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, Stéphanie Salmon

2
, Eric

Sonnendrücker
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Abstract. We develop a numerical method for solving Maxwell’s equations on a grid involving
zones with cells of very different sizes, in order for example to compute sources coming from
particles which need to be resolved on a very fine grid. The method is based on domain decom-
position techniques which lead us to introduce two auxiliary problems and show theoretically
how they allow us to calculate the solution of the initial problem. These two auxiliary problems
are discretized using Edge Finite Elements introduced by Nedelec on two different scales which
introduce some errors that we correct by setting to zero an operator we know has to be zero in
the theoretical study.

1. Introduction.

In some cases, for example when a satellite or a space shuttle re- enters the atmosphere, particles are ion-
ized around its surface and a a small layer of plasma is created. This plasma generates an electromagnetic
field which propagates away from the device. In order to simulate the propagation of this electromagnetic
wave, it is necessary to resolve the sources quite accurately and thus use a very fine grid in a small layer
around the device and a coarser grid in order to be able to compute the field which does not include very
high frequencies far away. For this application a grid consisting of a coarse grid with a locally fine patch
is very useful. There are quite a few other applications, including e.g. laser-plasma interaction, involving
charged particles where an efficient numerical solution of Maxwell’s equations depends on the use of such
a type of grid based on a coarse grid with finer patches.

In order to devise a two-scale algorithm that can be used on a coarse grid with fine patches, we chose to
extend the method developed by Glowinski and al. [2] for the steady-stage Poisson equation using scalar
Lagrange Finite Elements to the time dependent Maxwell equations solved using Raviart-Thomas-Nédélec
Finite Elements. The idea is based on domain decomposition and multigrid techniques (see [1] or [4]).
We first develop our method in the steady-state case and then extend it naturally to the time-dependent
case using an implicit time discretization.

The paper is organized as follows: First we introduce a continuous problem based on two auxiliary
problems with an artificial interface separating the two regions of interest. The continuous problem
enables us to find an operator on the interface on which to iterate to obtain the continuity of the
tangential component. Then we introduce the Raviart-Thomas-Nédélec finite element that we shall use
and the discretized problem. In the following section we present the algorithm that is used to compute
an approximation of the solution before presenting numerical results.
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2. Continuous problem.

Let Ω ⊂ IR2 be an open, bounded domain of IR2 with sufficiently smooth boundary Γ = ∂Ω and let ω ⊂ Ω
be another open regular domain with boundary γ. We denote by −→n the unit normal vector outward to
the domain ω on γ.

n

Figure 1. Domain.

We consider the following problem: find U ∈ H(
−−→
curl,Ω) such that

{
U + ∇×∇× U = f in Ω,
U ×−→n = 0 on Γ. (2.1)

where f ∈ (L2(Ω))2 is the sum of two functions f1, f2 ∈ (L2(Ω))2, f = f1 + f2 with supp(f2) ⊂ ω.

Keeping in mind that Ω and ω differ by several scale factors, we introduce two auxiliary problems:
find V ∈ H(

−−→
curl,Ω) such that

⎧⎪⎪⎨
⎪⎪⎩

V + ∇×∇× V = f1 in Ω\ω̄ ∪ ω,
V ×−→n = 0 on Γ,[
V

]
= 0 on γ,[

(∇× V ) ×−→n ]
= −λ on γ

(2.2)

and find W ∈ H(
−−→
curl,Ω) such that

{
W + ∇×∇×W = f1 + f2 in ω,
W × −→n = V ×−→n on γ (2.3)

where, [ψ] = ψ+ − ψ− denotes the jump of ψ on γ , ψ+ and ψ− are respectively the restriction of ψ
to Ω\ω and ω. One can see that the solution W of problem (2.3) actually depends on the solution of
problem (2.2), itself depending on the unknown λ. We now want to determine λ in order that the solution
of (2.1) is given by

U = V +.χ(Ω\ω) +W.χ(ω),

where V and W respectively solve (2.2) and (2.3). This means that we will be able to define the solution
of our initial problem, as the solution of (2.2) in Ω\ω, which will be calculated on a large scale (knowing
the solution will be smooth in this region), and as the solution of (2.3) in ω, which will be calculated on
a small scale (knowing that f2, the peaking part of the external force, has its support in ω).

Since supp(f2) ⊂ ω, and with regard to (2.2) and (2.3), it is sufficient to remark that
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Proposition 2.1. If λ is chosen such that

λ = (∇× V −) ×−→n − (∇×W ) ×−→n , (2.4)

then the solution U of the initial problem (2.1) is given by

U = V +.χ(Ω\ω) +W.χ(ω) (2.5)

Proof. The proof is based on the following : Take U ∈ H0(
−−→
curl,Ω) verifying (2.5). Then ∀φ ∈ H0(

−−→
curl,Ω),∫

Ω

U.φ dX +
∫

Ω

(∇× U)(∇× φ) dX =
∫

Ω

U.φ dX +
∫

Ω\ω

(∇× V +)(∇× φ) dX +
∫

ω

(∇×W )(∇× φ) dX

(2.6)
where ∫

Ω\ω

(∇× V +)(∇× φ) dX =
∫

Ω\ω

(∇×∇× V +).φ dX +
∫

Γ∪γ

(∇× V + ×−→m).φ dσ (2.7)

and ∫
ω

(∇×W )(∇× φ) dX =
∫

ω

(∇×∇×W ).φ dX +
∫

γ

(∇×W ×−→n ).φ dσ (2.8)

where −→m is the outbound normal on ∂(Ω\ω), within particular −→m = −−→n on γ.
Hence combining (2.7) and (2.8), equation (2.6) becomes:∫

Ω

U.φ dX +
∫

Ω

(∇× U)(∇× φ) dX =
∫

Ω\ω

f1.φ dX +
∫

ω

(f1 + f2).φ dX

+
∫

γ

{
((∇×W ) ×−→n ) − ((∇× V +) ×−→n )

}
.φ dσ.

(2.9)

Using (2.2) and (2.4) we have

λ := (∇× V −) ×−→n − (∇× V +) ×−→n = (∇× V −) ×−→n − (∇×W ) ×−→n ,

hence ∫
γ

{((∇×W ) ×−→n ) − ((∇× V +) ×−→n )}.φ dσ = 0.

Finally, we obtain ∫
Ω

U.φ dX +
∫

Ω

(∇× U)(∇× φ) dX =
∫

Ω

(f1 + f2).φ dX.

�

Therefore, defining the operator

Tλ = ((∇×W ) ×−→n ) − ((∇× V +) × −→n ),

it is sufficient to find λ such that Tλ = 0. We can also prove that

Lemma 2.2. The operator T is given by

Tλ = λ+ ((∇×W ) ×−→n ) − ((∇× V
+
) ×−→n ) (2.10)

where V and W satisfy respectively {
V + ∇×∇× V = f1 in Ω,
V ×−→n = 0 on Γ,

(2.11)
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and {
W + ∇×∇×W = f1 + f2 in ω,
W ×−→n = V ×−→n on γ.

(2.12)

Proof. We give a sketch of the proof. We introduce W̃ = W − V − and W̃ = W − V
−

and notice that
they both verify {

E + ∇×∇× E = f2 in ω,
E ×−→n = 0 on γ. (2.13)

The uniqueness of the solution gives (∇× W̃ ) ×−→n = (∇× W̃ ) ×−→n
which means that

(∇×W ) ×−→n − (∇× V −) ×−→n = (∇×W ) ×−→n − (∇× V
−

) ×−→n .

Then the result follows by adding and subtracting in each side of the above equation (∇× V +)×−→n and
by noting that

(∇× V
+
) ×−→n − (∇× V

−
) ×−→n = 0,

(∇× V +) ×−→n − (∇× V −) ×−→n = −λ,
and

((∇×W ) ×−→n ) − ((∇× V +) ×−→n ) = Tλ.

�

Thus, it is trivial that Tλ = 0 is equivalent to λ = ((∇× V
+
) ×−→n ) − ((∇×W ) ×−→n ).

But if this is true when we consider the continuous problems (2.11) and (2.12), it is sure that solving the
corresponding discretized problems and defining

λH = ((∇× V
+

H) ×−→n ) − ((∇×Wh) ×−→n ) (2.14)

introduces errors that we will have to correct. But still, the approach is quite clear at this moment : by
solving the discretized problems of (2.11) and (2.12) we define λH = ((∇×V

+

H)×−→n )− ((∇×Wh)×−→n )
and then we can solve the discretized problems of (2.2) and (2.3) and finally define the solution of the
initial problem (2.1) as in (2.5).

3. Numerical approximation.

We propose to use Raviart-Thomas-Nédélec finite-elements (see [3]). We recall that these finite-elements
are given by the following triplet (K,P,Σ) where K denotes a quadrilateral, P denotes the polynomial

space defined by (P0)2 ⊕
(
αy
βx

)
and Σ is the set of four linear forms defined by σi(f) =

∫
Γi

f.τidσ

where {Γi}i=1..4 is the set of the four edges of the quadrilateral and {τi}i=1..4 is a set of four associated
unit tangential vectors.

We give for example the four basis functions associated to a reference quadrilateral [0, h] × [0, h] (i.e.
the four polynomial functions Pi in P which satisfies σi(Pj) = δij ∀(i, j) ∈ {1..4}2):

P1 =
(

1
h (1 − y

h )
0

)
, P2 =

(
0
x
h2

)
, P3 =

(
y
h2

0

)
, P4 =

(
0

1
h (1 − x

h )

)
.
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Figure 2. reference quadrilateral.

Once the two meshes are fixed, we define two spaces of finite-element approximation PH and Ph respec-
tively associated to the coarse mesh over the whole domain Ω and to the fine mesh over ω.
Assuming that the boundary γ can be written as the union of some edges of coarse mesh elements, we
also define a finite-element approximation space ΔH which corresponds to the tangential trace on γ of
any function in PH . More precisely, ΔH is a 1D IP0 finite-element space on γ discretized by the edges of
the coarse mesh and for which the degrees of freedom are the integrals over each edge. It is in this last
space that λ has to be searched.

The idea is to define an operator TH : ΔH → ΔH approximating appropriately Tλ and then to search
for λH such that THλH = 0 in order to correct the λH defined in (2.14). Thus, an approximation of the
solution U of the problem (2.1) is given by

UHh = V +
H .χ(Ω\ω) +Wh.χ(ω) (3.1)

where V +
H is the restriction on Ω\ω of the solution of the following equation

∫
Ω

VH .φ dX +
∫

Ω

(∇× VH)(∇× φ) dX =
∫

Ω

f1.φ dX +
∫

γ

λH .φ dσ ∀φ ∈ PH , (3.2)

and Wh is the solution of

∫
ω

Wh.φ dX +
∫

ω

(∇×Wh)(∇× φ) dX =
∫

ω

(f1 + f2).φ dX ∀φ ∈ Ph (3.3)

with boundary conditions Wh ×−→n = VH ×−→n on γ.

One can see that the tangential restriction ((∇×V +
H )×−→n ) on γ is by definition in ΔH , but it is not the

case of ((∇×Wh)×−→n ). This means that we can not directly define TH = ((∇×Wh)×−→n )−((∇×V +
H )×−→n ).

Then, the most natural way to construct a consistant approximation of Tλ is to find δH ∈ ΔH such
that ∫

γ

δH .Φ dσ =
∫

γ

((∇×Wh) ×−→n ) − ((∇× V +
H ) ×−→n ).Φ dσ ∀Φ ∈ ΔH , (3.4)

and then define THλH = δH . This can be computed very easily, as by using Raviart-Thomas-Nédélec
finite-elements, any function in ΔH is constant by edge.
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A more sophisticated way to define TH is the following : rather than integrating directly∫
γ

((∇×Wh) ×−→n ).Φ dσ

and ∫
γ

((∇× V +
H ) ×−→n ).Φ dσ

in equation (3.4) which will be a very coarse approximation because we only use information on the
boundary γ, we use the fact that if

V + ∇×∇× V = f1 in Ω, (3.5)

then∫
Ω\ω

V +
H .φ dX +

∫
Ω\ω

(∇× V +
H )(∇× φ) dX =

∫
Ω\ω

f1.φ dX −
∫

γ

((∇× V +
H ) ×−→n ).φ dσ ∀φ ∈ PH ,

(3.6)
and combining this with equation (3.2) we obtain

∫
γ

((∇× V +
H ) ×−→n ).Φ dσ =

∫
ω

V −
H .Φ̃ dX +

∫
ω

(∇× V −
H )(∇× Φ̃) dX −

∫
ω

f1.Φ̃ dX −
∫

γ

λH .Φ dσ,

(3.7)
for any Φ in ΔH , where Φ̃ is an extension of Φ in PH .

In the same way we obtain another expression of∫
γ

((∇×Wh) ×−→n ).Φ dσ =
∫

ω

Wh.Φ̃ dX +
∫

ω

(∇×Wh)(∇× Φ̃) dX −
∫

ω

(f1 + f2).Φ̃ dX. (3.8)

We finally propose to calculate THλH = δH where δH verifies : ∀Φ ∈ ΔH ,

∫
γ

δH .Φ dσ =
∫

γ

λH .Φ dσ +
(∫

ω

Wh.Φ̃ dX +
∫

ω

(∇×Wh)(∇× Φ̃) dX −
∫

ω

(f1 + f2).Φ̃ dX

)

−
(∫

ω

V −
H .Φ̃ dX +

∫
ω

(∇× V −
H )(∇× Φ̃) dX −

∫
ω

f1.Φ̃ dX

)
.

(3.9)

4. Resolution algorithm.

As said at the end of section 2 the use of numerical resolution introduces some errors that have to be
corrected. This means that defining λH by (2.14) does not ensure that THλH = 0. This is the reason
why we decide to apply a fixed point method on (I − TH) (which should be accelerated by a GRMES
algorithm if necessary) as follows :

(1) Define λH = 0 identically as an initialisation.

(2) Solve ⎧⎪⎪⎨
⎪⎪⎩

VH + ∇×∇× VH = f1 in Ω,
VH ×−→n = 0 on Γ,[
VH ×−→n ]

= 0 on γ,[
(∇× VH) ×−→n ]

= −λH on γ

(4.1)

This resolution gives VH ×−→n on γ.
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(3) Solve {
Wh + ∇×∇×Wh = f1 + f2 in ω,
Wh × −→n = VH ×−→n on γ. (4.2)

(4) Define THλH = δH using equation (3.9).

(5) Finally define λH = λH − THλH .

(6) Return to step 2.

One can see that at the first iteration, with λH = 0, solving (4.1) and (4.2), defining THλH = δH and
redefining λH = λH − THλH corresponds exactly to what we said at the end of section 2, i.e solving the
discretized problems of (2.11) and (2.12) and defining λH as in (2.14), so that defining UHh as in (3.1)
with VH and Wh calculated at the second iteration should be a good approximation of the solution of the
initial problem. The further iterations correspond only to the correction of λH which lead to THλH = 0.

5. Numerical results.

In this section we give numerical results which highlight the efficiency of the two-scale method. In the
following, the solution of the initial problem using our two-scale method is called numerical solution, and
the solution of the initial problem calculated directly on the extension of the fine grid over the whole
domain is refered to be the reference solution. As we are only interested in the loss of precision when we
use our method rather than a direct resolution on a uniformly refined mesh, we will only consider the
relative error between these two solutions; which will be given in norm L2(Ω) and H(

−−→
curl,Ω). We will

split these errors into interior errors and exterior errors which respectively correspond to the errors in ω
and Ω\ω. We choose our first and second test case in order that the solution of the initial problem in
Ω\ω is given by the restriction to Ω\ω of the solution of (2.2). In test case three the solution of the initial
problem in Ω\ω really depends on λ, and for the fourth test case we take f1 and f2 as for the third test
case, but we define ω slightly greater than supp(f2).

5.1. Test case 1.

For our first test case we consider Ω = [−π
2
,
π

2
] × [−π

2
,
π

2
], ω = [−π

6
,
π

6
] × [−π

6
,
π

6
], f1 =

(
2 cos(y)
2 cos(x)

)
as

background source and f2 = 0 identically. The exact solution is given by U =
(

cos(y)
cos(x)

)
. This test case

is well adapted to be solved by our low order finite-elements : the solution is constant in the tangential
direction, i.e. in the direction where the finite-element is IP0.

If f2 = 0, the only interest in applying our method is to verify that we already have a good approx-
imation of the solution at the first iteration, and that this solution remains almost constant during the
further iterations (the solution should be slightly modified because the resolution in ω, which makes
appear f1 + f2 as source term, is better due to the finer grid, even if f2 = 0).

We give in Figure 3 the first component of the reference solution and the numerical solution after one
iteration. We give in Tables 1 to 3 the errors after 1, 2, 5, 10 and 50 iterations for 9 × 9, 27 × 27 and
45 × 45 coarse grids and fine grids three times finer in each case.

5.2. Test case 2.

The aim of this second test case is to construct a solution of the initial problem (2.1) in Ω\ω that does not
depend on the solution of problem (2.3) in ω, this can be done easily by considering a Gaussian source
term f2 localized in ω which vanishes (numerically) on γ.
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Figure 3. First field of the reference solution and the numerical solution after one
iteration for the first test case.

Iteration 1 2 5 10
L2 error 0.127792E-01 0.129802E-01 0.129983E-01 0.129983E-01

L2 exterior error 0.141880E-01 0.144605E-01 0.144782E-01 0.144782E-01
L2 interior error 0.376103E-02 0.300233E-02 0.305109E-02 0.305110E-02
H(

−−→
curl) error 0.599090E-01 0.598985E-01 0.598982E-01 0.598982E-01

H(
−−→
curl) exterior error 0.635364E-01 0.635261E-01 0.635258E-01 0.635258E-01

H(
−−→
curl) interior error 0.106011E-02 0.451137E-03 0.433064E-03 0.433062E-03

Table 1. Numerical errors on a 9 × 9 grid for the first test case.

Iteration 1 2 5 10
L2 error 0.142712E-02 0.144246E-02 0.144295E-02 0.144295E-02

L2 exterior error 0.158463E-02 0.161307E-02 0.161352E-02 0.161352E-02
L2 interior error 0.417327E-03 0.184581E-03 0.187740E-03 0.187741E-03
H(

−−→
curl) error 0.199886E-01 0.199878E-01 0.199878E-01 0.199878E-01

H(
−−→
curl) exterior error 0.212009E-01 0.212000E-01 0.212000E-01 0.212000E-01

H(
−−→
curl) interior error 0.118266E-03 0.178047E-04 0.183512E-04 0.183514E-04

Table 2. Numerical errors on a 27 × 27 grid for the first test case.

Iteration 1 2 5 10
L2 error 0.513971E-03 0.519377E-03 0.519473E-03 0.519473E-03

L2 exterior error 0.570703E-03 0.580997E-03 0.581085E-03 0.581085E-03
L2 interior error 0.150221E-03 0.595088E-04 0.602927E-04 0.602931E-04
H(

−−→
curl) error 0.119941E-01 0.119939E-01 0.119939E-01 0.119939E-01

H(
−−→
curl) exterior error 0.127216E-01 0.127214E-01 0.127214E-01 0.127214E-01

H(
−−→
curl) interior error 0.425890E-04 0.753758E-05 0.769877E-05 0.769884E-05

Table 3. Numerical errors on a 45 × 45 grid for the first test case.

More precisely we consider Ω = [−12, 12]× [−12, 12], ω = [−4, 4]× [−4, 4], f1 =

⎛
⎜⎝ (

π2

576
+ 1) cos(

πy

24
)

(
π2

576
+ 1) cos(

πx

24
)

⎞
⎟⎠
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as background source and f2 =

⎛
⎜⎝ ηe

−(x2+y2)
ε (1 +

2
ε
− 4

(y2 − xy)
ε2

)

ηe
−(x2+y2)

ε (1 +
2
ε
− 4

(x2 − xy)
ε2

)

⎞
⎟⎠ as local source in ω where ε = 0.5

and η = 10.

We give in Figure 4 the first field of the reference solution and the numerical solution after one iter-
ation computed on a 45 × 45 coarse grid and a three times finer fine grid (this means the reference
solution is calculated on a 135 × 135 grid). In Tables 4 to 6 we give the errors calculated in the same
conditions as for the first test case.
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Figure 4. First field of the reference solution and the numerical solution after one
iteration for the second test case.

Iteration 1 2 5 10
L2 error 0.823368E-02 0.854288E-02 0.859216E-02 0.859221E-02

L2 exterior error 0.101939E-01 0.105637E-01 0.106163E-01 0.106164E-01
L2 interior error 0.132116E-02 0.154363E-02 0.165281E-02 0.165288E-02
H(

−−→
curl) error 0.946069E-02 0.947588E-02 0.948614E-02 0.948615E-02

H(
−−→
curl) exterior error 0.123393E-01 0.123511E-01 0.123566E-01 0.123566E-01

H(
−−→
curl) interior error 0.760773E-03 0.927762E-03 0.106761E-02 0.106779E-02

Table 4. Numerical errors on a 9 × 9 grid for the second test case.

Iteration 1 2 5 10
L2 error 0.869482E-03 0.874768E-03 0.875010E-03 0.875010E-03

L2 exterior error 0.113507E-02 0.114716E-02 0.114750E-02 0.114750E-02
L2 interior error 0.137202E-03 0.508224E-04 0.503533E-04 0.503526E-04
H(

−−→
curl) error 0.270281E-02 0.270232E-02 0.270232E-02 0.270232E-02

H(
−−→
curl) exterior error 0.410376E-02 0.410342E-02 0.410342E-02 0.410342E-02

H(
−−→
curl) interior error 0.589900E-04 0.308610E-04 0.313108E-04 0.313108E-04

Table 5. Numerical errors on a 27 × 27 grid for the second test case.
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Iteration 1 2 5 10
L2 error 0.312617E-03 0.312908E-03 0.312931E-03 0.312931E-03

L2 exterior error 0.408765E-03 0.411261E-03 0.411291E-03 0.411291E-03
L2 interior error 0.499898E-04 0.110458E-04 0.110195E-04 0.110195E-04
H(

−−→
curl) error 0.160328E-02 0.160314E-02 0.160314E-02 0.160314E-02

H(
−−→
curl) exterior error 0.246170E-02 0.246159E-02 0.246159E-02 0.246159E-02

H(
−−→
curl) interior error 0.210766E-04 0.672441E-05 0.677168E-05 0.677168E-05

Table 6. Numerical errors on a 45 × 45 grid for the second test case.

5.3. Test case 3.

In this test case, we consider Ω = [−π
2
,
π

2
] × [−π

2
,
π

2
], ω = [−π

6
,
π

6
] × [−π

6
,
π

6
], f1 =

(
2 cos(y)
2 cos(x)

)
as

background source and f2 = 10 cos(9x) cos(9y)χ(ω)
(

1
1

)
.

We give in Figure 5 the first field of the reference solution, the numerical solution after one iteration
and the numerical solution after two iterations. One can see that the algorithm produces exactly what
we expected : what we see after the first iteration is not supposed to be an approximation of the solution
but something that allows us to calculate λH which is an approximation of λ. Then, at the second
iteration, the algorithm calculates an approximation of the solution of the initial problem. We give in
Tables 7 to 9 the errors calculated in the same conditions as for the first test case.

Iteration 1 2 5 10
L2 error 0.398497E+00 0.281039E+00 0.278372E+00 0.278371E+00

L2 exterior error 0.493352E+00 0.379490E+00 0.387446E+00 0.387477E+00
L2 interior error 0.347533E+00 0.223060E+00 0.211780E+00 0.211754E+00
H(

−−→
curl) error 0.562216E-01 0.454014E-01 0.450850E-01 0.450844E-01

H(
−−→
curl) exterior error 0.751863E-01 0.636354E-01 0.635357E-01 0.635356E-01

H(
−−→
curl) interior error 0.302904E-01 0.164788E-01 0.151184E-01 0.151155E-01

Table 7. Numerical errors on a 9 × 9 grid for the third test case.

Iteration 1 2 5 10
L2 error 0.387811E+00 0.740680E-01 0.731386E-01 0.731386E-01

L2 exterior error 0.508526E+00 0.136386E+00 0.136992E+00 0.136993E+00
L2 interior error 0.329459E+00 0.203193E-01 0.126115E-01 0.126112E-01
H(

−−→
curl) error 0.409944E-01 0.147756E-01 0.147125E-01 0.147125E-01

H(
−−→
curl) exterior error 0.515924E-01 0.222988E-01 0.222920E-01 0.222920E-01

H(
−−→
curl) interior error 0.304299E-01 0.195685E-02 0.877946E-03 0.877902E-03

Table 8. Numerical errors on a 27 × 27 grid for the third test case.

5.4. Test case 4.

For our fourth test case we consider Ω = [−π
2
,
π

2
] × [−π

2
,
π

2
], ω = [−7π

30
,
7π
30

] × [−7π
30
,
7π
30

], f1 =
(

2 cos(y)
2 cos(x)

)

as background source and f2 = 10 cos(9x) cos(9y)χ([−π
6 ,

π
6 ] × [−π

6 ,
π
6 ])

(
1
1

)
.

One can see that the only difference between this test case and the third test case is that we take ω
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Figure 5. First field of the reference solution, the numerical solution after one iteration
and the numerical solution after two iterations for the third test case.

Iteration 1 2 5 10
L2 error 0.386945E+00 0.435838E-01 0.433808E-01 0.433808E-01

L2 exterior error 0.509749E+00 0.821687E-01 0.822958E-01 0.822958E-01
L2 interior error 0.328072E+00 0.668444E-02 0.350526E-02 0.350523E-02
H(

−−→
curl) error 0.396788E-01 0.886878E-02 0.885411E-02 0.885411E-02

H(
−−→
curl) exterior error 0.492684E-01 0.134717E-01 0.134723E-01 0.134723E-01

H(
−−→
curl) interior error 0.304401E-01 0.746564E-03 0.296818E-03 0.296817E-03

Table 9. Numerical errors on a 45 × 45 grid for the third test case.

slightly greater than supp(f2). We give in Figure 6 the first field of the reference solution and the nu-
merical solution after two iterations. We give in Table 10 the errors calculated on a 45 × 45 coarse grid
and a three time finer fine grid.

5.5. Interpretation

One can see that the error over the whole domain does not seem to decrease any more after a few
iterations. After a closer look at the results we can precise what happens : the main part of the error is
due to what we called the exterior error, i.e. the error in Ω\ω. This error does not decrease any more
after a few iterations; the interior error, which is considerably smaller, really decreases iteration after
iteration so that we can conclude that the only error we add by using our two-scale decomposition comes
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Figure 6. First field of the reference solution and the numerical solution after two
iterations for the fourth test case.

Iteration 1 2 5 10
L2 error 0.881475E-01 0.743515E-02 0.741946E-02 0.741946E-02

L2 exterior error 0.145889E+00 0.182483E-01 0.182695E-01 0.182695E-01
L2 interior error 0.714757E-01 0.768414E-03 0.398887E-03 0.398886E-03
H(

−−→
curl) error 0.250256E-01 0.695290E-02 0.695237E-02 0.695237E-02

H(
−−→
curl) exterior error 0.371278E-01 0.120720E-01 0.120716E-01 0.120716E-01

H(
−−→
curl) interior error 0.159048E-01 0.815904E-04 0.357121E-04 0.357123E-04

Table 10. Numerical errors on a 45 × 45 grid for the fourth test case.

from the fact that we use a coarser finite-element space in Ω\ω which is unable to fit the solution as well
as the finer space defined on the extension of the fine grid over the whole domain Ω. Indeed, it is not
only necessary to assure that the finite-element space is fine enough to capture the source term (what we
did by defining Ph in ω) but also that the finite-element space is fine enough to represent the solution
over the whole domain Ω, which is not trivial as we use low order finite-elements, knowing that even if
a peaking source term is located in ω, it also perturbates, in general, the solution in Ω\ω. We highlight
this consideration by simply taking ω slightly larger than supp(f2), as in the fourth test case, and see
how much better the results are, compared to the third test case.

Perspectives

One can see that this work opens many perspectives of investigation : for example some of the next
studies that will be done are the use of higher order finite-elements to ensure a better resolution in Ω\ω
even on a coarse grid, and applying the multi-domain method for solving, at each time step, a multi-scale
stationary Maxwell problem. Another point of interest is the following : the interest of our method
remains in the fact that we use a finer finite-element space Ph were the source term is non-smooth, but
rather than refining the mesh, this could be done by using local higher order finite-elements in ω...
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