
UC Berkeley
UC Berkeley Previously Published Works

Title
Python for Scientists and Engineers

Permalink
https://escholarship.org/uc/item/93s2v2s7

Journal
Computing in Science & Engineering, 13(2)

ISSN
1521-9615

Authors
Millman, K. Jarrod
Aivazis, Michael

Publication Date
2011-03-07

DOI
10.1109/MCSE.2011.36

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/93s2v2s7
https://escholarship.org
http://www.cdlib.org/

Python for Scientists and Engineers

K. Jarrod Millman, University of California, Berkeley
Michael Aivazis, California Institute of Technology

During the last decade, Python (an interpreted, high-level programming language)
has arguably become the de facto standard for exploratory, interactive, and
computational driven scientific research. This issue discusses the advantages of
Python for scientific research and presents several of the core Python libraries
and tools used in scientific research. While the articles in the present issue are
self-contained, they nicely compliment the articles in the May/June 2007 special
issue of CiSE titled “Python: Batteries Included.” 1

In addition to the technical advantages described in this issue, one of Python’s
most compelling assets is the SciPy community. The SciPy community is a
well-established and growing group of scientists, engineers, and researchers
using, extending, and promoting its use for scientific research. Our community
has formed around two main software packages, NumPy and SciPy. NumPy
provides a multi-dimensional array object, a powerful data structure that has
become the standard representation of numerical data in Python. SciPy provides
additional functionality for NumPy arrays including toolboxes for IO, linear
algebra, statistics, optimization, integration, interpolation, Fourier transforms,
special functions, sparse matrices, image and signal processing, maximum entropy
models, and clustering.

A short history of scientific computing for Python

While Python wasn’t specifically designed to meet the computational needs
of the scientific community, it quickly attracted the interest of scientists and
engineers. Despite its expressive syntax and a rich collection of built-in data
types (e.g., strings, lists, dictionaries), it became clear that in order to provide
the necessary framework for scientific computing Python needed to provide an
array type for numerical computing.

In order to address this need, the Python community formed a special interest
1Paul Dubois. Python: Batteries Included, Computing in Science and Engineering, vol. 9,

no. 3, May/June 2007.

1

group (matrix-sig) 2 in 1995 focused on creating a new array data type. Jim
Hugunin, a MIT graduate student, developed a C-extension module called
numeric, based on Jim Fulton’s matrix object released the year before and
incorporating many ideas from the matrix-sig. In June 1997, Jim announced
that he was leaving the project to focus on Jython, an implementation of Python
using Java. After Jim left, Paul Dubois took over as the lead NumPy developer.

During these early years, there was a lot of interaction between the standard and
scientific Python communities. In fact Guido van Rossum, Python’s Benevolent
Dictator For Life (BDFL), was an active member of the matrix-sig. This close
interaction resulted in Python gaining new features and syntax specifically needed
by the scientific Python community. While there were a number of miscellaneous
changes such as the addition of complex numbers, many of these changes focused
on providing a more succinct and easier to read syntax for array manipulation.
For instance, the parenthesis around tuples were made optional so that array
elements could be accessed like this a[0,1] instead of a[(0,1)]. The slice syntax
gained a step argument (e.g., a[::2] instead of just a[:]) and an ellipsis operator,
which is very useful when dealing with multi-dimensional data structures.

For the next five years, a relatively small, but committed community of scientists
and engineers using Python for their computing needs slowly formed around
numeric. This community continued to improve numeric and began develop-
ing additional packages (e.g., FFT, special functions, statistics, integration,
optimization) for scientific computing.

By 2000, there was a growing number of extension modules and increasing
interest in creating a complete environment for scientific computing in Python.
Over the next three years, several things happened that greatly increased the
usefulness of Python for scientific computing. Travis Oliphant, Eric Jones, and
Pearu Peterson merged code they had written and called the resulting package
SciPy. The newly created package provided a standard collection of common
numerical operations (e.g., special functions, optimization, genetic algorithms)
on top of the numeric array data structure. Fernando Perez released the first
version of IPython, an enhanced interactive shell widely used in the scientific
community. John Hunter released the first version of matplotlib, the standard
2D plotting library for scientific computing. From these new packages, the SciPy
community was born.

However, while numeric had proven useful as a foundation for these new packages
its codebase had become difficult to extend and development had slowed. To
address this problem, Perry Greenfield, Todd Miller, and Rick White at the Space
Telescope Science Institute developed a new array package for Python, called
numarray, which pioneered many useful features. Unfortunately, the division
between numeric and numarray fractured the community for a number of years.
This division was breached in 2006, when Travis Oliphant released NumPy, which
is a significant rewrite of numeric incorporating the useful features pioneered by

2http://mail.python.org/pipermail/matrix-sig/

2

http://mail.python.org/pipermail/matrix-sig/

numarray. Since then, the SciPy community has rapidly grown and the basic
stack of tools has steadily improved and expanded.

Python for mathematicians

While Python has been used for serious numerical computing since the mid-90s,
Python has only in last few years become popular for symbolic computing. Let’s
take a quick look at three of the most popular projects for mathematical and
symbolic computing: sympy, mpmath, and Sage.

SymPy is a computer algebra system written in pure Python. To give you an
idea of what SymPy provides, let’s consider a simple SymPy session:

>>> from sympy import var, sin, integrate, pi
>>> var('x')
x
>>> sin(x)
sin(x)
>>> sin(x).diff(x)
cos(x)
>>> integrate(sin(x), x)
-cos(x)
>>> integrate(sin(x), (x, 0, pi))
2

After importing a few things from SymPy, we declare one symbol x, using the var
function. Now we can use x symbolically by using either procedural (integrate)
or object oriented (diff) styles.

The mpmath library provides multi-precision floating-point arithmetic. Besides
arbitrary-precision real and complex floating-point number types, mpmath has
functions for infinite series and products, integrals, derivatives, limits, nonlinear
equations, ordinary differential equations, special functions, function approxima-
tion and linear algebra. Since Python’s built-in integers are inefficient at high
precision, mpmath uses GMP/MPIR integers when available and uses Cython
(described in this issue) to speed up computational primitives. As a simple
demonstration,

(∫∞
−∞ e−x2

dx
)2

= π may be evaluated accurately to 50 digits as
follows:

>>> from mpmath import mp, quad, inf, exp
>>> mp.dps = 50 # set precision
>>> mp.pretty = True # nice output formatting
>>> quad(lambda x: exp(-x**2), [-inf,inf])**2
3.1415926535897932384626433832795028841971693993751

Sage is an open source mathematical software system, which bundles several

3

open source packages and provides a uniform Python-based interface. It covers a
huge range of mathematical domains including linear algebra, calculus, number
theory, cryptography, commutative algebra, group theory, combinatorics, graph
theory, and many more. While NumPy, SciPy, matplotlib, and several other
libraries provide a numerical computing environment similar to Matlab, Sage is
more similar to tools like Mathematica, Maple, or Magma.

The current issue doesn’t provide an in-depth discussion of the growing impor-
tance of Python for mathematical and symbolic computing, but the July/August
2012 issue of CiSE will focus on mathematical and symbolic computing with
Python.

In this issue

We begin this issue with an overview of the Python ecosystem for scientific
computing. Today’s scientific codes require not only raw numerical performance
and ease of use, but often need to support network protocols, web and database
driven applications, sophisticated graphical interfaces, among other things. The
overview argues that Python augmented with a stack of tools developed specifi-
cally for scientific computing forms a highly productive environment for modern
scientific computing.

The next two articles focus on improving the efficiency of Python code. NumPy
and Cython provide complimentary approaches to balancing the needs of raw
performance while retaining Python’s ease of use. NumPy provides a multi-
dimensional array structure as well as several operations on arrays. Cython is a
popular tool for creating Python extension modules in C, C++, and Fortran.

The final article introduces a 3D scientific visualization package for Python
called Mayavi. Mayavi provides several interfaces allowing scientists to develop
simple scripts to visualize their data, to load and explore their data with a
full-blown interactive, graphical application, as well as assembling their own
custom applications from Mayavi widgets.

Next steps

We hope you enjoy this special issue and try the tools presented. For more
information, the articles in the 2007 issue are still highly relevant and strongly
recommended for readers interested in learning more about the use of Python
in scientific computing. We also encourage you to attend one of the annual
SciPy conferences, which included tutorials and talks. The tenth US SciPy
conference takes place this summer in Austin, TX from July 11 to July 16, 2011.
In addition to the US conference, the 4th European SciPy conference will be
held from August 25th to the 28th in Paris, France. While the date and location

4

hasn’t been finalized, the third SciPy India conference will be held sometime in
December 2011. We are also planning the first SciPy conference in Japan this
year. Please visit http://conference.scipy.org to find registration, call for papers,
as well as additional information.

K. Jarrod Millman is on the SciPy steering committee and a contributor
to both the NumPy and SciPy projects. He is a researcher at UC Berkeley’s
Brain Imaging Center, where he helped found the Neuroimaging in Python
(NIPY) project. His research interests include reproducible research, functional
brain imaging, informatics, configuration management, and computer security.
Millman has a BA in mathematics and computer science from Cornell University.
Contact him at Brain Imaging Center, 10 Giannini Hall, Berkeley, CA 94720;
millman@berkeley.edu.

Michael Aivazis is a Co-PI at the Caltech Center for the Dynamic Response
of Materials, where he is leading the effort to construct and integrate large scale
massively parallel multi-physics simulation codes. His primary responsibility
is the design and implementation of pyre, the Center’s integration platform
and problem solving environment. He is also leading the effort to produce the
next generation of solvers to be used by the center, with focus currently on
scalable parallel algorithms for meshing, contact, fracture and fragmentation. His
research interests include software engineering and techniques for object-oriented
programming. Contact him at CACR 158-79, Caltech, Pasadena, CA 91125;
aivazis@cacr.caltech.edu; www.cacr.caltech.edu.

5

http://conference.scipy.org
mailto:millman@berkeley.edu
mailto:aivazis@cacr.caltech.edu

	A short history of scientific computing for Python
	Python for mathematicians
	In this issue
	Next steps

