

′
2;x3,x

′
1;ω)v(x

′
1,x
′
2)L

R(x′1,x2,x
′
2,x4;ω)

− i

∫

dx′1dx
′
2 L

R
0 (x1,x

′
1;x3,x

′
1;ω)v(x

′
1,x
′
2)L

R(x′2,x2,x
′
2,x4;ω). (12.24)

To calculate LR
0 we use the identities in the last column of Table 5.1. By definition

L0(x1,x2,x3,x4; z, z
′) = G0(x1, z;x4, z

′)G0(x2, z
′;x3, z)

and hence

LR
0 (x1,x2,x3,x4;ω) =

∫
dω′

2π

[
GR

0 (x1,x4;ω + ω′)G<
0 (x2,x3;ω

′)

+G<
0 (x1,x4;ω + ω′)GA

0 (x2,x3;ω
′)
]
. (12.25)
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334 12. MBPT for the two-particle Green’s function

The Fourier transforms of the Keldysh components of a noninteracting Green’s function have
been worked out in Chapter 6, see (6.48) for the lesser component and (6.58), (6.59) for the
retarded/advanced components. If we sandwich these equations with 〈x| and |x′〉 we get

G<
0 (x,x

′;ω) = 〈x|Ĝ<0 (ω)|x′〉 = 2πi
∑

n

fnδ(ω − ǫn)ϕn(x)ϕ
∗
n(x
′), (12.26)

where fn = f(ǫn − µ) is the Fermi function with chemical potential µ, and

G
R/A
0 (x,x′;ω) = 〈x|ĜR/A

0 (ω)|x′〉 =
∑

m

ϕm(x)ϕ∗m(x′)

ω − ǫm ± iη
. (12.27)

In (12.26) and (12.27) the sum runs over all single particle eigenstates. The substitution of
these expressions in (12.25) and the subsequent integration over ω′ leads to

LR
0 (x1,x2,x3,x4;ω)

= i
∑

nm

fnf̄m

[
ϕm(x1)ϕ

∗
m(x4)ϕn(x2)ϕ

∗
n(x3)

ω − (ǫm − ǫn) + iη
− ϕm(x2)ϕ

∗
m(x3)ϕn(x1)ϕ

∗
n(x4)

ω + (ǫm − ǫn) + iη

]

.

(12.28)

In this equation we have multiplied fn by f̄m = 1−fm. This can be done since the quantity
in the square bracket is antisymmetric under the interchange n ↔ m. At zero temperature
fn = 0 if n = C is a conduction state while f̄m = 0 if m = V is a valence state.

Suppose now that LR has simple poles in ω = ωs inside the gap: 0 < ωs < Eg . Then
our observable quantities change when we shine light of frequency ωs on the insulator,
see again (12.21). Physically this implies that photons of energy ωs are absorbed by the
insulator, and since ωs < Eg this absorption must occur via the excitation of a bound
electron–hole pair, i.e., an exciton. Thus the poles of LR correspond to the energy of a
bound exciton. Since the poles of LR

0 are in (ǫC − ǫV ) ≥ Eg and in −(ǫC − ǫV ) ≤ −Eg

we can discard LR
0 in the first term of (12.24) for ω ∼ ωs. We then multiply both sides of

(12.24) by ϕ∗C(x1)ϕV (x3) and integrate over x1 and x3. Using the orthonormality of the
wavefunctions we find

[
ωs − ǫC + ǫV

]
LCV (x2,x4;ωs)

= −
∫

dx′1dx
′
2ϕ
∗
C(x

′
1)ϕV (x

′
2)v(x

′
1,x
′
2)L

R(x′1,x2,x
′
2,x4;ωs)

+

∫

dx′1dx
′
2ϕ
∗
C(x

′
1)ϕV (x

′
1)v(x

′
1,x
′
2)L

R(x′2,x2,x
′
2,x4;ωs), (12.29)

where we introduce the coe�cients LCV of the expansion of LR according to

LR(x1,x2,x3,x4;ω) =
∑

CV

ϕC(x1)ϕ
∗
V (x3)LCV (x2,x4;ω)

+
∑

CV

ϕV (x1)ϕ
∗
C(x3)LV C(x2,x4;ω). (12.30)
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12.3. Excitons 335

The expansion of LR has the same structure as the expansion of LR
0 in (12.28), since in the

Bethe–Salpeter equation the first and third arguments of L0 are the same as those of L.
From (12.28) we see that the coe�cients L0,V C of the expansion of LR

0 have poles below
−Eg . We therefore expect that for ω ∼ ωs > 0 the dominant contribution to L comes
from the first sum in (12.30), since for weak interactions LV C ∼ L0,V C . Approximating
LV C(x2,x4;ωs) ∼ 0 and inserting (12.30) into (12.29) we find a bound-state equation for
the coe�cients LCV

[
ωs − ǫC + ǫV

]
LCV = −

∑

C′V ′

[
vCV ′V C′ − vCV ′C′V

]
LC′V ′ , (12.31)

where we use the definition (1.85) of the Coulomb integrals.
In order to extract some physics from (12.31) we must specify eigenvalues and eigenfunc-

tions of the noninteracting insulator as well as the nature of the interaction. Each eigenstate
is characterized by a band index ν = c, v that specifies the conduction or valence band, a
quasi-momentum k and a spin index σ, and hence the collective quantum numbers C and
V stand for C = cpσc and V = vkσv . Since the interaction is spin independent we have

vCV ′V C′ = δσcσ′
c
δσvσ′

v

∫

dr1dr2 ϕ
∗
cp(r1)ϕ

∗
vk′(r2)v(r1 − r2)ϕvk(r2)ϕcp′(r1),

vCV ′C′V = δσcσv
δσ′

cσ
′
v

∫

dr1dr2 ϕ
∗
cp(r1)ϕ

∗
vk′(r2)v(r1 − r2)ϕcp′(r2)ϕvk(r1),

where ϕνk(r) is the orbital part of the eigenfunction: ϕνkσ′(rσ) = δσσ′ϕνk(r). To push
the analytic calculations a bit further we approximate the eigenfunctions to be plane waves
with a simple parabolic dispersion for both the valence states, ǫV = −k2/(2mv), and the
conduction states, ǫC = Eg + p2/(2mc). However, we have to remember that states with
di�erent band index are orthogonal. Therefore we make the following approximation for the
product of two eigenfunctions under the integral sign

ϕ∗νp(r)ϕνp′(r) = e−i(p−p
′)·r, ν = c, v,

and
ϕ∗cp(r)ϕvk(r) ∼ 0.

This last approximation would be exact for a constant interaction due to the orthogonality
of the c and v states. With these approximations we find that vCV ′C′V ∼ 0 while

vCV ′V C′ = δσcσ′
c
δσvσ′

v
ṽp−p′ × (2π)3δ(p− k− p′ + k′),

with ṽp =
∫
dr e−ip·rv(r) the Fourier transform of the interaction. Inserting these results

into (12.31) with
∑

C′V ′

→
∑

σ′
cσ

′
v

∫
dp′

(2π)3
dk′

(2π)3
,

it is a matter of simple algebra to arrive at the following equation:

[
ωs − Eg −

p2

2mc
− k2

2mv

]
Lpσckσv

= −
∫

dp′

(2π)3
ṽp−p′Lp′σcp′−(p−k)σv

. (12.32)
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336 12. MBPT for the two-particle Green’s function

Let us study the case of small momentum transfer P = p − k which is the most relevant
in optical transitions since it corresponds to excitons of low energy, and hence to the most
stable excitons. We define the exciton amplitudes

AP(k) = LP+kσckσv
,

and for |P| ≪ |k| we approximate p2 ∼ k2 in the eigenenergy of the conduction state.
Then, we can rewrite (12.32) as

k2

2µex
AP(k)−

∫
dk′

(2π)3
ṽk−k′AP(k

′) = (ωs − Eg)AP(k),

with the e�ective exciton mass µ−1ex = m−1c +m−1v . This equation has the same structure
as an eigenvalue equation for a particle of mass µex in an external potential −v. If we
multiply both sides by eik·r and integrate over k we find

[

− ∇
2

2µex
− v(r)

]

AP(r) = (ωs − Eg)AP(r), (12.33)

with AP(r) =
∫

dk
(2π)3 e

ik·rAP(k) the Fourier transform of the exciton amplitudes. Since

v is the repulsive interaction between the electrons (−v) is an attractive potential. For
Coulombic interactions (−v) is the same potential as the hydrogen atom and therefore
(12.33) admits solutions at ωs,n = Eg − µex/(2n

2) with n integers. These eigenvalues
correspond to the possible exciton binding energies. Excitonic features in optical spectra
are manifest as peaks at ω = ωs,n; at these frequencies LR has simple poles and, according
to (12.21), light with these frequencies causes a large change in δG<.

Up until the time this book was published, the Bethe–Salpeter equation has been solved
exclusively with the kernel (12.22), or variations in which the second interaction in (12.22)
is replaced by a static, i.e., frequency-independent, screened interaction W . The first
solutions date back to the late seventies when the Bethe–Salpeter equation was applied to
calculate the optical spectrum of diamond and silicon [94]. The accuracy of the solution
has been improved over the years and the calculated optical spectra of several systems
with strong excitonic features have been found in good agreement with experiments. For
a review see Ref. [95] and references therein. Going beyond the static approximation for
W represents a major computational challenge [96]. An alternative route to extract L with
more sophisticated kernels consists in solving the Kadano�–Baym equations [97–99]. Let
us explain how it works. For a given approximation to Σ = Σs[G, v] we can use the
Kadano�–Baym equations to calculate the Green’s function of a system with single-particle
Hamiltonian h. In Chapter 15 we show that the first-order change δG induced by a change
δh in the single-particle Hamiltonian is given by (12.19) where L fulfills the Bethe–Salpeter
equation with kernel K(1, 2; 3, 4) = ±δΣ(1; 3)/δG(4; 2). Since the kernel (12.22) is just
±δΣHF/δG (see next section) it is clear that any approximation to the self-energy that
goes beyond the Hartree–Fock approximation gives us access to Ls of a higher degree of
sophistication. Applications of this method are presented in Section 16.8.
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12.4. Diagrammatic proof of K = ±δΣ/δG 337

12.4 Diagrammatic proof of K = ±δΣ/δG
In this section we prove the important relation

K(1, 2; 3, 4) = ± δΣ(1; 3)
δG(4; 2)

(12.34)

between the self-energy Σ = Σs[G, v] and the kernel K = Ks[G, v] of the Bethe–Salpeter
equation. In (12.34) Σs and Ks are functionals of G and v (built using G-skeleton diagrams).
The proof consists in showing that by cutting a G-line in all possible ways from every
Σ-diagram2 we get the full set of K-diagrams, each with the right prefactor. Let us first
consider some examples. For the Hartree–Fock self-energy

the prefactor is (±i) for the first diagram and (+i) for the second diagram. The functional
derivative with respect to G(4; 2) yields the K-diagrams

(12.35)

whose prefactors are correctly given by plus/minus the prefactors of the Σ-diagrams from
which they originate. Another example is the first bubble diagram of the second-Born
approximation

with prefactor ±i2. Its functional derivative generates the following three diagrams for the
kernel:

The prefactor of the first diagram is i2(±)l = i2(±)2 = i2. Similarly one can calculate the
prefactor of the other two diagrams and check that it is again given by i2.

The general proof of (12.34) follows from a few statements:

2As already observed several times, to cut a G-line in all possible ways is equivalent to taking the functional
derivative with respect to G.
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338 12. MBPT for the two-particle Green’s function

• Closing a K-diagram K(i)(1, 2; 3, 4) with a Green’s function G(4; 2) leads to a skele-
tonic Σ-diagram up to a prefactor (we prove below that the prefactor is ±).
Proof. Suppose that the self-energy diagram obtained from K(i) is not skeletonic.
Then it must be of the form

where A is a self-energy insertion. If the G(4; 2) that we used to close the K-diagram
is in A then the original K-diagram would be two-particle reducible since it could be
divided into two disjoint pieces containing (1, 3) and (2, 4) by cutting two G-lines.
This is in contradiction to the definition of the irreducible kernel K . The added line
G(4; 2) cannot be G1 or G2 for otherwise the original K-diagram would contain
a self-energy insertion and hence it would not be skeletonic. For the very same
reason the added line G(4; 2) cannot be in B either. We conclude that the self-energy
diagram obtained by closing a K-diagram with a G-line is skeletonic.

• Every K-diagram is obtained from a unique Σ-diagram. Moreover, every Σ-diagram
with n G-lines gives n topologically inequivalent K-diagrams.

Proof. From the previous statement we know that by closing a K-diagram with a
G-line we generate a Σ-diagram and hence there must be at least one Σ-diagram
from which this K-diagram can be obtained. Furthermore, it is clear that the cutting
of a G-line in two topologically inequivalent Σ-diagrams Σ(1) and Σ(2) cannot lead
to topologically equivalent K-diagrams K(1) and K(2) since if we added back the
G-line to K(1) and K(2) we would find that Σ(1) and Σ(2) have the same topology,
contrary to the assumption. We thus conclude that every K-diagram comes from a
unique Σ-diagram. The remaining question is then whether a given Σ-diagram can
lead to two (or more) topologically equivalent K-diagrams K(1) and K(2) by cutting
two di�erent G-lines. In Section 11.3 we saw that by cutting a G-line from a vacuum
diagram we obtain NS topological equivalent Σ-diagrams, where NS is the number
of symmetries of the vacuum diagram. Similarly if K(1) and K(2) are topologically
equivalent then there must be a symmetry s of the generating Σ-diagram that maps
the set G of G-lines into itself. However, from the third statement of Section 11.3 it
follows that the only possible symmetry is the identity permutation since the external
vertices of Σ are fixed. We conclude that by removing two di�erent G-lines we always
obtain two topologically inequivalent K-diagrams.

• The prefactor of a K-diagram calculated from (12.34) agrees with the Feynman rules
for the K-diagrams.

Proof. The prefactor of a K-diagram calculated from (12.34) is plus/minus the prefactor
of the generating Σ-diagram, i.e., ik(±)l+1 where k is the number of interaction lines
and l is the number of loops in the Σ-diagram. Since the Σ- and K-diagrams have
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12.5. Vertex function and Hedin equations 339

the same number of interaction lines the factor ik is certainly correct. We only need
to check the sign. The sign of a K-diagram is, by definition, given by the number of
loops in the diagram K(1, 2; 3, 4) closed with G(4; 2) and G(3; 1). When closing the
K-diagram with G(4; 2) we get back Σ(1; 3). If we now close Σ(1; 3) with G(3; 1)
we increase the number of loops in Σ by one. This proves the statement.

These three statements constitute the diagrammatic proof of (12.34). For Φ-derivable
self-energies we can also write

K(1, 2; 3, 4) = ± δ2Φ

δG(3; 1)δG(4; 2)
. (12.36)

Thus K is obtained from Φ by di�erentiating twice with respect to G. Since the order of
the functional derivatives does not matter, we have

K(1, 2; 3, 4) = ± δ2Φ

δG(3; 1)δG(4; 2)
= ± δ2Φ

δG(4; 2)δG(3; 1)
= K(2, 1; 4, 3), (12.37)

which is indeed a symmetry of the two-particle Green’s function, see (8.7). We can also
regard (12.37) as a vanishing “curl” condition for Σ = Σs[G, v],

δΣ(1; 3)

δG(4; 2)
− δΣ(2; 4)

δG(3; 1)
= 0, (12.38)

which is a necessary condition for the existence of a functional Φ such that Σ is Φ-derivable.
Thus, another way to establish whether a given Σ is Φ-derivable consists in checking the
validity of (12.38).

12.5 Vertex function and Hedin equations

In this section we derive a closed system of equations for the various many-body quantities
introduced so far. To this end we observe that the general structure of the self-energy
Σ = Σs[G, v] is

(12.39)

The so called vertex function (or just vertex)
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340 12. MBPT for the two-particle Green’s function

contains all possible diagrams that we can enter in the second diagram of (12.39) to form a
self-energy diagram. The zeroth order vertex function is

Λ0(1, 2; 3) = δ(1; 2+)δ(3; 2) = •,

which is represented by a dot and yields the self-energy Fock diagram, since

i

∫

d3d4 v(1; 3)G(1; 4)δ(4; 2+)δ(3; 2) = i v(1; 2)G(1; 2+).

We can deduce an equation for the vertex by inserting in (12.8) the expression (12.39) for Σ
and the expression (12.11) for G2. It is a simple and instructive exercise for the reader to
show that

Λ(1, 2; 3) = δ(1; 2+)δ(3; 2)±
∫

d4d5 Kr(1, 4; 2, 5)G(5; 3)G(3; 4).

We can give to this formula the following diagrammatic representation

(12.40)

where we take into account that the GG-double-line gives a factor (±) when the diagram is
converted into a mathematical expression, see Section 12.2. Expanding the reducible kernel
as in (12.14) we then obtain a Dyson equation for the vertex

which in formulas reads (remember that K = ±δΣ/δG)

Λ(1, 2; 3) = δ(1; 2+)δ(3; 2) +

∫

d4d5d6d7
δΣ(1; 2)

δG(4; 5)
G(4; 6)G(7; 5)Λ(6, 7; 3). (12.41)

This is the Bethe–Salpeter equation for the vertex function. Equations (12.39) and (12.41)
provide a coupled system of equations from which to obtain the self-energy iteratively. If we
start with the zeroth order vertex function Λ0(1, 2; 3) = δ(1; 2+)δ(3; 2), then (12.39) yields
the Hartree–Fock self-energy, whose functional derivative with respect to G yields the kernel
(12.35). The insertion of this kernel into (12.41) generates the vertex function

(12.42)
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12.5. Vertex function and Hedin equations 341

The solution of (12.42) gives an infinite series of bubble and ladder diagrams similar to those
of Fig. 12.3(b). The new vertex can now be inserted back into (12.39) to obtain a new self-
energy. A subsequent di�erentiation with respect to G then gives yet another vertex and
we can continue to iterate ad infinitum. We are not aware of any proof that such iterative
scheme converges nor that it generates all possible skeleton diagrams for the self-energy.

From the solution of (12.39) and (12.41) we get the self-energy as a functional of G and v.
The natural question then arises whether we can derive a similar system of equations from
which to get the self-energy as a functional of G and W . To have Σ in terms of G and W
we must first replace v → W in the second diagram of (12.39), and then remove from Λ all
diagrams containing a polarization insertion and again replace v → W . In order to remove
polarization insertions from Λ we need to introduce another kernel K̃r :

K̃r(1, 2; 3, 4) is obtained from Kr(1, 2; 3, 4) by discarding all those diagrams that
are one-interaction line reducible, i.e., that can be broken into two disjoint pieces,
one containing (1, 3) and the other containing (2, 4), by cutting an interaction line.

In Fig. 12.2 the 2nd, 4th, 5th, and 6th diagrams are one-interaction line reducible while the
remaining diagrams are one-interaction line irreducible. Alternatively we can say that we
are removing from Kr all those diagrams that give rise to a polarization insertion when we
close the right vertices with two G-lines (so as to form a Λ-diagram, see (12.40)). The reader
can easily check that with the exception of the 2nd, 4th, 5th, and 6th diagrams of Fig. 12.2
no other diagram in the same figure gives rise to a polarization insertion when it is closed
with two G-lines. Since the kernel K̃r is not two-particle irreducible we can introduce an
irreducible kernel K̃ in the same fashion as we did for Kr .

The kernel K̃ is two-particle irreducible and one-interaction line irreducible.

The only diagram in K which is one-interaction line reducible is the Hartree diagram [first
diagram in (12.35)] and hence

K̃(1, 2; 3, 4) = K(1, 2; 3, 4)− i δ(1; 3)δ(2; 4)v(1; 2). (12.43)

This equation is represented by the diagrammatic relation

where the striped square with a tilde is K̃ . The reducible kernel K̃r can then be expanded
in terms of the irreducible kernel K̃ in a Bethe–Salpeter-like equation
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342 12. MBPT for the two-particle Green’s function

So far we have regarded K̃ = K̃s[G, v] as a functional of G and v. If we remove from
it all diagrams with a polarization insertion and subsequently replace v → W we obtain a
new functional K̃ss[G,W ] which yields K̃ as a functional of G and W . Then, writing the
self-energy as in (10.25), i.e.,

Σ = Σss[G,W ] = ΣH[G, v] + Σss,xc[G,W ],

we can establish the following relation between K̃ = K̃ss and Σxc = Σss,xc

K̃(1, 2; 3, 4) = ±δΣxc(1, 3)

δG(4; 2)
(12.44)

The proof of (12.44) is identical to the proof of (12.34). We stress again that for (12.44) to
be valid we must exclude from Σxc all self-energy diagrams with a polarization insertion
and use W as the independent variable. We now have all ingredients to construct the
vertex function Γ = Γss[G,W ] without polarization insertions.3 The new vertex function is
obtained from K̃ = K̃ss[G,W ] in a similar way to that by which Λ = Λs[G, v] is obtained
from K = Ks[G, v], see (12.41),

where Γ is represented by the black triangle. In the first equality K̃r = K̃ss,r[G,W ] is

the sum of all the K̃r-diagrams which do not contain polarization insertions and in which
v → W ; similarly in the second equality K̃ = K̃ss[G,W ]. The mathematical expression of
this diagrammatic equation is

Γ(1, 2; 3) = δ(1; 2+)δ(3; 2) +

∫

d4d5d6d7
δΣxc(1; 2)

δG(4; 5)
G(4; 6)G(7; 5)Γ(6, 7; 3) (12.45)

Equation (12.45) is the Bethe–Salpeter equation for the G- and W -skeleton vertex function
Γss[G,W ]. In the remainder of this section we regard all quantities as functionals of
the independent variables G and W ; in other words we do not specify that a quantity

3The reader may wonder why we did not use the symbol Λss for this vertex. The vertex Γ is obtained from
Λ by removing all diagrams containing a polarization insertion and then replacing v → W . Now the point is
that Λ(1, 2; 3) can have a polarization insertion which is either internal or external. A Λ-diagram with an internal
polarization insertion is, e.g., the diagram resulting from the 3rd term of Fig. 12.2, while a Λ-diagram with an external
polarization insertion is, e.g., the diagram resulting from the 4th, 5th, or 6th term of Fig. 12.2. The typical structure
of a Λ-diagram with an external polarization insertion is Λ(1, 2; 3) ∝

∫

d4d5 Λi(1, 2; 4)v(4; 5)Pj(5; 3) with Λi

some vertex diagram and Pj some polarization diagram. To construct Γ we have to remove from Λ the diagrams
with internal and/or external polarization insertions. It is then clear that by expanding W = v + vPv + . . . in
a Γ-diagram we get back only Λ-diagrams with internal polarization insertions, i.e., we cannot recover the full
Λ. In other words Γss[G,W ] 6= Λs[G, v]. This is the motivation for using a di�erent symbol. The situation is
di�erent for the self-energy and polarizability since the expansion of W in Σss[G,W ] and Pss[G,W ] gives back
Σs[G, v] and Ps[G, v].
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12.5. Vertex function and Hedin equations 343

Q = Σ, Γ, K̃, P, etc. has to be understood as Qss[G,W ]. The vertex Γ allows us to write
the self-energy as a functional of G and W according to

or in formula

Σ(1; 2) = ±i δ(1; 2)
∫

d3 v(1; 3)G(3; 3+) + i

∫

d3d4W (1; 3)G(1; 4)Γ(4, 2; 3) (12.46)

We see that if we take a Γ-diagram and expand W = v + vPv + . . . in powers of v we get
Λ-diagrams with no external polarization insertions and hence the product WΓ does not
lead to double counting.

The kernel K̃r can also be used to write the polarizability according to

where the prefactor i in the second term on the r.h.s. is due to the di�erent Feynman rules
for P (m interactions give a prefactor im+1, see Section 10.8) and for K̃r (m interactions
give a prefactor im, see Section 12.2). The zeroth order polarization diagram can also be
seen as a closed Γ-diagram in which Γ is approximated by δδ = •, i.e.,

It is easy to check that this is an equality: the diagram on the l.h.s. is a polarization diagram
and hence the prefactor is ±i while the diagram on the r.h.s. is a closed Γ-diagram and
hence the prefactor is ± due to the GG-double-line. This explains the presence of the
factor i in front of it. We thus see that

or in formulas

P (1; 2) = ±i
∫

d3d4G(1; 3)G(4; 1)Γ(3, 4; 2) (12.47)
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344 12. MBPT for the two-particle Green’s function

Table 12.1 Mathematical expression (left column) and diagrammatic representation (right col-
umn) of the Hedin equations.

Equations (12.45), (12.46), and (12.47) together with the Dyson equations G = G0 + G0ΣG
and W = v+ vPW are the famous Hedin equations. They form a set of coupled equations
for G, Σ, P , W , and Γ whose solution yields the same G which solves the Martin–
Schwinger hierarchy. We have thus achieved a major reduction of the equations needed
to determine the Green’s function: from the infinite Martin–Schwinger hierarchy to the
five Hedin equations. In Table 12.1 we list the Hedin equations and their diagrammatic
representation. Like the coupled equations (12.39) and (12.41) the Hedin equations can be
iterated to obtain an expansion of Σ in terms of G and W . If we start with the zeroth order
vertex Γ(1, 2; 3) = δ(1; 2+)δ(3; 2), we find

Σxc(1; 2) = iW (1; 2)G(1; 2) =
(12.48)
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12.5. Vertex function and Hedin equations 345

and

P (1; 2) = ±iG(1; 2)G(2; 1) =
(12.49)

This is the GW approximation already encountered in Section 10.7. Let us iterate further by
calculating the kernel from the GW self-energy and then a new vertex Γ from (12.45). We
have

±δΣxc(1; 3)

δG(4; 2)
= ±i δ(1; 4)δ(2; 3)W (1; 3)± iG(1; 3)

δW (1; 3)

δG(4; 2)
.

The last term can be evaluated from the 4th Hedin equation W = v + vPW . We have

δW

δG
= v

δP

δG
W + vP

δW

δG
.

This is a Dyson-like equation for δW/δG. We can expand δW/δG in “powers” of v by
iterations, i.e., by replacing the δW/δG in the last term of the r.h.s. with the whole r.h.s.. In
doing so we find the series

δW

δG
= v

δP

δG
W + vPv

δP

δG
W + vPvPv

δP

δG
W + . . . = (v + vPv + vPvPv + . . .)

δP

δG
W

= W
δP

δG
W.

From (12.49) it follows that

δP (5; 6)

δG(4; 2)
= ±iδ(4; 5)δ(2; 6)G(6; 5)± iδ(4; 6)δ(2; 5)G(5; 6),

and therefore

±δΣxc(1; 3)

δG(4; 2)
= ±i δ(1; 4)δ(2; 3)W (1; 3)

+ i2G(1; 3)W (1; 4)G(2; 4)W (2; 3) + i2G(1; 3)W (1; 2)G(2; 4)W (4; 3)

Inserting this kernel into the 5th Hedin equation we obtain the following diagrammatic
equation for the vertex:
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346 12. MBPT for the two-particle Green’s function

From this vertex we can then calculate a new self-energy, etc. This has actually been done
in the context of the Hubbard model in Ref. [100]. As for the coupled equations (12.39) and
(12.41), we are not aware of any proof that such an iterative scheme converges, nor that it
generates all possible skeleton diagrams for the self-energy.

In Appendix L we derive the Hedin equations using the so called source field method
introduced by Martin and Schwinger [47]. The source field method does not use any dia-
grammatic concepts and allows us to arrive at the Hedin equations in few steps. We should
emphasize, however, that the source field method does not tell us how to expand the var-
ious quantities Σ, P , Γ, etc. and hence does not have the same physical appeal as the
diagrammatic method discussed before. Furthermore, every time the source field method
generates an equation in which the Green’s function has to be calculated at equal times, the
most convenient way to resolve the ambiguity is to go back to the diagrammatic method.

Exercise 12.5. Prove (12.40).
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13

Applications of MBPT to

equilibrium problems

13.1 Lifetimes and quasi-particles

After the formal developments of the previous chapters it is time to use MBPT to solve some
concrete problems. In this chapter we study systems in equilibrium. Applications of MBPT
to time-dependent (or out-of-equilibrium) systems can be found in Chapter 16.

We start by deepening an aspect which was only mentioned in Section 6.1.3, i.e., the
existence of quasi-particles in interacting systems. What we saw there was that the matrix
elements G<

ij(t, t
′) vanish when |t− t′| → ∞ provided that the self-energy carries memory.

We explained this result with the absence of good single-particle quantum numbers: the
probability that after removing a particle in state i at time t and putting it back in state j
at time t′ we find the system unchanged should approach zero when |t− t′| → ∞. This is
the relaxation phenomenon illustrated in Fig. 6.2. The Hartree–Fock approximation cannot
account for relaxation e�ects since

Σ̂HF(z1, z2) = δ(z1, z2)qV̂HF(z1)

is local in time and hence does not carry memory. Accordingly, there exist single-particle
states [the Hartree–Fock eigenstates in (7.45)] with an infinitely long lifetime. An equivalent
way to express the same concept is through the spectral function. In the Hartree–Fock
approximation

Â(ω) = 2πδ(ω − ĥHF), (13.1)

and using the fluctuation–dissipation theorem (6.94)

G<
ij(t, t

′) = ∓i
∫
dω

2π
e−iω(t−t′)f(ω − µ) 2π 〈i|δ(ω − ĥHF)|j〉

= ∓i 〈i|f(ĥHF − µ)e−iĥHF(t−t′)|j〉.

If i = j is an eigenstate of ĥHF with eigenvalue ǫi then

G<
ii(t, t

′) = ∓i f(ǫi − µ)e−iǫi(t−t
′),

347
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348 13. Applications of MBPT to equilibrium problems

which does not decay when |t− t′| → ∞. The δ-like structure of the spectral function is the
signature of the absence of relaxation mechanisms. Therefore, going beyond the Hartree–
Fock approximation we expect that the spectral function become a smooth integrable func-
tion (of course for systems with infinitely many degrees of freedom). Indeed in this case

G<
ii(t, t

′) = ∓i
∫
dω

2π
e−iω(t−t′)f(ω − µ)〈i|Â(ω)|i〉 −−−−−−→

|t−t′|→∞
0, (13.2)

due to the Riemann–Lebesgue theorem.
These considerations prompt us to look for a transparent relation between the spectral

function and the self-energy. Let us write the Dyson equation for the retarded/advanced
Green’s function

ĜR/A
(ω) = ĜR/A

0 (ω) + ĜR/A

0 (ω)Σ̂
R/A

(ω)ĜR/A
(ω),

where [see (6.58) and (6.59)]

ĜR/A

0 (ω) =
1

ω − ĥ± iη
.

We split the self-energy Σ̂ = Σ̂HF+Σ̂ c into the Hartree–Fock self-energy and the correlation
self-energy. From (9.12) we know that Σ̂ c belongs to the Keldysh space and has no singular

part. Since Σ̂HF(z, z
′) = δ(z, z′)qV̂HF we have Σ̂

R/A
(ω) = qV̂HF + Σ̂

R/A

c (ω).1 Recalling

that the Hartree–Fock Hamiltonian is ĥHF = ĥ+ qV̂HF we then find

ĜR/A
(ω) =

1

ω − ĥHF − Σ̂
R/A

c (ω)± iη
.

A remark on the infinitesimal constant η appearing in the denominator is in order. If the

imaginary part of Σ̂
R

c (ω) = [Σ̂
A

c (ω)]
† is nonzero we can safely discard η. However, if

Im[Σ̂
R

c (ω)] = 0 for some ω then η must absolutely be present for otherwise the Green’s
function does not have the correct analytic properties. Having said that, from now on
we incorporate this infinitesimal constant into the retarded/advanced correlation self-energy.
From the definition (6.89) of the spectral function we have

Â(ω) = i
[
ĜR(ω)− ĜA(ω)

]
= iĜR(ω)

[

1

ĜA(ω)
− 1

ĜR(ω)

]

ĜA(ω)

= iĜR(ω)
[

Σ̂
R

c (ω)− Σ̂
A

c (ω)
]

ĜA(ω).

The di�erence between the retarded and advanced correlation self-energy is the same as the

di�erence Σ̂
R
(ω)− Σ̂

A
(ω) since the Hartree–Fock part cancels. Then, taking into account

the definition (9.55) of the rate operator we can write the following exact relation for systems
in equilibrium

Â(ω) = ĜR(ω)Γ̂ (ω)ĜA(ω) = 1

ω − ĥHF − Σ̂
R

c (ω)
Γ̂ (ω)

1

ω − ĥHF − Σ̂
A

c (ω)
(13.3)

1In equilibrium the Hartree–Fock potential does not depend on time and is equal to V̂M
HF.
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13.1. Lifetimes and quasi-particles 349

This is just the relation between the spectral function and the self-energy that we were
looking for. In fermionic systems the spectral function operator is positive semidefinite
(all eigenvalues are non-negative, see Exercise 6.10) and therefore also the rate operator is
positive semidefinite, see Exercise 13.1.

Let us see how to recover the Hartree–Fock result. In this case Σ̂
R/A

c (ω) = ∓iη and
hence the rate operator is Γ̂ (ω) = 2η. Inserting these values into (13.3)

Â(ω) = 2
η

(ω − ĥHF)2 + η2
−−−→
η→0

2π δ(ω − ĥHF),

which correctly agrees with (13.1). From the fluctuation–dissipation theorem for G and Σ we
also see that (13.3) implies

Ĝ≶(ω) = ĜR(ω)Σ̂≶
(ω)ĜA(ω).

As anticipated in Section 9.7, in equilibrium systems (9.70) is an exact relation valid for all
times t and t′.

From (13.3) it is clear that for Â(ω) to be nonsingular, Γ̂ (ω) has to be finite. We can
provide a justification of the name “rate operator” for Γ̂ by estimating how fast G<

ij(t, t
′)

decays with |t − t′|. We write the self-energy Σ̂
R/A

c as the sum of a Hermitian operator Λ̂
and an anti-Hermitian operator ∓ i

2 Γ̂ [compare with the embedding self-energy in (7.27)],

Σ̂
R/A

c (ω) = Λ̂(ω)∓ i

2
Γ̂ (ω).

The relation (9.57) implies that Λ̂ is the Hilbert transform of Γ̂

Λ̂(ω) = P

∫
dω′

2π

Γ̂ (ω′)

ω − ω′ . (13.4)

Now consider a system invariant under translations, like the electron gas. In the absence of
magnetic fields the momentum–spin kets are eigenkets of ĥHF with the same eigenvalue for
spin up and down:

ĥHF|pσ〉 = ǫp|pσ〉
(

in the electron gas: ǫp =
p2

2
− V0 +ΣHF(p)

)

.

Furthermore, the matrix elements of Γ̂ in the momentum–spin basis are nonvanishing only
along the diagonal

〈pσ|Γ̂ (ω)|p′σ′〉 = (2π)3 δσσ′δ(p− p′)Γ(p, ω),

and, of course, the same holds true for Λ̂ and Â. Denoting by Λ(p, ω) and A(p, ω) the
corresponding diagonal matrix elements (13.3) gives

A(p, ω) =
Γ(p, ω)

(ω − ǫp − Λ(p, ω))
2
+
(

Γ(p,ω)
2

)2 . (13.5)
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350 13. Applications of MBPT to equilibrium problems

We use this result to calculate the matrix elements of G< in the momentum–spin basis

G<
pσ p′σ′(t, t′) = (2π)3δσσ′δ(p− p′)G<(p, t− t′).

From (13.2) we have

G<(p, t− t′) = ∓i
∫
dω

2π
e−iω(t−t′)f(ω − µ)A(p, ω). (13.6)

To estimate this integral we define the so called quasi-particle energy Ep to be the solution
of ω − ǫp − Λ(p, ω) = 0. To first order in (ω − Ep) we can write

ω − ǫp − Λ(p, ω) =

(

1− ∂Λ

∂ω

)

ω=Ep

(ω − Ep).

If the function Γ(p, ω) is small for ω ∼ Ep and slowly varying in ω then the main contribu-
tion to the integral (13.6) comes from a region around Ep. In this case we can approximate
f(ω − µ) with f(Ep − µ) and

A(p, ω) ∼ Zp

1/τp
(ω − Ep)2 + (1/2τp)2

, (13.7)

where

Zp =
1

1− ∂Λ
∂ω

∣
∣
ω=Ep

, (13.8)

and
1

τp
= Zp Γ(p, Ep).

With these approximations (13.6) for t > t′ yields

G<(p, t− t′) = ∓iZpf(Ep − µ)e−iEp(t−t′)e−(t−t
′)/(2τp).

The probability of finding the system unchanged is the modulus square of the above quantity
and decays as e−(t−t

′)/τp . Thus τ−1p is the decay rate of a removed particle with momentum
p. In a similar way one can prove that τ−1p is also the decay rate of an added particle with

momentum p. This provides a justification of the name “rate operator” for Γ̂ . Interestingly
τ−1p is also the width of the peak of the spectral function (13.7). We then conclude that the
lifetime of a single-particle excitation can be estimated from the width of the corresponding
peak in the spectral function. The smaller is the width τ−1p , the longer is the life-time and
the more particle-like is the behavior of the excitation. This is the reason for calling quasi-
particles those excitations with a long lifetime. We stress that this interpretation makes
sense only if Γ(p, ω) is small for ω ∼ Ep.

In a zero-temperature fermionic system, Σ̂
>
(ω) vanishes below the chemical potential

while Σ̂
<
(ω) vanishes above the chemical potential, see (9.56). Assuming that Σ̂

>
(ω) and
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13.1. Lifetimes and quasi-particles 351

Σ̂
<
(ω) are continuous functions,2 we infer that Γ̂ (µ) = 0. We know from the Luttinger–

Ward theorem that Ep → µ for |p| → pF. Thus (13.7) becomes a δ-function with strength
Z = lim|p|→pF

Zp centered at ω = µ for |p| = pF. The strength Z varies in the range

0 < Z ≤ 1,

since from the Hilbert transform relation (13.4)

∂Λ(p, ω)

∂ω

∣
∣
∣
∣
ω=µ

= −
∫
dω′

2π

Γ(p, ω′)

(µ− ω′)2 < 0, (13.9)

where we take into account that the rate function Γ(p, ω′) is non-negative, see observation
below (13.3), and vanishes quadratically as ω′ → µ (this will be proved in Section 13.3). As
the exact spectral function integrates to unity, see (6.92), this δ-function is superimposed
on a continuous function which integrates to 1 − Z . Physically this means that a particle
injected or removed with momentum |p| = pF generates (with probability Z) an infinitely
long-living excitation with energy µ plus other excitations with di�erent energies. In the
noninteracting case Z = 1 and therefore we can interpret Z as the renormalization of the
square of the single-particle wavefunction due to interactions. More generally we refer to
Zp as the quasi-particle renormalization factor. From the viewpoint of a photoemission
experiment (see Section 6.3.4) the spectral function A(p, ω) gives the probability that when
a momentum p is transferred to the electron gas the system will have changed its energy by
ω. For |p| values close to pF this energy transfer is most likely equal to Ep and the energy
of the ejected electron is then most likely to be ǫ = ω0 −Ep where ω0 is the energy of the
photon. In this way the quasi-particle energies can be measured experimentally in metals
and experiments have indeed confirmed the quasi-particle picture. As we see in Chapter 15,
the addition/removal of a particle with momentum p away from the Fermi momentum pF
has large probability of exciting particle–hole pairs as well as collective modes known as
plasmons. These excitations introduce an uncertainty in the energy of the particle: the
peak of the spectral function in ω = Ep is broadened by an amount τ−1p (mainly due to
particle–hole excitations), and other prominent features appear in di�erent spectral regions
(mainly due to plasmons).

One more observation is about Λ̂. While the imaginary part of Σ̂
R

c gives the width of

the spectral peak the real part of Σ̂
R

c gives the energy shift in the position of this peak.
Therefore the quantity Λ̂ can be interpreted as the correction to the Hartree–Fock single-

particle energy due to collisions with other particles. The real and imaginary parts of Σ̂
R

c are
not independent but related through a Hilbert transformation, see (13.4). This is a general
aspect of all many-body quantities of equilibrium systems and follows directly from the
definition of retarded/advanced functions: real and imaginary parts of the Fourier transform
of the retarded Green’s function, self-energy, polarization, screened interaction, etc. are all
related through a Hilbert transformation.3

2This is true provided that MBPT does not break down, see Section 13.3. An example of a system for which
MBPT breaks down is a superconductor. In this case the MBPT expansion has to be done using a Green’s function
di�erent from the noninteracting Green’s function G0. Typically the break-down of MBPT using G0 as a starting
point signals that the interacting system is very di�erent from the noninteracting one, e.g, the symmetry of the
ground state is di�erent.

3And, of course, the same is true for the advanced quantities.
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Exercise 13.1. The spectral function operator (13.3) has the structure Â = Ĝ Γ̂ Ĝ† with

Ĝ = ĜR. Therefore Γ̂ = (1/Ĝ) Â (1/Ĝ†). Show that if Â is positive semidefinite then

〈i|Γ̂ |i〉 ≥ 0 for all quantum numbers i and therefore also Γ̂ is positive semidefinite.

13.2 Fluctuation–dissipation theorem for P and W

Like the self-energy, the polarizability and the screened interaction also fulfill a fluctuation–
dissipation theorem. Let us first consider the polarizability. Every diagram for P (1; 2) starts
with a couple of Green’s functions G(x1, z1; . . .)G(. . . ;x1, z1) and ends with a couple of
Green’s functions G(. . . ;x2, z2)G(x2, z2; . . .). Introducing the operator (in first quantiza-
tion) P̂(z1, z2) with matrix elements

〈x1|P̂(z1, z2)|x2〉 = P (1; 2),

the identities (9.50) and (9.51) imply that

P̂⌈(τ, t′) = P̂>
(t0 − iτ, t′), P̂⌉(t, τ ′) = P̂<

(t, t0 − iτ ′),

and

P̂M
(τ, τ ′) =

{

P̂>
(t0 − iτ, t0 − iτ ′) τ > τ ′

P̂<
(t0 − iτ, t0 − iτ ′) τ < τ ′

.

To derive a fluctuation–dissipation theorem for P we need the boundary conditions. The
polarizability P (1; 2) contains two Green’s functions with argument 1 and two Green’s
functions with argument 2. Since the Green’s function satisfies the KMS relations (5.6) the
polarizability satisfies the KMS relations below

P̂(z1, t0−) = P̂(z1, t0 − iβ), P̂(t0−, z2) = P̂(t0 − iβ, z2).

Therefore we can write

P̂<
(t0, t

′) = P̂(t0−, t′+)
= P̂(t0 − iβ, t′+)

= P̂⌈(β, t′)
= P̂>

(t0 − iβ, t′).

Fourier transforming both sides of this equation we find the important relation

P̂>
(ω) = eβωP̂<

(ω).

Then the fluctuation–dissipation theorem for the polarizability reads

Π̂ (ω) ≡ i[P̂>
(ω)− P̂<

(ω)] ⇒







P̂<
(ω) = −if(ω)Π̂ (ω)

P̂>
(ω) = −if̄(ω)Π̂ (ω)

(13.10)
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13.2. Fluctuation–dissipation theorem for P and W 353

where f(ω) = 1/(eβω − 1) is the Bose function and f̄(ω) = 1 + f(ω). Clearly the
density response function χ fullfils the same fluctuation–dissipation theorem as P , since
the topology of a χ-diagram is the same as the topology of a P -diagram. In Section 15.2 we
give an alternative proof of the fluctuation–dissipation theorem for χ based on the Lehmann
representation of this quantity.

The derivation of the fluctuation–dissipation theorem for W goes along the same lines.
Let us write W in terms of χ according to W = v + vχv, see (11.45). Since the interaction
has only a singular part we have vR = vA = v and v≶ = 0. Therefore the lesser and greater
screened interaction is simply W≶ = vχ≶v and similarly W ⌈ = vχ⌈v and W ⌉ = vχ⌉v.
The interaction v acts like a simple multiplicative factor for the time variable4 and W
fulfills the same relations as χ, which are identical to the relations for P . Therefore,
introducing the operator (in first quantization) Ŵ(z1, z2) with matrix elements

〈x1|Ŵ(z1, z2)|x2〉 =W (1; 2)

we can write

Ŵ>
(ω) = eβωŴ<

(ω).

The fluctuation–dissipation theorem for W reads

Ω̂(ω) ≡ i[Ŵ>
(ω)− Ŵ<

(ω)] ⇒







Ŵ<
(ω) = −if(ω)Ω̂(ω)

Ŵ>
(ω) = −if̄(ω)Ω̂(ω)

(13.11)

with f the Bose function.
The fluctuation–dissipation theorem for P andW can be used to recover the equilibrium

solution from the Dyson equation W = v + vPW , similarly to how we recovered the
equilibrium solution from the Kadano�–Baym equations in Section 9.6. Let us be more
precise. We define the operator (in first quantization) of the bare interaction v̂(z1, z2) =
δ(z1, z2)v̂ with matrix elements

〈x1|v̂(z1, z2)|x2〉 = δ(z1, z2)v(x1,x2).

Then the lesser/greater component of the Dyson equation W = v + vPW can be written
as

Ŵ≶
(t, t′) = v̂

[

P̂≶ · ŴA
+ P̂R · Ŵ≶

+ P̂⌉ · Ŵ⌈
]

(t, t′). (13.12)

For systems in equilibrium the l.h.s. depends only on the time di�erence. However, it is
not obvious that this is true also for the r.h.s. since the time convolutions are either from
t0 to ∞ or from 0 to β. In order to prove that the r.h.s. depends only on t − t′ and is
independent of the initial time t0 we must use the fluctuation–dissipation theorem as well
as the fact that real and imaginary parts of the retarded/advanced P and δW =W − v are
related by a Hilbert transformation (here δW is the regular part of the screened interaction).

4This is not true for the space variable since vχv involves two space convolutions.
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354 13. Applications of MBPT to equilibrium problems

The mathematical steps are identical to those of Section 9.6 and here we write only the
(expected) final result

[

P̂≶ · δŴA
+ P̂R · δŴ≶

+ P̂⌉ · δŴ⌈
]

(t, t′)

=

∫
dω

2π
e−iω(t−t′)

[

P̂≶
(ω)δŴA

(ω) + P̂R
(ω)δŴ≶

(ω)
]

. (13.13)

More generally, it is always true that:

If the system is in thermodynamic equilibrium then we can simplify the Langreth
rules of Table 5.1 by taking t0 → −∞ and discarding the vertical track. In this way
real-time convolutions become simple products in frequency space.

We have explicitly proved this result for the convolution of the self-energy with the Green’s
function, see Section 9.6. With the same kinds of manipulation one can show that the above
statement is true for all convolutions appearing in MBPT.

Exercise 13.2. Prove (13.13).

13.3 Correlations in the second-Born

approximation

The simplest approximation that includes the e�ects of particle collisions is the second-Born
approximation (12.7) which we rewrite below

(13.14)

The first term on the r.h.s. is the two-particle Green’s function in the Hartree–Fock ap-
proximation. The second term describes the scattering process of two particles added to
the system in 1′ and 2′, propagating to 1̄ and 2̄, interacting, and then continuing their
propagation to 1 and 2, where they are removed. The third term contains the same physical
information; it simply accounts for the correct (anti)symmetry property (exchange diagram)
of G2. The inclusion of these scattering processes in (12.8) leads to the self-energy in (10.17),
i.e.,

(13.15)
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13.3. Correlations in the second-Born approximation 355

In the second term on the r.h.s. we recognize the process previously described. A particle
coming from somewhere reaches 1̄ and interacts with a particle coming from 2′ in 2̄. After
the interaction the first particle propagates to 1 and the second particle propagates to
2 = 2′. The third term in (13.15) stems from the exchange diagram in (13.14). Later we give
to these self-energy diagrams an equivalent but more appealing physical interpretation in
terms of polarization e�ects. Before, however, it is instructive to work out the explicit form
of the second-Born self-energy and calculate the rate operator [68].

Using the Feynman rules of Section 10.8 the self-energy (13.15) for particles of spin S
reads

Σc(1; 1̄) = ± i2
∫

d2d2̄ v(1; 2)v(1̄; 2̄)
[
G(1; 1̄)G(2; 2̄)G(2̄; 2)±G(1; 2̄)G(2̄; 2)G(2; 1̄)

]

= ± i2δσ1σ̄1

∫

dr2dr̄2 v(r1, r2)v(r̄1, r̄2)

×
[
(2S + 1)G(r1, z1; r̄1, z̄1)G(r2, z1; r̄2, z̄1)G(r̄2, z̄1; r2, z1)

±G(r1, z1; r̄2, z̄1)G(r̄2, z̄1; r2, z1)G(r2, z1; r̄1, z̄1)
]
, (13.16)

where in the last equality we have integrated over times and summed over spin assuming
that v(1; 2) = δ(z1, z2)v(r1, r2) is spin-independent and that G(1; 2) = δσ1σ2

G(r1, z1;
r2, z2) is spin-diagonal. The interpretation of (13.16) is particularly transparent in a system
invariant under translations, like the electron gas. In this case all quantities depend only on
the relative coordinate and therefore can be Fourier transformed according to

G(1; 2) = δσ1σ2

∫
dp

(2π)3
eip·(r1−r2)G(p; z1, z2), (13.17)

Σc(1; 2) = δσ1σ2

∫
dp

(2π)3
eip·(r1−r2)Σc(p; z1, z2). (13.18)

It is a matter of simple algebra to show that in Fourier space (13.16) reads

Σc(p; z1, z̄1) = ±i2
∫

dp′

(2π)3
dp̄

(2π)3
dp̄′

(2π)3
(2π)3δ(p+ p′ − p̄− p̄′)B(p, p̄, p̄′)

×G(p′; z̄1, z1)G(p̄; z1, z̄1)G(p̄′; z1, z̄1), (13.19)

with B a quantity proportional to the di�erential cross-section for the scattering p,p′ →
p̄, p̄′ in the Born approximation (see Appendix M):

B(p, p̄, p̄′) = B(p, p̄′, p̄) =
2S + 1

2

[
ṽ2p−p̄ + ṽ2p−p̄′

]
± ṽp−p̄ṽp−p̄′ . (13.20)

As usual, in this formula ṽp is the Fourier transform of the interaction. From (13.19) we can
easily extract the greater and lesser components of Σc. Going to frequency space we get

Σ≷
c (p, ω) = ±i2

∫
dp′dω′

(2π)4
dp̄dω̄

(2π)4
dp̄′dω̄′

(2π)4
(2π)4δ(p+ p′ − p̄− p̄′)δ(ω + ω′ − ω̄ − ω̄′)

×B(p, p̄, p̄′)G≶(p′, ω′)G≷(p̄, ω̄)G≷(p̄′, ω̄′). (13.21)
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356 13. Applications of MBPT to equilibrium problems

This formula has a transparent physical interpretation in terms of the scattering processes
illustrated in (13.14). In Section 13.1 we learned that the rate Γ(p, ω) = i[Σ>

c (p, ω)−Σ<
c (p, ω)]

is a measure of the lifetime of quasi-particles with momentum p and energy ω. We could
interpret Σ>

c as the decay rate of an added particle and Σ<
c as the decay rate of a removed

particle (hole). In fact Σ>
c describes a process in which a particle with momentum-energy

p, ω hits a particle with momentum-energy p′, ω′ and after the scattering one particle goes
into the state p̄, ω̄ and the other goes into the state p̄′, ω̄′. The two δ-functions guarantee
the conservation of momentum and energy. In Appendix M we show that the di�erential
cross-section for this process is proportional to B to lowest order in the interaction, i.e.,
in the Born approximation. It is also intuitive to understand the appearance of the product
of three Gs. The probability of scattering o� a particle with momentum-energy p′, ω′ is
given by the density of particles with this momentum-energy, i.e., f(ω′ − µ)A(p′, ω′) =
±iG<(p′, ω′). The probability that after the scattering the particles end up in the states p̄, ω̄
and p̄′, ω̄′ is given by the density of holes (available states) f̄(ω̄ − µ)A(p̄, ω̄) = iG>(p̄, ω̄)
and f̄(ω̄′ − µ)A(p̄′, ω̄′) = iG>(p̄′, ω̄′). In a similar way we can discuss Σ<

c . In the low-
density limit βµ → −∞ and from (9.54) we see that the rate Σ<

c to scatter into the state
p, ω is negligible compared to the rate Σ>

c to scatter out of the same state. On the contrary,
at low temperatures the two rates are equally important.

Let us estimate Σ
≶
c (p, ω) at zero temperature for frequencies ω ∼ µ in a system of

fermions. We assume that the integral over all momenta of the product of δ(p+p′−p̄−p̄′),
the di�erential cross-section B and the three spectral functions A(p′, ω′), A(p̄, ω̄), A(p̄′, ω̄′)
is a smooth function Fp(ω

′, ω̄, ω̄′) of the frequencies ω′, ω̄, and ω̄′. This can rigorously
be proven when A(p, ω) = 2πδ(ω − p2/2) is the noninteracting spectral function and the
number of spatial dimensions is larger than one. At zero temperature the Fermi function
f(ω − µ) = θ(µ− ω) and f̄(ω − µ) = 1− θ(µ− ω) = θ(ω − µ) and therefore from (13.21)
we have

Σ>
c (p, ω) =

∫
dω′

2π

dω̄

2π

dω̄′

2π
Fp(ω

′, ω̄, ω̄′)θ(µ− ω′)θ(ω̄ − µ)θ(ω̄′ − µ)δ(ω + ω′ − ω̄ − ω̄′).
(13.22)

Because of the θs the frequency ω′ < µ and ω̄ > µ, ω̄′ > µ. Since ω̄ + ω̄′ > ω′ + µ the
frequency ω must be larger than µ for otherwise the argument of the δ-function cannot
vanish. This agrees with the fluctuation–dissipation theorem for the self-energy according to
which Σ>

c (p, ω) ∝ 1−θ(µ−ω) = θ(ω−µ). For ω > µ but very close to it the argument of
the δ-function vanishes only in a region where ω′, ω̄, and ω̄′ are very close to µ. Denoting
by u = ω − µ > 0 the distance of the frequency ω from the chemical potential we can
rewrite (13.22) as

Σ>
c (p, ω) =

∫ µ

µ−u

dω′

2π

∫ µ+u

µ

dω̄

2π

∫ µ+u

µ

dω̄′

2π
Fp(ω

′, ω̄, ω̄′)δ(ω + ω′ − ω̄ − ω̄′)

∼ Fp(µ, µ, µ)

u

∫ 0

−u

du′

2π

∫ u

0

dū

2π

∫ u

0

dū′

2π
δ(1 +

u′ − ū− ū′
u

), (13.23)

where in the last equality we approximate F with its value at the three frequencies equal to
µ since F is smooth. Changing the integration variables u′/u = x, ū/u = x̄, and ū′/u = x̄′
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13.3. Correlations in the second-Born approximation 357

we get a factor u3 from du′dūdū′ and an integral which is independent of u. Thus we
conclude that for ω very close to µ

Σ>
c (p, ω) = −iCp θ(ω − µ) (ω − µ)2,

where Cp is a real constant. In a similar way we can derive that Σ<
c (p, ω) = iCp θ(µ −

ω) (ω − µ)2. Therefore the rate operator

Γ(p, ω) = Cp (ω − µ)2 (13.24)

vanishes quadratically as ω → µ for all p. This result is due to Luttinger [101] who also
showed that self-energy diagrams with three or more interaction lines give contributions to

the rates Σ
≶
c that vanish even faster as ω → µ. In particular these contributions vanish

as (ω − µ)2m where m are integers larger than 1. Consequently (13.24) provides the exact
leading term of the Taylor expansion of Γ(p, ω) in powers of (ω − µ). The constant of
proportionality

Cp = lim
ω→µ

Γ(p, ω)

(ω − µ)2 > 0,

since in a fermionic system Γ is positive. From this result we can understand why the
low-energy excitations of metals can be described in an e�ective single-particle picture.
Although the Coulomb interaction is strong it is very ine�ective in scattering particles close
to the Fermi surface due to phase space restrictions. This explains many of the low-energy
excitations of the electron gas. Needless to say, this is not true anymore at higher energies.
Moreover the calculation of the details of the properties of the low energy spectrum (such as

life-times) is still very much a many-body problem. In Section 15.5.4 we calculate Σ
≶
c (p, ω)

explicitly as well as the rate function Γ(p, ω), the constant Cp, the life-time τp, etc. within
the GW approximation.

In the same paper Luttinger observed (in a seminal footnote) that the above phase-space
argument needs to be modified in one dimension. We can understand his observation by
using the noninteracting spectral function A(p, ω) = 2πδ(ω − p2/2). In this case the
δ-function of momentum conservation appearing in (13.21) is su�cient to determine the
energy, say, ω̄′ = p̄′2/2 in terms of ω′ = p′2/2 and ω̄ = p̄2/2, and hence we can no longer
treat ω̄′ as an independent variable. In other words the function Fp(ω

′, ω̄, ω̄′) is no longer
smooth but rather it is proportional to a δ-function. As a consequence (13.23) contains one
integral less and Γ(p, ω) ∝ |ω − µ|. This fact has profound consequences on the nature
of the interacting gas. For instance, the sharpness of the Fermi surface (discontinuity in
the momentum distribution) requires that Γ(p, ω) vanishes faster than |ω − µ| as ω → µ,
see Appendix K. In fact, in one dimension there is no Fermi surface and the interacting
electron gas is said to be a Luttinger liquid. The interested reader should consult Ref. [102]
for a detailed discussion on the properties of Luttinger liquids.

13.3.1 Polarization e�ects

In this section we discuss an equivalent physical interpretation of the second-Born self-
energy. The first diagram in (13.15) suggests that a particle in 1̄ hits a particle in 2̄ which, as
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358 13. Applications of MBPT to equilibrium problems

a consequence, moves away from its original position leaving a hole behind it. A particle–
hole pair is formed in 2̄ and propagates until 2 at which space–spin–time point it recombines
and disappears. We can say that the particle in 1̄ polarizes the medium by pushing other
particles away from it, i.e., by creating particle–hole pairs around it. The name “polarization
diagram” commonly used for the bubble diagram in (13.15) is related to this e�ect. In fact, the
bubble can be seen as the propagator of a particle–hole pair. The inclusion of polarization
e�ects in Σ is, in general, relevant in systems with low-energy particle–hole excitations like
open-shell molecules or metals. Below we show the importance of including the second-
Born polarization diagram in the calculation of the spectral function of the system discussed
in Section 6.3.4.

We rewrite the Hamiltonian (6.97) in a form suitable for MBPT:

Ĥ = T
N−1∑

j=1

(d̂†j d̂j+1 + d̂†j+1d̂j)− UN̂r

︸ ︷︷ ︸

Ĥ′
met

+
∑

α=H,L

(ǫα − UN̄r)c
†
αcα

︸ ︷︷ ︸

Ĥ′
mol

+U
∑

α=H,L
j≤r

ĉ†αd̂
†
j d̂j ĉα.

(13.25)
The constant part UN̄r has been neglected since the Green’s function is not a�ected by a
constant shift of all eigenvalues of Ĥ . The goal is to calculate Σ → G → A in di�erent
approximations and to assess the quality of these approximations by benchmarking the
results against the exact spectral function calculated in Section 6.3.3.

The first important observation is that the Green’s function (no matter in which ap-
proximation) is block diagonal, i.e., Gαj = Gjα = 0 and Gαα′ = 0 if α 6= α′, since the
occupation operator of the HOMO and LUMO states commutes with the Hamiltonian (the
number of electrons in these states is a conserved quantity). From the Dyson equation we
then infer that also the self-energy is block diagonal. The second observation pertains to the
specific form of the interaction. Except for the Hartree–Fock diagrams, all other diagrams
for the metallic self-energy Σjj′ have the form

where α = H,L and the square grid is the reducible kernel Kr , see (12.39) and (12.40). If an
electron is in α then we can only destroy it, while if it is not in α then we can only create
it. In other words we cannot generate a particle–hole excitation in α because n̂α = ĉ†αĉα is
conserved. This implies that all diagrams for Σjj′ beyond the Hartree–Fock approximation
vanish. It is easy to realize that the Fock diagram also vanishes since there is no interaction
line connecting j to j′. As the only surviving diagram is the Hartree diagram we can write
(for electrons the charge q = −1) Σjj′(z, z

′) = −δjj′δ(z, z′)VH,j(z) with VH,j(z) = 0 for
j > r and

VH,j(z) = iU
∑

α

Gαα(z, z
+) = −U,
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13.3. Correlations in the second-Born approximation 359

for j ≤ r. In the last equality we use the fact that the density −iGαα(z, z
+) on level α

is unity for the HOMO and zero for the LUMO, independently of the approximation. We
conclude that Gjj′ is the Hartree Green’s function with Hartree Hamiltonian

ĥ′met,H = T

N−1∑

j=1

(
|j〉〈j + 1|+ |j + 1〉〈j| )−

∑

j≤r
(
�

�
�

��U + VH,j)|j〉〈j|.

= ĥmet.

This Hamiltonian can easily be diagonalized to construct Gjj′ using the formulas of Section
6.2.

An alternative way to understand that the metallic Green’s function coincides with that of the

isolated noninteracting metal is through the Lehmann representation of Section 6.3.3. The Green’s

function is completely determined by the knowledge of the eigenstates and eigenvalues of the system

with one particle more and with one particle less. Since the number of particles in the molecule is

conserved the only eigenstates contributing to Gjj′ are those with one particle more or less in the

metal. These eigenstates are independent of U since Nmol = 1 and hence the interaction Hamiltonian

(6.96) is zero in this eigenspace.

Next we consider the molecular Green’s function. We start with Gαα in the Hartree–
Fock approximation. Also in this case the Fock self-energy diagram vanishes since there
is no interaction line connecting α to itself. The Hartree self-energy reads Σαα′(z, z′) =
−δαα′δ(z, z′)VH,α(z) with

VH,α(z) = iU
∑

j≤r
Gjj(z, z

+) = −UN̄r.

This Hartree potential cancels exactly the shift UN̄r in (13.25) and the spectral function turns
out to be independent of the interaction

Aαα(ω) = 2πδ(ω − ǫα). (13.26)

In Fig. 13.1 we compare the Hartree–Fock spectral function of the molecule Amol = AHH +
ALL with the exact spectral function for a chain of N = 15 sites with M = 5 electrons,
ǫL − ǫH = 2 and di�erent values of U (all energies are measured in units of |T |). The
exact HOMO–LUMO gap reduces as U increases due to the image-charge e�ect discussed
in Section 6.3.3. The Hartree–Fock approximation is not able to capture this e�ect since
the HOMO electron couples directly to the metallic density. The formation of an image
charge is caused by the excitation of particle–hole pairs and these excitations are simply not
accounted for in a mean field approximation [60–62].

To include polarization e�ects to some degree we evaluate the Green’s function in the
second-Born approximation. Let us start by calculating the self-energy using the Hartree–
Fock Green’s function (non-self-consistent approximation). As we shall see this is already
enough to observe the tendency of the HOMO (LUMO) peak to move rightward (leftward).
The exchange diagram in (13.15) vanishes since G is block diagonal and the interaction
connects only sites in di�erent blocks (this remains true for all approximations to G). Thus
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360 13. Applications of MBPT to equilibrium problems

Figure 13.1 Spectral function of the molecule in the Hartree–Fock and in the non-self-
consistent (non-SC) second-Born approximation compared with the exact spectral function
as obtained from (6.101) and (6.102). The chain has N = 15 sites and M = 5 electrons
(M/N = 3), the bare HOMO–LUMO gap is ǫL − ǫH = 2 and the infinitesimally small
positive constant η = 0.04. All energies are in units of |T |.

we need only to calculate the bubble diagram. From (13.16) we have

Σ>
c,αα(ω) = −i2U2

∑

jj′≤r

∫
dω1

2π

dω2

2π
G>

αα(ω − ω1 + ω2)G
>
jj′(ω1)G

<
j′j(ω2), (13.27)

Σ<
c,αα(ω) = −i2U2

∑

jj′≤r

∫
dω1

2π

dω2

2π
G<

αα(ω − ω1 + ω2)G
<
jj′(ω1)G

>
j′j(ω2). (13.28)

The greater/lesser Hartree–Fock G of the molecule can be obtained using the fluctuation–
dissipation theorem (6.94) with spectral function (13.26). The Fermi function f(ω−µ) is zero
for ω = ǫL and one for ω = ǫH and hence

G>
HH(ω) = 0, G<

HH(ω) = 2πiδ(ω − ǫH),

G<
LL(ω) = 0, G>

LL(ω) = −2πiδ(ω − ǫL),
from which it follows that Σ>

c,HH = Σ<
c,LL = 0. The greater/lesser G of the metal has the

form (6.48) and (6.49). Using the eigenstates |λ〉 of ĥmet with eigenvalues ǫλ and taking into
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13.3. Correlations in the second-Born approximation 361

account that we are at zero temperature

G<
jj′(ω) = 2πi

occ∑

λ

〈j|λ〉〈λ|j′〉 δ(ω − ǫλ), G>
jj′(ω) = −2πi

unocc∑

λ

〈j|λ〉〈λ|j′〉 δ(ω − ǫλ),

where the sum in G< runs over the M occupied eigenstates (M = number of electrons
in the metal) and the sum in G> runs over the N −M unoccupied states. Inserting these
Green’s functions into the self-energies we find

Σ<
c,HH(ω) = 2πiU2

∑

jj′≤r

occ∑

λ

unocc∑

µ

〈j|µ〉〈µ|j′〉〈j′|λ〉〈λ|j〉 δ(ω + ǫµ − ǫλ − ǫH),

Σ>
c,LL(ω) = −2πiU2

∑

jj′≤r

occ∑

λ

unocc∑

µ

〈j|λ〉〈λ|j′〉〈j′|µ〉〈µ|j〉 δ(ω + ǫλ − ǫµ − ǫL).

Having the correlation self-energy we can construct the rates

ΓHH = i[Σ>
c,HH − Σ<

c,HH ] = −iΣ<
c,HH ,

ΓLL = i[Σ>
c,LL − Σ<

c,LL] = iΣ>
c,LL ,

from which to extract Σ
R/A
c using (9.57)

Σ
R/A
c,HH(ω) =

∫
dω′

2π

ΓHH(ω′)

ω − ω′ ± iη
= U2

∑

jj′≤r

occ∑

λ

unocc∑

µ

〈j|µ〉〈µ|j′〉〈j′|λ〉〈λ|j〉
ω + ǫµ − ǫλ − ǫH ± iη

,

Σ
R/A
c,LL(ω) =

∫
dω′

2π

ΓLL(ω
′)

ω − ω′ ± iη
= U2

∑

jj′≤r

occ∑

λ

unocc∑

µ

〈j|λ〉〈λ|j′〉〈j′|µ〉〈µ|j〉
ω + ǫλ − ǫµ − ǫL ± iη

.

We now have all ingredients to calculate the spectral function in the non-self-consistent
second-Born approximation, see (13.3),

Aαα(ω) =
Γαα(ω)

|ω − ǫα − ΣR
αα(ω)|2

.

In Fig. 13.1 we show this spectral function with a dot-dashed curve. As anticipated, the e�ect
of the polarization diagram is to close the gap between the HOMO and the LUMO levels.

For a self-consistent treatment of the second-Born approximation we should use the
above Σ to calculate a new G, plug this G into (13.27) and (13.28) to get a new Σ and so
on and so forth until convergence. At every iteration the number of δ-peaks in the spectral
function increases and at self-consistency we end up with a smooth function of ω.5 Thus
the self-consistent spectral function has broadened peaks while the exact spectral function
has δ-peaks. This is a feature of every approximate self-consistent Σ and is due to a lack of
cancellations [103]. As discussed in Chapter 10 an approximate skeletonic self-energy Σ[G]

5The curves in Fig. 13.1 have been artificially broadened using a finite η.
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362 13. Applications of MBPT to equilibrium problems

contains an infinite subset of diagrams and to high order in the interaction these diagrams
contain a large number of particle–hole excitations. The finite width of the peaks in an
approximate self-consistent spectral function is caused by the infinite number of particle–
hole excitations with which the added/removed particle is coupled, see Section 6.1.1. In finite
systems, however, the number of particle–hole excitations is finite since it is not possible
to excite more electrons than those present in the ground state. To cancel the nonphysical
excitations of an approximate treatment one has to include diagrams not present in the
original subset of diagrams. The exact result is recovered only when all diagrams are
included. In accordance with our discussion in Section 13.1, the spurious broadening of a
self-consistent approximation is also responsible for a spurious damping in the time domain
[103].6 These facts are conceptually important since they elucidate some aspects of self-
consistency in Green’s function theory. It should be stressed, however, that there is not such
a self-consistency problem in bulk systems (where the number of particle–hole excitations
is infinite) and that the spurious broadening/damping is appreciable only in very small and
strongly interacting systems.

Exercise 13.3. Show that the exact self-energy Σαα with α = H,L is the sum of diagrams

containing one single metallic bubble connected in all possible ways to a Gαα-line by an

arbitrary number of interaction lines.

13.4 Ground-state energy and correlation energy

Let us consider a system of identical and interacting particles in equilibrium at a given
temperature and chemical potential. In this section we derive a formula for the ground-state
energy which involves either the couple Σ, G or the couple P, W . The main advantage of
these formulas over the Galitskii–Migdal formula derived in Section 6.4 lies in the possibility
of separating the total energy into a noncorrelated and correlated part, thus highlighting the
dependence on the many-body approximation. As we shall see, these formulas are similar
to the dressed expansion (11.26) of the grand potential.

Let ρ̂ be the equilibrium density matrix of Ĥ = Ĥ0 + Ĥint. Then the energy of the
system is

E = Tr
[

ρ̂Ĥ0

]

+Tr
[

ρ̂Ĥint

]

= Eone + Eint. (13.29)

The one-body part of the total energy, Eone, can easily be expressed in terms of G<; the
result is the first term on the r.h.s. of (8.17). Since the system is in equilibrium, the single
particle Hamiltonian ĥS(t) = ĥ is time-independent and G< depends only on the time
di�erence. Then, Fourier transforming G< we find

Eone = ±i
∫
dω

2π

∫

dx 〈x|ĥ Ĝ<(ω)|x〉 (13.30)

6In finite systems the sudden switch-on of a constant perturbation causes an undamped oscillatory behavior.
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13.4. Ground-state energy and correlation energy 363

The interaction energy is given in terms of Σ and G in (9.19). It is convenient to separate
the singular Hartree–Fock self-energy from the correlation self-energy. We write

Σ̂ (z1, z2) = δ(z1, z2)qV̂HF + Σ̂ c(z1, z2), (13.31)

where the Hartree–Fock potential operator has matrix elements [see (7.39)]

〈x1|qV̂HF|x2〉 = δ(x1 − x2)

∫

dx v(x1,x)n(x)± v(x1,x2)n(x1,x2),

with n(x1,x2) the one-particle density matrix and n(x) = n(x,x) the density. Inserting
(13.31) into (9.19) we get

Eint = Eint,HF + Eint,c.

In this equation the Hartree–Fock part of the interaction energy is given by

Eint,HF =
1

2

∫

dxdx′ v(x,x′)n(x)n(x′)
︸ ︷︷ ︸

Eint,H

±1

2

∫

dxdx′ v(x,x′)n(x,x′)n(x′,x)
︸ ︷︷ ︸

Eint,x

(13.32)

which is the sum of a Hartree term Eint,H and a Fock (or exchange) term Eint,x. Instead
the correlation part reads

Eint,c = ±
i

2

∫

dx1〈x1|
[

Σ̂
⌉
c ⋆ Ĝ

⌈ ]
(t0, t0) |x1〉, (13.33)

as follows directly from (9.19) with, e.g., z1 = t0− (Eint,c is independent of time and hence
we can choose any z1).

7 Equation (13.33) is particularly interesting. If we set t1 = t2 = t0 in
(9.60) then the first two terms on the l.h.s. vanish while the third term is exactly what appears
in (13.33). Therefore, we can use (9.60) to rewrite the correlation part of the interaction energy
as

Eint,c = ±
i

2

∫
dω

2π

∫

dx1〈x1|Σ̂
≶

c (ω)Ĝ
A
(ω) + Σ̂

R

c (ω)Ĝ
≶
(ω) |x1〉. (13.34)

In this formula we can choose either the greater or the lesser components of Σ̂ c and Ĝ; the
result is independent of the choice. To show it we use the relations

ĜR/A
(ω) = i

∫
dω′

2π

Ĝ>(ω′)− Ĝ<(ω′)
ω − ω′ ± iη

, Σ̂
R/A

c (ω) = i

∫
dω′

2π

Σ̂
>

c (ω
′)− Σ̂

<

c (ω
′)

ω − ω′ ± iη
,

already derived in (6.93) and (9.57). Independently of the Keldysh component, the insertion
of the above relations in (13.34) yields the following unique result

Eint,c = ∓
1

2

∫
dω

2π

dω′

2π

∫

dx1
〈x1|Σ̂

<

c (ω)Ĝ
>
(ω′)− Σ̂

>

c (ω)Ĝ
<
(ω′) |x1〉

ω − ω′ (13.35)

7For z1 = t0− the integral over z3 along the forward branch cancels the integral along the backward branch
and only the vertical track remains.
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364 13. Applications of MBPT to equilibrium problems

In this formula we have removed the infinitesimal imaginary part in the denominator since
for ω = ω′ the numerator vanishes.8

An alternative formula for the interaction energy involves the polarizability P and the
screened interaction W . The starting point is the identity (11.52) which we write again below

trγ
[
ΣxcG

]
= ±trγ

[
PW

]
(13.36)

Separating out the Fock (exchange) part

Σx(1; 2) = iv(1; 2)G(1; 2+) = ±δ(z1, z2)v(x1,x2)n(x1,x2),

from Σxc we can rewrite (13.36) as

trγ
[
ΣcG

]
∓ 2β Eint,x = ±trγ

[
PW

]
, (13.37)

where β is the inverse temperature9 and Eint,x is the exchange part of the Hartree–Fock
interaction energy (13.32). Furthermore, since the system is in equilibrium

trγ
[
ΣcG

]
= −iβ

∫

dx1〈x1|
[

Σ̂
⌉
c ⋆ Ĝ

⌈ ]
(t0, t0) |x1〉

= ∓2βEint,c. (13.38)

Similarly we can evaluate the r.h.s. of (13.37). We separate out the singular part v from W
by defining W = v + δW so that

trγ
[
PW

]
= −iβ

∫

dx1〈x1|P̂(z, z)v̂|x1〉+ trγ
[
PδW

]
.

The first term on the r.h.s. requires the calculation of the polarizability at equal times. We
recall that the many-body expansion of P (1; 2) starts with ±iG(1; 2)G(2; 1). For z1 = z2
this is the only ambiguous term of the expansion. The correct way of removing the ambiguity
consists in using ±iG(1; 2+)G(2; 1+), in accordance with the discussion below (11.53). If we
write

P (1; 2) = ±iG(1; 2+)G(2; 1+) + δP (1; 2),

then

−iβ
∫

dx1〈x1|P̂(z, z)v̂|x1〉 = −2β Eint,x − iβ

∫
dω

2π

∫

dx1〈x1|δP̂
≶
(ω)v̂|x1〉.

As expected, the zeroth order polarizability generates the exchange energy. The second term
is independent of whether we choose the greater or lesser component since v(x1,x2) is

8From the fluctuation–dissipation theorem for Σ and G the numerator is proportional to [f(ω)f̄(ω′) −
f̄(ω)f(ω′)]Γ̂ (ω)Â(ω′) which vanishes for ω = ω′.

9We take into account that
∫

γ dz = −iβ.
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13.4. Ground-state energy and correlation energy 365

symmetric under x1 ↔ x2 and from (10.26) we have δP>(1; 2) = δP<(2; 1).10 Taking into
account (13.38) we can cast (13.37) in the following form:

Eint,c =
i

2

∫
dω

2π

∫

dx1〈x1|δP̂
≶
(ω)v̂|x1〉 −

1

2β
trγ
[
PδW

]
. (13.39)

Let us now manipulate the last term of this equation. We have

trγ
[
PδW

]
= −iβ

∫

dx1〈x1|
[

P̂⌉ ⋆ δŴ⌈
]

(t0, t0) |x1〉

= −iβ
∫
dω

2π

∫

dx1〈x1|P̂
≶
(ω)δŴA

(ω) + P̂R
(ω)δŴ≶

(ω)|x1〉, (13.40)

where in the last equality we use (13.13) with t = t′ = t0 (for these times the first two terms
on the l.h.s. vanish). This equation now has the same structure as (13.34). By definition, the
Fourier transform of the retarded/advanced polarizability is

P̂R/A
(ω) = i

∫
dω′

2π

P̂>
(ω′)− P̂<

(ω′)

ω − ω′ ± iη
,

whereas the Fourier transform of the retarded/advanced δŴ is

δŴR/A
(ω) = i

∫
dω′

2π

Ŵ>
(ω′)− Ŵ<

(ω′)

ω − ω′ ± iη
,

where we take into account that v̂≶ = 0 and hence Ŵ≶
= δŴ≶

. Inserting these Fourier
transforms into the trace we find

trγ
[
PδW

]
= β

∫
dω

2π

dω′

2π

∫

dx1〈x1|
P̂<

(ω)Ŵ>
(ω′)− P̂>

(ω)Ŵ<
(ω′)

ω − ω′ |x1〉.

This result can be inserted in (13.39) to obtain a formula for the interaction energy in terms
of the polarizability and the screened interaction

Eint,c =
i

2

∫
dω

2π

∫

dx1〈x1|δP̂
≶
(ω)v̂|x1〉

− 1

2

∫
dω

2π

dω′

2π

∫

dx1〈x1|
P̂<

(ω)Ŵ>
(ω′)− P̂>

(ω)Ŵ<
(ω′)

ω − ω′ |x1〉
(13.41)

10More explicitly we have
∫

dx1〈x1|P̂
<

(t, t)v̂|x1〉 =

∫

dx1dx2〈x1|P̂
<

(t, t)|x2〉v(x2,x1)

=

∫

dx1dx2〈x2|P̂
>

(t, t)|x1〉v(x2,x1)

=

∫

dx1dx2〈x1|P̂
>

(t, t)|x2〉v(x2,x1) =

∫

dx1〈x1|P̂
>

(t, t)v̂|x1〉,

where in the third line we rename x1 ↔ x2 and use the symmetry of v.
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366 13. Applications of MBPT to equilibrium problems

The formulas (13.30), (13.32), and (13.35) [or equivalently (13.41)] allow us to calculate the
ground-state energy of an interacting system for any given many-body approximation. While
it is easy to separate the Hartree–Fock part from the correlation part in Eint the same cannot
be said of Eone. It is in general quite useful to write the total energy E as the sum of the
Hartree–Fock (noncorrelated) energy plus a correlation energy. The latter provides a measure
of how much the system is correlated. A standard trick to perform this separation consists in
using the Hellmann–Feynman theorem. The Hellmann–Feynman theorem, however, applies
only to density matrices ρ̂ which are a mixture of eigenstates with fixed coe�cients. We
therefore specialize the discussion to zero temperature and assume that the degeneracy
of the ground-state multiplet of ĤM

λ ≡ ĤM
0 + λĤint does not change with λ. Then the

zero-temperature density matrix reads

ρ̂(λ) =
1

d

d∑

g=1

|Ψg(λ)〉〈Ψg(λ)|,

where d is the degeneracy and the sum runs over the components of the ground-state
multiplet. As the weights in ρ̂(λ) are λ-independent we can use the Hellmann–Feynman
theorem and find

d

dλ
Tr
[

ρ̂(λ)Ĥλ

]

= Tr
[

ρ̂(λ)Ĥint

]

. (13.42)

Integrating this equation between λ = 0 and λ = 1 we get

E = E0 +

∫ 1

0

dλ

λ
Tr
[

ρ̂(λ)Ĥint

]

= E0 +

∫ 1

0

dλ

λ
Eint(λ),

with E the interacting energy and E0 the energy of the noninteracting system. The non-
correlated part of the total energy is defined from the above equation when the interaction
energy is evaluated in the Hartree–Fock approximation, Eint[Σ]→ Eint[ΣHF] ≡ EHF

int :

EHF = E0 +

∫ 1

0

dλ

λ
EHF

int (λ).

The correlation energy is therefore the di�erence between the total energy and the Hartree–
Fock energy

Ecorr ≡ E − EHF =

∫ 1

0

dλ

λ

(
Eint(λ)− EHF

int (λ)
)

(13.43)

It is important to appreciate the di�erence between EHF
int = Eint[ΣHF] and Eint,HF =

Eint,HF[Σ]. The quantity Eint,HF[Σ] given in (13.32) is evaluated with a one-particle den-
sity matrix n(x1,x2) [and density n(x) = n(x,x)] which comes from a Green’s function
G = G0 + G0ΣG, where Σ can be the second-Born, GW, or any other approximate self-
energy. As such Eint,HF[Σ] contains some correlation as well. Instead Eint[ΣHF] is the
interaction energy evaluated with a Hartree–Fock Green’s function. From (13.35) we see that
Eint,c[ΣHF] = 0 and hence Eint[ΣHF] = Eint,HF[ΣHF]. In the next section we calculate
the correlation energy of an electron gas in the GW approximation.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:08:11 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.015

Cambridge Books Online © Cambridge University Press, 2015



13.5. GW correlation energy of a Coulombic electron gas 367

Exercise 13.4. Verify that Eone+Eint,HF evaluated with the Hartree–Fock Green’s function

yields exactly the result (7.50).

Exercise 13.5. Prove (13.42).

13.5 GW correlation energy of a Coulombic

electron gas

In the electron gas the interparticle interaction v(x1,x2) = v(r1 − r2) is independent of
spin and hence the screened interaction W (r1, z1; r2, z2) is also independent of spin. The
sum over spin in (10.24) gives

W (r1, z1; r2, z2) = v(r1, r2) +

∫

dr̄1dr̄2dz̄ v(r1, r̄1)P (r̄1, z1; r̄2, z̄)W (r̄2, z̄; r2, z2),

(13.44)
where the spin-independent polarizability is defined as

P (r1, z1; r2, z2) ≡
∑

σ1σ2

P (x1, z1;x2, z2).

For an electron gas all quantities in (13.44) depend only on the di�erence between the spatial
coordinates. In momentum space (13.41) reads

Eint,c

V
=

i

2

∫
dpdω

(2π)4
δP≶(p, ω)ṽp

− 1

2

∫
dω

2π

dω′

2π

∫
dp

(2π)3
P<(p, ω)W>(p, ω′)− P>(p, ω)W<(p, ω′)

ω − ω′ , (13.45)

with V the system volume and ṽp the Fourier transform of the interaction. This equation
can be further manipulated by expressing W in terms of v and P . In momentum space the
retarded/advanced component of the screened interaction can easily be derived from (13.44)
and reads

WR/A(p, ω) =
ṽp

1− ṽpPR/A(p, ω)
.

Using the fluctuation–dissipation theorem (13.10) for P and (13.11) for W we have (omitting
the explicit dependence on frequency and momentum)

W> = f̄ [WR −WA] = |WR|2 P>,

where

|WR|2 = |WA|2 =
ṽ2

(1− ṽPR)(1− ṽPA)
.

Similarly, for the lesser component of W we find

W< = |WR|2 P<.
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368 13. Applications of MBPT to equilibrium problems

Substituting these relations into (13.45) we obtain an equivalent formula for the correlation
part of the interaction energy

Eint,c

V
=

i

2

∫
dpdω

(2π)4
δP≶(p, ω)ṽp −

1

2

∫
dω

2π

dω′

2π

∫
dp

(2π)3
|WR(p, ω′)|2

× P<(p, ω)P>(p, ω′)− P>(p, ω)P<(p, ω′)

ω − ω′ . (13.46)

We stress that no approximations have been done so far: equation (13.46) is an exact rewriting
of (13.45).

In the following we calculate the correlation energy (13.43) of an electron gas with
Coulomb interaction v(x1,x2) = 1/|r1 − r2|, and in the presence of an external potential
V (r) = nṽ0 generated by a uniform positive background charge with the same density of
electrons. Let us start with the evaluation of the λ-integral of EHF

int (λ). This quantity is given
in (13.32) with rescaled one-particle density matrix n → nλ calculated in the Hartree–Fock
approximation and, of course, with v → λv. Since the number of particles does not change
when λ is varied the density nλ(x) = n/2 is independent of λ. For the one-particle density
matrix we have [see (7.52)]

nλ(x1,x2) = −iGM
λ (x1, τ ;x2, τ

+) = δσ1σ2

∫
dk

(2π)3
eik·(r1−r2)θ(pF,λ − k),

where pF,λ is the Fermi momentum of the system with rescaled interaction. The Fermi
momentum cannot depend on λ for otherwise nλ(x,x) = nλ(x) would be λ-dependent.
Therefore the one-particle density matrix is independent of λ as well. We conclude that for
an electron gas EHF

int (λ) is linear in λ and hence its λ-integral is trivial,

∫ 1

0

dλ

λ
EHF

int (λ) = V

[
1

2
ṽ0n

2 −
∫

dp

(2π)3
dk

(2π)3
ṽp−kθ(pF − k)θ(pF − p)

]

. (13.47)

The reader can check that by adding E0 to this energy one recovers the Hartree–Fock
energy (7.54). We further encourage the reader to verify that we get the same result by using
the one-particle density matrix in the Hartree approximation. Indeed, both the Hartree
and Hartree–Fock eigenstates are plane-waves and since the density is constant in space
nλ(x1,x2) is the same in both approximations (and independent of λ).

To calculate the correlation energy we need an approximation to the self-energy. We
consider here the GW approximation according to which Σxc(1; 2) = iG(1; 2) W (1; 2) with
W = v + vPW and P = χ0 = −iGG. It is easy to show that Eint,c evaluated with (13.35)
using a GW self-energy or evaluated with (13.41) using P = χ0 (equivalently δP = 0) yields
the same result. The diagram which represent trγ [ΣxcG] in the GW approximation is
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13.5. GW correlation energy of a Coulombic electron gas 369

and it is topologically equivalent to the diagram in the r.h.s. which is represented by
trγ [χ0W ].

To carry on the calculation with pencil and paper we take the Green’s function in χ0

to be the Hartree Green’s function.11 Then, according to the observation below (13.43), we
have Eint,HF(λ) = EHF

int (λ) since nλ(x1,x2) is the same in the Hartree and Hartree–Fock
approximation. Thus the correlation energy (13.43) reduces to

Ecorr =

∫ 1

0

dλ

λ
Eint,c(λ). (13.48)

The GW correlation energy corresponds to the resummation of the following (infinite) subset
of diagrams (also called ring diagrams):

(13.49)

as can easily be checked from (13.39) with P = −iGG and W = v + vPW .
In Fourier space the greater/lesser component of the spin-independent and noninteract-

ing polarizability P≶(r1, t1; r2, t2) = −i
∑

σ1σ2
G≶(1; 2)G≷(2; 1) reads

P≶(p, ω) = −2i
∫
dp̄dω̄

(2π)4
G≶(p+ p̄, ω + ω̄)G≷(p̄, ω̄), (13.50)

where we take into account that G is diagonal in spin space and hence the factor of 2 comes
from spin. Inserting this polarizability into (13.46) the formula for Eint,c becomes (after some
renaming of the integration variables)

Eint,c

V
= −2

∫
dpdω

(2π)4
dp′dω′

(2π)4
dp̄dω̄

(2π)4

∫
dω̄′

2π

|WR(p− p̄, ω − ω̄)|2
ω + ω′ − ω̄ − ω̄′

×
[
G>(p, ω)G>(p′, ω′)G<(p̄, ω̄)G<(p+ p′ − p̄, ω̄′)

−G<(p, ω)G<(p′, ω′)G>(p̄, ω̄)G>(p+ p′ − p̄, ω̄′)
]
. (13.51)

Next we use the explicit expression of the Hartree Green’s function [see (6.48) and (6.49)]

G<(p, ω) = 2πi θ(pF − p)δ(ω −
p2

2
)

G>(p, ω) = −2πi θ̄(pF − p)δ(ω −
p2

2
),

11 In accordance with the discussion below (7.54), the Hartree Green’s function of a Coulombic electron gas in a
uniform positive background charge is equal to the Green’s function of a noninteracting electron gas without the
positive background charge.
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370 13. Applications of MBPT to equilibrium problems

with θ̄(x) = 1−θ(x), and perform the integral over all frequencies. Renaming the momenta
as p = q+ k/2, p′ = q′ − k/2, and p̄ = q− k/2 we find

Eint,c

V
= −4

∫
dq

(2π)3
dq′

(2π)3
dk

(2π)3
|WR(k,q · k)|2
(q− q′) · k

× θ̄(pF − |q+
k

2
|)θ̄(pF − |q′ −

k

2
|)θ(pF − |q−

k

2
|)θ(pF − |q′ +

k

2
|). (13.52)

In deriving (13.52) we use the fact that the contributions coming from the four Green’s
functions in the second and third line of (13.51) are identical, so we only include the second
line and multiply by 2. To prove that they are identical one has to use the symmetry property
(10.27), which implies WR(k, ω) = [WR(−k,−ω)]∗, and the invariance of the system under
rotations, which implies that WR(k, ω) depends only on the modulus k = |k|.

Before continuing with the evaluation of (13.52) an important observation is in order. By
replacing W (k, ω) with ṽk = 4π/k2 in (13.52) we get the Eint,c of the second-order ring
diagram [first term of the series (13.49)]. This quantity contains the integral

∫
dk

(2π)3 ṽ
2
k . . . =

∫
dk

(2π)3
1
k4 . . . and is therefore divergent! In fact, each diagram of the series is divergent. As

anticipated at the end of Section 5.3 this is a typical feature of bulk systems with long-range
interparticle interactions. For these systems the resummation of the same class of diagrams
to infinite order is absolutely essential to get meaningful results. We could compare this
mathematical behavior to that of the Taylor expansion of the function f(x) = 1−1/(1−x).
This function is finite for x→∞ but each term of the Taylor expansion f(x) = x+x2+ . . .
diverges in the same limit. For bulk systems with long-range interactions MBPT can be seen
as a Taylor series with vanishing convergence radius and hence we must resum the series
(or pieces of it) to get a finite result. The GW approximation is the leading term in the
G- and W -skeletonic formulation.

In Section 15.5.2 we calculate the screened interaction W = v + vχ0W appearing in
(13.52) and show that at zero frequency and for small k

WR(k, 0) =
4π

k2 + λ−2TF

, (13.53)

with λTF =
√

π/(4pF) the so called Thomas–Fermi screening length. Consequently WR

does not diverge for small momenta and the integral (13.52) is finite. The e�ect of the
screening is to transform the original (long-range) Coulomb interaction into a (short-range)
Yukawa-type of interaction since Fourier transforming (13.53) back to real space one finds

WR(r1, r2;ω = 0) =
e−|r1−r2|/λTF

|r1 − r2|
.

We can move forward with the analytic calculations if we consider the high density limit,
i.e., rs → 0. Recalling that rs = (9π/4)1/3/pF, in this limit λ−1TF ≪ pF and therefore the
dominant contribution to the integral (13.52) comes from the region k ≪ pF. For small k
we can approximate WR(k,q · k) with (13.53) since WR(k, ω) depends smoothly on ω for
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13.5. GW correlation energy of a Coulombic electron gas 371

small ωs, see Section 15.5.2. Then the integral (13.52) simplifies to

Eint,c

V
= −4

∫
dq

(2π)3
dq′

(2π)3

∫

k<pF

dk

(2π)3
(4π)2

(k2 + λ−2TF)
2(q− q′) · k

× θ̄(pF − |q+
k

2
|)θ̄(pF − |q′ −

k

2
|)θ(pF − |q−

k

2
|)θ(pF − |q′ +

k

2
|). (13.54)

Next we observe that for k ≪ pF the product θ̄(pF − |q+ k
2 |)θ(pF − |q− k

2 |) is nonzero
only for q close to the Fermi sphere. Denoting by c the direction cosine between q and k

we then have q · k ∼ pFkc and |q± k
2 | ∼ q ± kc

2 . Further approximating

∫
dq

(2π)3
∼
(pF
2π

)2
∫ ∞

0

dq

∫ 1

−1
dc

we get

Eint,c

V
= −4

(pF
2π

)4 (4π)2

2π2

1

pF

∫ ∞

0

dqdq′
∫ 1

−1
dcdc′

∫ pF

0

dk
k

(k2 + λ−2TF)
2(c− c′)

× θ̄(pF − q −
kc

2
)θ̄(pF − q′ +

kc′

2
)θ(pF − q +

kc

2
)θ(pF − q′ −

kc′

2
). (13.55)

The integral over q and q′ is now straightforward since

∫

dq θ̄(pF − q −
kc

2
)θ(pF − q +

kc

2
) =

∫

dx θ̄(x− kc

2
)θ(x+

kc

2
) = θ(c)kc.

Inserting this result into (13.55) we find

Eint,c

V
= −2

(pF
π2

)2

pF

∫ pF

0

dk
k3

(k2 + λ−2TF)
2

∫ 1

0

dc

∫ 0

−1
dc′
−cc′
c− c′

︸ ︷︷ ︸
2
3 (1−ln 2)

. (13.56)

The integral over k can be performed analytically since the integrand is a simple rational
function. The result is

∫ pF

0

dk
k3

(k2 + λ−2TF)
2
=

1

2

(

−1 + λ−2TF

λ−2TF + p2F
+ log(1 + λ2TFp

2
F)

)

−−−→
rs→0

log(pFλTF)

.

The correlation energy (13.48) is given by the λ-integral of (13.56) with rescaled quantities.
From (13.53) we see that WR → λWR since pF is independent of λ. Therefore Eint,c(λ) is
given by the r.h.s. of (13.56) multiplied by λ2. Then the λ-integral produces the extra factor
∫ 1

0
dλ
λ λ

2 = 1/2 and the correlation energy reads

Ecorr = −nV
2

π2
(1− ln 2) ln(pFλTF) (13.57)
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372 13. Applications of MBPT to equilibrium problems

where we use the relation n = p3F/(3π
2) between the density and pF. This result was first

derived by Gell-Mann and Brueckner in 1957 [104]. By analogy with the Hartree–Fock energy
(7.62) we can express (13.57) in terms of the radius rs. Adding the resulting expression to the
Hartree–Fock energy (7.63) we obtain

Etot

nV
=

1

2

[
2.21

r2s
− 0.916

rs
+ 0.0622 ln rs

]

(in atomic units) (13.58)

This formula contains the three leading contributions to Etot in the high density limit
rs → 0.

At the end of Section 5.3 we mentioned that the MBPT expansion is an asymptotic
expansion in the interaction strength.12 Equation (13.58) provides a nice example of this
statement. Reinserting all the fundamental constants in (13.58) the prefactor

1

2
→ e2

2aB
,

with the Bohr radius aB = ~
2

mee2
and e, me the electron charge and mass respectively.

Taking into account that

rs =

(
9π

4

) 1
3 1

~aBpF
∼ e2, (13.59)

we see that the first term ∝ e0, the second term ∝ e2 while the third term ∝ e4 ln e2.
After many years of study of the Coulombic electron gas the community feels reasonably
confident that the correlation energy has the following asymptotic expansion

Ecorr

nV
= a0 ln rs + a1 + a2rs ln rs + a3rs + a4r

2
s ln rs + a5r

2
s + . . . (13.60)

We have just shown that the coe�cient a0 originates from the sum of ring diagrams eval-
uated with the Hartree Green’s function. This approximation is called the G0W0 approxi-
mation to distinguish it from the GW approximation where G and W are self-consistently
calculated from G = G0 + G0(iGW )G and W = v + v(−iGG)W . The coe�cients a1
and a2 can be extracted from the second-order exchange diagram and from a more precise
evaluation of the sum of ring diagrams. The many-body origin of the coe�cient a3 is more
complicated and we refer the interested reader to Ref. [105]. We write below the value of the
first four coe�cients in atomic units [106]

a0 = +0.03109

a1 = −0.04692
a2 = +0.00923

a3 = −0.010.

In Fig. 13.2 we show the correlation energy per particle as obtained by truncating the
sum (13.60) to the first m terms, with m = 1, 2, 3, 4. For comparison we also report

12For a brief introduction to asymptotic expansions we refer the reader to Appendix F.
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13.6. T -matrix approximation 373

Figure 13.2 Correlation energy per particle (in atomic units) of the Coulombic electron gas.

the correlation energy per particle as obtained numerically [107] using a popular stochastic
method, namely the Quantum Monte Carlo (QMC) method [108, 109]. A close inspection
of the figure reveals the typical feature of an asymptotic expansion. We see that for rs = 1
the 3rd order approximation is the most accurate. Going to larger values of rs, however,
the agreement deteriorates faster the higher the order of the approximation; for example
the 1st order approximation is more accurate than the 2nd and 3rd order approximations for
rs = 5.

Finally we should note that the correlation energy calculated using the fully self-consistent
GW approximation is as accurate as that from QMC calculations [110]. On the other hand,
for spectral properties the G0W0 approximation seems to perform better than the GW ap-
proximation.13 This is typically attributed to a lack of cancellations. In Section 15.4 we show
that conserving approximations in combination with gauge invariance lead to an equation
between the vertex and the self-energy known as the Ward identity. The Ward identity
suggests that self-consistent corrections are partially cancelled by vertex corrections. Since
the GW vertex is zero this cancellation does not occur in the GW approximation [111–115]. The
fact that self-consistent calculations of total energies are very accurate even without these
cancellations is still not completely understood and the topic of ongoing research.

13.6 T -matrix approximation

Let us consider a system at zero temperature and with zero particles, and ask what physical
processes G2 should contain. Since there are no particles in the ground state we can only
add two particles (we cannot destroy particles) and these two added particles can only

13In systems with a gap like semiconductors, insulators, or molecules the situation is much more unclear.
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374 13. Applications of MBPT to equilibrium problems

interact directly an arbitrary number of times. This is particularly clear in the Lippmann–
Schwinger equation (M.6), see Appendix M, for the two-particle scattering state

|ψ〉 = |k〉+ 1

E − p̂
2/m± iη

v(r̂)|ψ〉, (13.61)

of energy E and relative momentum k. Iterating (13.61) we find the following expansion of
|ψ〉 in powers of the interaction v

|ψ〉 = |k〉+ 1

E − p̂
2/m± iη

v(r̂)|k〉+ 1

E − p̂
2/m± iη

v(r̂)
1

E − p̂
2/m± iη

v(r̂)|k〉+ . . .

(13.62)
The first term is a free scattering state. In the second term the particles interact once and
then continue to propagate freely.14 In the third term we have a first interaction, then a
free propagation followed by a second interaction and then again a free propagation. In
Section 13.3 we saw that the second-Born approximation for G2 corresponds to truncating
the expansion (13.62) to the term which is first order in v. We rewrite its diagrammatic
representation as follows:

(13.63)

where “exchange” represents the diagrams obtained from the explicitly drawn diagrams by
exchanging c and d. The reader can easily verify that (13.63) is topologically equivalent to
(12.7). The T -matrix approximation for G2 goes beyond the second-Born approximation
as it takes into account all multiple scatterings in the expansion (13.62). In the T -matrix
approximation the two added particles interact directly an arbitrary number of times. The
diagrammatic representation of this G2 is then

(13.64)

14The operator (E − p̂
2/m ± iη)−1 is the Fourier transform of the evolution operator of two noninteracting

particles.
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13.6. T -matrix approximation 375

The name T -matrix approximation is given after a very useful quantity known as the transfer
matrix. In scattering theory the transfer matrix T̂ is the operator which transforms the free
scattering-state |k〉 into the interacting scattering-state |ψ〉: T̂ |k〉 = v(r̂)|ψ〉. From (13.62)
we see that

T̂ = v(r̂) + v(r̂)
1

E − p̂
2/m± iη

v(r̂) + . . . = v(r̂) + T̂
1

E − p̂
2/m± iη

v(r̂). (13.65)

In MBPT the transfer matrix is defined in a similar way,

T (1, 2; 1′, 2′) = δ(1; 1′)δ(2; 2′)v(1′; 2′) + i

∫

d3d4 T (1, 2; 3, 4)G(3; 1′)G(4; 2′)v(1′; 2′).

(13.66)

In Section 5.2 we found that this quantity emerges in a natural way as the first nontrivial
approximation to G2, although in that case the Green’s function was noninteracting. We can
represent the transfer matrix with the following diagrammatic series

(13.67)

where an interaction v is associated with a wiggly line and a Green’s function is associated
with an oriented double line. The analogy between (13.67) and (13.65) is evident if we consider
that the product G(3; 1′)G(4; 2′) is the propagator of two independent particles.

From a knowledge of the transfer matrix we can determine G2 in the T -matrix approxi-
mation since

v(1; 2)G2(1, 2; 1
′, 2′) =

∫

d3d4 T (1, 2; 3, 4) [G(3; 1′)G(4; 2′)±G(3; 2′)G(4; 1′)] .
(13.68)

We expect this approximation to be accurate in systems with a low density of particles (since
it is exact for vanishing densities) and short-range interactions v (since it originates from
the ideas of scattering theory where two particles at large enough distance are essentially
free). If these two requirements are met then the T -matrix approximation provides a reliable
description of the many-particle system independently of the interaction strength. In this
respect the T -matrix approximation is very di�erent from the second-Born or the GW
approximations. The latter perform well in the high density limit rs → 0 or, equivalently, in
the weak coupling limit e2 → 0, see (13.59).

The l.h.s. of (13.68) with 2′ = 2+ also appears in the definition (9.1) of the self-energy.
Comparing these equations it is straightforward to find15

Σ(1; 2) = ±i
∫

d3d4 [T (1, 3; 2, 4)± T (1, 3; 4, 2)]G(4; 3+) (13.69)

15Compare with (5.24) where a zeroth order version of the T -matrix was derived by truncating the Martin–
Schwinger hierarchy. The equations become identical after relabeling 2↔ 3.
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376 13. Applications of MBPT to equilibrium problems

Figure 13.3 Self-energy in the T -matrix approximation.

Is this a conserving self-energy? The diagrammatic representation of Σ in shown in Fig. 13.3.
The reader can easily recognize that the diagrams up to second order are topologically
equivalent to the second-Born approximation, as it should be. Each diagram of the expansion
in Fig. 13.3 is the functional derivative of a well-defined Φ-diagram and therefore the
T -matrix self-energy is conserving. In particular the nth order diagram in the first row is
the functional derivative of the Φ-diagram:

while the nth order diagram in the second row is the functional derivative of the Φ-diagram
below:

Like G2 the transfer matrix is a di�cult object to manipulate since it depends on four
variables. Nevertheless the dependence on the time arguments is rather simple. From (13.67)
we see that each term of the expansion starts and ends with an interaction v which is local
in time. Therefore

T (1, 2; 1′, 2′) = δ(z1, z2)δ(z
′
1, z
′
2)T (x1,x2,x

′
1,x
′
2; z1, z

′
1).
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13.6. T -matrix approximation 377

To highlight the dependence on z1 and z′1 we omit the position-spin variables of the reduced
density matrix T (x1,x2,x

′
1,x
′
2; z1, z

′
1)→ T (z1, z

′
1). Then, from (13.67) we have

T (z1, z
′
1) = δ(z1, z

′
1)v + iv G2(z1, z

′
1) v + i2v

∫

dz̄ G2(z1, z̄) v G
2(z̄, z′1) v + . . . (13.70)

This function belongs to the Keldysh space and contains a singular part. For systems in
equilibrium the real-time Keldysh components (retarded, advanced, lesser, etc.) depend only
on the time di�erence and can be Fourier transformed. If we define

T (ω) ≡ i
[
T>(ω)− T<(ω)

]
= i
[
TR(ω)− TA(ω)

]
, (13.71)

then, by the definition of retarded and advanced functions, we can write

TR/A(ω) = v +

∫
dω′

2π

T (ω′)
ω − ω′ ± iη

,

or, reinserting the dependence on the position–spin variables,

TR/A(x1,x2,x
′
1,x
′
2;ω) = v(x1,x2)δ(x1,x

′
1)δ(x2,x

′
2) +

∫
dω′

2π

T (x1,x2,x
′
1,x
′
2;ω
′)

ω − ω′ ± iη
.

The reduced transfer matrix also obeys its own fluctuation–dissipation theorem. The
proof goes along the same lines as for the self-energy, polarizability, and screened interac-
tion. Since T (z1, z

′
1) starts with G

2(z1, . . .) and ends with G2(. . . , z′1) the starting external
vertices produce the factor e2µβ , whereas the ending external vertices produce the factor
e−2µβ . Thus, it is easy to derive

T>(ω) = eβ(ω−2µ)T<(ω). (13.72)

Combining (13.72) with the definition (13.71) we can determine T≶ from a sole knowledge of
T since

T<(ω) = −if(ω − 2µ) T (ω)

T>(ω) = −if̄(ω − 2µ) T (ω)
(13.73)

with f(ω) = 1/(eβω − 1), the Bose function, and f̄(ω) = 1+ f(ω). This is the fluctuation–
dissipation theorem for T .

The T -matrix approximation has been used in several contexts of condensed matter
physics and nuclear physics. As the implementation of the fully self-consistent T -matrix
self-energy is computationally demanding, di�erent flavors of this approximation have been
studied over the years. From (13.66) we see that the transfer matrix satisfies an equation
with two Green’s functions. If we here set G = G0 we get the T0-matrix approximation of
Section 5.2. The transfer matrix T0 can then be multiplied by G0 to generate a self-energy
according to (13.69). This T0G0 approximation was employed by Thouless to describe the
superconducting instability of a normal metal with attractive interactions [116]. The T0G0

approximation, however, gives rise to unphysical results in two dimensions [117]. A di�erent
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378 13. Applications of MBPT to equilibrium problems

approximation consists in constructing the transfer matrix T from the self-consistent G,
which solves the Dyson equation with self-energy Σ = ±iTG0 [118]. Also this scheme
is not fully self-consistent and has some problems. The advantage of working with the
self-consistent Σ = ±iTG is that several exact properties, like the conservation laws, are
preserved [103, 119]. It should be said, however, that many spectral properties can already
be described in partially self-consistent or non-self-consistent treatments (and sometimes
even more accurately). For instance the non-self-consistent second-Born approximation
correctly captures the gap shrinkage due to polarization e�ects, see Section 13.3.1. In the
electron gas the G0W0 approximation produces better quasi-particle renormalization factors
than the fully self-consistent GW approximation [115]. Below we discuss another example of
non-self-consistent treatments. The example is concerned with the formation of a Cooper
pair in a superconductor.

13.6.1 Formation of a Cooper pair

As a pedagogical example of the accuracy of the T -matrix approximation in systems where
the repeated interaction between two electrons plays a crucial role we consider the formation
of a bound state in the BCS model. Consider the BCS Hamiltonian (2.37) and suppose that
there is only one electron, say of spin down, in the system. Let us order the single
particle energies as ǫ0 < ǫ1 < . . . < ǫN and assume no degeneracy. The ground state is
|Ψ0〉 = ĉ†0↓|0〉 with ground-state energy ǫ0. We are interested in calculating the spectral
function for an electron of spin up. With only one spin-down electron in the ground state
it is not possible to remove a spin-up electron and therefore the spectral function contains
only addition energies. Furthermore, the interaction couples pairs of electrons with the same
k label and opposite spin. This implies that if we add an electron of momentum k 6= 0
the resulting two-particle state ĉ†k↑|Ψ0〉 = ĉ†k↑ĉ

†
0↓|0〉 is an eigenstate with energy ǫk + ǫ0.

Consequently the spectral function exhibits only one peak at the addition energy ǫk . The
situation is much more interesting if we add a spin-up electron with k = 0 since ĉ†0↑ĉ

†
0↓|0〉

is not an eigenstate. Below we calculate the exact spectral function A(ω) ≡ A0↑ 0↑(ω)
and then compare the results with the spectral function in the T -matrix and second-Born
approximation. As we shall see the nonperturbative nature of the T -matrix approximation
gives very accurate results while the second-Born approximation performs rather poorly in
this context.

Let us start with the exact solution. The spectral function is A(ω) = iG>
0↑ 0↑(ω) since

the lesser Green’s function vanishes. To obtain the greater Green’s function we have to
calculate the energies E2,m of the two-electron eigenstates |Ψ2,m〉 as well as the overlaps

Pm = 〈Ψ0|ĉ0↑|Ψ2,m〉 = 〈0|ĉ0↓ĉ0↑|Ψ2,m〉

between the state resulting from the addition of a particle of spin up in level 0 and |Ψ2,m〉,
see (6.88). The two-electron eigenstates are either of the form ĉ†k↑ĉ

†
p↓|0〉 with k 6= p (singly

occupied levels are blocked) or linear combinations of doubly occupied levels. The former
give zero overlaps, Pm = 0, and it is therefore su�cient to calculate the latter. In agreement

with the notation of Section 2.6 we denote these eigenstates by |Ψ(1)
i 〉 where the superscript
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13.6. T -matrix approximation 379

Figure 13.4 Graphical solution of the eigenvalue equation (13.74) for a single electron pair
in the BCS model. The numerical parameters are N = 30 levels, equidistant energies
ǫk = (E/N)k with k = 0, . . . , N − 1, and v = 1.8E/N (all energies are measured in units
of E ).

“(1)” indicates that there is one pair. The generic form of |Ψ(1)
i 〉 is

|Ψ(1)
i 〉 =

∑

k

α
(i)
k b†k|0〉,

where b†k = ĉ†k↑ĉ
†
k↓ is the creation operator for a pair of electrons in level k. We have seen

that the eigenvalues Ei of |Ψ(1)
i 〉 are the solutions of the algebraic equation

∑

k

1

2ǫk − Ei
=

1

v
, (13.74)

and that the coe�cients

α
(i)
k =

C

2ǫk − Ei
,

with C a normalization constant. The l.h.s. of (13.74) approaches +∞ for Ei → 2ǫk from
the left and −∞ for Ei → 2ǫk from the right. Thus for Ei = ǫ0 − δ, δ > 0, the l.h.s. is
always positive, diverges when δ → 0, and goes to zero when δ → ∞. This means that
for positive v (attractive interaction) we have a bound state below the energy band {ǫk}.
In the context of the BCS model this bound state is known as Cooper pair. The graphical
solution of (13.74) is shown in Fig. 13.4 for N = 30 levels, equidistant energies ǫk = (E/N)k
with k = 0, . . . , N − 1 and v = 1.8E/N . We clearly see an intersection at energy ∼ −1,
which corresponds to a Cooper pair. The full set of solutions Ei can easily be determined

numerically and then used to construct the coe�cients α
(i)
k . We actually do not need these

coe�cients for all k since the overlap

Pi = 〈0|ĉ0↓ĉ0↑|Ψ(1)
i 〉 = α

(i)
0 ,
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380 13. Applications of MBPT to equilibrium problems

and it is therefore su�cient to calculate the coe�cients with k = 0. Having the Ei and the

α
(i)
0 the exact spectral function reads

A(ω) = 2π
∑

i

|α(i)
0 |2 δ(ω − [Ei − ǫ0]). (13.75)

This spectral function has an isolated peak in correspondence with the Cooper-pair energy.
We can then say that the addition of a spin-up electron in k = 0 excites the system in a
combination of states of energy Ei among which there is one state (the Cooper pair) with
an infinitely long life-time.

Let us now calculate the spectral function in the T -matrix approximation. The first task
is to rewrite the interaction Hamiltonian in a form suitable for MBPT, i.e.,

Ĥint = −v
∑

kk′

ĉ†k↑ĉ
†
k↓ĉk′↓ĉk′↑ =

1

2

∑

ijmn

vijmnĉ
†
i ĉ
†
j ĉmĉn,

where i = (ki, σi), j = (kj , σj) etc. are collective indices for the orbital and spin quantum
numbers. The BCS interaction is nonvanishing only for ki = kj , km = kn, and σi = σ̄j =
σ̄m = σn, where σ̄ is the spin opposite to σ. Therefore

vijmn = −v δkikj
δkmkn

δσiσn
δσjσm

δσiσ̄j
,

meaning that the only possible scattering processes are

Since the interaction preserves the spin orientation, after every scattering the Green’s func-
tion and the self-energy are diagonal in spin space. However, since the ground state is not
symmetric under a spin flip, the Green’s function for spin-up electrons is di�erent from the
Green’s function for spin-down electrons. Another interesting feature of the interaction is
that if we add or remove an electron of label k, let the system evolve, and then remove or
add an electron of label k′, we find zero unless k = k′. Thus, the Green’s function is also
diagonal in k-space: Gkσ k′σ′ = δσσ′δkk′Gkσ . For a ground state with only one spin-down
electron in level 0 the greater and lesser noninteracting Green’s function G0 has diagonal
matrix elements

spin up spin down

G>
0,k↑(ω) = −2πi δ(ω − ǫk), G>

0,k↓(ω) = −2πi (1− δk0)δ(ω − ǫk),
G<

0,k↑(ω) = 0, G<
0,k↓(ω) = 2πi δk0δ(ω − ǫ0).

Like the Green’s function, the self-energy is also diagonal in k- and spin-space, Σkσ k′σ′ =
δσσ′δkk′Σkσ . In the T -matrix approximation Σ has the diagrammatic expansion of Fig. 13.3,
and taking into account the explicit form of the BCS interaction we can easily assign the
labels of each internal vertex. For instance the self-energy for a spin-up electron looks like
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13.6. T -matrix approximation 381

from which it is evident that the self-energy vanishes unless k = k′ (the Green’s function
in the lower part of all these diagrams starts with k and ends with k′). We also see that
all exchange diagrams (second row) are zero since after the scattering the particle cannot
change its spin. The mathematical expression of the self-energy is therefore (remember that
the interaction is −v):

Σk↑(z1, z2) = i

[

vδ(z1, z2)− iv2B(z1, z2) + i2v3
∫

γ

dz̄B(z1, z̄)B(z̄, z2) + . . .

]

Gk↓(z2, z1),

where B is the Cooper pair propagator

B(z1, z2) =
∑

p

Gp↑(z1, z2)Gp↓(z1, z2).

The spectral function A(ω) = A0↑ 0↑ is given in terms of the self-energy in agreement with
(13.3):

A(ω) =
Γ0↑(ω)

|ω − ǫ0 − ΣR
0↑(ω)|2

, where Γ0↑(ω) = −2Im
[
ΣR

0↑(ω)
]
.

To calculate Σ0↑ we define the reduced T -matrix as the quantity in the square brackets,

T (z1, z2) = vδ(z1, z2)− iv2B(z1, z2) + i2v3
∫

γ

dz̄B(z1, z̄)B(z̄, z2) + . . .

= vδ(z1, z2)− iv

∫

γ

dz̄ T (z1, z̄)B(z̄, z2),

so that Σ0↑(z1, z2) = iT (z1, z2)G0↓(z2, z1). Using the Langreth rules of Table 5.1 the
retarded component of the self-energy in frequency space reads

ΣR
0↑(ω) = i

∫
dω′

2π

[

TR(ω + ω′)G<
0↓(ω

′) + T<(ω + ω′)GA
0↓(ω

′)
]

. (13.76)

To extract the Keldysh components of the reduced T -matrix we use the simplified Langreth
rules for equilibrium systems (see end of Section 13.2). Then in frequency space T< =
−iv[TRB<+T<BA] from which it follows that T< = −ivTRB</(1+ivBA) = 0. Indeed
the lesser Cooper pair propagator is

B<(t1, t2) =
∑

p

G<
p↑(t1, t2)G

<
p↓(t1, t2) = 0,
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382 13. Applications of MBPT to equilibrium problems

Figure 13.5 Logarithm of the spectral function A(ω) for the same parameters as Fig. 13.4, as
obtained from the exact formula (13.75), the T -matrix approximation (13.77), and the second-
Born approximation. The parameter η = 0.3 and for the exact formula we approximate
δ(ω) = 1

π
η

ω2+η2 (all energies are measured in units of E ).

since there are no electrons of spin up in the ground state, i.e., G<
p↑ = 0. It remains to

calculate the first term in (13.76). This can be done analytically if we use the noninteracting
Green’s function worked out before (non self-consistent T -matrix approximation). We find

ΣR
0↑(ω) = i

∫
dω′

2π
TR(ω + ω′)× 2πi δ(ω′ − ǫ0) = −TR(ω + ǫ0).

The retarded component of the reduced T -matrix satisfies TR = v − iv TRBR and hence
TR = v/(1 + ivBR). We are then left with the evaluation of the retarded Cooper pair
propagator. Using the noninteracting Green’s function

B>(ω) =
∑

p

∫
dω′

2π
G>

0,p↑(ω − ω′)G>
0,p↓(ω

′)

=
∑

p

∫
dω′

2π
2πi δ(ω − ω′ − ǫp)× 2πi (1− δp0)δ(ω′ − ǫp)

= −2π
∑

p6=0

δ(ω − 2ǫp),

and hence

BR(ω) = i

∫
dω′

2π

B>(ω′)−B<(ω′)

ω − ω′ + iη
= −i

∑

p6=0

1

ω − 2ǫp + iη
.
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13.6. T -matrix approximation 383

In conclusion, the spectral function in the non self-consistent T -matrix approximation reads

A(ω) = 2
Im[TR(ω + ǫ0)]

|ω − ǫ0 + TR(ω + ǫ0)|2
, TR(ω) =

v

1 + v
∑

p6=0

1
ω − 2ǫp + iη

. (13.77)

In Fig. 13.5 we show the exact spectral function as well as the T -matrix spectral function
for the same parameters as Fig. 13.4. We see that the position of the Cooper pair bind-
ing energy in the T -matrix approximation is in excellent agreement with the exact result.
The T -matrix approximation overestimates the height of the onset of the continuum and
predicts a too sharp transition at the band edge ω = 2. Overall, however, the agreement
is rather satisfactory. For comparison we also display the spectral function in the second-
Born approximation. The second-Born self-energy is given by the first two terms of the
T -matrix expansion and it is therefore perturbative in the interaction v. The second-Born
approximation severely underestimates the binding energy of the Cooper pair, and the con-
tinuum part of the spectrum decays far too slowly.

One final remark before concluding the section: it might look surprising that a second-
order approximation like the second-Born approximation is able to describe the formation
of a bound state, since a bound state is a highly nonperturbative (in v) solution of the
eigenvalue problem. We should keep in mind, however, that what is perturbative here is
the self-energy and not the Green’s function. We have already stressed in Chapter 10 that the
Green’s function calculated from a self-energy with a finite number of diagrams corresponds
to summing an infinite number of Green’s function diagrams.

Exercise 13.6. Show that the number of symmetries NS of the nth order Φ-diagram of

the T -matrix approximation is NS = 2n.

Exercise 13.7. Extract the greater/lesser component of the generic term of the expansion

(13.70) taking into account that for systems in equilibrium the Langreth rules can be modified,

i.e., the vertical track can be ignored provided that t0 → −∞. Fourier transforming, show

that each term of the expansion fulfills (13.72).
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14

Linear response theory:

preliminaries

14.1 Introduction

In the previous chapters we have developed a method to approximate the correlation be-
tween particles in both equilibrium and nonequilibrium systems. All approximations co-
incide with the exact solution when the interaction is turned o�. In this chapter we in-
vestigate whether or not the general problem can be simplified by treating the external
time-dependent fields perturbatively. To first order the corresponding theory is known as
linear response theory (or simply linear response) and, of course, it is an approximate theory
even for noninteracting systems. Through a careful selection of examples we first explore
for what systems and external fields, and under which conditions we can trust the linear
response results. Then, having clear in mind the limitations of the theory, in Chapter 15 we
develop a general formalism based on nonequilibrium Green’s functions.

The problem that we want to solve can be formulated as follows. Consider a system of
interacting particles described by the time-dependent Hamiltonian

Ĥtot(t) = Ĥ + λĤ ′(t),

where Ĥ is time independent, λ ≪ 1 is a small dimensionless parameter, and Ĥ ′(t) is a
time dependent perturbation which we assume to vanish for times t < t0. If the system is
initially in the state |Ψ〉, how does |Ψ〉 evolve to first order in λ?

To answer this question we need an approximate expression for the evolution operator.
The exact evolution operator obeys the di�erential equation

i
d

dt
Ûtot(t, t0) =

[

Ĥ + λĤ ′(t)
]

Ûtot(t, t0), (14.1)

with boundary condition Ûtot(t0, t0) = 1̂. We look for a solution of the form

Ûtot(t, t0) = Û(t, t0)F̂ (t), (14.2)

with Û(t, t0) = exp[−iĤ(t − t0)] the evolution operator of the unperturbed system. Sub-
stituting (14.2) into (14.1) we find a di�erential equation for F̂

i
d

dt
F̂ (t) = λĤ ′H(t)F̂ (t), (14.3)

385
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386 14. Linear response theory: preliminaries

where the subscript “H” denotes the operator in the Heisenberg picture, i.e.,

Ĥ ′H(t) ≡ eiĤ(t−t0)Ĥ ′(t)e−iĤ(t−t0) = Û(t0, t)Ĥ
′(t)Û(t, t0). (14.4)

The operator Ĥ ′H(t) is self-adjoint for all times t. Equation (14.3) must be solved with

boundary condition F̂ (t0) = 1̂ and hence an integration between t0 and t leads to

F̂ (t) = 1̂ − iλ

∫ t

t0

dt′Ĥ ′H(t′)F̂ (t′) = 1̂ − iλ

∫ t

t0

dt′Ĥ ′H(t′) +O(λ2),

where in the last equality we replace F̂ (t′) with the whole r.h.s. (iterative solution). We
conclude that to first order in λ the evolution operator reads

Ûtot(t, t0) = Û(t, t0)

[

1̂ − iλ

∫ t

t0

dt′Ĥ ′H(t′)

]

. (14.5)

Let us comment on this result. We see at once that the operator (14.5) is not unitary. This
implies that if we start from a normalized ket |Ψ〉 then the time evolved ket |Ψ(t)〉 =
Ûtot(t, t0)|Ψ〉 is no longer normalized. The correction is, however, of second order in λ
since

〈Ψ(t)|Ψ(t)〉 = 1− iλ

∫ t

t0

dt′〈Ψ|Ĥ ′H(t′)− Ĥ ′H(t′)|Ψ〉+O(λ2) = 1 +O(λ2).

Nevertheless, the nonunitarity of the evolution operator represents a warning sign that we
should not ignore, especially if we are interested in knowing the long-time behavior of the
system. For instance in the simplest case Ĥ ′(t) = θ(t − t0)E1̂ is a uniform shift, the

evolution operator (14.5) becomes Ûtot(t, t0) = e−iĤ(t−t0)[1 − iλE(t − t0)] and for times
t ≫ t0 + 1/(λE) the correction is far from being small. In the next section we investigate
the consequences of this and related problems and we establish the domain of applicability
of linear response theory.

14.2 Shortcomings of the linear response theory

To establish the domain of applicability of linear response theory we solve exactly some
paradigmatic examples and then use the exact solution to benchmark the quality of the
linear response results. As we shall see, many of the conclusions that we draw in this
section have a completely general character.

We denote by |Ψk〉 the orthonormal eigenkets of the Hamiltonian Ĥ with eigenvalues
Ek :

Ĥ =
∑

k

Ek|Ψk〉〈Ψk|, 〈Ψk|Ψk′〉 = δkk′ .

The most general form of the perturbing Hamiltonian in the basis {|Ψk〉} is

Ĥ ′(t) =
∑

kk′

Tkk′(t)|Ψk〉〈Ψk′ |, (14.6)
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14.2. Shortcomings of the linear response theory 387

with Tkk′ = T ∗k′k . If we expand the time-evolved ket |Ψ(t)〉 as

|Ψ(t)〉 =
∑

k

ck(t)e
−iEkt|Ψk〉, (14.7)

solving the time-dependent Schrödinger equation i ddt |Ψ(t)〉 = [Ĥ+λĤ ′(t)]|Ψ(t)〉 is equiv-
alent to solving the following linear system of coupled di�erential equations:

i
d

dt
ck(t) = λ

∑

k′

Tkk′(t)eiωkk′ tck′(t), (14.8)

with ωkk′ ≡ Ek−Ek′ the Bohr frequencies. We emphasize that (14.8) is an exact reformula-
tion of the original Schrödinger equation. It is easy to show that the coe�cients ck(t) which
solve (14.8) preserve the normalization of the state, i.e.,1

∑

k

|ck(t)|2 =
∑

k

|ck(t0)|2 = 〈Ψ(t0)|Ψ(t0)〉. (14.9)

From this exact result it follows that if the sum over k is restricted to a subset S of eigenkets
then

∑

k∈S
|ck(t)|2 ≤ 〈Ψ(t0)|Ψ(t0)〉. (14.10)

Equation (14.10) provides a useful benchmark for assessing the accuracy of linear response

theory. Let us denote by c
(n)
k (t) the nth order coe�cient of the expansion of ck(t) in

powers of λ. In most cases the initial state is an eigenstate of Ĥ , say |Ψ(t0)〉 = |Ψi〉, and
therefore c

(0)
k (t) = 0 for all k 6= i. This implies that if the subset S includes all states with

the exception of |Ψi〉 then the lowest order contribution to the sum in (14.10) is obtained by

replacing ck(t) with c
(1)
k (t). This leads to the following upper bound for the linear response

coe�cients:
∑

k 6=i

|c(1)k (t)|2 ≤ 〈Ψ(t0)|Ψ(t0)〉. (14.11)

The inequality (14.11) is obviously fulfilled at t = t0 since c
(1)
k (t0) = 0 for k 6= i. As we shall

see, however, there exist situations for which (14.11) is violated at su�ciently long times. In

these cases the probabilistic interpretation of the coe�cients |c(1)k (t)|2 breaks down and the
results of linear response theory become unreliable.

14.2.1 Discrete–discrete coupling

We start our analysis by considering the simplest possible case, i.e., a perturbation that
couples only two states, see Fig 14.1(a). Let k = i and k = f be the label of these states and

1To prove (14.9) we multiply both sides of (14.8) by c∗k(t), take the complex conjugate of the resulting equation
and subtract it from the original one. Then, summing over all k we find that the time derivative of the l.h.s. of
(14.9) is zero.
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388 14. Linear response theory: preliminaries

Figure 14.1 (a) Representation of the time-dependent perturbation. (b) The coe�cient |cf (t)|2
for λ = 0.01 and di�erent values of ω. The thin curves are the linear response results.

let us assume, for simplicity, that the time-dependent perturbation is monochromatic with
frequency ω. The most general Ĥ ′ fulfilling these requirements is

Ĥ ′(t) = Te−iωt|Ψf 〉〈Ψi|+ T ∗eiωt|Ψi〉〈Ψf |.

This Hamiltonian is a special case of (14.6) where all Tkk′(t) = 0 except for Tfi(t) =
T ∗if (t) = Te−iωt. If the system is in |Ψi〉 at time t0 the di�erential equations (14.8) must
be solved with boundary conditions ck(t0) = 0 if k 6= i and ci(t0) = 1. Without loss of
generality we take t0 = 0. As the perturbation couples |Ψi〉 to |Ψf 〉 only, the coe�cients
ck(t) with k 6= i, f remain zero at all times. On the other hand the coe�cients ci and cf
are time dependent since they are solutions of

i
d

dt
ci(t) = λT ∗ei(ω−ωfi)tcf (t), (14.12)

i
d

dt
cf (t) = λTe−i(ω−ωfi)tci(t). (14.13)

This coupled system of equations can easily be solved. We define the frequency ω̄ = ω−ωfi.
Then by multiplying (14.13) by eiω̄t, di�erentiating with respect to t and using (14.12) we find

d2

dt2
cf (t) + i ω̄

d

dt
cf (t) + λ2|T |2cf (t) = 0,

the general solution of which is cf (t) = Aeiα+t +Beiα−t with

α± =
1

2

(

−ω̄ ±
√

ω̄2 + 4λ2|T |2
)

.
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14.2. Shortcomings of the linear response theory 389

The boundary condition cf (0) = 0 implies A = −B. To determine the constant A we
calculate ci(t) from (14.13) and impose that ci(0) = 1 (boundary condition). The final result
is

cf (t) = −
2iλT

√

ω̄2 + 4λ2|T |2
e−iω̄t/2 sin

(√

ω̄2 + 4λ2|T |2
2

t

)

.

The probability |cf (t)|2 of finding the system in |Ψf 〉 at time t oscillates in time and the
amplitude of the oscillations is correctly bounded between 0 and 1; it is easy to verify that
|ci(t)|2 + |cf (t)|2 = 1 for all t. Note that the amplitude reaches the maximum value of 1
when the frequency of the perturbing field is equal to the Bohr frequency ωfi, in which case
ω̄ = 0. This is the so-called resonance phenomenon: |cf (t)|2 increases quadratically up
to a time tmax ∼ π/(4λ|T |), at which time it reaches the value ∼ 1/2. For frequencies ω
much larger or smaller than ωfi the amplitude of the oscillations is of the order of (λT/ω̄)2,
see Fig. 14.1(b), and hence the eigenket |Ψf 〉 has a very small probability of being excited.

The linear response result is obtained by approximating cf (t) to first order in λ and
reads

cf (t) ∼ c(1)f (t) = −iλTe−iω̄t/2 sin
(
ω̄
2 t
)

(
ω̄
2

) . (14.14)

The comparison between the exact and the linear response solution is displayed in Fig.
14.1(b). We can distinguish two regimes:

• |ω̄| ≫ λ|T |: the linear response theory is accurate for short times but it eventually

breaks down at times t > |ω̄|/(λ|T |)2 since cf (t) and c
(1)
f (t) start to oscillate out of

phase. The amplitude of the oscillations of |c(1)f (t)|2 is, however, in good agreement
with the exact solution.

• |ω̄| ≪ λ|T |: at the frequency of the resonance phenomenon (ω̄ = 0) we have

c
(1)
f (t) = −iλT t, which steadily increases with time. The square modulus |c(1)f (t)|2
becomes larger than 1 for t > 1/(λT ), see Fig. 14.1(b), and the inequality (14.11) breaks
down. More generally, close to a resonance neither the frequency nor the amplitude
of the oscillations is well reproduced in linear response.

Even though the above conclusions have been drawn from a rather simple model they are
valid for all systems with a discrete spectrum. Integrating the exact equation (14.8) between
0 and t we find

ck(t) = ck(0)− iλ
∑

k′

∫ t

0

dt′Tkk′(t′)eiωkk′ t′ck′(t′).

If the system is initially in one of the eigenstates of Ĥ , say the one with k = i, the boundary
conditions are ck(0) = δki. Then to first order in λ the coe�cients ck(t) have the following
form

ck(t) ∼ δki + c
(1)
k (t) = δki − iλ

∫ t

0

dt′Tki(t
′)eiωkit

′

. (14.15)
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Figure 14.2 A single eigenstate with energy Ei is coupled at time t0 = 0 to a macroscopic
number 2N + 1 of eigenstates with equally spaced energies Eq = q(Λ/N) = q∆E. In the
limit N →∞ the spectrum becomes a continuum between −Λ and Λ.

Assuming (as in the previous example) that for k 6= i the perturbation is monochromatic2

with frequency ω, Tki(t) = Tkie
−iωt, the coe�cient ck(t) in (14.15) simplifies to

ck(t) ∼ c(1)k (t) = −iλTki e−i(ω−ωki)t/2
sin
(
ω−ωki

2 t
)

(
ω−ωki

2

) , k 6= i, (14.16)

which agrees with (14.14) for Tki = δkfT . The coe�cient c
(1)
k (t) oscillates with frequency

(ω−ωki); this frequency does not contain any information on the perturbation. Furthermore

the probability |c(1)k (t)|2 of finding the system in |Ψk〉 diverges when ω → ωki and t→∞,
a typical signature of the breakdown of linear response theory according to the discussion
below (14.11).

To summarize, the theory of linear response in systems with a discrete spectrum, like
atoms and molecules, yields a good approximation for the coe�cient ck(t) provided that
the frequency ω of the perturbing Hamiltonian does not match the Bohr frequency ωki and
provided that the time t is smaller than |ω−ωki|/(λT )2, where T is an energy of the order
of magnitude of the Tkk′ .

14.2.2 Discrete–continuum coupling

We now show that the performance of linear response theory improves when the pertur-
bation Ĥ ′ couples the eigenket |Ψi〉 to a macroscopic number of eigenkets |Ψq〉 whose
energies Eq form a continuum. A weak coupling between one or few discrete states and
a continuum of states does not change the continuum of energies. Therefore we expect
that if the system is initially in |Ψi〉 then the coe�cients cq oscillate in time with frequency
ωiq which is the same frequency predicted by linear response theory. To make this intuitive
argument more rigorous we consider the system of Fig 14.2. An eigenket |Ψi〉 is coupled to
(2N+1) other eigenkets which we denote by |Ψq〉, q = −N, . . . , N . The eigenkets |Ψq〉 are
instead not coupled by the perturbation. We are interested in studying how the evolution of
the system changes with increasing N and eventually in the limit N →∞. For simplicity we
take the energies Eq = (Λ/N)q equally spaced and the energy Ei in the range (−Λ,Λ).

2Arbitrary perturbations can always be written as a linear combination of monochromatic ones.
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14.2. Shortcomings of the linear response theory 391

The unperturbed Hamiltonian of the system reads

Ĥ = Ei|Ψi〉〈Ψi|+
∑

q

Eq|Ψq〉〈Ψq|. (14.17)

In the large N limit the energy Eq becomes a continuous variable that we call E and
the spectrum becomes a continuum of energies between −Λ and Λ. The sum over q in
(14.17) can then be converted into an integral. This is done by introducing kets that are
orthonormalized to the Dirac δ-function rather than to the δ of Kronecker. Denoting the
energy spacing by ∆E = Λ/N , we define these kets as

|ΨE〉 ≡
|Ψq〉√
∆E

⇒ 〈ΨE |ΨE′〉 = δqq′

∆E
−−−−→
N→∞

δ(E − E′).

In terms of the kets |ΨE〉 the unperturbed Hamiltonian has the correct scaling properties
since

Ĥ = Ei|Ψi〉〈Ψi|+∆E
∑

q

Eq|ΨE〉〈ΨE | −−−−→
N→∞

Ei|Ψi〉〈Ψi|+
∫ Λ

−Λ
dE E |ΨE〉〈ΨE |.

The kets |ΨE〉 are also useful to expand a generic ket |Ψ〉 when N →∞. Indeed

|Ψ〉 = ci|Ψi〉+
∑

q

cq|Ψq〉 −−−−→
N→∞

ci|Ψi〉+
∫ Λ

−Λ
dE cE |ΨE〉, (14.18)

where we define the coe�cients

cE ≡
cq√
∆E

= 〈ΨE |Ψ〉. (14.19)

The square modulus of cE is the probability density of finding the system in |ΨE〉. For
N → ∞ it is more convenient (and physically meaningful) to work with the cE than with
the cq , see also discussion in Section 1.1. We stress that the probability density is not
bounded between 0 and 1 but varies in the range (0,∞).

As in the example of Section 14.2.1, we specialize the discussion to monochromatic
perturbations of frequency ω. For Ĥ ′(t) to have the correct scaling properties we take

Tqi(t) = T ∗iq(t) =
√
∆E SE e

−iωt,

and Tii = Tqq′ = 0. The quantity SE has the physical dimension of the square root of an

energy since Tqi has the physical dimension of an energy. The scaling factor
√
∆E in Tqi

can easily be understood from the form of Ĥ ′(t) written in terms of the |ΨE〉

Ĥ ′(t) = ∆E
∑

q

(
SEe

−iωt|ΨE〉〈Ψi|+ S∗Ee
iωt|Ψi〉〈ΨE |

)
,

which correctly becomes an integral over E in the limit N →∞.
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Figure 14.3 Time dependent modulus square of the coe�cient ci and of the coe�cients
cE = cq/

√
∆E with energy E = 0 and E = Λ/2 (scaled up by a factor 15) for di�erent

numbers (2N + 1) of |Ψq〉 states. Time is measured in units of 1/S2.

At this point a crucial observation about the normalization of the initial state |Ψ(0)〉
is in order. If the initial state is discrete, then |Ψ(0)〉 = |Ψi〉 and the normalization
is 〈Ψ(0)|Ψ(0)〉 = 1. On the other hand, if the initial state is a continuum state, then
|Ψ(0)〉 = |ΨE〉 and the normalization is 〈Ψ(0)|Ψ(0)〉 = limN→∞ 1/∆E = δ(0). We study
here the evolution of the system when the initial state |Ψ(0)〉 = |Ψi〉 and defer the problem
of starting from a continuum state to the next section. With the parameters specified above,
the linear system of equations (14.8) becomes

i
d

dt
ci(t) = λ

√
∆E

∑

q

S∗E e
i(ω−ωqi)tcq(t), (14.20)

i
d

dt
cq(t) = λ

√
∆E SE e

−i(ω−ωqi)tci(t). (14.21)

In Fig. 14.3 we display the numerical solution of (14.20) and (14.21) for di�erent numbers
(2N + 1) = 9, 13, 21 of |Ψq〉 states and frequency ω = 0. We have taken SE = S
independent of E and real, a large bandwidth 2Λ = 20S2 and the parameter λ = 0.5.
For Ei = 0 the square modulus of ci(t) is shown in the left panel. It starts from 1 and
decreases exponentially until a critical time tc(N), after which it behaves quite irregularly.
Note that the exponential decay is the same for all N but the larger is N the longer is
tc(N). Eventually when N → ∞ the coe�cient |ci(t)|2 ∼ e−t/τ for all t. The same kind
of behavior is observed for the coe�cients cE = cq/

√
∆E; they all approach some limiting

function for N →∞, see middle and right panels of Fig. 14.3.
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14.2. Shortcomings of the linear response theory 393

The limit N → ∞ can easily be worked out analytically. Integrating (14.21) between 0
and t with boundary condition cq(0) = 0, substituting the result in (14.20) and taking the
limit N →∞ we find

i
d

dt
ci(t) = −i(λS)2

∫ t

0

dt′
∫ Λ

−Λ
dE ei(ω−E+Ei)(t−t′)ci(t

′). (14.22)

If the quantity |ω + Ei| ≪ Λ (as it is in our case since ω = Ei = 0) we can extend
the energy integral between −∞ and ∞ since the contributions with large E are rapidly
varying in time and the integral over t′ averages them to zero (Riemann–Lebesgue theorem).
When Λ → ∞ the energy integral of the exponential function yields 2πδ(t − t′) and the
integro-di�erential equation reduces to3

i
d

dt
ci(t) = −i(λS)22π

1

2
ci(t) ⇒ ci(t) = e−π(λS)2t. (14.23)

We find the anticipated exponential behavior with an inverse damping time τ−1 = π(λS)2

quadratic in λ. As expected the exponential decay cannot be captured in linear response
theory which predicts ci(t) = 1 at all times. With the analytic solution (14.23) we can
calculate the time-dependent coe�cient cE(t) = cq(t)/

√
∆E by direct integration of (14.21).

The result is

cE(t) = iλS
e−i(ω−E+Ei)t−t/τ − 1

i(ω − E + Ei) + τ−1
. (14.24)

This formula (strictly valid for N → ∞) reproduces with remarkable accuracy the curves
|cE=0(t)|2 and |cE=Λ/2(t)|2 in the middle and right panels of Fig. 14.3 up to the critical
time tc(N) (not shown here).

The main di�erence between the discrete and the continuum coe�cients is that |cE(t)|2
is finite in the long-time limit

lim
t→∞

|cE(t)|2 =
(λS)2

(ω − E + Ei)2 + τ−2
=

1

π

τ−1

(ω − E + Ei)2 + τ−2
. (14.25)

The r.h.s. of (14.25) can vary between 0 and ∞. We know that this is, in general, not a
problem since |cE(t)|2 is a probability density and not a probability. The problem would
exist if the normalization of the ket |Ψ(t)〉 was di�erent from the normalization of the
ket |Ψ(0)〉 which is unity in our case. It can easily be verified, however, that |ci(t)|2 +
∫
dE|cE(t)|2 = 1 at all times and hence that there is nothing wrong with our solution.4

For Ei = ω = 0 the analytic result (14.24) predicts that |cE=0(t)|2 has the largest
asymptotic value and no transient oscillations; this is nicely confirmed by the numerical
simulations in Fig. 14.3 (middle panel). We can interpret the curve |cE=0(t)|2 as being the
continuum version of the resonance phenomenon.

With the exact solution at our disposal we can now analyze the performance of linear
response theory. To first order in λ the solution (14.24) reads

cE(t) ∼ c(1)E (t) = iλS
e−i(ω−E+Ei)t − 1

i(ω − E + Ei)
= −iλS e−i(ω−E+Ei)t/2

sin
(
ω−E+Ei

2 t
)

(
ω−E+Ei

2

) ,

(14.26)

3To obtain (14.23) we use
∫ t
0 dt

′δ(t− t′)f(t′) = f(t)/2.
4In particular for t→∞ we have ci = 0 and the integral of (14.25) between −∞ and ∞ is 1.
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394 14. Linear response theory: preliminaries

Figure 14.4 Square modulus |K(ǫ, t)|2 as a function of ǫ (arbitrary units) for di�erent values
of the time parameter t (arbitrary units).

which agrees with the general result (14.16). As in the discrete–discrete coupling, the coe�-

cient c
(1)
E for which ω = E − Ei (resonance) increases linearly in time (see middle-bottom

panel of Fig. 14.3) and hence diverges when t → ∞. Again linear response theory fails
at the resonant frequency. This failure is also signaled by the breakdown of the upper
bound (14.11) which again establishes itself as a very useful criterion for determining the
range of validity of the linear response results. In the limit N → ∞ the l.h.s. of (14.11)

reads limN→∞
∑

q |c
(1)
q (t)|2 =

∫
dE |c(1)E (t)|2. To evaluate this quantity we introduce the

function

K(ǫ, t) = e−iǫt/2
sin
(
ǫ
2 t
)

(
ǫ
2

) , (14.27)

in terms of which the linear response probability density reads

|c(1)E (t)|2 = (λS)2|K(ω − E + Ei, t)|2. (14.28)

The square modulus |K(ǫ, t)|2 is displayed in Fig. 14.4 as a function of ǫ for di�erent values
of t. It has a peak in ǫ = 0 whose height increases as t2 and whose width decreases as
2π/t. For t → ∞ we can approximate |K(ǫ, t)|2 as a “square barrier” of height t2, width
2π/t, centered in ǫ = 0, i.e.,5

lim
t→∞

|K(ǫ, t)|2 ∼ lim
t→∞

t2 θ
(π

t
− |ǫ|

)

= lim
t→∞

2π t δ(ǫ), (14.29)

where in the last step we use the representation of the δ-function

δ(ǫ) = lim
ξ→0

θ(ξ − |ǫ|)/(2ξ).

5A rigorous derivation of (14.29) can be found in any textbook of quantum mechanics, see, e.g., Ref. [120].
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14.2. Shortcomings of the linear response theory 395

At first sight (14.29) does not seem to be correct since from the definition (14.27)

lim
ǫ→0
|K(ǫ, t)|2 = t2, (14.30)

which grows quadratically in t, as opposed to the linear dependence in (14.29). This apparent
contradiction can easily be explained by the fact that δ(0) is proportional to the time volume,
i.e., δ(0) ∼ limt→∞ t. Indeed taking the limit ǫ → 0 in (14.29) before the limit t → ∞ we
see that

lim
ǫ→0

δ(ǫ) = δ(0) = lim
t→∞

lim
ǫ→0

t

2π
θ
(π

t
− |ǫ|

)

= lim
t→∞

t

2π
, (14.31)

and hence (14.29) and (14.30) agree for large t. Using (14.29) in (14.28) we find

lim
t→∞

∫ ∞

−∞
dE |c(1)E (t)|2 = lim

t→∞
(λS)22π t = lim

t→∞
2t

τ
→∞. (14.32)

Thus the inequality (14.11) is not fulfilled when t becomes larger than τ/2. We conclude
that the mere fact of having a continuum of states does not eliminate the problems of
linear response theory at long times. We could have anticipated this conclusion using the
following intuitive argument. Since Ĥ ′ does not couple the continuum states the only
possible transitions are |Ψi〉 → |ΨE〉 → |Ψi〉 → |ΨE′〉 → . . . If the probability density for
the transition |Ψi〉 → |ΨE〉 is peaked around some energy Er [as it is in our case with
Er = Ei + ω, see (14.25)] the dynamics of the discrete–continuum system is very similar to
the dynamics of the resonant two level system (with energies Ei and Er) analyzed in the
previous section. From this argument we expect that a coupling between the continuum
states is necessary for linear response theory to be reliable at all times. This is the topic of
the next section.

Before moving to the next section, however, we still have to check whether the linear
response results are as bad also for the o�-resonance coe�cients. In the right panel of
Fig. 14.3 we display |cE(t)|2 for E = Λ/2 = 5S2 (we recall that Λ = 10S2 in the figure).
Before the critical time tc(N) the oscillations have a period Tp of about 1.25/S2, which is
consistent with the frequency |ω−E+Ei| = E = 2π/Tp ∼ 5S2 of the solution (14.24). For
large N the probability density |cE(t)|2 approaches a limiting function whose asymptotic
value is smaller than that for E = 0, again in agreement with (14.24). The linear response
solution (14.26) is accurate up to times t < τ , see right-bottom panel. The loss of accuracy

is solely due to the fact that the amplitude of the oscillations in |c(1)E |2 is not damped, as

the frequency of the oscillations in cE and c
(1)
E is the same. This behavior is qualitatively

di�erent from the behavior of systems with a discrete spectrum where 1) both the exact and
the linear response probabilities are not damped, and 2) the frequency of the oscillations in

cE and c
(1)
E is di�erent and hence c

(1)
E eventually goes out of phase.

To summarize, in systems with a continuum spectrum coupled to discrete states, linear
response theory fails in reproducing the coe�cients cE(t) at the resonant energies, misses
the damping and violates the inequality (14.11) when t → ∞. As we shall see, the coupling
between continuum states alleviates all these problems.
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Figure 14.5 Coupling between continuum states.

14.2.3 Continuum–continuum coupling

For systems with a continuum spectrum there exist several physical situations in which
the perturbation Ĥ ′ couples the states of the continuum. An example is the perturbation
Ĥ ′(t) =

∫
dxV (r, t)ψ̂†(x)ψ̂(x) added to the free-particle Hamiltonian Ĥ = − 1

2

∫
dx ψ̂†(x)

∇2ψ̂(x) for particles with unit mass and charge. This Hamiltonian is diagonal in the
momentum–spin basis

Ĥ =
∑

σ

∫
dp

(2π)3
p2

2
d̂†pσd̂pσ,

where d̂†pσ (d̂pσ) creates (annihilates) a particle with momentum p and spin σ [see also

(1.65)]. Expressing Ĥ ′ in terms of the d̂-operators we find

Ĥ ′(t) =
∑

σ

∫
dp

(2π)3
dp′

(2π)3
Vp−p′(t)d̂†pσd̂p′σ,

with Vp(t) =
∫
dr e−ip·rV (r, t), the Fourier transform of the potential. Thus a generic

continuum eigenket |p1σ1 . . .pNσN 〉 = d̂†pNσN
. . . d̂†p1σ1

|0〉 is coupled to infinitely many
eigenkets of the continuum, as illustrated in Fig. 14.5. The coupling between two eigenkets
is λVpi−p′(t) with pi=1,...,N , one of the momenta of the initial state, and p′ an arbitrary
other momentum. The more localized is the potential in real space, the more spread is its
Fourier transform; in the limiting case V (x, t) = V (t)δ(r), the amplitude Vp−p′(t) = V (t)
for all p and p′. In the following we investigate the time evolution of a system that can be
considered as a simplified version of this example.

Let us consider a Hamiltonian Ĥ with only continuum eigenkets |Ψq〉 coupled by the

perturbation Ĥ ′(t). For simplicity we take the eigenenergies Eq = q(Λ/N) = q∆E,
q = −N, . . . , N , equally spaced as illustrated in the left panel of Fig. 14.6. We consider a
perturbation of the form

Ĥ ′(t) = ∆E f(t)
∑

qq′

|Ψq〉〈Ψq′ | ⇒ Tqq′(t) = ∆E f(t), (14.33)
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14.2. Shortcomings of the linear response theory 397

Figure 14.6 Representation of the energy levels of the equilibrium system (left panel) and of
the time-dependent perturbation (right panel).

with f(t) a real function of time, see right panel of Fig. 14.6. The prefactor ∆E guarantees
that Ĥ ′ has the correct scaling properties when N → ∞. Indeed, if we define the contin-
uum kets |ΨE〉 = |Ψq〉/

√
∆E (as we did in the previous section) orthonormalized to the

δ-function we have

lim
N→∞

Ĥ ′(t) = f(t)

∫

dEdE′|ΨE〉〈ΨE′ |.

We can think of |ΨE〉 as the eigenkets of a free particle in one dimension or as the eigenkets
of N -particles, N − 1 of which are blocked while one is free to move in a one-dimensional
continuum.6

The linear system of equations (14.8) for the coe�cients cq with Tqq′ from (14.33) reads

i
d

dt
cq(t) = λ∆E f(t)

∑

q′

eiωqq′ tcq′(t) = λ∆E eiEqtf(t)C(t), (14.34)

where we define the function

C(t) ≡
∑

q′

e−iEq′ tcq′(t).

To solve (14.34) we need a boundary condition for the cq . We assume that the ket at time

t0 = 0 is one of the eigenkets of Ĥ , and in accordance with the discussion of the previous
section we normalize it as |Ψ(0)〉 = |Ψq0〉/

√
∆E, which implies

〈Ψ(0)|Ψ(0)〉 = 1

∆E
−−−−→
N→∞

δ(0). (14.35)

This choice of the initial state implies the boundary condition cq(0) = δqq0/
√
∆E. Then

the integral of (14.34) between 0 and t yields

cq(t)−
δqq0√
∆E

= −iλ∆E
∫ t

0

dt′eiEqt
′

f(t′)C(t′). (14.36)

6These are, for instance, the eigenkets of a single ionized atom or molecule in which the free electron has radial
momentum p and fixed angular momentum quantum numbers l,m.
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From (14.36) it is possible to derive a simple integral equation for the function C(t). Multi-
plying both sides by e−iEqt and summing over q we get

C(t)− e−iE0t

√
∆E

= −iλ
∫ t

0

dt′∆E
∑

q

e−iEq(t−t′) f(t′)C(t′), (14.37)

where E0 = Eq0 . This equation can be solved numerically for any finite N , and the
solution can be inserted in (14.36) to extract the coe�cients cq(t). Since we have made no
approximations, the normalization

∑

q |cq(t)|2 remains equal to 1/∆E for all times.
The analytic calculations can be pushed further when N is very large (or equivalently

∆E very small). For N ≫ 1 the exponential e−iEq(t−t′) is a slowly varying function of q
up to times t . 2π/∆E, and hence the sum over q in (14.37) is well approximated by an
integral over energy,

C(t)− e−iE0t

√
∆E

= −iλ
∫ t

0

dt′
∫ Λ

−Λ
dE e−iE(t−t′) f(t′)C(t′), t .

2π

∆E
. (14.38)

Equation (14.38) is an iterative integral equation for C(t). The first iteration consists in
replacing C(t′) in the r.h.s. with e−iE0t

′

/
√
∆E. If |E0| ≪ Λ the contributions to the time

integral with |E| ≫ |E0| are negligible, since ei(E−E0)t
′

is a rapidly varying function of t′

and the integral over t′ of ei(E−E0)t
′

f(t′) ∼ 0 (Riemann–Lebesgue theorem). The reader
can easily check that the same reasoning applies to all the subsequent terms of the iteration.
Therefore we can safely extend the domain of integration from (−Λ,Λ) to (−∞,∞). Then
the energy integral yields 2πδ(t− t′) and the integral over t′ becomes trivial. The final result
for C(t) is

C(t) =
1√
∆E

e−iE0t

1 + iπλf(t)
, t .

2π

∆E
. (14.39)

Inserting (14.39) in (14.36) we also obtain the solution for the coe�cients cq ,

cq(t) =
1√
∆E

[

δqq0 − iλ∆E

∫ t

0

dt′ei(Eq−E0)t
′ f(t′)

1 + iπλf(t′)

]

, t .
2π

∆E
. (14.40)

Before continuing an observation is in order. Let Q(t) denote the quantity in the square bracket.
Then |Q(t)| must be less than unity for all t for otherwise the coe�cient cq would have modulus
larger than 1/

√
∆E and hence the normalization of the state would become larger than 1/∆E. It is

instructive to calculate Q(t) in some simple case like, e.g., f(t) = f0θ(t):

Q(t) = δqq0 − iλ∆E
f0

1 + iπλf0
eiωqq0

t/2
sin
(

ωqq0
t

2

)

(ωqq0
2

) . (14.41)

Now note that for energies Eq close to E0 the ratio sin(ωqq0t/2)/(ωqq0/2) ∼ t and hence |Q(t)| →
∞ for large t. Is there anything wrong? No. The coe�cient cq(t) is given by the r.h.s. of (14.40) only

up to times t ∼ 2π/∆E, meaning that we cannot take the limit t→ ∞ before the limit ∆E → 0.

As already pointed out several times for continuous spectra, it makes more sense to
work with the coe�cient cE = cq/

√
∆E whose square modulus represents the probability
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14.2. Shortcomings of the linear response theory 399

density of finding the state at energy E. Multiplying (14.40) by 1/
√
∆E and taking the limit

∆E → 0 we find the following nice result:

cE(t) = δ(E − E0)− iλ

∫ t

0

dt′ei(E−E0)t
′ f(t′)

1 + iπλf(t′)
, (14.42)

which is valid for all times. The exact solution (14.42) contains plenty of information of
general character and we therefore discuss it in some detail below.

Normalization: Let us verify that the normalization
∫
dE|cE(t)|2 is equal to δ(0), see

(14.35), for all times t and all values of λ. The modulus square of cE(t) is the sum of four
terms one of which is δ(E −E0)

2. This term gives δ(0) upon integration. Thus the integral
over E of the remaining three terms must be identically zero. The integral of the cross
products contains δ(E − E0) and can easily be evaluated. We find

∫

dE|cE(t)|2 = δ(0)− 2π

∫ t

0

dt′
(λf(t′))2

1 + (πλf(t′))2

+

∫

dE

∫ t

0

dt′dt′′ei(E−E0)t
′ λf(t′)

1 + iπλf(t′)
e−i(E−E0)t

′′ λf(t′′)

1− iπλf(t′′)
.

The integral over E in the last term on the r.h.s. yields 2πδ(t′ − t′′) and upon integration
over t′′ we recognize that it exactly cancels the second term on the r.h.s.. The solution
(14.42) preserves the normalization for all t!

Photon absorption/emission: Let us calculate cE(t) when f(t) is a dichromatic pertur-

bation of the form, e.g., f(t) = θ(t)f0 cos(ωt).
7 We expand (14.42) in powers of λ and

denote by c
(n)
E the nth order term of the expansion. Taking into account that

−iλf(t)
1 + iπλf(t)

=

∞∑

n=0

πn[−iλf(t)]n+1 =

∞∑

n=0

πn

(

− iλf0
2

)n+1
(
eiωt + e−iωt

)n+1

=

∞∑

n=0

πn

(

− iλf0
2

)n+1 n+1∑

k=0

(
n+ 1
k

)

e−i(n+1−2k)ωt,

the quantity c
(n)
E can be expressed in terms of the function K(ǫ, t) defined in (14.27):

c
(n)
E (t) = πn−1

(

− iλf0
2

)n n∑

k=0

(
n
k

)

K((n− 2k)ω − E + E0, t); (14.43)

for n = 0 we have to add δ(E − E0) to the r.h.s.. Let us comment on this result. Since
K(ǫ, t) has a peak in ǫ = 0 whose width decreases in time, (14.43) tells us that only states
with energy E such that E−E0 is an integer multiple of ω have a nonvanishing probability

7In our example we cannot consider purely monochromatic perturbations since we chose Tqq′ (t) independent
of q and q′ which implies that Tqq′ (t) must be real. To form a real function with monochromatic perturbations
the minimum number of frequencies is two, i.e., ω and −ω.
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400 14. Linear response theory: preliminaries

of being excited when t → ∞. The well known quantum mechanical interpretation of this
result is that the transition to a state with energy E = E0 + mω occurs via absorption
or emission of |m| quanta (photon) of energy ω. We also see that to describe a process
involving the absorption/emission of |m| quanta it is necessary to include at least the |m|th
order term in the perturbative expansion. Therefore linear response theory gives us access
to processes with the absorption/emission of just one photon. This is a completely general
result.

Linear response solution: To first order in λ the solution (14.42) reads

cE(t) ∼ c(0)E (t) + c
(1)
E (t) = δ(E − E0)− iλ

∫ t

0

dt′ei(E−E0)t
′

f(t′). (14.44)

If λ ≪ 1 then the approximate result (14.44) is in excellent agreement with the exact result
(14.42) for all times and energies. We have thus found that for systems with a continu-
ous spectrum and for perturbations that couple the continuum states the theory of linear
response works well even at long times. In the example of the quantum discharge of a
capacitor considered in Section 7.2.3 we were in exactly this situation: the time-dependent
bias in (7.29) couples the eigenstates of the equilibrium Hamiltonian in a similar way as
illustrated in Fig. 14.5.

We can learn something more about the performance of linear response theory by
studying the coe�cient cE for the dichromatic perturbation considered above. From (14.43)
we have

c
(1)
E (t) = − iλf0

2
{K(ω − E + E0, t) +K(−ω − E + E0, t)},

and hence for E 6= E0

|cE(t)|2 ∼ |c(1)E (t)|2 =

(
λf0
2

)2
{
|K(ω − E + E0, t)|2 + |K(−ω − E + E0, t)|2

+2Re [K(ω − E + E0, t)K
∗(−ω − E + E0, t)]}. (14.45)

In Fig. 14.7 we show the quantity in the curly bracket as a function of E for di�erent values
of t. As expected it has two main peaks located at E = E0 ± ω whose height increases as
t2 and whose width narrows as 2π/t. In the limit t → ∞ the cross product between the
two K functions [second row of (14.45)] approaches zero (in a distribution sense) and using
(14.29) we obtain the following asymptotic behavior:

lim
t→∞

|c(1)E (t)|2 = lim
t→∞

(
λf0
2

)2

2π t [δ(ω − E + E0) + δ(−ω − E + E0)]. (14.46)

This is our first encounter with the so called Fermi golden rule: the probability density is
nonvanishing provided that E = E0 ± ω (energy conservation) and increases linearly in
time. In the previous section (discrete–continuum coupling) the same asymptotic behavior

|c(1)E (t)|2 ∼ t× δ-function led to the violation of the upper bound (14.11). Why is it not so in
the present case? We can answer by evaluating the l.h.s. of (14.11). Using (14.46) we find

lim
t→∞

∫

E 6=E0

dE |c(1)E (t)|2 = lim
t→∞

2

(
λf0
2

)2

2π t = 2

(
2πλf0

2

)2

× δ(0), (14.47)
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14.3. Fermi golden rule 401

Figure 14.7 The function in the curly bracket of (14.45) versus E (in a.u.) for E0 = 0, ω = 2
a.u., and for di�erent values of t (in a.u.).

where in the last equality we take (14.31) into account. If λ ≪ 1 the r.h.s. of this equation
is smaller than δ(0) = 〈Ψ(0)|Ψ(0)〉 and (14.11) is fulfilled. The di�erence between this case
and the one of the previous section should now be evident. In (14.47) the term proportional
to t must be compared to δ(0) while in (14.32) it must be compared to 1.

14.3 Fermi golden rule

We are now ready to study the general case of a Hamiltonian Ĥ with both discrete and
continuum eigenkets and a perturbation Ĥ ′(t) which couples discrete states to discrete and
continuum states as well as continuum states to continuum states. We denote by |Ψj〉 the
discrete eigenkets of Ĥ with energies Ej . The continuum eigenkets |Ψα〉 of Ĥ are labeled
with the collective index α = (E,Q) where E is the continuum energy and Q is a set
of discrete or continuum quantum numbers which specify the physical state uniquely. In
order to highlight the typical structure of the linear response formulas we find it convenient
to introduce a notation that treats discrete and continuum states on an equal footing. We
define the label a which runs over both discrete states, a = j, and continuum states, a = α,
and the shorthand notation

∫
da ≡ ∑j +

∫
dα. The eigenkets of the Hamiltonian Ĥ are

therefore represented by the set {|Ψa〉} with inner product

〈Ψa|Ψa′〉 = δ(a− a′), (14.48)

where δ(a−a′) = δjj′ if a = j and a′ = j′, and δ(a−a′) = δ(α−α′) = δ(E−E′)δ(Q−Q′)
if a = α and a′ = α′. In the examples of Section 14.2 there was no Q quantum number
since the energy E was enough to specify the continuum eigenkets.
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402 14. Linear response theory: preliminaries

One advantage of the new notation is that Ĥ and Ĥ ′(t) take the compact form

Ĥ =

∫

daEa|Ψa〉〈Ψa|, Ĥ ′(t) =

∫

da da′ Taa′(t)|Ψa〉〈Ψa′ |.

Similarly, the expansion of the ket |Ψ(t)〉 reads

|Ψ(t)〉 =
∫

da ca(t)e
−iEat|Ψa〉.

Using the inner product (14.48), the time-dependent Schrödinger equation i ddt |Ψ(t)〉 = (Ĥ+

λĤ ′(t))|Ψ(t)〉 can be shown to be equivalent to

i
d

dt
ca(t) = λ

∫

da′ Taa′(t)eiωaa′ tca′(t), (14.49)

with the obvious notation ωaa′ = Ea−Ea′ . If |Ψ(0)〉 = |Ψa0
〉 is an eigenket at time t0 = 0,

then ca(0) = δ(a− a0) and to first order in λ the solution of (14.49) reads

ca(t) ∼ c(0)a (t) + c(1)a (t) = δ(a− a0)− iλ

∫ t

0

dt′ Taa0
(t′)eiωaa0

t′ . (14.50)

The analytic calculations can be carried out a little further when the perturbation is
monochromatic. This is not a serious restriction since, as we have already observed, any
perturbation can be written as a linear combination (Fourier transform) of monochromatic
perturbations. For simplicity we set the diagonal element Ta0a0

(t) = 0; its inclusion is
straightforward and is left as an exercise for the reader. As for the o�-diagonal elements, we
take the monochromatic dependence Taa0

(t) = Taa0
e−iωt. Inserting this form into (14.50)

we obtain
c(1)a (t) = −iλTaa0

K(ω − ωaa0
, t),

from which we can extract the long-time limit of the probability (if a = j) or of the
probability density (if a = α) for the transition a0 → a in the usual manner,

lim
t→∞

|c(1)a (t)|2 = |λTaa0
|22π t δ(ω − ωaa0

). (14.51)

Below we study the solution (14.51) for |Ψ(t0)〉 = |Ψa0
〉 which is either a discrete state or a

continuum state.

First case: |Ψ(t0)〉 is a discrete state. Let |Ψ(0)〉 = |Ψi〉 be one of the discrete eigenkets
of Ĥ . Then the normalization is 〈Ψ(0)|Ψ(0)〉 = 1. From (14.50) and (14.51) the probability
for the transition to another discrete state j 6= i is

lim
t→∞

|cj(t)|2 ∼ lim
t→∞

|c(1)j (t)|2 = |λTji|22π t δ(ω − ωji).

This result tells us that for ω = ωji the probability |c(1)j (t)|2 grows as tδ(0) ∼ t2 (unless
Tji = 0) and eventually becomes larger than 1. Consequently the probability overcomes the
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14.3. Fermi golden rule 403

upper bound (14.11) and the theory of linear response breaks down. Regarding the probability
density for the transition to a continuum state α we have

lim
t→∞

|cα(t)|2 ∼ lim
t→∞

|c(1)α (t)|2 = |λTαi|22π t δ(ω − ωαi). (14.52)

Even though the probability density can vary between 0 and ∞, the continuum states too
are responsible for the breakdown of the upper bound (14.11). Indeed (14.52) implies

lim
t→∞

∫

dα |c(1)α (t)|2 = lim
t→∞

2π t λ2
∫

dQ |Tαi|2E=Ei+ω →∞,

where in the last step we split the integral over α = (E,Q) into an integral over energy E
and quantum number Q. It is noteworthy, however, that the divergence of the continuum
states is milder than that of the discrete states. The former goes as ∼ t independent of
the value of ω while the latter goes as tδ(0) ∼ t2 when the frequency ω matches a Bohr
frequency.

Second case: |Ψ(t0)〉 is a continuum state. Let us study the linear response solution
when |Ψ(0)〉 = |Ψα0

〉 is one of the continuum eigenkets of Ĥ . In this case the normalization
is 〈Ψ(0)|Ψ(0)〉 = δα(0). The notation δα(0) = δ(α − α) is used to distinguish the
δ-function in α-space from the δ-function in energy space δ(0) = δ(E−E). We may write
that δα(0) = δ(0)δQ(0) with δQ(0) = δ(Q − Q), the δ-function in Q space. The quantity
δQ(0) is unity only provided that Q is a discrete quantum number; if Q is an angle (or a set
of angles) or a momentum (or a set of momenta) or any other kind of continuous quantum
number then the quantity δQ(0) is infinite.

The probability for the transition to a discrete state j can be extracted from (14.51) by
setting a = j and a0 = α0:

lim
t→∞

|cj(t)|2 ∼ lim
t→∞

|c(1)j (t)|2 = |λTjα0
|22π t δ(ω − ωjα0

). (14.53)

For ω = ωjα0
we obtain the (by now) familiar divergence tδ(0). This divergence, however,

does not necessarily imply that the inequality (14.11) is violated when t→∞. Indeed for large
t we can write tδ(0) ∼ δ(0)δ(0) which must be compared with the initial normalization
δα(0) = δ(0)δQ(0). Only if Q is a discrete quantum number or if δ(0) “diverges faster”

than δQ(0) when Q is a continuum quantum number, then the probability |c(1)j (t → ∞)|2
exceeds the upper bound in (14.11). In all other cases (14.11) is fulfilled and other criteria must
be found to assess the quality of the linear response approximation.

Next we consider the probability density for the transition to another continuum state
α 6= α0. From (14.50) and (14.51) we find

lim
t→∞

|cα(t)|2 ∼ lim
t→∞

|c(1)α (t)|2 = |λTαα0
|22π t δ(ω − ωαα0

). (14.54)

We can check the reliability of this result by replacing the sum over k in (14.11) with the
integral over α 6= α0. We have

lim
t→∞

∫

α6=α0

dα |c(1)α (t)|2 =

[

(2πλ)2
∫

dQ |Tαα0
|2E=E0+ω

]

× δ(0), (14.55)
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404 14. Linear response theory: preliminaries

where we replace t with 2πδ(0) and define E0 as the eigenenergy of |Ψα0
〉. Excluding

pathological perturbations, the integral over Q is either finite (when Q is a discrete quantum
number8) or at most divergent like δQ(0) (when the coupling is extremely localized in Q-
space as, e.g., Tαα0

= TEE0
δ(Q−Q0)). Thus, for su�ciently small λ the r.h.s. of (14.55) is

always smaller than δα(0) = δ(0)δQ(0) and the inequality (14.11) is fulfilled. This result is a
generalization of what we found in Section 14.2.3, see (14.47).

General remarks: From the previous analysis we can conclude that if the frequency of
the perturbation is far o� the Bohr frequencies ωjα0

= Ej − E0, then the linear response
coe�cients fulfill the upper bound (14.11). We stress, however, that (14.11) is not the only
condition to fulfill for the long-time results to be accurate and reliable. For instance the
damping discussed in Section 14.2.2 cannot be captured in linear response. Things con-
siderably improve when there are only continuum states. In most of these cases the linear
response formulas are accurate also when t→∞ and, admittedly, very elegant. Considering
again (14.54) we see that the probability density |cα(t)|2 grows linearly in time provided that
the energy E = E0 + ω. Therefore it makes sense to define a probability density per unit
time and cast (14.54) in the form

lim
t→∞

d

dt
|cα(t)|2 ∼ 2π|λTαα0

|2δ(E − E0 − ω), α 6= α0 (14.56)

This equation is known as the Fermi golden rule and it is of great practical use.9 For example
the power P fed into the system is equal to the integral of the probability density per unit
time to excite a state of energy E times the energy E − E0 of the transition. In the long
time limit we can write

lim
t→∞

P (t) = lim
t→∞

∫

dα (E − E0)
d

dt
|cα(t)|2 ∼ 2πω

∫

dQ |λTαα0
|2E=E0+ω.

Thus to lowest order in λ the system can absorb energy only via transitions to states with
energy E = E0 + ω. This is in agreement with the discussion in Section 14.2.3, where we
observed that the linear response theory can only describe the absorption or emission of a
single photon.

14.4 Kubo formula

The coe�cients of the expansion of |Ψ(t)〉 constitute the basic ingredients to calculate the
time-dependent quantum average of any operator Ô(t). We have

〈Ψ(t)|Ô(t)|Ψ(t)〉 =
∫

da da′c∗a(t)ca′(t)ei(Ea−Ea′ )t〈Ψa|Ô(t)|Ψa′〉

=

∫

da da′c∗a(t)ca′(t)〈Ψa|ÔH(t)|Ψa′〉, (14.57)

8In this case the integral over Q is actually a sum.
9Despite its name the Fermi golden rule was derived the first time by Dirac in 1927 [121]. In 1949 Fermi gave a

course on Nuclear Physics at the University of Chicago (his lectures have been collected in a book titled Nuclear
Physics, see Ref. [122]) in which he rederived (14.56) and coined for it the name “Golden rule No. 2.” This name was
so appealing that people started to refer to (14.56) initially as “Golden rule No. 2, by E. Fermi” and eventually as the
“Fermi golden rule,” see also Ref. [123].

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:08:31 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.016

Cambridge Books Online © Cambridge University Press, 2015



14.4. Kubo formula 405

with ÔH(t) = eiĤtÔ(t)e−iĤt the operator in the Heisenberg picture (we remind the reader
that we set t0 = 0). To first order in λ the coe�cients ca(t) are given in (14.50). Since the
coupling Taa0

(t) = 〈Ψa|Ĥ ′(t)|Ψa0
〉, we can write

ca(t) ∼ 〈Ψa|1̂ − iλ

∫ t

0

dt′Ĥ ′H(t′)|Ψ(0)〉, |Ψ(0)〉 = |Ψa0
〉. (14.58)

This result can also be seen as a direct consequence of (14.5). Indeed, ca(t)e
−iEat =

〈Ψa|Ψ(t)〉 = 〈Ψa|Ûtot(t, 0)|Ψ(0)〉, and using the first order approximation (14.5) for the
evolution operator we recover (14.58). Inserting (14.58) into (14.57) and performing the integral
over a and a′ (

∫
da |Ψa〉〈Ψa| = 1̂) we obtain

δO(t) = −iλ
∫ t

0

dt′ 〈Ψ(0)|
[

ÔH(t), Ĥ ′H(t′)
]

−
|Ψ(0)〉, (14.59)

where
δO(t) ≡

[

〈Ψ(t)|Ô(t)|Ψ(t)〉 − 〈Ψ(0)|Ô(t)|Ψ(0)〉
]

first order in λ

represents the change of the time-dependent quantum average induced by the external
perturbation to first order in λ. Equation (14.59) is known as the Kubo formula. The Kubo
formula lends itself to be generalized to time-dependent ensemble averages. We simply have
to calculate δO(t) for |Ψ(0)〉 = |Ψa〉 and then average over all a with probabilities ρa that
the system is in |Ψa〉:

δO(t) = −iλ
∫

da ρa

∫ t

0

dt′ 〈Ψa|
[

ÔH(t), Ĥ ′H(t′)
]

−
|Ψa〉

= −iλ
∫ t

0

dt′
Tr

[

e−βĤ
M
[

ÔH(t), Ĥ ′H(t′)
]

−

]

Tr
[

e−βĤM
] = −iλ

∫ t

0

dt′ 〈
[

ÔH(t), Ĥ ′H(t′)
]

−
〉,

(14.60)

where we use the short-hand notation 〈. . .〉 to denote ensemble averages. Equation (14.60)
is the starting point for our subsequent derivations. In Chapter 15 we lay down the basis for
a formulation of linear response theory in terms of Green’s functions.

Before concluding we should make an important remark about the possibility of ex-
panding in powers of λ the change of a time-dependent average. To first order we see
that (14.60) involves an average of operators in the Heisenberg picture with the unperturbed
Hamiltonian Ĥ . Therefore at zero temperature one might be tempted to use the zero-
temperature formalism (see Section 5.4) to evaluate this average. Unfortunately, however, the
zero-temperature formalism gives us access only to time-ordered averages. In the special
case of (14.60) there exists a simple trick (see for instance Ref. [124]) to extract the average
of the commutator from the average of T

{
ÔH(t)Ĥ ′H(t′)

}
. Going beyond linear response

this is not possible anymore. For instance to second order in λ the change of the time-
dependent average involves a double commutator

[[
ÔH(t), Ĥ ′H(t′)

]

−, Ĥ
′
H(t′′)

]

− and there

is no trick to calculate this quantity from the average of T
{
ÔH(t)Ĥ ′H(t′)Ĥ ′H(t′′)

}
. Second
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406 14. Linear response theory: preliminaries

order changes are relevant every time the linear order change vanishes. This is the case of
photoemission spectra where the current is quadratic in the radiative coupling Ĥ ′ = Ĥl−e.
In Section 6.3.4 we developed a simple theory of photoemission based on the assumption
that the photoelectron was suddenly kicked out of the sample. A more microscopic theory
consists in calculating the second-order change of the average of the occupation operator
Ô = d̂†ǫ d̂ǫ for electrons of energy ǫ [125, 126]. In this context MBPT has to be formulated on
the contour [127] despite the fact that all averages are equilibrium averages.
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15

Linear response theory:

many-body formulation

15.1 Current and density response function

In the previous chapter we learned how to approximate the evolution operator to first
order in the time-dependent perturbation. We separated the total Hamiltonian into a time-
independent part Ĥ plus a “small” time-dependent perturbation λĤ ′(t), and derived the
result (14.5). The careful reader might have realized that the idea of Section 14.1 can be
exploited in much more general situations. In fact, the derivation remains valid also when
λĤ ′(t) is added to a time-dependent Hamiltonian. Let us make this point clear. Consider
a system described by the time-dependent Hamiltonian Ĥ(t) and subject to a further,
but “small,” time-dependent perturbation λĤ ′(t). The full evolution operator obeys the
di�erential equation

i
d

dt
Ûtot(t, t0) =

[

Ĥ(t) + λĤ ′(t)
]

Ûtot(t, t0),

with boundary condition Ûtot(t0, t0) = 1̂. As in Section 14.1 we look for solutions of the
form Ûtot(t, t0) = Û(t, t0)F̂ (t) where Û(t, t0) is the evolution operator for the system
with Hamiltonian Ĥ(t). Following the same steps as in Section 14.1 we soon arrive at the
result (14.5), the only di�erence being that the operators are in the Heisenberg picture with
time-dependent Hamiltonian Ĥ(t). Since (14.5) is the only ingredient in the derivation of the
Kubo formula, (14.60) also does not change. It is instructive to rederive the Kubo formula
in this more general context. We will follow an alternative (and shorter) path from which
the generality and the simplicity of (14.60) can be better appreciated. The time-dependent
ensemble average of the operator Ô(t) is

O(t) = 〈Ûtot(t0, t)Ô(t)Ûtot(t, t0)〉

∼ 〈
[

1̂ + iλ

∫ t

t0

dt′Ĥ ′H(t′)

]

Û(t0, t)Ô(t)Û(t, t0)

[

1̂ − iλ

∫ t

t0

dt′Ĥ ′H(t′)

]

〉

= 〈ÔH(t)〉 − iλ

∫ t

t0

dt′ 〈
[

ÔH(t), Ĥ ′H(t′)
]

−
〉+O(λ2).

407
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408 15. Linear response theory: many-body formulation

In this equation the symbol 〈. . .〉 denotes the ensemble average as in Section 14.4. Letting
δO(t) = O(t) − 〈ÔH(t)〉 be the change of the time-dependent average of Ô(t) to first
order in λ we find again the Kubo formula

δO(t) = −iλ
∫ t

t0

dt′ 〈
[

ÔH(t), Ĥ ′H(t′)
]

−
〉 (15.1)

In this section we use the linear response theory to study a system of interacting
particles with mass m and charge q moving under the influence of an external vector
potential A(x, t) and scalar potential V (x, t).1 The time-dependent Hamiltonian is therefore
Ĥ(t) = Ĥ0(t) + Ĥint with

Ĥ0(t) =
1

2m

∫

dx ψ̂†(x)
(

−i∇− q

c
A(x, t)

)2

ψ̂(x) + q

∫

dx V (x, t)n̂(x), (15.2)

and n̂(x) = ψ̂†(x)ψ̂(x) the density operator.2 To be concrete we take the system in
thermodynamic equilibrium at times t < t0. The equilibrium Hamiltonian ĤM = Ĥ0 +
Ĥint − µN̂ has the one-body part Ĥ0 given by (15.2) but with static vector and scalar
potentials A(x) and V (x). The question we ask is: how does the time evolution change
under a change of the external potentials A→ A+ δA and V → V + δV for times t > t0?
To first order in δA and δV the change of Ĥ0 can most easily be worked out from (3.29)
and reads3

Ĥ0(t)→ Ĥ0(t)−
q

c

∫

dx ĵ(x) ·δA(x, t)+

∫

dx n̂(x)

(

qδV (x, t) +
q2

mc2
A(x, t)·δA(x, t)

)

.

The perturbation on the r.h.s. of this equation is the explicit form of λĤ ′(t). Let us
introduce a few definitions and rewrite the perturbation in a more transparent way. We
first note that the terms linear in δA can be grouped to form the (gauge-invariant) current
density operator Ĵ defined in (3.31). It is therefore natural to define the four-dimensional
vector of operators (n̂, Ĵ) = (n̂, Ĵx, Ĵy, Ĵz) with components Ĵµ, µ = 0, 1, 2, 3, so that

Ĵ0 = n̂ and Ĵ1 = Ĵx, etc. Similarly, we define the four-dimensional vector (δV,−δA/c)
with components δAµ, µ = 0, 1, 2, 3, so that δA0 = V and δA1 = −δAx/c, etc. Then the
perturbation takes the following compact form:

λĤ ′(t) = q

∫

dx Ĵµ(x, t) δA
µ(x, t),

with the Einstein convention of summing over repeated upper and lower indices.
With the explicit form of λĤ ′(t) we can try to calculate some physical quantity like, e.g.,

the change in the time-dependent density n and current density J. From the Kubo formula
(15.1) these changes are given by

δJµ(x, t) = −iq
∫ t

t0

dt′
∫

dx′ 〈
[

Ĵµ,H(x, t), Ĵν,H(x′, t′)
]

−
〉 δAν(x′, t′). (15.3)

1Even though the vector and the scalar potentials do not depend on spin we use the variable x for notational
convenience.

2For simplicity we do not include the Pauli coupling between the spin of the particles and the magnetic field.
3The last term of (3.29) has been ignored since it is a total divergence.
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15.1. Current and density response function 409

To make the link with quantities already introduced in the previous chapters we replace the
current operators in the above commutator with the deviation current operators

∆Ĵµ,H(x, t) ≡ Ĵµ,H(x, t)− 〈Ĵµ,H(x, t)〉,

and rewrite (15.3) as

δJµ(x, t) = −iq
∫ t

t0

dt′
∫

dx′ 〈
[

∆Ĵµ,H(x, t),∆Ĵν,H(x′, t′)
]

−
〉 δAν(x′, t′). (15.4)

It is clear that (15.4) is equivalent to (15.3) since a number commutes with all operators. The
structure of (15.4) prompts us to define the following correlator on the contour4

χµν(x, z;x
′, z′) ≡ −i 〈T

{

∆Ĵµ,H(x, z)∆Ĵν,H(x′, z′)
}

〉 (15.5)

which has the symmetry property

χµν(1; 2) = χνµ(2; 1) (15.6)

The Keldysh function χµν can be converted into standard time-dependent averages by
choosing the contour arguments on di�erent branches. For example the greater/lesser
components of χµν are

χ>
µν(x, t;x

′, t′) = χµν(x, t+;x
′, t′−) = −i 〈∆Ĵµ,H(x, t)∆Ĵν,H(x′, t′)〉, (15.7)

χ<
µν(x, t;x

′, t′) = χµν(x, t−;x
′, t′+) = −i 〈∆Ĵν,H(x′, t′)∆Ĵµ,H(x, t)〉

= −
[
χ>
µν(x, t;x

′, t′)
]∗
. (15.8)

Since χµν has no singular part, i.e., χδ
µν = 0, the retarded component reads

χR
µν(x, t;x

′, t′) = θ(t− t′)
[
χ>
µν(x, t;x

′, t′)− χ<
µν(x, t;x

′, t′)
]

= −i θ(t− t′)〈
[

∆Ĵµ,H(x, t),∆Ĵν,H(x′, t′)
]

−
〉, (15.9)

which is exactly the kernel of (15.4). Thus we can rewrite (15.4) as

δJµ(x, t) = q

∫ ∞

−∞
dt′
∫

dx′ χR
µν(x, t;x

′, t′) δAν(x′, t′) (15.10)

where we take into account that δAν vanishes for times smaller than t0. The function
χR
µν(x, t;x

′, t′) is a real function. This can be seen directly from the second line of (15.9)
or, equivalently, from the first line of (15.9) using the relation (15.8) between χ< and the
complex conjugate of χ>. The correlator χµν has di�erent names depending on the values
of µ and ν. For µ = ν = 0 we have the component χ00 = χ which is the density

4In (15.5) the operators are in the Heisenberg picture on the contour, see (4.38).
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410 15. Linear response theory: many-body formulation

response function already encountered in (11.44) and subsequently in (12.18), see below. The
components χ0j and χj0, with j = 1, 2, 3, are called the current-density response functions,
and the components χjk with j, k = 1, 2, 3 are called the current response functions. All
these components can be expressed in terms of the two-particle XC function (12.16) that we
rewrite here for convenience

L(1, 2; 1′, 2′) = ± [G2(1, 2; 1
′, 2′)−G(1; 1′)G(2; 2′)]

= ∓〈T
{

ψ̂H(1)ψ̂H(2)ψ̂†H(2′)ψ̂†H(1′)
}

〉

± 〈T
{

ψ̂H(1)ψ̂†H(1′)
}

〉〈T
{

ψ̂H(2)ψ̂†H(2′)
}

〉, (15.11)

where, as usual, the upper sign is for bosons and the lower sign for fermions. For instance
the density response function in (15.5) is explicitly given by

χ00(1; 2) = −i 〈T {n̂H(1)n̂H(2)}〉+ in(1)n(2) = ±iL(1, 2; 1+, 2+), (15.12)

which agrees with the result (12.18) derived diagrammatically. Similarly the current-density
response function and the current response function are related to L by

χ0j(1; 2) = ±i
[(
∂2,j − ∂2′,j

2mi
− q

mc
Aj(2)

)

L(1, 2; 1+, 2′)

]

2′=2+

= ±i
[(
D2,j −D∗2′,j

2mi

)

L(1, 2; 1+, 2′)

]

2′=2+
,

χj0(1; 2) = ±i
[(
D1,j −D∗1′,j

2mi

)

L(1, 2; 1′, 2+)

]

1′=1+
,

χjk(1; 2) = ±i
[(
D1,j −D∗1′,j

2mi

)(
D2,k −D∗2′,k

2mi

)

L(1, 2; 1′, 2′)

]

1′=1+

2′=2+

, (15.13)

with D1 = ∇1 − i qcA(1) the (gauge-invariant) derivative already introduced in (8.2). Due
to the symmetry property L(1, 2; 1′, 2′) = L(2, 1; 2′, 1′) of the exact (as well as of any
conserving approximation to the) two-particle XC function the symmetry property (15.6) is
satisfied.

The result (15.10) as well as the connection between χµν and L are certainly nice results,
but what are the advantages of using these formulas? Ultimately they only give us access to
the linear response change δJµ. Why don’t we instead calculate the full Jµ using the Green’s
function G, an object much easier than χµν or L? The point here is that we are interested
in changes with respect to equilibrium quantities. If we specialize the above formulas to
systems in equilibrium (Ĥ0(t) independent of time) then it may be more advantageous to
calculate equilibrium correlators, like χµν and L, rather than the nonequilibrium Green’s
function G. Indeed, in the presence of time-dependent external fields G depends on two
time coordinates whereas the equilibrium response functions χµν depend only on the time
di�erence.

In Chapter 12 we learned that to calculate L and hence χµν we must solve the Bethe–
Salpeter equation. In practice this is done by approximating the kernel K in some way.
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15.2. Lehmann representation 411

We then encounter another question: how are the δJµ calculated from an approximate L
via (15.10) and the δJµ calculated directly from an approximate G related? This question
is of fundamental importance since we would like to export everything that we derived on
conserving approximations into the linear response world, so that all basic conservation laws
are automatically built in. In Section 15.3 we show that the δJµ coming from a conserving
G with self-energy Σ is the same as the δJµ coming from (15.10) where L is the solution
of the Bethe–Salpeter equation with kernel K = ±δΣ/δG. The proof is carried out in
the general case of a time-dependent perturbation added to a pre-existing time-dependent
electromagnetic field, since no extra complications arise from this. Another motivation for
keeping the formulas so general is related to an important identity between L and G that we
prove in Section 15.4. Let us, however, first see what physics is contained in the equilibrium
response functions.

15.2 Lehmann representation

When the system is not perturbed by external fields, the time evolution operator is simply
the exponential Û(t, t0) = exp[−iĤ(t − t0)]. Let us see what this simplification leads to.
Consider for example the greater component of the response function given in (15.7)

χ>
µν(x, t;x

′, t′) = −i
Tr
[

e−β(Ĥ−µN̂)eiĤ(t−t0)∆Ĵµ(x)e−iĤ(t−t′)∆Ĵν(x′)e−iĤ(t′−t0)
]

Tr
[

e−β(Ĥ−µN̂)
]

= −i
∫

da ρa 〈Ψa|∆Ĵµ(x)e−i(Ĥ−Ea)(t−t′)∆Ĵν(x
′)|Ψa〉, (15.14)

where the integral is over the (continuum and/or discrete) quantum number a of the eigen-
kets |Ψa〉 of Ĥ with energy Ea and number of particles Na. The weights ρa are therefore

ρa =
e−β(Ea−µNa)

Tr
[

e−β(Ĥ−µN̂)
] . (15.15)

As expected χ> depends only on the time di�erence t− t′. A similar result can be worked
out for the lesser component and hence we can define the Fourier transform according to

χ≷
µν(x, t;x

′, t′) =

∫
dω

2π
e−iω(t−t′)χ≷

µν(x,x
′;ω).

Using the same trick that led to (6.79) it is easy to find the following exact relation:

χ>
µν(x,x

′;ω) = eβωχ<
µν(x,x

′;ω)

between the greater and lesser components.5 As for the equilibrium Green’s function, self-
energy, polarizability, etc. we then have a fluctuation–dissipation theorem for the equilibrium
χµν . Omitting the position–spin variables we can write

χ>
µν(ω) = f̄(ω)

[
χR
µν(ω)− χA

µν(ω)
]
,

5This identity for χ00 = χ was proved in Section 13.2 using the diagrammatic expansion.
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412 15. Linear response theory: many-body formulation

χ<
µν(ω) = f(ω)

[
χR
µν(ω)− χA

µν(ω)
]
,

with f(ω) = 1/(eβω − 1) the Bose function and f̄(ω) = 1 + f(ω).

The Fourier transform of χ
≶
µν can be used to calculate the Fourier transform of χR

µν

since from (15.9)

χR
µν(x, t;x

′, t′) =

∫
dω

2π
e−iω(t−t′)χR

µν(x,x
′;ω)

= θ(t− t′)
∫
dω′

2π
e−iω

′(t−t′)[χ>
µν(x,x

′;ω′)− χ<
µν(x,x

′;ω′)
]
. (15.16)

Taking into account the representation (6.57) of the Heaviside function we get

χR
µν(x,x

′;ω) = i

∫
dω′

2π

χ>
µν(x,x

′;ω′)− χ<
µν(x,x

′;ω′)

ω − ω′ + iη
(15.17)

with η an infinitesimal positive constant. Similarly one can show that

χA
µν(x,x

′;ω) = i

∫
dω′

2π

χ>
µν(x,x

′;ω′)− χ<
µν(x,x

′;ω′)

ω − ω′ − iη
. (15.18)

The Fourier transforms (15.17) or (15.18) contain plenty of physical information and they play
a central role in this chapter.

A nice warm-up exercise which illustrates some of the physics contained in χR
µν is the calculation

of the total energy dissipated by a system which is invariant under translations (like the electron
gas) and which is spin unpolarized (meaning that the ensemble average of the spin density is zero
everywhere). In such systems χR

µν(x,x
′;ω) depends only on the di�erence r − r′. We define its

Fourier transform in momentum space according to

∑

σσ′

χR
µν(x,x

′;ω) =

∫

dp

(2π)3
eip·(r−r′)χR

µν(p, ω). (15.19)

The dissipated energy Ediss is the integral over time of (8.16)

Ediss = q

∫ ∞

−∞

dt

∫

dxJ(x, t)·Eext(r, t) = q

∫

dωdp

(2π)4
J(p, ω)·Eext(−p,−ω), (15.20)

where q is the charge of the particles and J(p, ω) is the Fourier transform of the current J(r, t) =
∑

σ J(x, t) summed over all spin projections.6 For simplicity we consider a longitudinal external
electric field and choose the gauge in which the vector potential A = 0. In linear response we then
have Eext(r, t) = −∇δV (x, t) and the current J in (15.20) is the first order change δJ calculated in
the previous section. Let us now manipulate these quantities a little. In Fourier space Eext(−p,−ω) =
E∗

ext(p, ω) = ipδV ∗(p, ω).7 Substitution of this result into (15.20) generates the scalar product
p · δJ(p, ω) which can be expressed in terms of the density change using the continuity equation
in Fourier space, i.e., −iωδn(p, ω) + ip · δJ(p, ω) = 0, with δn(p, ω) the Fourier transform of the
density n(r, t) =

∑

σ n(x, t). The density change is in turn given in (15.10) and reads δn(p, ω) =

6The Fourier transform of a function f(r, t) is defined in the usual manner f(r, t) =
∫ dωdp

(2π)4
eip·r−iωtf(p, ω).

7For real functions f(r, t) the Fourier transform f(p, ω) = f∗(−p,−ω).
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15.2. Lehmann representation 413

q χR
00(p, ω)δV (p, ω) since in our gauge δA = 0. Collecting these results we find the following

expression for the dissipated energy of a gas:

Ediss = q2
∫

dωdp

(2π)4
iω

p2
χR(p, ω)|Eext(p, ω)|2, (15.21)

with χR = χR
00, in agreement with our notation. Clearly in (15.21) only the imaginary part of χR

contributes since Ediss is a real quantity.8 It is then convenient to define the so called energy-loss
function L as

L(p, ω) ≡ −4π

p2
Im[χR(p, ω)] ⇒ Ediss =

q2

4π

∫

dωdp

(2π)4
ωL(p, ω)|Eext(p, ω)|2.

Thus L tells us for which frequencies and momenta the system can dissipate energy. Since our
system is initially in thermodynamic equilibrium the dissipated energy must be positive for positive
frequencies (absorption) and negative for negative frequencies (emission). This implies that

Im[χR(p, ω)]
< 0 for ω > 0
> 0 for ω < 0

. (15.22)

Any approximation to χ that violates the sign property (15.22) also violates the energy conservation law.
Equation (15.21) has been obtained without any assumption on the form of the interparticle interaction.
In the special case of Coulombic interactions ṽp = 4π/p2, and the Fourier transform of the retarded
inverse dielectric function, see (L.18), is

ε−1,R(p, ω) = 1 + ṽpχ
R(p, ω) = 1 +

4π

p2
χR(p, ω). (15.23)

Hence the energy loss function becomes

L(p, ω) = −Im
[

ε−1,R(p, ω)
]

.

The formulas for the response functions at finite temperature are a bit more cumbersome
than those at zero temperature. Thus we discuss here only the zero-temperature case and
leave the generalization to finite temperature as an exercise for the curious reader. At zero
temperature only the ground state |Ψ0〉 contributes to the integral over a in (15.14) and,
again for simplicity, we assume that |Ψ0〉 is nondegenerate and normalized to 1. Then (15.14)
simplifies to

χ>
µν(x, t;x

′, t′) = −i 〈Ψ0|∆Ĵµ(x)e−i(Ĥ−E0)(t−t′)∆Ĵν(x
′)|Ψ0〉

= −i
∫

db e−i(Eb−E0)(t−t′)fµ,b(x)f
∗
ν,b(x

′), (15.24)

where in the second equality we have inserted the completeness relation
∫
db|Ψb〉〈Ψb| = 1̂

and defined the so called excitation amplitudes

fµ,b(x) ≡ 〈Ψ0|∆Ĵµ(x)|Ψb〉
8As we shall see the real part of χR(p, ω) is even in ω and therefore does not give any contribution to the

r.h.s. of (15.21).
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414 15. Linear response theory: many-body formulation

We see that the excitation amplitudes fµ,b vanish if the number of particles in the excited
state |Ψb〉 di�ers from the number of particles in the ground state |Ψ0〉. From (15.24) and
the like for χ<

µν we can readily extract the Fourier transforms

χ>
µν(x,x

′;ω) = −i
∫

db 2πδ(ω − Ωb)fµ,b(x)f
∗
ν,b(x

′) = −[χ>
νµ(x

′,x;ω)]∗,

χ<
µν(x,x

′;ω) = −i
∫

db 2πδ(ω +Ωb)f
∗
µ,b(x)fν,b(x

′) = −[χ<
νµ(x

′,x;ω)]∗,

with Ωb = Eb − E0 > 0 the excitation energies. Substituting these expressions into (15.17)
we find the Lehmann representation of the retarded response function

χR
µν(x,x

′;ω) =

∫

db

[
fµ,b(x)f

∗
ν,b(x

′)

ω − Ωb + iη
−
f∗µ,b(x)fν,b(x

′)

ω +Ωb + iη

]

= [χA
νµ(x

′,x;ω)]∗. (15.25)

The Lehmann representation allows us to understand what physical information is contained
in χR. In the remainder of this section we explore and discuss this result.

15.2.1 Analytic structure

For real frequencies ω the retarded response function (15.25) has the property

χR
µν(x,x

′;−ω) = χR
µν(x,x

′;ω)∗

which implies that the real part is an even function of ω whereas the imaginary part is an
odd function of ω.9 For complex ω we see from (15.25) that χR is analytic in the upper
half plane. This analyticity property together with the fact that χR

µν → 0 for large ω implies

that χR(x, t;x′, t′) vanishes for t′ larger than t due to the Cauchy residue theorem. Hence
the densities δJµ(x, t) are sensitive to changes in the potentials δAν(x′, t′) only if these
changes occur at times t′ < t. We then say that χR has the causality property or that χR

is causal. In the lower half plane, instead, χR has either simple poles in ±Ωb − iη when b
is a discrete quantum number or the branch cuts along the real axis when b is a continuum
quantum number. Consequently the plot of the imaginary part of χR as a function of
the real frequency ω exhibits δ-like peaks in correspondence with the discrete excitation
energies, but is a smooth curve in the continuum of excitations and is zero everywhere else.

For positive frequencies the Lehmann representation (15.25) yields

Im
[
χR
µν(x,x

′;ω)
]
= −π

∫

db fµ,b(x)f
∗
ν,b(x

′)δ(ω − Ωb), ω > 0.

If we think of Im
[
χR
µν

]
as a matrix with indices x,x′ the above result implies that the

matrices Im
[
χR
µµ

]
are negative definite for ω > 0, i.e.,

αµ(ω) ≡
∫

dxdx′α∗(x) Im
[
χR
µµ(x,x

′;ω)
]
α(x′) < 0,

9This property is also a direct consequence of the fact that χR
µν(x, t;x′, t′) is a real function.
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15.2. Lehmann representation 415

Figure 15.1 General form of a diagonal matrix element of Im
[
χR
µµ(ω)

]
.

for any complex function α(x). This property, together with the fact that the imaginary part
is an odd function of ω, represents the generalization of the sign property (15.22) to arbitrary
systems. The general form of the function αµ(ω) looks as in Fig. 15.1, where the sharp
vertical lines represent δ-like peaks. In principle the δ-like peaks can also be superimposed
on the continuum; this is actually a common feature of noninteracting systems. In inter-
acting systems the discrete and continuum noninteracting excitations are coupled by the
interaction (unless prohibited by symmetry) and the superimposed δ-like peaks transform
into resonances with a characteristic asymmetric lineshape. This e�ect was pointed out by
Fano [14] and is illustrated in Fig. 15.1. In general the continuum part can have di�erent
shapes depending on the nature of the elementary excitations: Fano resonances, excitons,
plasmons, etc. These excitations are all charge neutral (or particle conserving) since the
energies Eb that contribute to (15.25) correspond to eigenstates with the same number of
particles as in the ground state. This should be contrasted with the excitations of the Green’s
function which are not charge conserving since they involve eigenstates with one particle
more or less, see Section 6.3.2.

From the Kubo formula (15.10) we can establish a very nice link between the physics
contained in χR

µν and the results of a time propagation. This link is particularly relevant
when there are discrete excitations in the spectrum. We therefore analyze the contribution
to χR

µν coming from the discrete excitations b = j in detail. To be concrete let us consider
the density response function χ00 = χ. Substitution of (15.25) into (15.16) yields

χR(x, t;x′, t′) = −iθ(t− t′)
∑

j

[

e−iΩj(t−t′)fj(x)f
∗
j (x
′)− eiΩj(t−t′)f∗j (x)fj(x

′)
]

+χR
cont(x, t;x

′, t′), (15.26)

where we drop the subscript 0 in the excitation amplitudes and where Ωj = Ej − E0

are the discrete excitation energies. The last term on the r.h.s. of (15.26) is the part of the
response function that comes from the integral over the continuum of excitations. If the
vector potential A(x) (of the equilibrium system) vanishes then the excitation amplitudes
can be chosen real. We assume here that this is the case, i.e., fj = f∗j , even though
the general conclusion remains valid regardless of this simplification. We now perturb the
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416 15. Linear response theory: many-body formulation

system with, e.g., a scalar potential,

δV (x, t) = θ(t− t0)
∫
dω

2π
e−iωtδV (x, ω),

and calculate the time-dependent density induced by this perturbation. Without loss of
generality we take t0 = 0. From the Kubo formula (15.10) the first order change in the density
can be written as

δn(x, t) =

∫
dω

2π
δnω(x, t) + δncont(x, t),

with δncont the contribution due to χR
cont and

δnω(x, t) = −i
∑

j

fj(x)δVj(ω)



e−i
(ω+Ωj)

2 t
sin
(

ω−Ωj

2 t
)

ω−Ωj

2

− e−i
(ω−Ωj)

2 t
sin
(

ω+Ωj

2 t
)

ω+Ωj

2



,

where the quantities δVj(ω) ≡
∫
dx′ fj(x′)δV (x′, ω). As expected the linear response

density δnω(x, t) oscillates with frequencies ω ± Ωj . In accordance with the results of
Chapter 14 these frequencies do not depend on the perturbation and hence the exact and
the linear response densities eventually go out of phase. A view of this result from a di�erent
perspective is that the frequencies of the exact density change δn(x, t) = n(x, t) − n(x)
provide an approximation (of first order in the perturbing field) to the particle-conserving
excitation energies of the unperturbed system.10 Reading out these frequencies from the
exact time-dependent solution is not always an easy task since the oscillatory behavior
may get damped very fast as the time passes and only a finite number of periods may be
clearly visible. Nevertheless, we have established a link which is conceptual in nature: the
linear response theory can be used to interpret the exact time-dependent results in terms
of particle-conserving excitations and, vice versa, from the exact time-dependent results we
can extract information on the particle-conserving excitation spectrum. We come back to
this link in Chapter 16.

15.2.2 The f-sum rule

From the Lehmann representation (15.25) we can derive an important sum rule for the density
response function. The Thomas–Reiche–Kuhn sum rule [128–130] or simply the f -sum rule
relates the first momentum of the retarded density response function χR of a system in
equilibrium to the corresponding equilibrium density. To prove the f -sum rule we consider
the large ω limit of (15.25) with µ = ν = 0. Dropping, as before, the subscript 0 from the
excitation functions we have

χR(x,x′;ω) =
1

ω

∫

db [fb(x)f
∗
b (x
′)− f∗b (x)fb(x′)]

+
1

ω2

∫

dbΩb [fb(x)f
∗
b (x
′) + f∗b (x)fb(x

′)] +O( 1

ω3
). (15.27)

10For instance we have seen in the example of Section 14.2.1 that the exact frequency of the oscillations is
ωexact = 1

2

√

(ω − ωfi)2 + 4λ2|T |2 and therefore the quantity ω− 2ωexact provides an approximation (in this
case of second order in λ) to the true excitation energy ωfi.
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15.2. Lehmann representation 417

Figure 15.2 The closed contour C going from −∞ to +∞ along a line just above the real
axis and from +∞ to −∞ along a semicircle of infinite radius in the upper half plane.

The definition fb(x) = 〈Ψ0|n̂(x)|Ψb〉 of the excitation functions and the completeness
relation 1̂ =

∫
db |Ψb〉〈Ψb| allow us to recognize in the first term on the r.h.s. the ground-

state average of the commutator [n̂(x), n̂(x′)]−, which is zero. Similarly, recalling that
Ωb = Eb − E0, the second term on the r.h.s. of (15.27) can be written as the ground-state
average of a double commutator

χR(x,x′;ω) =
1

ω2
〈Ψ0|

[[
n̂(x), Ĥ

]

−, n̂(x
′)
]

−|Ψ0〉+O(
1

ω3
)

=
1

ω2

[

− 1

m
∇·
(
n(x)∇δ(x− x′)

)
]

+O( 1

ω3
). (15.28)

In the second equality we use the fact that
[
n̂(x), Ĥ

]

− = −i∇ · Ĵ(x) and that the com-

mutator between the current density and the density is (see Exercise 3.5)

[
Ĵ(x), n̂(x′)

]

− = − i

m
n̂(x)∇δ(x− x′). (15.29)

Since χR is analytic in the upper half of the complex ω-plane the integral of ωχR along the
contour C of Fig. 15.2 is zero. Then we can write

0 =

∮

C

dω ωχR(x,x′;ω) =

∫ ∞

−∞
dω ωχR(x,x′;ω)+ i lim

|ω|→∞

∫ π

0

dφ |ω|2e2iφχR(x,x′; |ω|eiφ).

Using (15.28) to evaluate the integral over φ we obtain a relation between the first momentum
of χR and the equilibrium density

∫ ∞

−∞
dω ω Im[χR(x,x′;ω)] =

π

m
∇·
(
n(x)∇δ(x− x′)

)
(15.30)

where we take into account that only the imaginary part contributes to the integral since
Re[χR] is even in ω. Equation (15.30) is known as the frequency- or f -sum rule for χR. It
is easy to show that the f -sum rule is valid also at finite temperature.

The f -sum rule is alternatively written in terms of the density operator in momentum space

n̂pσ ≡
∫

dr e−ip·r n̂(x) ⇒ n̂(x) =

∫

dp

(2π)3
eip·r n̂pσ.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:08:47 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.017

Cambridge Books Online © Cambridge University Press, 2015



418 15. Linear response theory: many-body formulation

The average of n̂pσ is simply the Fourier transform of the density n(x). The correlator between two
of these operators is defined as

Ξσσ′(p, z, z′) ≡ −i 〈T
{

n̂pσ,H(z)n̂−pσ′,H(z′)
}

〉.

The retarded component is directly related to the retarded component of the density response function
via11

ΞR
σσ′(p, ω) =

∫

drdr′ e−ip·(r−r′)χR(x,x′;ω). (15.31)

Multiplying (15.30) by e−ip·(r−r′) and integrating over all r and r′ we then find a sum rule for ΞR
σσ′

∫ ∞

−∞

dω ω ΞR
σσ′(p, ω) = −iδσσ′

πp2

m

∫

drn(x) = −iδσσ′
πp2

m
Nσ,

with Nσ the total number of particles of spin σ.

15.2.3 Noninteracting fermions

We now wish to discuss the response function of a system of noninteracting fermions at zero
temperature. There are three reasons for choosing this special case. First, we can acquire
some more familiarity with the physics contained in the response function. Second, the
noninteracting χ is needed to calculate the interacting χ from the Bethe–Salpeter equation.
And third, it is possible to derive an important analytic formula for χ which is used later in
our examples.

Let d̂n, d̂
†
n be the annihilation and creation operators which diagonalize Ĥ = Ĥ0 =

∑

n ǫnd̂
†
nd̂n. For a given chemical potential µ the ground state |Ψ0〉 has all levels with

energy smaller than µ occupied whereas those with energy larger than µ are empty. The
charge-neutral excited states |Ψb〉 (with the same number of fermions as in |Ψ0〉) are
obtained by “moving” one, two, three, etc. fermions from the occupied ground-state levels
to some empty levels or, in other words, by creating electron–hole pairs. If we introduce the
convention of labeling the occupied levels with indices n and the unoccupied levels with
barred indices n̄ then a generic charge-neutral excited state has the form

|Ψb〉 = |Ψn1...nN n̄1...n̄N
〉 = d̂†n̄1

. . . d̂†n̄N
d̂n1

. . . d̂nN
|Ψ0〉. (15.32)

This state describes a system in which N fermions have been excited from their original
levels n1, . . . , nN to the empty levels n̄1, . . . , n̄N and its energy is

Eb = E0 +

N∑

j=1

(ǫn̄j
− ǫnj

),

with E0 the ground-state energy. The excitation amplitude fµ,b is the matrix element of

the one-body operator ∆Ĵµ between |Ψ0〉 and |Ψb〉. It is then clear that the excitation

11For a system invariant under translations the sum over σ, σ′ of the r.h.s. of (15.31) yields VχR(p, ω), where
V =

∫

dr is the volume of the system and χR(p, ω) is the response function defined in (15.19).
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15.2. Lehmann representation 419

amplitudes vanish if b contains more than one electron–hole pair. Consequently the zero-
temperature response function (15.25) for a system of noninteracting fermions simplifies
to

χR
µν(x,x

′;ω) =
∑

nn̄

[
fµ,nn̄(x)f

∗
ν,nn̄(x

′)

ω − (ǫn̄ − ǫn) + iη
− f∗µ,nn̄(x)fν,nn̄(x

′)

ω + (ǫn̄ − ǫn) + iη

]

, (15.33)

where only excitations with one electron–hole pair contribute. The excitation amplitudes for
the density response function

fnn̄(x) ≡ f0,nn̄(x) = 〈Ψ0|∆n̂(x)|Ψnn̄〉 = 〈Ψ0|n̂(x)|Ψnn̄〉 = 〈Ψ0|ψ̂†(x)ψ̂(x)d̂†n̄d̂n|Ψ0〉
= 〈x|n̄〉〈n|x〉 = ϕn̄(x)ϕ

∗
n(x) (15.34)

are the product of one occupied and one unoccupied single-particle eigenfunction of Ĥ0.
Similarly the excitation amplitudes for the current-density and the current response func-
tions contain products of the form ϕn̄∇ϕ∗n, (∇ϕn̄)ϕ

∗
n, etc. We also note that for real

eigenfunctions ϕ (the ϕ can always be chosen real in the absence of a magnetic field) the
density response function takes the simple form

χR(x,x′;ω) =
∑

nn̄

(ǫn̄ − ǫn)
ϕn̄(x)ϕn(x)ϕn̄(x

′)ϕn(x
′)

(ω + iη)2 − (ǫn̄ − ǫn)2
.

It is also instructive to derive (15.33) from the many-body formulation. We consider here
the density response function only; the interested reader can easily generalize the steps
below to the current-density and the current response functions. From (15.12) we know that
χ(1; 2) = −iL(1, 2; 1+, 2+) and therefore

χ(x, z;x′, z′) = −iL(x, z,x′, z′;x, z,x′, z′) ≡ −iL(x,x′,x,x′; z, z′),

where in the last identity we use the definition (12.20). In the noninteracting case this L was
calculated in (12.28). Hence

χR(x,x′;ω) =
∑

nm

fnf̄m

[
fnm(x)f∗nm(x′)

ω − (ǫm − ǫn) + iη
− f∗nm(x)fnm(x′)

ω + (ǫm − ǫn) + iη

]

(15.35)

in which we have extended the definition of the excitation amplitudes fnm(x) =
ϕm(x)ϕ∗n(x) to arbitrary couples (not necessarily unoccupied–occupied) of eigenfunctions.
The response function in (15.35) generalizes the result (15.33) to finite temperature and re-
duces to it in the zero temperature limit.12 Of course the finite temperature extension of χR

can also be worked out starting from its definition. To do it we must use the weights ρa
of (15.15), generalize the discussion leading to (15.25), and then specialize the new formulas
to the noninteracting case. The reader should appreciate that the many-body formulation
provides a much faster way to get to (15.35).

To summarize, only excited states with one electron–hole pair contribute to the nonin-
teracting χ. We can try to understand how and why things change in the interacting case,

12At zero temperature fn is unity if n is occupied and is zero otherwise.
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420 15. Linear response theory: many-body formulation

at least for small interactions. If the interaction is weak then the interacting ground state
|Ψ0〉 di�ers from the noninteracting ground state by a small correction. This correction can
be written as a linear combination of the states in (15.32). Similarly the interacting excited
eigenstates |Ψb〉 have a dominant term of the form (15.32) plus a small correction; we say
that the interacting |Ψb〉 is a double excited state if the dominant term of the form (15.32) has
N = 2, a triple excited state if the dominant term has N = 3, and so on. In this complicated
situation the excitation amplitude fµ,b with b a double excitation, a triple excitation, etc., is
generally nonzero. For instance if |Ψ0〉 has a component proportional to |Ψnn̄〉 then this
component contributes to f0,b(x) with the overlap 〈Ψnn̄|∆n̂(x)|Ψb〉, and this overlap is
large when the dominant term of |Ψb〉 has the form |Ψn1n2n̄1n̄2

〉, i.e., when b is a double ex-
citation. The interacting response function changes by developing new poles in the discrete
part of the spectrum and/or by modifying the continuum line-shape, see Section 16.8.

15.3 Bethe–Salpeter equation from the variation of

a conserving G

We consider again here the system of Section 15.1 in which interacting particles are subject
to a time-dependent vector potential A+ δA and scalar potential V + δV . The interaction
between the particles is accounted for by some Φ-derivable self-energy Σ. The equation of
motion for the Green’s function Gtot in the total fields is, to first order in δA and δV , given
by
[

i
d

dz1
+

1

2m
D2

1 − qV (1)− q
(

δV (1)− 1

c

D1 ·δA(1) + δA(1)·D1

2mi

)]

Gtot(1; 3)

−
∫

d2Σ[Gtot](1; 2)Gtot(2; 3) = δ(1; 3), (15.36)

where the functional dependence of Σ on the Green’s function is made explicit. In this
equation the perturbing potentials with the time variable on the contour are defined similarly
to (8.3) and (8.4) [and in agreement with the more general definition (4.6)]

δA(x, z = t±) = δA(x, t), δV (x, z = t±) = δV (x, t), (15.37)

and δA = δV = 0 for z on the vertical track. The Green’s function G of the system with
δA = δV = 0 obeys the equation of motion

[

i
d

dz1
+

1

2m
D2

1 − qV (1)

]

G(1; 3)−
∫

d3Σ[G](1; 2)G(2; 3) = δ(1; 3), (15.38)

with the same functional form of the self-energy Σ (otherwise the two systems would
be treated at a di�erent level of approximation). For later convenience we introduce the
shorthand notation

−→
G−1(1; 2) ≡

[(

i

−→
d

dz1
+

−→
D2

1

2m
− qV (1)

)

δ(1; 2)− Σ(1; 2)

]

,

←−
G−1(1; 2) ≡

[

δ(1; 2)

(

−i
←−
d

dz2
+

(
←−
D2

2)
∗

2m
− qV (2)

)

− Σ(1; 2)

]

,
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15.3. Bethe–Salpeter equation from the variation of a conserving G 421

where, as usual, the left/right arrows specify that the derivatives act on the quantity to their
left/right. In terms of these di�erential operators the equations of motion read

∫

d2
−→
G−1(1; 2)G(2; 3) =

∫

d2G(1; 2)
←−
G−1(2; 3) = δ(1; 3). (15.39)

We now derive an equation for the di�erence δG = Gtot −G. Adding and subtracting
Σ[G](1; 2)Gtot(2; 3) to and from the integrand of (15.38) and then subtracting (15.36) we find

∫

d2
−→
G−1(1; 2)δG(2; 3) = qδh(1)Gtot(1; 3) +

∫

d2 δΣ(1; 2)Gtot(2; 3), (15.40)

where we define the perturbation

δh(1) ≡
(

δV (1)− 1

c

D1 ·δA(1) + δA(1)·D1

2mi

)

, (15.41)

as well as the self-energy variation

δΣ(1; 2) ≡ Σ[Gtot](1; 2)− Σ[G](1; 2).

Taking into account that G fulfills (15.39) we can rewrite (15.40) in the integral form:

δG(1; 3) = q

∫

d2G(1; 2)δh(2)Gtot(2; 3) +

∫

d2d4G(1; 2)δΣ(2; 4)Gtot(4; 3), (15.42)

which can easily be verified by applying
−→
G−1 to both sides and by checking that both sides

satisfy the KMS boundary conditions. The integral equation (15.42) with Σ = 0 has the same
structure as the integral equation derived in Section 7.2.3 for the quantum discharge of a
capacitor, see (7.31); (15.42) can be regarded as the proper extension of (7.31) to approximations
beyond the Hartree approximation. We observe that if we had included the (discarded) term
proportional to δA2 in δh then (15.42) would have been exact for all δA and δV . Since,
however, we are interested in calculating δG to first order in the perturbing fields it is
enough to consider the δh of (15.41). The next step is to evaluate the self-energy variation δΣ
to first order. Consider a diagram for Σ[G] containing n Green’s functions. The variation of
this diagram when G→ G+ δG is the sum of n diagrams obtained by replacing a G with
a δG for all the Gs of the diagram. An example is the variation of the second-order bubble
diagram below:

In accordance with the observation in Section 9.3 we see that the variation of Σ is the result
of the operation δΣ/δG (which cuts one Green’s function line from Σ in all possible ways)
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422 15. Linear response theory: many-body formulation

multiplied by the variation of the Green’s function. Thus, to first order we have

δΣ(2; 4) = Σ[G+ δG](2; 4)− Σ[G](2; 4) =

∫

d5d6
δΣ(2; 4)

δG(5; 6)
δG(5; 6)

= ±
∫

d5d6 K(2, 6; 4, 5)δG(5; 6), (15.43)

with K the kernel of the Bethe–Salpeter equation defined in Section 12.2. Equation (15.43) has
the following diagrammatic representation (remember the rule for K : the first two variables
label opposite vertices with outgoing lines and the third variable labels the vertex to the
right of an imaginary oriented line connecting diagonally the first to the second variable):

Since δh and δΣ are of first order in the perturbing potentials we can replace Gtot with G
in (15.42), thus obtaining

δG(1; 3) = q

∫

d2 G(1; 2)δh(2)G(2; 3)

±
∫

d2d4d5d6 G(1; 2)G(4; 3)K(2, 6; 4, 5)δG(5; 6). (15.44)

This is a recursive equation for δG. Its solution provides the first-order change in G for a
given Φ-derivable approximation to the self-energy. To make a link with the discussion in
Section 15.1 we manipulate the first term on the r.h.s.. Using the explicit form of δh we can
write

∫

d2G(1; 2)δh(2)G(2; 3) =

∫

d2G(1; 2)

(

δV (2)− 1

c

−←−D∗2 ·δA(2) + δA(2)·D2

2mi

)

G(2; 3)

=

∫

d2d4 [δ(2; 4)(δV (2)− δA(2)

c
· D2 −D∗4

2mi
)

︸ ︷︷ ︸

δh(4;2)

G(1; 4)G(2; 3)],

(15.45)

where in the first equality we perform an integration by parts (the arrow over D∗2 indicates
that the derivative acts on the left) and use the identity (9.20). Substituting this result into
(15.44) we find

δG(1; 3) = q

∫

d2d4 δh(4; 2)G(1; 4)G(2; 3)

±
∫

d2d4d5d6 G(1; 2)G(4; 3)K(2, 6; 4, 5)δG(5; 6), (15.46)
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15.3. Bethe–Salpeter equation from the variation of a conserving G 423

where δh(4; 2) is the di�erential operator implicitly defined in (15.45). To visualize the
structure of this equation we give to q δh(4; 2) the diagrammatic representation of a dashed
line joining the points 2 and 4. In this way (15.46) is represented like this:

where every oriented line is a G-line and where the ± sign in the first term stems from the
Feynman rules for G2, see Section 12.1. Iterating this equation we see that at every iteration
the diagram with δG contains one more structure GGK . Therefore, the solution is

The grey blob solves the Bethe–Salpeter equation (12.17) for the two-particle XC function with
kernel K = ±δΣ/δG and hence it must be identified with L. Converting the diagrammatic
solution into a formula we obtain the following important result for the variation of a
conserving Green’s function

δG(1; 3) = q

∫

d2d4 δh(4; 2)L(1, 2; 3, 4)

= q

∫

d2

[(

δV (2)− δA(2)

c

D2 −D∗4
2mi

)

L(1, 2; 3, 4)

]

4=2

. (15.47)

From this equation we can calculate the density and current variations

δn(1) = ±iδG(1; 1+), δJ(1) = ±i
(
D1 −D∗2

2mi
δG(1; 2)

)

2=1+
,
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424 15. Linear response theory: many-body formulation

and it is a simple exercise to show that these variations can be written in the following
compact form13

δJµ(1) = q

∫

d2χµν(1; 2)δA
ν(2), (15.48)

with χµν the conserving response function defined, for a given L, as in (15.12) and (15.13). It
is important to stress that in Section 15.1 the relations (15.12) and (15.13) have been derived
starting from the definitions of L and χµν in terms of the field operators. Here, instead,
the response function χµν has been defined as in (15.12) and (15.13).14 Equation (15.48) is an
equation between quantities in Keldysh space and contains an integral along the contour. To
convert (15.48) into an equation on the real time axis we take, e.g., z1 = t1− on the forward
branch, use the result of Exercise 5.5, and find

δJµ(x1, t1) = q

∫ ∞

−∞
dt2

∫

dx2 χ
R
µν(x1, t1;x2, t2)δA

ν(x2, t2),

which is identical to (15.10) for the exact quantities.
To summarize, we have proved that the current and the density variations produced by

a conserving G with self-energy Σ are, to first order, obtained from (15.10) with a response
function that satisfies the Bethe–Salpeter equation with kernel K = ±δΣ/δG. In the next
section we use (15.47) to prove an important identity between the vertex function and the
self-energy.

15.4 Ward identity and the f-sum rule

There exist very special variations δA and δV of the external potentials for which the
variation of a conserving Green’s function is trivial, and these are the variations induced by
a gauge transformation. For an infinitesimal gauge transformation Λ(x, z) we have [see, e.g.,
(3.24)]

δA(1) = ∇1Λ(1), δV (1) = −1

c

d

dz1
Λ(1). (15.49)

Under this gauge transformation h → h + δh and consequently G → G + δG. The
transformed G is the Green’s function that satisfies the Kadano�–Baym equations with
single-particle Hamiltonian h + δh. As already observed below (9.40), this Green’s function
is simply G[Λ](1; 2) = ei

q
cΛ(1)G(1; 2)e−i

q
cΛ(2) for any Φ-derivable self-energy. Therefore to

first order in Λ

δG(1; 2) =
[

ei
q
cΛ(1)G(1; 2)e−i

q
cΛ(2) −G(1; 2)

]

= i
q

c
[Λ(1)− Λ(2)]G(1; 2). (15.50)

Inserting (15.49) and (15.50) into (15.47) we find

i[Λ(1)− Λ(2)]G(1; 2) = −
∫

d3

[(
dΛ(3)

dz3
+ (∇3Λ(3)) ·

D3 −D∗4
2mi

)

L(1, 3; 2, 4+)

]

4=3

.

13If L is defined as the solution of the Bethe–Salpeter equation then L(1, 2; 3, 2) = L(1, 2; 3+, 2+); this is
due to the fact that in the Bethe–Salpeter equation the Hartree term in the definition (15.11) is already subtracted
and hence there is no ambiguity in setting 2+ = 2 and 3+ = 3.

14For an approximate response function there is no definition in terms of the field operators. If L is exact then
the response function calculated as in (15.12) and (15.13) coincides with the response function (15.5).
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15.4. Ward identity and the f -sum rule 425

We stress once more that the replacement L(1, 4; 2, 3) → L(1, 4; 2, 3+) on the r.h.s. is
irrelevant if L comes from the solution of the Bethe–Salpeter equation, while it matters if L
is calculated directly from (15.11) due to the presence of the Hartree term. If we now integrate
the r.h.s. by parts and take into account that Λ(x, t0−) = Λ(x, t0− iβ) = 0 (the perturbing
field is switched on at times t > t0) we get

d

dz3
L(1, 3; 2, 3+) +∇3 ·

(
D3 −D∗4

2mi
L(1, 3; 2, 4+)

)

4=3

= i [δ(1; 3)− δ(2; 3)]G(1; 2),
(15.51)

which is valid for the exact L and G as well as for any conserving approximation to L and
G. This relation is known as the Ward identity and guarantees the gauge invariance of the
theory. The Ward identity is usually written in terms of the scalar vertex function Λ, defined
in Section 12.5, and the vector vertex function Λ:

∫

d4d5G(1; 4)G(5; 2)Λ(4, 5; 3) ≡ L(1, 3; 2, 3+),

∫

d4d5G(1; 4)G(5; 2)Λ(4, 5; 3) ≡
(
D3 −D∗4

2mi
L(1, 3; 2, 4+)

)

4=3

.

With these definitions (15.51) becomes

∫

d4d5G(1; 4)G(5; 2)

[
d

dz3
Λ(4, 5; 3) +∇3 ·Λ(4, 5; 3)

]

= i [δ(1; 3)− δ(2; 3)]G(1; 2).
(15.52)

We can eliminate the Green’s functions on the l.h.s. using the equations of motion. Acting on

(15.52) with
−→
G−1 from the left and then with

←−
G−1 from the right we arrive at the standard

form of the Ward identity

d

dz3
Λ(1, 2; 3) +∇3 ·Λ(1, 2; 3) = i

[−→
G−1(1; 3)δ(3; 2)− δ(1; 3)←−G−1(3; 2)

]

(15.53)

This equation relates the vertex to the self-energy and is valid for any conserving approxima-
tion. It was derived in 1950 by Ward [131] (who published it in a letter of less than a column)
in the context of quantum electrodynamics and it was used by the author to demonstrate an
exact cancellation between divergent quantities. Later in 1957 the Ward identity was gener-
alized by Takahashi [132] to higher order correlators and, especially in textbooks on quantum
field theory [29, 30], these generalized identities are called the Ward–Takahashi identities. In
the theory of Fermi liquids the Ward identity provides a relation between the vertex and the
quasi-particle renormalization factor Z [124, 133]. We emphasize that our derivation of the
Ward identity does not require that the system is in the ground state; (15.53) is an identity
between out-of-equilibrium correlators in the Keldysh space and reduces to the standard
Ward identity for systems in equilibrium.

The satisfaction of the Ward identity implies that the response functions fulfill several
exact relations. Among them there is the f -sum rule discussed in Section 15.2. In the
remainder of this section we prove the f -sum rule for conserving approximations. We start
by taking the limit 2 → 1 in (15.51); using the relations (15.12) and (15.13) we can write this
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426 15. Linear response theory: many-body formulation

limit as
d

dz3
χ00(1; 3) + ∂3,kχ0k(1; 3) = 0, (15.54)

where the sum over k = 1, 2, 3 is understood (Einstein convention). Similarly, we can apply
the operator (D1 −D∗2)/(2mi) to (15.51) and then take the limit 2 → 1+. Using again the
relations (15.12) and (15.13) we arrive at

d

dz3
χj0(1; 3) + ∂3,kχjk(1; 3) =

n(1)

m
∂1,jδ(1; 3). (15.55)

The response function χµν(1; 3) belongs to the Keldysh space and has a vanishing singular
part. Therefore its structure is

χµν(1; 3) = θ(z1, z3)χ
>
µν(1; 3) + θ(z3, z1)χ

<
µν(1; 3). (15.56)

Inserting (15.56) into (15.54) we find

−δ(z1, z3)
[
χ>
00(1; 3)− χ<

00(1; 3)
]
+ θ(z1, z3)

[
d

dz3
χ>
00(1; 3) + ∂3,kχ

>
0k(1; 3)

]

+ θ(z3, z1)

[
d

dz3
χ<
00(1; 3) + ∂3,kχ

<
0k(1; 3)

]

= 0,

from which it follows that

χ>
00(x1, t1;x3, t1)− χ<

00(x1, t1;x3, t1) = 0, (15.57)

and
d

dt3
χ
≶
00(x1, t1;x3, t3) + ∂3,kχ

≶
0k(x1, t1;x3, t3) = 0. (15.58)

In a similar way insertion of (15.56) into (15.55) leads to

χ>
j0(x1, t1;x3, t1)− χ<

j0(x1, t1;x3, t1) = −
n(x1, t1)

m
∂1,jδ(x1 − x3), (15.59)

and
d

dt3
χ
≶
j0(x1, t1;x3, t3) + ∂3,kχ

≶
jk(x1, t1;x3, t3) = 0. (15.60)

The equations (15.58) and (15.60) are gauge conditions on the response functions. They
guarantee that the switching of a pure gauge does not change the density and the cur-
rent in the system. As for (15.57) and (15.59), we observe that in the exact case they are
a direct consequence of the commutators [n̂(x1), n̂(x3)]− = 0 and of the commutator
(15.29). We now combine (15.58) and (15.59) using the symmetry property (15.6) which implies

χ
≶
0k(x1, t1;x3, t3) = χ

≷
k0(x3, t3;x1, t1). We define the di�erence ∆µν = χ>

µν − χ<
µν and

write

d

dt3
∆00(x1, t1;x3, t3)|t3=t1

= −∂3,k∆0k(x1, t1;x3, t1) = ∂3,k∆k0(x3, t1;x1, t1)

= − 1

m
∇3 · [n(x3, t1)∇3δ(x3 − x1)]. (15.61)
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15.5. Time-dependent screening in an electron gas 427

Let us specialize this formula to equilibrium situations, i.e., A(x, t) = A(x) and V (x, t) =
V (x). Then the density n(x3, t1) = n(x3) is the equilibrium density and ∆µν depends only
on the time di�erence. Denoting by ∆µν(x1,x3, ω) its Fourier transform, (15.61) becomes

i

∫
dω′

2π
ω′∆00(x1,x3, ω

′) = − 1

m
∇3 · [n(x3)∇3δ(x3 − x1)]. (15.62)

Similarly, in equilibrium (15.57) can be rewritten as

∫
dω′

2π
∆00(x1,x3, ω

′) = 0. (15.63)

The relation between ∆00 and χR is provided by (15.17), that for large ω reads

χR(x1,x3, ω) =
i

ω

∫
dω′

2π
∆00(x1,x3, ω

′) +
i

ω2

∫
dω′

2π
(ω′ − iη)∆00(x1,x3, ω

′) +O( 1

ω3
).

Using (15.62) and (15.63) we see that the large ω behavior of any conserving density response
function is the same as the behavior (15.28) of the exact density response function. Further-
more, assuming that the conserving response function is analytic in the upper half of the
complex ω plane, we could apply the same trick of Section 15.2.2 and integrate along the
contour C of Fig. 15.2 to find the f -sum rule again. The reason why we say “assuming” is
that conserving approximations do not necessarily preserve the correct analytic structure of
the response functions [134].

15.5 Time-dependent screening in an electron gas

In this section we present a nice application of linear response theory in the Coulombic
electron gas. Suppose that a very high-energy photon is absorbed by the gas and that, as a
consequence, an electron is instantaneously expelled by the system. How does the density
of the gas rearrange in order to screen the suddenly created hole? And how long does
it take? To answer these questions we need some preliminary results on the equilibrium
density response function. We first derive an analytic result for the noninteracting χ, that we
denote by χ0. Then, we approximate the interacting χ as the solution of the Bethe–Salpeter
equation with kernel K ∼ KH = −δΣH/δG at the Hartree level (the minus sign is because
we are dealing with fermions). This approximation for the response function is known as the
Random Phase Approximation (RPA) and, like the Hartree approximation for G, it becomes
exact in the high density limit rs → 0.15 Lastly, we use the Kubo formula to calculate the
time-dependent density in the neighborhood of the suddenly created hole. The formula for
the RPA density response function is also used to discuss the spectral properties of the
electron gas in the G0W0 approximation.

15Remember that rs is related to the density n of the gas by 1
n

= 4π
3

(aBrs)
3, see Section 7.3.2. In the Hartree

approximation the energy of the electron gas is given by the first term in (13.58) which is the dominant term for
rs → 0.
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428 15. Linear response theory: many-body formulation

15.5.1 Noninteracting density response function

The general formula for the noninteracting density response function χ0 is given in (15.33).
For an electron gas the single-particle energy eigenkets |pτ〉 are the momentum–spin kets
and therefore the excitation amplitudes (15.34) read

fpτ p̄τ̄ (rσ) = 〈rσ|p̄τ̄〉〈pτ |rσ〉 = δστ̄δστe
i(p̄−p)·r.

Substitution of these excitation amplitudes into (15.35) and summation over the spin indices
τ and τ̄ leads to

χR
0 (x,x

′;ω) = δσσ′

∫
dpdp̄

(2π)6
fpf̄p̄

[

ei(p̄−p)·(r−r
′)

ω − (ǫp̄ − ǫp) + iη
− e−i(p̄−p)·(r−r

′)

ω + (ǫp̄ − ǫp) + iη

]

,

with the standard notation x = rσ and x′ = r′σ′, and the zero-temperature Fermi function
f and f̄ = 1 − f for the occupied and unoccupied states respectively. We rename the
integration variables as p = k, p̄ = k+q in the first integral, and p̄ = k, p = k+q in the
second integral; in this way χR

0 becomes

χR
0 (x,x

′;ω) = δσσ′

∫
dqdk

(2π)6
eiq·(r−r

′)

[
fkf̄k+q − fk+qf̄k

ω − (ǫk+q − ǫk) + iη

]

. (15.64)

Due to the translational invariance of the system it is convenient to work with the Fourier
transform χ0(k, ω), which we define similarly to (15.19), i.e.,

∑

σσ′

χR
0 (x,x

′;ω) =

∫
dq

(2π)3
eiq·(r−r

′)χR
0 (q, ω). (15.65)

Comparing (15.65) with (15.64) and taking into account that the combination of Fermi functions
f1f̄2 − f2f̄1 = f1 − f2, we obtain

χR
0 (q, ω) = 2

∫
dk

(2π)3
fk

[
1

ω − (ǫk+q − ǫk) + iη
− 1

ω − (ǫk − ǫk−q) + iη

]

. (15.66)

The evaluation of this integral is a bit tedious but doable. For free electrons the energy
dispersion is ǫp = p2/2. Introducing the dimensionless variables

x =
q

pF
, y =

k

pF
, ν =

ω

ǫpF

=
2ω

p2F
, (15.67)

with ǫpF
the noninteracting energy with Fermi momentum pF, we can rewrite (15.66) as

χR
0 (q, ω) =

4pF
(2π)2

∫ 1

0

dy y2
∫ 1

−1
dc

[
1

ν − x2 − 2xyc+ iη
− 1

ν + x2 − 2xyc+ iη

]

, (15.68)

where c is the cosine of the angle between the vectors k and q. Due to the invariance of
the system under rotations, χR

0 correctly depends only on the modulus q of the vector q.
We now calculate the real and the imaginary part of χR

0 . The resulting final form of Re
[
χR
0

]
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15.5. Time-dependent screening in an electron gas 429

Figure 15.3 Real part of χR
0 in units of 2pF/(2π)

2. (a) For frequencies ν = 0, 0.1, 0.2, 0.3
as a function of x. (b) 3D plot as a function of ν and x.

and Im
[
χR
0

]
was worked out for the first time by Lindhard in a classic paper from 1954 [135].

Today it is common to refer to χR
0 as the Lindhard function.

The real part: To calculate the real part we simply set to zero the infinitesimal iη in
(15.68). Performing the integral over c we are left with the evaluation of the logarithmic
integral I defined in (7.58). It is then straightforward to arrive at

Re
[
χR
0 (q, ω)

]
=

2pF
(2π)2

I(2x, ν − x2)− I(2x, ν + x2)

x
.

This function is discontinuous at the origin since the limit x → 0 does not commute with
the limit ν → 0. Using the explicit form of I , at zero frequency we find

Re
[
χR
0 (q, 0)

]
= − 4pF

(2π)2
F (x/2), (15.69)

where F is the same function (7.60) that appears in the Hartree–Fock eigenvalues of the
electron gas. At any finite frequency ν the small-x behavior is instead parabolic:

Re
[
χR
0 (q→ 0, ω)

]
→ 8pF

(2π)2
2

3

x2

ν2
, (15.70)

and the real part approaches zero when x → 0. This is illustrated in Fig. 15.3(a) where the
discontinuous behavior for ν = 0 is clearly visible. For ν → 0 the function Re

[
χR
0

]
versus

x exhibits a peak in xmax ∼ ν/2 whose width decreases as ∼ ν and whose height increases
as ∼ ln ν. The 3D plot of Re

[
χR
0

]
as a function of x and ν is displayed in Fig. 15.3(b); we

see a maximum along the curve ν = x2 +2x and otherwise a rather smooth function away
from the origin.

The imaginary part: The calculation of the imaginary part of χR
0 is simpler. Using the

identity 1/(x+ iη) = P (1/x)− iπδ(x) in (15.68) we find

Im
[
χR
0 (q, ω)

]
= − 4πpF

(2π)2

∫ 1

0

dy y2
∫ 1

−1
dc
[
δ(ν − x2 − 2xyc)− δ(ν + x2 − 2xyc)

]
.
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430 15. Linear response theory: many-body formulation

Figure 15.4 (a) Domain of the (ν, x) plane where the imaginary part of χR
0 is nonvanishing.

(b) 3D plot of Im
[
χR
0

]
in units of 2πpF/(2π)

2 as a function of ν and x.

The integral over c between −1 and 1 of the δ-function δ(α−βc) yields 1/|β| if |α/β| < 1
and zero otherwise. Then, the integral over y can easily be performed also, since it is of the

form
∫ 1

0
dy y θ(y − γ) = 1

2 (1− γ2) θ(1− γ) with γ a positive constant. The final result is

Im
[
χR
0 (q, ω)

]
= − 2πpF

(2π)2
1

x

[
1− P 2

−(ν, x)

2
θ(1− P−(ν, x))

− 1− P 2
+(ν, x)

2
θ(1− P+(ν, x))

]

, (15.71)

where we define

P±(ν, x) =
|ν ± x2|

2x
,

and where we take into account that both x and y are, by definition, positive quantities. In
the quarter of the (ν, x) plane with ν > 0 and x > 0 the first θ-function is nonvanishing in
the area delimited by the parabolas ν = x2 +2x, which we call p1, and ν = x2− 2x, which
we call p2, whereas the second θ-function is nonvanishing in the area below the parabola p3
with equation ν = −x2+2x, see Fig. 15.4(a).16 We define region I as the area where both the
θ-functions are di�erent from zero and region II as the area where the second θ-function

16It is intuitively clear that the imaginary part of χR
0 is nonvanishing in this region. For instance at zero frequency

the only particle–hole excitations which contribute to Im[χR
0 ] are those in which both the particle and the hole

are on the Fermi surface since in this case their energy di�erence is zero. Then the maximum distance between
the momentum k of the particle and the momentum k + q of the hole is q = 2pF, which is obtained for
q = −2k (hole-momentum opposite to electron-momentum). Therefore at zero frequency Im[χR

0 ] is nonzero
for all q ∈ (0, 2pF). With similar geometric considerations one can generalize the above argument to finite
frequencies.
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15.5. Time-dependent screening in an electron gas 431

does instead vanish. Then, from (15.71) we have

Im
[
χR
0 (q, ω)

]
= − 2πpF

(2π)2







ν
2x region I

1
2x

[

1−
(

ν−x2

2x

)2
]

region II.
(15.72)

The limits ν → 0 and x → 0 must be taken with care. If we approach the origin along the
parabolas p1 and p3 that delimit region II we find

Im
[
χR
0 (q, ω)

]
−−−−→
ν,x→0
along p1

0, Im
[
χR
0 (q, ω)

]
−−−−→
ν,x→0
along p3

− 2πpF
(2π)2

. (15.73)

On the other hand, if we approach the origin from region I along the line ν = mx with
m < 2 we find

Im
[
χR
0 (q, ω)

]
−−−−−−−→
ν=mx,x→0
(from region I)

− 2πpF
(2π)2

m

2
, (15.74)

which for m→ 2 reduces to the value in the second limit of (15.73). For any finite frequency
ν the imaginary part Im

[
χR
0

]
is a continuous function of x with cusps (discontinuity

of the first derivative) at the points where regions I and II start or end. The 3D plot
of Im

[
χR
0

]
is shown in Fig. 15.4(b) where it is evident that the function is everywhere

nonpositive, in agreement with our discussion on the energy-loss function in Section 15.2.
The noninteracting electron gas can dissipate energy only via the creation or annihilation
of electron–hole pairs. As we see in the next sections, the physics becomes much more
interesting in the interacting case.

15.5.2 RPA density response function

In the electron gas the noninteracting response function χ0 constitutes the basic ingredient
to calculate the linear response density δn in the Hartree approximation. Let us consider
the Bethe–Salpeter equation for L corresponding to the variation of the Hartree Green’s
function GH [see (12.17)],

LH(1, 2; 3, 4) = GH(1; 4)GH(2; 3)

−
∫

d5d6d7d8GH(1; 5)GH(7; 3)KH(5, 6; 7, 8)LH(8, 2; 6, 4). (15.75)

In this equation KH ≡ −δΣH/δG is the kernel that gives the linear response change of the
Hartree self-energy ΣH(1; 2) = −iδ(1; 2)

∫
d3 v(1; 3)GH(3; 3

+) in accordance with (15.43).
Equation (15.75) defines the two-particle XC function LH in the Hartree approximation. The
explicit form of the Hartree kernel is

KH(5, 6; 7, 8) = −
δΣH(5; 7)

δG(8; 6)
= iδ(5; 7)δ(6; 8)v(5; 8).

Inserting this result into (15.75) and taking the limit 3→ 1 and 4→ 2 we find

χ(1; 2) = −iGH(1; 2)GH(2; 1)− i

∫

d5d6GH(5; 1)GH(1; 5)v(5; 6)χ(6; 4), (15.76)
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432 15. Linear response theory: many-body formulation

Figure 15.5 Representation of the RPA response function.

where χ(1; 2) = −iLH(1, 2; 1, 2) is the density response function (we omit the subscript
“H” in χ in order to simplify the notation), see (15.12). Thus in the Hartree approximation
χ is given by a Dyson-like equation whose diagrammatic representation is shown in Fig.
15.5. For historical reasons this approximation is called the Random Phase Approximation
(RPA). In 1953 Bohm and Pines [136] found a very ingenious way to map the Hamiltonian of
a gas of electrons interacting via a (long-range) Coulomb interaction into the Hamiltonian of
a gas of electrons plus collective excitations interacting via a screened short-range Coulomb
interaction. The RPA is equivalent to neglecting the interaction between the electrons and
the collective excitations, and it becomes exact in the limit of very high densities (rs → 0).
In Appendix N we present a simplified version of the original treatment by Bohm and Pines.
Going beyond the Hartree approximation the kernel K is no longer proportional to a product
of δ-functions and if we take the limit 3→ 1 and 4→ 2 in the Bethe–Salpeter equation we
find that L (under the integral sign) does not reduce to χ.

Let us now go back to (15.76) and consider the structure −iGHGH that appears in
it. For an electron gas subject to a uniform potential V0 (positive background charge) the
momentum–spin kets |pσ〉 are eigenkets of the noninteracting Hamiltonian ĥ = p̂2/2+V01̂

as well as of the Hartree Hamiltonian ĥH = p̂2/2− V01̂− V̂H with V̂H = −nṽ01̂, see (7.14).
This means that for V0 = nṽ0 the Hartree Green’s function GH is the same as the Green’s
function G0 of a system of noninteracting electrons with energy dispersion ǫp = p2/2. In
Section 15.2.3 we showed that −iG0G0 is the noninteracting density response function χ0,
and in the previous section we calculated this χ0 just for electrons with energy dispersion
ǫp = p2/2. Therefore, in an electron gas the RPA density response function is the solution
of

χ(1; 2) = χ0(1; 2) +

∫

d3d4χ0(1; 3)v(3; 4)χ(4; 2), (15.77)

with χ0 given in (15.68). It is worth noting that the Coulomb interaction v is spin independent
and hence χ is not diagonal in spin space even though χ0 is.17 Equation (15.77) is an integral
equation for two-point correlators in Keldysh space. As Keldysh functions the Coulomb
interaction v(3; 4) = δ(z3, z4)/|r3 − r4| has only a singular part while χ and χ0 have the
structure (15.56) and do not contain any singular part. Using the Langreth rules of Table 5.1
to extract the retarded component and Fourier transforming to frequency space we obtain
the equation:

χR(x1,x2;ω) = χR
0 (x1,x2;ω) +

∫

dx3dx4 χ
R
0 (x1,x3;ω)v(x3,x4)χ

R(x4,x2;ω).

17This is simply due to the fact that in the interacting gas a change of, say, the spin-up density will a�ect both
the spin-up and the spin-down densities.
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15.5. Time-dependent screening in an electron gas 433

Since both χR
0 and v depend only on the di�erence of the spatial arguments, χR also

depends only on the di�erence of the spatial arguments. If we define the Fourier transform
of χR by analogy with (15.19),

∑

σσ′

χR(x,x′;ω) =

∫
dp

(2π)3
eip·(r−r

′)χR(p, ω),

then the RPA equation for χR becomes a simple algebraic equation whose solution is

χR(q, ω) =
χR
0 (q, ω)

1− ṽqχR
0 (q, ω)

, ṽq =
4π

q2
(15.78)

In the remainder of the section we discuss this result.

The static Thomas–Fermi screening: The first remark is about the e�ective Coulomb
interactionW = v+vχv, see (11.45), between two electrons in the static limit or, equivalently,
in the zero frequency limit. Approximating χ as in (15.78) the retarded component of W in
Fourier space reads

WR(q, ω) =
ṽq

1− ṽq χR
0 (q, ω)

.

For ω = 0 the imaginary part of χR
0 vanishes, see (15.74), while the real part approaches

−4pF/(2π)2 for q → 0, see (15.69). The small q behavior of the static e�ective interaction
is therefore

WR(q→ 0, 0)→ 4π

q2 + 4pF

π

. (15.79)

This is exactly the screened interaction of the Thomas–Fermi theory [93,137,138]. If we Fourier
transform WR(q, 0) back to real space, (15.79) implies that at large distances the e�ective
interaction has the Yukawa form

W (x1,x2; 0) ≃
e−|r1−r2|/λTF

|r1 − r2|
,

with λTF =
√

π/4pF the Thomas–Fermi screening length.18 The physical meaning of the
static e�ective interaction is discussed in the next section.

Plasmons: The second remark is more relevant to our subsequent discussion and con-
cerns the aforementioned collective excitations found by Bohm and Pines. For an elec-
tron gas subject to an external scalar potential δV the Kubo formula in Fourier space
reads δn(q, ω) = −χR(q, ω)δV (q, ω) with δn(q, ω) the Fourier transform of δn(r, t) =
∑

σ δn(x, t) (for an electron the charge q = −1). Therefore

δn(q, ω)

χR(q, ω)
= −δV (q, ω). (15.80)

18In the Fourier transform back to real space, WR(q, 0) can be approximated with its small q limit (15.79) if the
distance |r1 − r2| → ∞.
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434 15. Linear response theory: many-body formulation

Suppose that there exist points in the (q, ω) plane for which 1/χR(q, ω) = 0. Then (15.80) is
compatible with a scenario in which the electron density oscillates in space and time without
any driving field, i.e., δn 6= 0 even though δV = 0. These persistent (undamped) density
oscillations are the collective excitations of Bohm and Pines who gave them the name of
plasmons. From our previous analysis of the noninteracting response function it is evident
that there are no points in the (q, ω) plane for which 1/χR

0 (q, ω) = 0. As we see below,
the existence of plasmons is intimately connected to the long-range nature of the Coulomb
interaction.

For an intuitive understanding of the self-sustained density oscillations in an electron gas we can
use the following classical picture. Let u(r, t) be the displacement of an electron from its equilibrium
position in r at a certain time t. Consider the special case in which the displacement is of the form

u(r, t) = u0 cos(q · r− ωt), (15.81)

with u0 parallel to q (longitudinal displacement). The polarization associated with this displacement
is P(r, t) = −nu(r, t) with n the equilibrium density, and therefore the electric field E = −4πP =
4πnu is longitudinal as well. The classical equation of motion for the electron with equilibrium
position in r reads

ü(r, t) = −E(r, t) = −4πnu(r, t).

For (15.81) to be a solution of this di�erential equation the frequency must be

ω = ωp =
√
4πn =

√

3

r3s
. (15.82)

This frequency is called the plasma frequency.19

Let us investigate the possibility that the inverse of the RPA response function is zero.
From (15.78) we see that 1/χR(q, ω) = 0 implies

(a) Im[χR
0 (q, ω)] = 0, (15.83)

(b) 1− ṽqRe[χR
0 (q, ω)] = 0. (15.84)

We look for solutions with x ≪ 1, i.e., to the left of the regions I and II in Fig. 15.4(a), so
that Im[χR

0 ] = 0. We rewrite χR
0 in (15.68) in a slightly di�erent form. Changing the variable

c→ −c in the first integral we find the equivalent expression

χR
0 (q, ω) =

8pF
(2π)2

∫ 1

0

dy y2
∫ 1

−1
dc

x2 − 2xyc

(ν + iη)2 − (x2 − 2xyc)2
.

To calculate the real part when x≪ 1 we set η = 0 and expand the integrand in powers of
(x2 − 2xyc),

Re
[
χR
0 (q, ω)

]
=

8pF
(2π)2

∫ 1

0

dy y2
∫ 1

−1
dc
x2 − 2xyc

ν2

[

1 +
(x2 − 2xyc)2

ν2
+ . . .

]

.

19Expressing the plasma frequency in terms of the fundamental constants we find ωp =
√

4πe2n
me

. Typical

values of the plasma frequency are in the range 10–20 eV.
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15.5. Time-dependent screening in an electron gas 435

Taking into account that terms with odd powers of c do not contribute, we obtain

Re
[
χR
0 (q, ω)

]
=

8pF
(2π)2

2

3

(x

ν

)2
[

1 +
12

5

(x

ν

)2

+O(x4)
]

=
p3F
3π2

( q

ω

)2
[

1 +
3

5

(qpF
ω

)2

+O(x4)
]

,

where in the second equality we reintroduce the physical momentum and frequency. Insert-
ing this result into (15.84) and taking into account the relation n = p3F/(3π

2) between the
density and the Fermi momentum, as well as the definition (15.82) of the plasma frequency,
we get

1− ṽqRe[χR
0 (q, ω)] = 1− ω2

p

ω2

[

1 +
3

5

(qpF
ω

)2

+O(x4)
]

= 0. (15.85)

From this equation it follows that for q = 0 the electron gas supports undamped density
oscillations with frequency ωp in agreement with the classical picture. For small q, however,
the frequency changes according to

ω = ωp(q) ≃ ωp

√

1 +
3

5

(
qpF
ωp

)2

, (15.86)

which follows directly from (15.85) by replacing ω with ωp in the square brackets.
An important consequence of the existence of plasmons is that the imaginary part of

χR(q, ω) consists of a continuum of electron–hole excitations (as in the noninteracting
electron gas) and a plasmon peak. To show it let us introduce the real functions B1, B2 and
A1, A2 that depend only on the modulus of q and on the frequency ω according to

B1(q, ω) + iB2(q, ω) = ṽqχ
R(q, ω),

A1(q, ω) + iA2(q, ω) = ṽqχ
R
0 (q, ω).

If we multiply both sides of (15.78) by ṽq we find that B2 is given by

B2 =
A2

(1−A1)2 +A2
2

,

where the dependence on (q, ω) has been dropped. From this equation we see that A2 6= 0
implies B2 6= 0 and therefore that the imaginary part of the RPA response function is
certainly nonvanishing in the regions I and II of Fig. 15.4(a). Outside these regions A2 is an
infinitesimally small function proportional to η that vanishes only in the limit η → 0. We
then see that B2 is not necessarily zero outside regions I and II since

lim
A2→±0

B2 = lim
A2→±0

A2

(1−A1)2 +A2
2

= ±πδ(1−A1), (15.87)

where A2 → ±0 signifies that A2 approaches zero from negative/positive values. The r.h.s.
of this equation is nonvanishing when the argument of the δ-function is zero. Taking into
account that 1−A1(q, ω) = 1− ṽqRe

[
χR
0 (q, ω)

]
is exactly the function that establishes the
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436 15. Linear response theory: many-body formulation

Figure 15.6 Domain of the (ν, x) plane where the imaginary part of the RPA response function
is nonvanishing. Besides the regions I and II we also have a δ-peak along the plasmon branch
(thick line). The dashed line corresponds to a second solution of the equation 1− A1 = 0.
The thin line is the function in (15.86). In this plot rs = 5.

existence of plasmons, see (15.84), we conclude that the imaginary part of the RPA response
function also has a δ-like peak along the plasmon curve in the (q, ω) plane.

From the discussion in Section 15.2 about energy dissipation we can say that the plasmon peak
must be related to a strong absorption of light at the plasma frequency, a result that has been
experimentally confirmed in all simple metals. This absorption can also be deduced from the Maxwell
equations. In an electron gas the Fourier transform of the external electric field obeys the equation

q2Eext(q, ω)−
ω2

c2
εR(q, ω)Eext(q, ω) = 0,

with εR the dielectric function. Thus an electromagnetic wave with wave-vector q and energy ω can

penetrate the medium provided that the dispersion relation q2 = ω2

c2
εR(q, ω) is satisfied. In (15.23)

we saw that ε−1,R(q, ω) = 1 + ṽqχ
R(q, ω) and therefore εR(q, ω) = 1 − ṽqP

R(q, ω) with P the

polarizability. In the RPA P = χ0 and using (15.85) we deduce that for small q the dispersion relation

becomes q2 = 1
c2
(ω2 − ω2

p). For energies larger than ωp there always exist real wave-vectors q for

which light can penetrate and be absorbed. On the contrary for ω < ωp the wave-vector is complex

and the amplitude of the electric field decays exponentially in the medium. For such energies there

cannot be any absorption by plasmons and hence the light is fully reflected. Visible light has energy

below the typical plasma frequency and it is indeed common experience that it is reflected by most

metals.

In Fig. 15.6 we show the domain of the (ν, x) plane where the imaginary part of
χR is nonvanishing. The figure shows the regions I and II, which are in common with
the noninteracting response function, as well as the numerical solution of the equation
1 − A1(q, ω) = 0 for rs = 5 (thick line). The plasmon branch is well approximated by
(15.86) (thin line) for small x. Besides the plasmon curve the function 1 − A1 also vanishes
along a second curve (dashed line) which is, however, entirely contained in the region where
Im
[
χR
]
6= 0. Inside region II the two solutions of 1 − A1 = 0 approach each other until
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15.5. Time-dependent screening in an electron gas 437

they touch, and thereafter 1− A1 is always di�erent from zero. Just after the critical value
xc at which the plasmon branch crosses region II the plasmon peak gets broadened by the
particle–hole excitations and the lifetime of the corresponding plasmon excitation becomes
finite. This phenomenon is known as the Landau damping. As a matter of fact the plasmon
lifetime is finite at any finite temperature as well as at zero temperature if we go beyond
RPA.

Exercise 15.1. Show that the RPA response function satisfies the f -sum rule.

15.5.3 Sudden creation of a localized hole

In this section we study the time-dependent density δn induced by the sudden creation of a
charge Q at the origin. As already mentioned, this study is relevant to the description of the
transient screening of a core-hole in simple metals. It also constitutes a very pedagogical
application of the linear response theory since the calculations can be carried out analyti-
cally. We closely follow the derivation of Canright in Ref. [139]. The potential δV generated
by a charge Q suddenly created at time t = 0 in r = 0 is

δV (x, t) = θ(t)
Q

r
=

∫
dq

(2π)3

∫
dω

2π
eiq·r−iωt δV (q, ω),

with

δV (q, ω) =
4πQ

q2
i

ω + iη
= ṽqQ

i

ω + iη
.

From the linear response equation (15.80) we then have

δn(r, t) =
∑

σ

δn(x, t) = −
∫

dq

(2π)3

∫
dω

2π
eiq·r−iωtB(q, ω)Q

i

ω + iη
,

where the function B = B1 + iB2 = ṽχR was defined in the previous section. Since B
depends only on the modulus q we can easily perform the angular integration and find

δn(r, t) = − 4πQ

(2π)4
1

r

∫ ∞

0

dq q sin(qr)

∫ ∞

−∞
dωB(q, ω)

ie−iωt

ω + iη
. (15.88)

The function B is analytic in the upper-half of the complex ω plane and goes to zero as
1/ω2 when ω → ∞, see Section 15.4. Therefore B has the required properties for the
Kramers–Kronig relations (these relations are derived in Appendix O). Accordingly we write
B in terms of the imaginary part B2,

B(q, ω) = − 1

π

∫ ∞

−∞
dω′

B2(q, ω
′)

ω − ω′ + iη
.

Inserting this relation into (15.88) and performing the integral over ω we obtain

δn(r, t) = −16πQ

(2π)4
1

r

∫ ∞

0

dq q sin(qr)

∫ ∞

0

dωB2(q, ω)
1− cos(ωt)

ω
, (15.89)
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438 15. Linear response theory: many-body formulation

where we rename the integration variable ω′ with ω and where we exploit the fact that B2

is odd in ω, see Section 15.2.1. From Fig. 15.6 we see that this integral naturally splits into
two terms of physically di�erent nature. At fixed q the function B2 is a smooth function
between the values ωmin(q) and ωmax(q) that delimit the electron–hole continuum (regions
I+II) with

ωmin(q) = ǫpF

{
0 if x < 2
x2 − 2x if x > 2

, ωmax(q) = ǫpF
(x2 + 2x),

and x = q/pF as in (15.67). For ω /∈ (ωmin(q), ωmax(q)) the function B2 is zero everywhere
except along the plasmon branch ωp(q). Denoting by qc the momentum at which the
plasmon branch crosses region II, we have that for q < qc and for ω > ωmax(q) the
function B2 is given in (15.87), i.e.,

B2(q, ω) = −πδ(1−A1(q, ω)) = −π
δ(ω − ωp(q))
∣
∣∂A1

∂ω (q, ωp(q))
∣
∣
,

where we take into account that for positive frequencies A2 is negative, see (15.22). From
this analysis it is natural to write the density δn in (15.89) as the sum δneh + δnp, where
δneh is generated by the excitation of electron–hole pairs whereas δnp is generated by the
excitation of plasmons. Specifically, we have

δneh(r, t) = −
16πQ

(2π)4
1

r

∫ ∞

0

dq q sin(qr)

∫ ωmax(q)

ωmin(q)

dωB2(q, ω)
1− cos(ωt)

ω
,

δnp(r, t) =
16π2Q

(2π)4
1

r

∫ qc

0

dq q sin(qr)
1− cos(ωp(q)t)

ωp(q)
∣
∣∂A1

∂ω (q, ωp(q))
∣
∣
.

In Fig. 15.7 we show the 3D plot of δneh [panel (a), left], δnp [panel (b), left] as well
as the total density δn [panel (c), left] as a function of time t and distance r from the
origin. These plots have been generated by calculating the above integrals numerically for
Q = 1 and rs = 3. In the right part of the figure the densities are multiplied by 4π(rpF)

2

so as to highlight the large r behavior. As pointed out by Canright [139] the partitioning
into electron–hole pairs and plasmons is “somewhat illuminating but also unphysical.” The
density δneh, in contrast with the density δnp, clearly loses phase coherence at long times
[panel (a) and (b), right]. We also notice that at small r the screening is essentially due to
δneh which builds up in a time t ∼ 1/ωp [panel (a), left]; the plasmon contribution is an
order of magnitude smaller [panel (b), left] and adds a small, damped ringing to the total
density. The unphysical aspect of the partitioning is evident in the plots to the right of
panels (a) and (b). The hole is suddenly created in r = 0 and therefore, as for a stone tossed
into a pond, the density in r should change only after the shock-wave has had the time to
propagate till r. We instead see that at small t the densities δneh and δnp decay very slowly
for large r. This unphysical behavior is absent in the physical sum δn = δneh + δnp [panel
(c), right] where an almost perfect cancellation occurs. We clearly see a density front that
propagates at a speed of about the Fermi velocity vF = pF, which is ≃ 0.65 in our case.
Thus the physical density δn(r, t) is essentially zero up to a time t ∼ r/vF; after this time
δn changes and exhibits damped oscillations around its steady-state value.
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15.5. Time-dependent screening in an electron gas 439

Figure 15.7 The 3D plot of the transient density in an electron gas with rs = 3 induced
by the sudden creation of a point-like positive charge Q = 1 in the origin at t = 0. The
contribution due to the excitation of electron–hole pairs (a), and plasmons (b), is, for clarity,
multiplied by 4π(rpF)

2 in the plots to the right. Panel (c) is simply the sum of the two
contributions. Units: r is in units of 1/pF, t is in units of 1/ωp, and all densities are in
units of p3F.
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440 15. Linear response theory: many-body formulation

The steady-state limit of the RPA density δn can easily be worked out from (15.89). Due
to the Riemann–Lebesgue theorem the term containing cos(ωt) integrates to zero when
t→∞ and hence

δns(r) ≡ lim
t→∞

δn(r, t) = − Q

2π3

1

r

∫ ∞

0

dq q sin(qr)

∫ ∞

−∞
dω
B2(q, ω)

ω
.

The integral over ω can be interpreted as a principal part since B2(q, 0) = 0, see (15.72).
Then from the Kramers–Kronig relation (O.5) we can replace the integral over ω with
B(q, 0) = ṽqχ

R(q, 0), and hence recover the well known result

δns(r) = −
Q

2π2

1

r

∫ ∞

0

dq q sin(qr)ṽq χ
R(q, 0) = −Q

∫
dq

(2π)3
eiq·r ṽq χ

R(q, 0). (15.90)

This formula yields the static screening in an electron gas. We refer the reader to the classic
book of Fetter and Walecka [45] for a thorough analysis of (15.90) with χR in the RPA.

Among the most interesting consequences of (15.90) with χR in the RPA we should mention:

• The induced charge

δQ(R) ≡ −4π

∫ R

0

dr r2δns(r)

is close to minus the positive charge Q for R & λTF, meaning that the electron gas screens an
external charge within a distance of a few λTF. At very large distances the screening is perfect,
i.e., δQ(R → ∞) = Q.

• For r ≫ 1/pF the density δns(r) goes to zero as cos(2pFr)/r
3, a result which was derived by

Langer and Vosko in 1960 [140]. However, it was Friedel who first pointed out that these damped
spatial oscillations are a general consequence of the discontinuity of the Fermi function at
zero temperature [141]. For this reason, in the scientific literature they are known as the Friedel
oscillations.

Equation (15.90) allows us to give a physical interpretation to the e�ective interaction of
the Thomas–Fermi theory. Suppose that the charge Q = q = −1 is the same as the electron
charge. Then the total change in the charge density is q δntot(r) = q[δ(r) + δns(r)], where
δ(r) is the density of the suddenly created charge at the origin. The interaction energy
between the charge distribution q δntot and a generic electron in position r is

eint(r) =

∫

dr′v(r, r′)δntot(r
′).

We see that eint(r) correctly reduces to v(r, 0) = 1/r in an empty space since in this case
the induced density δns = 0. Instead, in the electron gas we have

eint(r) =

∫

dr′v(r, r′)

[

δ(r′) +

∫
dq

(2π)3
eiq·r

′

ṽq χ
R(q, 0)

]

=

∫
dq

(2π)3
eiq·r

[
ṽq + ṽ2qχ

R(q, 0)
]

=

∫
dq

(2π)3
eiq·rWR(q, 0) −−−→

r→∞
e−r/λTF

r
.

Thus the e�ective Yukawa interaction is the interaction between a “test” electron and a
statically screened electron.
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15.5. Time-dependent screening in an electron gas 441

15.5.4 Spectral properties in the G0W0 approximation

In the previous sections we have seen that a sudden creation of a positive charge in the
electron gas yields a density response that can be physically interpreted as the sum of two
contributions: it consists of a piece in which we excite particle–hole pairs and a piece in
which we excite plasmons. We may therefore expect that the sudden addition or removal
of an electron as described by the greater and lesser Green’s functions induces similar ex-
citations which appear as characteristic structures in the spectral function. This has indeed
been found in photoemission and inverse photoemission experiments on metals such as
sodium or aluminum [142] which strongly resemble the electron gas. To calculate the spec-
tral function we must first determine the self-energy. Since W = v + vPW = v + vχv
already contains the physics of both single-particle excitations and plasmons it is natural
to consider the expansion of the self-energy Σss,xc[G,W ] in terms of the dressed Green’s
function and screened interaction as described in Section 10.7. In the following we re-
strict ourselves to the lowest order term of the expansion which is the GW approximation
Σxc(1; 2) = iG(1; 2)W (2; 1), where the screened interaction is calculated from the polariz-
ability P (1; 2) = −iG(1; 2)G(2; 1).

In Chapter 7 we learned that the Hartree self-energy ΣH cancels with the external poten-
tial of the positive background charge and can therefore be disregarded. Since the electron
gas is translationally invariant and in equilibrium we can Fourier transform to momentum–
energy space and write

ΣR(p, ω) = Σx(p) + i

∫
dω′

2π

Σ>(p, ω′)− Σ<(p, ω′)

ω − ω′ + iη
︸ ︷︷ ︸

ΣR
c (p,ω)

, (15.91)

where Σx(p) = − 2pF

π F ( p
pF

) is the time-local exchange (or Fock) self-energy, see (7.61),

whereas ΣR
c is the correlation self-energy, see (9.57). Remember that in equilibrium the

Green’s function and the self-energy are diagonal in spin space, since v, and hence W ,
are independent of spin. In accordance with our notation the quantities G(p, ω) and
Σ(p, ω) refer to the Fourier transform of the diagonal (and σ-independent) matrix elements
G(r1σ, t1; r2σ, t2) and Σ(r1σ, t1; r2σ, t2). Since the electron gas is also rotationally invari-
ant all Fourier transformed quantities depend only on the modulus of the momentum. To
lighten the notation we therefore denote G(p, ω) by G(p, ω), Σ(p, ω) by Σ(p, ω), W (p, ω)
by W (p, ω), etc. In Fourier space the GW self-energy becomes a convolution between G
and W :

Σ≶(p, ω) = i

∫
dkdω′

(2π)4
G≶(k, ω′)W≷(|k− p|, ω′ − ω)

= i

∫
dω′

(2π)4
2π

∫ 1

−1
dc

∫ ∞

0

dk k2G≶(k, ω′)W≷(
√

k2 + p2 − 2kpc , ω′ − ω),

where we use the fact that Σ≶(1; 2) = iG≶(1; 2)W≷(2; 1). Instead of integrating over the

cosine c we perform the substitution q =
√

k2 + p2 − 2kpc such that qdq = −kpdc, and
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442 15. Linear response theory: many-body formulation

rewrite the lesser/greater self-energy as

Σ≶(p, ω) =
i

(2π)3 p

∫

dω′
∫ ∞

0

dk k G≶(k, ω′)

∫ k+p

|k−p|
dq qW≷(q, ω′ − ω). (15.92)

We have therefore reduced the calculation of the self-energy to a three-dimensional integral.
Let us give a physical interpretation to Σ≶. We have seen in Section 13.3 that Σ>(p, ω) is the
decay rate for an added particle with momentum p and energy ω. According to (15.92) this
particle is scattered into momentum–energy state (k, ω′), thereby creating a particle–hole
pair of momentum–energy (|p − k|, ω − ω′). If the energy ω is just above the chemical
potential µ then, since all states below the chemical potential are occupied, there is very little
phase-space left to excite a particle–hole pair. We therefore expect that the scattering rate
goes to zero as a function of ω−µ. According to our interpretation one factor ω−µ comes
from the phase-space requirement on G> (available states after the scattering), and another
one from the phase-space requirement onW< (density of particle–hole pairs). Together this
leads to the (ω − µ)2 behavior that we already deduced in Section 13.3 for the second-Born
approximation, and that we derive more rigorously below for the approximation (15.92).20

Similar considerations apply to Σ<.
Equation (15.92) together with the equation for the screened interactionW and the Dyson

equation

GR(k, ω) =
1

ω − ǫk − ΣR(k, ω)
, ǫk = k2/2, (15.93)

form a self-consistent set of equations which can only be solved with some considerable
numerical e�ort [110]. However, our goal is to get some insight into the properties of the
spectral function. Therefore, rather than solving the equations self-consistently we insert
into them a physically motivated Green’s function. The simplest Green’s function we can
consider is, of course, the noninteracting Green’s function GR

0 (k, ω) = (ω − ǫk + iη)−1.
However, this has some objections. First of all, the choice of the GW-diagram came from
a skeletonic expansion in dressed Green’s functions. We, therefore, at least want to include
some kind of self-energy renormalization. The simplest of such a Green’s function, which
still allows for analytical manipulations, is given by

GR(k, ω) =
1

ω − ǫk −∆+ iη
, (15.94)

with ∆ a real number [143]. In this poor man’s choice we approximate the self-energy with a
real number (as in the Hartree–Fock approximation, but this time k-independent). The next
question is then how to choose ∆. We know from Section 13.3 that the exact as well as any
approximate Green’s function has a rate Γ(k, ω) ∼ (ω − µ)2, and therefore that GR(k, µ)
has a pole in k = pF provided that pF is chosen as the solution of

0 = µ− ǫpF
− ΣR(pF, µ). (15.95)

We then require that our approximate self-consistent GR(k, µ) in (15.94) has a pole at the
same spot. This implies

0 = µ− ǫpF
−∆

20The fact that the second-Born and the GW approximations predict a rate proportional to (ω − µ)2 is a direct
consequence of the fact that both approximations contain the single bubble self-energy diagram.
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15.5. Time-dependent screening in an electron gas 443

and yields ∆ = µ − ǫpF
. As we shall see this shift considerably simplifies the analytical

manipulations. In practice the Fermi momentum pF = (3π2n)1/3 is determined by the
density of the gas and therefore rather than fixing µ and calculating pF we fix pF and
calculate µ. In this way our GR has a pole at the desired pF.

21 Thus the strategy is:
first evaluate ΣR using the µ-dependent Green’s function (15.94) and subsequently fix the
chemical potential using (15.95). This is the so called G0W0 approximation for the self-
energy.

The Green’s function in (15.94) has the form of a noninteracting G and therefore using
(6.80) and (6.81) we get

G<(k, ω) = 2πif(ω − µ)δ(ω − ǫk −∆),

G>(k, ω) = −2πif̄(ω − µ)δ(ω − ǫk −∆).

At zero temperature f(ω−µ) = θ(µ−ω) and due to the δ-function we can use θ(µ− ǫk−
∆) = θ(ǫpF

− ǫk) = θ(pF − k). Similarly in G> we can replace f̄(ω − µ) with θ(k − pF).
Inserting G< into (15.92) we find

Σ<(p, ω) =
−1
4π2 p

∫ pF

0

dk k

∫ k+p

|k−p|
dq qW>(q, ǫk +∆− ω).

If we define the new variable ω′ = ǫk+∆−ω so that dω′ = kdk, then the integral becomes

Σ<(p, ω) =
−1
4π2 p

∫ µ−ω

µ−ω−ǫpF
dω′

∫ q+

q−

dq qW>(q, ω′),

where q− = |
√

2(ω′ −∆+ ω)− p| and q+ =
√

2(ω′ −∆+ ω) + p. In the same way it is
easy to show that

Σ>(p, ω) =
1

4π2 p

∫ ∞

µ−ω
dω′

∫ q+

q−

dq qW<(q, ω′).

The calculation of the self-energy is now reduced to a two-dimensional integral. It only
remains to calculate W from the polarizability P = −iGG. We have W = v + vPW =
v + vχv where χ = P + PvP + . . . If we calculate P using the Green’s function (15.94)
then P = χ0 is the Lindhard function. Indeed our approximate G only di�ers from the
noninteracting G0 by a constant shift of the one-particle energies, and hence the particle–
hole excitation energies ǫk+q − ǫk in χ0 are unchanged, see (15.66). Since P = χ0 then
χ is exactly the RPA expression of Section 15.5.2. To extract the lesser/greater screened
interaction we can use the fluctuation–dissipation theorem (13.11). Due to the property (15.25)
we have WA(q, ω) = [WR(q, ω)]∗ and hence

W<(q, ω) = 2if(ω)Im[WR(q, ω)], W>(q, ω) = 2if̄(ω)Im[WR(q, ω)],

with f the Bose function and f̄ = 1 + f . At zero temperature f(ω) = −θ(−ω) and
f̄(ω) = 1 + f(ω) = 1 − θ(−ω) = θ(ω). Furthermore WR(q, ω) = ṽq + ṽ2qχ

R(q, ω) and

21In general the comparison between Green’s functions in di�erent approximations makes sense only if these
Green’s functions have a pole at the same Fermi momentum. This means that di�erent approximations to Σ yield
di�erent values of the chemical potential according to (15.95).
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444 15. Linear response theory: many-body formulation

therefore the lesser/greater self-energies assume the form

iΣ<(p, ω) =
1

2π2 p

∫ µ−ω

µ−ω−ǫpF
dω′ θ(ω′)

∫ q+

q−

dq q ṽ2q Im[χR(q, ω′)], (15.96)

iΣ>(p, ω) =
1

2π2 p

∫ ∞

µ−ω
dω′ θ(−ω′)

∫ q+

q−

dq q ṽ2q Im[χR(q, ω′)]. (15.97)

Since Im[χR(q, ω′)] is negative (positive) for positive (negative) frequencies ω′, see (15.22),
from these equations we infer that iΣ> is only nonvanishing for ω > µ in which case it is
positive and iΣ< is only nonvanishing for ω < µ, in which case it is negative. Hence the
rate function Γ = i(Σ> − Σ<) is positive as it should be. We also observe that both Σ<

and Σ> depend only on ω − µ and therefore (15.95) provides an explicit expression for µ:

µ = ǫpF
+ΣR(pF, µ) = ǫpF

+Σx(pF) + ΣR
c (pF, µ), (15.98)

since the correlation self-energy ΣR
c (pF, µ) does not depend on µ. Any other shift ∆ would

have led to a more complicated equation for µ.
This is how far we can get with pencil and paper. What we have to do next is to

calculate numerically Σ≶, insert them into (15.91) to obtain ΣR
c and then extract the spectral

function from (13.5). First, however, it is instructive to analyze the behavior of the self-energy
for energies close to µ and for energies close to the plasma frequency ωp. This analysis
facilitates the interpretation of the numerical results and at the same time provides us with
useful observations for the actual implementation.

Self-energy for energies close to the chemical potential

Let us analyze the integrals (15.96) and (15.97) for ω close to µ. We take, for example, the
derivative of iΣ<. For ω close to µ we have that |ω − µ| < ǫpF

and the lower limit of the
integral in (15.96) can be set to zero. Di�erentiation with respect to ω then gives three terms,
one term stemming from the di�erentiation of the upper limit of the ω′ integral and two
more terms stemming from the di�erentiation of q− and q+. These last two terms vanish
when ω → µ− since the interval of the ω′ integration goes to zero in this limit. Therefore

i
∂Σ<(p, ω)

∂ω

∣
∣
∣
∣
ω=µ−

= − 1

2π2 p

∫ pF+p

|pF−p|
dq q ṽ2q Im[χR(q, 0)] = 0,

since Im[χR(q, 0)] = 0. In a similar way one can show that the derivative of Σ>(p, ω) with
respect to ω vanishes for ω → µ+. Thus for ω ∼ µ we have

iΣ<(p, ω) = −C<
p θ(µ− ω) (ω − µ)2,

iΣ>(p, ω) = C>
p θ(ω − µ) (ω − µ)2,

where C
≶
p > 0, see discussion below (15.97). The constants C

≶
p can easily be determined

by taking the second derivative of Σ≶ with respect to ω in ω = µ∓. It is a simple exercise
for the reader to show that C>

p = C<
p = Cp with

Cp = − 1

4π2 p

∫ pF+p

|pF−p|
dq q

ṽ2q
|1− ṽqχR

0 (q, 0)|2
∂ Im[χR

0 (q, ω)]

∂ω

∣
∣
∣
∣
ω=0

, (15.99)
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15.5. Time-dependent screening in an electron gas 445

where we have used the RPA expression (15.78) for χR in terms of the Lindhard function χR
0 .

The fact that C>
p = C<

p agrees with the discussion in Section 13.3 and allows us to write
the rate operator as in (13.24). Let us comment in more detail on the explicit formula for
Cp in the G0W0 approximation. Since the derivative of Im[χR

0 (q, ω)] with respect to ω is
negative in ω = 0 for q ≤ 2pF and zero otherwise, see Fig. 15.4(b), we find that the constant
Cp > 0 for |pF − p| ≤ 2pF (i.e. for p ≤ 3pF) and zero otherwise. This is physically related
to the fact that an injected particle with momentum 3pF and energy µ can scatter into a
particle with momentum pF and energy µ and an electron–hole pair with momentum 2pF
and energy zero at the Fermi surface. Any particle with higher momentum than 3pF (and
energy µ) can only excite electron–hole pairs with nonzero energy.

From the knowledge of Cp we can calculate the lifetime τp of a quasi-particle (or quasi-hole) with
momentum p. We recall that τ−1

p = ZpΓ(p,Ep) where Zp is the quasi-particle renormalization factor
and Ep is the quasi-particle energy defined as the solution of ω − ǫp − Σx(p) − Λ(p, ω) = 0, see
Section 13.1 (in Section 13.1 Σx was absorbed in ǫp). For p ∼ pF the quasi-particle energy ǫp ∼ µ and
hence Γ(p,Ep) ∼ CpF(Ep − µ)2. Expanding in powers of p− pF we then find

1

τp
= ZCpF

( pF
m∗

)2

(p− pF)
2,

where Z = ZpF and the e�ective mass m∗ of the quasi-particle is defined by

1

m∗
≡ 1

pF

dEp

dp

∣

∣

∣

∣

p=pF

.

Let us calculate a more explicit form of Cp. From (15.69) and (15.72) we have that χR
0 (q, 0) =

−(pF/π
2)F (q/2pF) and ∂Im[χR

0 (q, ω)]/∂ω|ω=0 = −θ(2pF − q)/(2πq) (we use the expression in
region I). Inserting these results into (15.99) we get

Cp =
1

8π3p

∫ pF+p

|pF−p|

dq θ(2pF − q)WR(q, 0)2, with WR(q, 0) =
4π

q2 + 4pF
π
F ( q

2pF
)
.

We now evaluate this formula for p = pF:

CpF =
1

8π3pF

∫ 2pF

0

dq

(

4π

q2 + 4pF
π
F ( q

2pF
)

)2

=
π

4p2F
ξ(rs),

where we define

ξ(rs) =

∫ 1

0

dx
1

[

F (x) +
(

9π
4

) 1
3 π

rs
x2
]2

and use the fact that pF = (9π/4)
1
3 /rs. Thus the quasi-particle lifetime becomes [67]

1

τp
=

Zπ

4m∗2
ξ(rs) (p− pF)

2.

As an exercise we can analyze the high density rs → 0 behavior of ξ(rs). Since F (0) = 1 and
F (1) = 0 the integrand of ξ(rs) is equal to 1 in x = 0 and is proportional to r2s in x = 1,
which is small in the limit rs → 0. The largest contribution to the integral therefore comes from the
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446 15. Linear response theory: many-body formulation

integration region around x = 0 and we can then simply approximate F (x) ≈ F (0) = 1. Denoting

by α = (9π/4)
1
6

√

π/rs the square root of the constant which multiplies x2 we have

ξ(rs) =
1

α

∫ α

0

dy
1

(1 + y2)2
=

1

2α
arctanα+

1

2(1 + α2)
∼ π

4α
(α→ ∞).

So we see that ξ(rs) ∼
√
rs for rs → 0 and hence the lifetime increases by increasing the density of

the electron gas. Strictly speaking also m∗ and Z are functions of rs but they are weakly dependent

on rs and approach 1 as rs → 0 [67]. This limiting behavior of m∗ and Z is somehow intuitive since

for rs → 0 the dominant self-energy diagram is the Hartree diagram, which is, however, cancelled by

the external potential. Therefore the high-density interacting gas behaves like a noninteracting gas.

The constant Cp pertains to the quasi-particle lifetime. What about the quasi-particle
energy Ep? To answer this question we have to study the behavior of Λ = Re[ΣR

c ],
since Ep is the solution of ω− ǫp−Σx(p)−Λ(p, ω) = 0, see Section 13.1. This is not easily
done on paper. As we discuss in more detail below, we find from numerical calculations for
the electron gas at metallic densities that Ep − µ ≈ ǫp − ǫpF

. This implies that

Σx(p) + Λ(p,Ep) = Ep − ǫp ≈ µ− ǫpF

and hence the real part of the self-energy does not change much when we move along
the quasi-particle branch in the (p, ω)-plane. With hindsight our poor man’s choice for
G is more accurate than the Hartree–Fock G, since in the Hartree–Fock approximation
ǫp = p2/2 is renormalized by the exchange self-energy Σx(p) and hence the Hartree–Fock
Ep = ǫp + Σx(p) deviates considerably from a parabola, see middle panel of Fig. 7.6 (note
that in Section 7.3.2 we used the symbol ǫp instead of Ep).

Self-energy for energies close to the plasma frequency

So far we have only been looking at the behavior of the self-energy close to the Fermi
surface. However, an added or removed particle at su�ciently high energy may also excite
plasmons. For instance, for an added particle we would expect this to happen at energies
ω ≥ µ+ωp where ωp is the plasmon frequency. Let us study how these plasmon excitations
appear from the equations. We observe that the function under the q-integral in (15.96) and
(15.97) is q ṽq B2(q, ω

′) where B2 is the imaginary part of the function B = ṽ χR defined
in the previous section. As pointed out in (15.87), the function B2 has δ-like singularities
outside regions I and II (where A2(q, ω

′) ∼ −η sgn(ω′)) when 1−A1(q, ω
′) = 0, i.e., when

ω′ = ±ωp(q). Thus for ω
′ ∼ ±ωp(q) and for q < qc (qc momentum at which the plasmon

branch crosses the particle–hole continuum), we can write

B2(q, ω
′) = −π δ(ω′ − ωp(q))

∣
∣∂A1

∂ω′ (q, ωp(q))
∣
∣
+ π

δ(ω′ + ωp(q))
∣
∣∂A1

∂ω′ (q, ωp(q))
∣
∣
,

where we take into account that A2 is negative (positive) for positive (negative) frequencies.
We thus see that the lesser and greater self-energy can be split into a particle–hole part and

a plasmon part Σ≶ = Σ
≶
ph + Σ

≶
p where the particle–hole part is given by (15.96) and (15.97)
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15.5. Time-dependent screening in an electron gas 447

Figure 15.8 (Left panel) Integration domain for Σ<(p, ω′) in the case that µ − ω > ωp and
µ − ω − ǫpF

> 0 and p < 2pF. (Right panel) Integration domain for Σ>(p, ω′) in the case
that µ− ω < −ωp and p < 2pF. The figure further shows with thick lines the regions I and
II of the particle–hole continuum and the plasmon branch, compare with Fig. 15.6.

integrated over regions I and II, and the plasmon part is given by

iΣ<
p (p, ω) = −

1

2π p

∫ µ−ω

µ−ω−ǫpF
dω′ θ(ω′)

∫ q+

q−

dq
q ṽq θ(qc − q)
∣
∣∂A1

∂ω′ (q, ωp(q))
∣
∣
δ(ω′ − ωp(q)),

iΣ>
p (p, ω) =

1

2π p

∫ ∞

µ−ω
dω′ θ(−ω′)

∫ q+

q−

dq
q ṽq θ(qc − q)
∣
∣∂A1

∂ω′ (q, ωp(q))
∣
∣
δ(ω′ + ωp(q)).

When can we expect a contribution from the plasmon excitations? Let us first consider Σ<
p .

Since the upper limit of the ω′-integration is given by µ− ω we can only get a contribution
from the integral when µ − ω ≥ ωp(q) ≥ ωp, with ωp = ωp(0). The allowed q values are
still determined by the functions q+ and q−, but it is at least clear that there can be no
contribution unless ω ≤ µ − ωp. This means physically that a removed particle can only
excite plasmons when its energy is at least ωp below the chemical potential. A similar story
applies to Σ>

p : from the lower limit of the integral we see that there can be no contribution
unless µ − ω ≤ −ωp(q) ≤ −ωp. Therefore an added particle can only excite plasmons
when its energy is at least ωp above the chemical potential.

We can deduce the energies for which Σ
≶
p are maximal by analyzing in more detail the

integration domain. For Σ<
p the ω′-integral goes from max(0, µ− ω− ǫpF

) to µ− ω (which
must be positive for otherwise Σ<

p = 0). The left panel of Fig. 15.8 shows an example of the
ω′-domain (the region between the two horizontal lines) in the case that µ − ω > ωp and
µ− ω − ǫpF

> 0. For any fixed ω′ we have to integrate over q between q− and q+, i.e.,

q− = |
√

2(ω′ − µ+ ω + ǫpF
)− p| ≤ q ≤

√

2(ω′ − µ+ ω + ǫpF
) + p = q+
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where we use the fact that ∆ = µ− ǫpF
. This amounts to integrating over all qs such that22

ω−(q) ≤ ω′ ≤ ω+(q), where ω±(q) =
1

2
(p± q)2 + µ− ω − ǫpF

.

The parabolas ω+(q) and ω−(q) are shown in Fig. 15.8 and, together with the previous
constraint, lead to the integration domain represented by the grey-shaded area. Similarly
the integration domain of Σ>

p is represented by the grey-shaded area in the right panel of
the same figure. Here the horizontal lines are at ω′ = 0 and ω′ = µ − ω (which must be
negative, for otherwise Σ>

p = 0). In the example of the figure we have chosen µ−ω < −ωp.
If the plasmon branch lies in the integration domain then the integral over ω′ leads to

iΣ<
p (p, ω) = −

1

2π p

∫ q<1

q<0

dq
q ṽq θ(qc − q)
∣
∣∂A1

∂ω′ (q, ωp(q))
∣
∣
, (15.100)

iΣ>
p (p, ω) =

1

2π p

∫ q>1

q>0

dq
q ṽq θ(qc − q)
∣
∣∂A1

∂ω′ (q, ωp(q))
∣
∣
, (15.101)

where q<0 and q<1 (q>0 and q>1 ) are the momenta at which the plasmon branch ωp(q)
(−ωp(q)) enters and leaves the grey-shaded area. Consider now the integrand for small q.
We have

A1(q, ω
′) = ṽq Re[χ

R
0 (q, ω

′)] −−−→
q→0

ṽq n
q2

ω′2
= ṽq

ω2
p

4π

q2

ω′2
,

where we use (15.70) and the formula ωp =
√
4πn for the plasma frequency. Thus we see

that for small momenta
∂A1

∂ω′
(q, ωp(q)) = −ṽq

q2

2πωp

and the integrand of Σ
≶
p becomes 2πωp/q. This leads to logarithmic behavior of Σ

≶
p when

the lower integration limit q
≶
0 gets very small. Consequently the rate function Γ(p, ω) =

i[Σ>(p, ω)−Σ<(p, ω)] also has logarithmic behavior and its Hilbert transform Λ(p, ω) has
a discontinuous jump at the same point.23

Let us see for which values of p and ω the logarithmic singularity occurs. For q = 0 the parabolas
ω+(0) = ω−(0) = ǫp + µ − ω − ǫpF ≡ ω0 have the same value. For Σ<

p the point (0, ω0) is in
the integration domain when ω0 ≤ µ − ω, i.e., when p ≤ pF, whereas for Σ>

p this point is in the
integration domain when ω0 ≥ µ−ω, i.e., when p ≥ pF. In the examples of Fig. 15.8 the point (0, ω0)
is inside the integration domain for Σ<

p and outside for Σ>
p . It is now clear that the integrals in (15.100)

and (15.101) become logarithmically divergent when the plasmon branches enter the integration domain

exactly at point (0, ω0), i.e., when ω0 = ±ωp, since in this case q
≶
0 = 0. This happens exactly at the

frequency
ω = ǫp − ǫpF + µ− ωp, (ω = ǫp − ǫpF + µ+ ωp),

22We can easily derive this equivalent form of the integration domain. Let x = ω′ − µ + ω + ǫpF > 0. Then

|
√

2x−p| ≤ q implies −q ≤
√

2x−p ≤ q or equivalently p−q ≤
√

2x ≤ p+q. DenotingM1 = max(0, p−q)
we can square this inequality and get 1

2
M2

1 ≤ x ≤ 1
2
(p + q)2. Next consider q ≤

√
2x + p which implies

q − p ≤
√

2x. Denoting M2 = max(0, q − p) we can square this inequality and get 1
2
M2

2 ≤ x. Since the

maximum value between M2
1 and M2

2 is (p− q)2 we find 1
2
(p− q)2 ≤ x ≤ 1

2
(p+ q)2.

23If Λ(p, ω) has a discontinuity D in ω = ωD then Γ(p, ω) = −2P
∫

dω′

π
Λ(p,ω′)
ω−ω′ ∼ − 2D

π
lnωD .
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15.5. Time-dependent screening in an electron gas 449

in Σ<
p (Σ>

p ) for p ≤ pF (p ≥ pF). More generally, if ω0 is close to ±ωp the lower limit q
≶
0 is given

by the solution of ω−(q) = ±ωp(q) ∼ ±ωp or ω+(q) = ±ωp(q) ∼ ±ωp (depending on whether

ω0 is larger or smaller than ωp) and it is an easy exercise to check that q
≶
0 ∼ 1

p
|ω0 ∓ ωp|. Then the

integrals (15.100) and (15.101) can be split into a singular contribution coming from the small momentum
region and a remaining finite contribution. The singular part behaves as

iΣ≶
p (p, ω) = ±ωp

p
ln

|ω0 ∓ ωp|
p

= ±ωp

p
ln

|ǫp + µ− ω − ǫpF ∓ ωp|
p

(15.102)

for p ≤ pF (p ≥ pF) for Σ
<
p (Σ>

p ). In the limit p→ 0 this analysis must be done more carefully since

then also the integration domain itself goes to zero as the two parabolas approach each other. The

reader can work out this case for him/herself. From (15.102) we see that the rate function Γ(p, ω) has a

logarithmic singularity of strength −ωp/p. Therefore Λ(p, ω) has a discontinuous jump of πωp/(2p)

at the same point. Strictly speaking this is true only if p is smaller (larger) than pF for Σ<
p (Σ>

p ).

At exactly p = pF the plasmon branch enters the integration domain at the critical point (0,±ωp)

when µ − ω = ±ωp and is outside the integration domains of Σ
≶
p for |µ − ω| ≤ ωp. Therefore the

logarithmic singularity in (15.102) becomes one-sided only and as a consequence the Hilbert transform

of the rate function induces a logarithmic singularity at µ− ω = ±ωp in Λ(p, ω).

Let us now interpret our results. We have seen that the quasi-particle energies satisfy
the property Ep − µ ∼ ǫp − ǫpF

. Therefore Σ<
p exhibits a logarithmic peak at ω = Ep −ωp

for p ≤ pF, whereas Σ>
p exhibits a logarithmic peak at ω = Ep + ωp for p ≥ pF. As

we show below this leads to sharp features in the real part of ΣR and peak structures at
ω ∼ Ep±ωp in the spectral function in addition to the quasi-particle peak at ω = Ep. This
means that if we add a particle with momentum p ≥ pF then the created state evolves in
time as a superposition of many-body eigenstates with energy components mainly centered
around Ep and to a lesser extent around Ep + ωp. The interpretation in terms of an
inverse photoemission experiment is that the system after injection of the particle is most
likely to be found having the energy Ep or Ep + ωp relative to its initial energy. A similar
interpretation can be given for the removal of a particle of momentum p ≤ pF. After the
removal the system is most likely to be found at the quasi-hole energy Ep or at the energy
Ep − ωp where we have created a quasi-hole state and removed a plasmon.

Numerical results

A practical calculation starts by specifying the density of the electron gas by choosing a
value of rs and hence the Fermi momentum pF. In our example we take an electron
gas of density characterized by the Wigner–Seitz radius rs = 4, which corresponds to a
density that is close to the valence density of the sodium crystal. Subsequently the chemical
potential can be determined from (15.98) and evaluation of the function ΣR(pF, µ). We
find that Σx(pF) = −1.33 ǫpF

and ΣR
c (pF, µ) = −0.44 ǫpF

, yielding a chemical potential of
µ = −0.77ǫpF

, which is quite di�erent from the value µ = ǫpF
of the noninteracting electron

gas. The plasma frequency at rs = 4 is ωp = 1.88 ǫpF
and the plasmon branch enters the

particle–hole continuum at the critical momentum qc = 0.945 pF. Then all parameters of
the problem are determined and we can calculate the lesser/greater self-energy, the rate
function and the spectral function.
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450 15. Linear response theory: many-body formulation

Figure 15.9 The imaginary part of the retarded self-energy −Im[ΣR(p, ω + µ)] = Γ(p, ω +
µ)/2 for an electron gas at rs = 4 within the G0W0 approximation as a function of the
momentum and energy. The momentum p is measured in units of pF and the energy ω and
the self-energy in units of ǫpF

= p2F/2.

Let us start with a discussion of the self-energy. In Fig. 15.9 we show −Im[ΣR(p,
ω + µ)] = Γ(p, ω + µ)/2 relative to the chemical potential µ in the (p, ω)-plane. The
first distinctive feature of this graph is the valley around the chemical potential where
Γ ∼ (ω − µ)2 for ω → µ for all values of the momentum p. As discussed in this chapter
and in Section 13.3 this behavior is completely determined by phase-space restrictions. Away
from the chemical potential at energies |ω − µ| ≥ ωp there is a possibility for the system
with a particle of momentum p added or removed to decay into plasmons as well. As a
consequence the rate function is large for hole states with momentum p < pF and for
particle states with momentum p > pF. This boundary at p = pF is not strict. Unlike
the noninteracting electron gas, for an interacting gas it is possible to add a particle with
momentum p ≤ pF or to remove a particle with momentum p ≥ pF. As we see below,
the momentum distribution of the interacting gas is not a strict Heaviside step function
anymore.

Let us now turn our attention to the real part of the self-energy and the spectral
function. In Fig. 15.10 we show the real and imaginary parts of the self-energy and
the spectral function as a function of the energy relative to µ for the momentum values
p/pF = 0.5, 1, 1.5. For p = 0.5 pF (upper left panel) we see that Im[ΣR] (solid line) has
a logarithmic singularity due to plasmons below the chemical potential. At the same point
Re[ΣR] (dashed line) jumps discontinuously in accordance with the previous analysis. The
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15.5. Time-dependent screening in an electron gas 451

Figure 15.10 The self-energy and the spectral function in the G0W0 approximation for
p/pF = 0.5, 1.0, 1.5 at density rs = 4 with ω and self-energies in units of ǫpF

= p2F/2. In
the top row the solid lines represent −Im[ΣR(p, ω + µ)] = Γ(p, ω + µ)/2 and the dashed
lines represent Re[ΣR(p, ω + µ)] = Σx(p) + Λ(p, ω + µ). The dotted line represents the
curve ω+µ−ǫp. The crossings of this line with Re[ΣR(p, ω+µ)] determine the position of
the peaks in the spectral function A(p, ω+ µ) displayed in the bottom row. The δ-function
in the spectral function A(pF, µ + ω) at ω = 0 is indicated by a vertical line and has
strength Z = 0.64.

structure of the spectral function is determined by the zeros of ω − ǫp = Re[ΣR(p, ω)].
These zeros occur at the crossings of the dotted line with the dashed line. At two of the
crossings Im[ΣR] is small and as consequence the spectral function has two pronounced
peaks (lower left panel). The peak on the right close to µ represents the quasi-hole peak
whereas the peak to the left tells us that there is considerable probability of exciting a
plasmon. For p = 1.5 pF (upper right panel) the plasmon contribution occurs at positive
energies. There are again three crossings between the dashed and dotted lines but this time
only one crossing (the quasi-particle one) occurs in an energy region where −Im[ΣR]≪ 1.
Thus the spectral function has only one main quasi-particle peak (lower right panel). There
are still some plasmonic features visible at larger energies but they are much less prominent
than for the case of p = 0.5 pF. This can be understood from the fact that plasmons are
mainly excited at low momenta since for p > qc the plasmon branch enters the particle–hole
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452 15. Linear response theory: many-body formulation

Figure 15.11 Momentum distribution np of an electron gas with rs = 4 within the G0W0

approximation. The momentum p is measured in units of pF. The momentum distribution
jumps with a value of Z = 0.64 at the Fermi surface.

continuum. For an added particle at high momentum to excite a plasmon at low momentum
it should at the same time transfer a large momentum to a particle–hole excitation. However,
if the particle thereby loses most of its energy to a plasmon then the particle–hole pair
should at the same time have large momentum and low energy, which is unlikely. Finally, in
the upper middle panel we display the self-energy for p = pF. In this case Im[ΣR] displays
a one-sided logarithmic singularity at ω−µ = ±ωp (the numerics does not show this infinity
exactly due to the finite energy grid) and as a consequence Re[ΣR] displays a logarithmic
singularity at these points. These singularities would be smeared out to finite peaks if we
had used a more advanced approximation for the screened interaction than the RPA in which
we also allow for plasmon broadening. We further see that Re[ΣR] crosses the dotted line
in only one point. At this point the derivative of Re[ΣR] is negative, in accordance with the
general result (13.9), and Im[ΣR] = 0. The quasi-particle peak becomes infinitely sharp and
develops into a δ-function (vertical line in the lower middle panel). For rs = 4 the strength
of the δ-function is Z = 0.64.

From the behavior of the spectral function we can also deduce the structure of the
momentum distribution np =

∫ µ

−∞
dω
2πA(p, ω). For p ≤ pF we integrate over the quasi-hole

peak below the chemical potential. When p approaches pF from below, the quasi-hole
peak develops into a δ-function, while for p immediately above pF the quasi-particle peak
appears at an energy above µ and does not contribute to the integral. We thus expect that
the momentum distribution suddenly jumps at p = pF. This is indeed shown rigorously in
Appendix K where we prove that the discontinuity has exactly the size of the quasi-particle
renormalization factor Z . This jump is directly related to the fact that the imaginary part of
self-energy vanishes as (ω−µ)2 close to the chemical potential. The formula for np in terms
of the spectral function is awkward to use in practice since we need to integrate over a very
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15.5. Time-dependent screening in an electron gas 453

Figure 15.12 The spectral function A(p, µ+ω) as a function of the momentum and energy for
an electron gas at rs = 4 within the G0W0 approximation. The momentum p is measured
in units of pF and the energy ω and the spectral function in units of ǫpF

= p2F/2.

spiky function, which is not easily done numerically. We therefore use for the numerics the
equivalent formula (K.2) where the self-energy for complex frequencies is calculated from
the rate function according to

ΣR(p, µ+ iω) = Σx(p) +

∫
dω′

2π

Γ(p, ω′)

iω + µ− ω′ + iη
.

The result is given in Fig. 15.11. We clearly see the sudden jump of magnitude Z at p = pF.
Therefore the interacting electron gas preserves the sharp Fermi surface of the noninteracting
system. The quasi-particle renormalization factor Z is smaller for lower densities, whereas
for high densities it approaches unity [67]. The discontinuity of np and hence the sharpness
of the Fermi surface are experimentally observable by means of Compton scattering on
electron-gas-like metals such as sodium. For more details on this issue we refer the reader
to Ref. [75]. The sharpness of the Fermi surface applies to a large class of fermionic systems,
not only metallic crystals but also other quantum systems such as liquid 3He. In fact,
theoretically it is used to define an important class of physical systems known as Fermi
liquids, the low-energy behavior (excitations close to the Fermi surface) of which was first
successfully described by Landau in a phenomenological way [144].

Let us finally study the overall behavior of the spectral function in the (p, ω)-plane as
displayed in Fig. 15.12. The quasi-particle peak appears in the middle of the figure and
broadens when we move away from the Fermi momentum pF. Its position at Ep − µ is
approximately given by p2/2−p2F/2, or in units of the figure (Ep−µ)/ǫpF

≈ (p/pF)
2−1. An

important improvement of the dispersion curve Ep compared to the Hartree–Fock dispersion
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454 15. Linear response theory: many-body formulation

curve of Section 7.3.2 is that it does not exhibit the logarithmic divergence at p = pF. The
disappearance of the logarithmic divergence can be shown from a further analysis of the
G0W0-equations. The interested reader can find the details and much more information
on the spectral properties of the electron gas in papers by Lundqvist, and Lundqvist and
Samathiyakanit [145, 146]. Physically, the logarithmic divergence is removed by the fact that
the screened interaction W does not have the divergent behavior of the bare Coulomb
interaction v at low momenta. Apart from the quasi-particle structure we clearly see in
Fig. 15.12 plasmonic features at energies below the chemical potential for p ≤ pF (the addition
of a hole can excite plasmons or, equivalently, the hole can decay into plasmon excitations).
Similar plasmonic features are present for energies above the chemical potential for momenta
p ≥ pF. These features are, however, less pronounced. As explained before, this is due to
the fact that plasmons are mainly excited at low momenta.
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16

Applications of MBPT to

nonequilibrium problems

In this chapter we solve the Kadano�–Baym equations in finite interacting systems, possibly
connected to macroscopic reservoirs. We have already encountered examples of these
kinds of system. For instance, the Hamiltonian for the quantum discharge of a capacitor
introduced in Section 7.2.3 describes a molecule (finite system) connected to two capacitor
plates (macroscopic reservoirs). The di�erence here is that we include an interaction in the
finite system and, for simplicity, we discard the interaction in the reservoirs. In fact, no
complication arises if the interaction in the reservoirs is treated at the Hartree level, see
below.

The general Hamiltonian that we have in mind is

Ĥ = Ĥ0 + Ĥint,

where the noninteracting part reads

Ĥ0 =
∑

kα
σ

ǫkαn̂kασ

︸ ︷︷ ︸

reservoirs

+
∑

mn
σ

Tmnd̂
†
mσd̂nσ

︸ ︷︷ ︸

molecule

+
∑

m,kα
σ

(Tmkαd̂
†
mσd̂kασ + Tkαmd̂

†
kασd̂mσ)

︸ ︷︷ ︸

coupling

. (16.1)

As in Section 7.2.3, the index kα refers to the kth eigenfunction of the αth reservoir whereas
the indices m,n refer to basis functions of the finite system, which from now on we call
the molecule, see Fig. 16.1. We also add the spin degree of freedom σ in order to model
realistic interactions. As usual n̂sσ = d̂†sσd̂sσ is the occupation number operator for the
basis function s = kα or s = m. The interacting part of the Hamiltonian is taken of the
general form

Ĥint =
1

2

∑

ijmn
σσ′

vijmnd̂
†
iσd̂
†
jσ′ d̂mσ′ d̂nσ. (16.2)

The sum is restricted to indices in the molecule so that there is no interaction between
a particle in the molecule and a particle in the reservoirs or between two particles in the

455
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456 16. Applications of MBPT to nonequilibrium problems

Figure 16.1 Representation of the molecule in contact with many reservoirs.

reservoirs.1 All applications and examples discussed in this chapter are for a system of
electrons. To the best of our knowledge there are still no implementations of the Kadano�–
Baym equations for systems of bosons.

We consider the system initially in thermodynamic equilibrium at inverse temperature
β and chemical potential µ. The initial density matrix is then ρ̂ = exp[−β(Ĥ − µN̂)]/Z ,
which corresponds to having ĤM = Ĥ − µN̂ on the vertical track of the contour. At a
certain time t0 we drive the system out of equilibrium by changing the parameters of the
Hamiltonian. We could change the interaction or the couplings between the molecule and
the reservoirs or the energies ǫkα. The formalism is so general that we can deal with all
sorts of combinations. The Hamiltonian at times t > t0 is therefore given by Ĥ in which the
parameters are time-dependent, i.e., ǫkα → ǫkα(t), Tmkα → Tmkα(t), vijmn → vijmn(t),
etc. The goal is to calculate the Green’s function from the Kadano�–Baym equations and
then to extract quantities of physical interest like the density, current, screened interaction,
polarizability, nonequilibrium spectral functions, etc. This is in general a very di�cult task
since the system of Fig. 16.1 has infinitely many degrees of freedom and does not have
any special symmetry.2 In the next section we show that for our particular choice of the
interaction an important simplification occurs: the equations to be solved involve only a
finite number of matrix elements of the Green’s function.

1The form (16.2) of the interaction is identical to (1.88) and it should not be confused with the interaction in
(1.83) where the spin indices are not spelled out. Thus the i, j,m, n indices in this chapter are orbital indices as
opposed to Section 1.6 where they were orbital-spin indices.

2Continuous symmetries of the Hamiltonian can simplify the calculations considerably. In the electron gas the
invariance under translations allowed us to derive several analytic results.
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16.1. Kadano�–Baym equations for open systems 457

16.1 Kadano�–Baym equations for open systems

The first observation is that the Green’s function and the self-energy are diagonal in spin
space since the interaction preserves the spin orientation at every vertex and the noninter-
acting part of the Hamiltonian is spin diagonal. The inclusion of terms in the Hamiltonian
which flip the spin, like the spin-orbit interaction or the coupling with a noncollinear mag-
netic field, is straightforward and does not introduce conceptual complications. We denote
by Gsr and Σsr the matrix elements of Green’s function and self-energy for a given spin
projection, where the indices s, r refer either to the reservoirs or to the molecule. Similarly,
we denote by hsr the matrix elements of the first quantized Hamiltonian ĥ. The matrices
G, Σ, and h are the representation of the operators (in first quantization) Ĝ, Σ̂ , and ĥ in
the one-particle basis {kα,m}. The equations of motion for the Green’s function matrix G
read

[

i
d

dz
− h(z)

]

G(z, z′) = δ(z, z′) +

∫

γ

dz̄ Σ(z, z̄)G(z̄, z′),

G(z, z′)

[

−i
←−
d

dz′
− h(z′)

]

= δ(z, z′) +

∫

γ

dz̄ G(z, z̄)Σ(z̄, z′),

and must be solved with the KMS boundary conditions G(t0−, z′) = −G(t0 − iβ, z′) and
the like for the second argument. At this point we find it convenient to introduce the
“blocks” forming the matrices h, G, and Σ. A block of h, G, and Σ is the projection of
these matrices onto the subspace of the reservoirs or of the molecule. Thus, for instance,
hαα′ is the block of h with matrix elements [hαα′ ]kk′ = δαα′δkk′ǫkα, hαM is the block of
h with matrix elements [hαM ]km = Tkαm and hMM is the block of h with matrix elements
[hMM ]mn = Tmn. If we number the reservoirs as α = 1, 2, 3 . . ., the block form of the
matrix h is

h =










h11 0 0 . . . h1M
0 h22 0 . . . h2M
0 0 h33 . . . h3M
...

...
...

...
...

hM1 hM2 hM3 . . . hMM










,

where each entry (including the 0s) is a block matrix. For the time being we do not specify
the number of reservoirs. Similarly to h we can write the matrices G and Σ in a block
form. The matrix G has nonvanishing blocks everywhere. Physically there is no reason to
expect that Gαα′ ∝ δαα′ , since an electron is free to go from reservoir α to reservoir α′.
On the contrary the self-energy Σ has only one nonvanishing block, that is ΣMM . This is
a direct consequence of the fact that the diagrammatic expansion of the self-energy starts
and ends with an interaction line which in our case is confined to the molecular region. This
also implies that ΣMM [GMM ] is a functional of GMM only. The fact that ΣMM depends
only on GMM is very important since it allows us to close the equations of motion for the
molecular Green’s function. Let us project the equation of motion onto regions MM and
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458 16. Applications of MBPT to nonequilibrium problems

αM :
[

i
d

dz
− hMM (z)

]

GMM (z, z′) = δ(z, z′) +
∑

α

hMα(z)GαM (z, z′)

+

∫

γ

dz̄ ΣMM (z, z̄)GMM (z̄, z′), (16.3)

[

i
d

dz
− hαα(z)

]

GαM (z, z′) = hαM (z)GMM (z, z′).

The latter equation can be solved for GαM and yields

GαM (z, z′) =

∫

γ

dz̄ gαα(z, z̄)hαM (z̄)GMM (z̄, z′), (16.4)

where we define the Green’s function gαα of the isolated αth reservoir as the solution of
[

i
d

dz
− hαα(z)

]

gαα(z, z
′) = δ(z, z′)

with KMS boundary conditions. Again we stress the importance of solving the equation
for gαα with KMS boundary conditions so that GαM too fulfills the KMS relations. Any
other boundary conditions for gαα would lead to unphysical time-dependent results. It is
also important to realize that gαα is the Green’s function of a noninteracting system and is
therefore very easy to calculate. In particular, since the block Hamiltonian hαα(z) is diagonal
with matrix elements ǫkα(z), we simply have [gαα′ ]kk′(z, z′) = δαα′δkk′gkα(z, z

′) with

gkα(z, z
′) = −i

[
θ(z, z′)f̄(ǫMkα)− θ(z′, z)f(ǫMkα)

]
e−i

∫ z
z′

dz̄ ǫkα(z̄),

where in accordance with our notation ǫMkα = ǫkα(t0− iτ) = ǫkα−µ. The reader can verify
the correctness of this result using (6.39). Inserting the solution for GαM in the second term
on the r.h.s. of (16.3) we get

∑

α

hMα(z)GαM (z, z′) =

∫

dz̄ Σem(z, z̄)GMM (z̄, z′),

where we define the embedding self-energy in the usual way,

Σem(z, z
′) =

∑

α

Σα(z, z
′), Σα(z, z

′) = hMα(z)gαα(z, z
′)hαM (z′). (16.5)

Like gαα, the embedding self-energy is also independent of the electronic interaction, and
hence of GMM , and it is completely specified by the reservoir Hamiltonian hαα and by the
contact Hamiltonian hαM . In conclusion, the equation of motion for the molecular Green’s
function becomes
[

i
d

dz
− hMM (z)

]

GMM (z, z′) = δ(z, z′) +

∫

γ

dz̄ [ΣMM (z, z̄) + Σem(z, z̄)]GMM (z̄, z′).

(16.6)
The adjoint equation of motion can be derived similarly.
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16.1. Kadano�–Baym equations for open systems 459

Equation (16.6) is an exact closed equation for GMM provided that the exact many-body
self-energy ΣMM as a functional of GMM is inserted. This is a very nice result since GMM

is the Green’s function of a finite system and therefore (16.6) can be implemented numerically
using a finite basis. In practical implementations (16.6) is converted into a set of coupled
real-time equations, i.e., the Kadano�–Baym equations, which are then solved by means of
time-propagation techniques [147]. We come back to this point in the following sections.
From the knowledge of GMM we have access to the time-dependent ensemble average of
all one-body operators of the molecular region. We also have access to the total current
flowing between the molecule and the reservoir α. This current is a simple generalization
of (7.30) and reads

Iα(t) = q
d

dt
Nα(t) = 2q × 2Re

{
TrM

[
hMα(t)G

<
αM (t, t)

]}
,

where TrM denotes the trace over the single-particle states of the molecular basis, q is the
charge of the fermions and the extra factor of 2 comes from spin. Extracting the lesser
component of GαM from (16.4) we can rewrite Iα in terms of the Green’s function of the
molecular region only

Iα(t) = 4qRe
{

TrM

[

Σ<
α ·GA

MM +ΣR
α ·G<

MM +Σ⌉α ⋆ G
⌈
MM

]

(t, t)
}

(16.7)

The last term in (16.7) explicitly accounts for the e�ects of initial correlations and initial-state
dependence. If one assumes that both dependencies are washed out in the limit t → ∞,
then for large times we can discard the imaginary time convolution. The resulting formula
is known as the Meir–Wingreen formula [148, 149]. Equation (16.7) provides a generalization
of the Meir–Wingreen formula to the transient time-domain. Furthermore, if in the same
limit (t→∞) we reach a steady state then the Green’s function, and hence the self-energy,
become a function of the times di�erence only. In this case we can Fourier transform with
respect to the relative time and write the steady-state value of the current as

I(S)
α ≡ lim

t→∞
Iα(t) = 2iq

∫
dω

2π
TrM

[
Σ<

α (ω)AMM (ω)− Γα(ω)G
<
MM (ω)

]
(16.8)

where Γα(ω) = i
[
ΣR

α(ω)− ΣA
α (ω)

]
is the nonequilibrium embedding rate operator and

AMM (ω) = i
[
GR

MM (ω)−GA
MM (ω)

]
is the nonequilibrium spectral function.3 Physically

we expect that a necessary condition for the development of a steady-state is that the
Hamiltonian Ĥ(t) is independent of t in the long-time limit. In general, however, we do
not expect that this condition is also su�cient. We have already encountered examples
where the presence of bound states in noninteracting systems prevents the formation of a
steady state, see Section 6.3.1 and Refs. [55, 150]. In interacting systems the issue is more
di�cult to address due to the absence of exact solutions. What we can say is that in all

3To derive (16.8) one uses the fact that Re{Tr[B]} = 1
2
Tr[B +B†] for any matrix B and then the properties

of Section 9.4 for the transpose conjugate of the Green’s functions and self-energies as well as the cyclic property
of the trace.
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460 16. Applications of MBPT to nonequilibrium problems

numerical simulations performed so far the current reaches a steady value in the long time
limit provided that the self-energy contains some correlation. Instead, if we approximate
ΣMM at the Hartree or Hartree–Fock level then the development of a steady state is not
guaranteed [62, 151]

In the following sections we discuss the solution of (16.6) using di�erent approximations
to the self-energy ΣMM . First, however, we get acquainted with (16.6) by solving it analytically
in the absence of interactions, ΣMM = 0. The noninteracting case is particularly instructive.
On one hand it allows us to introduce the procedure for solving the more complicated case
of interacting systems. On the other hand it provides us with reference results to interpret
the e�ects of the interactions.

Exercise 16.1. Prove the formula (16.7) for the current Iα(t) by calculating the commutator

between the total number of particle operators N̂α =
∑

kσ d̂
†
kασd̂kασ for reservoir α and

the Hamiltonian Ĥ(t). Note that [N̂α, Ĥint]− = 0.

Exercise 16.2. Prove the formula (16.8) for the steady-state current.

16.2 Time-dependent quantum transport:

an exact solution

We consider the same situation as in Section 7.2.3 in which an external electric field is
suddenly switched on to bring the reservoirs to di�erent potentials, thereby inducing a
current through the molecule [54, 152]. Since the particles are electrons we set the charge
q = −1. In this section the interaction is completely neglected so that ĤM = Ĥ0 − µN̂
and Ĥ(t) is obtained from Ĥ0 by replacing ǫkα → ǫkα(t) = ǫkα + Vα(t), where Vα(t) is
the external bias. We mention that this kind of external perturbation models the classical
potential inside a metal. When a metal is exposed to an external field V the e�ect of the
Hartree potential VH is to screen V in such a way that the classical (external plus Hartree)
potential is uniform in the interior of the metal. Consequently the potential drop is entirely
confined to the molecular region, as shown in the schematic representation below:

The uniform bias Vα(t) in reservoir α can then be interpreted as the sum of the external
and Hartree potential. This e�ectively means that the reservoirs are treated at a Hartree
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16.2. Time-dependent quantum transport: an exact solution 461

mean field level. Of course, for the classical potential to be uniform at all times we must
vary the external potential on a time scale much longer than the characteristic time for the
formation of surface charges. A reasonable estimate of this characteristic time is the inverse
of the plasma frequency, which in a bulk metal is of the order of ∼ 10 eV ∼ 10−18 s, see
also the discussion in Section 15.5.3.

To calculate the time-dependent ensemble average of one-body operators, e.g., the
occupation of the molecular levels or the current flowing through the molecule, we must
determine G<

MM (t, t). To lighten the notation we drop the subscript “MM ” since all
quantities in (16.6) are matrices with indices in the molecular region and therefore there is
no risk of misunderstandings. Taking into account that the many-body self-energy is zero
we have [

i
d

dz
− h(z)

]

G(z, z′) = δ(z, z′) +

∫

γ

dz̄ Σem(z, z̄)G(z̄, z
′)

and the adjoint equation

G(z, z′)

[

−i
←−
d

dz′
− h(z′)

]

= δ(z, z′) +

∫

γ

dz̄ G(z, z̄)Σem(z̄, z
′),

with h = hMM the finite matrix Hamiltonian of the isolated molecule. We can generate an
equation for G<(t, t) by setting z = t−, z′ = t′+, subtracting the equation of motion from
its adjoint and then setting t = t′. The result is

i
d

dt
G<(t, t)−

[
h(t), G<(t, t)

]

− =
[
Σ<

em ·GA −GR · Σ<
em +ΣR

em ·G< −G< · ΣA
em

]
(t, t)

+
[

Σ⌉em ⋆ G⌈ −G⌉ ⋆ Σ⌈em
]

(t, t). (16.9)

It is easy to see that the terms with the plus sign on the r.h.s. are the transpose conjugate
of the terms with the minus sign. For instance from (6.24) and (9.45)

∫ ∞

t0

dt̄ Σ<
em(t, t̄)G

A(t̄, t) = −
∫ ∞

t0

dt̄ [Σ<
em(t̄, t)]

†[GR(t, t̄)]† = −
[
GR · Σ<

em

]†
(t, t),

and similarly from (9.42) and (9.46)

−i
∫ β

0

dτ Σ⌉em(t, τ)G
⌈(τ, t)=−i

∫ β

0

dτ [Σ⌈em(β−τ, t)]†[G⌉(t, β−τ)]†=−
[

G⌉ ⋆ Σ⌈em

]†
(t, t).

Therefore we can rewrite (16.9) as

i
d

dt
G<(t, t)−

[
h(t), G<(t, t)

]

− = −
[

GR · Σ<
em +G< · ΣA

em +G⌉ ⋆ Σ⌈em

]

(t, t) + H.c.,

(16.10)
where H.c. stands for Hermitian conjugate. In order to solve this di�erential equation we
must calculate the Keldysh components of the embedding self-energy as well as the Green’s
function GR and G⌉. GR can easily be derived from the sole knowledge of ΣR

em. To calculate
G⌉ we must first calculate the Matsubara Green’s function GM, see (9.35). We then proceed
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462 16. Applications of MBPT to nonequilibrium problems

as follows. First we determine the embedding self-energy, then we calculate GM from (9.34)
and use it to calculate G⌉, which we then use to solve (16.10). This way of proceeding
is completely general. One always starts from the Matsubara Green’s function since it is
the only Kadano�–Baym equation which is not coupled to the others. The di�erence in
the interacting case is that the Matsubara self-energy is a functional of GM and therefore
cannot be determined a priori like the embedding self-energy. In the interacting case the
Matsubara Kadano�–Baym equation must be solved self-consistently.

For simplicity we take Vα(t) = Vα independent of time i.e. we consider a sudden switch
on of the bias. Then the Hamiltonian is time independent on the horizontal branches of
the contour, and according to the results of Section 6.2 the retarded and advanced Green’s
functions gR/A depend only on the time di�erence. The advanced embedding self-energy
for reservoir α is then

ΣA
α,mn(t, t

′) =

∫
dω

2π
e−iω(t−t′)

∑

k

Tmkα g
A
kα(ω)Tkαn

︸ ︷︷ ︸

ΣA
α,mn(ω)

.

To simplify the analytic calculations we take the eigenvalues of the molecular Hamiltonian h
well inside the continuum spectrum of reservoir α and make the WBLA according to which

ΣA
α,mn(ω) =

∑

k

Tmkα
1

ω − ǫkα − Vα − iη
Tkαn =

i

2
Γα,mn

is a purely imaginary constant. The quantity

Γα,mn = 2π
∑

k

Tmkα δ(ω − ǫkα − Vα)Tkαn = Γ∗α,nm

can be seen as the (m,n) matrix element of a self-adjoint matrix Γα. Consequently

ΣA
α (t, t

′) =
i

2
Γαδ(t− t′).

In the WBLA ΣA
α (ω), and hence ΣR

α(ω) = [ΣA
α (ω)]

†, is the same as in equilibrium since the
dependence on Vα drops out. Then we can use (9.58) and write

ΣM
α (ωq) =

i

2

{
−Γα if Im[ωq] > 0
+Γα if Im[ωq] < 0

.

The right and left self-energy can now be derived very easily. Without loss of generality we
choose the time at which the bias is switched on to be t0 = 0. Using the relation (6.53),

g
⌉
kα(t, τ) = igRkα(t, 0)g

M
kα(0, τ) = e−i(ǫkα+Vα)tgMkα(0, τ).

Expanding gMkα(0, τ) in Matsubara frequencies, see (6.17), we find

Σ⌉α,mn(t, τ) =
1

−iβ
∑

q

eωqτ
∑

k

Tmkα
e−i(ǫkα+Vα)t

ωq − ǫkα + µ
Tkαn

=
1

−iβ
∑

q

eωqτ

∫
dω

2π
2π
∑

k

Tmkαδ(ω − ǫkα)Tkαn

︸ ︷︷ ︸

Γα,mn

e−i(ω+Vα)t

ωq − ω + µ
.
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16.2. Time-dependent quantum transport: an exact solution 463

This trick to convert the sum over k into an integral over ω is used over and over in the
following derivations. We observe that in the original definition of Γα the argument of the
δ-function was ω− ǫkα − Vα. However, since Γα is independent of ω we can shift ω as we
like without changing the value of the sum. In conclusion

Σ⌉α(t, τ) = Γα ×
1

−iβ
∑

q

eωqτ

∫
dω

2π

e−i(ω+Vα)t

ωq − ω + µ
.

In a completely analogous way the reader can check that the expression for Σ
⌈
α is

Σ⌈α(τ, t) = Γα ×
1

−iβ
∑

q

e−ωqτ

∫
dω

2π

ei(ω+Vα)t

ωq − ω + µ
.

It is also straightforward to verify that Σ
⌉
α(t, τ) = [Σ

⌈
α(β − τ, t)]†, in agreement with (9.46).

Finally, the lesser self-energy is obtained from

Σ<
α,mn(t, t

′) =
∑

k

Tmkα if(ǫkα − µ)e−i(ǫkα+Vα)(t−t′)
︸ ︷︷ ︸

g<
kα(t,t′)

Tkαn

= i Γα,mn

∫
dω

2π
f(ω − µ)e−i(ω+Vα)(t−t′).

We are now in the position to solve the Kadano�–Baym equations. The Matsubara
Green’s function is simply

GM(ωq) =
1

ωq − h− ΣM
em(ωq) + µ

=







1
ωq − h+ iΓ/2 + µ

if Im[ωq] > 0

1
ωq − h− iΓ/2 + µ

if Im[ωq] < 0
, (16.11)

with Γ =
∑

α Γα. The combination h ± iΓ/2 appears very often below and it is therefore
convenient to introduce an e�ective non-Hermitian Hamiltonian

heff = h− i

2
Γ ⇒ h†eff = h+

i

2
Γ

to shorten the formulas. To calculate G⌉ we use its equation of motion

[

i
d

dt
− h
]

G⌉(t, τ) =

∫ ∞

0

dt̄ ΣR
em(t, t̄)G

⌉(t̄, τ)− i

∫ β

0

dτ̄ Σ⌉em(t, τ̄)G
M(τ̄ , τ).

Taking into account that ΣR
em(t, t̄) = [ΣA

em(t̄, t)]
† = − i

2Γδ(t̄ − t), the first term on the

r.h.s. is simply − i
2ΓG

⌉(t, τ). Moving this term to the l.h.s. we form the combination

h− i
2Γ = heff , and hence

G⌉(t, τ) = e−iheff t

[

GM(0, τ)−
∫ t

0

dt′eiheff t
′

∫ β

0

dτ̄ Σ⌉em(t
′, τ̄)GM(τ̄ , τ)

]

, (16.12)
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464 16. Applications of MBPT to nonequilibrium problems

where we take into account that GM(0, τ) = G⌉(0, τ). In order to solve (16.10) we must
calculate one remaining quantity, which is the retarded Green’s function. Again we observe
that the Hamiltonian is time independent on the horizontal branches of the contour and
therefore GR(t, t′) depends only on the time di�erence t− t′,

GR(t, t′) =

∫
dω

2π
e−iω(t−t′)GR(ω).

Using the retarded Dyson equation we find

GR(ω) =
1

ω − h+ iη

[
1 + ΣR

em(ω)G
R(ω)

]
⇒ GR(ω) =

1

ω − heff
(16.13)

and hence

GR(t, t′) = −iθ(t− t′)e−iheff (t−t′).

We can now evaluate the three terms in the square brackets of (16.10). Let us start with
the first term,

[
GR · Σ<

em

]
(t, t) = −ie−iheff t

∫ t

0

dt′eiheff t
′

i
∑

α

Γα

∫
dω

2π
f(ω − µ)e−i(ω+Vα)t′ei(ω+Vα)t

= i
∑

α

∫
dω

2π
f(ω − µ)

(

1− ei(ω+Vα−heff )t
)

GR(ω + Vα)Γα. (16.14)

The second term involves ΣA which is proportional to a δ-function and therefore

[
G< · ΣA

]
(t, t) =

i

2
G<(t, t)Γ. (16.15)

The third term is more complicated even though the final result is rather simple. Using (16.12)
we find

[

G⌉ ⋆ Σ⌈em

]

(t, t) = e−iheff t

{[

GM ⋆ Σ⌈em

]

(0, t)− i

∫ t

0

dt′eiheff t
′
[

Σ⌉em ⋆ GM ⋆ Σ⌈em

]

(t′, t)

}

.

We now show that the second term on the r.h.s. vanishes. Taking into account the explicit
form of the left and right embedding self-energies,

[

Σ⌉em ⋆ GM ⋆ Σ⌈em

]

(t′, t) =

∫
dω

2π

dω′

2π

∑

αα′

Γα
1

−iβ
∑

q

e−i(ω+Vα)t′

ωq −ω+µ
GM(ωq)

ei(ω
′+Vα′ )t

ωq −ω′+µ
Γα′,

where we use
∫ β

0
dτ e(ωq−ωq′ )τ = βδqq′ . Since both t and t′ are positive the integral

over ω can be performed by closing the contour in the lower half of the complex ω-plane,
whereas the integral over ω′ can be performed by closing the contour in the upper half of
the complex ω′-plane. We then see that the integral over ω is nonzero only for Im[ωq] < 0,
whereas the integral over ω′ is nonzero only for Im[ωq] > 0. This means that for every ωq
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16.2. Time-dependent quantum transport: an exact solution 465

the double integral vanishes. We are left with the calculation of the convolution between
GM and Σ⌈. We have

[

GM ⋆ Σ⌈em

]

(0, t) =

∫
dω

2π

1

−iβ
∑

q

GM(ωq)e
ηωq

ωq − ω + µ

∑

α

Γαe
i(ω+Vα)t,

where factor eηωq stems from the fact that in the limit t→ 0 the quantity
[

GM ⋆ Σ
⌈
em

]

(0, t)

must be equal to
[
GM ⋆ ΣM

em

]
(0, 0+). To evaluate the sum over the Matsubara frequencies

we use the trick (6.19) and then deform the contour from Γa to Γb since GM(ζ) is analytic
in the upper and lower half of the complex ζ-plane, see (16.11). We then have

[

GM⋆Σ⌈em

]

(0, t) =

∫
dω

2π

dω′

2π
f(ω′)

[
GM(ω′ − iδ)

ω′ − ω + µ− iδ
− GM(ω′ + iδ)

ω′ − ω + µ+ iδ

]
∑

α

Γαe
i(ω+Vα)t,

where, as usual, the limit δ → 0 is understood. As t > 0 we can close the integral over ω in
the upper half of the complex ω-plane. Then only the second term in the square brackets
contributes and we find

[

GM ⋆ Σ⌈em

]

(0, t) = i

∫
dω′

2π
f(ω′)GM(ω′ + iδ)

∑

α

Γαe
i(ω′+µ+Vα)t

= i

∫
dω

2π
f(ω − µ)GR(ω)

∑

α

Γαe
i(ω+Vα)t,

where in the last equality we change the integration variable ω′ = ω − µ and observe that
GM(ω − µ+ iδ) = GR(ω). Therefore the last term on the r.h.s. of (16.10) reads

[

G⌉ ⋆ Σ⌈em

]

(t, t) = i

∫
dω

2π
f(ω − µ)

∑

α

ei(ω+Vα−heff )tGR(ω)Γα. (16.16)

We now have all ingredients to solve the equation of motion for G<(t, t). Using the
results (16.14), (16.15), and (16.16),

i
d

dt
G<(t, t) − heffG

<(t, t) +G<(t, t)h†eff = −i
∫
dω

2π
f(ω − µ)

∑

α

×
{

GR(ω + Vα) + ei(ω+Vα−heff )t
[
GR(ω)−GR(ω + Vα)

]}

Γα +H.c.

It is natural to make the transformation

G<(t, t) = e−iheff tG̃<(t, t)eih
†
eff t, (16.17)

so that the di�erential equation for G̃<(t, t) reads

i
d

dt
G̃<(t, t) =− i

∫
dω

2π
f(ω − µ)

∑

α

eiheff t
[
GR(ω + Vα)Γα − ΓαG

A(ω + Vα)
]
e−ih

†
eff t

− i

∫
dω

2π
f(ω − µ)

∑

α

Vα

[

GR(ω)GR(ω + Vα)Γαe
i(ω+Vα−h†

eff )t −H.c.
]

,
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466 16. Applications of MBPT to nonequilibrium problems

where in the second line we use the Dyson-like identity

GR(ω + Vα) = GR(ω)− VαGR(ω)GR(ω + Vα) (16.18)

and the symbol “H.c.” now refers to the transpose conjugate of the quantity in the square
bracket, i.e., H.c. = e−i(ω+Vα−heff )tΓαG

A(ω + Vα)G
A(ω). The quantity G̃<(t, t) can be

calculated by direct integration of the r.h.s.. The integral over time between 0 and t of
the second line is easy since the dependence on t is all contained in the exponential. To
integrate the first line we use the identity

∫ t

0

dt′ eiAt′
[

1

x−AB −B
1

x−A†
]

e−iA
†t′ = −ieiAt′ 1

x−AB
1

x−A† e
−iA†t′

∣
∣
∣
∣

t

0

,

which is valid for arbitrary matrices A and B and can be verified by direct di�erentiation of

the r.h.s. after the replacements eiAt′ → ei(A−x)t
′

and e−iA
†t′ → e−i(A

†−x)t′ (clearly this
replacement does not change the r.h.s.). Finally the integration between 0 and t of the l.h.s.
yields the di�erence G̃<(t, t) − G̃<(0, 0). The matrix G̃<(0, 0) = G<(0, 0) = GM(0, 0+)
and

GM(0, 0+) =
1

−iβ
∑

q

eηωqGM(ωq) =

∫
dω

2π
f(ω)[GM(ω − iδ)−GM(ω + iδ)]

= i

∫
dω

2π
f(ω − µ)GR(ω)ΓGA(ω). (16.19)

This result generalizes the formula (6.20) to molecules with an arbitrary number of levels.
Equation (16.19) could also have been derived from the fluctuation–dissipation theorem, since
GM(0, 0+) = G<(0, 0) =

∫
dω
2πG

<(ω) with G<(ω) = if(ω − µ)A(ω) and the spectral
function

A(ω) = i
[
GR(ω)−GA(ω)

]
= GR(ω)ΓGA(ω).

Interestingly, the spectral function can be written as the sum of partial spectral functions
corresponding to di�erent reservoirs, i.e.,

A(ω) =
∑

α

Aα(ω) where Aα(ω) = GR(ω)ΓαG
A(ω).

Collecting the terms coming from the integration and taking into account (16.17) and (16.18),
after some algebra we arrive at

−iG<(t, t) =

∫
dω

2π
f(ω − µ)

∑

α

{Aα(ω + Vα)

+ Vα

[

ei(ω+Vα−heff )t GR(ω)Aα(ω + Vα) + H.c.
]

+ V 2
α e−iheff t GR(ω)Aα(ω + Vα)G

A(ω) eih
†
eff t}

(16.20)
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16.2. Time-dependent quantum transport: an exact solution 467

Considering the original complication of the problem, equation (16.20) is an extremely com-
pact result and, as we see below, contains a lot of physics. This formula can easily be gener-
alized to situations where the molecular Hamiltonian has terms which flip the spin [153], e.g.,
∑

mn(T
sf
mnd

†
m↑dn↓ + T sf

nmd
†
n↑dm↓), ferromagnetic leads where ǫkα↑ 6= ǫkα↓, and arbitrary

time-independent perturbations in the molecular region, Tmn → Tmn(t) = T ′mn. The only
crucial ingredient to obtain a close analytic formula for G<(t, t) is the WBLA.

Let us come back to (16.20). We can easily check that G<(0, 0) = GM(0, 0+) and that
for zero bias, Vα = 0, one has G<(t, t) = G<(0, 0) at all times, as it should be. Due
to the non-hermiticity of heff = h − iΓ/2 the terms in the second and third lines vanish
exponentially fast in the limit t → ∞. Consequently, G<(t, t) approaches the steady-state
value

lim
t→∞

G<(t, t) = i

∫
dω

2π
f(ω − µ)

∑

α

Aα(ω + Vα).

This result should be compared with the equilibrium result (16.19) in which the partial spec-
tral functions are all calculated at the same frequency ω. Instead, out of equilibrium,
the partial spectral functions are calculated at frequencies shifted by the applied bias,
ω → ω + Vα.

The transient behavior of G<(t, t) is described by the last two lines of (16.20). These
terms have di�erent physical origin. At su�ciently low temperatures the Fermi function has a
sharp step at ω = µ and the second line gives rise to transient oscillations with frequencies
ωj ∼ |µ + Vα − hj | with damping times τj , where hj − iτ−1j /2 are the eigenvalues of
the e�ective Hamiltonian h − iΓ/2. These oscillations originate from virtual transitions
between the resonant levels of the molecule and the Fermi level of the biased reservoirs.
The third line of (16.20) describes intramolecular trasitions. If the e�ective Hamiltonian heff
does not commute with Γα (and hence with Aα) this term produces oscillations of frequency
ωij = hi − hj which are exponentially damped over a time scale τij = 1/(τ−1i + τ−1j ). It
is worth stressing that if heff and Γα commute no intramolecular frequencies are observed

in the transient behavior of G<(t, t) since e−iheff t+ih†
eff t = e−Γt. It is also interesting to

observe that intramolecular transitions are damped on a faster time scale than the transitions
between the Fermi level of the reservoirs and the molecular levels.

16.2.1 Landauer–Büttiker formula

Having all the self-energies and the Green’s functions we can also calculate the time-
dependent current Iα(t) in (16.7). The mathematical steps are very similar to the ones
leading to (16.20) and here we write the final result directly (take into account that the
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468 16. Applications of MBPT to nonequilibrium problems

electron charge is q = −1):

Iα(t) = 2

∫
dω

2π
f(ω − µ)

∑

β

TrM{ΓαG
R(ω + Vα)ΓβG

A(ω + Vα)

− ΓαG
R(ω + Vβ)ΓβG

A(ω + Vβ)

− Vβ
[

Γαe
i(ω+Vβ−heff )tGR(ω)(− iδαβG

R(ω + Vβ) +Aβ(ω + Vβ))+H.c.
]

− V 2
β Γαe

−iheff t GR(ω)Aβ(ω + Vβ)G
A(ω) eih

†
eff t}

(16.21)

where the sum over β is a sum over all reservoirs.
The analysis of this formula is very similar to the analysis for the time-dependent behav-

ior of G<(t, t). The last two lines vanish exponentially fast in the long time limit and the
steady-state value of the current is given by the first two terms in the curly bracket. Let us
play around with (16.21). Consider the simple case of a 2× 2 Hamiltonian h for the molecule
with matrix elements

h =

(
ǫ0 +∆ 0

0 ǫ0 −∆

)

and two reservoirs that we call left, α = L, and right, α = R. We further assume that
ΓL = ΓR. We study two di�erent cases: in the first case the matrix ΓL is proportional to
the 2× 2 identity matrix, while in the second case it is proportional to a 2× 2 matrix with
all identical entries,

first case : ΓL = Γ0

(
1 0
0 1

) ∣
∣
∣
∣

second case : ΓL = Γ0

(
1 1
1 1

)

. (16.22)

The system is initially in equilibrium at zero temperature and chemical potential µ = 0. At
time t = 0 we suddenly switch on a bias VL = 2ǫ0 in the left reservoir while we keep the
right reservoir at zero bias, VR = 0. If we take ǫ0 > 0 and ∆ ≪ ǫ0, and if the molecule
is weakly coupled to the reservoirs, Γ0 ≪ ǫ0, then the initial number of electrons on the
molecule is approximately zero. The e�ect of the bias is to raise the levels of the left
reservoir above the molecular levels so that the molecular levels end up in the bias window,
see schematic representation below:
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16.2. Time-dependent quantum transport: an exact solution 469

Figure 16.2 Left current IL(t) for the two-level molecular system described in the main
text with parameters ǫ0 = 500, ∆ = 20, VL = 2ǫ0 and VR = 0. The left (right) panel
corresponds to the first (second) case of (16.22). Energies and current are in units of Γ0 and
time is in units of Γ−10 .

In this situation a net current starts flowing. In the first case of (16.22) the transient current
only exhibits oscillations of frequency ω = |VL−ǫ0±∆| = |ǫ0±∆| and ω = |VR−ǫ0±∆| =
|ǫ0 ∓∆| corresponding to transitions between the molecular levels and the Fermi energy of
the biased reservoirs. No intramolecular transitions are possible since Γα commutes with
h. This is nicely illustrated in the left panel of Fig. 16.2 where we plot the function IL(t) of
(16.21). The only two visible frequencies ω± = |ǫ0 ±∆| produce coherent quantum beats in
the current. This phenomenon has been observed in the context of spin transport where the
energy spacing ∆ should be seen as the Zeeman splitting induced by an external magnetic
field [153–156]. In the second case of (16.22) the matrices Γα do not commute with h and
according to our previous analysis we should observe an additional frequency ω = 2∆
corresponding to the intramolecular transition. In the right panel of Fig. 16.2 we show the
left current IL(t) for the second case. We clearly see an additional oscillation of frequency
ω = 2∆ superimposed on the oscillations of the first case.

We have already observed that in the long-time limit the last two lines of (16.21) vanish.
Let us check that the steady-state value of the current agrees with the formula (16.8) when
we specialize it to noninteracting situations and to WBLA reservoirs. The formula (16.8)
was derived under the assumptions that initial correlations and initial-state dependencies
are washed out in the limit t → ∞ and that, in the same limit, the invariance under
time translations is recovered, i.e., the Green’s function and the self-energy depend only
on the time di�erence. Then the lesser Green’s function of the molecular region can be
calculated from (9.71) where, for the noninteracting case considered here, the self-energy is
only the embedding self-energy. In Fourier space the general form of the retarded and lesser
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470 16. Applications of MBPT to nonequilibrium problems

embedding self-energy is

ΣR
α(ω) = hMα

1

ω − hαα − Vα + iη
hαM

= P hMα
1

ω − hαα − Vα
hαM

︸ ︷︷ ︸

Λα(ω)

−iπ hMαδ(ω − hαα − Vα)hαM
︸ ︷︷ ︸

Γα(ω)/2

,

Σ<
α (ω) = 2πi hMαf(hαα − µ)δ(ω − hαα − Vα)hαM

= i f(ω − Vα − µ)Γα(ω),

and hence

G<(ω) = GR(ω)Σ<
em(ω)G

A(ω) = i
∑

α

f(ω − Vα − µ)GR(ω)Γα(ω)G
A(ω).

In contrast to the WBLA, the rate operator is frequency dependent and ΣR
α also has a

real part.4 The retarded Green’s function is easily obtained from the Dyson equation,
GR(ω) = 1/(ω − h − ΣR

em(ω)), and from it we can calculate the nonequilibrium spectral
function

A(ω) = i[GR(ω)−GA(ω)] =
∑

α

GR(ω)Γα(ω)G
A(ω).

Inserting these results into (16.8) we obtain the Landauer–Büttiker formula [157, 158] for the
steady-state current

I(S)
α = 2

∫
dω

2π

∑

β

[f(ω−Vα− µ)−f(ω−Vβ−µ)] TrM
[
Γα(ω)G

R(ω)Γβ(ω)G
A(ω)

]

(16.23)

In the WBLA the rate operators Γα are frequency independent, the retarded Green’s functions
simplify as in (16.13) and the Landauer–Büttiker formula reduces to the first two terms of
(16.21), as it should. The quantities

T αβ = TrM
[
Γα(ω)G

R(ω)Γβ(ω)G
A(ω)

]

are related to the probability for an electron of energy ω to be transmitted from reservoir

α to reservoir β. We then see that the current I
(S)
α is the sum of the probabilities for

electrons in α (and hence with energy below µ+ Vα) to go from α to β minus the sum of
the probabilities for electrons in β (and hence with energy below µ + Vβ ) to go from β to
α. As expected the steady-state current vanishes if the biases Vα = V are all the same. It
is important to realize that the derivation of the Landauer–Büttiker formula does not apply
in the interacting case since G< = GR(Σ< + Σ<

em)G
A and there is no simple relation

between the nonequilibrium many-body self-energy Σ< and the nonequilibrium many-body
rate operator Γ = i[Σ> − Σ<].

4Remember that Λα and Γα are related by a Hilbert transformation.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:09:06 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.018

Cambridge Books Online © Cambridge University Press, 2015



16.3. Implementation of the Kadano�–Baym equations 471

For the case of only two reservoirs α = L,R the Landauer–Büttiker formula simplifies
to

I
(S)
L = 2

∫
dω

2π
[f(ω−VL− µ)−f(ω−VR−µ)] TrM

[
ΓL(ω)G

R(ω)ΓR(ω)G
A(ω)

]

and I
(S)
R = −I(S)

L . This formula generalizes the result (7.37) to finite bias and to molecules
with an arbitrary number of levels, and it is not restricted to the WBLA. We can easily check
that for one single level and small biases, and within the WBLA we reobtain (7.37). In this
case

TrM
[
ΓL(ω)G

R(ω)ΓR(ω)G
A(ω)

]
=

ΓLΓR

(ω − ǫ0)2 + (Γ/2)2
.

Furthermore for VR = 0 and small biases, VL = qV0 = −V0 and we can Taylor expand
f(ω + V0 − µ) ∼ f(ω − µ) + f ′(ω − µ)V0. Then

I
(S)
R = −2

∫
dω

2π
f ′(ω − µ) ΓLΓR

(ω − ǫ0)2 + (Γ/2)2
V0.

Integrating by parts we obtain (7.37) up to a factor of 2 due to spin which was neglected in
Section 7.2.3.

Exercise 16.3. Show that for any bias Vα the G<(0, 0) in (16.20) reduces to the equilibrium

Green’s function GM(0, 0+) in (16.19).

Exercise 16.4. Prove (16.21) and show that (a) Iα(t = 0) = 0, and (b) I
(S)
α = 0 when the

biases Vα = V are the same in all reservoirs.

16.3 Implementation of the Kadano�–Baym

equations

For open systems the Kadano�–Baym equations of Section 9.4 must be modified by adding
to the many-body self-energy the embedding self-energy, see again (16.6). Dropping the
subscript “MM ” as we did in the previous section, we denote by

Σtot = Σ+ Σem

the sum of the two self-energies. In this section we discuss how to implement the Kadano�–
Baym equations for the Green’s function of the molecular region. The presentation follows
very closely the one of Ref. [147]. Before entering into the details of the procedure we
observe that the Kadano�–Baym equations are first-order di�erential equations in time.
The numerical technique to solve these kinds of equation is the so called time-stepping
technique. Consider the di�erential equation

d

dt
f(t) = g(t),
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472 16. Applications of MBPT to nonequilibrium problems

where g(t) is a known function. From the value of f at the initial time t0 we can calculate
the value of f at one time step later, i.e., at t0 +∆t, by approximating the derivative with a
finite di�erence

f(t0 +∆t)− f(t0)
∆t

= g(t0).

Of course f(t0 +∆t) calculated in this way provides a good approximation if the time step
∆t is much smaller than the typical time scale over which g(t) varies. From f(t0 +∆t) we
can then calculate f(t0+2∆t) by approximating again the derivative with a finite di�erence.
In general, from the value of f at time t0 + n∆t we can calculate the value of f at time
t0 + (n+ 1)∆t from

f(t0 + (n+ 1)∆t)− f(t0 + n∆t)

∆t
= g(t0 + n∆t). (16.24)

This is the basic idea of the time-stepping technique. There are of course dozens (or maybe
hundreds) of refinements and variants to make the iterative procedure more stable and
accurate. For example one can replace g(t0 + n∆t) in the r.h.s. of (16.24) with the average
1
2 [g(t0 + n∆t) + g(t0 + (n + 1)∆t)] or with the value of g at half the time step, i.e.,
g(t0 +(n+ 1

2 )∆t)). The advantage of these variants is clear: if we use the same scheme to
go backward in time then we recover exactly f(t0) from f(t0+n∆t). The variant of choice
depends on the physical problem at hand. In Appendix P we describe the time-stepping
algorithm employed to produce the results of the following sections. Here we explain how
to solve the Kadano�–Baym equations using a generic time-stepping technique, and then
give details on how to calculate the self-energy in the second-Born and GW approximation.
We choose these two self-energies because most of the results discussed later have been
obtained within these approximations. However, at this point the reader should be able to
work out the Keldysh components of any other approximate self-energy.

16.3.1 Time-stepping technique

Let us assume that we have calculated the Matsubara Green’s function, and hence the
Matsubara self-energy, using some suitable self-consistent method. We now show that the
lesser and greater Green’s functions can be calculated by solving the following three coupled
Kadano�–Baym equations

[

i
d

dt
− h(t)

]

G⌉(t, τ) =
[

ΣR
tot ·G⌉ +Σ

⌉
tot ⋆ G

M
]

(t, τ),

[

i
d

dt
− h(t)

]

G>(t, t′) =
[

ΣR
tot ·G> +Σ>

tot ·GA +Σ
⌉
tot ⋆ G

⌈
]

(t, t′),

G<(t, t′)

[

−i
←−
d

dt′
− h(t′)

]

=
[

GR · Σ<
tot +G< · ΣA

tot +G⌉ ⋆ Σ⌈tot

]

(t, t′),

together with the equation for the time-diagonal Green’s function

i
d

dt
G<(t, t)−

[
h(t), G<(t, t)

]

− = −
[

GR · Σ<
tot +G< · ΣA

tot +G⌉ ⋆ Σ⌈tot

]

(t, t) + H.c.,
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16.3. Implementation of the Kadano�–Baym equations 473

which can be derived similarly to (16.10). In other words, we do not need the equation for
G⌈ nor the equation for G>(t, t′) with the derivative with respect to t′ nor the equation for
G<(t, t′) with the derivative with respect to t.

Without loss of generality we choose t0 = 0. If we use the simple minded time-stepping
method (16.24), then the collision integral (i.e., the r.h.s.) of the first equation for t = 0

is [Σ
⌉
tot ⋆ G

M](0, τ) = [ΣM
tot ⋆ G

M](0, τ), which is known; we can make one time step to
calculate G⌉(∆t, τ) since G

⌉(0, τ) = GM(0, τ), which is also known. Similarly, the collision
integral of the second and third equations is known for t = t′ = 0 and we can make one
time step to calculate G>(∆t, 0) and G<(0,∆t), since we know G>(0, 0) = GM(0+, 0)
and G<(0, 0) = GM(0, 0+). Using the symmetry properties (9.41) and (9.42) we then also
know G⌈(τ,∆t) as well as G>(0,∆t) and G<(∆t, 0). In order to calculate G<(∆t,∆t)
we use the fourth equation. The value of G>(∆t,∆t) can be computed from

G>(t, t) = i1̂ +G<(t, t),

which is a direct consequence of the (anti)commutation rules of the field operators. In more
refined time-stepping techniques one needs the collision integrals not only at t = t′ = 0
but also at the first time step, see again the discussion below (16.24). In these cases one
typically implements a predictor corrector scheme. The idea is essentially to make the first
time step as described above, use the result to improve the collision integrals (for instance
by taking an average) and again make the first time step. In principle we can do more than
one predictor corrector, i.e., we can use the result of the first predictor corrector to improve
further the collision integrals and make again the first time step. In most cases, however,
one predictor corrector is enough.

It should now be clear how to proceed. Having the Green’s functions with real times
up to ∆t we can compute the collision integrals up to the same time. Then, we can
use the first equation to calculate G⌉(2∆t, τ) and the second and third equations to
calculate G>(2∆t, n∆t) and G<(n∆t, 2∆t) with n = 0, 1. The quantities G⌈(τ, 2∆t),
G>(n∆t, 2∆t), and G

<(2∆t, n∆t) follow directly from the symmetry properties. Finally
we use the fourth equation to calculate G<(2∆t, 2∆t). At the end of the second time
step we have the Green’s function with real times smaller or equal to 2∆t. In Fig. 16.3
we illustrate how the procedure works from time step m to time step m + 1. The first
equation is used to evaluate G⌉((m+ 1)∆t, τ), the second and third equations to evaluate
G>((m + 1)∆t, n∆t) and G

<(n∆t, (m + 1)∆t) for all n ≤ m. The symmetry properties
are used to extract the Green’s functions with interchanged time arguments and finally the
fourth equation is used to calculate G<((m+ 1)∆t, (m+ 1)∆t).

In the next section we work out explicitly the self-energy in terms of the Green’s function.
The derivation is very instructive since it confirms with two examples the validity of the
observation made in Section 5.3 [see also discussion below (9.33)] according to which, in
order to perform the (m + 1)th time step, we do not need the self-energy with time-
arguments larger than m∆t.

16.3.2 Second-Born and GW self-energies

The main purpose of this section is to study how the Keldysh components of the self-energy
are expressed in terms of the Keldysh components of the Green’s function and to highlight
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474 16. Applications of MBPT to nonequilibrium problems

Figure 16.3 Time stepping technique in the (t, t′) plane. G>(t, t′) is calculated for t > t′

and G<(t, t′) is calculated for t ≤ t′.

the dependence on the time variables. No matter what the approximation to the self-energy
is, the four di�erential equations of the previous section tell us that in order to evaluate the
time derivative with respect to T of G⌉(T, τ), G>(T, t̄), and G<(t̄, T ) with t̄ ≤ T , and of
G<(T, T ) we only need to know Σ⌉(t̄, τ) for t̄ ≤ T , Σ>(t̄, t̄′) for t̄′ ≤ t̄ ≤ T , and Σ<(t̄, t̄′)
for t̄ ≤ t̄′ ≤ T . We now show that to calculate these self-energies in the second-Born and
GW approximation it is enough to know the Green’s function with real times up to T , see
also discussion below (9.33).

The second-Born self-energy is the sum of the Hartree–Fock self-energy, ΣHF, and the
second order correlation self-energy Σc. The Hartree–Fock self-energy is local in time and
can be calculated from the sole knowledge of G<(x, t;x′, t). The second-order correlation
self-energy is given in (13.16), which we rewrite below for fermions of spin 1/2

Σc(1; 2) = −i2
∫

d3d4 v(1; 3)v(2; 4) [G(1; 2)G(3; 4)G(4; 3)−G(1; 4)G(4; 3)G(3; 2)].

For convenience of notation we suppress the position–spin variables. Taking into account
that v is local in time the right component of Σc is

Σ⌉c(t, τ) = −i2
∫

dx3dx4 v v
[

G⌉(t, τ)G⌉(t, τ)G⌈(τ, t)−G⌉(t, τ)G⌈(τ, t)G⌉(t, τ)
]

.

The left component Σ
⌈
c can be worked out similarly and, like Σ

⌉
c, contains only G⌉(t, τ) and

G⌈(τ, t). The lesser and greater components read

Σ≶
c (t, t

′) = −i2
∫

dx3dx4 v v
[

G≶(t, t′)G≶(t, t′)G≷(t′, t)−G≶(t, t′)G≷(t′, t)G≶(t, t′)
]

.
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16.3. Implementation of the Kadano�–Baym equations 475

Thus we see that in order to calculate the self-energy with real times up to T we only need
the Green’s function with real times up to T .

In the GW approximation the XC part of the self-energy is the product of the Green’s
function G and the screened interaction W , see (12.48). The screened interaction satisfies
the Dyson equation

W (1; 2) = v(1; 2) +

∫

d3d4 v(1; 3)P (3; 4)W (4; 2),

where the polarizability is approximated as P (1; 2) = −iG(1; 2)G(2; 1). In order to split
the self-energy into a Hartree–Fock part and a correlation part we write W = v + δW so
that the GW self-energy reads Σ = ΣHF +Σc with

Σc(1; 2) = −iG(1; 2)δW (2; 1).

Understanding again the dependence on the position–spin variables we have

Σ⌉c(t, τ) = −iG⌉(t, τ)δW ⌈(τ, t) ; Σ⌈c(τ, t) = −iG⌈(τ, t)δW ⌉(t, τ)

and
Σ≶

c (t, t
′) = −iG≶(t, t′)δW≷(t′, t).

As W (1; 2) = W (2; 1) is symmetric, see property (10.27), we only need to calculate
δW ⌉(t, τ) and δW<(t, t′) for t ≤ t′ since5

δW ⌈(τ, t) = δW ⌉(t, τ) and δW>(t, t′) = δW<(t′, t).

From the Dyson equation for the screened interaction we find

δW ⌉(t, τ) = vP ⌉(t, τ)v + vX⌉(t, τ)

and
δW<(t, t′) = vP<(t, t′)v + vX<(t, t′),

where

P ⌉(t, τ) = −iG⌉(t, τ)G⌈(τ, t) and P<(t, t′) = −iG<(t, t′)G>(t′, t),

and

X⌉(t, τ) =

∫ t

0

dt̄ PR(t, t̄)δW ⌉(t̄, τ)− i

∫ β

0

dτ̄ P ⌉(t, τ̄)δWM(τ̄ , τ),

X<(t, t′) =

∫ t

0

dt̄ PR(t, t̄)δW<(t̄, τ) +

∫ t′

0

dt̄ P<(t, t̄)δWA(t̄, τ)

− i

∫ β

0

dτ̄ P ⌉(t, τ̄)δW ⌈(τ̄ , t′).

5We recall that we only need Σ>(t, t′) for t ≥ t′ and Σ<(t, t′) for t ≤ t′.
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476 16. Applications of MBPT to nonequilibrium problems

Let us assume that we propagated up to a maximum time T and see if we can calculate
δW ⌉ and δW< with real times up to T . The first term in δW ⌉ and δW< is known since
the polarizability is given in terms of Green’s functions with real times smaller than T . The
same is true for the second term since the time integrals in X have an upper limit which
never exceeds T . For instance, for the first time step we need

X⌉(0, τ) = −i
∫ β

0

dτ̄ PM(0, τ̄)δWM(τ̄ , τ)

and X<(0; 0) = X⌉(0, 0+). These quantities are known from the solution of the equilibrium
problem. After the first time step we can calculate P and δW with real times up to ∆t

and hence X with real times up to ∆t. We can then perform the second time step and
so on and so forth. In more refined time-stepping techniques we also need to implement a
predictor corrector. This means that to go from time step m to time step m + 1 we also
need δW with real times equal to (m+ 1)∆t. In this case we can use an iterative scheme
similar to the one previously described. As a first guess for, e.g., δW<(n∆t, (m + 1)∆t)
we take δW<(n∆t,m∆t). Similarly we approximate δW ⌉((m+1)∆t, τ) ∼ δW ⌉(m∆t, τ)
and δW<((m + 1)∆t, (m + 1)∆t) ∼ δW<(m∆t,m∆t). We then calculate X with real
times equal to (m + 1)∆t and use it to obtain a new value of δW with real times equal
to (m + 1)∆t. This new value can then be used to improve X and in turn δW and the
process is repeated until convergence is reached.

In the next sections we present the results of the numerical solution of the Kadano�–
Baym equations for open systems and for finite systems.

16.4 Initial-state and history dependence

The dependence on the initial state manifests itself in two ways in the Kadano�–Baym
equations. First, the initial values of the time-dependent Green’s functions are determined
by the equilibrium Green’s function at t = t0, and this value is obtained by solving the
Matsubara Kadano�–Baym equation (9.32) or the Matsubara Dyson equation (9.34). Second,
the Kadano�–Baym equations contain terms that describe the memory of the initial state

during the time propagation. These terms depend on the self-energies Σ
⌉,⌈
tot(z, z

′) with
mixed real- and imaginary-time arguments. In this section we investigate these two initial-
state dependencies separately by either setting the MBPT self-energy Σ(z, z′) to zero for
z and/or z′ on the vertical track of the contour (the initial state is noninteracting) or by

setting Σ
⌉,⌈
em and/or Σ⌉,⌈ to zero (the initial state is interacting but the memory e�ects due

to embedding and/or electron correlations are neglected).
We consider the system illustrated below in which a molecular region described with

only two basis functions is connected to a left and a right noninteracting one-dimensional
reservoir (semi-infinite chains):
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16.4. Initial-state and history dependence 477

The bonds between the chain sites denote the nonvanishing o�-diagonal matrix elements of
the one-particle Hamiltonian. So we have a link T in the reservoirs, a link Tα between the
α = L,R reservoir and the molecular basis functions a, b and a link TM in the molecule.
The diagonal matrix elements in lead α are all equal to ǫα whereas they are equal to ǫm,
m = a, b, in the molecule. The site basis |jα〉 for the reservoirs is not the basis of the
eigenfunctions of the reservoir Hamiltonian. For a reservoir α with N sites the reservoir
Hamiltonian in the site basis reads

Ĥα =

N−1∑

j=1
σ

T
(

ĉ†jασ ĉj+1ασ + ĉ†j+1ασ ĉjασ

)

.

The operators d̂kασ that diagonalize Ĥα can easily be worked out, see Exercise 2.3, and

are given by d̂kασ =
∑N

j=1〈kα|jα〉ĉjασ with 〈jα|kα〉 =
√

2
N+1 sin

πkj
N+1 . In the kα-

basis Ĥα =
∑

kσ ǫkαd̂
†
kασd̂kασ has the same form as in (16.1) with the eigenvalues ǫkα =

ǫα+2T cos πkj
N+1 . In a similar way we can deduce the coupling Hamiltonian in the kα-basis.

The coupling Hamiltonian between the molecule and the left reservoir in the site basis is

∑

σ

TL

(

ĉ†1Lσd̂aσ + d̂†aσ ĉ1Lσ

)

=
∑

kσ

TkL

(

d̂†kLσd̂aσ + d̂†aσd̂kLσ

)

,

where on the r.h.s. we define TkL = TL〈kL|1L〉. Finally we choose the Coulomb integrals
vijmn = δinδjmvmn so that the interaction Hamiltonian takes the diagonal form

Ĥint =
1

2

∑

mn
σσ′

vmn d̂
†
mσd̂

†
nσ′ d̂nσ′ d̂mσ,

where the sum over m,n is restricted to the molecular basis functions a and b.
The one-particle Hamiltonian of the molecule in the basis {a, b} reads

h =

(
ǫa TM
TM ǫb

)

and the embedding self-energy Σα in the same basis has only one nonvanishing entry,

ΣL =

(
σL 0
0 0

)

, ΣR =

(
0 0
0 σR

)

.

To calculate σα we use the following trick. From the definition (16.5) we have Σα =
hMαgααhαM and therefore

σα =
∑

k

Tkα gkα Tkα = T 2
α

∑

k

〈1α|kα〉gkα〈kα|1α〉.

Denoting by ĝαα =
∑

k gkα|kα〉〈kα| the noninteracting Green’s function operator (in first
quantization) of the isolated αth reservoir we see that

σα = T 2
α 〈1α|ĝαα|1α〉.
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478 16. Applications of MBPT to nonequilibrium problems

The retarded component of ĝαα in frequency space reads ĝRαα(ω) = 1/(ω−ĥαα+iη) where

ĥαα is the single-particle Hamiltonian (in first quantization) of the αth reservoir. We write
ĥαα = ĥ0αα + T̂ where T̂ = T (|1α〉〈2α| + |2α〉〈1α|) is responsible for the link between

sites 1 and 2. Thus ĥ0αα is the one-particle Hamiltonian of the isolated site 1 and of the

chain starting from site 2. In this way |1α〉 is an eigenket of ĥ0αα with eigenvalue ǫα. From
the Dyson equation

ĝRαα(ω) =
1

ω − ĥ0αα + iη
+

1

ω − ĥ0αα + iη
T̂ ĝRαα(ω)

we have

〈1α|ĝRαα(ω)|1α〉 =
1

ω − ǫα + iη

[
1 + T 〈2α|ĝRαα(ω)|1α〉

]
,

〈2α|ĝRαα(ω)|1α〉 = 〈2α|
1

ω − ĥ0αα + iη
|2α〉 T 〈1α|ĝRαα(ω)|1α〉.

Solving this system for 〈1α|ĝRαα(ω)|1α〉 we get

〈1α|ĝRαα(ω)|1α〉 =
1

ω − ǫα − T 2〈2α| 1

ω−ĥ0
αα+iη

|2α〉+ iη
. (16.25)

Now the crucial observation is that for an infinitely long reservoir 〈2α| 1

ω−ĥ0
αα+iη

|2α〉 =
〈1α| 1

ω−ĥαα+iη
|1α〉 = 〈1α|ĝRαα(ω)|1α〉 since both matrix elements are the terminal site

Green’s function of a semi-infinite chain with the same Hamiltonian. Then (16.25) becomes a
simple quadratic equation, the two solutions of which yield two solutions for the embedding
self-energy:

σR
α (ω) =

T 2
α

2T 2

[

(ω − ǫα + iη)±
√

(ω − ǫα + iη)2 − 4T 2
]

.

Which solution should we pick? To decide we observe that for |ω| → ∞ we have
gR1α,1α(ω) ∼ 1/ω and hence σR

α (ω) ∼ T 2
α/ω. Expanding the square root in powers of

4T 2/(ω− ǫα)2 it is easy to see that for ω → +∞ we must take the solution with the minus
sign whereas for ω → −∞ we must take the solution with the plus sign. In this way we fix
the sign for all frequencies such that |ω − ǫα| > |2T |. For |ω − ǫα| < |2T | the argument
of the square root becomes negative and the embedding self-energy acquires an imaginary
part. By construction the sign of the imaginary part must be negative.6 To summarize

σR
α (ω) =

T 2
α

2T 2







ω − ǫα −
√

(ω − ǫα)2 − 4T 2 ω − ǫα > |2T |
ω − ǫα − i

√

4T 2 − (ω − ǫα)2 |ω − ǫα| < |2T |
ω − ǫα +

√

(ω − ǫα)2 − 4T 2 ω − ǫα < −|2T |
,

where we take the limit η → 0 since σR
α (ω) is nonsingular everywhere. The real and

imaginary parts of σR
α (ω) are shown in Fig. 16.4. All other Keldysh components of σα can be

6From the Cauchy relation we have Im[σR
α (ω)] = −π ∑k T

2
kαδ(ω − ǫkα).
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16.4. Initial-state and history dependence 479

Figure 16.4 Real and imaginary parts of the embedding self-energy for a reservoir which is a
semi-infinite chain. Frequencies are in units of T and σR

α is in units of T 2
α/(2T ).

derived as we did in Section 16.2. With Σα at our disposal we can solve the Kadano�–Baym
equations for the open molecular region and in particular we can address the initial state
dependence.

We start by considering a system prepared in a noninteracting state so that the many-
body self-energy is zero when one or both time arguments are on the vertical track of the
contour. At time t = t0 = 0 we switch on the interaction and propagate until t = t1,
at which time we also switch on a sudden symmetric bias, i.e., ǫα → ǫα + Vα(t), with
VL(t) = −VR(t) = V . Since electron correlations are taken into account in the time
propagation but not in the initial state, there is a charge redistribution for times t > 0. The
result is compared to an initially correlated Kadano�–Baym propagation. For the molecule
we use the parameters ǫa = ǫb = 0, TM < 0 and vaa = vbb = 2 and vab = vba = 1 (all
energies are in units of |TM |). The chemical potential µ is set at the middle of the Hartree–
Fock gap and is determined by an equilibrium Hartree–Fock calculation of the uncontacted
but interacting molecule which yields the value µ = 2. For the reservoirs we use ǫα = µ and
T = −1.5. The coupling between the molecule and the reservoirs is set to TL = TR = 0.5
(weak coupling). Finally we consider the low temperature regime and take β = 90. The
Hamiltonian of the noninteracting and isolated molecule has eigenvalues ǫ± = ±1 which
are both below the chemical potential. As a result of the sudden electron interaction for
t > 0 a charge of about 2 electrons is pushed into the reservoirs. The corresponding
current IL(t) = −dNL/dt (the charge of the particles is q = −1) is shown in Fig. 16.5
for the second-Born approximation. IL(t) is saturated before the bias voltage V = 1
is switched on at time t1 = 20 (times are in units of 1/|TM |). For later times t > t1 the
transient currents with inclusion and with neglect of initial correlations are indistinguishable.
Therefore the initially uncorrelated system has thermalized to a correlated state when the
bias is switched on. It is important to emphasize that this behavior is not general. In
our case the interaction is confined in the molecular region and therefore represents a
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480 16. Applications of MBPT to nonequilibrium problems

Figure 16.5 Time-dependent current IL(t) in the second-Born approximation with and with-
out initial correlations, i.e., starting from an initial interacting and noninteracting state.

local perturbation in the language of Section 6.3.1. If the interaction were present also in
the leads (global perturbation) then the steady-state current would depend on whether the
system is initially interacting or not [159]. This e�ect is known as thermalization breakdown
[160–163] and has recently attracted considerable attention due to the possibility of studying it
experimentally [164].

To study the memory of the initial state we compare the full solution of the Kadano�–

Baym equations to those in which we neglect the terms Σ
⌉,⌈
emb and/or Σ⌉,⌈. However, at

the initial time t = t0 = 0 we still employ the fully correlated and embedded equilibrium
Green’s function. The results are displayed in Fig. 16.6 for the Hartree–Fock and second-
Born approximations. We see that neglect of the memory terms has an important e�ect
on the transient current. In the Hartree–Fock case these terms only contain the embedding
self-energy (there is no correlation self-energy) and therefore here we can investigate only
the memory of the initial contacting to the reservoirs. Neglect of this term leads to the
curve labeled HF1 in the left panel of Fig. 16.6. For the second-Born case there is also a
dependence on the many-body self-energy. We therefore have two curves, one in which we

neglect only Σ⌉,⌈ (labeled 2B1), and one in which we neglect both Σ⌉,⌈ and Σ
⌉,⌈
em (labeled

2B2). From the right panel of Fig. 16.6 we observe that the neglect of the embedding self-
energy has a larger impact than the neglect of the correlation self-energy in the transient
regime. We further see that the same steady-state current develops as with the memory
terms included, indicating that these terms eventually die out in the long-time limit. This
is in agreement with our expectation on the existence of relaxation in macroscopic and
interacting systems, see Section 6.1.3.
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16.4. Initial-state and history dependence 481

Figure 16.6 Time-dependent current IL(t) in the Hartree–Fock (left panel) and second-Born

(right panel) approximation with and without the memory terms Σ⌉,⌈ and Σ
⌉,⌈
em, see the main

text.

Figure 16.7 Time-dependent current IL(t) in the second-Born approximation for di�erent
switch-ons of the external bias.

We conclude this section by investigating the dependence of the transient currents on
various forms of the time-dependent bias. In Fig. 16.7 we show the second-Born transient
currents generated by di�erent time-dependent biases VL(t) = −VR(t) = V (t). We
take V (t) = θ(t)V , V (t) = V Erf(ω1t), and V (t) = V sin2(ω2t) for t ≤ π/(2ω2) and
V (t) = V for t > π/(2ω2), with V = 1, ω1 = 0.5, and ω2 = 0.1. We observe that
rapid switch-ons produce large oscillations as compared to slower switch-ons. The steady-
state currents, however, are the same for all three cases. The same is true for the equal
time G<(t, t) of the molecular region. Thus, the steady-state values depend only on the
steady-state Hamiltonian and not on its history.7

7For noninteracting electrons the proof of the history independence can be found in Ref. [54].
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482 16. Applications of MBPT to nonequilibrium problems

16.5 Charge conservation

The Hartree–Fock, second-Born and GW self-energies are all examples of Φ-derivable self-
energies. From Chapter 9 we know that if the self-energy is Φ-derivable, i.e.,

Σmn(z, z
′) =

δΦ[G]

δGnm(z′, z+)
,

and if the equations of motion for the Green’s function are solved fully self-consistently for
this form of the self-energy, then basic conservation laws are satisfied. For an open system,
like our molecule, charge conservation does not imply that the time derivative of the total
number of electrons NM (t) in the molecule is constant in time. It rather implies that the
time derivative of NM (t), also known as the displacement current, is equal to the sum of
the currents that flow into the leads. It is instructive to specialize the discussion of Chapter
9 to open systems and clarify again the importance of the Φ-derivability in this context.

The total number of electrons in the molecule is given by

NM (t) = −2iTrM
[
G<(t, t)

]
,

where the factor of 2 comes from spin. Subtracting the equation of motion (16.6) from its
adjoint and setting z = t−, z′ = t+ we obtain the generalization of (16.10) to interacting
systems. The only di�erence is that Σem → Σtot = Σem +Σ and hence

dNM (t)

dt
= −4Re

{

TrM

[∫

γ

dz̄ Σtot(t−, z̄)G(z̄, t+)

]}

.

Comparing this result with the formula (16.7) for the current (the charge q = −1 in our case)
we can rewrite the displacement current as

dNM (t)

dt
=
∑

α

Iα(t)− 4Re

{

TrM

[∫

γ

dz̄ Σ(t−, z̄)G(z̄, t+)

]}

. (16.26)

Charge conservation, or equivalently the satisfaction of the continuity equation, implies
that the integral in (16.26) vanishes. We know that this is a direct consequence of the
invariance of the functional Φ under gauge transformations. Indeed, changing the external
potential in the molecule by an arbitrary gauge function Λm(z) [with boundary conditions
Λm(t0) = Λm(t0 − iβ)] changes the Green’s function according to [see (9.25)]

Gmn(z, z
′)→ eiΛm(z)Gmn(z, z

′)e−iΛn(z
′) ≡ Gmn[Λ](z, z

′). (16.27)

Since the Φ functional is a linear combination of vacuum diagrams and since the interaction
is diagonal, i.e., vijmn = δinδjmvmn, Φ does not change under a gauge transformation and
we find

0 =
δΦ

δΛq(z)
=
∑

mn

∫

dz̄dz̄′
δΦ

δGmn[Λ](z̄′, z̄+)

δGmn[Λ](z̄
′, z̄+)

δΛq(z)

=
∑

mn

∫

dz̄dz̄′ Σnm[Λ](z̄, z̄′)
δGmn[Λ](z̄

′, z̄+)

δΛq(z)
. (16.28)
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16.5. Charge conservation 483

Figure 16.8 Time-dependent left and right current and their sum. The inset shows the plot
of NM (t), the time derivative of which is in excellent agreement with IL(t) + IR(t).

Here we explicitly use the Φ-derivability condition of the self-energy. If we now insert the
derivative of the Green’s function with respect to Λq , sum over q, and evaluate the resulting
expression in z = t± and Λ = 0 we obtain the integral in (16.26). Therefore the last term in
(16.26) vanishes and the time derivative of the number of particles NM (t) in the molecule
is equal to the sum of the currents that flow into the leads.

Conserving approximations guarantee that important physical requirements, like the con-
servation of charge, are automatically built into the MBPT framework. This is nicely illustrated
in Fig. 16.8: here we consider the same system as in the previous section and drive the
system out of equilibrium by an asymmetric sudden bias VL = 0.9 and VR = −0.4. The
plot shows that the left/right currents and the time derivative of the number of electrons
NM (t) satisfy the continuity equation [165]. We should mention that in the long-time limit
the number of particles in the molecule is constant provided that the system attains a steady
state. In this case

∑

α Iα = 0, i.e., the current that flows in the molecule equals the cur-
rent that flows out of the molecule. The importance of using conserving approximations in
steady-state transport calculations (see end of Section 9.7) has been carefully addressed in
Ref. [166].

Exercise 16.5. For a nondiagonal interaction vijmn the Φ functional is invariant under

a gauge transformation provided that G changes according to (16.27) and the interaction

changes according to

vijmn(z, z
′)→ vijmn(z, z

′) ei(Λi(z)+Λj(z
′)−Λm(z′)−Λn(z)) ≡ vijmn[Λ](z, z

′).
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484 16. Applications of MBPT to nonequilibrium problems

In this case (16.28) must be modified as

0 =
δΦ

δΛq(z)
=
∑

mn

∫

dz̄dz̄′
δΦ

δGmn[Λ](z̄′, z̄+)

δGmn[Λ](z̄
′, z̄+)

δΛq(z)

+
∑

ijmn

∫

dz̄dz̄′
δΦ

δvijmn[Λ](z̄′, z̄)

δvijmn[Λ](z̄
′, z̄)

δΛq(z)
.

Taking into account that vijmn(z, z
′) = vijmnδ(z, z

′) is local in time, show that

Re

[
∑

n

∫

γ

dz̄ Σqn(t−, z̄)Gnq(z̄, t+)

]

+
∑

ijmn

δΦ

δvijmn
vijmn [δiq + δjq − δmq − δnq] = 0.

The second term vanishes for diagonal interactions vijmn = δinδjmvmn, as expected. In the

general case of a four-index interaction the second term does not vanish and the “continuity

equation” for the average of the level occupation contains a term proportional to v. However,
the equation for the total number of particles does not change since the sum over q of the

second term vanishes.

16.6 Time-dependent GW approximation

in open systems

In this section we analyze a more complex system consisting of two-dimensional reservoirs
and a larger molecular region. We present results obtained within the Hartree–Fock, second-
Born as well as the GW approximation. The molecular region is modeled by a chain of four
localized basis functions 1, 2, 3, 4 coupled through 1 to a left reservoir and through 4 to a
right reservoir as illustrated below:

The reservoirs are two-dimensional crystals with nine transverse channels. We can think of
them as one-dimensional crystals with a unit cell consisting of nine localized basis functions.
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16.6. Time-dependent GW approximation in open systems 485

The matrix elements of the Hamiltonian hαα for reservoir α = L,R are nonvanishing only
for nearest neighbor basis functions and along the diagonal. We choose the o�-diagonal
elements of hαα to be all equal to T whereas the diagonal elements ǫα are set equal to the
chemical potential. The reservoirs are therefore half-filled. The end-points of the molecular
chain are coupled only to the terminal basis function of the central row of the reservoirs
with a link TL = TR. Finally the 4× 4 Hamiltonian in the basis 1, 2, 3, 4 is modeled as

h =







0 TM 0 0
TM 0 TM 0
0 TM 0 TM
0 0 TM 0






,

with TM < 0. As for the interaction Hamiltonian in the molecular region, we use

Ĥint =
1

2

∑

mn
σσ′

vmn d̂
†
mσd̂

†
nσ′ d̂nσ′ d̂mσ,

where the sum over m,n goes from 1 to 4 and the Coulomb integrals have the form

vmn =







v m = n

v
2|m− n| m 6= n

.

The choice vijmn = δinδjmvmn for the Coulomb integrals is appropriate for molecular-like
systems weakly coupled to leads, as it is commonly used in the study of isolated molecules
based on the Pariser–Parr–Pople model, see Section 2.2. This type of interaction appears
naturally from a calculation of the Coulomb integrals vijmn in localized basis states. The
use of the full set of Coulomb integrals vijmn is not conceptually more complicated but the
computational e�ort grows (see Ref. [98] for a first step in this direction).

Measuring all energies in units of |TM | we choose T = −2, TL = TR = −0.5 and
v = 1.5. For these parameters the equilibrium Hartree–Fock levels of the isolated molecule
lie at ǫ1 = 0.39, ǫ2 = 1.32, ǫ3 = 3.19, ǫ4 = 4.46. In the simulations below, the chemical
potential is fixed between the HOMO ǫ2 and the LUMO ǫ3 levels at µ = 2.26 and the inverse
temperature is set to β = 90. This e�ectively corresponds to the zero temperature limit
since the results do not change for higher values of β. We start from the interacting system
initially in thermal equilibrium, and then we suddenly apply a constant bias at an initial time
t0 = 0, i.e., ǫα → ǫα + Vα with VL = −VR = V independent of time.

16.6.1 Keldysh Green’s functions in the double-time plane

The calculation of any physical quantity requires the calculation of all Keldysh components
of G. Due to their importance we wish to present the behavior of the lesser Green’s
function G< as well as of the right Green’s function G⌉ in the double-time plane for the
Hartree–Fock approximation. The Green’s functions corresponding to the second-Born and
GW approximations are qualitatively similar but show more strongly damped oscillations.
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486 16. Applications of MBPT to nonequilibrium problems

Figure 16.9 The imaginary part of the lesser Green’s function G<
HH(t1, t2) (left), and Green’s

function G
⌉
HH(t, τ) (right), of the molecular region projected onto the HOMO level. Bias

voltage V = 1.2, Hartree–Fock approximation.

In the left panel of Fig. 16.9 we display the imaginary part of G<
HH(t, t′) in the basis of

the initial Hartree–Fock molecular orbitals, for an applied bias V = 1.2. This matrix element
corresponds to the HOMO level of the molecular chain. The value of the Green’s function
on the time diagonal, i.e., nH(t) = −iG<

HH(t, t) gives the level occupation per spin. We
see that nH(t) decays from a value of 1.0 at the initial time to a value of 0.5 at time
t = 30 (times are measured in units of 1/|TM |). An analysis of the LUMO level occupation
nL(t) shows that almost all the charge is transferred to this level. When we move away
from the time-diagonal we consider the time-propagation of holes in the HOMO level. We
observe here a damped oscillation whose frequency corresponds to the removal energy of
an electron from the HOMO level. As we see in Section 16.6.2, this oscillation leads to a
distinct peak in the spectral function. The damping of the oscillation instead indicates the
occurrence of relaxation.

The imaginary part of G
⌉
HH(t, τ) within the Hartree–Fock approximation is displayed in

the right panel of Fig. 16.9 for real times between t = 0 and t = 30 and imaginary times
from τ = 0 to τ = 5. The right Green’s function accounts for initial correlations as well as
initial embedding e�ects (within the Hartree–Fock approximation only the latter). At t = 0
we have the ground-state Matsubara Green’s function, and as the real time t increases all
elements of G⌉(t, τ) approach zero independently of the value of τ . Thus, initial correlation
e�ects and the initial-state dependence die out in the long-time limit in agreement with
the results of Section 16.4. A very similar behavior is found within the second-Born and GW
approximation but with a stronger damping of the oscillations. The Green’s function G⌉(t, τ)
is antiperiodic in τ with period β. However, since in our case β = 90 the antiperiodicity
cannot be observed from Fig. 16.9.

16.6.2 Time-dependent current and spectral function

The time-dependent current at the left interface between the chain and the two-dimensional
reservoir is shown in the top panels of Fig. 16.10 for the Hartree–Fock (HF), second-Born
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16.6. Time-dependent GW approximation in open systems 487

Figure 16.10 Top panels: Time-dependent current IL(t) in the Hartree–Fock (HF), second-
Born (2B) and GW approximations with the applied bias V = 0.8 (left) and V = 1.2 (right).
Bottom panel: Spectral functions AM (ω) for the HF (top), 2B (middle) and GW (bottom)
approximations with the applied bias V = 0.8 (solid line) and V = 1.2 (dashed line). The
spectral function is in arbitrary units. A vertical dashed line that intersects the ω-axis at the
chemical potential µ = 2.26 is also shown.

(2B) and GW approximations and for two di�erent values of the applied bias V = 0.8 (weak
bias) and 1.2 (strong bias). The first remarkable feature is that the 2B and GW results are in
excellent agreement at all times both in the weak and strong bias regime while the HF current
already deviates from the correlated results after a few time units. This result indicates that
a chain of four atoms is already long enough for screening e�ects to play a crucial role.
The 2B and GW approximations have in common the first bubble diagram (besides the
Hartree–Fock diagrams). We thus conclude that the first-order exchange diagram (Fock) with
an interaction screened by a single polarization bubble (with fully dressed Green’s functions)
already captures the essential physics of the problem. The 2B approximation also includes
the second-order exchange diagram. Even though this diagram contains only two interaction
lines (like the first bubble diagram), we find numerically that it is less relevant.

The steady-state value of the current in the various approximations can be nicely related
to the spectral function. We define the time-dependent spectral function as the Fourier
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488 16. Applications of MBPT to nonequilibrium problems

transform of G> −G< with respect to the relative time coordinate, i.e.,

A(T, ω) = i

∫
dt

2π
eiωt
[
G> −G<

]
(T +

t

2
, T − t

2
). (16.29)

For values of T after the transients have died out the spectral function becomes independent
of T . For these times we denote the spectral function by A(ω). This function is the
generalization of the equilibrium spectral function to nonequilibrium steady-state situations.
By analogy with its equilibrium counterpart, A(ω) displays peaks that correspond to removal
and addition energies of the system at the steady-state. The spectral function

AM (ω) = TrM
[
A(ω)

]

of the molecular system is displayed in the bottom panels of Fig. 16.10. At weak bias the
HOMO–LUMO gap in the HF approximation is fairly similar to the equilibrium gap, whereas
the 2B and GW gaps collapse, and the HOMO and LUMO levels move in the bias window. As
a consequence the steady-state HF current is notably smaller than the 2B and GW currents.
This e�ect was first observed in Ref. [167] by performing a steady-state calculation according
to the scheme outlined at the end of Section 9.7. The explicit solution of the Kadano�–
Baym equations confirms that the assumptions implicit in the steady-state scheme, i.e., the
occurence of relaxation and the washing out of initial correlations, are satisfied.

The physics changes considerably in the strong bias regime. The HF HOMO and LUMO
levels move into the bias window and lift the steady-state current above the corresponding
2B and GW values. This can be explained by observing that the peaks of the HF spectral
function are very sharp compared to the rather broadened structures in the 2B and GW
approximations, see again Fig. 16.10. In the correlated case the HOMO and LUMO levels
are only partially available to electrons with energy below µ + V and we thus observe a
suppression of the current with respect to the HF case. From a mathematical point of
view, the steady-state current is roughly proportional to the integral of AM (ω) over the bias
window, see (16.23), and this integral is larger in the HF approximation.

The time-evolution of the spectral function AM (T, ω) as a function of T is illustrated
in Fig. 16.11 for the case of the HF and the 2B approximation. For these results, the ground
state system was propagated without bias up to a time T = 40, after which a bias was
suddenly switched on. The HF peaks remain rather sharp during the entire evolution and
the HOMO–LUMO levels near each other linearly in time until a critical distance is reached.
On the contrary, the broadening of the 2B peaks remains small during the initial transient
regime (up to T = 70) but then increases dramatically. This behavior indicates that there
is a critical charging time after which an enhanced renormalization of the quasi-particle
states takes place, causing a substantial reshaping of the spectral function with respect to
its equilibrium value.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:09:06 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.018

Cambridge Books Online © Cambridge University Press, 2015



16.6. Time-dependent GW approximation in open systems 489

5

4

3

2

1

0
40 60 80

T

100 40 60 80

T

100

100

10

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

Figure 16.11 Contour plot of the real-time evolution of the molecular spectral function
AM (T, ω) for the HF (left panel) and the 2B (right panel) approximation for an applied
bias of V = 1.2. On the horizontal axis is plotted the time T , and on the vertical axis the
frequency ω.
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Figure 16.12 Steady-state spectral function AM (ω) for the HF (left panel), and 2B (right panel)
approximation, as a function of the bias voltage. For the 2B approximation the spectral
functions corresponding to V < 0.6 were divided by a factor of 30.

In Fig. 16.12 we also show the steady-state spectral function AM (ω) in the HF and 2B
approximation for di�erent applied bias. In the HF case the width of the peaks is fairly
constant with increasing V . This is an expected result since the only source of broadening
comes from the embedding self-energy. What is instead more interesting is that there exist
values of the bias at which the positions of the HF peaks suddenly get shifted. Even more
striking, however, is the behavior of AM (ω) in the 2B approximation. When the bias voltage
V ∼ 0.7 we observe a substantial broadening of the spectral peaks. To see this e�ect
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490 16. Applications of MBPT to nonequilibrium problems

clearly, in Fig. 16.12 we have divided the spectral functions for biases up to V = 0.6 by a
factor of 30. We further notice that in the 2B approximation the gap closing as a function
of the bias voltage is faster than in the HF approximation.8 Very similar results are obtained
within the GW approximation. In conclusion, electronic correlations have a major impact on
both transient and steady-state currents.

16.6.3 Screened interaction and physical interpretation

In Fig. 16.13 (top panel) we show the trace over the molecular region of the lesser component
of the time-dependent screened interaction of the GW approximation in the double-time
plane for a bias V = 1.2. This interaction is defined as W = v+ v P W where P = −iGG
is the polarization bubble (with self-consistent GW Green’s functions) of the connected and
correlated system. Since W has the same symmetry properties as the response function χ,
we have for the diagonal elements

Re[W
≶
ii (t, t

′)] = −Re[W≶
ii (t
′, t)]; Im[W

≶
ii (t, t

′)] = Im[W
≶
ii (t
′, t)],

i.e., the real part is antisymmetric while the imaginary part is symmetric under the inter-
change t↔ t′. Since W>

ii (t, t
′) = −[W<

ii (t, t
′)]∗ we do not plot the greater component of

W . The good agreement between the 2B and GW approximations suggests that the dominant
contribution to the screening comes from the first bubble diagram, that is W< ∼ vP<v.
In the bottom panel of Fig. 16.13 we show the trace over the molecular region of the re-
tarded component of δW = W − v, which is a real function like the retarded component
of χ. The retarded interaction between the electrons is mainly attractive. In particular
∑

i δW
R
ii (t, t+∆t) ∼ −3 for ∆t ∼ 0.1. How can we interprete this result?

For a physical interpretation of δWR(t, t′) let us consider again the electron gas with
interparticle interaction v(r1, r2) = q2/|r1 − r2| where q = −1 is the charge of the
electrons. The system is in equilibrium when at time t = t0 we suddenly put and remove a
particle of charge q in r = r0. This particle generates an external potential

V (r, t) =
q

|r− r0|
δ(t− t0) =

1

q
v(r, r0)δ(t− t0). (16.30)

This perturbation is di�erent from the one considered in Section 15.5.3 where we put a
particle in the system but we did not remove it. The linear-response density change induced
by (16.30) is

δn(r, t) = q

∫ ∞

−∞
dt′
∫

dr′χR(r, t; r′, t′)V (r′, t′) =

∫

dr′χR(r, t; r′, t0)v(r
′, r0),

where χR(r, t; r′, t′) =
∑

σσ′ χR(x, t;x′, t′) is the density response function summed over
spin and δn(r, t) =

∑

σ δn(x, t) is the total density change. This density change generates

8This gap closing has nothing to do with the gap closing discussed in Section 13.3.1. There the HOMO–LUMO gap
was studied as a function of the interaction strength, whereas here it is studied as a function of bias. Furthermore,
here the only interaction is between electrons in the molecule and hence there is no interaction between an
electron in the molecule and an electron in the reservoirs.

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:09:06 BST 2015.
http://dx.doi.org/10.1017/CBO9781139023979.018

Cambridge Books Online © Cambridge University Press, 2015



16.6. Time-dependent GW approximation in open systems 491

1

0

−1

−2

10
5

0

−3

Figure 16.13 Imaginary part and real part of the trace of W<(t, t′) (top panel) and WR(t, t′)
in the GW approximation.

a classical (or Hartree) potential given by

VH(r, t) =
1

q

∫

dr′ v(r, r′)δn(r′, t)

=
1

q

∫

dr′dr′′ v(r, r′)χR(r′, t; r′′, t0)v(r
′′, r0)

=
1

q
δWR(r, t; r0, t0),

where in the last equality we use the fact that δW = vPW = vχv. Therefore δWR(r, t;
r0, t0) = qVH(r, t) can be seen as the classical interaction energy between a point-like
charge q in r and a charge distribution qδn(r′, t) induced by the sudden switch-on/switch-
o� of a charge q in r0 at time t0. This equivalence allows us to draw a few conclusions.
At time t = t+0 the system has no time to respond to the external perturbation and hence
δn(r′, t+0 ) = 0, which implies

δWR(r, t+0 ; r0, t0) = 0. (16.31)

In Section 15.5.3 we have seen that the response time of an electron gas is roughly pro-
portional to the inverse of the plasma frequency ωp. We therefore expect that at times
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492 16. Applications of MBPT to nonequilibrium problems

t ∼ 1/ωp the system has had time to respond by pushing the electrons away from
r0. The density change δn(r′, t) is negative for r′ ∼ r0 and positive further away in
such a way that

∫
dr′δn(r′, t) = 0. If we calculate the interaction energy qVH(r, t) =

q2
∫
dr′δn(r′, t)/|r − r′| for r ∼ r0 we see that the contribution to the integral coming

from the region r′ ∼ r0 (where δn(r′, t) < 0) is the most important and hence

δWR(r, t; r0, t0) < 0 for r ∼ r0 and t ∼ 1/ωp. (16.32)

Thus the retarded interaction is attractive at su�ciently short distances for times t ∼ 1/ωp.
Finally we consider the limit of large times. In this case we expect that in the neighborhood
of r0 the density has relaxed back to its equilibrium value, i.e., δn(r′, t) ∼ 0 for |r′ − r0| <
R(t), where R(t) is the extension of the relaxed region. R(t) increases with time and the
interaction energy qVH(r, t) = q2

∫
dr′δn(r′, t)/|r − r′| approaches zero for any |r − r0|

much smaller than R(t):

δWR(r, t; r0, t0) ∼ 0 for |r− r0| ≪ R(t) and t≫ 1/ωp. (16.33)

Even though our molecular system is di�erent from the electron gas we see that the
above conclusions have a quite general character. From Fig. 16.13 (bottom panel) we have
Tr[δWR(t, t′)] = 0 along the time-diagonal t = t′, in agreement with (16.31). Moving away
from the time-diagonal Tr[δWR(t, t′)] goes negative very fast, in agreement with (16.32). It
should be said that our molecular region is too small to develop well-defined plasmonic-
like collective excitations. Nevertheless the response time is very short as compared to
the typical relaxation time scale, see Fig. 16.9. The relaxation time is mainly related to the
hybridization and goes as 1/Γ whereas the response time is mainly related to the interaction
between the particles. Finally we see that for large |t− t′| the on-site WR

ii approaches zero
in agreement with (16.33).

16.7 Inbedding technique: how to explore

the reservoirs

So far we have discussed the molecular Green’s function and physical quantities of the
molecule. Is it possible from a knowledge of the molecular Green’s function to calculate
physical quantities of the reservoirs? The answer is a�rmative and we now show how to do
it. The Green’s function Gαα projected onto reservoir α satisfies the equation of motion

[

i
d

dz
− hαα(z)

]

Gαα(z, z
′) = δ(z, z′) + hαM (z)GMα(z, z

′),

where we take into account that there is no interaction in the reservoirs. Inserting into this
equation the adjoint of (16.4) we obtain the following integro-di�erential equation:

[

i
d

dz
− hαα(z)

]

Gαα(z, z
′) = δ(z, z′) +

∫

γ

dz̄ Σin,α(z, z̄)gαα(z̄, z
′),

where we define the inbedding self-energy as

Σin,α(z, z
′) = hαM (z)GMM (z, z′)hMα(z

′).
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16.7. Inbedding technique: how to explore the reservoirs 493

The inbedding self-energy is completely known once we have solved the Kadano�–Baym
equations for the open molecular system, i.e., once we know GMM . The equation for Gαα

can be integrated using the Green’s function gαα and the result is

Gαα(z, z
′) = gαα(z, z

′) +

∫

dz̄dz̄′ gαα(z, z̄)Σin,α(z̄, z̄
′)gαα(z̄

′, z′). (16.34)

From this equation we can obtain physical quantities like density, current, energy, etc. in
the reservoirs.9 Below we use the inbedding technique to calculate the time-dependent
occupation niα(t) = −i[G<

αα(t, t)]ii of the basis function located on site i of the crystal.
This study is of special importance since it challenges an assumption implicitly made when
we approximated the reservoirs as noninteracting and when we modeled the bias as a
uniform constant shift, namely the assumption that the reservoirs remain in thermodynamic
equilibrium during the entire evolution.

In Fig. 16.14 we show the evolution of the density in the two-dimensional nine rows wide
crystal after the sudden switch-on of a bias voltage. We display snapshots of the crystal
densities up to ten layers deep inside the crystal for times t = 0.0, 1.7, 3.6, and 10.0.
In order to improve the visibility we have interpolated the density between the sites. The
molecular chain is connected to the central terminal site and acts as an impurity, similarly
to an external electric charge in the electron gas. We observe density oscillations with
a cross-shaped pattern; they are the crystal analog of the continuum Friedel oscillations
in the electron gas, see Section 15.5.3. We can understand the cross-shaped pattern by
considering the linear-response density change caused by an external impurity in a truly
two-dimensional crystal. According to the Bloch theorem of Section 2.3.1 the one-particle
eigenstates are Bloch waves eik·n and their eigenenergy is ǫk = µ + 2T (cos kx + cos ky)
where kx and ky vary between −π and π. Let δn(n, ω) be the linear-response density
change (per spin) in unit cell n caused by the sudden switch-on of a potential Vimp(n, ω)
at time t0. We have

δn(n, ω) = −
∑

n′

χR(n,n′;ω)Vimp(n
′, ω),

where the minus sign comes from the electron charge q = −1. Fourier transforming the
response function as

χR(n,n′;ω) =

∫ π

−π

dq

(2π)2
eiq·(n−n

′)χR(q, ω)

we find

δn(n, ω) = −
∫ π

−π

dq

(2π)2
eiq·n χR(q, ω)Ṽimp(q, ω),

9Since the integral in (16.34) is a contour integral, in order to extract, say, G<
αα we must convert using the

Langreth rules.
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494 16. Applications of MBPT to nonequilibrium problems

Figure 16.14 Snapshots of the HF density in the left reservoir after a bias V = 1.2 is suddenly
switched-on. On the horizontal axes is shown the transverse dimension of the crystal (nine
rows wide, with the site connected to the chain in the center) and ten layers deep. Upper
left panel: initial density. Upper right panel: density at time t = 1.7. Lower left panel:
density at time t = 3.6. Lower right panel: density at time t = 10. The upper grey-scale-bar
refers to the initial density in the upper left panel. The lower grey-scale-bar refers to the
other panels.
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16.7. Inbedding technique: how to explore the reservoirs 495

Figure 16.15 Left panel: Energy dispersion ǫk = 2T (cos kx+cos ky) with kx and ky between
−π and π in units of |T | for negative T . Right panel: Contour plot of the energy dispersion.

where Ṽimp(q, ω) is the Fourier transform of the impurity potential. The noninteracting
response function for our two-dimensional crystal reads [see (15.66)]

χ(q, ω) =

∫ π

−π

dk

(2π)2
f(ǫk − µ)

[
1

ω − (ǫk+q − ǫk) + iη
− 1

ω − (ǫk − ǫk−q) + iη

]

.

We are interested in the value of χ at zero frequency since, in the long-time limit, the
density change δn(n, t) approaches a constant value. In Fig. 16.15 we show the energy
dispersion ǫk − µ (left panel) as well as its contour plot (right panel). At zero temperature
the Fermi surface is a square with vertices in (0,±π) and (±π, 0). Then, the dominant
contribution to the above integral comes from the values of k close to these vertices where
the single-particle density of states diverges.10 For zero frequency and k close to the vertices
of the Fermi surface the response function is large when q is approximately equal to one
of the nesting vectors Q = (π, π), (π,−π), (−π, π) and (−π,−π). The name nesting
vectors comes from the fact that by adding to an occupied state k a nesting vector we get
an unoccupied state k+Q and vice versa. Now we see that for k close to a vertex k+Q is
also close to a vertex and therefore ǫk ∼ ǫk+Q and χR(Q, 0) is large. Each of these nesting
vectors contributes to the density change δn(n, ω = 0) with a function ∼ eiQ·n. Since at
zero frequency the product χRṼimp is real then δn(n, ω = 0) ∝ cosQ·n = cos[π(nx±ny)].
Therefore a single impurity in a two-dimensional half-filled crystal induces a cross-shaped
density pattern. Due to the fact that in our case the crystal is semi-infinite, we only observe
two arms of this cross.

The results of Fig. 16.14 also allow us to test the assumption of thermal equilibrium in
the leads. The equilibrium density (per spin), see top-left panel, is essentially the same as
its equilibrium bulk value at half-filling, i.e., 0.5. After the switching of the bias a density
corrugation with the shape of a cross starts to propagate deep into the reservoir. The largest
deviation from the bulk density value occurs at the corners of the cross and is about 2%
at the junction while it reduces to about 1% after ten layers. It can be numerically verified
that this deviation is about 3 times larger for reservoirs with only three transverse channels.

10It is easy to check that ∂ǫk/∂kx = ∂ǫk/∂ky = 0 for k at one of the vertices of the Fermi surface.
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496 16. Applications of MBPT to nonequilibrium problems

We conclude that the density deviation is inversely proportional to the cross-section of the
reservoir. These results suggest that for a true mean field description of two-dimensional
reservoirs with nine transverse channels it is enough to include few atomic layers for an
accurate self-consistent time-dependent calculation of the Hartree potential.

16.8 Response functions from time-propagation

We have seen in Chapter 15 that the spectral properties of neutral (particle conserving)
excitations can be read out from the two-particle XC function L or, equivalently, the response
function χ. In Section 15.3 we derived the important result that the change δG of the Green’s
function induced by a change in the external potential can be obtained from the two-
particle XC function which satisfies the Bethe–Salpeter equation with kernel K = ±δΣ/δG,
where Σ = Σ[G] is the self-energy that determines G through G = G0 + G0ΣG. The
direct implementation of the Bethe–Salpeter equation has proven to be computationally
challenging and, in practice, often requires a number of additional approximations, such as
neglect of self-consistency, kernel diagrams and/or frequency dependence. Instead, obtaining
the response function by time propagation of the Green’s function does not require any
of the aforementioned approximations [97–99]. Moreover, the resulting response function
automatically satisfies the f -sum rule.

Suppose that we are interested in calculating the change δns(t) = δns↑(t) + δns↓(t) =
−2i δG<

ss(t, t) in the occupation of orbital s due to a change Tss → Tss + δǫs(t) of a
diagonal element of the single-particle Hamiltonian h. Then from (15.10) we have

δns(t) =

∫ ∞

−∞
dt′ χR

ss′(t, t
′)δǫs′(t

′),

with density response function

χss′(z, z
′) = −i

∑

σσ′

〈T
{
∆n̂sσ,H(z)∆n̂s′σ′,H(z′)

}
〉

and ∆n̂sσ,H(t) = n̂sσ,H(t) − 〈n̂sσ,H(t)〉. Choosing to perturb the system with a δ-like
time-dependent energy δǫs′(t) = δǫs′δ(t), we get

δns(t)

δǫs′
= χR

ss′(t, 0). (16.35)

This equation tells us that if the amplitude δǫs′ of the δ-function is small then we can solve
the Kadano�–Baym equations with self-energy Σ[G], calculate the occupations δns(t) =
ns(t) − ns(0), divide by δǫs′ and extract the retarded response function χR

ss′(t, 0). Al-
though nonlinear e�ects are always present, they are easily reduced by ensuring that the
magnitude of the perturbation lies well in the linear response region. In practice, this is
verified by doubling the amplitude δǫs′ and checking that also δns(t) doubles to a su�cient
accuracy. The resulting response function χ solves the Bethe–Salpeter equation with kernel
K = ±δΣ/δG and therefore already a relatively simple self-energy accounts for quite a
sophisticated approximation for χ.
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16.8. Response functions from time-propagation 497

Figure 16.16 In the frame below every self-energy diagram Σ(D) we report the kernel dia-
grams generated from ±δΣ(D)/δG.

The HF self-energy yields the frequency independent kernel KHF, see Section 12.4, used
in several state-of-the-art implementations of the Bethe–Salpeter equation. The diagram-
matic expansion of the HF response function is illustrated in Fig. 12.3(b) where the solid
lines are HF Green’s functions. In Fig. 16.16 we illustrate the diagrammatic content of the 2B
self-energy and kernel. In this figure the double lines are 2B Green’s functions and below
each self-energy diagram Σ(D) we display the kernel diagrams generated from ±δΣ(D)/δG.
It is instructive to expand the 2B response function in terms of the bare interaction and
Hartree–Fock Green’s function. To highlight the number of particle–hole excitations in ev-
ery diagram we imagine that the direction of time is from left to right so that all v-lines
are drawn vertical (the interaction is instantaneous). Some representative diagrams of the
infinite series are shown in Fig. 16.17. The series of bubbles and ladders in the first row
corresponds to the HF approximation of Fig. 12.3. Here we clearly see that at every instant
of time there is at most one particle–hole excitation. Thus the HF kernel renormalizes the
single-particle excitations of the underlying noninteracting system but cannot describe exci-
tations of multiple-particle character like double-excitations, triple-excitations, etc., see last
paragraph of Section 15.2.3. These interaction-induced excitations require either the use of
a Green’s function beyond the Hartree–Fock approximation or the use of kernel diagrams
beyond the Hartree–Fock approximation, i.e., frequency dependent kernels. This is clearly
illustrated in the diagrams of the second row of Fig. 16.17. Every diagram contains at least
two particle–hole excitations and their origin is due to either 2B self-energy insertions [see
diagrams (a), (b), and (c)] or 2B kernel diagrams [see (d) and (e)], or both [see (f)].
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498 16. Applications of MBPT to nonequilibrium problems

Figure 16.17 Expansion of the two-particle XC function in terms of the bare interaction v
(wiggly line) and Hartree–Fock Green’s function GHF (oriented solid line). In the first row we
have the HF diagrams of Fig. 12.3. In the second row we have examples of HF diagrams with
one 2B self-energy insertion [see (a) and (b)], and with two 2B self-energy insertions [see (c)].
Then we have examples of a diagrams with 2B kernel-diagrams [see (d) and (e)] and finally
an example of diagram with both 2B self-energy insertion and 2B kernel-diagrams [see (f)].
The direction of time is from left to right.

Below we present results on simple model systems obtained by solving the Kadano�–
Baym equations with a HF and 2B self-energy. We consider a Hubbard ring with Hamiltonian

Ĥ = −T
N∑

s=1

∑

σ

(

d̂†sσd̂s+1σ + d̂†s+1σd̂sσ

)

+ U
N∑

s=1

n̂s↑n̂s↓, (16.36)

where n̂sσ = d̂†sσd̂sσ is the occupation operator for site s and spin σ. In this equation the

operator d̂N+1σ ≡ d̂1σ , so that the nearest-neighbor sites of 1 are 2 and N . In the Hubbard
model the interaction is spin-dependent, since if we want to rewrite the last term of (16.36)
in the canonical form

1

2

∑

sσ,s′σ′

vsσ s′σ′ d̂†sσd̂
†
s′σ′ d̂s′σ′ d̂sσ

the interaction must be
vsσ s′σ′ = Uδss′δσσ̄′ ,

where σ̄′ is the spin opposite to σ′. Consequently the exchange (Fock) self-energy diagram
vanishes whereas the Hartree self-energy is simply

[ΣH(z, z
′)]sσ s′σ′ = δss′δσσ′δ(z, z′)U〈nsσ̄(z)〉.

The average occupation 〈nsσ(z)〉 is independent of z if we are in equilibrium, independent
of s due to the invariance of the Hubbard ring under discrete rotations, and independent
of σ if the number of spin-up and spin-down particles is the same. In this case the HF
eigenstates are identical to the noninteracting eigenstates (like in the electron gas) and their
energy is ǫk = −2T cos(2πk/N) +Un/2, with n/2 = nσ the average occupation per spin.
In Fig. 16.18 we show a Hubbard ring with six sites as well as the HF single-particle energies
and degeneracies when the ring is filled with two electrons of opposite spin, i.e., n = 1/3,
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16.8. Response functions from time-propagation 499

Figure 16.18 (Left) Hubbard ring with six sites. (Right) HF energy levels for U = 1. All energies
are in units of T > 0.

and U = T . The single particle excitations of the response function χ0 = −iGHFGHF

correspond to the energy di�erence between an unoccupied level and the only occupied
level.

For the system of Fig. 16.18 we have obtained the eigenfunctions |Ψk〉 and eigenenergies
Ek via exact diagonalization (ED) methods (Lanczos method [168, 169]), and hence the exci-
tation energies Ωk = Ek − E0 for the transitions |Ψ0〉 ↔ |Ψk〉 between the ground state
|Ψ0〉 and the kth excited state |Ψk〉. Additionally we used the |Ψk〉 and Ek to calculate the
time evolution of the system after a δ-like perturbation δǫ1δ(t) of the onsite energy of site
1. According to (16.35) the ratio δn1(t)/δǫ1 is the response function χR

11(t, 0). As we can
only propagate for a finite time ∆T we must approximate the Fourier transform with11

χR
11(ω) ∼

∫ ∆T

0

dt eiωt χR
11(t, 0). (16.37)

To have an idea of how this function looks like let us write χR
11(t, 0) in the form (15.26), i.e.,

χR
11(t, 0) = −iθ(t)

∑

k 6=0

[
e−iΩkt|fk(1)|2 − eiΩkt|fk(1)|2

]
, (16.38)

where
fk(1) =

∑

σ

〈Ψ0|n̂1σ|Ψk〉

are the excitation amplitudes on site 1. Inserting (16.38) into (16.37) we get

χR
11(ω) ∼ −i

∑

k

|fk(1)|2
[

ei(ω−Ωk)∆T/2 sin ω−Ωk

2 ∆T
ω−Ωk

2

− ei(ω+Ωk)∆T/2 sin ω+Ωk

2 ∆T
ω+Ωk

2

]

.

The imaginary part of this function exhibits peaks of width ∼ 1/∆T instead of sharp
δ-peaks. These broadened peaks, however, are located exactly in ±Ωk . We also observe

11This integral should be evaluated numerically since we know χR
11(t, 0) only at the discrete times t = k∆t,

with ∆t the time step.
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500 16. Applications of MBPT to nonequilibrium problems

Figure 16.19 Modulus of the response function χR
11(ω) for U/T = 1, 2 as obtained from the

exact time-propagation (TD-ED) and the solution of the Kadano�–Baym equations in the 2B
and HF approximation. The dashed vertical lines indicate the position of the ED excitation
energies.

that for any finite ∆T the imaginary part has an oscillatory background “noise” that goes to
zero as 1/∆T . Thus peaks smaller than 1/∆T are hardly visible. If we are only interested in
the position and relative strength of the peaks a better way to process the time-dependent
information consists in performing a discrete Fourier transform, i.e.,

χR
11(ωm) ∼ ∆t

Nt∑

k=1

eiωmk∆tχR
11(k∆t, 0),

where ∆t is the time-step, Nt is the total number of time steps and the frequency is
sampled according to ωm = 2πm/(Nt∆t). The discrete Fourier transform corresponds to
extending periodically the time-dependent results between 0 and ∆T = Nt∆t so that, e.g.,
χR
11(Nt∆t + p∆t, 0) = χR

11(p∆t, 0). Furthermore, it is aesthetically nicer to plot |χR
11(ωm)|

rather than the imaginary part of χR
11(ωm), since the latter is not always positive for finite

∆T . The list-plot of |χR
11(ωm)| is always positive and has maxima in ±Ωk whose height

is proportional to the square of the excitation amplitudes. Thus also the modulus of the
discrete Fourier transform contains the information of interest. In Fig. 16.19 we plot the
time-dependent ED (TD-ED) results for |χR

11(ω)|. The position of the ED excitation energies
(dashed vertical lines) matches exactly the position of the TD-ED peaks, in accordance with
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16.8. Response functions from time-propagation 501

Figure 16.20 Histograms of the HF level occupation di�erence ∆nHF
l (Ω) versus l = 1, . . . , 6

for the excitation energies Ω = Ω1, ..,Ω5.

the previous discussion. In the same figure the TD-ED response function is compared
with the HF and 2B response function as obtained from the solution of the Kadano�–Baym
equations for two di�erent values U = T and U = 2T of the interaction.

As expected, not all excitations are reproduced within the HF approximation. The
HF response function shows only three peaks corresponding to the (renormalized) single-
excitations in which an electron is promoted from the lowest HF level to one of the three
excited HF levels of Fig. 16.18. Which of these HF excitations can be considered as an
approximation to the exact excitations? Following Ref. [99] we calculated the average of the
occupation operator n̂HF

l ≡ ∑σ ĉ
†
lσ ĉlσ over the excited states |Ψk〉. Here ĉlσ annihilates

an electron of spin σ on the lth HF level. The di�erence

∆nHF
l (k) ≡ 〈Ψk|n̂HF

l |Ψk〉 − 〈Ψ0|n̂HF
l |Ψ0〉

tells us how the occupation of the lth HF level changes in the transition |Ψ0〉 → |Ψk〉. If we
number the HF levels from the lowest to the highest in energy (thus, e.g., l = 1 is the lowest,
l = 2, 3 the first excited, etc.) then single-excitations are characterized by ∆nHF

1 (k) ∼ −1
whereas double-excitations by ∆nHF

1 (k) ∼ −2. In Fig. 16.20 we show the histogram of

∆nHF
l (Ω) =

1

dΩ

∑

k:Ωk=Ω

∆nHF
l (k), dΩ = degeneracy of excitation Ω,

for the first five excitations Ω1, . . . ,Ω5 and for interaction U = T . We see that only Ω1 and
Ω3 are single-excitations and therefore only the first and the second HF peaks correspond
to physical excitations. The third HF peak between Ω4 and Ω5 is instead unphysical and
indeed quite far from the TD-ED peaks.

The qualitative agreement between TD-ED and MBPT results improves considerably
in the 2B approximation. The 2B response function captures both single- and double-
excitations! Unfortunately the position of the double-excitation peaks Ω2, Ω4, and Ω5 is
not as good as that of the single-excitation peaks and tends to worsen the higher we go in
energy. Is this error due to an inaccurate estimation of the ground-state energy E0, or of the
excited-state energy Ek , or both? This question can be answered by calculating the ground-
state energy either using the Galitskii–Migdal formula or the Luttinger–Ward functional,12 and

12For the self-consistent 2B Green’s function the two approaches yield the same result, see end of Section 11.9.
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502 16. Applications of MBPT to nonequilibrium problems

confronting the result with the exact diagonalization result E0. What one finds is that the
discrepancy between the 2B ground-state energy and E0 is about 0.2% for U = T and
1.2% for U = 2T . Thus the 2B ground-state energy is extremely accurate and we must
attribute the mismatch between the position of the 2B and TD-ED peaks to an erroneous
description of the (doubly) excited states.
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Appendices

A

From the N roots of 1 to the

Dirac δ-function

The roots of the equation
z = N

√
1 = 11/N

are the complex numbers zk = exp[ 2πiN k] with integers k = 1, . . . , N , as can be readily
verified by taking the N th power of zk . In the complex plane these roots lie at the vertices
of a regular polygon inscribed in a unit circle. In Fig. A.1(a) we show the location of the
roots for N = 3.

Figure A.1 (a) Location of the cubic roots of 1 in the complex plane. (b) Representation of
the sum of two complex numbers.

Which complex number do we get when we sum all roots? The addition of complex numbers
is equivalent to the addition of vectors. If vz is the vector going from the origin to z then
vz + vw = vz+w , as shown in Fig. A.1(b). It is then clear that

N∑

k=1

zk =

N∑

k=1

e
2πi
N k = 0.

We now ask ourselves how this result changes if we replace zk → znk for some integer n.
The operation of taking the nth power of a complex number z on the unit circle corresponds

503
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504 Appendix A. From the N roots of 1 to the Dirac δ-function

to rotating the vector vz by an angle nθz , with θz the angle between vz and the real axis.
In the example of Fig. A.1(a) we see that by taking, e.g., the square of each root we get
z1 → z21 = z2, z2 → z22 = z1 and z3 → z23 = z3. Of course this is a general property: the
set {zk} and the set {znk } contain the same elements since the angle nθk = n(2πk/N)
is equal to the angle θnk . There is however one exception! If n = N then, by definition,
zNk = 1 and hence all roots collapse in 1. This is clearly true also if n is a multiple of N ,
i.e., n = mN . Therefore, we conclude that

1

N

N∑

k=1

znk =
1

N

N∑

k=1

e
2πi
N kn = . . .+ δn,−N + δn,0 + δn,N + δn,2N + . . . , (A.1)

where δn,m is the Kronecker delta which is 1 for n = m and zero otherwise. This important
identity can also be derived algebraically. The sum is a geometric sum since znk = (zn1 )

k

and hence

1

N

N∑

k=1

znk =
1

N

N∑

k=1

(zn1 )
k =

(zn1 )

N

1− (zn1 )
N

1− (zn1 )
. (A.2)

The numerator in the r.h.s. is always zero since (zn1 )
N = (zN1 )n = 1, while the denominator

is zero only provided that n is a multiple of N . In this case znk = 1 for all k and we recover
(A.1).

Next we observe that the result (A.1) does not change if we sum over k between M and
M + N , i.e., over N arbitrary consecutive integers, rather than between 1 and N . This is
obvious from the geometrical interpretation of (A.1) since it amounts to a sum over all roots
starting from M instead of 1. Let us prove it also with some algebra. We have

1

N

M+N−1∑

k=M

znk =
1

N

N∑

k=1

znk+M−1 =
znM−1
N

N∑

k=1

znk ,

where we use the fact that zk1+k2
= zk1

zk2
. The statement follows from the fact that the

sum vanishes unless n is multiple of N , in which case the sum equals N and znM−1 = 1.
Let us consider the case that N is, say, even and choose M = −N/2. Then we can

write

1

N

N/2−1
∑

k=−N/2

e
2πi
N kn = . . .+ δn,−N + δn,0 + δn,N + δn,2N + . . . (A.3)

Now we define the variable yk = 2πk/N . The distance between two consecutive yk is
∆y = yk+1 − yk = 2π/N . Therefore taking the limit N →∞ we get

lim
N→∞

1

N

N/2−1
∑

k=−N/2

e
2πi
N kn = lim

∆y→0

N/2−1
∑

k=−N/2

∆y

2π
eiykn =

∫ π

−π

dy

2π
eiyn, (A.4)

where in the last equality we have transformed the sum into an integral in accordance with
the standard definition of integrals as the limit of a Riemann sum. Setting n = m−m′ and
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Appendix A. From the N roots of 1 to the Dirac δ-function 505

taking into account that for N → ∞ only the Kronecker δn,0 remains in the r.h.s. of (A.3)
we obtain the following important identity:

∫ π

−π

dy

2π
eiy(m−m

′) = δm,m′ (A.5)

In (A.3) we could, alternatively, think of the variable n/N = yn as a continuum variable
when N →∞. The infinitesimal increment is then ∆y = yn+1 − yn = 1/N and taking the
limit N →∞ we find

∞∑

k=−∞
e2πiky = lim

N→∞

1

∆y
(. . .+ δn,−N + δn,0 + δn,N + δn,2N + . . .). (A.6)

For N → ∞ and hence ∆y → 0 the quantity δn,mN/∆y is zero unless n = ynN = mN ,
i.e., yn = m, in which case it diverges like 1/∆y . Since for any function f(y) we have

f(m) =

∞∑

n=−∞
δn,mNf(yn) =

∞∑

n=−∞
∆y

δn,mN

∆y
f(yn)

−−−−→
∆y→0

∫ ∞

−∞
dy

(

lim
∆y→0

δn,mN

∆y

)

f(y),

we can identify the Dirac δ-function

lim
∆y→0

δn,mN

∆y
= δ(y −m). (A.7)

Therefore, taking the limit ∆y → 0 in (A.6) we obtain a second important identity

∞∑

k=−∞
e2πiky = . . .+ δ(y + 1) + δ(y) + δ(y − 1) + δ(y − 2) + . . .

Lastly, we again consider (A.5) and divide both sides by an infinitesimal ∆p

1

∆p

∫ π

−π

dy

2π
eiy(m−m

′) =
δm,m′

∆p
.

In the limit ∆p → 0 we can define the continuous variables p = m∆p and p′ = m′∆p, and
using (A.7) we get

lim
∆p→0

1

∆p

∫ π

−π

dy

2π
eiy(m−m

′) = δ(p− p′).

The product in the exponential can be rewritten as y(m−m′) = y(p− p′)/∆p. Thus, if we
change variable x = y/∆p the above equation becomes

∫ ∞

−∞

dx

2π
eix(p−p

′) = δ(p− p′)

which is one of the possible representations of the Dirac δ-function. In conclusion the Dirac
δ-function is intimately related to the sum of the N roots of 1 when N →∞.
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B

Graphical approach to permanents

and determinants

The quantum states of a set of identical particles are either symmetric or antisymmetric in
the single-particle labels. An orthonormal basis for the space spanned by these quantum
states is formed by the complete set of (anti)symmetric products of single-particle orthonor-
mal states, and their manipulation leads naturally to the consideration of permanents and
determinants. The standard algebraic derivation of identities for permanents and determi-
nants usually involves several steps with much relabeling of permutations, which makes the
derivations often long and not very insightful. In this appendix we instead give a simple
and intuitive graphical derivation of several of these identities. The basic ingredient of the
graphical approach is the permutation graph that keeps track of how the permutation moves
around the elements on which it acts. A permutation P is defined as a one-to-one mapping
from the set of integers (1, . . . , n) to itself,

P (1, . . . , n) = (P (1), . . . , P (n)) = (1′, . . . , n′),

where j′ = P (j) denotes the image of j under the permutation P . The permutation graph
is then defined by drawing a figure with the numbers (1, . . . , n) as dots ordered from top to
bottom along a vertical line on the left and with the images (1′, . . . , n′) as dots also ordered
from top to bottom along a vertical line on the right, and by connecting the dots j with the
images j′. For example, if n = 5, we can consider the permutation

P (1, 2, 3, 4, 5) = (2, 1, 5, 3, 4) = (1′, 2′, 3′, 4′, 5′). (B.1)

The permutation graph is then given by

506
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Appendix B. Graphical approach to permanents and determinants 507

The permutation graph thus simply provides a graphical representation of how the numbers
(1, . . . , n) are moved around by the permutation. An important feature of the permutation
graph is that, for a given permutation, the number of crossings of the lines is always even
or odd, no matter how we deform the lines in the diagram, provided that we do not deform
the lines outside the left and right boundaries. For example we have

It should be noted that for this to be true we also need to exclude drawings in which the
lines touch each other in one point and drawings in which multiple lines cross in exactly
the same point. The crossing rule is intuitively clear since any deformation of the lines that
creates new crossing points always creates two of them. Hence the parity of the number
of crossings is preserved. We can therefore divide the set of permutations into two classes,
those with an even number of crossings and those with an odd number of crossings. These
are naturally referred to as even and odd permutations. Another way to characterize this
property is by defining the sign of a permutation P to be

signP ≡ (−)nc , (B.2)

where nc is the number of crossings in a permutation graph and (−)nc is a short-hand
notation for (−1)nc . So even permutations have sign 1 and odd permutations have sign
−1. It is also intuitively clear that any permutation can be built up from successive in-
terchanges of two numbers. This is what one, for instance, would do when given the task
of reordering numbered balls by each time swapping two of them. Each such a swap is
called a transposition. If a transposition interchanges labels i and j then we write it as (i j).
For instance, the permutation (B.1) can be constructed from the identity permutation by the
subsequent transpositions (4 5), (3 5), and (1 2). This is described by the following four
permutation graphs (to be read from left to right)

We can thus write

P = (1 2) (3 5) (4 5), (B.3)
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508 Appendix B. Graphical approach to permanents and determinants

in which the subsequent transpositions in this expression are carried out from right to
left. We therefore need three transpositions to reorder numbered balls from (1, 2, 3, 4, 5) to
(2, 1, 5, 3, 4). From these graphs we further see the interesting fact that every transposition
changes the number of crossings by an odd number (which is equal to 1 in the example
above). This fact is easily deduced from the following graph that displays the very right hand
side of a permutation graph

By interchanging i and j on the right hand side we introduce one additional crossing plus
an even number of crossings due to the upward and downward running lines induced by
the swap. Hence a transposition always generates an odd number of crossings. It therefore
follows that even permutations are built up from an even number of transpositions and
odd permutations are built up from an odd number of transpositions. For example, the
permutation P of our example (B.3) is odd and indeed built up from three transpositions.
As experience with reordering objects tells us, the way to achieve a given reordering is not
unique. However, as we have just proved, the parity of the number of transpositions is
unique, and therefore the permutation in our example can only be decomposed using an
odd number of transpositions. For instance, it is not di�cult to check that permutation (B.3)
can also be written as

P = (2 3) (2 5) (4 5) (1 3) (2 3),

which indeed again has an odd number of transpositions, as it should. From our considera-
tions we thus conclude that if |P | is the number of transpositions in a given decomposition
of a permutation P , then the sign of this permutation is given by (−)|P |. By comparing
with (B.2) we find the useful relation

(−)nc = (−)|P |.

Alternatively this relation is usually written as

(−)nc = (−)P ,

where (−)P simply signifies the sign of the permutation. Before we continue we further give
another useful way of looking at the permutation graphs. In the graphs above we thought
of the labels j as numbered balls and imagined the balls being moved around. This image
is, for instance, very useful when thinking about operator orderings as we did in Chapter 4.
However, for deriving identities for permanents and determinants it is useful to think about
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Appendix B. Graphical approach to permanents and determinants 509

the permutation graphs in a slightly di�erent way. In the permutation P the ball numbered
P (i) acquires the new position i. For instance, the example (B.1) tells us that after the
permutation P the balls labeled (2, 1, 5, 3, 4) can be found at positions (1, 2, 3, 4, 5). We
can express this information in a new permutation graph where on the left hand side we put
the positions i and on the right hand side we put the ball numbers P (i) directly opposite
to i and then connect them with horizontal lines. In our example this gives

For instance we have the line (3, 5) which tells us that ball 5 is found at position 3 after
the permutation. Now we can reorder the balls on the right hand side of the graph to their
original positions by subsequent transpositions:

Since each transposition leads to an odd number of crossings the sign of the permutation
is again given by (−1)nc with nc the number of crossings, but now for a graph in which
both sides are labeled 1 to n from top to bottom and where we connect i to P (i). This
is an alternative way to calculate the sign of a permutation from a permutation graph,
and it proves to be very useful in deriving some important identities for permanents and
determinants.

The permanent or determinant of an n× n matrix Aij is defined as

|A|± ≡
∑

P

(±)P
n∏

i=1

Ai P (i),

where the “+” sign refers to the permanent and the “−” sign to the determinant (in this
formula (+)P = (+1)|P | = 1 for all P ). For instance, for a 2 × 2-matrix we only have the
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510 Appendix B. Graphical approach to permanents and determinants

even permutation P (1, 2) = (1, 2) and the odd permutation P (1, 2) = (2, 1) and therefore
we have that the permanent/determinant is

|A|± = A11A22 ±A12A21. (B.4)

The permanent or determinant can be visualized using permutation graphs. First draw the
permutation graph which connects with lines points i to points P (i) and then associate
with every line the matrix element Ai P (i). For instance, the permanent/determinant in (B.4)
can be written as

and for a 6× 6 permanent/determinant we have a term of the form

For permanents and determinants we can now prove the following Laplace expansion
theorems:

|A|± =

n∑

j=1

(±)i+jAij D̃ij

|A|± =

n∑

i=1

(±)i+jAij D̃ij

in which D̃ij is the minor of |A|±, i.e., the permanent/determinant of matrix A in which
row i and column j are removed. The first expression gives the expansion of |A|± along
row i whereas the second one gives its expansion along column j. These identities can
be proven almost immediately from drawing a single diagram. We consider a particular
permutation that moves ball numbered j in (1, . . . , n) just before ball numbered i. If j > i
this permutation is explicitly given by

P (1, . . . , n) = (1, . . . , i− 1, j, i, . . . , j − 1, j + 1, . . . , n),
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Appendix B. Graphical approach to permanents and determinants 511

with a very similar expression when j < i. Since there are |j−i| crossings in the permutation
graph the sign of this permutation graph is (±)i−j = (±)i+j . For example, for n = 6 we
can consider the permutation with j = 5 and i = 2,

P (1, 2, 3, 4, 5, 6) = (1, 5, 2, 3, 4, 6),

which is graphically given by the permutation graph in the previous figure. Let us now in
the figure fix the line (i, j) = (2, 5) and subsequently connect the remaining lines in all
possible ways. In this way we are exactly constructing the minor D̃25, i.e.

= (±)2+5A25D̃25 = (±)2+5A25

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A11 A12 A13 A14 A16

A31 A32 A33 A34 A36

A41 A42 A43 A44 A46

A51 A52 A53 A54 A56

A61 A62 A63 A64 A66

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
±

.

Indeed the sign of the generic permutation graph in the above expansion is given by

(±)2+5 × (±)n(25)
c where n

(25)
c is the number of crossings without the line (2, 5).1 It is

clear that we obtain the full permanent/determinant by doing the same after singling out the
lines (2, j) for j = 1, 2, 3, 4, 6 and adding the results, since in that case we have summed
over all possible connections exactly once. This yields

|A|± =

6∑

j=1

(±)2+j A2jD̃2j .

This is the Laplace formula for expanding the permanent/determinant along row 2. Alterna-
tively we could have singled out the lines (i, 5) for i = 1, . . . , 6 and obtained

|A|± =

6∑

i=1

(±)i+5Ai5D̃i5

which gives the expansion along row 5. It is clear that there is nothing special about this
example and that the general proof obviously goes the same way.

This graphical proof also gives an idea on how to generalize the Laplace formula. Con-
sider a permutation graph in which we single out three lines (i1, j1), (i2, j2), and (i3, j3),

1The reader can easily check that the line (2, 5) is always crossed an odd number of times (3 times in the
second graph and 5 times in the third graph).
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512 Appendix B. Graphical approach to permanents and determinants

where ii < i2 < i3 and j1 < j2 < j3 and where the remaining lines are drawn in a
noncrossing way, i.e.

The sign of this permutation graph is clearly given by

(±)j1−i1(±)j2−i2(±)j3−i3 = (±)i1+i2+i3+j1+j2+j3 .

If we now fix the lines (i1, j1), (i2, j2), and (i3, j3), i.e., we fix the position of ball numbered
j1 to be i1, etc., and make a permutation Q of the remaining balls (so that their position
is di�erent from the position they have in the above permutation graph) we get a new
permutation graph. As in the case of a single line, the total number of crossings for the
lines (i1, j1), (i2, j2), and (i3, j3) always has the same parity (even or odd) for all Q and
therefore the sign of this new permutation graph is

(±)i1+i2+i3+j1+j2+j3 × (±)n(i1j1),(i2j2),(i3j3)
c ,

where n
(i1j1),(i2j2),(i3j3)
c is the number of crossings with the lines (i1, j1), (i2, j2), and

(i3, j3) removed from the graph. This observation allows us to derive an important identity.
Let Πi1i2i3,j1j2j3(Q) be this new permutation graph. Then we can write

∑

Q

Πi1i2i3,j1j2j3(Q) = (±)i1+i2+i3+j1+j2+j3Ai1j1Ai2j2Ai3j3D̃i1i2i3,j1j2j3 . (B.5)
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Appendix B. Graphical approach to permanents and determinants 513

In this equation D̃i1i2i3,j1j2j3 is a generalized minor, i.e., the permanent/determinant of the
matrix A in which we have removed rows i1, i2, i3 and columns j1, j2, j3, i.e.,

D̃i1i2i3,j1j2j3 =

j1 j2 j3

i1

i2

i3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

...
...

...
...

...
...

...

. . . Ai1j1 . . . Ai1j2 . . . Ai1j3 . . .

...
...

...
...

...
...

. . . Ai2j1 . . . Ai2j2 . . . Ai2j3 . . .

...
...

...
...

...
...

. . . Ai3j1 . . . Ai3j2 . . . Ai3j3 . . .

...
...

...
...

...
...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
±

.

Subsequently in (B.5) we sum over all the permutations P of the integers j1, j2, and
j3. The sign of the permutation graph Πi1i2i3,P (j1)P (j2)P (j3)(Q) di�ers from the sign of
Πi1i2i3,j1j2j3(Q) by a factor (±)nc with nc the number of crossings of the lines (i1, P (j1)),
(i2, P (j2)) and (i3, P (j3)). Therefore we have
∑

P

∑

Q

Πi1i2i3,P (j1)P (j2)P (j3)(Q) = (±)i1+i2+i3+j1+j2+j3Di1i2i3,j1j2j3D̃i1i2i3,j1j2j3 ,

where Di1i2i3,j1j2j3 is the permanent/determinant consisting of the rows i1, i2, i3 and
columns j1, j2, j3 of matrix A, i.e.

Di1i2i3,j1j2j3 =

∣
∣
∣
∣
∣
∣

Ai1j1 Ai1j2 Ai1j3

Ai2j1 Ai2j2 Ai2j3

Ai3j1 Ai3j2 Ai3j3

∣
∣
∣
∣
∣
∣
±

.

If we finally sum over all triples (j1, j2, j3) with j1 < j2 < j3 then we clearly obtain the full
permanent/determinant of matrix A since we have summed exactly once over all possible
connections of lines in the permutation graph. We therefore find that

|A|± =

n∑

j1<j2<j3

(±)i1+i2+i3+j1+j2+j3Di1i2i3,j1j2j3D̃i1i2i3,j1j2j3 .

It is clear that the choice of the initial three lines in this example was arbitrary. We might
as well have chosen m < n lines instead. Then nothing essential would change in the
derivation. In that case we obtain the formula

|A|± =
n∑

J

(±)|I+J|DIJ D̃IJ (B.6)

where we sum over the ordered m-tuple

J = (j1, . . . , jm) with j1 < . . . < jm
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514 Appendix B. Graphical approach to permanents and determinants

for a fixed ordered m-tuple

I = (i1, . . . , im) with i1 < . . . < im,

and defined
|I + J | = i1 + . . .+ im + j1 + . . .+ jm.

Further DIJ is the permanent/determinant containing rows I and columns J whereas D̃IJ

is the generalized minor, not containing the rows I and columns J . The result (B.6) is
known as the generalized Laplace formula for permanents/determinants. Alternatively, in
the derivation we could have summed over the rows rather than the columns and written

|A|± =
n∑

I

(±)|I+J|DIJ D̃IJ (B.7)

The number of terms in the summation in the generalized Laplace formula is equal to the
number of ordered m-tuples that can be chosen from n indices and is therefore equal to
(
n
m

)
. The use of the permutation graphs leads to a very compact derivation of the identities

(B.6) and (B.7). As an example of (B.6) we can expand the permanent/determinant of a 4× 4
matrix into products of 2 × 2 permanents/determinants. Taking, e.g., (i1, i2) = (1, 2) we
have

|A|± =
∑

j1<j2

(±)1+2+j1+j2D12,j1j2D̃12,j1j2

=

∣
∣
∣
∣

A11 A12

A21 A22

∣
∣
∣
∣
±

∣
∣
∣
∣

A33 A34

A43 A44

∣
∣
∣
∣
±
±
∣
∣
∣
∣

A11 A13

A21 A23

∣
∣
∣
∣
±

∣
∣
∣
∣

A32 A34

A42 A44

∣
∣
∣
∣
±

+

∣
∣
∣
∣

A11 A14

A21 A24

∣
∣
∣
∣
±

∣
∣
∣
∣

A32 A33

A42 A43

∣
∣
∣
∣
±
+

∣
∣
∣
∣

A12 A13

A22 A23

∣
∣
∣
∣
±

∣
∣
∣
∣

A31 A34

A41 A44

∣
∣
∣
∣
±

±
∣
∣
∣
∣

A12 A14

A22 A24

∣
∣
∣
∣
±

∣
∣
∣
∣

A31 A33

A41 A43

∣
∣
∣
∣
±
+

∣
∣
∣
∣

A13 A14

A23 A24

∣
∣
∣
∣
±

∣
∣
∣
∣

A31 A32

A41 A42

∣
∣
∣
∣
±
.

Finally we derive a useful formula for the permanent/determinant of the sum of two matrices.
Let us start with an example. If A and B are two 2×2 matrices then we can readily calculate
that
∣
∣
∣
∣

A11 +B11 A12 +B12

A21 +B21 A22 +B22

∣
∣
∣
∣
±
=

∣
∣
∣
∣

A11 A12

A21 A22

∣
∣
∣
∣
±
+A11B22 ±A12B21 ±A21B12 +A22B11 +

∣
∣
∣
∣

B11 B12

B21 B22

∣
∣
∣
∣
±
.

This can be written in a compact way as

|A+B|± = |A|± +

2∑

i1,j1

(±)i1+j1Ai1j1Bĭ1,j̆1
+ |B|±,
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Appendix B. Graphical approach to permanents and determinants 515

where ĭ is the element complementary to i in the set (1, 2), i.e., if i = 1 then ĭ = 2 and
vice versa. We now derive the following generalization of this equation:

|A+B|± = |A|± +

n−1∑

l=1

∑

IJ

(±)|I+J||A|l,±(I, J)|B|n−l,±(Ĭ , J̆) + |B|± (B.8)

where A and B are n × n matrices. In (B.8) I is an ordered l-tuple (i1, . . . , il) with
i1 < . . . < il and similarly for J . Further Ĭ is the set of ordered complementary indices
to I in the set (1, . . . , n) and similarly for J̆ . For example, if n = 5 and I = (1, 3, 4)
then Ĭ = (2, 5). The quantity |A|l,±(I, J) denotes the l × l permanent/determinant of A
with rows I and columns J . If l = n the only possible n-tuple is I = J = (1, . . . , n) and
therefore |A|n,±(I, J) = |A|±. Analogously |B|n−l,±(Ĭ , J̆) denotes the (n − l) × (n − l)
permanent/determinant of B with rows Ĭ and columns J̆ . To prove (B.8) we start with the
example of the 2 × 2 matrix C = A + B. Let the thick line (i, j) represent the matrix
element Cij = Aij +Bij :

where the thin line represents matrix element Aij and the dashed line matrix element Bij .
The graphic expression of the 2× 2 permanent/determinant |C|± is then given by

In the general case that C is an n × n matrix we can consider a given graph containing
l solid lines and n − l dashed lines. Let the thin lines run from the ordered set I to the
ordered set J and the remaining dashed lines from Ĭ to J̆ . Since the sets are ordered there
is no crossing between two or more thin lines and between two or more dashed lines. The
graph representing this situation looks like this:
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516 Appendix B. Graphical approach to permanents and determinants

The sign of the graph is (±)|I+J|. If we sum over all the dashed connections obtained by
considering all permutations of the elements in the (n − l)-tuple J̆ and multiply by the
prefactor (±)nc for each crossing of the dashed lines we build the permanent/determinant
|B|n−l,±(Ĭ , J̆). The number of additional crossings of the dashed lines with the thin
lines that are caused by these permutations is always even and we therefore do not
need to add additional signs. Subsequently summing over all permutations in the l-tuples
J and multiplying by the prefactor (±)nc for each crossing of the thin lines we build the
permanent/determinant |A|l,±(I, J). As before the number of additional crossings of the
solid lines with the dashed ones caused by these permutations is always even so we do not
need to count these crossings to get the correct sign. When we finally sum over all ordered
l-tuples I and J then we sum over all graphs that have l solid lines and n− l dashed lines.
It is then clear that all possible graphs are obtained by summing over l from 1 to n− 1 and
adding |A|± and |B|±. This proves (B.8).

To make the formula (B.8) explicit we give an example for the case of 3× 3 matrices A
and B:

|A+B|± = |A|± +
3∑

i1,j1

(±)i1+j1 |A|1,±(i1, j1)|B|2,±(ĭ1, j̆1)

+
∑

i1<i2
j1<j2

(±)i1+i2+j1+j2 |A|2,±(i12, j12)|B|1,±(̆i12, j̆12) + |B|±,

where we use the short notation i12 = (i1, i2) and j12 = (j1, j2). As a final remark we note
that for the generalized Laplace formulas and the formula for the permanent/determinant of
the sum of two matrices the symmetric (permanent) and anti-symmetric (determinant) cases
can be treated on equal footing. This is not anymore the case for the product of matrices.
Whereas it is true that for a product AB of two matrices one has |AB|− = |A|−|B|−
(the determinant of a product is the product of the determinants) we have that |AB|+ 6=
|A|+|B|+ in general.
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C

Density matrices and probability

interpretation

In this appendix we discuss the probability interpretation of the density matrices Γn intro-
duced in Section 1.7. Let us, for simplicity, consider a system of spinless fermions in one
dimension. Then the states |x1 . . . xN 〉 with x1 > . . . > xN form a basis in the N -particle
Hilbert space HN . Any state |Ψ〉 ∈ HN can be expanded as

|Ψ〉 =
∫

x1>...>xN

dx1 . . . dxN |x1 . . . xN 〉 〈x1 . . . xN |Ψ〉
︸ ︷︷ ︸

Ψ(x1,...,xN )

,

and the normalization condition reads

1 = 〈Ψ|Ψ〉 =
∫

x1>...>xN

dx1 . . . dxN 〈Ψ|x1 . . . xN 〉〈x1 . . . xN |Ψ〉

=
1

N !

∫

dx1 . . . dxN |Ψ(x1, . . . , xN )|2. (C.1)

Let us now ask what is the probability density p(z) for finding a particle at position z. We
start with the first nontrivial case of N = 2 particles. The configuration space is given by
the grey area in the figure below:

We then have

p(z) =

∫ ∞

z

dx |Ψ(x, z)|2 +
∫ z

−∞
dy |Ψ(z, y)|2 =

∫ ∞

−∞
dy|Ψ(z, y)|2,

517
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518 Appendix C. Density matrices and probability interpretation

where in the last equality we use the antisymmetry of the wavefunction. We observe,
however, that

∫ ∞

−∞
dz p(z) =

∫ ∞

−∞
dzdy |Ψ(z, y)|2 = 2,

as follows directly from (C.1). Mathematically the fact that p(z) does not integrate to unity is
not surprising since p(z) = Γ1(z; z) = n(z) is the density of particles, see (1.93), and hence
correctly integrates to 2. Intuitively, however, it seems strange that a probability does not
integrate to unity and therefore an explanation is needed.

The point is that the event of finding a particle in z and the event of finding a particle
in z′ are not independent events. To calculate p(z) we have to integrate |Ψ(z, y)|2 over
all y and this includes the point y = z′. Thus among the events with a particle in z there
is an event in which there is a particle in z′. This fact can most easily be illustrated by a
simple discrete example. Consider two bosons that can either occupy state |1〉 or state |2〉.
Then H2 = {|11〉, |12〉, |22〉}. A general state describing these two particles is a linear
combination of the basis states in H2,

|Ψ〉 = Ψ(1, 1)|11〉+Ψ(1, 2)|12〉+Ψ(2, 2)|22〉,

and if |Ψ〉 is normalized we have

|Ψ(1, 1)|2 + |Ψ(1, 2)|2 + |Ψ(2, 2)|2 = 1.

Now the probability of finding a particle in state 1 is

p(1) = |Ψ(1, 1)|2 + |Ψ(1, 2)|2.

Similarly the probability of finding a particle in state 2 is

p(2) = |Ψ(1, 2)|2 + |Ψ(2, 2)|2.

However, the probability of finding a particle in state 1 or in state 2 is not the sum of the
two probabilities since

p(1) + p(2) = |Ψ(1, 1)|2 + 2|Ψ(1, 2)|2 + |Ψ(2, 2)|2 = 1 + |Ψ(1, 2)|2.

In this way we double count the state |12〉. The proper probability formula for overlapping
event sets A and B is

p(A ∪B) = p(A) + p(B)− p(A ∩B).

The fact that we do find a particle in state 1 does not exclude the fact that another particle
can be found in state 2. This joint probability is |Ψ(1, 2)|2 and needs to be subtracted from
p(1) + p(2). In this way the probability of finding a particle either in |1〉 or |2〉 is unity, as
it should be.
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Appendix C. Density matrices and probability interpretation 519

Let us now calculate the probability density p(z) for N fermions in one dimension. We
have

p(z) =

∫

z>x2>...>xN

dx2 . . . dxN |Ψ(z, x2, . . . , xN )|2

+

∫

x1>z>x3>...>xN

dx1dx3 . . . dxN |Ψ(x1, z, x3, . . . , xN )|2

+ . . .+

∫

x1>...>xN−1>z

dx1 . . . dxN−1|Ψ(x1, . . . , xN−1, z)|2

=

∫

x2>...>xN

dx2 . . . dxN |Ψ(z, x2, . . . , xN )|2

=
1

(N − 1)!

∫

dx2 . . . dxN |Ψ(z, x2, . . . , xN )|2,

where we use the antisymmetry of the wavefunction. As in the previous case, p(z) =
Γ1(z; z) = n(z) is the density of particles in z and does not integrate to unity but to
the total number of particles N . The reason is the same as before. Clearly the above
derivation can readily be generalized to particles with spin, dimensions higher than 1, and
to the bosonic case. Thus the physical interpretation of the density n(x) is the probability
of finding a particle in x.

Coming back to our one-dimensional system of fermions, we now consider the joint
probability p(z, z′) of finding a particle at z and another at z′. Since p(z, z′) = p(z′, z) we
can assume that z > z′. Then

p(z, z′) =

∫

z>z′>x3>...>xN

dx3 . . . dxN |Ψ(z, z′, x3, . . . , xN )|2

+

∫

z>x2>z′>...>xN

dx2dx4 . . . dxN |Ψ(z, x2, z
′, . . . , xN )|2

+ . . .+

∫

x1>z>z′>...>xN

dx1dx4 . . . dxN |Ψ(x1, z, z
′, . . . , xN )|2 + . . .

=

∫

x3>...>xN

dx3 . . . dxN |Ψ(z, z′, x3, . . . , xN )|2

=
1

(N − 2)!

∫

dx3 . . . dxN |Ψ(z, z′, x3, . . . , xN )|2,

where again the antisymmetry of the wavefunction has been used. We thus see that

p(z, z′) = Γ2(z, z
′; z, z′)

is the two-particle density matrix defined in (1.96). The above derivation is readily seen to
be valid also for bosons and also in the case of arbitrary spin and spatial dimensions. Thus,
more generally, we have p(x,x′) = Γ2(x,x

′;x,x′). The probability interpretation of Γ2

gives a nice interpretation of the interaction energy (1.97):

Eint = 〈Ψ|Ĥint|Ψ〉 =
1

2

∫

dxdx′v(x,x′)p(x,x′).
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520 Appendix C. Density matrices and probability interpretation

The interaction energy is simply the product of the probability of finding a particle at x and
another at x′ times their interaction; the factor 1/2 makes sure that we count each pair
only once, see discussion before (1.80).

If points r and r′ are far from each other then it is reasonable to expect that the
probability p(x,x′) becomes the independent product n(x)n(x′) for any physically relevant
state |Ψ〉. We therefore define the pair correlation function

g(x,x′) =
p(x,x′)

n(x)n(x′)
. (C.2)

It is easy to show that g → 1 for |r − r′| → ∞ when the state |Ψ〉 is the ground state of
some homogeneous system so that n(x) = n(rσ) = nσ is independent of position and p(x,x′) =
pσσ′(r − r′) depends only on the coordinate di�erence. If the system is in a cubic box of volume
V = L3 then

pσσ′(r− r
′) =

1

V

∑

k

eik·(r−r′)p̃σσ′(k).

For large |r − r′| we can restrict the sum over k to those wavevectors with |k| . 2π/|r − r′| since
the sum over the wavevectors with |k| & 2π/|r − r′| gives approximately zero. Thus in the limit
|r− r′| → ∞ only the term with k = 0 survives,

lim
|r−r′|→∞

pσσ′(r− r
′) =

1

V
p̃σσ′(0). (C.3)

To calculate p̃σσ′(0) we observe that by definition

pσσ′(r− r
′) = 〈Ψ|ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)|Ψ〉 = 〈Ψ|n̂(x)n̂(x′)|Ψ〉 ± δ(x− x

′)n(x). (C.4)

Therefore

p̃σσ′(0) =

∫

dr pσσ′(r) = Nσnσ′ ± δσσ′nσ,

where we use the fact that |Ψ〉 is an eigenstate of the total number of particles of spin σ operator
N̂σ =

∫

dr n(x) with eigenvalue Nσ . Inserting this result into (C.3), taking the limit V → ∞ and
using Nσ/V = nσ we get

lim
|r−r′|→∞

pσσ′(r− r
′) = nσnσ′ ,

which implies that g → 1 in the same limit.

A formula that is commonly found in the literature is

Eint =
1

2

∫

dxdx′v(x,x′)n(x)n(x′) +
1

2

∫

dxdx′v(x,x′)n(x)n(x′) [g(x,x′)− 1] .

The first term represents the classical (Hartree) interaction between two densities n(x) and
n(x′) whereas the second term denotes the exchange–correlation part of the interaction.

In fact g is important also because it can be measured using X-ray scattering [75].
Theoretically the quantity p(x,x′) is closely related to the density response function since
in equilibrium systems we can rewrite (C.4) as

p(x,x′) = 〈Ψ|n̂H(x, t)n̂H(x′, t)|Ψ〉 ± δ(x− x′)n(x).
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Appendix C. Density matrices and probability interpretation 521

In the first term we recognize the greater part of the density response function χ(x, z;x′, z′),
i.e.,

〈Ψ|n̂H(x, t)n̂H(x′, t)|Ψ〉 = n(x)n(x′) + iχ>(x, t;x′, t)

= n(x)n(x′) + i

∫
dω

2π
χ>(x,x′;ω),

where we use (15.12). This means that p(x,x′) can be calculated from diagrammatic pertur-
bation theory as explained in Chapter 15.

As an example we consider the electron gas. In momentum space the relation between
p and χ reads

p̃σσ′(k) = nσnσ′(2π)3δ(k)− δσσ′nσ + i

∫
dω

2π
χ>
σσ′(k, ω). (C.5)

We define p =
∑

σσ′ pσσ′ and similarly χ =
∑

σσ′ χσσ′ and n =
∑

σ nσ . Then, summing
(C.5) over σ and σ′ and using the fluctuation–dissipation theorem for χ> (see Section 15.2)
we get

p̃(k) = n2(2π)3δ(k)− n+ i

∫
dω

2π
f̄(ω)

[
χR(k, ω)− χA(k, ω)

]
.

In this equation the di�erence inside the square brackets is 2i Im[χR(k, ω)] since the
property (15.25) implies that χA(k, ω) = [χR(k, ω)]∗. In the zero-temperature limit β →∞,
the Bose function f̄(ω) = 1/(1 − e−βω) vanishes for negative ωs and is unity for positive
ωs. Therefore

p̃(k) = n2(2π)3δ(k)− n− 1

π

∫ ∞

0

dω Im
[
χR(k, ω)

]
.

Let us evaluate the frequency integral when χ is the Lindhard density response function
worked out in Section 15.5.1. According to Fig. 15.4(a) and to equation (15.72) we have for
k = |k| < 2pF

∫ ∞

0

dω Im
[
χR(k, ω)

]
= ǫpF

∫ −x2+2x

0

dν
(

−pF
2π

) ν

2x

+ ǫpF

∫ x2+2x

−x2+2x

dν
(

−pF
2π

) 1

2x

[

1−
(
ν − x2
2x

)2
]

= −p
3
F

4π

(

x− x3

12

)

,

whereas for k > 2pF

∫ ∞

0

dω Im
[
χR(k, ω)

]
= ǫpF

∫ x2+2x

x2−2x
dν
(

−pF
2π

) 1

2x

[

1−
(
ν − x2
2x

)2
]

= −p
3
F

4π

4

3
.
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522 Appendix C. Density matrices and probability interpretation

In these equations x = k/pF, ν = ω/ǫpF
, and ǫpF

= p2F/2, see (15.67). Taking into account
that p3F = 3π2n, see (7.57), we conclude that

p̃(k) =

{

n2(2π)3δ(k) + n(−1 + 3x
4 − x3

16 ) |k| < 2pF
0 |k| > 2pF

.

Fourier transforming back to real space we find

p(r) =

∫
dk

(2π)3
eik·r p̃(k)

= n2 +
n

2π2r

∫ 2pF

0

dk

(

−1 + 3x

4
− x3

16

)

k sin kr (setting α = pFr)

= n2 +
3n2

2α

∫ 2

0

dx

(

−x+
3x2

4
− x4

16

)

sinxα

= n2 − 9n2

2

(
sinα− α cosα

α3

)2

. (C.6)

In the electron gas the pair-correlation function (C.2) reads

g(x,x′) = gσσ′(r− r′) =
pσσ′(r− r′)

nσnσ′
.

If we define g = 1
4

∑

σσ′ gσσ′ and use the fact that nσ = n/2, then (C.6) implies

g(r) =
p(r)

n2
= 1− 9

2

(
sin pFr − pFr cos pFr

(pFr)3

)2

.

As expected g → 1 for r →∞. For small r we have sinα−α cosα = α3/3+ . . . and hence
g(0) = 1/2. This result can easily be interpreted. Since we use the noninteracting density
response function we have only incorporated antisymmetry. Therefore like-spin electrons
are correlated through the Pauli exclusion principle, but unlike-spin electrons are not. If we
go beyond the simple noninteracting case then we find that g(0) < 1/2. In fact, if we use
the RPA approximation for χ we find that g(0) can even become negative at small enough
densities. Going beyond RPA repairs this situations. For a thorough discussion on these
topics see Refs. [67, 75, 76].
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D

Thermodynamics and statistical

mechanics

We start by considering a system with a given number N of particles whose volume V and
temperature T can change. The first law of thermodynamics establishes a relation between
the change of energy dE of the system, the work δL done by the system and the heat δQ
absorbed by the system:

dE = δQ− δL. (D.1)

In (D.1) the infinitesimals δQ and δL are not exact di�erentials since the total absorbed heat
or the total work done depend on the path of the transformation which brings the system
from one state to another and not only on the initial and final states. The second law of
thermodynamics establishes that

δQ ≤ TdS,
where S is the entropy and the equality holds only for reversible processes. In what follows
we consider only reversible processes and write δQ = TdS. As the only work that the
system can do is to increase its volume we have δL = Pd V, where P is the internal
pressure. Therefore (D.1) takes the form

dE = TdS − Pd V.

From this relation we see that the internal energy E = E(S, V, N) is a function of the
entropy, the volume, and the number of particles.

If we now also allow the number of particles to change, then dE acquires the extra term
(∂E/∂N)S,T dN . The quantity

µ ≡
(
∂E

∂N

)

S,T

is known as the chemical potential and represents the energy cost for adding a particle to
the system. In conclusion, the change in energy of a system that can exchange heat and
particles, and that can expand its volume reads

dE = TdS − Pd V+ µdN. (D.2)

The internal energy E is not the most convenient quantity to work with due to its explicit
dependence on S, a di�cult quantity to control and measure. The only situation for which
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524 Appendix D. Thermodynamics and statistical mechanics

we do not need to bother about S is that of a system at zero temperature since then
TdS = 0. In fact, the energy is mostly used in this circumstance. Experimentally, it is
much easier to control and measure the temperature, the pressure and the volume. We can
then introduce more convenient quantities by a Legendre transformation. The free energy
or Helmholtz energy is defined as

F = E − TS ⇒ dF = −SdT − Pd V+ µdN (D.3)

and depends on T, V, N . From it we can also define the Gibbs energy

G = F + P V ⇒ dG = −SdT + VdP + µdN, (D.4)

which instead depends on T, P, N . We see that in G the only extensive variable is the
number of particles and therefore

G(T, P,N) = Nµ(T, P ), (D.5)

according to which the chemical potential is the Gibbs energy per particle. For later purposes
we also define another important thermodynamic quantity known as the grand potential,

Ω = F − µN ⇒ dΩ = −SdT − Pd V−Ndµ, (D.6)

which depends explicitly on the chemical potential µ. From a knowledge of these thermody-
namic energies we can extract all thermodynamic quantities by di�erentiation. For instance
from (D.2) we have

(
∂E

∂S

)

V,N

= T,

(
∂E

∂V

)

S,N

= −P,
(
∂E

∂N

)

S,V

= µ,

which can be conveniently shortened as

(∂S , ∂V, ∂N )E = (T,−P, µ).

In this compact notation it is evident that E depends on the independent variables (S, V, N).
Similarly we can write

(∂T , ∂V, ∂N )F = (−S,−P, µ),

(∂T , ∂P , ∂N )G = (−S, V, µ),

(∂T , ∂V, ∂µ) Ω = (−S,−P,−N).

Let us briefly summarize what we have seen so far. By combining the first and second
law of thermodynamics we were able to express the di�erential of the various energies
in terms of the basic thermodynamic variables (S, T, P, V, N, µ). Using (D.5) we can
integrate dG and obtain G = µN . This result is particularly important since we can now
give an explicit form to all other energies. If we insert (D.5) into (D.4) we find

F = −P V+ µN
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Appendix D. Thermodynamics and statistical mechanics 525

and similarly we can construct the energy and the grand potential

E = TS − P V+ µN, Ω = −P V. (D.7)

The grand potential is simply the product of pressure and volume, and recalling that its
independent variables are T, V, µ, we have

dΩ = −
(
∂P

∂T

)

V,µ

VdT −
(
∂P

∂V

)

T,µ

Vd V−
(
∂P

∂µ

)

T,V

Vdµ− Pd V.

Comparing this result with (D.6) we find the important relations

S =

(
∂P

∂T

)

V,µ

V, N =

(
∂P

∂µ

)

T,V

V, (D.8)

along with the obvious one (∂P/∂V)T,µ = 0 (the pressure of a system with a given tem-
perature and density is the same for all volumes). The second of (D.8) was used in Section
7.2.2 to calculate the pressure of an electron gas in the Hartree approximation.

All relations found so far are useless without a microscopic way to calculate the energies.
Statistical mechanics, in its classical or quantum version, provides the bridge between the
microscopic laws governing the motion of the particles and the macroscopic quantities of
thermodynamics. The connection between statistical mechanics and thermodynamics is due
to Boltzmann. Let En be one of the possible energies of the system with Nn particles
and let us consider M identical copies of the same system. This hypersystem is usually
referred to as an ensemble. Suppose that in the ensemble there areM1 systems with energy
E1 and number of particles N1, M2 systems with energy E2 and number of particles N2,
etc. with, of course, M1 +M2 + . . . =M. The total energy of the ensemble is therefore
E =

∑

nMnEn while the total number of particles is N =
∑

nMnNn. Let us calculate
the degeneracy of level E . This is a simple combinatorial problem. Consider for instance an
ensemble of 12 copies like the one illustrated in the table below:

E1 E2 E3 E2

E3 E3 E1 E2

E2 E1 E2 E3

We have M1 = 3, M2 = 5 and M3 = 4 and the total energy of the ensemble is E =
3E1 + 5E2 + 4E3. The degeneracy dE of level E is

dE =
12!

3! 5! 4!
= 27720.

In general the number of ways to haveM1 systems with energy E1, M2 systems with energy
E2, etc. over an ensemble of M1 +M2 + . . . =M copies is given by

dE =
M!

M1!M2! . . .
.
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526 Appendix D. Thermodynamics and statistical mechanics

If the ensemble is formed by a very large number of copies,M≫ 1, then also the Mk ≫ 1
and it is more convenient to work with the logarithm of the degeneracy. For a large number
P we can use the Stirling formula

lnP ! ∼ P lnP − P
so that

ln dE ∼ M lnM−M−
∑

n

(Mn lnMn −Mn)

= −M
∑

n

wn lnwn,

where wn ≡ Mn/M can be interpreted as the probability of finding one of the systems
of the ensemble in a state of energy En. It is now reasonable to expect that an ensemble
in equilibrium is an ensemble in the most probable configuration, i.e., an ensemble which
maximizes the degeneracy dE . Let us then study what we get if we maximize the quantity

S[{wn}] ≡ −KB

∑

n

wn lnwn, (D.9)

under the constraints that the probabilities wn sum up to 1,
∑

n wn=1, that the average en-
ergy is E,

∑

n wnEn = E, and that the average number of particles is N ,
∑

n wnNn = N .
The constant KB in (D.9) is completely irrelevant for our purpose and its presence is
justified below. With the help of three Lagrange multipliers we must find the unconstrained
maximum of the function

1

KB
S̃[{wn}, λ1, λ2, λ3] = −

∑

n

wn lnwn − λ1
(∑

n

wn − 1
)

−λ2
(∑

n

wnEn − E
)
− λ3

(∑

n

wnNn −N
)

with respect to all wns and the three λs. Setting to zero the derivative of S̃ with respect to
wn we find

∂S̃

∂wn
= − lnwn − 1− λ1 − λ2En − λ3Nn = 0,

from which it follows that
wn = e−(1+λ1)−λ2En−λ3Nn .

This solution is a maximum since ∂2S̃
∂wn∂wm

= − δmn

wn
< 0. To find the Lagrange multipliers

we use the constraints. The first constraint
∑

n wn = 1 yields

e1+λ1 =
∑

n

e−λ2En−λ3Nn ≡ Z, ⇒ wn =
e−λ2En−λ3Nn

Z
. (D.10)

Choosing λ2 and λ3 so as to satisfy the constraints

∑

n

e−λ2En−λ3Nn

Z
︸ ︷︷ ︸

wn

En = E,
∑

n

e−λ2En−λ3Nn

Z
︸ ︷︷ ︸

wn

Nn = N,
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Appendix D. Thermodynamics and statistical mechanics 527

then S̃ evaluated at the wns of (D.10) is equal to

S = KB

(

λ2
∑

n

wnEn + λ3
∑

n

wnNn + lnZ

)

= KB(λ2E + λ3N + lnZ). (D.11)

The groundbreaking idea of Boltzmann was to identify this quantity with the entropy. The
constant KB = 8.3× 10−5 eV/K, duly called the Boltzmann constant, was chosen to fit the
first thermodynamic relation in (D.7). In fact, from the comparison between (D.11) and (D.7)
we see that the Boltzmann idea is very sound and sensible. The physical meaning of λ2, λ3,
and Z can be deduced by equating these two formulas; what we find is

λ2 = β =
1

KBT
, λ3 = −βµ, lnZ = βP V = −βΩ. (D.12)

In quantum mechanics the possible values of the energies Ek are the eigenvalues of the
Hamiltonian operator Ĥ . Then the quantity Z , also called the partition function, can be
written as

Z =
∑

k

e−β(Ek−µNk) = Tr
[

e−β(Ĥ−µN̂)
]

.

It is possible to show that all the thermodynamics derivatives agree with the Boltzmann idea.
For instance, from (D.6) we have

−
(
∂

∂β
βΩ

)

V,µ

= −Ω− β
(
∂Ω

∂T

)

V,µ

∂T

∂β
= PV− TS = −E + µN,

and the same result follows from (D.12) since

−
(
∂

∂β
βΩ

)

V,µ

=

(
∂ lnZ

∂β

)

V,µ

= −
Tr
[

e−β(Ĥ−µN̂)(Ĥ − µN̂)
]

Tr
[

e−β(Ĥ−µN̂)
] = −E + µN.

Similarly, from (D.6) we have
(
∂Ω

∂µ

)

V,T

= −N,

and the same result follows from (D.12) since

(
∂Ω

∂µ

)

V,T

= − 1

β

(
∂ lnZ

∂µ

)

V,T

= −
Tr
[

e−β(Ĥ−µN̂)N̂
]

Tr
[

e−β(Ĥ−µN̂)
] = −N.

The statistical approach to thermodynamics also allows us to understand the positivity
of the temperature from a microscopic point of view. By increasing the average energy E
the degeneracy dE increases, and hence also the entropy increases, ∂S/∂E > 0. From (D.2)
we see that ∂S/∂E = 1/T and hence the temperature must be positive.

In conclusion, the procedure to extract thermodynamic quantities from a system with
Hamiltonian Ĥ whose eigenstates |Ψk〉 have energies Ek and number of particles Nk is:
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528 Appendix D. Thermodynamics and statistical mechanics

• Calculate the partition function

Z =
∑

k

e−β(Ek−µNk),

which depends on µ, T, V (the dependence on V comes from the Hamiltonian).

• Calculate the grand potential

Ω = − 1

β
lnZ.

• To calculate the energy we can use

E = − ∂

∂β
lnZ.

In this way, however, the energy depends on µ, T, V. To eliminate µ in favour of N
we must invert

N =
1

β

∂

∂µ
lnZ.

• To find the equation of state of the system we can use the third of (D.12) and eliminate
µ in favour of N as described above.

• Other thermodynamics quantities of interest to the reader can be obtained with similar
techniques.
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E

Green’s functions and

lattice symmetry

In Section 2.3.1 we introduced several important physical systems with periodic symmetry
such as carbon nanotubes and the graphene lattice. There the discussion was simplified
by the fact that we dealt with noninteracting electrons. In this appendix we work out the
consequence of lattice symmetry for interacting systems and ask ourselves in which way
the many-body states can be labeled by the crystal momentum vectors. The fact that this
should be possible is suggested by (inverse) photoemission experiments on crystals which
clearly measure the band structure. The deeper physical meaning of band structure of
interacting systems should therefore be apparent from a calculation of the spectral function,
see Section 6.3.4. To elucidate these aspects we must study the symmetry properties of
the interacting Green’s function under lattice translations. For concreteness we consider the
electronic system of a three-dimensional crystal with lattice vectors v1, v2, and v3. This
means that every unit cell is repeated periodically along v1, v2, and v3.

The starting point of our discussion is the Hamiltonian (the electron charge is q = −1)

Ĥ=

∫

dx ψ̂†(x)

(

−∇
2

2
− V (r)

)

ψ̂(x) +
1

2

∫

dxdx′ v(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x), (E.1)

where we take the interaction to be v(x,x′) = v(r− r′) and the potential V generated by
the atomic nuclei in the crystal to be spin-independent and lattice-periodic,

V (r+ vj) = V (r) j = 1, 2, 3.

This symmetry is, strictly speaking, only valid in a truly infinite system. The mathematical
treatment of a Hamiltonian of an infinite number of particles is ill-defined as the Schrödinger
equation becomes a di�erential equation for a wavefunction with infinitely many coordinates.
A real piece of solid is, of course, finite and the symmetry is an approximation that is very
good for bulk electrons. Since for the theoretical treatment the full periodic symmetry is a
clear advantage we impose periodic boundary conditions on a large box (BvK boundary con-
ditions), as we did in Section 2.3.1. For simplicity we choose the box with edges given by the
vectors Vj = Njvj , each radiating from, say, the origin of our reference frame. In the lan-
guage of Section 2.3.1 this choice corresponds to taking N1 = (N1, 0, 0), N2 = (0, N2, 0),
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530 Appendix E. Green’s functions and lattice symmetry

and N3 = (0, 0, N3). The requirement of periodicity for a many-body state |Ψ〉 with N
particles implies that |Ψ〉 satisfies

〈x1 . . . (ri +Vj)σi . . .xN |Ψ〉 = 〈x1 . . .xi . . .xN |Ψ〉 (E.2)

for all j = 1, 2, 3. In this way we have as many conditions as spatial di�erential operators
in the Schrödinger equation (since the kinetic energy operator is a second order di�erential
operator we also need to put periodic boundary conditions on the derivatives of the many-
body wave functions). Although these conditions seem natural they are not trivial in the
presence of many-body interactions. This is because the many-body interaction is invariant
under the simultaneous translation of all particles, i.e., v(r− r′) = v((r+Vj)− (r′+Vj))
but not under the translation of a single particle. The Hamiltonian does not therefore have a
symmetry compatible with the boundary conditions (E.2). To solve this problem we replace
the two-body interaction by

v(r− r′) =
1

V

∑

k

ṽk e
ik·(r−r′), (E.3)

where V is the volume of the box, ṽk is the Fourier transform of v, and the sum runs over
all vectors such that k ·Vj = 2πmj for j = 1, 2, 3, and mj integers. The interaction (E.3)
satisfies v(r + Vj − r′) = v(r − r′) and becomes equal to the original interaction when
we take the limit V → ∞. With this replacement and the BvK boundary conditions (E.2)
the eigenvalue equation for the Hamiltonian Ĥ becomes well-defined (of course the spatial
integrations in (E.1) must be restricted to the box).

Let us now explore the lattice symmetry. We consider the total momentum operator of
the system defined in (3.32):

P̂ ≡ 1

2i

∫

dx
[

ψ̂†(x)
(

∇ψ̂(x)
)

−
(

∇ψ̂†(x)
)

ψ̂(x)
]

.

This operator has the property that

−i∇ψ̂(x) =
[

ψ̂(x), P̂
]

−
; −i∇ψ̂†(x) =

[

ψ̂†(x), P̂
]

−
.

From these equations we deduce that

ψ̂(r+ r′σ) = e−i P̂·r ψ̂(r′σ) ei P̂·r, (E.4)

with a similar equation with ψ̂† replacing ψ̂. Equation (E.4) is readily checked by taking
the gradient with respect to r on both sides and verifying the condition that both sides are

equal for r = r′. It is now readily seen that the unitary operator e−iP̂·r is the operator that
shifts all particle coordinates over the vector r. This follows from the adjoint of (E.4) if we
evaluate

|r1 + rσ1, . . . , rN + rσN 〉 = ψ̂†(rN + rσN ) . . . ψ̂†(r1 + rσ1)|0〉
= e−iP̂·rψ̂†(rNσN ) . . . ψ̂†(r1σ1)e

iP̂·r|0〉
= e−iP̂·r|x1, . . . ,xN 〉,
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Appendix E. Green’s functions and lattice symmetry 531

where we use the fact that the action of P̂ on the empty ket |0〉 is zero. It therefore follows
in particular that the many-body states that satisfy the BvK boundary conditions (E.2) also
satisfy

eiP̂·Vj |Ψ〉 = |Ψ〉. (E.5)

Let us now consider the Hamiltonian (E.1) with the spatial integrals restricted to the box. We
first demonstrate that

Ĥ = e−iP̂·vj ĤeiP̂·vj , j = 1, 2, 3. (E.6)

The one-body operator V̂ of the potential energy is

V̂ =

∫

V

dxV (r)ψ̂†(x)ψ̂(x) =

∫

V

dxV (r)ψ̂†(r+ vj σ)ψ̂(r+ vj σ)

=

∫

V

dx e−iP̂·vj ψ̂†(x)ψ̂(x)eiP̂·vjV (r) = e−iP̂·vj V̂ eiP̂·vj .

Similarly we can check the same transform law for the kinetic energy operator and the
interaction operator with the interaction (E.3). We have therefore proven (E.6) or equivalently

[

Ĥ, eiP̂·vj

]

−
= 0, j = 1, 2, 3.

The set of unitary operators eiP̂·v with v = n1v1 + n2v2 + n3v3 all commute with the
Hamiltonian and we can thus find a common set of eigenstates. These eigenstates satisfy

eiP̂·vj |Ψ〉 = eiαj |Ψ〉,

where the eigenvalues are a pure phase factor. The conditions (E.5) on the eigenstates imply
that (recall that Vj = Njvj )

(

eiP̂·vj

)Nj

|Ψ〉 = |Ψ〉. (E.7)

Then we see that the phases αj are not arbitrary but have to fulfill eiαjNj = 1 and hence

αj = 2πmj/Nj with mj an integer. Note that the dimensionless vectors k̃ = (α1, α2, α3)
are exactly the vectors of Section 2.3.1, see (2.12). Equation (E.7) tells us that we can label the
eigenstates of Ĥ with a crystal momentum k and a remaining quantum number l since for
an arbitrary translation v = n1v1 + n2v2 + n3v3 we have

eiP̂·v|Ψk l〉 = ein1α1+n2α2+n3α3 |Ψk l〉 = eik̃·n|Ψk l〉 = eik·v|Ψk l〉, (E.8)

where k is such that k · vj = αj .
1 Similarly to the k̃ vectors, the k vectors which di�er by

a vector K or multiples thereof with the property that K · vj = 2π must be identified. The

1The vectors k have the physical dimension of the inverse of a length and should not be confused with the
dimensionless vectors k̃ of Section 2.3.1. Let us derive the relation between the two. The vectors k̃ can be written
as k̃ =

∑

j αjej . On the other hand the solution of k · vj = αj is k =
∑

j αjbj where

b1 =
v2 × v3

v1 · (v2 × v3)
, b2 =

v3 × v1

v1 · (v2 × v3)
, b3 =

v1 × v2

v1 · (v2 × v3)
.

In the special case that v1 = (a1, 0, 0), v2 = (0, a2, 0), and v3 = (0, 0, a3) are orthogonal we simply have
bj = ej/aj .
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532 Appendix E. Green’s functions and lattice symmetry

set of inequivalent k vectors is called the first Brillouin zone. The vectors K are known as
reciprocal lattice vectors. With this convention (E.8) represents the many-body generalization
of the Bloch theorem for single-particle states. It tells us that a simultaneous translation of
all particles over a lattice vector v changes the many-body states by a phase factor.

We are now ready to study the symmetry properties of the Green’s function. Let us, for
example, consider the expression (6.88) for G> in position basis. The labels m in our case
are k l and we have

G>(x,x′;ω) = −2πi
∑

k l

Pk l(x)P
∗
k l(x

′)δ(ω − [EN+1,k l − EN,0])

with quasi-particle wavefunctions

Pk l(x) = 〈ΨN,0|ψ̂(x)|ΨN+1,k l〉.

Let us now see how the quasi-particle wave functions change under a lattice translation:

Pk l(x+ v) = 〈ΨN,0|ψ̂(x+ v)|ΨN+1,k l〉
= 〈ΨN,0|e−iP̂·vψ̂(x)eiP̂·v|ΨN+1,k l〉 = eik·vPk l(x), (E.9)

where we assume that eiP̂·v|ΨN,0〉 = |ΨN,0〉, i.e., we assume that the ground state with N
particles has k = 0. In the limit of vanishing interactions the quasi-particle wavefunctions
become equal to the single-particle eigenstates and we recover the well-known symmetry
property of the single-particle Bloch orbitals under lattice translations. From (E.9) we can
derive

G>(x+ v,x′ + v′;ω) =
∑

k

eik·(v−v
′)G>(x,x′;k, ω),

where we define

G>(x,x′;k, ω) = −2πi
∑

l

Pk l(x)P
∗
k l(x

′)δ(ω − [EN+1,k l − EN,0]).

Thus if we know the Green’s function G>(x,x′;k, ω) for x and x′ in a given unit cell, then
the Green’s function G>(x,x′;ω) in all units cells is readily calculated. The problem is thus
reduced to calculating G>(x,x′;k, ω) in a single unit cell. So far we have worked in the
position basis, but in general we can use any basis we like inside this unit cell. If we expand
the field operators in a unit cell in a localized basis as

ψ̂(x) =
∑

sτ

ϕsτ (x)d̂sτ ,

where s is a label for basis functions in the unit cell and τ is a spin index, then in the new
basis we have

G>
sτ s′τ ′(k, ω) = −2πi

∑

l

Pk l(sτ)P
∗
k l(s

′τ ′)δ(ω − [EN+1,k l − EN,0]).
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Appendix E. Green’s functions and lattice symmetry 533

Here

Pk l(sτ) = 〈ΨN,0|d̂sτ |ΨN+1,k l〉 =
∫

V

dxPk l(x)ϕ
∗
sτ (x).

A commonly used orthonormal basis in the unit cell is the set of functions

ϕKτ (x) =
δστ√
v
eiK·r, (E.10)

where v is the volume of the unit cell and where K is a reciprocal lattice vector. An advan-
tage of using this basis is that the set of plane waves ei(k+K)·r with k in the first Brillouin
zone and K a reciprocal lattice vector is the same set used to expand the interaction in
(E.3). Therefore the Coulomb integrals are especially simple in this basis.

Let us now describe the typical outcome of a calculation of G>. We assume for
simplicity that G> is diagonal in spin space with matrix elements G>

ss′(k, ω). The quantity
iG>

ss′(k, ω) = Ass′(k, ω) is the (s, s′) matrix element of the spectral function for ω > µ.
The spectral function is a positive semi-definite self-adjoint matrix for any fixed k and ω, see
Section 6.3.2. If we plot the eigenvalues aν(k, ω) of this matrix as a function of ω we find
that they are peaked around some value ω = ǫkν and zero otherwise. This result can easily
be interpreted in terms of an inverse photoemission experiment. If in the experiment we
measure both the energy and the momentum of the photons then we find that the photon
intensity as a function of energy has peaks in ǫkν . Analogous considerations apply to G<.
In this way it is possible to measure the band structure of a crystal. Similarly to what we saw
for the electron gas the peaks are not infinitely sharp. The real band structure corresponds
to long-living states produced by addition and removal of electrons with appropriate energy
and momentum.
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F

Asymptotic expansions

Very often we are interested in calculating functions f(x) depending on a variable x when
x is close to some value x0 or when x approaches x0 if x0 = ∞. If no exact solution
exists (or if the exact solution is exceedingly complicated) it is useful to devise “perturbative”
methods to approximate f . These perturbative methods lead to an expansion of f(x) in
terms of functions ϕn(x) that for x → x0 approach zero faster and faster with increasing
n. MBPT is one such method. The set of functions ϕn(x), n = 0, 1, 2, . . ., are called an
asymptotic set if

lim
x→x0

ϕn+1(x)

ϕn(x)
= 0,

and the expansion

f(x) ∼
∞∑

n=0

anϕn(x) (F.1)

is called an asymptotic expansion if

lim
x→x0

f(x)−∑N
n=0 anϕn(x)

ϕN (x)
= 0 for all N. (F.2)

Obviously a Taylor series is an asymptotic expansion while a Fourier series is not. In (F.1) we
use the symbol “∼” because the series need not be convergent! In many interesting physical
situations the first terms of an asymptotic expansion decrease rapidly for small |x − x0|
while higher order terms increase wildly with increasing n (at fixed |x− x0|). In these cases
we can get a good approximation to f by summing just the first few terms of the expansion.
This is why asymptotic expansions, even when divergent, are very useful in practice.

To summarize, an asymptotic expansion need not be convergent and a convergent series
need not be an asymptotic expansion (a Fourier series is not asymptotic). Distinguishing
between these two concepts, i.e., convergence versus asymptoticity, is crucial to appreciate
the power of asymptotic expansions. In mathematical terms we can say that convergence
pertains to the behavior of the partial sum

SN (x) =

N∑

n=0

anϕn(x)
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Appendix F. Asymptotic expansions 535

for N →∞, while asymptoticity pertains to the behavior of SN for x→ x0.
From the above definitions it follows that the coe�cient aN+1 is given by

aN+1 = lim
x→x0

f(x)−∑N
n=0 anϕn(x)

ϕN+1(x)
.

Thus if a function has an asymptotic expansion then this expansion is unique given the ϕns.
The converse is not true since di�erent functions can have the same asymptotic expansion.
For example, for any constant c

1

1− x + c e−1/x
2

= 1 + x+ x2 + . . .

The r.h.s. is an asymptotic expansion around x0 = 0 and is independent of c since

limx→0 e
−1/x2

/xn = 0 for all n. We conclude this appendix with a classical example of
asymptotic expansions.

Let us consider the error function

erf(x) =
2√
π

∫ x

0

dt e−t
2

= 1− 2√
π

∫ ∞

x

dt e−t
2

= 1− 1√
π

∫ ∞

x2

ds
e−s√
s
.

For non-negative integers n we define the function

Fn(x) =

∫ ∞

x2

ds s−n−1/2e−s =
e−x

2

x2n+1
− (n+

1

2
)

∫ ∞

x2

ds s−n−1−1/2e−s

=
e−x

2

x2n+1
− (n+

1

2
)Fn+1(x).

The asymptotic expansion of erf(x) around x0 = ∞ follows from the repeated use of the
above recursive relation

erf(x) = 1− 1√
π
F0(x)

= 1− 1√
π

[

e−x
2

x
− 1

2
F1(x)

]

= 1− 1√
π

[

e−x
2

x
− 1

2

e−x
2

x3
+

1

2

3

2
F2(x)

]

= 1− e−x
2

√
π

∞∑

n=0

(−)n (2n− 1)!!

2nx2n+1
, (F.3)

which is clearly a divergent series for all x. To show that this is an asymptotic expansion

we have to prove that the functions ϕn ∼ e−x
2

/x2n+1 form an asymptotic set (which is
obvious) and that (F.2) is fulfilled. Let us define

RN+1(x) = erf(x)− 1 +
e−x

2

√
π

N∑

n=0

(−)n (2n− 1)!!

2nx2n+1

= − (−)N+1

√
π

(2N + 1)!!

2N+1
FN+1(x).
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536 Appendix F. Asymptotic expansions

Figure F.1 Error function erf(x) and the partial sums SN (x) of the asymptotic expansion (F.3)
for N = 1, 2, 3. The inset is a magnification of the same functions in a restricted domain
of the x variable.

We have

|FN+1(x)| =
∣
∣
∣
∣

∫ ∞

x2

ds s−N−3/2e−s
∣
∣
∣
∣
≤ 1

x2N+3

∫ ∞

x2

ds e−s =
e−x

2

x2N+3
,

which goes to zero faster than ϕn(x) ∼ e−x
2

/x2N+1 for x → ∞. Therefore (F.3) is an
asymptotic expansion.

In Fig. F.1 we display the plot of erf(x) as well as the partial sums of the asymptotic
expansion with N = 0, 1, 2, which corresponds to the 1st, 2nd and 3rd order approximation.
We see that for x < 1 the best approximation is the 1st order one. The inset shows a
magnification of the same curves in a narrower window of the x variable. For x = 1.2 we
get closer to the exact curve by adding to the term with n = 0 the term with n = 1 (2nd
order); the further addition of the term with n = 3 worsens the approximation. Increasing
x even further, e.g., for x = 1.5, the 3rd order approximation is superior to the 1st and
2nd order approximations. Thus, given x there exists an optimal N for which the partial
sum performs best whereas the inclusion of higher order terms brings the partial sum
further away from the exact value. In this example the optimal value of N increases with
increasing x.
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G

Wick’s theorem for general

initial states

The discussion in this appendix deals with an alternative way of calculating the Green’s
functions of systems initially described by a density matrix ρ̂. We present this appendix
for completeness and to show that the formalism can in principle deal with very general
situations. The presentation closely follows the one in Ref. [170].

The explicit form (5.2) and (5.3) of the Martin–Schwinger hierarchy assumes the fact that
ĤM and Ĥ(t) contain at most two-body operators. The more general inclusion of m-body
operators in ĤM would generate a coupling (for contour arguments along the vertical track)
between Gn and Gn+m−1, thus rendering the system of equations even more complicated
to solve. This is, however, what one should do for a general density matrix ρ̂ (or in the case
of pure states for a general initial state). For instance, if ρ̂ = |Ψ〉〈Ψ| with |Ψ〉 a general initial
state then the operator ĤM for which ρ̂ = e−βĤ

M

/Tr[e−βĤ
M

] contains, in general, n-body
operators of all orders n. It is clear that an alternative way of dealing with this problem
would be most valuable. The approach that we follow in this appendix is not to introduce
any additional contour, but to use the contour of Fig. 4.3 instead, which starts at t0−,
runs back and forth to infinity and returns in t0+. On this contour the Martin–Schwinger
hierarchy equations are still valid. However, the KMS boundary conditions cannot be used
to solve these equations since the point zf = t0 − iβ does not belong to the contour.
Consequently we must regard the problem as an initial value problem. Let us illustrate how
it works.

We rewrite the n-particle Green’s functions (5.1) with contour arguments on the horizontal
branches as

Gn(1, . . . , n; 1
′, . . . , n′) = Tr

[

ρ̂ Ĝn(1, . . . , n; 1
′, . . . , n′)

]

=
1

in
Tr
[

ρ̂ T
{

e−i
∫

γ
dz̄Ĥ(z̄)ψ̂(1) . . . ψ̂(n)ψ̂†(n′) . . . ψ̂†(1′)

}]

, (G.1)

where γ is the contour of Fig. 4.3 and ρ̂ is a general density matrix. These Green’s functions
can be expanded in powers of the interaction v by simply taking into account that inside
the T sign the Hamiltonians Ĥ0(z) and Ĥint(z) commute.1 The result is (omitting the

1The same trick was used in (5.30) and (5.33).
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538 Appendix G. Wick’s theorem for general initial states

arguments of Gn)

Gn =
1

in

∞∑

k=0

(−i)k
k!

∫

dz̄1 . . . dz̄k

× Tr
[

ρ̂ T
{

e−i
∫

γ
dz̄Ĥ0(z̄)Ĥint(z̄1) . . . Ĥint(z̄k)ψ̂(1) . . . ψ̂(n)ψ̂

†(n′) . . . ψ̂†(1′)
}]

=
1

in

∞∑

k=0

(

− i

2

)k
1

k!

∫

d1̄d1̄′ . . . dk̄dk̄′v(1̄; 1̄′) . . . v(k̄; k̄′)

× in+2kgn+2k(1, . . . , n, 1̄, 1̄
′, . . . , k̄, k̄′; 1′, . . . , n′, 1̄+, 1̄′+, . . . , k̄+, k̄′+), (G.2)

where we define the noninteracting Green’s functions gn as in (G.1) but with Ĥ(z̄)→ Ĥ0(z̄).
2

By definition, the gn satisfy the noninteracting Martin–Schwinger hierarchy on the contour γ
of Fig. 4.3. To solve this hierarchy we need an initial condition. For this purpose we observe
that to specify ρ̂ is the same as to specify the n-particle density matrices

Γn(x1, . . . ,xn;x
′
1, . . . ,x

′
n) ≡ Tr

[

ρ̂ ψ̂†(x′1) . . . ψ̂
†(x′n)ψ̂(xn) . . . ψ̂(x1)

]

,

which are the obvious generalization of the Γn of Section 1.7 to the case of ensemble
averages. The link between the n-particle density matrices and the n-particle Green’s
functions follows directly from (G.1) and is

Γn(x1, . . . ,xn;x
′
1, . . . ,x

′
n) = (±i)n lim

zi,z
′
i
→t0−

z′
1>...>z′

n>zn>...>z1

Gn(1, . . . , n; 1
′, . . . , n′), (G.3)

where the prefactor (±i)n refers to bosons/fermions respectively and where the inequality
symbol “>” between contour variables signifies “later than.” In the case of fermions we
use the fact that the sign of the permutation to put the operators in the same order as
in Γn is (−1)n, as can be readily checked. Now the crucial observation is that in the
limit zi, z

′
i → t0− the Green’s functions Gn and gn approach the same value since in both

cases the exponential in (G.1) reduces to Û(t0+,∞)Û(∞, t0−) = 1̂. Therefore, the initial
condition to solve the noninteracting Martin–Schwinger hierarchy is

Γn(x1, . . . ,xn;x
′
1, . . . ,x

′
n) = (±i)n lim

zi,z
′
i
→t0−

z′
1>...>z′

n>zn>...>z1

gn(1, . . . , n; 1
′, . . . , n′). (G.4)

Let us recapitulate what we have said so far. For a general initial density matrix ρ̂ the initial
conditions for the n-particle Green’s functions are uniquely specified by the Γn, and the
Green’s functions at later times can be obtained by solving the Martin–Schwinger hierarchy
on the contour γ of Fig. 4.3. If gn solve the noninteracting hierarchy then the Gn expanded
as in (G.2) solve the interacting hierarchy on the same contour.

It therefore remains to find the solution of the noninteracting hierarchy with initial condi-
tions (G.4). We start by first considering the equations (5.17) and (5.18) for the noninteracting

2These gn are di�erent from the G0,n of Section 5.3 since they are averaged with a general density matrix

instead of the noninteracting density matrix ρ̂0 = e−βĤM
0 /Z0.
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Appendix G. Wick’s theorem for general initial states 539

one-particle Green’s function g ≡ g1. These equations must be solved with the initial
condition

Γ1(x1;x
′
1) = ±i lim

z1,z′1→t0−

z′
1>z1

g(1; 1′). (G.5)

Due to the contour ordering the Green’s function g has the structure

g(1; 1′) = θ(z1, z
′
1)g

>(1; 1′) + θ(z′1, z1)g
<(1; 1′), (G.6)

where

g>(1; 1′) = −i Tr
[

ρ̂ ψ̂H(1)ψ̂†H(1′)
]

,

g<(1; 1′) = ∓i Tr
[

ρ̂ ψ̂†H(1′)ψ̂H(1)
]

.

The functions g≶ have arguments on the contour γ but their value is independent of
whether the arguments are on the forward or backward branch since there is no contour
ordering operator in the definition of these functions. Thus,

g≶(x, t+;x
′, z′) = g≶(x, t−;x

′, z′) for all z′,

and similarly
g≶(x, z;x′, t′+) = g≶(x, z;x′, t′−) for all z.

We see that (G.5) is an initial condition on the g< function

Γ1(x1;x
′
1) = ±i g<(x1, t0−;x

′
1, t0−).

The initial condition on the g> function follows from the equal-time (anti)commutation
relations of the field operators

−iδ(x1 − x′1) = −i Tr
[

ρ̂
[
ψ̂H(x1, t0−), ψ̂

†
H(x′1, t0−)

]

∓

]

= g>(x1, t0−;x
′
1, t0−)− g<(x1, t0−;x

′
1, t0−). (G.7)

We can now solve (5.17) using as initial condition the value of g> in z1 = z′1 = t0− and (5.18)
using as initial condition the value of g< in z1 = z′1 = t0−. One can readily check that this
property is completely general, i.e., due to the equal-time (anti)commutation relations the
limit in (G.4) determines also the limit zi, z

′
i → t0− taken for a di�erent contour ordering.

Once we have the Green’s function g, how can we calculate all the gn? If we consider
the permanent/determinant (5.27) in terms of this g then it is still true that this expression
satisfies the noninteracting Martin–Schwinger hierarchy since in the derivation we only use
the equations of motion. However, the permanent/determinant does not in general satisfy
the required boundary conditions. From (G.5) we instead find that

(±i)n lim
zi,z

′
i
→t0−

z′
1>...>z1

∣
∣
∣
∣
∣
∣
∣

g(1; 1′) . . . g(1;n′)
...

...
g(n; 1′) . . . g(n;n′)

∣
∣
∣
∣
∣
∣
∣
±

=

∣
∣
∣
∣
∣
∣
∣

Γ1(x1;x
′
1) . . . Γ1(x1;x

′
n)

...
...

Γ1(xn;x
′
1) . . . Γ1(xn;x

′
n)

∣
∣
∣
∣
∣
∣
∣
±

,
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540 Appendix G. Wick’s theorem for general initial states

which is, in general, di�erent from Γn. The permanent/determinant is a particular solution to
the noninteracting Martin–Schwinger hierarchy but with the wrong boundary conditions. In
order to repair this problem the permanent/determinant must be supplied by the additional
homogeneous solution. For pedagogical reasons we first consider the example of the two-
particle Green’s function. We write

g2(1, 2; 1
′, 2′) =

∣
∣
∣
∣

g(1; 1′) g(1; 2′)
g(2; 1′) g(2; 2′)

∣
∣
∣
∣
±
+ g̃2(1, 2; 1

′, 2′), (G.8)

where g̃2 satisfies the four homogeneous equations

[

i
d

dz1
− h(1)

]

g̃2(1, 2; 1
′, 2′) = 0, g̃2(1, 2; 1

′, 2′)

[

−i
←−
d

dz′1
− h(1′)

]

= 0, (G.9)

[

i
d

dz2
− h(2)

]

g̃2(1, 2; 1
′, 2′) = 0, g̃2(1, 2; 1

′, 2′)

[

−i
←−
d

dz′2
− h(2′)

]

= 0, (G.10)

In these equations the r.h.s. are zero and the δ-functions of the Martin–Schwinger hierarchy
have disappeared. We remind the reader that the δ-functions arose from the di�erentiations
of the contour Heaviside functions. We thus conclude that g̃2 is a continuous function of
its contour arguments, i.e., there are no discontinuities when two contour arguments cross
each other. Since

g̃2(1, 2; 1
′, 2′) = g2(1, 2; 1

′, 2′)−
∣
∣
∣
∣

g(1; 1′) g(1; 2′)
g(2; 1′) g(2; 2′)

∣
∣
∣
∣
±
,

this implies that a jump in g2 is exactly compensated by a jump in the permanent/determinant.
Accordingly, the limit

(±i)2 lim
zi,z′

i→t0−
g̃2(1, 2; 1

′, 2′) = C2(x1,x2;x
′
1,x
′
2) (G.11)

is independent of the contour ordering of the zi and z′i. We call the quantity C2 the
two-particle initial-correlation function. Taking into account (G.4), C2 can be written as

C2(x1,x2;x
′
1,x
′
2) = Γ2(x1,x2;x

′
1,x
′
2)−

∣
∣
∣
∣

Γ1(x1;x
′
1) Γ1(x1;x

′
2)

Γ1(x2;x
′
1) Γ1(x2;x

′
2)

∣
∣
∣
∣
±
, (G.12)

where Γ1 and Γ2 are the one- and two-particle density-matrices. We can find an explicit
solution of the homogeneous equations (G.9) and (G.10) with initial condition (G.11) in terms
of the one-particle Green’s function g of (G.6). We define the function3

A(1; 1′) = Tr
[

ρ̂
[
ψ̂H(1), ψ̂†H(1′)

]

∓

]

= i
[
g>(1; 1′)− g<(1; 1′)

]
,

3For systems in equilibrium the function A(1; 1′) depends only on the time di�erence t1 − t′1, and its Fourier
transform is the so called spectral function, see Chapter 6.
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Appendix G. Wick’s theorem for general initial states 541

where, as usual, the upper/lower sign refers to bosons/fermions. This function satisfies the
equations of motion

[

i
d

dz1
− h(1)

]

A(1; 1′) = 0, A(1; 1′)

[

−i
←−
d

dz′1
− h(1′)

]

= 0,

as follows directly from the equations of motion of the field operators in noninteracting
systems, see (4.62) and (4.63). Furthermore (G.7) tells us that the function A satisfies the
initial condition

A(x1, t0−;x
′
1, t0−) = δ(x1 − x′1).

Consequently the function

g̃2(1, 2; 1
′, 2′) = (∓i)2

∫

dy1dy2dy
′
1dy
′
2 A(1;y1, t0−)A(2;y2, t0−)

×C2(y1,y2;y
′
1,y
′
2)A(y

′
1, t0−; 1

′)A(y′2, t0−; 2
′)

is a solution to the homogeneous equations (G.9) and (G.10) and satisfies the initial condition
(G.11). This solution can be rewritten in a more elegant form. We define the following linear
combination of contour δ-functions

δ(z, t0) = δ(t0, z) ≡ δ(z, t0−)− δ(z, t0+).

Since the δ-functions appear at the edges of the integration interval we have to agree on
a convention how to integrate them. Here we define this integral to be equal to one. With
these definitions we can then derive the relation

∫

γ

dz′1 g(1; 1
′)δ(z′1, t0) =

∫

γ

dz′1 g(1; 1
′)
(
δ(z′1, t0−)− δ(z′1, t0+)

)

= g>(1;x′1, t0−)− g<(1;x′1, t0+)
= g>(1;x′1, t0−)− g<(1;x′1, t0−)
= −iA(1;x′1, t0−),

where we use the fact that the functions g≶ have the same value for arguments on the
forward and backward branches of the contour. Similarly we have the relation

∫

γ

dz1 δ(t0, z1)g(1; 1
′) = iA(x1, t0−; 1

′).

If we now define the two-particle initial-correlation function on the contour

C2(1, 2; 1
′, 2′) ≡ δ(z1, t0)δ(z2, t0)C2(x1,x2;x

′
1,x
′
2)δ(t0, z

′
1)δ(t0, z

′
2), (G.13)

then the homogeneous solution can be rewritten as

g̃2(1, 2; 1
′, 2′) = (∓i)2

∫

d1̄d2̄d1̄′d2̄′ g(1; 1̄)g(2; 2̄)C2(1̄, 2̄; 1̄
′, 2̄′)g(1̄′; 1′)g(2̄′; 2′). (G.14)
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542 Appendix G. Wick’s theorem for general initial states

This result, together with (G.8), provides an explicit expression in terms of g for the solution
of the equations of motion of g2 with a given initial condition determined by a one- and
two-particle density matrix. A diagrammatic representation of g2 is given in Fig. G.1(a).

It is clear that the procedure to determine g2 can be continued to higher order Green’s
functions. We illustrate the next step for the three-particle Green’s function g3 before we
give the general result. The equations of motion for g3 are

[

i
d

dz1
− h(1)

]

g3(1, 2, 3; 1
′, 2′, 3′) = δ(1; 1′)g2(2, 3; 2

′, 3′)± δ(1; 2′)g2(2, 3; 1′, 3′)

+ δ(1; 3′)g2(2, 3; 1
′, 2′),

[

i
d

dz2
− h(2)

]

g3(1, 2, 3; 1
′, 2′, 3′) = ±δ(2; 1′)g2(1, 3; 2′, 3′) + δ(2; 2′)g2(1, 3; 1

′, 3′)

± δ(2; 3′)g2(1, 3; 1′, 2′),
[

i
d

dz3
− h(3)

]

g3(1, 2, 3; 1
′, 2′, 3′) = δ(3; 1′)g2(1, 2; 2

′, 3′)± δ(3; 2′)g2(1, 2; 1′, 3′)

+ δ(3; 3′)g2(1, 2; 1
′, 2′),

plus the three equations with the derivative with respect to the primed arguments. If we
insert (G.8) into the r.h.s. of these equations we can easily check that the general solution
for the three-particle Green’s function is

g3(1, 2, 3; 1
′, 2′, 3′) =

∣
∣
∣
∣
∣
∣

g(1; 1′) g(1; 2′) g(1; 3′)
g(2; 1′) g(2; 2′) g(2; 3′)
g(3; 1′) g(3; 2′) g(3; 3′)

∣
∣
∣
∣
∣
∣
±

+ g(1; 1′)g̃2(2, 3; 2
′, 3′)± g(1; 2′)g̃2(2, 3; 1′, 3′) + g(1; 3′)g̃2(2, 3; 1

′, 2′)

± g(2; 1′)g̃2(1, 3; 2
′, 3′) + g(2; 2′)g̃2(1, 3; 1

′, 3′)± g(2; 3′)g̃2(1, 3; 1′, 2′)
+ g(3; 1′)g̃2(1, 2; 2

′, 3′)± g(3; 2′)g̃2(1, 2; 1′, 3′) + g(3; 3′)g̃2(1, 2; 1
′, 2′)

+ g̃3(1, 2, 3; 1
′, 2′, 3′), (G.15)

where the function g̃3 satisfies the homogeneous equations

[

i
d

dz1
− h(1)

]

g̃3(1, 2, 3; 1
′, 2′, 3′) = 0,

[

i
d

dz2
− h(2)

]

g̃3(1, 2, 3; 1
′, 2′, 3′) = 0,

[

i
d

dz3
− h(3)

]

g̃3(1, 2, 3; 1
′, 2′, 3′) = 0,

as well as the three equations with the derivative with respect to the primed arguments. As
for the two-particle case g̃3 is a continuous function of the contour arguments since there
are no δ-functions in the r.h.s. of its equations of motion. The precise form of g̃3 must
again be determined from the initial condition (G.4). More explicitly we have

(±i)3 lim
zi,z′

i→t0−
g̃3(1, 2, 3; 1

′, 2′, 3′) = C3(x1,x2,x3;x
′
1,x
′
2,x
′
3),
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Appendix G. Wick’s theorem for general initial states 543

Figure G.1 Representation of the two- and three-particle Green’s functions which solve the
noninteracting Martin–Schwinger hierarchy with a general density matrix. With every ori-
ented line going from j to i is associated the one-particle Green’s function g(i; j) and with
every Cn-box is associated (∓i)nCn.

where the three-particle initial-correlation function C3 can be deduced from (G.15) to be

C3(x1,x2,x3;x
′
1,x
′
2,x
′
3) = Γ3(x1,x2,x3;x

′
1,x
′
2,x
′
3)

− Γ1(x1;x
′
1)C2(x2,x3;x

′
2,x
′
3)∓ Γ1(x1;x

′
2)C2(x2,x3;x

′
1,x
′
3)

− Γ1(x1;x
′
3)C2(x2,x3;x

′
1,x
′
2)∓ Γ1(x2;x

′
1)C2(x1,x3;x

′
2,x
′
3)

− Γ1(x2;x
′
2)C2(x1,x3;x

′
1,x
′
3)∓ Γ1(x2;x

′
3)C2(x1,x3;x

′
1,x
′
2)

− Γ1(x3;x
′
1)C2(x1,x2;x

′
2,x
′
3)∓ Γ1(x3;x

′
2)C2(x1,x2;x

′
1,x
′
3)

− Γ1(x3;x
′
3)C2(x1,x2;x

′
1,x
′
2)

−

∣
∣
∣
∣
∣
∣

Γ1(x1;x
′
1) Γ1(x1;x

′
2) Γ1(x1;x

′
3)

Γ1(x2;x
′
1) Γ1(x2;x

′
2) Γ1(x2;x

′
3)

Γ1(x3;x
′
1) Γ1(x3;x

′
2) Γ1(x3;x

′
3)

∣
∣
∣
∣
∣
∣
±

.

Similarly to (G.14) the explicit solution for G̃3 is given by

g̃3(1, 2, 3; 1
′, 2′, 3) = (∓i)3

∫

d1̄d2̄d3̄d1̄′d2̄′d3̄′ g(1; 1̄)g(2; 2̄)g(3; 3̄)

×C3(1̄, 2̄, 3̄; 1̄
′, 2̄′, 3̄′)g(1̄′; 1′)g(2̄′; 2′)g(3̄′; 3′),
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544 Appendix G. Wick’s theorem for general initial states

where the initial-correlation function C3 with arguments on the contour is defined similarly
to (G.13). This explicit form for g̃3 together with (G.15) provides the solution in terms of g to
the equations of motion of g3 with a given initial condition determined by a one-, two-, and
three-particle density matrix. A diagrammatic representation of g3 is given in Fig. G.1(b).

A little inspection shows that (G.15) can be rewritten in a more compact form as

g3(1, 2, 3; 1
′, 2′, 3′) = |g|3,±(1, 2, 3; 1′, 2′, 3′)

+

3∑

j,k=1

(±)j+kg(j; k′)g̃2(j̆; k̆
′) + g̃3(1, 2, 3; 1

′, 2′, 3′),

where we have added the subindex 3 on the permanent/determinant to remind us that we
are dealing with a 3 × 3 matrix of one-particle Green’s functions g as matrix elements.
In this equation j̆ denotes the set of ordered integers (1, 2, 3) with integer j missing, for
example 2̆ = (1, 3) or 3̆ = (1, 2). In a similar manner the initial-correlation function C3 can
be rewritten as

C3(x1,x2,x3;x
′
1,x
′
2,x
′
3)=Γ3(x1,x2,x3;x

′
1,x
′
2,x
′
3)−

3∑

j,k=1

(±)j+kΓ1(xj ;x
′
k)C2(x̆j ; x̆

′
k)

− |Γ1|3,±(x1,x2,x3;x
′
1,x
′
2,x
′
3). (G.16)

We now see a clear structure appearing. In the general case that we need to calculate
the n-particle Green’s function gn given the initial density matrices Γk with k = 1, . . . , n,
we first need to determine n− 1 initial-correlation functions C2, . . . , Cn and subsequently
construct n − 1 solutions g̃2, . . . , g̃n of the homogeneous equations of motion. Below we
first give the explicit prescription of how to construct gn and subsequently the proof.

We define the m-particle initial-correlation function Cm from the recursive relations

Cm(XM ;X ′M ) = Γm(XM ;X ′M )−
m−2∑

l=1

∑

K,J

(±)|K+J| |Γ1|l,±(XK ;X ′J )Cm−l(X̆K ; X̆ ′J )

− |Γ1|m,±(XM ;X ′M ), (G.17)

where C2 ≡ Γ2 − |Γ1|2,±. We need to explain the notation used in this equation. We
introduce the collective coordinates XM = (x1, . . . ,xm) and X ′M = (x′1, . . . ,x

′
m). For

l = 1, . . . ,m − 2 we further introduce the collective ordered indices K = (k1, . . . , kl)
with k1 < . . . < kl and the collective coordinate XK = (xk1

, . . . ,xkl
), and similarly the

collective ordered index J = (j1, . . . , jl) with j1 < . . . < jl and the collective coordinate
X ′J = (x′j1 , . . . ,x

′
jl
). The sign of the various terms is determined by the quantity |K + J |

which is defined as
|K + J | = k1 + . . .+ kl + j1 + . . .+ jl.

The collective coordinate X̆K ≡ XK̆ denotes the set of coordinates with the complementary

set K̆ of ordered indices in M = (1, . . . ,m). Finally, the quantity |Γ1|l,± is the l × l
permanent/determinant of one-particle density matrices with row indices K and column
indices J . For example, let m = 5 and l = 2 with K = (1, 4) and J = (2, 4) and
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hence K̆ = (2, 3, 5) and J̆ = (1, 3, 5). We then have XK = (x1,x4), X
′
J = (x′2,x

′
4)

and the complementary collective coordinates X̆K = (x2,x3,x5), X̆
′
J = (x′1,x

′
3,x
′
5). The

corresponding term for C5 under the summation sign in (G.17) is given by

(±)1+4+2+4|Γ1|2,±(x1,x4;x
′
2,x
′
4)C3(x2,x3,x5;x

′
1,x
′
3,x
′
5)

= ±
∣
∣
∣
∣

Γ1(x1;x
′
2) Γ1(x1;x

′
4)

Γ1(x4;x
′
2) Γ1(x4;x

′
4)

∣
∣
∣
∣
±
C3(x2,x3,x5;x

′
1,x
′
3,x
′
5).

It can be readily checked that (G.17) gives back the expressions (G.12) and (G.16) for C2 and
C3 that we derived before. The construction of the homogeneous solutions g̃m is readily
guessed from g̃2 and g̃3. We define for all m ≥ 2

Cm(M ;M ′) =

(
m∏

k=1

δ(zk, t0)

)

Cm(XM ;X ′M )





m∏

j=1

δ(t0, z
′
j)





and

g̃m(M ;M ′) = (∓i)m
∫
(

m∏

k=1

g(k; k̄))

)

Cm(M̄ ; M̄ ′)





m∏

j=1

g(j̄′; j′)



 ,

where the integral is over 1̄, . . . , m̄, 1̄′, . . . , m̄′. These functions satisfy the homogeneous
equations and at the initial times zi = z′i = t0− for all i are equal to the initial-correlation
functions Cm(XM ;X ′M ). We are now ready to state the most important result of this
appendix. The solution gn of the noninteracting Martin–Schwinger hierarchy on the contour
of Fig. 4.3 with the prescribed initial conditions (G.4) is

gn(N ;N ′) = |g|n,±(N ;N ′)

+
n−2∑

l=1

∑

K,J

(±)|K+J||g|l,±(K; J ′)g̃n−l(K̆; J̆ ′) + g̃n(N ;N ′)
(G.18)

where N = (1, . . . , n) and the summation over K,J is a summation over all ordered
subsets of N with l elements. We refer to this equation as the generalized Wick’s theorem.

Before we prove the generalized Wick’s theorem we note that (G.18) has the structure of
the permanent/determinant of the sum of two matrices A and B since we have the Laplace
formula (see Appendix B)

|A+B|± = |A|± +

n−1∑

l=1

∑

K,J

(±)|K+J||A|l,±(K; J)|B|n−l,±(K̆; J̆) + |B|±, (G.19)

where |A|l,±(K; J) is the permanent/determinant of the l× l matrix obtained with the rows
K and the columns J of the matrix A. In the special case l = n we have K = J = N and
hence |A|n,±(N ;N) = |A|±. The same notation has been used for the matrix B. With the

identification Akj = g(k; j′) and |B|n−l,±(K̆; J̆) = g̃n−l(K̆; J̆ ′) for l = 1 . . . n−2 and the
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546 Appendix G. Wick’s theorem for general initial states

definition g̃1 ≡ 0 the equations (G.18) and (G.19) become identical. We can thus symbolically
write the generalized Wick’s theorem as

gn = |g + g̃|n,±

the precise meaning of which is given by (G.18).

It remains to prove (G.18). In the first step we check that the r.h.s. satisfies the Martin–
Schwinger hierarchy and subsequently we show that it fulfills the required boundary condi-
tions. Since the first term |g|n,± satisfies the hierarchy and the last term g̃n is a homoge-
neous solution it is enough to show that each function

g(l)n (N ;N ′) =
∑

K,J

(±)|K+J||g|l,±(K; J ′)g̃n−l(K̆; J̆ ′) (G.20)

appearing under the summation sign for the index l in (G.18) satisfies the Martin–Schwinger
hierarchy. This function can be given a simple diagrammatic representation similar to Fig.
G.1.4 We represent g̃n−l(K̆; J̆ ′) as a block with ingoing lines J̆ ′ and outgoing lines K̆ , and
g(k; j′) as an oriented line from j′ to k. For instance, for n = 5 and l = 2 the term of the
sum in (G.20) with K = (1, 4) and J = (2, 4) has the following diagrammatic representation:

The sign of the first diagram is (±)|K+J| = ± whereas the sign of the second diagram is
±(±)|K+J| = +. In Appendix B we showed that the sign of these diagrams can simply
be determined from (±)nc where nc is the number of crossing lines (in the above example
nc = 3 in the first diagram and nc = 6 in the second diagram). By summing over all

possible diagrams of this kind we recover the function g
(l)
n .

If we now act with [i d
dzk
− h(k)] on a particular diagram of g

(l)
n the result is zero if k

is an ingoing line to a g̃n−l-block. This follows immediately from the fact that g̃n−l satisfies
the homogeneous equations of motion. On the contrary, if the diagram contains a free line

from j′ to k then the result is (±)k+jδ(k; j′)×[a diagram for g
(l)
n−1(k̆; j̆

′)]. The sign (±)k+j

follows immediately from the fact that the removal of a free line connecting j′ to k reduces
the number of crossing lines by a number with the parity of k + j. For instance, for the
left diagram of the above example the removal of g(1; 2′) reduces the number of crossing
lines by 1 which has the same parity as 1 + 2 = 3. Similarly, the removal of g(4; 4′) reduces
the number of crossing lines by 2 which has the same parity as 4 + 4 = 8. The reader can
verify that the same is true for the right diagram. This topological property is most easily
explained in terms of “permutation graphs” introduced in Section 4.5. We refer the reader

4In contrast to Fig. G.1 the sign of the diagram is incorporated in the diagram itself.
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to Appendix B for more details. In conclusion we can write
[

i
d

dzk
− h(k)

]

[sum over all diagrams in g(l)n containing g(k; j′)]

= (±)k+jδ(k; j′)g(l)n−1(k̆; j̆
′).

The satisfaction of the Martin–Schwinger hierarchy by g
(l)
n follows from this relation when

summing over all j. This proves our first statement.
Next we prove that gn of (G.18) has the correct boundary conditions (G.4). Taking the

limit zi, z
′
i → t0− with z′1 > ... > z′n > zn > ... > z1 we have |g|l,± → (∓i)l|Γ1|l,± and

g̃n−l → (∓i)n−lCn−l and therefore

lim
zi,z

′
i
→t0−

z′
1>...>z′

n>zn>...>z1

(±i)ngn(N ;N ′) = |Γ1|n,±(XN ;X ′N )

+
n−2∑

l=1

∑

K,J

(±)|K+J||Γ1|l,±(XK ;X ′J )Cn−l(X̆K ; X̆ ′J ) + Cn(XN ;X ′N ).

Writing the last term Cn as in (G.17) we see by inspection that we recover the correct
boundary conditions (G.4). This concludes the proof of the generalized Wick’s theorem.

Note that if the system is prepared in a noninteracting configuration we have ρ̂ =

e−βĤ
M
0 /Z0 and the Green’s functions gn coincide with the noninteracting Green’s functions

G0,n of Section 5.3. For these Green’s functions the standard Wick’s theorem (5.27) applies
and therefore the n-particle density matrix Γn = |Γ1|n,± is the permanent/determinant
of one-particle density matrices. In this case the generalized Wick’s theorem correctly
reduces to the standard Wick’s theorem since all the homogeneous solutions g̃m vanish. At
zero temperature and in the case of fermions the ensemble average becomes a quantum
average over the noninteracting ground state. This state is a product state of the form
|n1 . . . nN 〉. Note that for any arbitrary choice of the quantum numbers n1, . . . , nN we can
construct a noninteracting fermionic Hamiltonian for which |n1 . . . nN 〉 is the ground state.

An example of such a Hamiltonian is ĤM
0 = −|E|∑N

i=1 d̂
†
ni
d̂ni

. This is not true in the
case of bosons since at zero temperature the density matrix is either a mixture of states,
see Exercise 6.3, or a pure state in which all bosons have the same quantum number (Bose
condensate): ρ̂ = |n0n0 . . .〉〈n0n0 . . . |. According to Wick’s theorem we can then say that
the noninteracting n-particle Green’s function averaged over a product state |n0n0 . . .〉 in
the case of condensed bosons or over a product state |n1 . . . nN 〉 in the case of fermions
is the permanent/determinant of one-particle Green’s functions.

For systems prepared in an interacting configuration the generalized Wick’s theorem
o�ers an alternative route to expand the Green’s functions. In this book we use the MBPT
formulation on the contour of Fig. 4.5(a), and therefore include the information on the initial
preparation in the Hamiltonian ĤM. Alternatively, however, we could use the generalized
Wick’s theorem and include the information on the initial preparation in the n-particle
density matrices Γn. This MBPT formulation is based on the contour γ− ⊕ γ+ which does
not contain the vertical track. The two approaches are clearly complementary and the
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548 Appendix G. Wick’s theorem for general initial states

convenience of using one approach or the other depends on the information at hand. The
relation between them is further discussed below. In order to continue reading, however,
the reader should already be familiar with the concepts of self-energy and Dyson equation
introduced in Chapters 10 and 11.

We intend to put forward the basic equations that relate the MBPT formulation on the
Konstantinov–Perel’ contour γ−⊕γ+⊕γM (in which the information on the initial preparation
is encoded in ĤM) to the MBPT formulation on the Schwinger–Keldysh contour γ−⊕ γ+ (in
which the information on the initial preparation is encoded in the n-particle density matrices
Γn). We have seen that in the former approach the noninteracting Green’s functions G0,n

satisfy the noninteracting Martin–Schwinger hierarchy on the contour γ− ⊕ γ+ ⊕ γM with
KMS boundary conditions. These G0,n are given by (G.1) with ρ → ρ0 and Ĥ(z) → Ĥ0.
On the other hand the noninteracting Green’s functions gn of the latter approach satisfy
the noninteracting Martin–Schwinger hierarchy on the contour γ− ⊕ γ+ with boundary
conditions (G.4). These Green’s functions are given by (G.1) with Ĥ(z)→ Ĥ0.

If we expand the one-particle Green’s function G in (G.1) in powers of the interaction
Ĥint we get the formula (G.2) with n = 1, i.e.,

G(a, b) =

∞∑

k=0

1

k!

(
i

2

)k∫

v(1; 1′) . . . v(k; k′)g2k+1(a, 1, 1
′ . . . k, k′; b, 1+, 1′+ . . . k+, k′+),

where the integrals are over all variables with the exception of a and b. In contrast to (5.31),
in this equation the contour integrals run on the contour γ = γ− ⊕ γ+. In order to avoid
confusion in the following we always specify the contour of integration in the integration
symbol “

∫
”. Using the generalized Wick’s theorem (G.18) for the gn we obtain a diagrammatic

expansion for G. For example, to first order in the interaction we only need the g3 of Fig.
G.1. If we then take into account that the disconnected pieces vanish5 we find that to first
order in the interaction the Green’s function is given by the connected diagrams displayed
in Fig. G.2. In general the expansion of G in powers of Ĥint leads to a diagrammatic series
which starts and ends with a g-line. The kernel of this expansion is therefore a reducible
self-energy which we denote by σr to distinguish it from the reducible self-energy Σr of the
MBPT formulation on the contour γ− ⊕ γ+ ⊕ γM , see (11.6). In the case of general initial
states the σr-diagrams contain at most one initial-correlation function Cm and either begin
and end with an interaction line (like the standard self-energy diagrams; we call their sum

σ
(s)
r ) or begin/end with an interaction line and end/begin with a Cm (we call their sum L/R

reducible self-energy σL,R
r ), see also Ref. [41]. This means that the general structure of the

diagrammatic expansion is

G(1; 2) = g(1; 2) +

∫

γ

d1̄d2̄ g(1; 1̄)σr(1̄; 2̄)g(2̄; 2), (G.21)

where
σr = σ(s)

r + σL
r + σR

r (G.22)

and
σL
r (1; 2) = σL

r (1;x2)δ(t0, z2),

5On the contour γ− ⊕ γ+ all vacuum diagrams vanish since the integral along the forward branch cancels the
integral along the backward branch and there is no vertical track.
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Appendix G. Wick’s theorem for general initial states 549

Figure G.2 First-order expansion of G for a two-body interaction. The last three diagrams
vanish since both lines enter a Cm-block and hence the internal time-integration can be
reduced to a point. This is a completely general feature.

σR
r (1; 2) = δ(z1, t0)σ

R
r (x1; 2).

The self-energy σL
r (1;x2) has the same value for z1 = t1± and similarly σR

r (x1; 2) has
the same value for z2 = t2±. Comparing (G.21) with (11.6) we see that the reducible self-
energy is modified by diagrams with initial-correlation functions and by the addition of a
L/R reducible self-energy which is nonzero only if its right/left time-argument is one of the
end-points of γ. The diagrammatic expansion of these new self-energies is very similar to
that of Chapter 10, as exemplified in Fig. G.2. The only extra ingredient is the appearance of
the Cm-blocks which describe the initial m-body correlations.

Let us now consider the equation of motion for the Green’s function on the contour
γ ⊕ γM,

[

i
d

dz1
− ĥ(z1)

]

Ĝ(z1, z2) = δ(z1, z2) +

∫

γ⊕γM

dz̄ Σ̂ (z1, z̄)Ĝ(z̄, z2),

with Σ the irreducible self-energy. We split the contour integral into an integral along γ and
an integral along the vertical track γM,

∫

γ⊕γM

dz̄ Σ̂ (z1, z̄)Ĝ(z̄, z2) =
∫

γ

dz̄ Σ̂ (z1, z̄)Ĝ(z̄, z2) +
[

Σ̂
⌉
⋆ Ĝ⌈

]

(z1, z2), (G.23)

where we are implicitly assuming that z1 and z2 lie on the horizontal branches of γ. In
this equation the left/right Keldysh components with argument on γ are defined in the most
natural way, i.e.,

Σ̂
⌉
(z = t±, τ) ≡ Σ̂ (z = t±, t0 − iτ) = Σ̂

⌉
(t, τ)

and the like for Σ̂
⌈
. Inserting in (G.23) the analogue of (9.68) for the left Green’s function,

i.e.,

Ĝ⌈(τ, t) = −iĜM(τ, 0)ĜA(t0, t) +
[

ĜM ⋆ Σ̂
⌈ · ĜA

]

(τ, t),

and taking into account that
∫

γ

dz′ δ(t0, z
′)Ĝ(z′, t±) = Ĝ

A
(t0, t)
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550 Appendix G. Wick’s theorem for general initial states

as well as [see also Exercise 5.5]
∫

γ

dz′ Σ̂
⌈
(τ, z′)Ĝ(z′, t±) =

∫ ∞

t0

dt′ Σ̂
⌈
(τ, t′)ĜA(t′, t),

we find
∫

γ⊕γM

dz̄ Σ̂ (z1, z̄)Ĝ(z̄, z2) =
∫

γ

dz̄
[

Σ̂ + Σ̂
⌉
⋆ ĜM ⋆ Σ̂

⌈
+ Σ̂

L
]

(z1, z̄)Ĝ(z̄, z2). (G.24)

In (G.24) we have defined the irreducible L self-energy

Σ̂
L
(z1, z2) = −i [Σ̂

⌉
⋆ ĜM](z1, 0)δ(t0, z2),

which has the same mathematical structure as σL
r . Similarly for the adjoint equation of

motion we can easily derive
∫

γ⊕γM

dz̄ Ĝ(z1, z̄)Σ̂ (z̄, z2) =

∫

γ

dz̄ Ĝ(z1, z̄)
[

Σ̂ + Σ̂
⌉
⋆ ĜM ⋆ Σ̂

⌈
+ Σ̂

R
]

(z̄, z2), (G.25)

with

Σ̂
R
(z1, z2) = iδ(z1, t0)[Ĝ

M
⋆ Σ̂
⌈
](0, z2),

which has the same mathematical structure as σR
r . Using (G.24) and (G.25) the integral over

γ ⊕ γM appearing in the equations of motion for G is cast in terms of an integral over γ
only. Thus, given the self-energy and the Green’s function with arguments on the vertical
track we can regard the equations of motion on γ⊕γM as equations of motion on γ for the
unknown Green’s function with arguments on γ. To integrate these equations we cannot use
the noninteracting Green’s function G0 satisfying the KMS relations since the point t0 − iβ
does not belong to γ. We must instead use the noninteracting Green’s function g since it
satisfies

lim
z1,z2→t0−

z2>z1

g(1; 2) = lim
z1,z2→t0−

z2>z1

G(1; 2) = Γ(x1;x2). (G.26)

Thus if we define the total self-energy as

Σ̂ tot = Σ̂ + Σ̂
⌉
⋆ ĜM ⋆ Σ̂

⌈
+ Σ̂

L
+ Σ̂

R
(G.27)

we can write the following Dyson equation on γ:

G(1; 2) = g(1; 2) +

∫

γ

d1̄d2̄ g(1; 1̄)Σtot(1̄; 2̄)G(2̄; 2). (G.28)

Since the integral vanishes for z1, z2 → t0− this G satisfies the equations of motion and
the correct boundary conditions. Comparing (G.28) with (G.21) we now deduce an important
relation between the reducible self-energy σr written in terms of initial-correlation functions
and the self-energy Σtot written in terms of integrals along the vertical track,

σr = Σtot +ΣtotgΣtot +ΣtotgΣtotgΣtot + . . . (G.29)
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Appendix G. Wick’s theorem for general initial states 551

This relation constitutes a bridge between two di�erent and complementary approaches
[each built to optimize the nature (density matrix or Hamiltonian) of the initial information]
and give a deep insight into the physics of initial correlations. Splitting σr as in (G.22) we

can easily identify σ
(s)
r (1; 2), σL

r (1; 2), and σ
R
r (1; 2) as the terms in (G.29) which do not

contain a δ-function, the terms which contain a δ(z1, t0) and the terms which contain a
δ(t0, z2).
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H

BBGKY hierarchy

In Section 5.1 we observed that from a knowledge of the equal-time n-particle Green’s
function we can calculate the time-dependent ensemble average of any n-body operator.
Therefore it would be valuable if we could generate a close system of equations for the
equal-time Gns. Let us introduce the time-dependent generalization of the n-particle
density matrix Γn defined in Section 1.7:

Γn(x1, ...,xn;x
′
1, ...,x

′
n|t) = (±i)n lim

zi,z
′
i
→t−

z′
1>...>z′

n>zn>...>z1

Gn(1, ..., n; 1
′, ..., n′). (H.1)

This definition reduces to (G.3) for t = t0 and otherwise gives1

Γn(x1, ...,xn;x
′
1, ...,x

′
n|t) = Tr

[

ρ̂ ψ̂†H(x′1, t)...ψ̂
†
H(x′n, t)ψ̂H(xn, t)...ψ̂H(x1, t)

]

.

Thus from Γn we can calculate the time-dependent ensemble average of any n-body op-
erator. We can easily generate a hierarchy of equations for the Γns starting from the
Martin–Schwinger hierarchy. For notational convenience we introduce the collective co-
ordinates XN = (x1, ...,xn) and X ′N = (x′1, ...,x

′
n) in agreement with the notation of

Appendix G:
Γn(x1, ...,xn;x

′
1, ...,x

′
n|t) = Γn(XN ;X ′N |t).

Now we subtract (5.3) from (5.2), multiply by (±i)n, sum over k between 1 and n and
take the limit zi, z

′
i → t− as in (H.1). The sum of all the time-derivatives of Gn yields the

time-derivative of Γn,

(±i)n lim
zi,z′

i→t−

∑

k

[

i
d

dzk
+ i

d

dz′k

]

Gn(1, ..., n; 1
′, ..., n′) = i

d

dt
Γn(XN ;X ′N |t).

The terms with the δ-functions cancel out since

n∑

kj=1

(±)k+j

[

δ(k; j′)Gn−1(1, ...
⊓
k ..., n; 1

′, ...
⊓
j′ ..., n′)

− δ(j; k′)Gn−1(1, ...
⊓
j ..., n; 1′, ...

⊓
k′ ..., n′)

]

= 0,

1The reader can check that the same result would follow by choosing t+ instead of t− in (H.1).
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Appendix H. BBGKY hierarchy 553

as follows directly by renaming the indices k ↔ j in, say, the second term. Interestingly this
cancellation occurs independently of the choice of the contour arguments zi and z′i. The
terms with the single-particle Hamiltonian h are also easy to handle since

(±i)n lim
zi,z′

i→t−
h(k)Gn(1, ..., n; 1

′, ..., n′) = h(xk, t)Γn(XN ;X ′N |t),

and similarly for h(k′)Gn(1, ..., n; 1
′, ..., n′), and hence

(±i)n lim
zi,z′

i→t−

[
n∑

k=1

h(k)−
n∑

k=1

h(k′)

]

Gn(1, ..., n; 1
′, ..., n′)

=

[
n∑

k=1

h(xk, t)−
n∑

k=1

h(x′k, t)

]

Γn(XN ;X ′N |t).

We are therefore left with the integrals
∫
v Gn+1. Consider for instance (5.2). By definition

we have

Gn+1(1,..., n, 1̄; 1
′, ..., n′, 1̄+)

=
(±)
in+1

Tr
[

ρ̂ T
{

ψ̂H(1)...n̂H(1̄)ψ̂H(k)...ψ̂H(n)ψ̂†H(n′)...ψ̂†H(1′)
}]

.

As the interaction is local in time we have to evaluate this Gn+1 when the time z̄1 = zk .
For these times the operator n̂H(1̄)ψ̂H(k) = n̂H(x̄1, zk)ψ̂H(xk, zk) should be treated as a
composite operator when we take the limit zi, z

′
i → t−. Consequently we can write

lim
zi,z′

i→t−
Gn+1(1, ..., n, x̄1, zk; 1

′, ..., n′, x̄1, z
+
k )

=
(±)n+1

in+1
Tr
[

ρ̂ ψ̂†H(x′1, t)...ψ̂
†
H(x′n, t)ψ̂H(xn, t)...n̂H(x̄1, t)ψ̂H(xk, t)...ψ̂H(x1, t)

]

.

Next we want to move the density operator n̂H(x̄1, t) between ψ̂†H(x′n, t) and ψ̂H(xn, t)
so as to form the (n + 1)-particle density matrix. This can easily be done since operators
in the Heisenberg picture at equal time satisfy the same (anti)commutation relations as the
original operators. From (1.48) we have

ψ̂(xj)n̂(x̄1) = n̂(x̄1)ψ̂(xj) + δ(xj − x̄1)ψ̂(xj)

and therefore

(±i)n+1 lim
zi,z′

i→t−
Gn+1(1, ..., n, x̄1, zk; 1

′, ..., n′, x̄1, z
+
k )

= Γn+1(XN , x̄1;X
′
N , x̄1|t) +

∑

j>k

δ(xj − x̄1)Γn(XN ;X ′N |t).

If we multiply this equation by v(xk, x̄1) and integrate over x̄1 we get exactly the integral
that we need since in the Martin–Schwinger hierarchy

∫
v Gn+1 is multiplied by ±i and we
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554 Appendix H. BBGKY hierarchy

said before that we are multiplying the nth equation of the hierarchy by (±i)n. We have

(±i)n+1 lim
zi,z′

i→t−

∫

d1̄ v(k; 1̄)Gn+1(1, ..., n, 1̄; 1
′, ..., n′, 1̄+)

=

∫

dx̄1 v(xk, x̄1) Γn+1(XN , x̄1;X
′
N , x̄1|t) +

∑

j>k

v(xk,xj) Γn(XN ;X ′N |t).

In a similar way we can prove that

(±i)n+1 lim
zi,z′

i→t−

∫

d1̄ v(k′; 1̄)Gn+1(1, ..., n, 1̄
−; 1′, ..., n′, 1̄)

=

∫

dx̄1 v(x
′
k, x̄1) Γn+1(XN , x̄1;X

′
N , x̄1|t) +

∑

j>k

v(x′k,x
′
j) Γn(XN ;X ′N |t).

Thus the interaction produces terms proportional to Γn+1 and terms proportional Γn.
Collecting all pieces we find the following equation:



i
d

dt
−

n∑

k=1



h(xk, t)+
∑

j>k

v(xk,xj)



+

n∑

k=1



h(x′k, t)+
∑

j>k

v(x′k,x
′
j)







Γn(XN ;X ′N |t)

=
n∑

k=1

∫

dx̄1

(
v(xk, x̄1)−v(x′k, x̄1)

)
Γn+1(XN , x̄1;X

′
N , x̄1|t)

This hierarchy of equations for the density matrices is known as the Born–Bogoliubov–
Green–Kirkwood–Yvon (BBGKY) hierarchy [171–174]. Let us work out the lowest order equa-
tions. For n = 1 we have
[

i
d

dt
− h(x1, t) + h(x′1, t)

]

Γ1(x1;x
′
1|t)

=

∫

dx̄1

(
v(x1, x̄1)− v(x′1, x̄1)

)
Γ2(x1, x̄1;x

′
1, x̄1|t),

while for n = 2 we have
[

i
d

dt
−h(x1, t)−h(x2, t)−v(x1,x2)+h(x

′
1, t)+h(x

′
2, t)+v(x

′
1,x
′
2)

]

Γ2(x1,x2;x
′
1,x
′
2|t)

=

∫

dx̄1

(
v(x1, x̄1)+v(x2, x̄1)−v(x′1, x̄1)−v(x′2, x̄1)

)
Γ3(x1,x2, x̄1;x

′
1,x
′
2, x̄1|t).

For the BBGKY hierarchy to be useful one should devise suitable truncation schemes to
express Γm in terms of Γns with n < m. At present all standard truncation schemes give
rise to several problems in the time domain and the practical use of the BBGKY is still limited
to ground-state situations, see Ref. [175] and references therein.
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I

From δ-like peaks to continuous

spectral functions

Photocurrent experiments on bulk systems like metals and semiconductors reveal that the
photocurrent Iph(ǫ) and hence the spectral function A(ǫ), see Section 6.3.4, are continuous
functions of ǫ. How can a sum of δ-like peaks transform into a continuous function?
Understanding the transition from δ-like peaks to continuous functions not only satisfies a
mathematical curiosity but is also important to make connection with experiments. In this
appendix we explain the “mystery” with an example.

Consider a one-dimensional crystal like the one of Fig. 2.5 with zero onsite energy and
nearest neighbor hoppings T . The atoms are labeled from 1 to N and 1 is nearest neighbor
of N (BvK boundary conditions). The single-particle eigenkets |k〉 are Bloch waves whose
amplitude on site j is

〈j|k〉 = eikj√
N

and whose eigenenergy is ǫk = 2T cos k, where k = 2πm/N and m = 1, . . . , N . We
assume that the electrons are noninteracting and calculate the spectral function A11(ω)
projected on atom 1.1 By definition

A11(ω) = i
[
GR

11(ω)−GA
11(ω)

]

= −2Im
[
GR

11(ω)
]

= −2Im 〈1| 1

ω − ĥ+ iη
|1〉

=
2

N

N∑

m=1

η

(ω − 2T cos 2πm
N )2 + η2

,

where in the last equality we have inserted the completeness relation
∑

k |k〉〈k| = 1̂. Since
the eigenvalues with m and m′ = N −m are degenerate we can rewrite the above sum as

A11(ω) =
4

N

N/2
∑

m=1

η

(ω − 2T cos 2πm
N )2 + η2

. (I.1)

1Since |1〉 is not an eigenket we expect that A11(ω) has peaks at di�erent energies. Furthermore, due to the
discrete translational invariance of the Hamiltonian, Ajj(ω) is independent of the atomic site j.
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556 Appendix I. From δ-like peaks to continuous spectral functions

Figure I.1 Lorentzian functions Ln(ω) =
η

(ω−ω̄−2πv̄n/N)2+η2 for n = −50, −40, . . . , 40, 50
in units of 1/(2πv̄). The other parameters are η/(2πv̄) = 0.01 and N = 1000. We see that
L±50(ω̄) is already very small and can be discarded.

Restricting the sum between 1 and N/2 guarantees that di�erent ms correspond to di�erent
peaks. For every finite N the spectral function becomes a sum of δ-functions when the
limit η → 0 is taken. However, if we first take the limit N → ∞ and then η → 0 the
situation is very di�erent. For any arbitrary small but finite η the heights of the peaks go
to zero like the prefactor 1/N while the position of the peaks moves closer and closer.
When the energy spacing between two consecutive eigenvalues becomes much smaller than
η many Lorentzians contribute to the sum for a given ω. Let us study the value of the sum
for a frequency ω̄ = 2T cos 2πm̄

N corresponding to the position of one of the peaks. For
m = m̄+ n with n≪ N we can write

ǫk = 2T cos
2πm

N
= ω̄ + 2πv̄

n

N
+O(n2/N2), (I.2)

where v̄ = −2T sin 2πm̄
N . We see that for n = ±Nη/(2πv̄)≪ N the r.h.s. of (I.2) is equal

to ω̄± η. We can use this approximate expression for ǫk in A11(ω̄), since if the eigenvalues
are much larger than ω̄ + η or much smaller than ω̄ − η the corresponding contribution
is negligible. In Fig. I.1 we show the plot of several Lorentzians of width η centered in
ω̄ + 2πv̄n/N for η/(2πv̄) = 0.01 and N = 1000. The value that they assume in ω̄ is
rather small already for 2πv̄n/N = ±5η, i.e., |n| = 5Nη/(2πv̄) = 50 ≪ N . Inserting the
approximate expression of the eigenvalues in A11 and extending the sum over n between
−∞ and ∞ we find

A11(ω̄) = lim
N→∞

4

N

∞∑

n=−∞

η

(2πv̄n/N)2 + η2
= 4

∫ ∞

−∞
dx

η

(2πv̄x)2 + η2
=

2

|v̄| .

The final result is finite and independent of η. The limiting function can easily be expressed
in terms of ω̄. Defining k̄ = 2πm̄/N we have v̄ = −2T sin k̄ and ω̄ = 2T cos k̄. Solving
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Appendix I. From δ-like peaks to continuous spectral functions 557

Figure I.2 Comparison between the limiting spectral function (dashed) and the spectral func-
tion (I.1) for N = 50, 100, 200, 400 (solid). The parameter η = 0.01 and all energies are in
units of |T |.

the latter equation for k̄ we get

A11(ω̄) =
2

∣
∣2T sin

(
arccos ω̄−ǫ

2T

)∣
∣
.

In Fig. I.2 we show how fast the discrete spectral function (I.1) converges to the limiting
spectral function as N increases. We can see that N must be larger than ∼ 5|T |/η for the
peaks to merge and form a smooth function.

It is instructive to look at the transition N →∞ also in the time domain. For every finite
N and at zero temperature the Green’s function, say, G<

11(t, t
′) is an oscillatory function of

the form

G<
11(t, t

′) = ±i
∫
dω

2π
e−iω(t−t′)f(ω − µ)A11(ω) = ±i

1

N

∑

ǫk<µ

e−iǫk(t−t
′).

In Fig. I.3 we plot the absolute value squared of G<
11(t, 0), which corresponds to the

probability of finding the system unchanged when removing a particle from site 1 at time
0 and then putting the particle back at time t. The probability initially decreases but for
times t ∼ N/(2T ) (roughly the inverse of the average energy spacing) there is a revival. The
revival time becomes longer when N becomes larger. In the continuum limit N → ∞ the
revival time becomes infinite and the probability decays to zero.2 If the decay is exponential,

2This follows from the fact that we can replace the sum by an integral and use the Riemann–Lebesgue theorem.
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558 Appendix I. From δ-like peaks to continuous spectral functions

Figure I.3 Absolute value squared of G<
11(t, 0) at zero temperature and µ = 0. The curves

with N = 100, 200, 400 are shifted upward by 0.1, 0.2, 0.3 respectively. Times are in units
of 1/|T |.

e−Γt, then the spectral function in frequency space is a Lorentzian of width Γ. This means
that the limiting spectral function can have poles (or branch cuts) in the complex plane
even though its discrete version has poles just above and below the real axis and is analytic
everywhere else, see again (I.1). The appearance of poles in the complex plane is related to
the infinite revival time which, in turn, is due to the negative interference of many oscillatory
functions with di�erent but very close energies.
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J

Virial theorem for conserving

approximations

We consider a system of identical particles with charge q and mass m, mutually interacting
with a Coulomb interaction v(r1, r2) = q2/|r1 − r2| and subject to the static potential
generated by nuclei of charge {−Ziq} in position {Ri}. The single-particle Hamiltonian

operator ĥ reads

ĥ =
p̂2

2m
− q2

∑

i

Zi

|r̂ −Ri|
≡ p̂2

2m
+ qV (r̂; {Ri}).

The total energy of the system
Etot = E + Enn

is the sum of the energy defined in (13.29),

E = Eone + Eint,

and the classical nuclear energy

Enn =
1

2
q2
∑

ij

ZjZi

|Rj −Ri|
.

For later purposes it is convenient to split the one-body part of the energy into a kinetic
and potential part:

Eone = Ekin + Een({Ri})
with

Ekin = ±i
∫

dx1

[

−∇
2
1

2m
G(1; 2)

]

2=1+

and

Een({Ri}) = ±i
∫

dx1qV (r1; {Ri})G(1; 1+) =
∫

dx1qV (r1; {Ri})n(1), (J.1)

where n(1) = ±iG(1; 1+) is the density. In (J.1) the dependence of Een on the nuclear
coordinates is explicitly reported since this quantity depends on {Ri} implicitly through G
and explicitly through V .
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560 Appendix J. Virial theorem for conserving approximations

In this appendix we show that the virial theorem

2Ekin + Een({Ri}) + Eint + Enn = 0

is satisfied provided that (1) G is self-consistently calculated from a conserving self-energy,
and (2) the nuclei are in their equilibrium configuration, i.e.,

dEtot

dRi
= 0 for all i. (J.2)

This result was first derived in Ref. [176].
We begin by exploiting the important stationary property of the Klein functional

δΩK[G, v]

δG
= 0,

when G equals the self-consistent Green’s function corresponding to a conserving self-
energy [condition (1)]. We then define a Green’s function Gλ which depends on the real
parameter λ according to

Gλ(1; 2) = λ3G(λr1 σ1, z1;λr2 σ2, z2).

The Green’s function Gλ=1 = G is the self-consistent Green’s function and therefore

dΩK[G
λ, v]

dλ

∣
∣
∣
∣
λ=1

= 0. (J.3)

Let us calculate this derivative from the expression (11.34) of the Klein functional. The term
trγ
[
ln(−Gλ)

]
= trγ [ln(−G)] is independent of λ since

trγ
[
(Gλ)m

]
=

∫

d1 . . . dm Gλ(1; 2) . . . Gλ(m, 1+) = trγ [G
m ].

As a consequence (J.3) can be written as

dΦ[Gλ, v]

dλ

∣
∣
∣
∣
λ=1

− d

dλ
trγ

[

Gλ←−G−10

]

λ=1
= 0. (J.4)

To evaluate the derivative of Φ consider the expansion (11.18). The nth order term consists
of n interaction lines, 2n Green’s function lines, and integration over 2n spatial coordinates.
Taking into account that the interaction v is Coulombic we have

∫

dr1 . . . dr2n v . . . v︸ ︷︷ ︸

n times

Gλ . . . Gλ
︸ ︷︷ ︸

2n times

= λn
∫

dr1 . . . dr2n v . . . v︸ ︷︷ ︸

n times

G . . . G
︸ ︷︷ ︸

2n times

and therefore

Φ[Gλ, v] =

∞∑

n=1

λn

2n
trγ

[

Σ(n)
s G

]

.
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Appendix J. Virial theorem for conserving approximations 561

The λ-derivative of this quantity is proportional to the interaction energy

dΦ[Gλ, v]

dλ

∣
∣
∣
∣
λ=1

=
1

2
trγ [ΣG] =

−iβ
2

∫

dx1d2 Σ(1; 2)G(2; 1+) = ∓βEint,

where in the last equality we have used (9.19). Next we consider the second term of (J.4). We
have

trγ

[

Gλ←−G−10

]

=

∫

d1 Gλ(1; 2)

[

−i
←−
d

dz2
+

←−∇2
2

2m
− qV (r2; {Ri})

]

2=1+

=

∫

d1

[

−i d
dz2

Gλ(1; 2)

]

2=1+
+

∫

d1

[∇2
2

2m
− qV (r2; {Ri})

]

Gλ(1; 2)

∣
∣
∣
∣
2=1+

︸ ︷︷ ︸

±β[λ2Ekin+λEen({λRi})]

and hence

d

dλ
trγ

[

Gλ←−G−10

]

λ=1
= ±β

[

2Ekin + Een({Ri}) +
∫

dx1q
dV (r1; {λRi})

dλ

∣
∣
∣
∣
λ=1

n(x1)

]

.

Substituting these results into (J.4) we find

2Ekin + Een({Ri}) + Eint +

∫

dx1q
dV (r1; {λRi})

dλ

∣
∣
∣
∣
λ=1

n(x1) = 0, (J.5)

which is true for any conserving approximation.
The next step consists in evaluating the λ-derivative in (J.5). For this purpose we consider

the variation of the energy E induced by a variation δRj of the nuclear coordinates. In the
zero temperature limit Ω = E − µN [see (D.7)] and the variations δΩ and δE are equal
since the total number of particles is independent of the nuclear position, provided that
there is a gap between the ground state and the first excited state. Then we can write

δE = trγ

[
δΩK

δG
δG

]

{Ri}
+
dΩK

dRi

∣
∣
∣
∣
G

· δRi,

where we take into account that ΩK depends on {Ri} implicitly through G and explicitly
through G0. The first term on the r.h.s. vanishes for a conserving Green’s function (stationary
property). In the Klein functional the positions of the nuclei only enter as parameters in the
term G−10 , while the Green’s function is an independent variable. This means that

dΩK

dRj

∣
∣
∣
∣
G

=

∫

dx1q
dV (r1; {Ri})

dRj
n(x1).

From these considerations we conclude that the variation of E induced by the variation
{Ri} → {λRi} is

dE

dλ

∣
∣
∣
∣
λ=1

=

∫

dx1q
dV (r1; {λRi})

dλ

∣
∣
∣
∣
λ=1

n(x1).
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562 Appendix J. Virial theorem for conserving approximations

This is an important result since it establishes a relation between the derivative appearing in
(J.5) and the derivative of E. This latter derivative can easily be worked out using condition
(2). The nuclear positions must fulfill (J.2) and hence

dE

dλ

∣
∣
∣
∣
λ=1

= − d

dλ

1

2
q2
∑

ij

ZjZi

λ|Rj −Ri|

∣
∣
∣
∣
∣
∣
λ=1

= Enn.

The virial theorem simply follows from (J.5) and the combination of these last two equations.
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K

Momentum distribution and

sharpness of the Fermi surface

The momentum distribution np of the electron gas at zero temperature is given by the
equation

np =

∫ 0

−∞

dω

2π
A(p, µ+ ω), (K.1)

where A(p, µ + ω) is the spectral function centered at the chemical potential µ = ǫF.
Interestingly, in terms of this quantity the total energy (6.106) for an electron gas takes the
form

ES =
1

2

∫
dω

2π

∫
dp

(2π)3
〈p|(ω + ĥ)f(ω − µ)Â(ω)|p〉

=
V

2

∫ µ

−∞

dω

2π

∫
dp

(2π)3
(ω +

p2

2
)A(p, ω) =

V

2

[∫
dp

(2π)3
p2

2
np +

∫ µ

−∞

dω

2π
ωD(ω)

]

,

where D(ω) is the density of states. It is easy to show that in the noninteracting case the
two integrals in the square brackets are identical.

Equation (K.1) is di�cult to use in practical numerical calculations since it has a very
sharp quasi-particle peak close to the Fermi surface, the volume of which is hard to converge
by integration. We therefore derive a di�erent formula that also allows us to prove that the
momentum distribution is sharp. First we note that since GA(p, ω) = [GR(p, ω)]∗ we have
A(p, ω) = −2 Im[GR(p, ω)]. The retarded Green’s function is analytic in the upper-half of
the complex ω-plane and therefore

0 =

∫ 0

−∞
dω GR(p, µ+ ω) + i

∫ ∞

0

dω GR(p, µ+ iω) + lim
R→∞

i

∫ π

π
2

dθ ReiθGR(p, µ+Reiθ),

where we first integrate along the real axis from −∞ to 0, then along the positive imaginary
axis to i∞ and finally along a quarter circle from i∞ to −∞. Since for |ω| → ∞ we have
GR(p, µ+ ω) ∼ 1/ω, see (6.78), the integral along the quarter circle becomes

lim
R→∞

i

∫ π

π
2

dθ ReiθGR(p, µ+Reiθ) = i
π

2

563
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564 Appendix K. Momentum distribution and sharpness of the Fermi surface

and hence ∫ 0

−∞
dωGR(p, µ+ ω) = −iπ

2
− i

∫ ∞

0

dωGR(p, µ+ iω).

Inserting this result into (K.1) then yields

np =
1

2
+

1

π
Re

∫ ∞

0

dωGR(p, µ+ iω). (K.2)

This formula [110] is the basis for our subsequent derivations. We first write for the retarded
Green’s function centered at µ

GR(p, µ+ ω) =
1

ω + µ− p2

2 − ΣR(p, µ+ ω)
=

1

ω + ap − σR
p (ω)

,

where we define

ap = µ− p2

2
− Σx(p),

with the exchange self-energy Σx(p) = − 2pF

π F (p/pF), see (7.61), and σR
p (ω) = ΣR

c (p, µ+

ω), the correlation self-energy centered at µ.1 Of course these quantities depend only on
the modulus p = |p| due to rotational invariance. Let us now work out the integral in (K.2)

Re

∫ ∞

0

dω GR(p, µ+ iω) = Re

∫ ∞

0

dω

iω + ap − σR
p (iω)

.

Since the denominator vanishes when ω → 0 and p = pF according to the Luttinger–Ward
theorem we add and subtract a term in which σR is expanded to first order in ω, i.e.,

1

iω + ap − σR
p (iω)

=




1

iω + ap − σR
p (iω)

− 1

iω + ap − σR
p (0)− iω

∂σR
p (0)

∂ω





︸ ︷︷ ︸

Fp(ω)

+
1

iω + ap − σR
p (0)− iω

∂σR
p (0)

∂ω

.

The last term can be integrated analytically. By definition

σR
p (ω) = Λ(p, µ+ ω)− i

2
Γ(p, µ+ ω). (K.3)

The imaginary part of σR
p (ω) vanishes quadratically as ω → 0, see (13.24), and therefore

σR
p (0) = Λ(p, µ) and ∂σR

p (0)/∂ω = ∂Λ(p, µ)/∂ω are real numbers. In particular, from
the Hilbert transform relation (13.4) we also deduce that

∂σR
p (0)

∂ω
= −

∫
dω′

2π

Γ(p, ω′)

(ω′ − µ)2 < 0, (K.4)

1The Hartree self-energy cancels with the potential of the uniform positive background charge.
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Appendix K. Momentum distribution and sharpness of the Fermi surface 565

since the rate function Γ(p, ω′) is non-negative, see Exercise 13.1, and vanishes quadratically
as ω′ → µ (hence the integral is well defined even without the principal part). In conclusion
we have

Re

∫ ∞

0

dω

iω + ap − σR
p (0)− iω

∂σR
p (0)

∂ω

=

∫ ∞

0

dω
ap − σR

p (0)

(1− ∂σR
p (0)

∂ω )2ω2 + (ap − σR
p (0))

2

=
1

1− ∂σR
p (0)

∂ω

arctan




1− ∂σR

p (0)

∂ω

ap − σR
p (0)

ω





∣
∣
∣
∣
∣
∣

∞

0

=
1

1− ∂σR
p (0)

∂ω

π

2
sgn(ap − σR

p (0)),

where in the last equality we take into account that 1 − ∂σR
p (0)/∂ω is positive and larger

than 1, see (K.4). The prefactor

Z̃p =
1

1− ∂σR
p (0)

∂ω

< 1

coincides with the quasi-particle renormalization factor Zp of (13.8) for p = pF since in this
case the quasi-particle energy Ep = µ. Inserting these results into (K.2) we get

np =
1

2

[

1 + Z̃p sgn(µ−
p2

2
− ΣR(p, µ))

]

+
1

π
Re

∫ ∞

0

dωFp(ω). (K.5)

According to the Luttinger–Ward theorem (11.41) the first term in this expression jumps with
a value Z̃pF

= Z at the Fermi surface. The function Fp(ω) is the sum of two terms which
are equally singular when ω → 0 and p = pF in such a way that their di�erence is finite
in this limit. Therefore Fp(ω) is suitable for numerical treatments. Thus the momentum
distribution (K.5) is the sum of a discontinuous function and a smooth function. This allows
us to define a Fermi surface as the set of p points where np is discontinuous (a sphere in
the electron gas). In the noninteracting case Fp(ω) = 0 and Z = 1 and np becomes the
standard Heaviside function of a Fermi gas. The e�ect of the interaction is to reduce the
size of the discontinuity and to promote electrons below the Fermi surface to states above
the Fermi surface in such a way that np < 1 for p < pF and np > 0 for p > pF, see Section
15.5.4.

We conclude by observing that in the one-dimensional electron gas ∂σR
p (0)/∂ω is not

real since the rate function Γ(p, ω) vanishes as |ω − µ|, see discussion in Section 13.3. In
this system there is no Fermi surface, i.e., the momentum distribution is not discontinuous
as p crosses pF. The interacting electron gas in one dimension is called a Luttinger liquid.
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L

Hedin equations from a generating

functional

The idea behind the source field method is to construct a generating functional from which
to obtain the quantities of interest by functional di�erentiation with respect to some “source”

field S. Classical examples of generating functionals are the exponential e2xt−t
2

whose nth
derivative with respect to the “source” variable t calculated in t = 0 gives the nth Hermite
polynomial, or the function 1/

√
1− 2xt+ t2 whose nth derivative with respect to the

“source” variable t calculated in t = 0 gives the nth Legendre polynomial multiplied by
n!. Clearly there exist infinitely many formulations more or less complicated depending on
which are the quantities of interest. In this appendix we follow the presentation of Strinati
in Ref. [124], see also Ref. [177]. We define a generating functional which is an extension of
the definition (5.1) of the Green’s function1

GS(1; 2) =
1

i

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)ψ̂(1)ψ̂†(2)

}]

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)

}] , (L.1)

where ĤS is given by the sum of the Hamiltonian Ĥ of the system and the coupling between
a source field S and the density n̂(x) = ψ̂†(x)ψ̂(x),

ĤS(z) = Ĥ(z) +

∫

dxS(x, z)n̂(x).

The special feature of the source field S is that it can take di�erent values on the two
horizontal branches of the contour and, furthermore, it can vary along the imaginary track.
This freedom allows for unconstrained variations of S in GS , a necessary property if we want
to take functional derivatives. In the special case S(x, t+) = S(x, t−) and S(x, t0 − iτ) =
SM(x) the addition of the source field is equivalent to the addition of a scalar potential.
In particular the generating functional GS reduces to the standard Green’s function G for
S = 0. We also observe that GS satisfies the KMS relations for any S.

1In (L.1) the field operators are not in the Heisenberg picture for otherwise we would have added the subscript
“H”. Their dependence on the contour time is fictitious and has the purpose only of specifying where the operators
lie on the contour, see Section 4.2.
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Appendix L. Hedin equations from a generating functional 567

Let us derive the equations of motion for GS .
2 We write the numerator in (L.1) as

T
{

e−i
∫

γ
dz̄ĤS(z̄)ψ̂(1)ψ̂†(2)

}

= θ(z1, z2)T
{

e
−i

∫ t0−iβ
z1

dz̄ĤS(z̄)
}

ψ̂(1)T
{

e
−i

∫ z1
t0−

dz̄ĤS(z̄)
ψ̂†(2)

}

± θ(z2, z1)T
{

e
−i

∫ t0−iβ
z1

dz̄ĤS(z̄)
ψ̂†(2)

}

ψ̂(1)T
{

e
−i

∫ z1
t0−

dz̄ĤS(z̄)
}

.

Taking the derivative with respect to z1 we find

i
d

dz1
GS(1; 2) = δ(1; 2) +

1

i

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)

[

ψ̂(1), ĤS(z1)
]

ψ̂†(2)
}]

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)

}] . (L.2)

The commutator between the field operators and the Hamiltonian has been calculated several
times [see for instance Section 3.3] and the reader should have no problems in rewriting
(L.2) as

i
d

dz1
GS(1; 2)−

∫

d3[h(1; 3) + δ(1; 3)S(3)]GS(3; 1)

= δ(1; 2)± i

∫

d3 v(1; 3)G2,S(1, 3; 2, 3
+),

where we define the generalized two-particle Green’s function

G2,S(1, 2; 3, 4) =
1

i2

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)ψ̂(1)ψ̂(2)ψ̂†(4)ψ̂†(3)

}]

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)

}] ,

which reduces to G2 for S = 0. We can also introduce a self-energy ΣS as we did in (9.1),

∫

d3ΣS(1; 3)GS(3; 2) = ±i
∫

d3 v(1; 3)G2,S(1, 3; 2, 3
+), (L.3)

and rewrite the equation of motion as

∫

d3
−→
G−1S (1; 3)GS(3; 2) = δ(1; 2), (L.4)

where the operator
−→
G−1S (as usual the arrow signifies that it acts on quantities to its right)

is defined according to

−→
G−1S (1; 3) = δ(1; 3)i

−→
d

dz3
− δ(1; 3)S(3)− h(1; 3)− ΣS(1; 3).

2In the special case GS = G the derivation below provides an alternative proof of the equations of motion for
the Green’s function.
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568 Appendix L. Hedin equations from a generating functional

Proceeding along the same lines it is possible to derive the adjoint equation of motion
∫

d3GS(1; 3)
←−
G−1S (3; 2) = δ(1; 2), (L.5)

with
←−
G−1S (3; 2) = −i

←−
d

dz3
δ(3; 2)− S(3)δ(3; 2)− h(3; 2)− ΣS(3; 2). (L.6)

Thus, no extra complication arises in deriving the equations of motion of the new Green’s
function provided that we properly extend the definition of the two-particle Green’s function
and self-energy.

We make extensive use of the operators
−→
G−1S and

←−
G−1S in what follows. These operators

have the property that for any two functions A(1; 2) and B(1; 2) which fulfill the KMS
boundary conditions

∫

d3d4A(1; 3)
−→
G−1S (3; 4)B(4; 2) =

∫

d3d4A(1; 3)
←−
G−1S (3; 4)B(4; 2),

since an integration by parts with respect to the contour time does not produce any bound-
ary term as a consequence of the KMS boundary conditions. Using (L.5) we can also solve
(L.3) for ΣS

ΣS(1; 4) = ±i
∫

d2d3 v(1; 3)G2,S(1, 3; 2, 3
+)
←−
G−1S (2; 4), (L.7)

a result which we need later.
The starting point of our new derivation of the Hedin equations is a relation between

G2,S and δGS/δS. The generating functional GS depends on S through the dependence on

ĤS , which appears in the exponent of both the numerator and the denominator. Therefore

δGS(1; 2)

δS(3)
=

1

i

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)(−i)n̂(3)ψ̂(1)ψ̂†(2)

}]

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)

}]

−1

i

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)ψ̂(1)ψ̂†(2)

}]

(

Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)

}])2 × Tr
[

T
{

e−i
∫

γ
dz̄ĤS(z̄)(−i)n̂(3)

}]

= ±
[
G2,S(1; 3; 2, 3

+)−GS(1; 2)GS(3; 3
+)
]
. (L.8)

Inserting this result into (L.7) we find

ΣS(1; 4) = ±iδ(1; 4)
∫

d3 v(1; 3)GS(3; 3
+)

︸ ︷︷ ︸

ΣH,S(1;4)

+ i

∫

d2d3 v(1; 3)
δGS(1; 2)

δS(3)

←−
G−1S (2; 4)

︸ ︷︷ ︸

Σxc,S(1;4)

. (L.9)

We recognize in the first term on the r.h.s. the Hartree self-energy ΣH,S(1; 4) = δ(1; 4)qVH,S(1)
with Hartree potential

VH,S(1) = ±
i

q

∫

d3 v(1; 3)GS(3; 3
+),
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Appendix L. Hedin equations from a generating functional 569

in agreement with (7.4). The sum of the source field S and the Hartree energy qVH,S defines
the so-called classical (or total) energy

C(1) = S(1) + qVH,S(1). (L.10)

We recall that in extended systems, like an electron gas, the external potential and the
Hartree potential are separately infinite while their sum is finite and meaningful, see Section
7.3.2. It is therefore more natural to study variations with respect to C rather than with
respect to S. Regarding GS as a functional of C instead of S we can apply the chain rule
to the XC self-energy of (L.9) and obtain

Σxc,S(1; 4) = i

∫

d2d3d5 v(1; 3)
δGS(1; 2)

δC(5)

δC(5)

δS(3)

←−
G−1S (2; 4). (L.11)

The derivative of the total field with respect to the source field in S = 0 is the inverse
(longitudinal) dielectric function ε−1 defined as

ε−1(1; 2) =
δC(1)

δS(2)

∣
∣
∣
∣
S=0

,

and it will be calculated shortly. The derivative δGS/δC is most easily worked out from the

derivative δ
←−
G−1S /δC . Using the equations of motions (L.4) and (L.5) we have3 (omitting the

arguments)

∫
δGS

δC

←−
G−1S +

∫

GS
δ
←−
G−1S

δC
= 0 ⇒ δGS

δC
= −

∫

GS
δ
←−
G−1S

δC
GS , (L.12)

and hence (L.11) can also be written as

Σxc,S(1; 4) = −i
∫

d2d3d5 v(1; 3)GS(1; 2)
δ
←−
G−1S (2; 4)

δC(5)

δC(5)

δS(3)
. (L.13)

This result leads to the 2nd Hedin equation. In fact, all Hedin equations naturally follow
from (L.13) when forcing on this equation the structure iGWΓ.

Let us start by proving that the vertex function

Γ(1, 2; 3) ≡ − δ
←−
G−1S (1; 2)

δC(3)

∣
∣
∣
∣
∣
S=0

, (L.14)

appearing in (L.13) obeys the 5th Hedin equation. From (L.6) and the definition (L.10) of the

classical energy we can rewrite
←−
G−1S as

←−
G−1S (1; 2) =

[

−i
←−
d

dz1
− C(1)

]

δ(1; 2)− h(1; 2)− Σxc,S(1; 2).

3In principle we could add to δGS/δC any function F such that
∫

F
←−
G−1

S = 0. However this possibility is
excluded in our case due to the satisfaction of the KMS relations, see also discussion in Section 9.1.
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570 Appendix L. Hedin equations from a generating functional

We thus see that

Γ(1, 2; 3) = δ(1; 2)δ(1; 3) +
δΣxc,S(1; 2)

δC(3)

∣
∣
∣
∣
S=0

.

The XC self-energy depends on C only through its dependence on the generating functional
GS ; using the chain rule we then find

Γ(1, 2; 3) = δ(1; 2)δ(2; 3) +

∫

d4d5
δΣxc,S(1; 2)

δGS(4; 5)

δGS(4; 5)

δC(3)

∣
∣
∣
∣
S=0

= δ(1; 2)δ(2; 3) +

∫

d4d5d6d7
δΣxc(1; 2)

δG(4; 5)
G(4, 6)G(7; 5)Γ(6, 7; 3),

where in the last step we use (L.12). This is exactly the Bethe–Salpeter equation for Γ, see
(12.45), provided that we manually shift the contour time z2 → z+2 in δ(1; 2).4

Next we observe that (L.8) implies

δGS(1; 1
+)

δS(3)

∣
∣
∣
∣
S=0

= ±
[
G2(1; 3; 1

+, 3+)−G(1; 1+)G(3; 3+)
]

= L(1, 3; 1, 3)

= ∓iχ(1; 3). (L.15)

If we define the polarizability P as

P (1; 2) = ±i δGS(1; 1
+)

δC(2)

∣
∣
∣
∣
S=0

, (L.16)

then (L.15) provides the following relation between χ and P :

χ(1; 2) =

∫

d3P (1; 3)
δC(3)

δS(2)

∣
∣
∣
∣
S=0

=

∫

d3P (1; 3)ε−1(3; 2). (L.17)

Let us calculate the inverse dielectric function. Using the definition of the classical energy
(L.10) we have

ε−1(3; 2) = δ(3; 2)± i

∫

d4 v(3; 4)
δGS(4; 4

+)

δS(2)

∣
∣
∣
∣
S=0

= δ(3; 2) +

∫

d4 v(3; 4)χ(4; 2). (L.18)

Inserting this result into (L.17) we get the familiar expansion, see (11.44), of the density
response function in terms of the polarizability: χ = P + Pvχ. This suggests that we are
on the right track in defining P according to (L.16). To make this argument more stringent

4This shift is crucial in order to get the correct Fock (or exchange) self-energy.
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Appendix L. Hedin equations from a generating functional 571

we evaluate the functional derivative (L.16). Using (L.12) and the definition (L.14) of the vertex
function we find

P (1; 2) = ∓i
∫

d3d4G(1; 3)
δ
←−
G−1S (3; 4)

δC(2)

∣
∣
∣
∣
∣
S=0

G(4; 1+)

= ±i
∫

d3d4G(1; 3)G(4; 1)Γ(3, 4; 2),

where in the last step we (safely) replaced 1+ with 1 in the second Green’s function. We
have just obtained the 3rd Hedin equation.

The only remaining quantity to evaluate is v × δC/δS, which appears in the XC self-
energy (L.13). From (L.18) we see that

W (1; 2) ≡
∫

d3 v(1; 3)
δC(2)

δS(3)

∣
∣
∣
∣
S=0

= v(1; 2) +

∫

d3d4 v(1; 3)χ(3; 4)v(2; 4).

Expanding χ in powers of the polarizability we get W = v + vPv + vPvPv + . . . which is
solved by the 4th Hedin equation

W (1; 2) = v(1; 2) +

∫

d3d4 v(1; 3)P (3; 4)W (4; 2).

Finally, taking into account the definition of Γ and W we can write the self-energy (L.13) in
S = 0 as

Σxc(1; 2) ≡ Σxc,S=0(1; 2) = i

∫

d3d4W (1; 3)G(1; 4)Γ(4, 2; 3),

which coincides with the 2nd Hedin equation. This concludes the alternative derivation of
the Hedin equations using a generating functional.
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M

Lippmann–Schwinger equation

and cross-section

Let us consider two nonidentical particles with, for simplicity, the same mass m and de-
scribed by the Hamiltonian (in first quantization)

Ĥ =
p̂
2
1

2m
+

p̂
2
2

2m
+ v(r̂1 − r̂2), (M.1)

where we use the standard notation p̂1 = p̂⊗1̂ for the momentum of the first particle, p̂2 =
1̂⊗ p̂ for the momentum of the second particle, and similarly for the position operators. For
the time being we will ignore the spin of the particles. In the absence of the interaction v
the eigenkets of Ĥ are the momentum eigenkets |k1〉|k2〉. We are interested in calculating
how the unperturbed eigenkets change due to the presence of the interaction. Since the
interaction preserves the total momentum it is convenient to work in the reference frame of
the center of mass. Let us then introduce a slightly di�erent basis. The wavefunction

Ψk1,k2
(r1, r2) = 〈r2|〈r1| |k1〉|k2〉 = eik1·r1+ik2·r2 (M.2)

can also be written as

Ψk1,k2
(r1, r2) = eiK·R+ik·r, (M.3)

with K = k1 + k2 the total momentum, k = 1
2 (k1 − k2) the relative momentum, R =

1
2 (r1 + r2) the center of mass coordinate and r = r1 − r2 the relative coordinate. We then
see that we can define an equivalent basis |K〉|k〉 in which the first ket refers to the center
of mass degree of freedom and the second ket to the relative coordinate degree of freedom.
The ket |K〉|k〉 is an eigenket of the total momentum operator P̂ = p̂1+ p̂2 with eigenvalue
K and of the relative momentum operator p̂ = 1

2 (p̂1 − p̂2) with eigenvalue k. Similarly

the ket |R〉|r〉 is an eigenket of the center-of-mass position operator R̂ = 1
2 (r̂1 + r̂2) with

eigenvalue R and of the relative coordinate operator r̂ = r̂1 − r̂2 with eigenvalue r. The
inner products of these kets are

〈r|〈R| |K〉|k〉 = eiK·R+ik·r,

〈r|〈K′| |K〉|k〉 = (2π)3δ(K−K′)eik·r,

572
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Appendix M. Lippmann–Schwinger equation and cross-section 573

etc. In terms of the operators P̂ , p̂, R̂, and r̂ the Hamiltonian in (M.1) takes the form

Ĥ =
P̂

2

4m
+

p̂
2

m
+ v(r̂), (M.4)

which is independent of the center-of-mass position operator R̂. We use this observation
to write a generic eigenket of Ĥ as |K〉|ψ〉 where |ψ〉 fulfills

ĥ|ψ〉 =
[

p̂
2

m
+ v(r̂)

]

|ψ〉 = E|ψ〉. (M.5)

The eigenenergy of |K〉|ψ〉 is then E +K2/(4m). Let us take E in the continuum part of

the spectrum of the operator ĥ. Assuming that v(r) vanishes when r →∞ we have E ≥ 0.
Then the eigenfunction 〈r|ψ〉 is a plane wave in this region of space, i.e., limr→∞〈r|ψ〉 =
〈r|k〉 = eik·r, with E = k2/m. We calculate |ψ〉 using the Lippmann–Schwinger equation

|ψ〉 = |k〉+ 1

E − p̂
2/m± iη

v(r̂)|ψ〉. (M.6)

The equivalence between (M.5) and (M.6) can easily be verified by multiplying both sides
with (E − p̂

2/m ± iη) and by letting η → 0. The ket |k〉 on the r.h.s. of (M.6) guarantees
that for v = 0 we recover the noninteracting solution. In order to choose the sign in front
of iη we must understand what physical state |ψ〉 is. For this purpose we suppose that
we prepare the system at time t = 0 in the state |k〉 and then evolve the system in time

according to the Hamiltonian ĥ. The state of the system at time t is therefore

|ψ(t)〉 = e−i(ĥ−E)t|k〉, (M.7)

where, for convenience, we have subtracted from ĥ the eigenvalue E so that the noninter-
acting ket |ψ(t)〉 = |k〉 is independent of t (in the noninteracting case v = 0 and hence |k〉
is an eigenket of ĥ with eigenvalue E = k2/m). Now for any t > 0 we can write

e−i(ĥ−E)t = −i
∫
dω

2π
e−i(ω−E)t 1

ω − ĥ+ iη

= −i
∫
dω

2π
e−i(ω−E)t

[
1

ω − p̂
2/m+ iη

+
1

ω − p̂
2/m+ iη

v(r̂)
1

ω − ĥ+ iη

]

,

where in the last equality we have expanded 1/(ω − ĥ + iη) in a Dyson-like equation.
Inserting this result into (M.7) we find

|ψ(t)〉 = |k〉 − i

∫
dω

2π
e−i(ω−E)t 1

ω − p̂
2/m+ iη

v(r̂)
1

ω − ĥ+ iη
|k〉. (M.8)

In the limit t → ∞ the dominant contribution to the ω-integral comes from the region
ω ∼ E (Riemann–Lebesgue theorem). If we replace ω → E in the first denominator (M.8)
becomes

lim
t→∞

|ψ(t)〉 = |k〉+ lim
t→∞

1

E − p̂
2/m+ iη

v(r̂)|ψ(t)〉.
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574 Appendix M. Lippmann–Schwinger equation and cross-section

Comparing this with the Lippmann–Schwinger equation we see that |ψ〉 = limt→∞ |ψ(t)〉
when the sign of iη in (M.6) is plus. Similarly it is easy to show that |ψ〉 = limt→−∞ |ψ(t)〉
when the sign of iη in (M.6) is minus. As in an experiment we can only study the forward
evolution we take the sign of iη in (M.6) to be plus in the following discussion.

We multiply (M.6) from the left with 〈r| and insert the completeness relation 1̂ =
∫
dr′|r′〉〈r′| to the left of v:

ψ(r) = 〈r|ψ〉 = eik·r +

∫

dr′〈r| 1

E − p̂
2/m+ iη

|r′〉v(r′)ψ(r′). (M.9)

The kernel of this integral equation can be evaluated as follows:

〈r| 1

E − p̂
2/m+ iη

|r′〉 =
∫

dq

(2π)3
eiq·(r−r

′)

E − q2/m+ iη

=

∫ ∞

0

dq

(2π)2
q2
∫ 1

−1
dc

eiq|r−r
′|c

E − q2/m+ iη

= − m

8π2

1

i|r− r′|

∫ ∞

−∞
dq q

eiq|r−r
′| − e−iq|r−r′|

q2 − k2 − iη

= −m
4π

eik|r−r
′|

|r− r′| ,

where in the last equality we take into account that the denominator has simple poles in
q = ±(k+iη′). If the interaction v is short-ranged and if we are only interested in calculating
the wavefunction far away from the interacting region, we can approximate the kernel in
(M.9) with its expansion for r ≫ r′. We have |r− r′| = (r2+ r′2− 2r · r′)1/2 ∼ r− r · r′/r.
Let k′ = kr/r be the propagation vector pointing in the same direction as the vector r

(where we want to compute ψ) and having the same modulus of the relative momentum.
Then, we can approximate (M.9) as

ψ(r) = eik·r − m

4π

eikr

r

∫

dr′e−ik
′·r′v(r′)ψ(r′) ≡ eik·r + eikr

r
f(k′,k). (M.10)

We thus see that ψ(r) is written as the sum of an incident wave and an outgoing spherical
wave. This wavefunction has a similar structure to the continuum eigenfunction of a one-
dimensional system with a potential barrier: an incident wave eikx on which we have
superimposed a reflected wave Re−ikx for x → −∞, and a transmitted wave Teikx for
x→∞. In three dimensions the reflected and transmitted wave are both incorporated into
the outgoing spherical wave. The probability of being reflected (transmitted) is obtained by
choosing r, or equivalently k′, in the opposite (same) direction to the incident wavevector k.
In three dimensions, however, there are infinitely many more possibilities and the outgoing
wave yields the probability of measuring a relative momentum k′ for two particles scattering
with relative momentum k.
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Appendix M. Lippmann–Schwinger equation and cross-section 575

In an experiment we can measure the flux of incident particles as well as how many particles
per unit time hit a detector in r with surface area r2dΩ. The flux of incident particles is
just the modulus of the current density of the initial plane-wave, which in our case is k.
The current density of the scattered particles in the direction k′ is, to lowest order in 1/r,
given by k|f(k′,k)/r|2. Therefore, the number of particles which hit the detector per unit
time is k|f(k′,k)|2dΩ. The ratio between these two quantities has the physical dimension
of an area and is called the di�erential cross-section:

dσ ≡ k|f(k′,k)|2dΩ
k

⇒ dσ

dΩ
= |f(k′,k)|2. (M.11)

We can calculate f by iterating (M.10), i.e., by replacing ψ in the r.h.s. with the whole r.h.s.
ad infinitum. The first iteration corresponds to the second Born approximation and gives

f(k′,k) = −m
4π
ṽk′−k = −m

4π
ṽk−k′ , (M.12)

where in the last equality we use v(r) = v(−r) and hence its Fourier transform is real and
symmetric.

So far we have considered two distinguishable particles. If the particles are identical
their orbital wavefunction is either symmetric or antisymmetric. This means that the initial
ket is |k〉 ± | − k〉. Consequently we must replace (M.10) with

ψ(r) =
(
eik·r ± e−ik·r

)
− m

4π

eikr

r

∫

dr′e−ik
′·r′v(r′)ψ(r′)

=
(
eik·r ± e−ik·r

)
+
eikr

r
f(k′,k). (M.13)

In the second Born approximation we then have f(k′,k) = −m
4π (ṽk−k′ ± ṽk+k′) and the

di�erential cross-section becomes

dσ±
dΩ

=
(m

4π

)2 (
ṽ2k−k′ + ṽ2k+k′ ± 2ṽk−k′ ṽk+k′

)
.
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576 Appendix M. Lippmann–Schwinger equation and cross-section

We can rewrite this formula using the momentum of the particles in the original reference
frame. We use the same notation as in Section 13.3 and call p = K/2 + k, p′ = K/2− k

the momenta of the incident particles, and p̄ = K/2 + k′, p̄′ = K/2− k′ the momenta of
the particles after the scattering. Then we see that k − k′ = p − p̄ and k + k′ = p − p̄′

and hence
dσ±
dΩ

=
(m

4π

)2 (
ṽ2p−p̄ + ṽ2p−p̄′ ± 2ṽp−p̄ṽp−p̄′

)
. (M.14)

To complete the discussion we must combine this result with the spin degrees of free-
dom. Let us start by considering two bosons of spin S (hence S is integer). In the basis of
the total spin they can form multiplets of spin 2S, 2S − 1, . . . , 0. The multiplets with even
total spin are symmetric under an exchange of the particles while those with odd total spin
are antisymmetric. We define N+ and N− as the total number of states in the symmetric
and antisymmetric multiplets respectively. We then have N+ + N− = (2S + 1)2. Further-
more, since the multiplet with spin S′ ≤ 2S always has two states more than the multiplet
with spin S′ − 1 (the eigenvalues of the z component of the total spin go from −S′ to S′)
we also have N+ = N− + 2S + 1. These two relations allow us to express N+ and N− in
terms of S, and what we find is

N+ =
(2S + 1)(2S + 2)

2
, N− =

(2S + 1)2S

2
. (M.15)

In the absence of any information about the spin of the particles we must calculate the
di�erential cross-section using a statistical weight N+/(2S + 1)2 for the symmetric orbital
part and N−/(2S + 1)2 for the antisymmetric orbital part, i.e.,

dσ

dΩ
=

N+

(2S + 1)2
dσ+
dΩ

+
N−

(2S + 1)2
dσ−
dΩ

=
(m

4π

)2
(

ṽ2p−p̄ + ṽ2p−p̄′ +
2

2S + 1
ṽp−p̄ṽp−p̄′

)

, (M.16)

which is proportional to the bosonic B(p, p̄, p̄′) in (13.20). In a similar way we can proceed
for two fermions. It is easy to show that N+ and N− are still given by (M.15). This time,
however, we must combine the symmetric multiplets with the antisymmetric wave function
and the antisymmetric multiplets with the symmetric wave function. We find

dσ

dΩ
=

N−
(2S + 1)2

dσ+
dΩ

+
N+

(2S + 1)2
dσ−
dΩ

=
(m

4π

)2
(

ṽ2p−p̄ + ṽ2p−p̄′ − 2

2S + 1
ṽp−p̄ṽp−p̄′

)

, (M.17)

which is proportional to the fermionic B(p, p̄, p̄′) in (13.20).
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N

Why the name Random Phase

Approximation?

In Chapter 15 we discussed the density response function χ in the time-dependent Hartree
approximation and we called this approximation the Random Phase Approximation (RPA). The
origin of this name is based on an idea of Bohm and Pines who derived the RPA response
function without using any diagrammatic technique [136, 178]. In this appendix we do not
present the original derivation of Bohm and Pines since it is rather lengthy (a pedagogical
discussion of the original derivation can be found in Ref. [179]). We instead use the idea of
Bohm and Pines in a derivation based on the equation of motion for χ, thus still providing
a justification of the name RPA. A similar derivation can be found in Refs. [46, 75].

Let us consider the Hamiltonian of an electron gas in a large three-dimensional box of
volume V = L3:

Ĥ = −1

2

∫

dx ψ̂†(x)∇2ψ̂(x) +
1

2

∫

dxdx′ v(r− r′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)

= −1

2

∫

dx ψ̂†(x)
(
∇2 + v(0)

)
ψ̂(x) +

1

2

∫

dxdx′ v(r− r′)n̂(x)n̂(x′),

where the space integral is restricted to the box. Imposing the BvK periodic boundary
conditions along x, y, and z we can expand the field operators according to

ψ̂(x) =
1

V

∑

p

eip·r d̂pσ, ⇒ ψ̂†(x) =
1

V

∑

p

e−ip·r d̂†pσ,

where p = 2π
L (nx, ny, nz). The inverse relations read

d̂pσ =

∫

dr e−ip·r ψ̂(x) ⇒ d̂†pσ =

∫

dr eip·r ψ̂†(x).

It is easy to check that the d̂-operators satisfy the anticommutation relations

[

d̂pσ, d̂
†
p′σ′

]

−
= Vδσσ′δpp′ (N.1)

577
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578 Appendix N. Why the name Random Phase Approximation?

and that in the limit V → ∞ they become the creation/annihilation operators of the
momentum–spin kets, see (1.65). In terms of the d̂-operators the density operator reads

n̂(x) =
1

V2

∑

pp′

e−i(p−p
′)·r d̂†pσd̂p′σ =

1

V2

∑

pq

eiq·r d̂†pσd̂p+qσ. (N.2)

We define the density fluctuation operator as

ρ̂q ≡
1

V

∑

pσ

d̂†pσd̂p+qσ. (N.3)

This operator can be seen as the Fourier transform of n̂(r), since from (N.2)

n̂(r) =
∑

σ

n̂(x) =
1

V

∑

q

eiq·rρ̂q ⇒ ρ̂q =

∫

dr e−iq·r n̂(r).

The d̂-operators and the density fluctuation operator can be used to rewrite the Hamiltonian
of the electron gas in the following form:

Ĥ =
1

V

∑

pσ

(

ǫp −
v(0)

2

)

d̂†pσd̂pσ +
1

2V

∑

q

ṽq ρ̂qρ̂−q,

where ǫp = p2/2.
Let us now consider the density response function

χR(r, t; r′, t′) =
∑

σσ′

−iθ(t− t′)〈
[
n̂H(x, t), n̂H(x′, t′)

]

−〉

=
1

V2

∑

qq′

−iθ(t− t′)eiq·r+iq′·r′〈
[
ρ̂q,H(t), ρ̂q′,H(t′)

]

−〉, (N.4)

where 〈. . .〉 denotes the equilibrium ensemble average. Due to translational invariance the
response function depends only on the di�erence r − r′ and hence the only nonvanishing
averages in (N.4) are those for which q′ = −q. Thus if we define

χR
p (q, t− t′) ≡

1

V

∑

σ

−iθ(t− t′)〈
[
d̂†pσ,H(t)d̂p+qσ,H(t), ρ̂−q,H(t′)

]

−〉

we can rewrite the density response function as

χR(r, t; r′, t′) =
1

V2

∑

q

∑

p

eiq·(r−r
′) χR

p (q, t− t′). (N.5)

We now derive the equation of motion for χR
p (q, t). The derivative of this quantity with

respect to t contains a term in which we di�erentiate the Heaviside function and a term in
which we di�erentiate the operators in the Heisenberg picture. We have

i
d

dt
χR
p (q, t) =

1

V

∑

σ

δ(t) 〈
[
d̂†pσ,H(t)d̂p+qσ,H(t), ρ̂−q,H(t)

]

− 〉

+
1

V

∑

σ

−iθ(t) 〈
[[
d̂†pσ,H(t)d̂p+qσ,H(t), ĤH(t)

]

−, ρ̂−q,H(0)
]

−
〉. (N.6)
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Appendix N. Why the name Random Phase Approximation? 579

To evaluate the r.h.s. of this equation we need the basic commutator

∑

σσ′

[
d̂†pσd̂p+qσ, d̂

†
p′σ′ d̂p′+q′ σ′

]

−= V

∑

σ

(

δp+qp′ d̂†pσd̂p+q+q′ σ − δpp′+q′ d̂†p−q′σd̂p+qσ

)

,

where we have explicitly used the anticommutation rules (N.1). The first commutator in the
r.h.s. of (N.6) is then

∑

σ

[
d̂†pσd̂p+qσ, ρ̂−q

]

− =
∑

σ

(

d̂†pσd̂pσ − d̂†p+qσd̂p+qσ

)

. (N.7)

The commutator with the Hamiltonian is the sum of two terms. The first term involves the
one-body part of Ĥ and yields

∑

σ

[
d̂†pσd̂p+qσ ,

1

V

∑

p′σ′

(ǫp′ − 1

2
v(0))d̂†p′σ′ d̂p′σ′

]

−= (ǫp+q − ǫp)
∑

σ

d̂†pσd̂p+qσ.

We thus see that the dependence on v(0) disappears. The second term involves the
commutator with ρ̂qρ̂−q and must be approximated. Here is where the idea of Bohm and
Pines comes into play. It is easy to find

∑

σ

[
d̂†pσd̂p+qσ ,

1

2V

∑

q′

ṽq′ ρ̂q′ ρ̂−q′

]

−

=
1

2V

∑

q′σ

ṽq′

[(

d̂†pσd̂p+q+q′ σ − d̂†p−q′ σd̂p+qσ

)

, ρ̂−q′

]

+
.

(N.8)

To cast the r.h.s. of this equation in terms of an anticommutator we use ṽq = ṽ−q. Now
we observe that the low energy states of an electron gas are states with very delocalized
electrons. This means that the expansion

|Ψ〉 = 1

N !

∫

dx1 . . . dxNΨ(x1, . . . ,xN )|x1 . . .xN 〉 (N.9)

of a low-energy state has a wavefunction which is a smooth function of the coordinates. Let
us consider the action of

∑

σ d̂
†
pσd̂p+qσ on a position–spin ket

∑

σ

d̂†pσd̂p+qσ|x1 . . .xN 〉 =
∫

drdr′eip·(r−r
′)e−iq·r

′

ψ̂†(rσ)ψ̂(r′σ)|x1 . . .xN 〉

=

∫

dr

N∑

i=1

eip·(r−ri)e−iq·ri |x1 . . .xi−1 rσi xi+1xN 〉,

where we use (1.45). Multiplying this equation by the wavefunction of a low-energy state
and integrating over all coordinates we see that the dominant contribution of the integral
over r comes from the region r ∼ ri, since for large |r − ri| the exponential eip·(r−ri)
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580 Appendix N. Why the name Random Phase Approximation?

becomes a highly oscillating function. Under the integral over x1 . . .xN we then make the
approximation

∑

σ

d̂†pσd̂p+qσ|x1 . . .xN 〉 ∼ ∆V

N∑

i=1

e−iq·ri |x1 . . .xN 〉, (N.10)

where ∆V is some volume element proportional to 1/p. The r.h.s. in (N.10) is the position–
spin ket multiplied by the sum of exponentials with “randomly” varying phases. In the large
N limit, or equivalently in the limit rs → 0, this sum approaches zero for all q 6= 0.
The idea of Bohm and Pines was then to say that every operator d̂†pσd̂p+qσ appearing in
(N.8) generates small contributions unless q = 0. This means that the dominant contri-
butions in (N.8) are those with either q′ = −q (in this case the operator in parenthesis
becomes d̂†pσd̂pσ − d̂†p+qσd̂p+qσ) or those with q′ = 0, since according to (N.3) the main
contribution to the density fluctuation operator comes from ρ̂q′ with q′ = 0 (in this case

ρ̂0 = 1
V

∑

p′σ d̂
†
p′σd̂p′σ). For q

′ = 0, however, the r.h.s. of (N.8) vanishes and therefore the
Bohm–Pines approximation reduces to

∑

σ

[
d̂†pσd̂p+qσ,

1

2V

∑

q′

ṽq′ ρ̂q′ ρ̂−q′

]

− ∼
1

2V

∑

σ

ṽq

[(

d̂†pσd̂pσ − d̂†p+qσd̂p+qσ

)

, ρ̂q

]

+
.

Next we observe that d̂†pσd̂pσ is the occupation operator for electrons of momentum p and
spin σ. The noninteracting ground state of the electron gas has N -electrons in the lowest
energy p-levels and therefore is an eigenstate of d̂†pσd̂pσ with eigenvalue Vfp where fp = 1
if p is occupied and zero otherwise. The second approximation of Bohm and Pines was
to assume that things are not so di�erent in the interacting case and hence that we can
replace d̂†pσd̂pσ with Vfp. In conclusion

∑

σ

[
d̂†pσd̂p+qσ,

1

2V

∑

q′

ṽq′ ρ̂q′ ρ̂−q′

]

− ∼ 2(fp − fp+q) ṽq ρ̂q,

where the factor of 2 comes from spin. Putting together all these results the equation of
motion (N.6) becomes

i
d

dt
χR
p (q, t) = 2δ(t)(fp−fp+q)+(ǫp+q− ǫp)χR

p (q, t)+2ṽq(fp−fp+q)
1

V

∑

p′

χR
p′(q, t).

Fourier transforming as

χR
p (q, t) =

∫
dω

2π
e−iωtχR

p (q, ω)

and rearranging the terms, the equation of motion for χR
p (q, t) yields the following solution:

χR
p (q, ω) = 2

fp − fp+q

ω − ǫp+q − ǫp + iη



1 + ṽq
1

V

∑

p′

χR
p′(q, ω)



 , (N.11)
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Appendix N. Why the name Random Phase Approximation? 581

where we add the infinitesimal iη to ensure that χR
p (q, t < 0) = 0. From (N.5) we see that

the Fourier transform of the density response function is

χR(q, ω) =
1

V

∑

p

χR
p (q, ω).

Thus, summing (N.11) over p and dividing by the volume we get

χR(q, ω) =
2

V

∑

p

fp − fp+q

ω − ǫp+q − ǫp + iη

(
1 + ṽqχ

R(q, ω)
)
.

In the limit V → ∞ we have 1
V

∑

p →
∫

dp
(2π)3 , and we recognize in this equation the

noninteracting response function (15.66). Thus

χR(q, ω) = χR
0 (q, ω)

(
1 + ṽqχ

R(q, ω)
)
. (N.12)

Solving (N.12) for χR we recover the RPA response function (15.78).
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O

Kramers–Kronig relations

Let us consider a function A(z) of the complex variable z = x+ iy which is analytic in the
upper-half plane and with the property that

lim
z→∞

zA(z) = 0, with Arg(z) ∈ (0, π). (O.1)

For z in the upper-half plane we can use the Cauchy residue theorem to write this function
as

A(z) =

∮

C

dz′

2πi

A(z′)

z′ − z , (O.2)

where the integral is along an anti-clockwise oriented curve C that is entirely contained in
the upper-half plane and inside which there is the point z. Let C now be the curve in the
figure below and z = x+ iη a point infinitesimally above the real axis.

Due to property (O.1) the contribution of the integral along the arc vanishes in the limit of
infinite radius and therefore (O.2) implies that

A(x+ iη) =

∫ ∞

−∞

dx′

2πi

A(x′)

x′ − (x+ iη)
= P

∫ ∞

−∞

dx′

2πi

A(x′)

x′ − x +
1

2
A(x), (O.3)

where in the second equality we use the Cauchy relation

1

x′ − x− iη
= P

1

x′ − x + iπδ(x′ − x), (O.4)
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with P the principal part. Since η is an infinitesimal positive constant we can safely replace
A(x+iη) with A(x) in the l.h.s. of (O.3), thereby obtaining the following important identity:

A(x) =
i

π
P

∫ ∞

−∞
dx′

A(x′)

x− x′ .

If we separate A(x) = A1(x) + iA2(x) into a real and an imaginary part, then we see that
A1 and A2 are related through a Hilbert transformation

A1(x) = −
1

π
P

∫ ∞

−∞
dx′

A2(x
′)

x− x′

A2(x) =
1

π
P

∫ ∞

−∞
dx′

A1(x
′)

x− x′ (O.5)

These relations are known as the Kramers–Kronig relations and allow us to express the
real/imaginary part of the function A in terms of its imaginary/real part. Consequently, the
full function A can be written solely in terms of its real or imaginary part since

A(x) = A1(x) + i
1

π
P

∫ ∞

−∞
dx′

A1(x
′)

x− x′ =
i

π

∫ ∞

−∞
dx′

A1(x
′)

x− x′ + iη
,

and also

A(x) = − 1

π
P

∫ ∞

−∞
dx′

A2(x
′)

x− x′ + iA2(x) = −
1

π

∫ ∞

−∞
dx′

A2(x
′)

x− x′ + iη
.



P

Algorithm for solving the

Kadano�–Baym equations

In this appendix we describe a practical propagation algorithm to solve the four Kadano�–
Baym equations of Section 16.3.1. This algorithm has been applied to finite systems [98, 147]
as well as to open systems [165, 180]. As usual we start by writing Σtot as the sum of
the Hartree–Fock self-energy and a nonlocal (in time) self-energy which is the sum of the
embedding self-energy and the correlation self-energy,

Σtot = ΣHF + Σ̃tot.

Then, the four Kadano�–Baym equations become

[

i
d

dt
− hHF(t)

]

G⌉(t, τ) = Ĩ
⌉
L(t, τ), (P.1)

[

i
d

dt
− hHF(t)

]

G>(t, t′) = Ĩ>L (t, t′), (P.2)

G<(t, t′)

[

−i
←−
d

dt′
− hHF(t

′)

]

= Ĩ<R (t, t′), (P.3)

i
d

dt
G<(t, t)−

[
hHF(t), G

<(t, t)
]

− = Ĩ<L (t, t)− Ĩ<R (t, t), (P.4)

where hHF(t) = h(t) + ΣHF(t) is the Hartree–Fock Hamiltonian and the collision integrals
with a tilde are the original collision integrals in which Σtot → Σ̃tot. Since the integral of
hHF(t) can attain large values, it is favorable to eliminate this term from the time-stepping
equations. For each time step T → T +∆t we therefore absorb the term in a time evolution
operator of the form

U(t) = e−ih̄HF(T )t, 0 ≤ t ≤ ∆t

where h̄HF(T ) = h(T + ∆t/2) + ΣHF(T ). The Hamiltonian h(t) is explicitly known as a
function of time and can be evaluated at half the time step. The term ΣHF is only known
at time T and is recalculated in the repeated time step (predictor corrector). In terms of the
operator U(t) we define new Green’s functions gx (x =⌉, ⌈, >,<) as

584
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Appendix P. Algorithm for solving the Kadano�–Baym equations 585

G⌉(T + t, τ) = U(t)g⌉(t, τ),

G>(T + t, t′) = U(t)g>(t, t′),

G<(t′, T + t) = g<(t′, t)U †(t),

G<(T + t, T + t) = U(t)g<(t, t)U †(t),

where t′ < T and 0 < t < ∆t. We can now transform the Kadano�–Baym equations into
equations for g. For instance g⌉(t, τ) satisfies the equation

i
d

dt
g⌉(t, τ) = U †(t)

[
hHF(T + t)− h̄HF(T )

]
G⌉(T + t, τ) + U †(t)Ĩ⌉L(T + t, τ).

Since h̄HF(T ) ∼ hHF(T + t) for times 0 ≤ t ≤ ∆t, we can neglect for these times the first
term on the r.h.s.. We then find

G⌉(T +∆t, τ) = U(∆t)

[

G⌉(T, τ) +

∫ ∆t

0

dt
d

dt
g⌉(t, τ)

]

∼ U(∆t)G
⌉(T, τ)− iU(∆t)

[
∫ ∆t

0

dt eih̄HF(T )t

]

Ĩ
⌉
L(T, τ)

= U(∆t)G
⌉(T, τ)− V (∆t)Ĩ

⌉
L(T, τ), (P.5)

where V (∆t) is defined according to

V (∆t) =
1− e−ih̄HF(T )∆t

h̄HF(T )
.

In a similar way we can use (P.2) and (P.3) to propagate the greater and lesser Green’s
functions and we find

G>(T +∆t, t
′) = U(∆t)G

>(T, t′)− V (∆t)Ĩ
>
L (T, t′), (P.6)

G<(t′, T +∆t) = G<(t′, T )U †(∆t)− Ĩ<R (t′, T )V †(∆t). (P.7)

For time-stepping along the diagonal the equation for g<(t, t) reads

i
d

dt
g<(t, t) = U †(t)

[

Ĩ<L (t, t)− Ĩ<R (t, t)
]

U(t),

where again we approximate the di�erence h̄HF(T ) − hHF(T + t) ∼ 0. Integrating over t
between 0 and ∆t we then find

G<(T +∆t, T +∆t) ∼ U(∆t)G
<(T, T )U †(∆t)

− iU(∆t)

[
∫ ∆t

0

dtU †(t)
(

Ĩ<L (T, T )− Ĩ<R (T, T )
)

U(t)

]

U †(∆t).
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586 Appendix P. Algorithm for solving the Kadano�–Baym equations

By using the operator expansion

eABe−A = B + [A,B]− +
1

2!

[
A, [A,B]−

]

− +
1

3!

[

A,
[
A, [A,B]−

]

−

]

−
+ . . .

it follows that

−i
∫ ∆t

0

dtU †(t)
(

Ĩ<L (T, T )− Ĩ<R (T, T )
)

U(t) =

∞∑

n=0

Cn,

where

Cn+1 =
i∆t

n+ 2

[
h̄HF(T ), Cn

]

− ,

and C0 = −i∆t

(

Ĩ<L (T, T )− Ĩ<R (T, T )
)

. Inserting this result into the formula for the equal

time G< we finally obtain

G<(T +∆t, T +∆t) = U(∆t)

[

G<(T, T ) +
∞∑

n=0

Cn

]

U †(∆t). (P.8)

For the systems considered in Chapter 16 we have found that keeping terms for n ≤ 3 yields
su�cient accuracy. The equations (P.5), (P.6), (P.7), and (P.8) together with the symmetry
properties discussed in Section 16.3.1 form the basis of the time-stepping algorithm. At each
time step, it requires the construction of the operators U(∆t) and V (∆t) and therefore
the diagonalization of h̄HF(T ). The implementation of the predictor corrector consists in
carrying out the time step T → T + ∆t as many times as needed to get the desired
accuracy. According to our experience, repeating every time step twice is already enough to
obtain accurate results (provided that the time step ∆t is small enough). To summarize, the
procedure is as follows:

• The collision integrals and h̄HF at time T are calculated from the Green’s functions
with real times up to T .

• A step in the Green’s function is taken according to the equations (P.5), (P.6), (P.7), and
(P.8).

• A new h̄HF and new collision integrals Ĩ
⌉
L(T +∆t, τ), I

>
L (T +∆t, t

′), and I<R (t′, T +
∆t) are calculated from the new Green’s functions with real times up to T +∆t.

• The arithmetic average of h̄HF and of the collision integrals for times T and T +∆t

is calculated.

• The time step T → T + ∆t is then repeated using the arithmetic average values of
h̄HF and of the collision integrals according to (P.5), (P.6), (P.7), and (P.8).

This concludes the general time-stepping procedure for the Green’s function.
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on the contour, 112
Green’s function, 130, 237, 249

Hartree–Fock, 224
noninteracting, 132, 154

operator correlators, 123
three-particle Green’s function

noninteracting, 542
two-particle Green’s function, 130

exchange potential, 132
excitation amplitudes, 413
exciton, 331

f -sum rule, 416, 425, 496
Faddeev equation, 323
Fano model, 55, 155, 157, 160, 163
Fermi energy

electron gas, 229
Fano model, 55
noninteracting Green’s function,

177
Fermi function, 160, 169
Fermi golden rule, 194, 400, 404
Fermi liquid, 453
Fermi momentum, 229, 232, 314
Fermi surface, 195

sharpness, 453, 565
fermions, 10
ferromagnetism, 54

flat-band, 54
Feynman diagrams, 276
Feynman rules, 292

discrete basis, 293
for the bare vacuum diagrams, 277
for the grand potential, 300
for the Green’s function, 284
for the kernel, 328
for the polarization, 292
for the self-energy, 286
for the two-particle Green’s function, 326

field operators, 18
(anti)commutation relations, 21
general basis, 22

first Brillouin zone, 532
first quantization, 17
fluctuation–dissipation theorem

T -matrix, 377
Green’s function, 177, 188, 466
polarizability, 352
response function, 411
screened interaction, 353
self-energy, 266

Fock potential, 132
Fock space, 17
Fröhlich model, 71
free energy, 524
Friedel oscillations, 201, 440, 493
functional

Φ, 255, 306
Ψ, 318
Klein, 311
Luttinger–Ward, 309
screened Luttinger–Ward, 321

functional derivative, 255

Galitskii–Migdal formula, 204
in connection with conserving

approximations, 322
gauge transformation, 89

field operators, 89
Green’s function, 258, 482
one-particle states, 203
Ward identity, 424

Gell-Mann–Low theorem, 107
Gibbs energy, 524
grand potential, 298, 524

dressed expansion in G, 307
dressed expansion in G and W , 321
expansion in G0 and v, 299
from Klein functional, 311
from Luttinger–Ward functional, 309
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graphene, 46
greater function, 144
Green’s function, 127, 130

n-particle, 125, 537
operator, 153
dressed, 288
equations of motion, 130, 237,

249
Hartree, 207
Hartree–Fock, 224

equilibrium, 186
exact expansion, 138
greater, 161
KMS relations, 169
lesser, 161
Matsubara, 158, 260
noninteracting, 132, 168

advanced, 173
equations of motion, 132, 154
greater, 171
left, 173
lesser, 171
Matsubara, 169
retarded, 173
right, 173
time-ordered, 173

three-particle, 133
two-particle, 127

equations of motion, 130
exact expansion, 139
Hartree, 206
Hartree–Fock, 131, 206
irreducible kernel, 328, 422
reducible kernel, 328

Gross–Pitaevskii equation, 209
soliton, 223

GW approximation, 292, 345, 441,
475

gyromagnetic ratio, 5, 60, 81

Hamiltonian, 32
interaction, 32
noninteracting, 29
on the contour, 113, 136
single particle, 5

Hartree
equations, 208
equations of motion

Green’s function, 207

potential, 132, 207
time-dependent equations, 211
two-particle Green’s function, 206

Hartree–Fock
approximation, 324
equations, 225
equations of motion

Green’s function, 224
potential, 224, 363
self-energy, 132, 252
time-dependent equations, 226
two-particle Green’s function, 131,

206
Heaviside function, 39, 147

Fourier transform, 176
on the contour, 115, 144

Hedin equations
diagrammatic derivation, 344
from generating functional, 566

Heisenberg model, 66
Heisenberg picture, 87, 112, 386

on the contour, 112, 125
Hellmann–Feynman theorem, 200, 366
Helmholtz energy, 524
Hilbert space, 1

N distinguishable particles, 8
N identical particles, 15

Hilbert transformation, 58, 470, 583
embedding self-energy, 58
general property, 351
Green’s function, 193
self-energy, 349

Holstein model, 72
HOMO, 197, 485
hopping integrals, 59
hoppings, 59
Hubbard model, 59

dimer, 61

identical particles, 10
initial-state dependence, 179, 476, 486
interaction energy

in terms of Γ2, 37, 519
in terms of G and Σ, 253, 307, 363
in terms of G2, 127, 203
in terms of P and W , 365

ionization energy, 190, 200
irreducible kernel for G2, 328, 422
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Kadano�–Baym equations, 262, 289, 459, 584
implementation, 471
open systems, 459

Keldysh component
advanced, 147
anti-time ordered, 148
greater, 144
left, 145
lesser, 144
Matsubara, 145
retarded, 147
right, 145
time-ordered, 148

Keldysh formalism, 141
Keldysh space, 144
ket, 1

empty, 18
momentum–spin, 6
null, 10, 18
position–spin, 5

distinguishable particles, 8
identical particles, 13, 14

Klein functional, 311
KMS relations, 457

n-particle Green’s function, 128
Green’s function, 169
self-energy, 252

Konstantinov–Perel’ formalism, 140
Koopmans’ theorem, 228
Kramers–Kronig relations, 583
Kubo formula, 405, 408
Kubo–Martin–Schwinger relations

see KMS relations, 128

Landau damping, 437
Lang–Firsov transformation, 76
Langreth rules, 143, 270
Laplace formula, 510, 545

generalized, 514
Larmor diamagnetism, 91
left function, 145
Lehmann representation

Green’s function, 178, 179, 186, 190
response function, 414

lesser function, 144
Levi–Civita tensor, 34, 94
lifetime, 167, 191, 193, 198, 213, 350

electron gas, 356
G0W0 approximation, 445

Lindhard function, 429
linear response theory, 219, 385
linked cluster theorem, 297
Lippmann–Schwinger equation, 573
loop rule

for G, 280
for G2, 325

Lorentz force, 94, 244
LUMO, 197, 485
Luttinger liquid, 357, 565
Luttinger–Ward functional, 309
Luttinger–Ward theorem, 314

magnetic moment operator, 91
Martin–Schwinger hierarchy, 127
Matsubara

formalism, 141
frequencies, 159, 261
function, 145
Green’s function, 158

MBPT, 139
Meir–Wingreen formula, 459
Meissner e�ect, 92
memory

from embedding, 156, 157, 166
from interaction, 158
infinitely long, 166
infinitesimally short, 167

memory e�ects, 476, 480
model

BCS, 67
Fano, 55, 160, 163
Fröhlich, 71
Heisenberg, 66
Holstein, 72
Hubbard, 59
interacting resonant level, 197
pairing, 68
Pariser–Parr–Pople, 41, 485
Su–Schrie�er–Heeger, 72

model Hamiltonian, 43

nanotubes, 52
armchair, 52

natural orbitals, 36
nesting vector, 495

occupation operator, 29, 33, 44
open system, 217
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operator
anti-chronological ordering, 85
anti-time ordering, 85
chronological ordering, 82, 171
contour ordering, 96
correlator, 115, 143
first quantization, 27

center of mass, 9
contour evolution, 168
Green’s function, 153
Hamiltonian, 9
Hartree potential, 208
Hartree–Fock potential, 224
self-energy, 260
spectral function, 57, 192

second quantization, 27
n-body, 32, 126
annihilation, 19
center-of-mass, 27
contour evolution, 110
creation, 18
current density, 92, 408
density, 21, 27, 31, 127
density matrix, 101
diamagnetic current density, 90, 239
electron pair, 68
evolution, 84
field, 18
Hamiltonian, 32
interaction Hamiltonian, 32
magnetic moment, 91
momentum–stress tensor, 93
noninteracting Hamiltonian, 29
occupation, 29, 33, 44, 59, 73, 160, 214
one-body, 31, 35, 125, 158, 418
paramagnetic current density, 90, 127, 239
spin, 34, 60
total momentum, 92
total number of particles, 27
total spin, 64
two-body, 32, 36

time ordering, 82
overlap matrix, 42

pair correlation function, 234, 520
pairing model, 68
paramagnetic current density, 90, 127

in terms of G, 127, 239
Pariser–Parr–Pople model, 41, 485

particle-hole symmetry, 61
partition function, 102
Pauli exclusion principle, 10, 33
Pauli matrices, 34
Pauli paramagnetism, 60, 61, 91
Peierls instability, 76
phonons, 72
photoelectron, 194
photoemission experiment, 194

bosons, 196
inverse, 196

plasma frequency, 434, 461
plasmons, 351, 434
polarizability, 290

dressed expansion in G and W , 290
fluctuation–dissipation theorem, 352
KMS relations, 352
reducible, 315, 331
spin-independent, 367

polarization cloud, 71
polaron, 71
predictor corrector, 473, 584
probability amplitude, 4
pure state, 101

quantum average, 86, 95
quantum beats, 469
quantum of conductance, 222
quasi-particle, 71, 168, 350, 356

renormalization factor, 351
Ward identity, 425

wavefunction, 187, 190

Random Phase Approximation, 427, 432
rate operator, 266, 459
reducible kernel for G2, 328
relaxation, 165, 347, 480, 486

in connection with memory, 166
removal energy, 190, 200
resonance phenomenon, 389, 393
response function

current, 410
current-density, 410
density, 315, 331, 410

noninteracting, 418, 428
RPA, 431

retardation e�ects, 249, 290
retarded function, 147

Downloaded from Cambridge Books Online by IP 132.174.254.72 on Tue Sep 01 17:14:49 BST 2015.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139023979
Cambridge Books Online © Cambridge University Press, 2015



Index 599

Riemann–Lebesgue theorem, 165, 348, 393, 398,
440

for thermalization, 180
right function, 145

Schrödinger equation, 82
nonlinear, 209
single-particle, 171

screened interaction, 289
fluctuation–dissipation theorem, 353

screened Luttinger–Ward functional, 321
screening

dynamical, 437
static, 440
Thomas–Fermi, 433

second quantization, 17
self-consistency, 132, 207

cancellation with vertex correction,
373

spurious broadening, 361
self-energy, 132, 249

G0W0, 450
T -matrix, 375
Φ-derivable, 257, 482
conserving, 253
correlation, 252, 270, 286, 348
dressed expansion in G, 288
dressed expansion in G and W , 290
embedding, 57, 156, 157, 217, 458

semi-infinite chain, 478
WBLA, 462

exchange-correlation, 290
GW, 292, 345, 475
Hartree–Fock, 252
inbedding, 493
KMS relations, 252
many-body, 158, 249, 285
reducible, 302
second-Born, 288, 355, 474

self-interaction error, 209
semi-metal, 54
skeleton diagrams, 287
Slater determinant, 25
soliton, 223
source field method, 346, 566
spectral function, 57, 192, 487

BCS model, 378
broadening, 58, 218
electron gas

G0W0 approximation, 450
Hartree approximation, 213

Fano model, 57
interacting resonant level model, 197,

359
nonequilibrium, 488

spin operator, 34, 60, 64
spin-polarized electron gas, 232
steady state, 180

global perturbations, 185
local perturbations, 183

Stirling formula, 526
Su–Schrie�er–Heeger model, 72

T -matrix
approximation, 134, 374
self-energy, 134, 375

tensor product, 9
theorem

Bloch, 49, 184
Cauchy residue, 160, 171, 582
fluctuation–dissipation, 466
Gell-Mann–Low, 107
generalized Wick, 545
Hellmann–Feynman, 200, 366
linked cluster, 297
Luttinger–Ward, 314
Riemann–Lebesgue, 165, 348, 393, 398,

440
virial, 559
Wick, 136

thermalization, 179, 479
breakdown, 480
in connection with dephasing, 180

Thomas–Fermi
screening length, 370, 433

Thomas–Reiche–Kuhn sum rule, 416
time ordering operator, 82
time-ordered function, 148
time-stepping technique, 471, 586
transfer matrix, 375
two-particle XC function, 330, 410, 423

vacuum diagrams, 277
valence band, 54
van der Waals equation, 213
vertex function, 425, 569
vibrons, 72
virial theorem, 322, 559
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W screened interaction, 289
Ward identity, 425
wavefunction

N identical particles, 16
one particle, 4
two distinguishable particles, 8
two identical particles, 12, 14

WBLA, 58, 167, 217, 462
Wick’s theorem, 136, 138, 139

generalized, 545

Wide Band Limit Approximation
see WBLA, 58

Wigner–Seitz radius, 231

Yukawa interaction, 370, 433

Zeeman splitting, 469
zero-temperature assumption,

109
zero-temperature formalism, 142
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