PROJECT I - MATH 800
 SPRING 2015

(1) Problem 19/page 23;

Solution: Let

$$
w_{j}=\frac{\bar{z}_{j}}{\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}\right)^{1 / 2}} .
$$

Clearly $\sum_{j=1}^{n}\left|w_{j}\right|^{2}=1$ and hence we should have $\left|\sum_{j=1}^{n} z_{j} w_{j}\right| \leq 1$. But

$$
\sum_{j=1}^{n} z_{j} w_{j}=\sum_{j=1}^{n} \frac{\left|z_{j}\right|^{2}}{\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}\right)^{1 / 2}}=\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}\right)^{1 / 2}
$$

Thus,

$$
\sum_{k=1}^{n}\left|z_{k}\right|^{2} \leq 1
$$

(2) Problem 29/page 24;
(3) Problem 34/page 25;

Solution: We have

$$
\frac{\overline{\partial f}}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)=\frac{1}{2}\left(\frac{\partial \bar{f}}{\partial x}+i \frac{\partial \bar{f}}{\partial y}\right)=\frac{\partial \bar{f}}{\partial \bar{z}} .
$$

(4) Problem 47/page 26;

Solution: Let $f=u+i v$. Then

$$
g=\log |f|=\frac{1}{2} \log |f|^{2}=\frac{1}{2} \log \left(u^{2}+v^{2}\right) .
$$

Thus,

$$
g_{x}=\frac{2 u u_{x}+2 v v_{x}}{u^{2}+v^{2}}, g_{y}=\frac{2 u u_{y}+2 v v_{y}}{u^{2}+v^{2}} .
$$

Next,

$$
\begin{aligned}
& g_{x x}=2 \frac{\left(u_{x}^{2}+v_{x}^{2}+u u_{x x}+v v_{x x}\right)\left(u^{2}+v^{2}\right)-2\left(u u_{x}+v v_{x}\right)^{2}}{\left(u^{2}+v^{2}\right)^{2}} \\
& g_{y y}=2 \frac{\left(u_{y}^{2}+v_{y}^{2}+u u_{y y}+v v_{y y}\right)\left(u^{2}+v^{2}\right)-2\left(u u_{y}+v v_{y}\right)^{2}}{\left(u^{2}+v^{2}\right)^{2}}
\end{aligned}
$$

Adding them together and using the harmonicity of $u, v: u_{x x}+u_{y y}=0=$ $v_{x x}+v_{y y}$ and the Cauchy Riemann equations $u_{x}=v_{y}, u_{y}=-v_{x}$ yields that $g_{x x}+g_{y y}=0$.
(5) Show that the functions

$$
f(x, y)=\frac{y}{x^{2}+y^{2}} ; g(x, y)=-\frac{x}{x^{2}+y^{2}}
$$

satisfy $f_{y}=g_{x}$ for each $\mathbf{R}^{2} \backslash\{0\}$, but on the other hand there is no C^{2} funtion h on $\left\{(x, y): 0<x^{2}+y^{2}<1\right\}$ so that

$$
h_{x}=f, h_{y}=g .
$$

Explain why this does not contradict the generalized version of Theorem 1.5.1 that we have established in class.
Hint: To show the non-existence of h argue by contradiction, by considering the path integral

$$
\int_{x^{2}+y^{2}=1} f(x, y) d x+g(x, y) d y
$$

Solution: The proof of $f_{y}=g_{x}$ is by inspection. Assume that there is an h, so that $h_{x}=f, h_{y}=g$. Then,

$$
\begin{aligned}
& \int_{x^{2}+y^{2}=1} f(x, y) d x+g(x, y) d y= \\
& \left.\int_{0}^{2 \pi} h_{x}(\cos (t), \sin (t))(-\sin (t))+h_{y}(\cos (t), \sin (t))(\cos (t))\right) d t= \\
& \int_{0}^{2 \pi} \frac{d}{d t} h(\cos (t), \sin (t)) d t=h(1,0)-h(1,0)=0
\end{aligned}
$$

On the other hand,

$$
\int_{x^{2}+y^{2}=1} f(x, y) d x+g(x, y) d y=\int_{0}^{2 \pi}\left(-\sin ^{2}(t)-\cos ^{2}(t)\right) d t=-2 \pi \neq 0
$$

a contradiction. This is not in a contradiction with Theorem 1.5.1, because the functions f, g are not well-defined at $x=y=0$, in the middle of the domain.
(6) Problem 55/page 27 without the counterexample. I will discuss the counterexample later.
Solution: Let F_{1}, F_{2} be the anti-derivatives on U_{1}, U_{2} respectively. On $U=U_{1} \cap U_{2}$, we have

$$
F_{1}^{\prime}=f=F_{2}^{\prime}
$$

Hence, there is a constant, say C, so that $F_{2}=F_{1}+C$. Define

$$
F(z)=\left\{\begin{array}{cc}
F_{1}(z)+C & z \in U_{1} \\
F_{2}(z) & z \in U_{2}
\end{array}\right.
$$

The function F is consistently defined on U. Moreover, $F^{\prime}(z)=f(z)$.

