
Preface

Since this book is aimed at a broad audience within the physical sci-
ences, we expect most of our readers not to be experts in either astro-
physics or mathematics. For those readers, the title of this book may seem
puzzling at least. Why should they be interested in the gravitational at-
traction between bodies? What is so special about a millionindexmillion-
body problem, rather than a billion or a trillion bodies? What kind of
bodies do we have in mind? And finally, what is the problem with this
whole topic?

In physics, many complex systems can be modeled as an aggregate of
a large number of relatively simple entities with relatively simple interac-
tions between them. It is one of the most fascinating aspects of physics
that an enormous richness can be found in the collective phenomena that
emerge out of the interplay of the much simpler building blocks. Smoke
rings and turbulence in air, for example, are complex manifestations of
a system of air molecules with relatively simple interactions, strongly re-
pulsive at small scales and weakly attractive at larger scales. From the
spectrum of avalanches in sand piles to the instabilities in plasmas of
more than a million degrees in labs to study nuclear fusion, we deal with
one or a few constituents with simple prescribed forces. What is special
about gravitational interactions is the fact that gravity is the only force
that is mutually attractive. Unlike a handful of protons and electrons,
where like charges repel and opposite charges attract, a handful of stars
shows attraction between every pair of stars. As a result, a star cluster
holds itself together: there is no need for a container (as with a gas or
plasma in a lab) or a table (as with a sand pile). And for astronomers,
an extra reason to study star clusters is simply: because they are there.
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Now why are we interested in a million stars? Usually in physics we
analyze a system of interacting components in two limits: one in which
the number of components is one, or a few; and one in which the number
of components tends to infinity. And at first sight, a million and a billion
stars both seem to be ‘close enough’ to infinity to allow a common treat-
ment. However, there is a large difference in behavior between the two
types of systems. In a typical rich star cluster, with a million stars, each
star feels enough of the granularity of the gravitational field of the other
stars that the consequent perturbations lead to a total loss of memory
of the initial conditions of its orbit, within the life time of the Universe.
In contrast, in a typical galaxy, with a number of stars between a billion
and a trillion, an individual star for all intents and purposes feels only the
smooth average background field. This is the reason that galaxies still
retain much prettier shapes than the shapeless (indeed globular) clusters
for which orbital memories have been wiped out. In other words, in this
part of astronomy, when we count ‘one, two, a few, many’, a few means
a million.

The term body is just an archaic term for a material object, be it a
molecule or a stone or a star. In many cases in astronomy, when we
study the motion of a group of stars we can completely neglect the finite
size of the stars, and we may as well treat them as if they were simple
mass points, with a mass but without an extension. When stars come
closer, we may want to approximate them as finite-size bodies, with a
simple description of their mass distribution. Only when stars physically
collide, as they sometimes do in the dense inner regions of star clusters,
do we have to remind ourselves how complex these celestial bodies really
are∗, in order to say something about the transformations that stars
undergo when they merge.

Finally, why do we call all this a problem? In mathematics, more
than in physics, we talk about specific topics as problems, as long as
they have not (yet) been solved. For example, the famous four-colour
problem, the question of how many different colours we need to introduce
to colour a map such that neighboring countries can always be given
different colours, remained a real problem until the seventies. Partly
with the help of computers, this problem was solved (the answer was:
four colours suffice), and then the four-body problem turned into the four-
colour theorem. In the days of Newton, at the beginning of mathematical
physics, the same term ‘problem’ was used to describe the challenge to
find the motions of two, three, or more bodies under the influence of their

∗ Addressing an astronomer who had just remarked that “after all, a star is a pretty
simple thing”, R.O. Redman pointed out, that, “at a distance of 10 parsecs you’d
look pretty simple!”
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mutual gravitational attractions: hence the two-body problem, the three-
body problem, etc. Unlike the four-colour problem, though, we don’t
expect to ever ‘solve’ the gravitational N -body problem, for arbitrary
N – and even for N = 2, where we do have analytic solutions, we still
follow tradition in calling this the two-body problem. So apart from this
quaint piece of history, we could have called this book ‘the gravitational
million-body system’.

Why would someone want to study the gravitational million-body prob-
lem? There are at least four quite different motivations, centering on
the fields of astronomy, theoretical physics, computational physics, and
mathematics.

Let us first take the point of view of astronomy. Throughout the last
hundred years or more, astronomers have been studying an important
class of objects called globular star clusters, which are roughly spherical
collections of stars, each much smaller than a galaxy but much bigger than
the solar system. The number of stars they contain varies from one object
to another, but a million is the right order of magnitude. Astronomers
study globular clusters for many reasons, of which we can touch on only a
few. It is thought that they were among the first recognisable structures
that were born in galaxies like ours, and their age is a vital constraint on
that of the universe. All the stars in each cluster were born with different
masses at roughly the same time, and their present stellar population
gives a snapshot of the results of about 10 billion years of stellar evolution.
They are exceptionally rich in some of the more exotic kinds of star which
astronomers now study: binary X-ray sources, millisecond pulsars, etc.
Finally, the stars inside a cluster are sufficiently densely packed that they
can and do collide with each other, and so clusters provide us with a
sort of laboratory where we may hope to understand the more dramatic
effects of the dense stellar environment in the nuclei of galaxies. Thus
the gravitational million-body problem has an important place in modern
astronomy.

Now let us consider the point of view of theoretical physics. Whichever
way a physicist approaches them, gravitational problems pose particular
difficulties. Classical thermodynamics is poorly developed for such prob-
lems, because of the long-range nature of the gravitational force. Kinetic
theory requires ad hoc approximations, for the same reasons. The meth-
ods of plasma physics fail because gravitational forces, being attractive,
are unshielded. Gravitational systems are intractable with many tradi-
tional methods because the natural equilibria are not spatially uniform.
The gravitational many-body problem also has a wider significance in
physics, because of its historical roots. The science of mechanics be-
came firmly rooted, in large part, because of the success of Newton’s
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programme for the study of planetary motion. The further development
of this theory led to the development of Lagrangian methods, and then,
in the hands of Poincaré, to the foundation of the study of chaos. Much
of the development of physics since the time of Newton has rested on
foundations set in place with the aid of the gravitational many-body
problem, which became the model for how a successful physical theory
should look. Finally, the most difficult models to predict and to interpret
their behavior are the ones where we are dealing with neither a very large
nor a very small number of particles. When there are huge numbers of
particles, as in a gas, there are successful approximate methods, like fluid
mechanics, which greatly simplify the problems. When there are very few
particles, especially one or two, the problem is either completely soluble
or can be understood approximately. When there are an intermediate
number (a million or less in our case), elements of both extremes are in
play simultaneously, thereby thwarting either type of approximation.

This brings us naturally to computational physics. Just as the theoret-
ical physicist does, the computational physicist immediately grasps the
fact that the gravitational million-body problem poses formidable prob-
lems whichever way it is approached. It is not even clear whether the
solution can be obtained reliably at all. Even if we lay such fundamental
issues aside, running anN -body simulation withN >∼ 104 is exceptionally
time-consuming for even the fastest generally available computers. This
in turn has led to the development of special computers (the GRAPE
family), whose sole task is to solve this problem very quickly. Around
1995 these were the fastest computers in the world, a place they recap-
tured in 2001. This approach has become a model of the way in which
future work in computational science in other areas may be carried out
economically and quickly, given the right flair and ingenuity. Providing
the hardware is only half the problem though; developing the software
for running N -body simulations is equally challenging. In our particu-
lar case of globular cluster simulations, we are confronted with length
scales spanning the range from kilometers to parsecs (a factor of more
than 1013), and with time scales spanning the range from milliseconds to
the life time of the universe (a factor of more than 1020). As a result,
stellar dynamicists have developed special integration methods that are
not encountered in any text books on differential equations.

And finally we turn to mathematics. When Newton laid the founda-
tions of classical physics in the Principia, among the mathematical tools
he deployed was the infinitesimal calculus, which he had invented for
the purpose. This illustrates the rich potential for the invention of new
mathematics which results from intense scrutiny of gravitational prob-
lems, and other issues in dynamics. Newton set a precedent which has
repeated itself several times since. The work of Poincaré was developed
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in the context of celestial mechanics, and the famous theorem of Kol-
mogorov, Arnold and Moser, foreshadowed as it was by the work of C.L.
Siegel in his book “Vorlesungen über Himmelsmechanik”∗, owes much to
this discipline, and the emphasis which it helped to place on Hamilto-
nian problems. And yet when one turns to the million-body problem, as
opposed to the few-body problems of the solar system, the flow of infor-
mation has been from mathematics to stellar dynamics, rather than the
other way around. A number of techniques introduced by mathemati-
cians for the solution of quite abstract problems have turned out to be
just what was needed to improve the numerical solution of our problem.
This flow of ideas has been sufficiently influential that the astronomer’s
understanding of the problem would not have advanced so far without it.
One of our purposes in writing this book, perhaps a far-fetched one, is
the hope that it may help reverse the flow, and stimulate the birth of new
mathematics. At the very least, we hope that mathematicians will enjoy
learning how their work has been put to use. As one of us has enjoyed a
place in the tolerant community of mathematicians for many years, it is
a way of giving something back.

We believe that the gravitational million-body problem has a seminal
role to play in all four areas: astronomy, physics, mathematics, computa-
tional science. But while the above remarks have sometimes emphasised
the difficulties it poses, we will have failed in one of our aims if, after read-
ing the book, the reader from any of these disciplines is not impressed
by how much of the problem can be understood, and how much it has to
offer. In other words, one of our goals is to convey some of the beauty and
simplicity underlying classical dynamics, as illustrated through the grav-
itational many-body problem. This is a book that is meant to be read
by a variety of scientists who share a curiosity for the roots of physics,
the recent fruits that have sprouted directly from those old roots, and its
interconnections with neighbouring sciences.

That having been said, it is mostly within the astronomical community
that this subject has been developed. And it has been another firm inten-
tion in writing the book that it may serve the role of a graduate textbook
on the theory of stellar dynamics of dense stellar systems. Wherever
possible, therefore, our statements and results are developed from first
principles. We include some exercises and problems, and hints for their
solution.

In writing the book we were aware that the reader may or may not be
an astronomer, and may or may not be interested in learning the details of

∗ Lectures on Celestial Mechanics
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the theory. We realised also that the variety of topics which make up the
gravitational million-body problem are best treated at a variety of levels,
and that the interconnectedness of these topics forces interconnections
between the chapters. Some of the topics we address might even strike
some readers as being faintly whimsical. Recognising, therefore, that not
all chapters will be equally accessible or interesting to all readers, we
start each part of the book (each of which consists of several connected
chapters) with an outline of its contents. We hope that readers will thus
find their own optimal route between the contents page and the index.

For much the same variety of reasons we have relegated some material
to boxes. Often these contain details of some derivation or discussion, and
a reader in a hurry could avoid them. Sometimes, however, they contain
background which might help a reader over some difficulty. Sometimes
they collect some useful results which might act as a reference resource.
Sometimes they explore interesting or amusing by-ways that would oth-
erwise interrupt the text. Perhaps, therefore, they should not be passed
over too readily.

We hope the index will both help and intrigue the reader, but the
quirky and personal selection of names there is not meant as a compre-
hensive answer to the question of who did what. (Last time we looked, we
could not even find our own names there.) Even in the extensive list of
references to published work we have not attempted completeness. While
this risks antagonizing the reader for the omission of his or her own most
cherished paper, for which we apologise, it could be just as hazardous
if we tried to attribute every advance to its originator. Our main rea-
son for giving references is to give the reader an entry into the research
literature. Nowadays it is quite easy to move both forwards and back-
wards from a suitable entry point, using such invaluable bibliographical
resources as the Astronomy Abstract Service of the NASA Astrophysics
Data System.

And now we have a confession to make. Studying problems in the-
oretical physics, the solved as well as the unsolved, is interesting and
enjoyable all by itself. Finding new and unexpected insights, and extend-
ing the world’s body of knowledge about these problems, is an added
pleasure. Sharing these interests with others is still more rewarding. But
we have other reasons for our interest in the gravitational N -body prob-
lem, and among these is its status as one of the oldest unsolved problems
in the exact sciences, and one with an exceptionally distinguished pedi-
gree. Some of the great names of the subject have been mentioned in this
preface, but we would add some other much admired names of the past,
including those of Jeans, Chandrasekhar and Spitzer. With equal plea-
sure we call to mind the many contemporaries with whom we have worked
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and continue to work on these problems. The community is world-wide,
but it is not a large one, it is rather close-knit, and works together and
openly in the best tradition of the “community of scholars”. We hope
that the common enjoyment of this joint enterprise surfaces from time to
time throughout this book.
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