

Rainbow Solutions to x + y = z in $[m] \times [n]$

KEAN FALLON, JOE MILLER, NATHAN WARNBERG, AND LAURA ZINNEL*

University of Wisconsin-La Crosse Department of Mathematics and Statistics

RAINBOWS IN $[m] \times [n]$

The set $[m] \times [n]$ is the set of ordered pairs of positive integers (i, j) where $i \leq m$ and $j \leq n$.

We will be looking at coloring the set $[m] \times [n]$ and finding solutions to x + y = z.

A **rainbow solution** is a solution where each element in the solution is a different color.

[4]x[5]		j							
		1	2 3		4	5			
	1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)			
:	2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)			
'	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)			
	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)			

As illustrated in the $[4] \times [5]$ array above,

(1,3)+(2,2)=(3,5) is a solution.

(1,1)+(1,2)=(2,3) is a rainbow solution.

Our Goal:

Use as many colors as possible to color a set $[m] \times [n]$ while avoiding rainbow solutions.

Equivalently, find the least number of colors needed to color $[m] \times [n]$ and guarantee a rainbow solution.

DEFINITIONS AND BASIC LEMMAS

Start in the leftmost column or topmost row and travel down and right at 45° . This forms a **diagonal**. D_1 is just the element (m, 1). The m^{th} diagonal (main diagonal), D_m , starts at (1, 1).

A color is <u>distinct</u> in a diagonal if it only appears in that diagonal and no other diagonal.

An element of the diagonal D_k and an element of D_{k+1} that are colored distinctly and are not adjacent forms a jump.

Landing Lemma:

If a point is in the k^{th} diagonal D_k and a point is in the ℓ^{th} diagonal D_ℓ , then their sum is in $D_{k+\ell-m}$ (where m comes from $[m] \times [n]$).

LOWER BOUND

Lower Bound: Show that the set $[m] \times [n]$ can have (m+n) colors without rainbow solutions.

Color $[m] \times [n]$ with m+n colors as below, this avoids rainbow solutions, as desired.

UPPER BOUND

Upper Bound: Show $[m] \times [n]$ can never have (m+n+1) colors without a rainbow solution. We have shown this is true for m=2,3,4,5 and any integer n.

[6]	, [0]	j								
[6] x [9]		1	2	3	4	5	6	7	8	9
	1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	(1,8)	(1,9)
	2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	(2,8)	(2,9)
i	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)	(3,8)	(3,9)
	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)	(4,8)	(4,9)
	5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)	(5,8)	(5,9)
	6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)	(6,8)	(6,9)

One Distinct Color Lemma: Each (non-main) diagonal can only have one color.

Upper Left and Bottom Right Lemma: No distinct color can appear above and to the left of, or below and to the right of another distinct color.

Stairstep Lemma: If an element (i, j) of a diagonal D_k is colored distinctly, then the distinct color in D_{k+1} must be directly above or to the right of (i, j).

Row and Column Lemma: The first several rows and columns have a distinct color.

FIGURE FOR DEFINITIONS AND BASIC LEMMAS

[4]	v [0]					j				
[4] x [9]		1	2	3	4	5	6	7	8	9
	1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	(1,8)	(1,9)
i	2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	(2,8)	(2,9)
	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)	(3,8)	(3,9)
	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)	(4,8)	(4,9)

PROOF TREE

FUTURE RESEARCH

- Finish $[m] \times [n]$
- x+y=z in $[m]\times[n]\times[\ell]$
- w+x+y=z in $[m]\times[n]$

APPLICATIONS

- checking software/hardware reliability
- automated theorem proving
- approximation algorithms

ACKNOWLEDGEMENTS

We would like to acknowledge Dr. Nathan Warnberg for his advice and guidance, the UWL Undergraduate Research & Creativity Office for funding this research, and the organizers of NCUWM for the opportunity to present today.