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Preface

The field of color imaging deals with the capture, processing, communica-
tion, and reproduction of color images. The origins of color imaging can be
traced back to prehistoric times when cave dwellers created the first color
drawings depicting events in their lives, using primitive materials and tech-
niques available to them. Since then, color images have played an important
role in history, and color imaging has advanced hand in hand with progress
in science and technology. In the past 10 to 15 years, this field, like many
others, has been significantly transformed by the digital revolution.

Digital color imaging devices such as digital still and video cameras,
color scanners, displays, printers, DVD players, and cable/satellite set-top
boxes are now commonplace in both home and office environments. A vast
majority of color imagery is now captured digitally. An even larger fraction
is digital during some part of the image’s life cycle, so it is subject to com-
puter-based processing. Digital technology enables unprecedented function-
ality and flexibility in the capture, processing, exchange, and output of color
images. A knowledge of color science, color systems, appropriate processing
algorithms, and device characteristics is necessary to fully harness this func-
tionality and flexibility. As a result, the field of digital color imaging is a
highly interdisciplinary area involving elements of physics, visual science,
chemistry, psychophysics, computational algorithms, systems engineering,
and mathematical optimization. While excellent texts and reference material
exist in each of these areas, it has hitherto been the responsibility of research-
ers in the color imaging field to cull out relevant information. The goal of
this handbook is to present aspects of these diverse elements as they relate
to digital color imaging in a single and concise compilation. It is my hope
that the handbook’s assimilation of these different aspects and perspectives
will aid students who are starting out in this area, as well as practitioners
and researchers with expertise in specific domains who seek a better under-
standing of the rest of the system.

Chapters 1 through 3 are intended to cover the basics of color vision,
perception, and physics that underpin digital color imaging. The material in
these chapters will serve as useful background for those who are new to this
area and as a refresher and update for color engineers with significant expe-
rience in the field. The end-to-end aspects of control and management of
color in digital imaging systems are addressed in Chapter 4. Chapter 5 is
© 2003 by CRC Press LLC
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concerned with device color characterization, whereby the responses of indi-
vidual color imaging devices (e.g., digital cameras, scanners, color printers,
and displays) are measured and suitably accounted for in the capture and
output of color images. 

Chapters 6 and 7 address the important subject of digital halftoning,
which deals with the rendition of images on printers and display devices
that are capable of only bilevel reproduction or, more generally, of a limited
number of levels. Since the vast majority of printers used in the printing and
publishing industries are halftone printers, this topic is of significant interest
in color imaging. Chapter 8 describes the compression of color images, which
is a prerequisite for efficient use of network bandwidth and storage
resources. The chapter cannot, and is not intended to, span the vast field of
image compression. Instead, it focuses on aspects of image compression that
are specifically pertinent to color images, a topic that is often left unad-
dressed by a number of image compression techniques. Brief overviews of
the widely used JPEG and the emerging JPEG2000 image compression stan-
dards are included in the chapter. 

Chapter 9 discusses color quantization or palettization of color images
for use in frame-buffer systems with limited memory. While typical desktop
displays today are “full-color” and typically do not require palettization, the
issue is regaining importance in smaller displays on hand-held mobile
devices, which are much more limited. Chapter 10 discusses techniques for
pictorial gamut mapping. These techniques address the fundamental trade-
offs encountered when printing or displaying color images on common
output devices that are capable of producing only a limited range of colors.
Computationally efficient transforms for digital color imaging are discussed
in Chapter 11. Finally, Chapter 12 covers color image processing in digital
cameras, a topic that has assumed great importance with the explosion in
the use of these devices for image capture.

Each chapter of the handbook is largely self-contained and can be read
in isolation, provided the reader is generally familiar with the area. Cross-
references among the chapters capture the important interrelationships in
the information presented in the individual chapters. Chapter 1 also includes
a broad overview of digital color imaging systems with references to, and
connections between, the material in the other chapters, which may not be
directly apparent. This is intended to facilitate the understanding of digital
color imaging from a systems perspective, which is becoming increasingly
important in today’s open, interconnected world. Additional material
related to the book will be made available on the publisher’s web site
www.crcpress.com. In particular, due to concerns of increased cost and the
limitations of color accuracy in the printing process, a number of images
that were originally in color have been included only as black-and-white
figures in the book; full-color electronic versions of these figures are avail-
able online.

I would like to take this opportunity to thank all the authors for their
excellent contributions. They have done an admirable job in writing for a
© 2003 by CRC Press LLC
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fairly wide audience while still communicating their individual research
insights and accomplishments. The quality of the handbook can be directly
attributed to their diligence.

I would also like to thank the outstanding staff at CRC press for their
excellent support in the production and editing of this handbook. In partic-
ular, I would like to thank Nora Konopka for initiating this project, Helena
Redshaw for urging me and the contributors to stay on schedule and for
handling the submissions of all the materials, and Susan Fox for handling
the copy editing and final production. Without their dedicated assistance,
this project would have never been completed.

Gaurav Sharma
Xerox Corporation

Webster, NY
g.sharma@ieee.org
© 2003 by CRC Press LLC



    

CH00-front  Page 11  Tuesday, November 19, 2002  3:18 PM
About the Editor

Gaurav Sharma is a member of the research
staff at Xerox Corporation’s Solutions and
Services Technology Center, where he cur-
rently leads a research project on color
imaging. He is also involved in teaching in
an adjunct capacity at the Electrical and
Computer Engineering Departments at the
Rochester Institute of Technology, Roches-
ter, New York. He received a BE degree in
electronics and communication engineering
from University of Roorkee, India, in 1990;
an ME degree in electrical communication
engineering from the Indian Institute of Sci-
ence, Bangalore, India, in 1992; and an MS
degree in applied mathematics and a Ph.D.
degree in electrical and computer engineer-
ing from North Carolina State University,
Raleigh, in 1995 and 1996, respectively. 

From August 1992 through August 1996, he was a research assistant at
the Center for Advanced Computing and Communications in the Electrical
and Computer Engineering Department at North Carolina State University.
His research and graduate work during this period focused on metrics for
the evaluation and design of color recording devices. Since August 1996, he
has been with Xerox Corporation. His research interests include color science
and imaging, image security and halftoning, signal restoration, and error
correction coding. Dr. Sharma is a member of Sigma Xi, Phi Kappa Phi, and
Pi Mu Epsilon and is the current vice president of the Rochester chapter of
the IEEE Signal Processing Society. He has authored or co-authored more
than 40 technical papers in the fields of color, digital imaging, and image
processing. He holds four U.S. patents and has more than a dozen pending
U.S. patent applications.
© 2003 by CRC Press LLC



                          

CH00-front  Page 12  Tuesday, November 19, 2002  3:18 PM
Contributors

A. Ufuk Agar
Hewlett-Packard Laboratories
Color Imaging & Printing 

Technologies Department, HP 
Labs

Palo Alto, California

Jan P. Allebech
Purdue University
School of ECE
West Lafayette, Indiana

Raja Balasubramanian
Xerox Webster Research Center
Webster, New York

Farhan A. Baqai
Sony Corporation
Media Processing Division
San Jose, California

Luc Brun
Université de Reims Champagne 

Ardenne
Reims, France

Patrick Emmel
Clariant
Masterbatches Division
Muttenz, Switzerland

Mark D. Fairchild
Rochester Institute of Technology
Munsell Color Science Lab, Center 

for Imaging Science
Rochester, New York

Edward Giorgianni
Eastman Kodak Company
Imaging Research & Advanced 

Development Division
Rochester, New York

Charles Hains
Xerox Corporation
Webster, New York

Garrett M. Johnson
Rochester Institute of Technology
Center for Imaging Science
Rochester, New York

R. Victor Klassen
Xerox Corporation
Webster, New York

Keith Knox
Xerox Corporation
Xerox Digital Imaging Technology 

Center
Webster, New York
© 2003 by CRC Press LLC



                 

CH00-front  Page 13  Tuesday, November 19, 2002  3:18 PM
Thomas Madden
Eastman Kodak Company
Imaging Research & Advanced 

Development Division
Rochester, New York

Jan Morovic
University of Derby
Colour & Imaging Institute
Kingsway, Derby, England

Ken Parulski
Eastman Kodak Company
Digital & Applied Imaging Division
Rochester, New York

Ricardo L. de Queiroz
Xerox Corporation
Corporate Research & Technology
Webster, New York

Gaurav Sharma
Xerox Corporation
Webster, New York

Kevin E. Spaulding
Eastman Kodak Company
Imaging Research & Advanced 

Development Division
Rochester, New York

Alain Trémeau
Université Jean Monnet 

de Saint-Etienne
Saint-Etienne, France

Shen-Ge Wang
Xerox Corporation
Webster, New York
© 2003 by CRC Press LLC



                          

 

CH00-front  Page 14  Tuesday, November 19, 2002  3:18 PM
Contents

Chapter 1 Color fundamentals for digital imaging
Gaurav Sharma

Chapter 2 Visual psychophysics and color appearance
Garrett M. Johnson, Mark D. Fairchild

Chapter 3 Physical models for color prediction
Patrick Emmel

Chapter 4 Color management for digital imaging systems
Edward J. Giorgianni, Thomas E. Madden, Kevin E. Spaulding

Chapter 5 Device characterization
Raja Balasubramanian

Chapter 6 Digital color halftones
Charles Hains, Shen-Ge Wang, Keith Knox

Chapter 7 Human visual model-based color halftoning
A. Ufuk Agar, Farhan A. Baqai, Jan P. Allebach

Chapter 8 Compression of color images
Ricardo de Queiroz

Chapter 9 Color quantization
Luc Brun, Alain Trémeau

Chapter 10 Gamut mapping
Ján Morovic

Chapter 11 Efficient color transformation implementation
Raja Balasubramanian, R. Victor Klassen

Chapter 12 Color image processing for digital cameras
Ken Parulski, Kevin Spaulding
© 2003 by CRC Press LLC



chapter one

Color fundamentals for 
digital imaging

Gaurav Sharma
Xerox Corporation

Contents

1.1 Introduction
1.2 Physical stimuli for color

1.2.1 The stimulus error
1.3 Human color perception and trichromacy
1.4 Color matching

1.4.1 Color-matching functions
1.4.2 Metamerism and black space

1.5 Colorimetry
1.5.1 CIE standards
1.5.2 Colorimetry for reflective objects
1.5.3 Chromaticity coordinates and chromaticity diagrams
1.5.4 Transformation of primaries: NTSC, SMPTE, and CCIR

primaries
1.6 Alternative color specification systems
1.7 Uniform color spaces and color differences

1.7.1 The CIE 1976 L*u*v* space
1.7.2 The CIE 1976 L*a*b* space
1.7.3 Limitations of CIELAB and CIELUV spaces
1.7.4 Alternative color difference formulae.

1.8 Limitations of CIE colorimetry
1.9 Psychophysics of color

1.9.1 Chromatic adaptation and color constancy
1.9.2 Opponent processes theory and color appearance models

1.10 Spatial characteristics of color vision

© 2003 by CRC Press LLC



1.11 Color image reproduction and recording devices
1.11.1 Color output systems

1.11.1.1 Cathode ray tubes
1.11.1.2 LCD displays
1.11.1.3 Contone printers
1.11.1.4 Halftone printers
1.11.1.5 Recent advances in color displays and printing

1.11.2 Image characteristics
1.11.3 Computer-generated imager
1.11.4 Color recording systems

1.11.4.1 Spectroradiometers and spectrophotometers
1.11.4.2 Colorimeters and photometers
1.11.4.3 Photographic film-based recording schemes
1.11.4.4 Digital dolor cameras and scanners

1.11.5 Multispectral recording and reproduction systems
1.11.5.1 Principal-component recording

1.11.6 Quantization and coding
1.11.7 Device color spaces

1.12 Color management and calibration
1.12.1 Calibration and profiles

1.12.1.1 Input device calibration
1.12.1.2 Output device calibration
1.12.1.3 Device profiles

1.12.2 Color management systems
1.12.3 Gamut mapping
1.12.4 Appearance matching

1.13 Summary
Acknowledgments
References.

1.1 Introduction
In our daily lives, color images surround us in print, television, computer
displays, photographs, and movies. While these color images are taken for
granted by a majority of readers and viewers, their production engages an
entire industry of scientists, engineers, and practitioners. A knowledge of
fundamental color principles is central to the work of this industry. The
purpose of this chapter is to provide a concise introduction to some of these
fundamentals of color science, colorimetry, color technology, and color sys-
tems. The presentation in the chapter is organized as a progressive introduc-
tion of principles from a logical rather than historical perspective. While
suitable references and background material are included, the purpose is not
to exhaustively document historical development of the principles or neces-
sarily trace concepts to primary originators. 

The perception of color is the result of interaction between a physical
stimulus; receptors in the human eye that sense the stimulus; and the neural
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system and the brain; which are responsible for communicating and inter-
preting the signals sensed by the eye. This clearly involves several physical,
neural, and cognitive phenomena, which must be understood so as to com-
prehend color vision completely. While research continues in the integration
of all these aspects of color, significant success has been achieved in under-
standing the physical and (to a lesser extent) neural phenomena involved
in color sensation. The first part of this chapter attempts to summarize the
current understanding in these areas with particular emphasis on the aspects
that are of interest in color imaging applications. 

The second part of the chapter is a brief overview of color recording and
reproduction devices, their underlying physical principles, and color char-
acteristics. Color measuring instrumentation, digital image recording
devices such as scanners and digital color cameras, and color reproduction
devices such as displays and printers are described. The spectral and color
characteristics of images are also briefly discussed. The third part of the
chapter describes the concepts of device-independent color and color man-
agement. The final section offers concluding remarks on the content covered
elsewhere in the chapter. 

Where appropriate, each section begins with a description of general
principles and then briefly discusses their application in color imaging appli-
cations. Several of the topics covered here are discussed in significant detail
in later chapters, but the material here provides a broad system-wide over-
view and indicates the connections and interrelations that may otherwise
not be apparent. 

1.2 Physical stimuli for color
The physical stimulus for color is electromagnetic radiation in the visible
region of the spectrum, which is commonly referred to as light. In air or a
vacuum, the visible region of the electromagnetic spectrum is typically spec-
ified by the wavelength region between  nm and  nm.
Light stimulates retinal receptors in the eye, which ultimately causes the
phenomenon of vision and the perception of color. 

Our current understanding about the nature of light and color can be
traced to the work of Sir Isaac Newton.215 Newton’s careful experiments215,216

with sunlight and a prism helped dispel existing misconceptions and led to
the realization that light can be decomposed into a spectrum of monochromatic
components that cannot be further decomposed. Accordingly, light is char-
acterized physically by its spectral composition. Typically, the characteriza-
tion takes the form of a spectral power distribution (SPD), which character-
izes light by the distribution of power (or energy per unit time) as a function
of wavelength.†

† Note that the selection of wavelength rather than frequency or wave number for the specifi-
cation of spectral power distribution of light is a rather arbitrary choice but has become a
commonly accepted convention in the photometry, color measurement, and imaging commu-
nities.

λmin 360= λmax 830=
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Absolute spectral power distributions for light emitted or reflected off
a surface are specified typically in radiometric units of Watts per steradian
per square meter.253,335 In practice, absolute SPDs are rarely (if ever) required
for the purposes of color measurement and specification, and relative SPDs,
where the scale/units are arbitrary, are commonly used. Figure 1.1 illustrates
the relative SPDs of typical daylight, cool white fluorescent office lighting,
and an incandescent lamp. The abscissa on the plot indicates the wavelength,
and the ordinate indicates the relative density of light power. The mathe-
matical interpretation of the spectral power distribution is as follows: if 
denotes the spectral power distribution, the power in an infinitesimal inter-
val  centered about  is given by .

Light incident on the eye may originate in different ways. When viewing
self-luminous objects, the light directly originates from the object being
viewed. More commonly, the object being viewed is illuminated by an exter-
nal light source, such as daylight outdoors, or light from a lamp/overhead
fixture indoors. In such situations, the SPD of light entering the eye is the
product of the SPD of the light source and the spectral reflectance of the
object. If the SPD of the illuminating source is given by l(λ), and the spectral
reflectance of the object is r(λ), the SPD of the reflected light is given by the
product l(λ)r(λ). A similar relation is applicable to objects such a slides that
are viewed in transmission, where the spectral reflectance is replaced by the
spectral transmittance t(λ). It is worth noting that the above mathematical
relation is based on an idealized model of illuminant–object interaction that
does not account for several geometry/surface effects such as the combina-
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Figure 1.1 Measured relative spectral power distributions (SPDs) for daylight, cool
white fluorescent office lighting, and an incandescent lamp.
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tion of specular and body reflectance components.189(pp. 43–45) The model is,
however, reasonably accurate for most imaging situations if care is taken to
measure using a light source and geometry similar to that used in final
viewing. Figure 1.2 illustrates a set of spectral reflectances for five different
objects. One can see that the spectral reflectances of objects can demonstrate
significant wavelength selectivity in that they reflect light of certain wave-
lengths with significantly more strength than light of other wavelengths.
This spectral selectivity is typically the main determinant of the color appear-
ance of the object. 

1.2.1 The stimulus error

In discussing objects, it is common to say that they possess certain colors.
For instance, the sky may be described as blue, an apple as red, and grass
as green. In actuality, however, there is no color without an observer; there-
fore, attributing a color to an object is not strictly accurate. The attribution
of colors to objects/lights is a particular instance of what psychologists refer
to as the stimulus error27,296 wherein a sensation experienced by an observer
is identified with the stimulus causing the sensation. Color scientists and
researchers have been aware of the stimulus error that pervades our common
usage of color terms. Newton himself demonstrated this awareness in his
quote, “The rays, to speak properly, are not colored; in them there is nothing
else than a certain power and disposition to stir up a sensation of this or
that color.” Thus, speaking precisely, the light from the sky is not blue but
evokes the sensation of blue when viewed by an observer. 
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Figure 1.2 Measured spectral reflectance functions for five different natural objects.
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As with several other sensations, the stimulus error is firmly ingrained
in our usage of color terms, and one would have to go to great lengths and
use awkward, pedantic language to avoid it entirely. Consequently, we con-
tinue to use color terms in commonly used contexts and talk, for instance,
of cyan, magenta, and yellow colorants. It is, however, important to realize
that an accurate interpretation of such statements requires a discounting of
the stimulus error. 

The stimulus error is often combined with other misuses of color termi-
nology. For instance, one often hears the statement that a prism decomposes
white light into its constituent colors. This statement is clearly inaccurate
and unacceptable in technical usage. The proper statement would be that a
prism decomposes light into its constituent spectral or wavelength compo-
nents. Spectral power distributions of light, spectral reflectance functions,
and spectral sensitivity functions are physical descriptions that are indepen-
dent of observed sensation, and describing these in terms of color sensations
is therefore incomplete and inaccurate. Errors of this type are therefore to
be consciously avoided in technical descriptions of color.

1.3 Human color perception and trichromacy

Figure 1.3 shows a rough schematic of the human eye. The incident light is
focused by the cornea and the eye’s lens to form an image of the object
being viewed onto the retina located at the back of the eyeball. The cornea
provides most of the refraction needed to bring the light to a focus on the
retina, and the primary purpose of the lens is to allow the eye to focus on
objects at different viewing distances by changing the shape of the lens
through the process of accommodation.153(p. 100) Photoreceptors within the ret-
inal membrane are responsible for sensing the image and creating the neural
signals that are responsible for the sense of sight. There are two kinds of
photoreceptors: rods and cones. The rods are extremely sensitive to light and
primarily useful for vision under very low light levels, termed as scotopic
vision. In scotopic vision, only shades of gray can be perceived, and no color

RetinaLensCornea

Iris

Figure 1.3 Schematic of the human eye.
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is seen. This is the case, for instance, when objects are viewed under starlight.
Under typical light levels used in imaging applications, the rods become
saturated and do not contribute to vision; instead, the less-sensitive cones
are active. The term photopic vision is used to describe this domain. There
is a gradual change from photopic to scotopic vision as the illumination
level is lowered, and in the intermediate mesopic form of vision both rods
and cones are active. Typical light levels for these three domains of vision
are listed in Section 1.5.1. 

The cones are responsible for color vision. Observers with normal color
vision† have three different types of cones, with photosensitive pigments
that differ in their spectral absorption characteristics and, consequently, in
their spectral sensitivities. The three types of cones are commonly called S,
M, and L cones, which are abbreviated forms of short, medium, and long
wavelength sensitive cones, respectively.‡ Under a fixed set of viewing con-
ditions, the response of these cones can be accurately modeled by a linear
system defined by the spectral sensitivities of the cones. If the spectral
distribution of light incident on the retina is given by , where λ repre-
sents wavelength (we are ignoring any spatial variations in the light for the
time being), the responses of the three cones can be modeled as a three vector
with components given by 

(1.1)

where  denotes the sensitivity of the ith type of cones, and 
denote the interval of wavelengths outside of which all these sensitivities
are zero. As indicated earlier, in air or vacuum, this visible region of the
electromagnetic spectrum is specified by the wavelength region between

 nm and  nm. Estimates of the effective sensitivities
of the LMS cones (i.e., cone fundamentals256) are shown in Figure 1.4.

Mathematically, the expressions in Equation 1.1 correspond to inner
product operations96 in the Hilbert space of square integrable functions

. Hence, the cone response mechanism corresponds to a pro-
jection of the spectrum onto the space spanned by three sensitivity functions

. This space is called the human visual subspace (HVSS).55,56,125,304,310

The perception of color depends on further nonlinear processing of the
retinal responses. However, to a first order of approximation, under similar
conditions of adaptation, the sensation of color may be specified by the
responses of the cones. This is the basis of all colorimetry and will be implic-
itly assumed throughout this section. A discussion of perceptual uniformity
and appearance will be postponed until Sections 1.7 and 1.9.

†  Around 8% of males and 0.5% of females are color deficient.
‡ Note that the common statement that the eye has three cones sensitive, respectively, to red,
green, and blue light is not only inappropriate and erroneous for reasons described in Section
2.1, but also creates a circular definition.

f λ( )

ci si λ( ) f λ( ) λ id
λmin

λmax

∫ 1 2 3, ,= =

si λ( ) λmin λmax,

λmin 360= λmax 830=
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si λ( ){ }i 1=
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For computation, the spectral quantities in Equation 1.1 may be replaced
by their sampled counterparts to obtain summations as numerical approxi-
mations to the integrals. For most color spectra, a sampling rate of 10 nm
provides sufficient accuracy but, in applications involving fluorescent lamps
with sharp spectral peaks, a higher sampling rate or alternative approaches
may be required.189,264,302,303 If N uniformly spaced samples are used over the
visible range , Equation 1.1 can be written as 

(1.2)

In this equation,  are the uniformly spaced wavelengths covering
the visible region of the spectrum, , with ∆λ as the wavelength
sampling interval. The superscript T denotes the transpose operation,

 is the N × 1 vector of samples of , and
 is the N × 1 vector of samples of 

scaled by the sampling interval . Note that, for notational simplicity, we
have absorbed the influence of the sampling interval as a scaling factor into
the cone sensitivity vectors . Equation 1.2 can be compactly written
using matrix-vector notation as 

(1.3)
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Figure 1.4 Estimated effective sensitivities of the L, M, S cones (cone fundamentals).
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where c = [c1, c2, c3]T, S = [s2, s2, s3] = the N × 3 matrix with the cone sensitivity
vectors as its columns. The HVSS then corresponds to the column space of S.

In normal human observers, the spectral sensitivities of the three cones
are linearly independent. Furthermore, the differences between the spectral
sensitivities of color-normal observers are (relatively) small277(p.343),328,335 and
arise primarily due to the difference in the spectral transmittance of the eye’s
lens and the optical medium ahead of the retina.71,211,219,220,328

If a standardized set of cone responses is defined, color may be specified
using the three-vector c in Equation 1.3, known as a tristimulus vector. Just
as several different coordinate systems may be used for specifying position
in three-dimensional space, any nonsingular, well-defined linear transfor-
mation of the tristimulus vector c can also serve the purpose of color spec-
ification. Because the cone responses are difficult to measure directly, but
nonsingular linear transformations of the cone responses are readily deter-
mined through color-matching experiments, such a transformed coordinate
system is used for the measurement and specification of color. 

1.4 Color matching
Two spectra, represented by N-vectors f and g, produce the same cone
responses and therefore represent the same color if 

STf = STg (1.4)

Because S is an N × 3 matrix with N > 3, the above system of equations has
multiple solutions. This implies that many different spectra match in color. 

It is, in fact, possible to draw significantly stronger conclusions from
Equations 1.3 and 1.4. One of the characteristics of color vision that can be
deduced based on these equations is the phenomenon of trichromacy, which
states that it is possible to produce a color match for a given stimulus
(equivalently, identical cone responses under the same viewing conditions)
by using only combinations of light from three light sources.105,200,201 To estab-
lish this, consider three color primaries, i.e., three colorimetrically independent
light sources p1, p2, p3. The term colorimetrically independent will be used in
this chapter to denote a collection of spectra such that the color of any one
cannot be visually matched by any linear combination of the others. Math-
ematically, colorimetric independence of p1, p2, p3 is equivalent to the linear
independence of the three-vectors STp1, STp2, and STp2. Hence, if P = [p1, p2,
p3], the 3 × 3 matrix STP is nonsingular. 

For any visible spectrum f the three-vector

satisfies the relation

a f( ) STP( ) 1–
STf=

def
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STf = STP a(f) (1.5)

which is the relation for a color match. Hence, for any visible spectrum f,
there exists a linear combination of the primaries, P a(f), which matches the
color of f. This statement encapsulates the principle of trichromacy. It can
be further seen that a(f) specifies the unique linear combination of primaries
that matches f in color. This follows from the nonsingularity of STP, which
ensures that if STf = STPv1 = STPv2, then v1 = v2. The elements of a(f) represent
the relative intensities or “strengths” of the primaries required to match the
color of f.

Some additional elaboration is necessary to establish the correspondence
between the above mathematical argument and a physical experiment in
which colors are matched using three primaries. In the mathematical com-
putation, it is possible that the obtained vector of primary intensities, a(f),
has negative components (in fact, it can be readily shown that, for any set
of physical primaries, there exist visible spectra for which this happens).
Because negative intensities of the primaries cannot be produced, the spec-
trum P a(f) is not realizable using the primaries. A physical realization
corresponding to the equations is, however, still possible by rearranging the
terms in Equation 1.5 and “subtracting” the primaries with negative inten-
sities from f. The double negation cancels out and corresponds to the addi-
tion of positive amounts of the appropriate primaries to f.

The setup for a typical color-matching experiment is shown schemati-
cally in Figure 1.5. The observer views a small circular field that is split into
two halves. The spectrum f is displayed on one half of a visual field. On the
other half of the visual field appears a linear combination of the primary
sources. The observer attempts to visually match the input spectrum by
adjusting the relative intensities of the primary sources. The vector a(f)
denotes the relative intensities of the three primaries when a match is
obtained. Physically, it may be impossible to match the input spectrum by
adjusting the intensities of the primaries. When this happens, the observer
is allowed to move one or two of the primaries so that they illuminate the
same field as input spectrum, f (see Figure 1.6). As noted earlier, this proce-
dure is mathematically equivalent to subtracting that amount of primary
from the primary field; i.e., the strengths in a(f) corresponding to the prima-
ries that were moved are negative. As demonstrated in the last paragraph,
all visible spectra can be matched using this method. 

1.4.1 Color-matching functions

The linearity of color matching expressed in Equation 1.4 implies that, if the
color tristimulus values for a basis set of spectra are known, the color values
for all linear combinations of those spectra can be readily deduced. The unit
intensity monochromatic spectra, given by , where ei is an N-vector
having a one in the ith position and zeros elsewhere, form a orthonormal
basis in terms of which all spectra can be expressed. Hence, the color match-

ei{ }i 1=
N
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ing properties of all spectra (with respect to a given set of primaries) can be
specified in terms of the color matching properties of these monochromatic
spectra.

Consider the color matching experiment of the last section for the mono-
chromatic spectra. Denoting the relative intensities of the three primaries
required for matching ei by ai = a(ei), the matches for all the monochromatic
spectra can be written as 

(1.6)

Combining the results of all N monochromatic spectra, we get 

STIN = STPAT (1.7)

where IN = [e1, e2, . . . , eN] is the N × N identity matrix, and A = [a1, a2, . . . , aN]T

is the color matching matrix corresponding to the primaries P.† The entries in
the kth column of A correspond to the relative amount of the kth primary
required to match , respectively. The columns of A are therefore
referred to as the color-matching functions (CMFs) (associated with the pri-
maries P).

Now, reconsider the matching of a general spectrum f = [f1, f2, . . . , fN]T

in a color matching experiment using the primaries P. The stimulus can be
decomposed in terms of the unit intensity monochromatic stimuli  as 

(1.8)

Recall, a linear combination of the primaries with relative intensities speci-
fied by the tristimulus vector ai matches the monochromatic spectrum ei.
From the linearity of color matching and the above decomposition, it there-
fore follows that a linear combination of the primaries with relative intensi-
ties specified by the tristimulus vector 

matches the spectrum f. Thus, the tristimulus vector ATf represents the
relative intensities of the primaries P that match the color of f.

† In defining A as the matrix whose ith row is ai
T, we breach the common convention used

throughout the rest of the chapter according to which a bold lower case subscripted letter
denotes a column of the matrix denoted by the corresponding bold upper case letter.

STei STPai i 1 2 … N, , ,= =

ei{ }i 1=
N

ei{ }i 1=
N

f INf e1e2…eN[ ] f 1 f 2 … f N, , ,[ ]T f iei

i 1=

N

∑= = =

f iai

i 1=

N

∑ ATf=
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From Equation 1.7, it can be readily seen that the color-matching matrix 

A = S(PTS)–1 (1.9)

Hence, the CMFs are a nonsingular linear transformation of the sensitivities
of the three cones in the eye. It also follows that the color of two spectra, f
and g, matches if and only if ATf = ATg. As mentioned earlier, color of a
visible spectrum, f, may be specified in terms of the tristimulus values, ATf,
instead of STf. The fact that the color-matching matrix is readily determinable
using the procedure outlined above makes such a scheme for specifying
color considerably more attractive in comparison to one based on the actual
cone sensitivities. Note also that the HVSS which was defined as the column
space of S can alternately be defined as the column space of A. Using
Equation 1.9, we see that

(1.10)

where I3 is the 3 × 3 identity matrix. Equation 1.10 can also be obtained by
direct reasoning. Consider a color matching experiment in which the stim-
ulus to be matched by a combination of the primaries is one of the primaries
itself, say p1. The unique values of the relative intensities of the primaries
required to match p1 are ATp1. Because p1 = P[100]T clearly matches itself,
ATp1 = [100]T. Similar relations hold for p2 and p3, and Equation 1.10 is
obtained by concatenating the corresponding color match relations for all
three primaries. 

1.4.2 Metamerism and black space
As stated in Equation 1.4, two spectra represented by N-vectors f and g
match in color if STf = STg (or ATf = ATg). Because S (or equivalently A) is
an N × 3 matrix, with N > 3, it is clear that several different spectra appear
to be the same color to the observer. Two distinct spectra that appear the
same are called metamers, and such a color match is said to be a metameric
match (as opposed to a spectral match). Figure 1.7 shows plots of two
metameric SPDs. Note that the colorimetry corresponding to these distribu-
tions is identical, but the SPDs exhibit very significant differences. The spe-
cific SPDs plotted here correspond to the SPD for CIE standard illuminant
D65 (see Section 1.5.2) and a metameric match obtained to the corresponding
SPD using typical CRT primaries. 

The vector space view of color matching outlined above was first pre-
sented in a cohesive mathematical framework by Cohen and Kaupauf.55–58

Tutorial descriptions using current notation and terminology appear in Ref-
erences 125, 299, 300, and 304. This approach allows us to deduce a number
of interesting and useful properties of color vision. One such property is the
decomposition of the N-dimensional spectral space into the three-dimen-
sional HVSS and the (N – 3)-dimensional metameric black space, which was
first hypothesized by Wyszecki.332 Mathematically, this result states that any
visible spectrum, f, can be written as 

ATP S PTS( ) 1–( )
T
P STP( ) 1–

STP I3= = =
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(1.11)

where  is the orthogonal projector onto the column space
of A, i.e., the HVSS, and

is the orthogonal projector onto the black space, which is the orthogonal
complement of the HVSS. The projection, , is called the fundamental
metamer of f, because all metamers of f are given by

Spectra that match in color have identical projections onto the HVSS. Con-
versely, spectra having identical projections onto the HVSS match in color.
For a given spectrum f, the tristimulus value t = ATf and the corresponding
CMFs A can be used to compute the corresponding fundamental metamer as 

A(ATA)–1t = A(ATA)–1 (ATf) = PAf (1.12)
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and, vice versa, the fundamental metamer  and CMFs A can be used to
compute the tristimulus,

t = ATPAf = ATA(ATA)–1ATf = ATf (1.13)

Equation 1.13 also illustrates the fact that the tristimulus values for a spec-
trum and its fundamental metamer are equivalent. Thus, the fundamental
metamer offers an alternate representation of exactly the same information
that is contained in the tristimulus values. The representation is, however,
an N-vector in a three-dimensional subspace of the N-dimensional spectral
space and therefore quite powerful and useful in the comparison of colors
and spectra.56 Tristimulus values are not ideally suited for the same task
because of the dimensional mismatch between three-dimensional tristimulus
values and N-dimensional spectra.

Another direct consequence of the above description of color matching
is the fact that the primaries in any color matching experiment are unique
only up to metamers. Because metamers are visually identical, the CMFs are
not changed if each of the three primaries are replaced by any of their
metamers.

The physical realization of metamers imposes additional constraints
over and above those predicated by the equations above. In particular, any
physically realizable spectrum needs to be non-negative, and hence it is
possible that the metamers described by the above mathematics may not be
realizable. In cases where a realizable metamer exists, set theoretic
approaches may be used to incorporate non-negativity and other con-
straints.261,299

1.5 Colorimetry
It was mentioned in Section 1.4.1 that the color of a visible spectrum f can
be specified in terms of the tristimulus values, ATf, where A is a matrix of
CMFs. To have agreement between different measurements, it is necessary
to define a standard set of CMFs with respect to which the tristimulus values
are stated. A number of different standards have been defined for a variety
of applications, and it is worth reviewing some of these standards and the
historical reasons behind their development. 

1.5.1 CIE standards

The Commission Internationale de l’Eclairage (International Commission on
Illumination, CIE) is the primary organization responsible for standardiza-
tion of color metrics and terminology. A colorimetry standard was first
defined by the CIE in 1931 and continues to form the basis of modern
colorimetry. The CIE 1931 recommendations define a standard colorimetric
observer by providing two different but equivalent set of CMFs. The first
set of CMFs are known as the CIE RGB CMFs, , , . These are

PAf

r λ( ) g λ( ) b λ( )
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associated with monochromatic primaries at wavelengths of 700.0, 546.1,
and 435.8 nm, respectively, with their radiant intensities adjusted so that the
tristimulus values of the equi-energy spectrum are all equal.47 The equi-
energy spectrum is the one whose SPD is constant (as a function of wave-
length). The CIE RGB CMFs are shown in Figure 1.8. 

The second set of CMFs, known as the CIE XYZ CMFs, , , ,
are shown in Figure 1.9. They were recommended for reasons of more con-
venient application in colorimetry and are defined in terms of a linear trans-
formation of the CIE RGB CMFs.150 When these CMFs were first defined,
calculations were typically performed on desk calculators, and the repetitive
summing and differencing due to the negative lobes of the CIE RGB CMFs
were prone to errors. Hence, the transformation from the CIE RGB CMFs to
CIE XYZ CMFs was determined so as to avoid negative values at all wave-
lengths.177 Because an infinite number of transformations can be defined to
meet this non-negativity requirement, additional criteria were used in the
choice of the CMFs.85,153(p. 531) Two of the important considerations were the
choice of  coincident with the luminous efficiency function335 and the
normalization of the three CMFs so as to yield equal tristimulus values for
the equi-energy spectrum. The luminous efficiency function gives the relative
sensitivity of the eye to the energy at each wavelength. From the discussion
of Section 1.4, it is readily seen that CMFs that are non-negative for all
wavelengths cannot be obtained with any physically realizable primaries.
Hence, any set of primaries corresponding to the CIE XYZ CMFs is not
physically realizable. Table 1.1 provides a listing of the CIE XYZ color match-
ing functions, sampled at 5-nm intervals in the range of 380 to 780 nm. Data
used in this table are also available at the CIE web site.47
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The tristimulus values obtained with the CIE RGB CMFs are called the
CIE RGB tristimulus values, and those obtained with the CIE XYZ CMFs are
called the CIE XYZ tristimulus values. In most color imaging applications,
and in color research, CIE XYZ values are used, and the CIE RGB tristimulus
values are rarely used. The Y tristimulus value is usually called the luminance
and correlates with the perceived brightness of the radiant spectrum. The
luminance is described in units of candela per square meter (cd/m2). Typical
ambient luminance levels under sunlight, indoor lighting, moonlight, and
starlight are of the order of 105, 102, 10–1, and 10–3 cd/m2, respectively. The
scotopic, mesopic, and photopic domains of vision defined in Section 1.3
correspond roughly to luminance intervals 0.000001–0.034 cd/m2, 0.034–3.4
cd/m2, and over 3.4 cd/m2, respectively. 

The two sets of CMFs described above are suitable for describing color-
matching when the angular subtense of the matching fields at the eye is
between one and four degrees.47,335(p. 131) When the inadequacy of these CMFs
for matching fields with larger angular subtense became apparent, the CIE
defined an alternate standard colorimetric observer in 1964 with different
sets of CMFs.47 Because imaging applications (unlike quality control appli-
cations in manufacturing) involve complex visual fields where the color-
homogeneous areas have small angular subtense, the CIE 1964 (10° observer)
CMFs will not be discussed here.

1.5.2 Colorimetry for reflective objects

The discussion in the last section was based on the assumption that f is the
spectral radiance of the light incident on the eye. Reflective objects are
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Table 1.1 CIE XYZ CMFs for the 2° 1931 CIE Standard Observer and SPDs for 
Standard Illuminants D50, D65, and A Tabulated at 5-nm Wavelength Intervals 
(Except for the D50 SPD, these data are available from the CIE web site.47)

Wavelength
λ (nm) x(λ) y(λ) z(λ) lD50(λ) lD65(λ) lA(λ)

380 0.0014 0.0000 0.0065 24.4875 49.97550 9.795100
385 0.0022 0.0001 0.0105 27.1791 52.31180 10.899600
390 0.0042 0.0001 0.0201 29.8706 54.64820 12.085300
395 0.0076 0.0002 0.0362 39.5894 68.70150 13.354300
400 0.0143 0.0004 0.0679 49.3081 82.75490 14.708000
405 0.0232 0.0006 0.1102 52.9104 87.12040 16.148000
410 0.0435 0.0012 0.2074 56.5128 91.48600 17.675300
415 0.0776 0.0022 0.3713 58.2733 92.45890 19.290700
420 0.1344 0.0040 0.6456 60.0338 93.43180 20.995000
425 0.2148 0.0073 1.0391 58.9257 90.05700 22.788300
430 0.2839 0.0116 1.3856 57.8175 86.68230 24.670900
435 0.3285 0.0168 1.6230 66.3212 95.77360 26.642500
440 0.3483 0.0230 1.7471 74.8249 104.86500 28.702700
445 0.3481 0.0298 1.7826 81.0360 110.93600 30.850800
450 0.3362 0.0380 1.7721 87.2472 117.00800 33.085900
455 0.3187 0.0480 1.7441 88.9297 117.41000 35.406800
460 0.2908 0.0600 1.6692 90.6122 117.81200 37.812100
465 0.2511 0.0739 1.5281 90.9902 116.33600 40.300200
470 0.1954 0.0910 1.2876 91.3681 114.86100 42.869300
475 0.1421 0.1126 1.0419 93.2383 115.39200 45.517400
480 0.0956 0.1390 0.8130 95.1085 115.92300 48.242300
485 0.0580 0.1693 0.6162 93.5356 112.36700 51.041800
490 0.0320 0.2080 0.4652 91.9627 108.81100 53.913200
495 0.0147 0.2586 0.3533 93.8432 109.08200 56.853900
500 0.0049 0.3230 0.2720 95.7237 109.35400 59.861100
505 0.0024 0.4073 0.2123 96.1685 108.57800 62.932000
510 0.0093 0.5030 0.1582 96.6133 107.80200 66.063500
515 0.0291 0.6082 0.1117 96.8711 106.29600 69.252500
520 0.0633 0.7100 0.0782 97.1290 104.79000 72.495900
525 0.1096 0.7932 0.0573 99.6141 106.23900 75.790300
530 0.1655 0.8620 0.0422 102.0991 107.68900 79.132600
535 0.2257 0.9149 0.0298 101.4269 106.04700 82.519300
540 0.2904 0.9540 0.0203 100.7547 104.40500 85.947000
545 0.3597 0.9803 0.0134 101.5359 104.22500 89.412400
550 0.4334 0.9950 0.0087 102.3170 104.04600 92.912000
555 0.5121 1.0000 0.0057 101.1585 102.02300 96.442300
560 0.5945 0.9950 0.0039 100.0000 100.00000 100.000000
565 0.6784 0.9786 0.0027 98.8675 98.16710 103.582000
570 0.7621 0.9520 0.0021 97.7350 96.33420 107.184000
575 0.8425 0.9154 0.0018 98.3265 96.06110 110.803000
580 0.9163 0.8700 0.0017 98.9180 95.78800 114.436000
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585 0.9786 0.8163 0.0014 96.2084 92.23680 118.080000
590 1.0263 0.7570 0.0011 93.4988 88.68560 121.731000
595 1.0567 0.6949 0.0010 95.5933 89.34590 125.386000
600 1.0622 0.6310 0.0008 97.6878 90.00620 129.043000
605 1.0456 0.5668 0.0006 98.4784 89.80260 132.697000
610 1.0026 0.5030 0.0003 99.2691 89.59910 136.346000
615 0.9384 0.4412 0.0002 99.1553 88.64890 139.988000
620 0.8544 0.3810 0.0002 99.0415 87.69870 143.618000
625 0.7514 0.3210 0.0001 97.3817 85.49360 147.235000
630 0.6424 0.2650 0.0000 95.7218 83.28860 150.836000
635 0.5419 0.2170 0.0000 97.2895 83.49390 154.418000
640 0.4479 0.1750 0.0000 98.8572 83.69920 157.979000
645 0.3608 0.1382 0.0000 97.2622 81.86300 161.516000
650 0.2835 0.1070 0.0000 95.6672 80.02680 165.028000
655 0.2187 0.0816 0.0000 96.9285 80.12070 168.510000
660 0.1649 0.0610 0.0000 98.1898 80.21460 171.963000
665 0.1212 0.0446 0.0000 100.5966 81.24620 175.383000
670 0.0874 0.0320 0.0000 103.0034 82.27780 178.769000
675 0.0636 0.0232 0.0000 101.0682 80.28100 182.118000
680 0.0468 0.0170 0.0000 99.1330 78.28420 185.429000
685 0.0329 0.0119 0.0000 93.2570 74.00270 188.701000
690 0.0227 0.0082 0.0000 87.3809 69.72130 191.931000
695 0.0158 0.0057 0.0000 89.4922 70.66520 195.118000
700 0.0114 0.0041 0.0000 91.6035 71.60910 198.261000
705 0.0081 0.0029 0.0000 92.2460 72.97900 201.359000
710 0.0058 0.0021 0.0000 92.8886 74.34900 204.409000
715 0.0041 0.0015 0.0000 84.8715 67.97650 207.411000
720 0.0029 0.0010 0.0000 76.8544 61.60400 210.365000
725 0.0020 0.0007 0.0000 81.6828 65.74480 213.268000
730 0.0014 0.0005 0.0000 86.5112 69.88560 216.120000
735 0.0010 0.0004 0.0000 89.5455 72.48630 218.920000
740 0.0007 0.0002 0.0000 92.5798 75.08700 221.667000
745 0.0005 0.0002 0.0000 85.4048 69.33980 224.361000
750 0.0003 0.0001 0.0000 78.2299 63.59270 227.000000
755 0.0002 0.0001 0.0000 67.9609 55.00540 229.585000
760 0.0002 0.0001 0.0000 57.6918 46.41820 232.115000
765 0.0001 0.0000 0.0000 70.3074 56.61180 234.589000
770 0.0001 0.0000 0.0000 82.9230 66.80540 237.008000
775 0.0001 0.0000 0.0000 80.5985 65.09410 239.370000
780 0.0000 0.0000 0.0000 78.2740 63.38280 241.675000

Table 1.1 CIE XYZ CMFs for the 2° 1931 CIE Standard Observer and SPDs for 
Standard Illuminants D50, D65, and A Tabulated at 5-nm Wavelength Intervals 
(Except for the D50 SPD, these data are available from the CIE web site.47)

Wavelength
λ (nm) x(λ) y(λ) z(λ) lD50(λ) lD65(λ) lA(λ)
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viewed under an illuminating light source and, accordingly, their colorimetry
is specified under a suitable illuminant. For the purposes of defining colo-
rimetry, a reflective object can be represented by the N-vector, r, of samples
of its spectral reflectance r(λ). When the object is viewed under an illuminant
with SPD l(λ), represented in sampled form by the N-vector l, the resulting
SPD at the eye is the product l(λ)r(λ) of the illuminant SPD and the object
reflectance, which can be represented in sampled form as the N-vector Lr,
where L is the diagonal illuminant matrix with entries from l along the
diagonal. The CIE XYZ tristimulus values defining the color are therefore
given by 

t = ATLr = (1.14)

where A is the matrix of CIE XYZ CMFs, and AL = LA. Color measurement
for transmissive objects can be similarly defined in terms of their spectral
transmittance. The color matching functions can be scaled by a common
scale factor so that the Y stimulus value corresponds to the luminance in
units of cd/m2. However, as mentioned earlier, the absolute SPDs for the
illuminant are rarely known or required in applications of colorimetry of
reflective objects. In the colorimetry of reflective objects, it is therefore com-
mon to normalize the tristimulus values (or equivalently the CMFs) so that
the Y coordinate is 100 for a perfect reflector, whose spectral reflectance is
unity across all wavelengths. Because computation of CIE XYZ colorimetry
is a basic step commonly employed in color imaging, it is useful to list this
computation of CIE XYZ values explicitly:

(1.15)

where  are the uniformly spaced wavelengths covering the visible
region of the spectrum , with  as the wavelength sampling
interval, and the normalization factor k given by 

(1.16)
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In addition to the CMFs, the CIE has defined a number of standard
illuminants for use in colorimetry of nonluminous reflecting objects. The
relative SPDs of a number of these standard illuminants are shown in Figure
1.10. The corresponding values are also tabulated in Table 1.1. To represent
different phases of daylight, a continuum of daylight illuminants has been
defined47 that are uniquely specified in terms of their correlated color temper-
ature (CCT). Because the temperature of a blackbody radiator describes its
complete spectral power distribution and thereby its color, it is commonly
referred to as the color temperature of the blackbody. For an arbitrary illu-
minant, the CCT is defined as the color temperature of the blackbody radiator
that is visually closest to the illuminant (in color).335 The D65 and D50
illuminant spectra shown in Figure 1.10 are two daylight illuminants com-
monly used in colorimetry and have CCTs of 6500 and 5000 K, respectively.
The CIE illuminant A represents a blackbody radiator at a temperature of
2856 K and closely approximates the spectra of incandescent lamps. Sources
with lower CCT tend to be more red, whereas those with higher temperatures
are bluer. Illuminants with similar CCT are assumed to be similar with regard
to their color rendering of illuminated objects. This is, however, true only
for illuminants whose spectra closely resemble that of a blackbody radiator,
and other spectra that have identical CCT can have very different distribu-
tions and color rendering properties.202 An example of the problem with the
use of CCT for specifying the color-rendering properties of an illuminant is
shown in Figure 1.11, where two synthesized illuminants are shown along
with a reflectance spectrum measured from a cyan print sample. Though the
illuminants have the same luminance and an identical CCT of 5000K, the
color difference for the reflectance sample under the two illuminants is rather
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Figure 1.10 CIE standard illuminants.
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large, corresponding to 44.4  units. (For the definition of , see
Section 1.7.2.) 

The definition of metameric matches and metamers can be extended to
reflective objects. Two objects with (different) spectral reflectances r1 and r2

are said to be metamers (or in metameric match) under an illuminant with
SPD l if 

(1.17)

In analogy with the HVSS, the column space of AL is defined as the Human
Visual Illuminant Subspace (HVISS).310 In a fashion similar to that described
in Section 1.4.2 for spectral radiances, the space of reflectances may also be
decomposed into two orthogonal components, one being the HVISS and the
other a black reflectance space, representing the absence of a visual stimulus.
Every reflectance spectrum can then be represented as the summation of two
orthogonal components, one in the three-dimensional HVISS and the other
in the black reflectance space. Reflective metamers under a specified viewing
illuminant have identical HVISS components, and their differences therefore
lie entirely in the black reflectance space. 

Metamerism is both a boon and a curse in color applications. Most color
output systems (such as CRTs and color photography) exploit metamerism
to reproduce color. However, in the matching of reflective materials, a
metameric match under one viewing illuminant is usually insufficient to
establish a match under other viewing illuminants. A common manifestation
of this phenomenon is the color match of (different) fabrics under one illu-
mination and mismatch under another. This situation is referred to as illu-
minant metamerism. Figure 1.12 shows an example of illuminant metamerism.
The plots in this figure show the spectral reflectances of four different
metameric samples that have identical colorimetry under CIE illuminant
D50 but exhibit significant differences under other illuminants such as cool
white fluorescent or CIE illuminant A. The four reflectances used in this
example are spectral reflectances obtained with different color reproduction
processes, representing one each of a photographic, xerographic, inkjet, and
lithographic process. Details on how these metameric spectra were obtained
can be found in Reference 270.

1.5.3 Chromaticity coordinates and chromaticity diagrams

Because color is specified by tristimuli, different colors may be visualized as
vectors in three-dimensional space. However, such a visualization is difficult
to reproduce on two-dimensional media and therefore inconvenient. A use-
ful two-dimensional representation of colors is obtained if tristimuli are
normalized to lie in the unit plane, i.e., the plane over which the tristimulus
values sum up to unity. Such a normalization is convenient, as it destroys
only information about the “intensity” of the stimulus and preserves com-

∆E*ab ∆E*ab

AL
Tr1 AL

Tr2=
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plete information about the direction. The coordinates of the normalized
tristimulus vector are called chromaticity coordinates, and a plot of colors on
the unit plane using these coordinates is called a chromaticity diagram. Because
the three chromaticity coordinates sum up to unity, typical diagrams plot
only two chromaticity coordinates along mutually perpendicular axes. 
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Figure 1.11 Correlated color temperature (CCT) counter-example with two illumi-
nants with CCT = 5000 K, and a spectral reflectance.
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Figure 1.12 Reflective metamers under CIE illuminant D50 corresponding to differ-
ent color reproduction processes.
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The most commonly used chromaticity diagram is the CIE xy chroma-
ticity diagram. The CIE xyz chromaticity coordinates can be obtained from
the X,Y, Z tristimulus values in CIE XYZ space as 

(1.18)

Figure 1.13 shows a plot of the curve corresponding to visible monochro-
matic spectra on the CIE xy chromaticity diagram. This shark-fin-shaped
curve, along which the wavelength (in nm) is indicated, is called the spec-
trum locus. From the linear relation between radiance spectra and the tris-
timulus values, it can readily be seen that the chromaticity coordinates of
any additive-combination of two spectra lie on the line segment joining
their chromaticity coordinates.335 From this observation, it follows that the
region of chromaticities of all realizable spectral stimuli is the convex hull
of the spectrum locus. In Figure 1.13, this region of physically realizable
chromaticities is the region inside the closed curve formed by the spectrum
locus and the broken line joining its two extremes, which is known as the
purple line.
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1.5.4 Transformation of primaries: NTSC, SMPTE, and CCIR 
primaries

If a different set of primary sources, Q, is used in the color matching exper-
iment, a different set of CMFs, B, is obtained. Because all CMFs are non-
singular linear transformations of the human cone responses, the CMFs are
related by a linear transformation. The relation between the two sets of CMFs
can be obtained as follows. Using Equation 1.7 for the two sets of primaries
and corresponding CMFs, both can be related to the eye’s cone sensitivities
and to each other as 

ST = STIN = STPAT = STQBT (1.19)

Post-multiplying both sides by (STP)–1 we have 

(STP)–1ST = AT = (STP)–1STQBT (1.20)

Substituting the relation from the left side equality above into the right side
yields

AT = ATQBT (1.21)

Note that the columns of the 3 × 3 matrix ATQ are the tristimulus values of
the primaries Q with respect to the primaries P. From the colorimetric inde-
pendence of the primaries Q, it therefore follows that ATQ is non-singular,
and we have 

BT = (ATQ)–1AT (1.22)

Note that the same transformation, (ATQ)–1, is useful for the conversion of
tristimuli in the primary system P to tristimuli in the primary system Q.

Color television was one of the first consumer products exploiting the
phenomenon of trichromacy. The three light-emitting color phosphors in the
television cathode ray tube (CRT) form the three primaries in this “color
matching experiment.” In the United States, the National Television Systems
Committee (NTSC) recommendations for a receiver primary system based
on three phosphor primaries were adopted by the Federal Communications
Commission (FCC) in 1953 for use as a standard in color television (TV). The
FCC standard specified the CIE xy chromaticity coordinates for the
phosphors68 as (0.670, 0.330) (red), (0.210, 0.710) (green), and (0.140, 0.080)
(blue).221 In addition, the tristimulus values (1, 1, 1) were assumed to corre-
spond to a “white color” typically specified as the illuminant D65. The
chromaticity coordinates along with the white balance condition define the
CIE XYZ tristimuli of the NTSC primaries, which determine the relation of
NTSC RGB tristimuli to CIE XYZ tristimuli as per Equation 1.22. 
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In the early color TV system, the signal-origination colorimetry was
coupled with the colorimetry of displays, with the tacit assumption that
processing at the receiver involves only decoding, and no color processing
is performed. As display technology changed, manufacturers began using
more efficient phosphors and incorporated some changes in the decoding
as a compensation for the nonstandard phosphors.225 Similar changes took
place in the monitors used by broadcasters, but they were unaware of the
compensating mechanisms in the consumer TV sets. As a result, there was
considerable color variability in the broadcast TV system.68 To overcome this
problem, the chromaticities of a set of controlled phosphors was defined for
use in broadcast monitors, and it now forms the Society of Motion Picture
and Television Engineers (SMPTE) “C” phosphor specification.279,280 Current
commercial TV broadcasts in the U.S. are based on this specification. 

With the development of newer display technologies that are not based
on CRTs (see Section 1.11.1.5), it is now recognized that signal-origination
colorimetry needs to be decoupled from the receiver colorimetry and that
color correction at the receiver should compensate for the difference. How-
ever, for compatibility reasons and to minimize noise in transformations, it
is still desirable to keep the reference primaries for broadcast colorimetry
close to the phosphor primaries. Toward this end, the International Radio
Consultative Committee (CCIR)140 has defined a set of phosphor primaries
by the chromaticity coordinates (0.640, 0.330) (red), (0.300, 0.600) (green), and
(0.150, 0.060) (blue) for use in high-definition television (HDTV) systems. 

Prior to transmission, tristimuli in SMPTE RGB and CCIR RGB spaces
are nonlinearly compressed (by raising them to a power of 0.45) and encoded
for reducing transmission bandwidth.39,140 The reasons for these operations
will be explained in Section 1.11.1.1. Note, however, that the encoding and
nonlinear operations must be reversed before the signals can be converted
to tristimuli spaces associated with other primaries. Transformations for the
conversion of color tristimulus values between various systems can be found
in References 234 (pp. 66–67), 142 (p. 71), and 231.

1.6 Alternative color specification systems
One of the limitations of the system of colorimetry outlined above is its non-
intuitiveness and lack of clear relation to commonly understood color per-
ception attributes such as hue, saturation, and lightness/brightness.† In
describing perceived colors, most individuals resort to the use of color names
such as white, black, red, green, yellow, blue, pink, etc. These terms, however,
have no inherent ordering and are therefore limited in their utility unless
they are conceptually organized into a color order system330 based on percep-
tual principles. 

† Readers are referred to Chapter 2 of this handbook or to References 132, 133, 135, and 335 (p.
487) for definitions of hue, chroma, saturation, lightness, brightness, and other color appearance
terminology. Common notions of these terms will, however, suffice for the purposes of this
chapter.
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An early color order system for the specification of color based on the
perceptual dimensions of hue, lightness, and chroma was developed by
Munsell as a teaching aid for art students.208 In the Munsell Color System,
the hue, lightness, and chroma dimensions are described by the Munsell
hue, Munsell value, and Munsell chroma, respectively.25 A semi-numerical
specification of the color is obtained by classifying colors into ten principal
hues, with ten sub-hues for each hue, and a value between zero and ten. For
defined hue and value, a chroma specification was experimentally obtained
by selecting samples (with colors of the corresponding hue and value) of
increasing chroma with equal perceived differences between neighboring
samples. The step sizes for the perceptually equally spaced samples were
determined so as to be consistent across different hue and value coordinates.
A physical embodiment in the form of a color atlas209 is an integral part of
the Munsell system. The Munsell Book of Color, as the atlas was called, contains
reflective samples that (when viewed under daylight) are spaced apart in
perceptually equal steps of these attributes.335 Colors in the Munsell system
are specified by the combination of the Munsell hue, Munsell value, and
Munsell chroma classifications/numbers. The Munsell system has under-
gone significant extension and evolution and is still in use.209 In addition to
the Munsell system, several other color order systems are in existence. The
predominant among these are the Swedish Natural Color System123,124,147,275,289

and the Optical Society of America (OSA) Uniform Color Scales (OSA-UCS)
system.1,186,187

In the printing industry, it is common to create desired colors by using
specially formulated colorants or premixed inks. These are typically known
as spot colors. The colors are often communicated and specified by using
printed samples that are organized by colorant and given distinct designa-
tions. Designers may thus choose a color from the available samples and
communicate the color to printers using its designation, which specifies
which ink is to be used in the printing process. The Pantone Matching
System224 is the main example of such a colorant-based empirical color spec-
ification system. Clearly, such a system has several limitations, the primary
one being the variation in the specified “color” with a change in viewing
illumination. Nonetheless, the system is in widespread use in the design and
printing industries and has been extended to additional applications beyond
printing.

The color specification systems described above are convenient for the
specification of colors of uniform regions with reasonable spatial extent, such
as those encountered in paints, color plastics, and textiles. The systems are
therefore commonly used in the textiles and coloring industries. The color
order systems are also commonly used in color research because of their
desirable perceptual attributes. The Pantone Matching System is also com-
monly used for the specification of color in document imaging applications,
typically for regions of uniform color such as a background or a corporate
logo. These systems, however, they are not suited for the specification of
colors in images where the colors are spatially and typically continuously
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varying. A numerical system for color such as the CIE system is thus a
requirement for imaging applications. The color order systems, however,
play a significant role in the development and enhancement of the CIE
numerical system; in particular, in the determination of color spaces with
meaningful correlates of perceptual attributes and uniformity with respect
to perception. 

1.7 Uniform color spaces and color differences
The standards for colorimetry defined in Section 1.5 provide a system for
specifying color in terms of tristimulus values that can be used to represent
colors unambiguously in a three-dimensional space. It is natural to consider
the relation of the distance between colors in this three-dimensional space
to the perceived difference between them. Before such a comparison can be
made, it is necessary to have some means for quantifying perceived color
differences. For widely different color stimuli, an observer’s assessment of
the magnitude of color difference is rather variable and subjective.335(p. 486) At
the same time, there is little practical value in quantifying large differences
in color, and most research has concentrated on quantifying small color
differences. For this purpose, the notion of a just noticeably difference (JND)
in stimuli has been used extensively as a unit by color scientists. 

Several researchers have examined the distribution of just noticeably
different colors in CIE xy chromaticity and CIE XYZ tristimuli spaces and
have found that it varies widely over the color space.34,185,329,333,334 Hence, the
CIE XYZ space is perceptually nonuniform in that equal perceptual differ-
ences between colors do not correspond to equal distances in the tristimulus
space. Because perceptual uniformity is an extremely desirable feature for
defining tolerances in color reproduction systems, considerable research has
been directed toward the development of uniform color spaces. Traditionally,
the problem has been decomposed into two sub-problems: one of determin-
ing a uniform lightness scale and the other of determining a uniform chro-
maticity diagram for equi-lightness color stimuli. The two are then combined
with suitable scaling factors for the chromaticity scale and the lightness scale
to make their units correspond to the same factor of a JND. 

The historical milestones in the search for uniform brightness and light-
ness scales are described in Wyszecki and Stiles.335(pp. 493–499) Typical experi-
ments determine these scales either by a process of repeated bisection of the
scale extremes or by moving up in increments of a JND. Details of these
standard psychophysical techniques can be found, for instance, in Gesc-
heider.100 A cube-root power law relation between brightness and luminance
provides a satisfactory fit for most experimental data and therefore has the
most widespread acceptance at present.335(p. 494)

The search for a uniform lightness scale was complemented by efforts
toward determination of a uniform chromaticity scale for constant lightness.
Two of these attempts are noteworthy. The first determined a linear trans-
formation of the tristimulus space that yielded a chromaticity diagram with
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just noticeably different colors being roughly equi-spaced.151,152 This was the
precursor of the CIE 1960 u,v diagram.335(p. 503) The second was primarily
motivated by the Munsell system and used a nonlinear transformation of
the CIE XYZ tristimuli to obtain a chromatic-value diagram in which the
distances of Munsell colors of equal lightness would be in proportion to their
hue and chroma differences.4 The form for the nonlinear transformation was
based on a color vision model proposed earlier by Adams,3 and the diagram
is therefore referred to as Adams’ chromatic-value diagram. 

Based on the aforementioned research, the CIE has recommended two
uniform color spaces for practical applications: the CIE 1976 L*u*v* (CIELUV)
space and the CIE 1976 L*a*b* (CIELAB) space.47 These spaces are defined
in terms of transformations from CIE XYZ tristimuli into these spaces. Both
spaces employ a common lightness scale, L*, that depends only on the
luminance value Y. The lightness scale is combined with different uniform
chromaticity diagrams to obtain a three-dimensional uniform color space.
For the CIELUV space, a later version of the CIE 1960 u,v diagram is used,
whereas CIELAB uses a modification of Adams’ chromatic-value dia-
gram.335(p. 503) In either case, the transformations include a normalization
involving the tristimuli of a white stimulus, which provides a crude approx-
imation to the eye’s adaptation (see Section 1.9.1). Euclidean distances in
either space provide a color-difference formula for evaluating color differ-
ences in perceptually relevant units. Both spaces also include correlates for
the three perceptual attributes of lightness, chroma, and hue. 

1.7.1 The CIE 1976 L*u*v* space

The L*, u*, v* values corresponding to a stimulus with CIE XYZ tristimulus
values X, Y, Z are given by47

(1.23)

(1.24)

(1.25)

where

(1.26)
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(1.27)

(1.28)

(1.29)

(1.30)

and Xn, Yn, Zn are the tristimuli of the white stimulus, which is typically the
brightest stimulus in the field of view (see the next chapter for a more
detailed discussion of adapting white, and also Section 1.9.1). 

The Euclidean distance between two color stimuli in CIELUV space is
denoted by (delta E-uv) and is a measure of the total color difference
between them. On average, a  value of around 2.9 corresponds to a
JND.192 As mentioned earlier, the value of L* serves as a correlate of lightness.
In the u*v* plane, the radial distance ( ) and angular position
( ) serve as correlates of chroma and hue, respectively. 

1.7.2 The CIE 1976 L*a*b* space

The L* coordinate of the CIELAB space is identical to the L* coordinate for
the CIELUV space, and the transformations for the a* and b* coordinates are
given by 

(1.31)

(1.32)

where f(·),Xn, Yn, and Zn are as defined earlier.
Because CIELAB is used extensively in imaging, transforms to and from

CIELAB to other color spaces are commonly employed. For this reason, it is
useful to list the inverse of the above transform, which converts a CIELAB
value to a corresponding set of CIE XYZ values as follows:

(1.33)
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(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

where fY, fX, and fZ are intermediate terms representing f(Y/Yn), f(X/Xn), and
f(Z/Zn), respectively, and  denotes the inverse of the function  in
Equation 1.26, given by 

(1.39)

In CIELAB, the radial distance in the a*b* plane

(1.40)

serves as a correlate or measure of perceived chroma. The angular position
in the a*b* plane 

(1.41)

serves as a correlate of perceived hue. Euclidean distance between two color
stimuli in CIELAB space is denoted by  (delta E-ab). For a sample color
with CIELAB values , the color difference from a standard color
with CIELAB values  is given by 

(1.42)

where , , and  are the dis-
tances of the sample from the standard along the L*, a*, and b* axes, respec-
tively. A  value of around 2.3 corresponds to a JND.192 This correlation
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is, however, quite approximate, and there are significant variations in a visual
JND over color space. 

The CIELAB space also incorporates an opponent-color encoding (see
Sections 1.9 and 1.9.2 for details). The opponent encoding and the L*, a*, and
b* axes are illustrated in Figure 1.14. The a* axis corresponds to red–green
opponent hues, with distances along the positive a* axis corresponding to a
measure of redness and distances along the negative a* axis corresponding
to a measure of greenness. Likewise, the b* axis corresponds to the yel-
low–blue opponent hues, with the distances along the positive b* axis rep-
resenting a measure of yellowness and distances along the negative b* axis
representing a measure of blueness. Thus, the CIELAB coordinates of a color
can also provide a rough description for the color’s perceptual attributes. A
color with CIELAB of 50, 0, 0 is a mid-gray color with no apparent hue —
commonly referred to as a neutral or achromatic color. A CIELAB value of 50,
0, 70 represents a mid-lightness saturated yellow color, and a CIELAB value
of 90, –10, –7 represents a pastel cyan (bluish-green) color. 

1.7.3 Limitations of CIELAB and CIELUV spaces

The CIELAB color space is widely used in color imaging and printing indus-
tries, and CIELUV is commonly used in the display industry. Both spaces,
however, have several limitations. As may be expected, the CIELUV and
CIELAB color spaces are only approximately uniform and are often inade-
quate for specific applications. The uniformity of CIELAB and CIELUV is
about the same, but the largest departures from uniformity occur in different

b
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a*

Redness
Greenness

Yellowness

Blueness

Black

White

Gray Axis

Figure 1.14 Interpretation of CIELAB axes and opponent nature of the a* and b*
axes.

© 2003 by CRC Press LLC



regions of the color space.163,229,245 Several other uniform color spaces and
color difference formulae have been proposed since acceptance of the CIE
standards. Because CIELAB has gained wide acceptance as a standard, most
of the difference formulae attempt to use alternate (non-Euclidean) distance
measures† in the CIELAB space. Some of these are discussed in the following
section.

The CIELAB and CIELUV spaces are also deficient with regard to the
correlates for hue. Figure 1.15 shows a plot of the a*–b* plane where the loci
of points corresponding to a constant perceived hue have been plotted. (The
tables used to generate this figure were provided by Braun33 and are based
on visual data of Hung et al.129) The center of the figure corresponds to the
L* axis. Since the angular position

in CIELAB is a correlate of hue, one expects colors of a single hue should
correspond to planes in CIELAB emanating radially outward from the
CIELAB axis. The loci of points corresponding to a constant perceived hue
in Figure 1.15 should therefore correspond to lines going radially outward
from the center of the figure. This is, however, not the case. Particularly, the

† Note that several of these distance measures are asymmetric and as such do not satisfy the
mathematical requirements for a metric.96(p. 91)
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Figure 1.15 Loci of points corresponding to constant perceived hue in a*-b* plane
(interpolated data).
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loci of points corresponding to constant perceived hues in the blue regions
(in the vicinity of the negative b* axis) show a very high curvature, indicating
that the CIELAB hue correlate in this region is in poor agreement with actual
perceived hue. 

In several color processing operations, it is desirable to preserve a spec-
ified perceptual color attribute. A common example of this is the process of
gamut-mapping (described in significant detail in a subsequent chapter),
where it is often desirable to modify colors while preserving hue. Early
attempts at preserving hue in the process of gamut mapping were based on
the CIELAB space, where the gamut mapping was decomposed into indi-
vidual mappings in CIELAB hue planes, i.e., planes emanating outward from
the L* axis. While these mappings preserve the CIELAB correlate of hue, the
actual perceived hue is often poorly preserved due to the discrepancy
between CIELAB hue and perceived hue described above. Understandably,
the most significant artifacts are seen in the blue region, and the most com-
mon instantiation is the shift from blue to purple in the mapping of colors
in the vicinity of the CRT blue primary to a printer gamut. More recently,
the problem has been addressed by either warping the CIELAB space to
correct for the hue “nonlinearity” before the gamut mapping33 or through
the use of alternate spaces, other than CIELAB, that provide better correlates
of hue. Details are included in the chapter on gamut mapping. 

1.7.4 Alternative color difference formulae

As indicated earlier, the Euclidean distance in CIELAB does not provide a
very good agreement with the perceived magnitude of the color difference.
Several alternative color difference formulae have therefore been proposed.
Due to the widespread use of CIELAB, the most commonly used formulae
are based on the CIELAB space and differ from in that the computation
of the distance between colors is not the Euclidean distance. Instead, the
color difference formulae commonly decompose the Euclidean distance in
CIELAB into components corresponding to differences in lightness, hue, and
chroma, and these components are weighted differently to define a new color
difference. Prominent among this class of uniform color difference formulae
are the CMC(l:c) distance function,52 the BFD(l:c) function,182,183 the CIE-94
color difference formula,49 and the recently developed CIE-DE2000 color
difference formula.179 The CMC(l:c) and the BFD(l:c) formulae have a long
history and have influenced the development of the newer color difference
formulae. These two color difference formulae are compared to and a
number of other uniform color spaces using perceptibility and acceptability
criteria in Reference 192. In image processing applications involving color,
the CIELAB and CIELUV spaces have been used extensively whereas, in
industrial color control applications, the CMC formulae have found wider
acceptance. In 1994, the CIE issued a new recommendation for the compu-
tation of color differences in CIELAB space that incorporates several of the
robust and attractive features of the CMC(l:c) distance function.49 Additional

∆E*ab

∆E*ab
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features of the CMC and BFD color difference formulae have also been
incorporated into CIE-DE2000.179

For the computation of the color difference of a sample color with
CIELAB values , ,  from a standard color with CIELAB values ,

, , a generic class of formula representing several of these color differ-
ence formulae can be written as179

(1.43)

where kL, kC, kH = positive, real-valued scaling parameters chosen based on 
the application where the formula is used

SL, SC, SH = lightness-, chroma-, and hue-dependent scaling 
functions, respectively

RT = an additional scaling function that depends on chroma 
and hue

The terms  are referred to as the lightness, chroma, and hue
differences, respectively. These are defined in terms of the standard and
sample CIELAB values as†

(1.44)

(1.45)

(1.46)

The sample and standard chroma values C*ab,2  and C*ab,s , respectively, are
computed from the CIELAB coordinates as indicated in Equation 1.40, and
the terms ∆L*, ∆a*, ∆b*, and ∆E*ab  are as defined in Equation 1.42. The function
φ(·) is a function of the product of chroma and hue differences. Typically, kL

= kC = kH = 1 are used as the default parameter values in imaging applications. 
For the CMC and CIE-94 color difference formulae, the RT term in Equa-

tion 1.43 is absent, simplifying these formulae to 

†  The CIE-DE2000 formula requires an additional chroma-dependent scaling of the a* axis
prior to computation of the lightness, chroma, and hue differences.

L*2 a*2 b*2 L*s
a*s b*s

∆E ∆L*
kLSL
----------- 
  2 ∆C*

kCSC
----------- 
  2 ∆H*

kHSH
------------ 
  RTφ ∆C*∆H*( )+ + +=

∆L* ∆C* ∆H*, ,

∆L* L*2 L*s–=

∆C* C*ab 2, C*ab s,–=

∆H* ∆E*ab( )2 ∆L*( )2 ∆C*( )2+( )–=

∆a*( )2 ∆b*( )2 ∆C*( )2+–=

2 a*2 b*s a*s b*2–( )
C*ab 2, C*ab s, a*2 a*s b*2 b*s+ +

---------------------------------------------------------------------------=
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(1.47)

The weighting functions SL, SC, and SH for the CMC formula are computed
from the CIELAB coordinates of the standard as2,52,205

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

where the CIELAB hue angle of the standard, , is computed in the interval
[0, 360°] according to the definition in Equation 1.41. The parameter kH is
unity for the CMC color difference formula, and the parameters kL and kC

(defined by the user) weight the importance of lightness and chroma relative
to hue. The resulting color difference computed using the above scaling func-
tions in Equation 1.47 is referred to as the  color difference. Note
that the definitions of the lightness, hue, and chroma weighting functions in
terms of the CIELAB coordinates of the standard make the CMC color formula
asymmetric in that the distance between two samples is dependent on which
one is chosen as the standard and which one as the sample. 

The complexity of the CMC formula makes it difficult to understand
intuitively based on equations alone. A graphical illustration of the CMC
difference is therefore presented in Figure 1.16. The figure represents the
CIELAB a*–b* plane, with the a* and b* axes as shown. The figure includes
plots of several elliptical closed curves that represent the loci of points whose
color difference with respect to a standard color at the “center” of the
“ellipse” is one  unit. The “center” representing the standard has
been excluded from the figure for clarity. Note that the figure is representa-
tive of a*–b* planes at all values of L*, because the  and  weighting

∆E ∆L*
kLSL
----------- 
  2 ∆C*

kCSC
----------- 
  2 ∆H*

kHSH
------------ 
  2

+ +=

SL
CMC

0.040975L*s
1 0.01765L*s+
------------------------------------- L* 16≥

0.511 L* 16<





=

SC
CMC 0.0638C*ab s,

1 0.0131C*ab s,+
---------------------------------------- 0.638+=

SH
CMC SC

CMC TCMCFCMC 1 FCMC–+( )=

FCMC C*ab s,( )4

C*ab s,( )4 1900+
---------------------------------------=

TCMC 0.56 0.2 h*ab s, 168°+( )cos      + 164° h*ab s, 345°≤ ≤
0.36 0.4 h*ab s, 35°+( )cos+ otherwise




=

h*ab s,

∆ECMC kL kC,( )

∆ECMC 1 1,( )

SH
CMC SC

CMC
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functions are independent of L*. The figure, however, does not illustrate the
effect of the weighting function . The predominant trend seen in Figure
1.16 is the elongation of the “ellipses” as one goes radially outward from the
center. A plot of similar “ellipses” for the color difference would result
in uniform circles of radius 1 throughout the plane. Thus, if the CMC formula
is considered accurate, i.e., in better agreement with perceived differences,
it indicates that the color difference overemphasizes hue and chroma
differences at higher chroma values. Visual color difference data verify that
this is indeed the dominant deficiency in the uniformity of CIELAB. 

While the CMC formula corrects for this dominant nonuniformity in
CIELAB, because of its complexity and the number of terms, there are con-
cerns about its statistical validity and generalization to data and situations
beyond those for which it was originally derived.19 In 1994, the CIE proposed
a new color difference formula that incorporated only the more robust fea-
tures of the CMC formula. The CIE-94 color difference formula49 is obtained
by using the following weighting functions in the difference equation of
Equation 1.47: 

(1.53)

(1.54)
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Figure 1.16 “Ellipses” corresponding to a color difference of ∆ECMC(1:1) = 1.0 in the
a*–b* plane.
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The lightness weighting function SL
CIE94 =  1.0, and, in typical imaging appli-

cations, the parametric factors kL, kC, and kH are all chosen to be unity.
Asymmetric and symmetric versions of the formula have been defined. For
the asymmetric formula, the chroma in Equations 1.53 and 1.54 corresponds
to the chroma of the standard color, i.e., . Just like the CMC
formula, this implies that the distance between two samples is dependent
on which one is chosen as the standard and which one as the sample. For
the symmetric version of the formula, the chroma for the weighting functions
in Equations 1.53 and 1.54 is defined as the geometric mean of the chromas
of the sample and standard colors, i.e., . This ensures
that the distance between two samples is independent of which one is chosen
as the standard. The color difference obtained using the above scaling func-
tions in Equation 1.47 is referred to as the color difference. 

The CIE-94 color difference formula is significantly simpler than the
CMC formula. From the scaling functions of Equations 1.53 and 1.54, it is
clear that the CIE-94 color difference formula scales down hue and chroma
differences for higher chroma colors in comparison to CIELAB and thus
corrects for the predominant deficiency in CIELAB. Along the L* axis, the
scaling factors are all unity, which ensures that (asymmetric) color
differences about neutral colors that lie on the L* axis are identical to the

Euclidean color difference. For chromatic colors, the weighting factors
in Equations 1.53 and 1.54 are greater than unity, and the is therefore
smaller than the Euclidean color difference. A graphical visualization
of the color difference formula is shown in Figure 1.17, where several
elliptical closed curves are plotted in the a*–b* plane. These “ellipses” cor-
respond to the loci of points whose color difference with respect to a standard
color at the “center” of the “ellipse” is one unit (asymmetric formula).
Once again, the central points have been excluded for clarity of the figure.
The figure demonstrates trends similar to Figure 1.16, with “ellipses” elon-
gated along the radial direction as one goes radially outward from the L*
axis and increasing in size along both dimensions. Due to the lack of a hue-
dependent weighting term in the color difference formula, “ellipses”
at the same radial distance from the origin in Figure 1.17 are congruent,
unlike the corresponding “ellipses” in Figure 1.16. Through an integration
of the chroma weighting function for the CIE-94 color difference formula, it
is also possible to create an alternate color space in which the Euclidean
distance is in very good agreement with the color difference for-
mula.244,295 Such a space is useful for visualizing color differences, as
they correspond to the well-understood notion of Euclidean distance. 

Recently, a new color difference formula that has been proposed for
adoption as a CIE standard179 is termed the CIE-DE2000 color difference
formula, and the corresponding color difference is denoted as . The
CIE-DE2000 color difference formula incorporates a hue-dependent weight-
ing function SH similar to the CMC formula. It also includes an additional
term in the color difference that depends on the hue and chroma difference
product that is motivated by the BFD formula (the RT term in Equation 1.43).

C*ab C*ab s,=

C*ab C*ab s, C*ab 2,( )=

∆E*94

∆E*94

∆E*ab

∆E*94

∆E*ab

∆E*94

∆E*94

∆E*94

∆E*94
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The formula also includes a global rescaling of the a* axis prior to compu-
tation of the hue and chroma. The CIEDE2000 color difference formula is
designed to be symmetric by using averages of the standard and sample
color values in the weighting functions. The resulting formula is fairly com-
plex, and the reader is referred to Reference 179 for details. Figure 1.18
visually illustrates the behavior of the  color difference formula in the
a*–b* plane. The closed curves plotted in this figure correspond to the loci
of points whose color difference, with respect to a standard color located
roughly in the center of the curve, is one  unit. The closed curves are
well behaved in most regions and shaped like ellipses. In the blue region
(around the negative b* axis), however, the closed curves become non-convex
and take on a very distorted shape. This is potentially problematic and
probably does not agree with any psychophysical color difference data, most
of which predict loci of visually equidistant color samples from a standard
as convex almost elliptical closed curves. It would therefore be prudent to
wait for a resolution of these issues before using the CIE-DE2000 color
difference formula. In addition to the issue illustrated in Figure 1.18, addi-
tional concerns remain with regard to the CIE-DE2000.170,180 Because the
scaling functions have been derived from color difference datasets, there are
questions about differences in the conditions under which the data were
gathered and about the influence of the conditions on the scaling functions.
In particular, some of the data might be influenced by lightness and chroma
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Figure 1.17 “Ellipses” corresponding to a color difference of ∆E*94  = 1.0 in the a*–b*
plane.
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crispening,† limiting the scenarios under which the formula is applicable.170

In imaging applications, colors are typically surrounded by other similar
colors, whereas visual datasets used for deriving the color difference formu-
lae are based on comparisons of colors on a fixed background — normally
mid-gray. For imaging applications, therefore, it is particularly important that
the local lightness/chroma crispening in the experimental visual data should
not influence the color difference formulae. In addition to the above concerns
with color difference formulae, there are several fundamental questions asso-
ciated with the CIELAB space itself.169 Research on improved uniform color
spaces and color difference formulae is therefore likely to continue. 

1.8 Limitations of CIE colorimetry
CIE colorimetry as discussed above has several additional limitations
beyond the deficiency in uniformity of the CIELAB and CIELUV color spaces
that was already addressed above. First, variations among observers’ color
matching characteristics are not comprehended by the CIE standard observer
and can result in a mismatch in colors for an actual color-normal observer,
even when a metameric match is predicted by the standard observer. This
is termed observer metamerism. While the extent of variation cannot be inher-
ently reduced, it is useful to quantify it, because it forms a basis for deciding

† A description of lightness crispening can be found in the next chapter.
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Figure 1.18 “Ellipses” corresponding to a CIEDE2000 color difference of ∆E00 = 1.0
in the a*–b* plane.
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what color tolerances are allowable and the extent to which illumination has
to be controlled to avoid illuminant metamerism (discussed in Section 1.5.2).
Toward this end, the CIE has developed an additional concept of a standard
deviate observer,48 which allows users to establish confidence limits represent-
ing observer variability. The standard deviate observer was derived based
on analysis of the variation in the original color matching data used to derive
the CIE 1964 10° observer. 

There is also significant debate about the accuracy of the standard CIE
1931 CMFs, given that these were derived from experimental data gathered
almost a century ago, using equipment limited by the technology available
at that time. In particular, the data used to generate the 2° standard
observer110,328 cannot be entirely reconciled with the data gathered later and
used to generate the 10° standard observer.284 Research has indicated some
small but systematic deviations from the original CMFs in the short-wave-
length regions.78,278,285 It has been conjectured that these deviations may
partly explain some of the blue hue nonlinearity in CIELAB that was dis-
cussed earlier. The CIE is also involved in an effort to derive new cone
fundamentals (CMFs) for the 2° standard observer based on the more recent
10° observer data.256,307 There are also fundamental questions about the con-
nection between photometry and colorimetry and whether it is indeed pos-
sible to define the photometric (luminance) response in terms of the colori-
metric response as one of the CMFs. Colorimetry therefore continues to be
an area of active research. In addition to issues with established standards
for color-normal observers, significant work is also required to better under-
stand the “color” vision characteristics of color-anomalous observers. 

Despite the above limitations, it is worth noting that the CIE system for
colorimetry is a significant advance over methods for color specification
prevailing before its adoption. The CIE system of colorimetry provides a
methodology for the quantitative specification of colors (or at least, color
correspondences). In this regard, the perception of color is significantly
advantaged over other human senses such as touch and smell for which no
system for quantitative specification currently exists and none is under immi-
nent development. 

1.9 Psychophysics of color
The human visual system as a whole displays considerable adaptation. It is
estimated that the total intensity range over which colors can be sensed is
around 108:1. While the cones themselves respond only over a 1000:1 inten-
sity range, the vast total operating range is achieved by adjustment of their
sensitivity to light as a function of the incident photon flux.320 This adjust-
ment is believed to be largely achieved through a feedback from the neuronal
layers that provide temporal lowpass filtering and adjust the cones’ output
as a function of average illumination. A small fraction of the adaptation
corresponding to a factor of around 8:1 is the result of a 4:1 change in the
diameter of the pupil that acts as the aperture of the eye.135(p. 23)
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Another fascinating aspect of human vision is the invariance of object
colors under lights with widely varying intensity levels and spectral distri-
butions. Thus, objects are often recognized as having approximately the same
color in phases of daylight having considerable difference in their spectral
power distribution and also under artificial illumination. This phenomenon
is called color constancy. The term chromatic adaptation is used to describe the
changes in the visual system that relate to this and other psychophysical
phenomena.

While colorimetry provides a representation of colors in terms of three
independent variables, it was realized early on that humans perceive color
as having four distinct hues corresponding to the perceptually unique sen-
sations of red, green, yellow, and blue. Thus, while yellow can be produced
by the additive combination of red and green, it is clearly perceived as being
qualitatively different from each of the two components. Hering120 had con-
siderable success in explaining color perception in terms of an opponent-
colors theory, which assumed the existence of neural signals of opposite
kinds, with the red–green hues forming one opponent pair and the yel-
low–blue hues constituting the other. Such a theory also satisfactorily
explains both the existence of some intermediate hues (such as red-yellow,
yellow–green, green–blue, and blue–red) and the absence of other interme-
diate hues (such as reddish-greens and yellowish-blues).

Initially, the trichromatic theory and the opponent-colors theory were
considered competitors for explaining color vision. However, neither one by
itself was capable of giving satisfactory explanations of several important
color vision phenomena. In more recent years, these competing theories have
been combined in the form of zone theories of color vision, which assume that
there are two separate but sequential zones in which these theories apply.
Thus, in these theories, it is postulated that the retinal color-sensing mech-
anism is trichromatic, but an opponent-color encoding is employed in the
neural pathways carrying the retinal responses to the brain. These theories
of color vision have formed the basis of a number of color appearance models
that attempt to explain psychophysical phenomena. Typically, in the interests
of simplicity, these models follow the theories only approximately and
involve empirically determined parameters. The simplicity, however, allows
their practical use in color reproduction applications involving different
media where a perceptual match is more desirable and relevant than a
colorimetric match. 

A somewhat different but widely publicized color vision theory was the
retinex (from retina and cortex) theory of Edwin Land.174,173 Through a series
of experiments, Land demonstrated that integrated broadband reflectances in
red, green, and blue channels show a much stronger correlation with per-
ceived color than the actual spectral composition of radiant light incident at
the eye, or corresponding integrated radiances. He further postulated that
the human visual system is able to infer the broadband reflectances from a
scene through a successive comparison of spatially neighboring areas, which
offers an alternate spatial form of adaptation similar to chromatic adaptation.
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The retinex computation is one of the few models of vision that attempts to
comprehend spatial interactions in color vision. Recent years have seen a
resurgence of interest in the retinex theory.203 Computational versions of the
theory have recently been used, with some success, in the enhancement of
color images,145,146,239 in illuminant estimation for digital camera images,97

gamut mapping of high dynamic range images,281 and other applications. 
One may note here that some of the uniform color spaces include some

aspects of color constancy and color appearance in their definitions. In par-
ticular, both the CIELAB and CIELUV spaces employ an opponent color
encoding and use white-point normalizations that partly explain color con-
stancy. However, the notion of a color appearance model is distinct from
that of a uniform color space. Typical uniform color spaces are useful only
for comparing stimuli under similar conditions of adaptation and can yield
incorrect results if used for comparing stimuli under different adaptation
conditions. The CIE does not recommend the use of CIELAB and CIELUV
spaces in conditions where the illuminant is “too different from average
daylight.”47 Even under these restricted conditions, it is apparent from the
discussion of Section 1.7.3 that, as appearance spaces, CIELAB and CIELUV
are rather crude approximations. Color appearance models and spaces are
the topic of the next chapter. A very brief outline is included here to provide
a broad overview and establish the connections with the basic colorimetry
and color difference formulae we have described here. 

1.9.1 Chromatic adaptation and color constancy

Several mechanisms of chromatic adaptation have been proposed to explain
the phenomenon of color constancy. Perhaps the most widely used of these
in imaging applications is one proposed by von Kries.167 He hypothesized
that the chromatic adaptation is achieved through individual adaptive gain
control on each of the three cone responses. Thus, instead of Equation 1.3,
a more complete model represents the cone responses as 

(1.55)

where D is a diagonal matrix corresponding to the gains of the three chan-
nels, and the other terms are as before. The gains of the three channels
depend on the state of adaptation of the eye, which is determined by pre-
exposed stimuli and the surround, but independent of the test stimulus f.
This is known as the von Kries coefficient rule. 

The term asymmetric matching is used to describe matching of color
stimuli under different adaptation conditions. Using the von Kries coefficient
rule, two radiant spectra, f1 and f2, viewed under adaptation conditions
specified by the diagonal matrices D1 and D2, respectively, will match if 

D1STf1 = D2STf2 (1.56)

c′ DSTf=
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Thus, under the von Kries coefficient rule, chromatic adaptation can be
modeled as a diagonal transformation for tristimuli specified in terms of the
eye’s cone responses. Usually, tristimulus values are specified not relative to
the cone responses themselves but to CMFs that are linear transformations
of the cone responses. In this case, it can readily be seen335(p. 432) that the
tristimuli of color stimuli that are in an asymmetric color match are related
by a similarity transformation101 of the diagonal matrix . 

A von Kries transformation is commonly used in color rendering appli-
cations because of its simplicity and is a part of several standards for device-
independent color imaging.61,290 Typically, the diagonal matrix  is
determined by assuming that the cone responses on either side of Equation
1.56 are identical for white stimuli (usually a perfect reflector illuminated
by the illuminant under consideration). The white-point normalization in
CIELAB space was primarily motivated by such a model. Because the CIE
XYZ CMFs are not per se the cone responses of the eye, the diagonal trans-
formation representing the normalization is not a von Kries transformation
and was chosen more for convenience than accuracy.79

In actual practice, the von Kries transformation can explain results
obtained from psychophysical experiments only approximately.335(pp. 433–451)

At the same time, the constancy of metameric matches under different adap-
tation conditions provides strong evidence for the fact that the cone response
curves vary only in scale while preserving the same shape.131(p. 15) It therefore
seems most likely that part of the adaptation lies in the nonlinear processing
of the cone responses in the neural pathways leading to the brain. 

A number of alternatives to the von Kries adaptation rule have been
proposed to obtain better agreement with experimental observations. Most
of these are nonlinear and use additional information that is often unavail-
able in imaging applications. Several of these are discussed in the next
chapter, and additional information can be found in References 81 and 135
(pp. 81 and 217). 

The phenomenon of color constancy suggests that the human visual
system transforms recorded stimuli into representations of the scene reflec-
tance that are (largely) independent of the viewing illuminant. Several
researchers have investigated algorithms for estimating illuminant-indepen-
dent descriptors of reflectance spectra from recorded tristimuli, which have
come to be known as “computational color constancy algorithms.”88–90,93,195

Several of these algorithms rely on low-dimensional linear models of object
and illuminant spectra, which will be discussed briefly in Section 1.11.5.1. A
discussion of how these algorithms relate to the von Kries transformation
rule and to human color vision can also be found in References 89, 90, and 322. 

1.9.2 Opponent processes theory and color appearance models

The modeling of chromatic adaptation is just one part of the overall goal of
color appearance modeling. While color appearance models are empirically
determined, they are usually based on physiological models of color vision.

D1
1– D2

D1
1– D2
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Most modern color vision models are based on “wiring diagrams” of the
type shown in Figure 1.19. The front end of the model consists of L, M, and
S (long, medium, and short wavelength sensitive) cones. The cone responses
undergo nonlinear transformations and are combined into two opponent
color chromatic channels (R-G and Y-B) and one achromatic channel (A). A
positive signal in the R-G channel is an indication of redness, whereas a
negative signal indicates greenness. Similarly, yellowness and blueness are
opposed in the Y-B channel. The outputs of these channels combine to deter-
mine the perceptual attributes of hue, saturation, and brightness. 

It is obvious that the above color-vision model is an oversimplification.
Actual color appearance models are considerably more intricate and involve
a much larger number of parameters, with mechanisms to account for spatial
effects of surround and the adaptation of the cone responses, which was
briefly discussed in the last section. Due to the immense practical importance
of color appearance modeling to color reproduction systems, there has been
considerable research in this area, and a standard color appearance model
has been developed by the CIE.50,181 Additional details of the state of the
research in color appearance models can be found in the next chapter.

A common use of color appearance models in imaging applications is
in reproducing images that are to be viewed under different viewing condi-

SaturationHue Brightness

A

L M S

+ - + + - + + +

R - G Y - B

Figure 1.19 Typical “wiring diagram” for human color vision models (adapted from
Reference 246).
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tions from the original. An example of this situation would be the reproduc-
tion of a bright daylight-lit outdoor scene in a photograph/printed image
that is to be viewed indoors under significantly lower light levels and illu-
mination with relative SPDs very different from daylight. Matching the
colorimetry of the outdoor scene under the indoor illumination is neither
feasible nor desirable due to the very different states of adaptation of the
eye under the differing conditions.136 Instead, it is desirable to match the
appearance as closely as possible. This is facilitated by color appearance
models.

Figure 1.20 illustrates the conceptual use of the color appearance model
in situations similar to those outlined above. For given colorimetry under
(specified) reference viewing conditions, a color appearance model predicts
the colorimetry required under the (specified) test viewing conditions for
producing the same color appearance. To take a concrete example, if you
view a reflective print under one illuminant and want to create a print that,
when viewed under a different illuminant, produces an identical appearance
(in your mind), the color appearance model gives you the colorimetry that
your desired print should have. Note that the appearance that you are trying
to match is that of the “original” print under the original viewing conditions
and not the appearance of the original print under the new viewing illumi-
nant. This is a common source of confusion in the use of color appearance
models and chromatic adaptation transforms: it is incorrectly assumed that
these models predict the color appearance of a physical color sample as it

V
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Viewing
Conditions

XYZT

Colorimetry

V

Colorimetry
XYZ

Viewing
Conditions R

R

Matching
Appearance

Transform Based

Appearance Model
on a Color

Figure 1.20 Use of a color appearance model to predict colorimetry under test
viewing conditions that will match appearance of reference colorimetry under cor-
responding viewing conditions.
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is moved across viewing illuminants. A color appearance model is not
intended to predict the color appearance of a physical object under a different
“test” viewing illuminant from its colorimetry under a “reference” viewing
illuminant. Clearly, if we have metameric samples that match under the
“reference illuminant,” a color appearance model will indicate that they
match under all test illuminants whereas, in practice, we know this is not
true. Color appearance models only model the adaptation process in the eye
— they cannot and do not model the physical changes in the viewing illu-
minant; these can be properly accounted for only by using spectral measure-
ments using spectrophotometers and spectroradiometers. 

Despite the statements in the above paragraphs, arguments from color
constancy can be used to say that, for most objects, color appearance models
would provide a good approximation to the colorimetry of the original object
under the new illuminant. However, because color constancy holds only
approximately, so does this argument, and it is important to understand that
the failure of a color appearance model in predicting the change in appear-
ance of a physical object when it is moved from one viewing illuminant to
another is an instance of incorrect use of the model rather than a failure of
the model. 

1.10 Spatial characteristics of color vision
The CIELAB color space and associated color difference formulae try to
account for the nonlinearities in the color sensing process for the comparison
of relatively large uniform color regions and do not account for any spatial
interactions in the eye. Because the eye acts as a spatial lowpass filter that
can average over high spatial-frequency differences in images, a point-by-
point computation of color differences in CIELAB color space is not appro-
priate for the comparison of images. Though the eye exhibits lowpass char-
acteristics for both luminance† and chrominance spatial information, the
bandwidth for the chrominance channels is much lower than that of the
luminance channels. This fact has been exploited in numerous applications,
including color TV, where the transmission bandwidth allocated to the
chrominance channels is significantly lower than that for the luminance
channel.

Several researchers have modeled the spatial properties of the eye as a
linear filter and studied the frequency response of the eye for luminance and
chrominance spatial patterns.87,95,103,164,345 However, a complete model for
human vision that is perceptually uniform and incorporates the effects of
the spatial interactions is yet to be developed. While sophisticated models
that explain a large number of psychophysical effects have been developed
for luminance information,66,178 their extensions and the development of
alternative models that are capable of handling color data are still an active

† Strictly speaking, the luminance response of the eye is believed to be the bandpass but, for
all practical purposes, the low-frequency attenuation can be ignored.
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area of research.331 Several of the models in development are quite compli-
cated and incorporate features designed to explain a wide variety of psy-
chophysical effects.73,346

While sophisticated models are necessary in some cases,67 in several
imaging applications significant improvements can be made by incorporat-
ing relatively simple spatial models of human color vision. Computational
simplicity is also a necessity in situations where the models are used in
iterative loops for the optimization of image processing algorithms. As a
consequence, several simplified models have been developed that model the
spatial characteristics of color vision as simple luminance/lightness and
chrominance contrast sensitivity functions. One of the popular models in
this class of simplified models is the spatial extension of the CIELAB (S-
CIELAB) model,345 which will be used here for illustration of some of the
features of these models.

The S-CIELAB model first transforms a color image into three opponent
color image planes, O1, O2, and O3, corresponding to black–white (luminance),
red–green, yellow–blue image components, respectively. These three color
coordinates are defines as a linear transformation of the CIE XYZ tristimulus
values as 

(1.57)

Each opponent-colors image is convolved with a kernel filtered by two-
dimensional separable spatial kernels consisting of mixed Gaussians 

(1.58)

(1.59)

where f1(x,y), f2(x,y), and f3(x,y) are the kernels for O1, O2, and O3, respectively.
Variables x and y denote the spatial dimensions, and the standard deviation

 determines the spatial spread of the corresponding Gaussian in the mix-
ture. In the discrete implementation, the scale factor  is chosen so that

 sums to 1 over the spatial extent along x and y. The scale factors kj

are chosen so that, for each color plane, its two-dimensional kernel f j(x,y)
sums to one. The parameters  for the three opponent-colors are listed
in Table 1.2, where  are in degrees of visual angle.
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In the S-CIELAB model, the opponent color images O1, O2, and O3 are
spatially filtered through the corresponding spatial kernels f1(x,y), f2(x,y), and
f3(x,y) to obtain images O1’, O2’, and O3’, respectively. 

(1.60)

where * denotes convolution. The filtered images O1’, O2’, and O3’ are then
transformed back to CIE XYZ coordinates using the inverse of the transfor-
mation in Equation 1.57. The CIE XYZ coordinates are then transformed into
CIELAB using the transformation described earlier in Section 1.7.2. The
resulting image is the S-CIELAB representation of the original image. To
evaluate the differences between two images,† the images are converted into
their S-CIELAB representations, and pixel-wise color differences are com-
puted between them in the CIELAB space, producing a color difference
image. Typically, the CIE  color difference formula has been used,
although the other difference formulae based on CIELAB described in Sec-
tion 1.7.4 could also be used. The color difference image obtained from this
process represents a spatial map of the visual difference or distortion
between the images.342 The distortion map may be used directly to determine
regions where differences will be perceived, or the error over the image
pixels may be averaged to determine a single measure of the perceived
difference between the images. 

The spatial filter kernels for S-CIELAB corresponding to the parameter
values of Table 1.2 are shown in Figure 1.21a, b, and c for the black–white,
red–green, and yellow–blue opponent channels, respectively. The shapes of
the kernels clearly indicate the greater detail resolution for the black–white
(luminance) channel in comparison to the red–green and yellow–blue chromi-
nance channels, which is designed to mimic the behavior of the human visual
system. Because the individual kernels sum to unity, filtering a large uniform
region does not change its values, and the color difference computation

Table 1.2 Parameters for the s-CIELAB HVS Model

Luminance O1 (i = 3) 0.921
0.105

–0.108

0.0283
0.133
4.336

Red-green O2 (i = 2) 0.531
0.330

0.0392
0.494

Blue-yellow O3 (i = 2) 0.488
0.371

0.0536
0.386

† It is assumed that the two images are registered well with each other. The S-CIELAB metric
is not meaningful for misregistered images.
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reduces to the direct computation of color difference between the original
images in CIELAB. Thus, the S-CIELAB model agrees with CIELAB for large
uniform regions, which is desirable, as CIELAB is already a widely used
model for computing color differences between spatially uniform regions of
differing color. 
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Figure 1.21 Spatial convolution kernels for the S-CEILAB opponent color channels:
(a) f1(x,y), black–white; and (b) f2(x,y), red–green (continues).
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The S-CIELAB model is attractive because of its simplicity and close
association to the well-accepted CIELAB standard. It has therefore been used
recently in several different applications.10,342–344 Several other models with
similar characteristics have also been employed successfully in color imaging
applications.87,95,103,164 These models provide varying degrees of agreement
with psychophysical data and few, if any, comprehensive objective tests of
the different models exist. Research on improving the models and on the
development of new models is also continuing.

1.11 Color image reproduction and recording devices
In the physical world, color images exist as spatially varying spectral radi-
ance or reflectance distributions. To process these images digitally, the images
must be sampled both spatially and spectrally. The issues involved in spatial
sampling and reconstruction of images have been discussed at length in
signal processing literature and will not be repeated here. The aspects of
spectral sampling and color recording for images are also important, and
these are addressed here. The reproduction of color images works in the
opposite direction from the recording process. The physical realization of
color images from recorded information requires synthesis of spatially vary-
ing spectral radiance or reflectance distributions. This section provides an
overview of common color reproduction devices, the spectral characteristics
of natural images and images from these reproduction devices, and methods
for recording these images. Color reproduction devices are discussed first,
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Figure 1.21 (continued) Spatial convolution kernels for the S-CEILAB opponent
color channels: (c) f3(x,y), yellow–blue.
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because color recording systems may also be used to record color reproduc-
tions and may exploit the characteristics of the reproduction device. 

1.11.1 Color output systems

Nature provides a variety of mechanisms by which color may be produced.
As many as 15 distinct physical mechanisms have been identified that are
responsible for color in nature.210 While only a fraction of these mechanisms
are suitable for technological exploitation, there is still considerable diversity
in available technologies and devices for displaying and printing color
images.

Color output devices can be classified broadly into two main types:
additive and subtractive. Additive color systems produce color on a dark
background through the combination of differently colored lights, known as
primaries. The qualifier additive is used to signify the fact that the final
spectrum is the sum (or average) of the spectra of the individual lights, as
was assumed in the discussion of color matching in Section 1.4. Typically,
the additive primaries are red, green, and blue (RGB). The additive mixing
of RGB primaries is illustrated in Figure 1.22. The combination of red and
green forms yellow, of red and blue forms magenta, and of blue and green
forms cyan. Combination of all three primaries at full intensities produces
white. Intermediate colors are obtained by varying the individual primary
intensities. Examples of additive color systems include color cathode ray
tube (CRT) displays and projection video systems. 

Color in subtractive systems is produced through a process of removing
(subtracting) unwanted spectral components from “white” light. Typically,

Figure 1.22 (See color insert following page 430) Additive mixing of red, green, and
blue primaries.
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such systems produce color on transparent or reflective media, which are
illuminated by “white” light having spectral components distributed over
the visible spectrum. By overlaying these media with colorants that selec-
tively absorb light of certain wavelengths while transmitting other wave-
lengths, different colors are produced. Typical subtractive systems are based
on cyan, magenta, and yellow (CMY) colorants that absorb light in the red,
green, and blue spectral regions, respectively. The red, green, and blue spec-
tral regions are roughly defined as the intervals 600–700, 500–600, and
400–500 nm, respectively. Each colorant absorbs its complementary color and
transmits the rest of the visible range of the spectrum. The process is illus-
trated in Figure 1.23. The individual CMY colorants eliminate RGB spectral
regions, respectively. The combination (overlay) of cyan and magenta elim-
inates both red and green, producing blue; the combination of cyan and
yellow eliminates red and blue, producing green; and the combination of
magenta and yellow eliminates green and blue, producing red. The combi-
nation of the maximum amounts of all three produces black. Intermediate
colors are produced by varying the colorant amounts. Dye sublimation print-
ers, color photographic prints, color slides, and halftone color printers are
representatives of the subtractive process. Halftone color printing, which is
commonly used for lithographic/electro-photographic printing and in most
desktop inkjet color printers, may also be viewed as a hybrid system,266 since
the colorants combine subtractively, but the perceived color is the average
of the differently colored regions over a small area.

Any practical output system is capable of producing only a limited range
of colors. The range of producible colors on a device is referred to as its
gamut. Red, green, and blue primaries are chosen for additive systems,

Figure 1.23 (See color insert) Subtractive combinations of cyan, magenta, and yellow
colorants.
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because they offer the largest possible gamut; for the same reason, subtrac-
tive systems use cyan (C), magenta (M), and yellow (Y) colorants. In sub-
tractive systems, it is also common to use a fourth black (K) colorant that
absorbs light (almost) uniformly over the visible spectrum. This improves
the gamut by allowing darker colors to be produced and also allows better
reproduction of achromatic (gray) colors and lower cost through the replace-
ment of the more expensive CMY colorants with the K. An excellent descrip-
tion of additive and subtractive color reproduction and additional reasons
behind the choice of primaries can be found in Reference 341, Chapter 3. 

The gamut of a device can be represented by a three-dimensional solid
in any color space such as CIEXYZ/CIELAB. Because two-dimensional rep-
resentations are more convenient for display, it is common to utilize a CIE
xy chromaticity diagram for this purpose. On the CIE xy chromaticity dia-
gram, the gamut of an additive system appears as a convex polygon with
the primaries representing the vertices. For the usual case of three red, green,
and blue primaries, the gamut is a triangle on the CIE xy chromaticity
diagram. Because most subtractive and hybrid systems are nonlinear, their
gamuts have irregular shape and are not characterized by such elegant
geometric constructs. The two-dimensional representation of the gamut on
the CIE xy diagram presents only an incomplete (and difficult-to-interpret)
picture, because it does not represent the full three-dimensional data. With
the increase in computing speeds and advances in computer graphics, visu-
alization techniques are now used to render three-dimensional views of the
gamuts.154,251 The ability to manipulate these views interactively is extremely
useful in understanding the capabilities and limitations of the different color
output devices. Three different views comparing the gamut of a CRT monitor
and the gamut of a dye-sublimation continuous tone color printer are shown
in Figure 1.24, and identical views for an inkjet halftone color printer are
shown in Figure 1.25. In both cases, the wire frames represent the gamut of
a CRT monitor, and the solids represent the gamuts of the printer.† These
views demonstrate that the gamuts of these three output devices are fairly
different, with several colors that can be produced on one device and not
on another. Overall, the gamut of the monitor is the largest, followed by the
gamut of the continuous tone printer and then by the inkjet halftone printer,
which has a rather small gamut in comparison to the other devices. This
mismatch in the gamut between the devices poses significant challenges in
cross-media color reproduction and is discussed in some detail in Chapter
10, on gamut mapping. 

To discuss colorimetric reproduction on color output devices, it is useful
to introduce some terminology. The term control values is used to denote
signals that drive a device. The operation of the device can be represented
as a multidimensional mapping from control values to colors specified in a
device-independent color space. This mapping is referred to as the (device)

† The gamuts displayed here are computed assuming that no flare is present when viewing the
CRT display. Flare, i.e., ambient external room light reflected by the CRT display screen, can
cause a significant reduction in the effective gamut of a CRT display.263
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Figure 1.24 (See color insert) Comparison of a CRT monitor gamut (shown as a wire
frame) and a continuous-tone dye-sublimation printer gamut (shown as a solid) in
CIELAB space: (a) top view along the L* axis, and (b) a perspective projection
(continues).

(a)

(b)
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forward device transform. interactively specified colors in a device-independent
color space must be mapped to device control values to obtain colorimetric
output, it is necessary to determine the inverse of the multidimensional
forward device transform. The determination of the forward device trans-
form and the inverse transform necessary for mapping device independent
colors to device control values is sometimes called device profiling.

If the device’s operation can be accurately represented by a parametric
model, the profiling is readily done by determining the model parameters
from a few measurements. If no useful model exists, a purely empirical
approach is necessary in which the forward device transform is directly
measured over a grid of device control values. The inversion may be per-
formed in a closed form if the characterization uses a device model that
allows this. If an empirical approach is employed in characterization, or if
the model used is noninvertible (often the case with nonlinear models), one
has to resort to numerical methods in the inversion step.

1.11.1.1 Cathode ray tubes
The most widely used display device for television and computer monitors
is the color CRT. The CRT produces visible light by bombardment of a thin

Figure 1.24 (continued) (See color insert) Comparison of a CRT monitor gamut
(shown as a wire frame) and a continuous-tone dye-sublimation printer gamut
(shown as a solid) in CIELAB space: (c) another perspective projection.
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layer of phosphor material by an energetic beam of electrons. The electron
beam causes the phosphor to fluoresce and emit light whose spectral char-
acteristics are governed by the chemical nature of the phosphor. The most
commonly used color CRT tubes are the shadow-mask type, in which a
mosaic of red, green, and blue light-emitting phosphors on a screen is
illuminated by three independent electron beams. The intensity of light
emitted by the phosphors is governed by the velocity and number of elec-
trons. The beam is scanned across the screen by electrostatic or electromag-
netic deflection mechanisms. The number of electrons is modulated in syn-
chronism with the scan to obtain spatial variations in the intensity of the
light emitted by the three phosphors. At normal viewing distances, the light

Figure 1.25 (See color insert) Comparison of a CRT monitor gamut (shown as a wire
frame) and an inkjet printer gamut (shown as a solid) in CIELAB space: (a) top view
along the L* axis and (b) a perspective projection (continues).

(a)

(b)
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from the mosaic is spatially averaged by the eye, and the CRT thus forms
an additive color system. 

There are several design choices in the manufacture of shadow mask
CRTs. Other competing designs offer improved resolution by utilizing a
layered phosphor instead of a mosaic. The reader is referred to References
37 and 323 for a description of the different technologies and involved trade-
offs. A detailed description of physical principles involved in the operation
of these devices is provided in Reference 272 (pp. 79–200). 

Color in CRT displays is controlled through the application of different
voltages to the red, green, and blue guns. For a complete colorimetric char-
acterization of these devices, the CIE XYZ tristimulus values (or other tris-
timuli) must be specified as a spatially varying function of the voltages
applied to the three guns. A brute-force approach to this problem, using a
multidimensional lookup table, is not feasible because of the extremely large
number of measurements required. Hence, simplifying assumptions should
be made so as to make the problem tractable. 

Assumptions of spatial uniformity, gun independence, and phosphor
constancy are commonly made to simplify CRT colorimetry.29 Spatial uni-
formity implies that the color characterization of the CRT does not vary with
position. Gun independence refers to the assumption that the three phos-
phors and their driving mechanisms do not interact. This implies that the
incident intensity at the eye when the guns are operated simultaneously is
the sum of the intensities when the guns are operated individually. Phosphor
constancy refers to the assumption that the relative spectral power distribu-
tion of light emitted by the phosphors does not change with driving voltage
(i.e., at all driving voltages, the spectra emitted by a phosphor are scalar
multiples of a single spectrum). 

With the above three assumptions, the problem of characterizing the
CRT reduces to a problem of relating the intensities of the individual red,
green, and blue channels to their corresponding gun voltages. The problem

Figure 1.25 (continued) (See color insert) Comparison of a CRT monitor gamut
(shown as a wire frame) and an inkjet printer gamut (shown as a solid) in CIELAB
space: (c) another perspective projection.

(c)
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can be further simplified through the use of a parametric model for the
operation of the individual guns. Typically, these models are based on the
exponential relation between the beam current and grid voltage in vacuum
tubes.43,175 For each gun, the spectrum of emitted light in response to a control
voltage, v, is modeled by an expression of the form23,222

(1.61)

where vm = maximum value of the voltage
h(λ) = emitted phosphor spectrum at the maximum voltage

β = an offset
γ = the exponential parameter

For appropriate setup of the monitor offset and brightness controls,23 the
offset term β = 0 and the relation simplifies to . The exponent,
γ, is commonly referred to as the monitor gamma and is normally around 2.2
for most color monitors. Because the power-law parametric model is only
approximate, several modifications of it have been used by research-
ers.21,23,64,99 In practice, the addition of the offset term as illustrated in Equa-
tion 1.61 offers a significant improvement, because it accounts for deviations
from the pure power-law behavior due to differences in the brightness con-
trol setting for the CRT.21,23,263 Using the parametric models, CRT monitors
can be readily characterized using a small number of measurements. 

The CRT phosphors define a set of additive primaries. If the CMFs
corresponding to these primaries are used in color specification, they can be
directly used to drive the electron guns if the signals are precorrected for
the power-law nonlinearity mentioned above. The transformation from CIE
XYZ tristimulus values is given by a linear transformation, corresponding
to a transformation from the CIE primaries to the phosphor primaries, fol-
lowed by a one-dimensional transformation that is determined by the para-
metric model used to represent the operation of the individual electron
guns.23 Typically, this operation involves exponentiation to the power of 1/γ
and is known as gamma correction. As mentioned in Section 1.5.4, TV signals
are normally gamma corrected before transmission. One may note here that
quantization of gamma corrected signals results in wider quantization inter-
vals at higher intensities where the sensitivity of the eye is also lower.
Therefore, just like speech companding, gamma correction of color tristimuli
prior to quantization in a digital system (or transmission in a limited band-
width system) reduces the perceptibility of errors and contours in compar-
ison to a scheme in which no gamma correction is used.130(p. 393),163,166,227,232

For colors that the phosphors are capable of producing, fairly good color
reproduction can be obtained on a CRT using the models mentioned above.
Using only a few measurements of the individual channel responses, the
models provide a very good approximation to the actual display. Typical
color errors23,263 from the offset-gamma model described above are an aver-

1 β–( ) v
vm
------ β+ 

  γh λ( )

v vm⁄( )γh λ( )
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age  under 1 and a maximum  around 2, and the corresponding
numbers in  units are 0.5 and 1.6, respectively. In comparison to other
color reproduction devices, these color errors are extremely small. CRTs have
therefore been often used in color vision research where a very high color
accuracy is required. In practical color imaging applications, the limitations
in the CRT color gamut due to the phosphors used cause significant color
errors for colors that lie beyond the gamut. This is one of the primary sources
of color errors seen in broadcast TV. 

The assumptions of gun independence and phosphor constancy have
been tested by several researchers and found to hold reasonably
well.21,29,64,65,263 However, in most CRT monitors, for the same driving voltage,
the light intensity is brightest at the center and falls off toward the edges.
The change in luminance over the screen can be as high as 25%.196(p.104) There-
fore, the assumption of spatial uniformity does not strictly hold. Because the
eye’s sensitivity itself is not uniform over the entire field of view, and because
the eye adapts well to the smooth variation in intensity across the screen, the
spatial nonuniformity of CRTs is not too noticeable.† An algorithm for cor-
recting for spatial inhomogeneity is discussed in Reference 63.

1.11.1.2 LCD displays
Liquid crystal display (LCD) flat panels are becoming increasingly common
as computer color displays due to their compact size and low power con-
sumption. These displays are now available at increasingly higher spatial
resolutions and in larger screen sizes with image quality that meets or
exceeds that of typical cathode-ray-tube (CRT) displays.327 While the market
for CRTs continues to grow at present, in the long run, flat panel displays
are expected to replace CRTs as the primary computer displays.38,321

With widespread use, there is also an increased need for color manage-
ment for LCD displays, which enables accurate control of color in displayed
images. While the color characteristics of CRT displays and methods for
their color calibration have been extensively studied and reported, the color
characteristics of LCD displays and methods for calibration have come to
the forefront only in the last few years and have received only limited
attention in published literature. A recent comparison of the color charac-
teristics and gamut considerations for LCD displays vs. CRTs can be found
in Reference 263. 

The most common LCD displays for computers are back-lit active matrix
LCDs (AMLCDs) of the “twisted nematic” type.162(p. 72) These are manufac-
tured by deposition and patterning of (active) pixel electronics on a glass
substrate. Each pixel element consists of a pair of linear polarizers with liquid
crystal (LC) material sandwiched in between. Figure 1.26 graphically illus-
trates a pixel element. The two linear polarizers are orthogonally oriented;

† The imperceptibility of the slow lightness variation over a CRT screen can also be explained
in terms of the bandpass nature of the eye’s lightness/luminance spatial response, which
severely attenuates the perceptual impact of this variation.
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light does not pass through the display except for actions of the LCs. The
surfaces adjacent to the LC molecules are typically designed so that (in the
absence of any electric field) the LC molecules align in a 90° twisted config-
uration, which rotates the plane of polarization of incident linearly polarized
light by a 90° angle.291(pp. 429–430) The “input” polarizer on the backside polar-
izes the light coming from the lamp behind the display. This polarized light
encounters the LC molecules, which rotate its plane of polarization by 90°,
allowing it to pass through the output polarizer, resulting in an ON pixel.
The pixel is turned OFF by the application of an electric field. Due to their
dielectric anisotropy, the LC molecules tend to align with the electric field and
move away from their twisted state. In a strong enough electric field, the
molecules are almost completely aligned with the electric field. This causes
the pixel to be turned off, as the LC molecules no longer produce the 90°
rotation in the plane of polarization that is required for the output polarizer
to transmit the light. 

Color displays are produced by laying a mosaic of red, green, and blue
colored filters on the substrate glass aligned with the pixel array. Quite often,
the individual RGB pixels are rectangular and arranged so that three hori-
zontally adjacent rectangular RGB pixels constitute a single square “color
pixel” (which is set farther away from other “color pixels” in comparison to
the spacing between the individual RGB pixels). The display thus appears
to be composed of stripes of rectangular RGB pixels going vertically across
the screen. The backlight is typically a fluorescent lamp with three prominent
peaks in the red, green, and blue regions of the spectrum.

Back Light

Polarizer

Analyzer

Twisted-Nematic
Liquid Crystal Material

Color Filter

Figure 1.26 Structure of an LCD display pixel.
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In most AMLCD color displays, the RGB pixels are driven and con-
trolled independently. The emitted light is combined and averaged in the
eye (just as for CRTs). Therefore, the three RGB channels combine through
simple addition of light, and one can expect channel independence to hold
for these displays. This allows a complete characterization of the display
from a per-channel characterization. Furthermore, if the switching mecha-
nism of the LCD pixel cell described above is spectrally nonselective (i.e.,
when a pixel is driven by applying a voltage the percent change in spectral
transmittance is the same across all wavelengths), the channel-chromaticity-
constancy assumption of also applies, further simplifying the characteriza-
tion to a determination of the individual channel intensity or tone response
curves. The tone-response curves for the individual channels then corre-
spond to what is commonly referred to as the electro-optic response, in LCD
terminology. The electro-optic response of an LCD pixel cell (for on-axis
viewing) tends to be an S-shaped curve (like sigmoidal functions).162 This
response is quite different from the power-law relation for CRTs and cannot
readily be modeled by the parametric power-law relation of Equation 1.61.
Additional measurements are therefore typically required for the charac-
terization of LCD displays and alternate parametric relations have also been
proposed.172

Because LCD displays were first deployed in an environment dominated
by CRTs, the color filters for these devices were designed to have the same
chromaticities as the CRT primaries. This allows the devices to be directly
driven by the same signals as those used for CRTs, with only one-dimen-
sional compensations for the per-channel tone-response curves. Often, dis-
plays incorporate built-in, switchable per-channel compensation curves that
could change the actual observed tone–response curves for the display. These
compensation curves are also typically set up to effectively mimic a power-
law relation84 between the driving signals and the observed luminance. 

Using the assumption of channel independence, LCD displays can be
color profiled with good accuracy. Average and maximum color errors in

 units are around 2.4 and 4.5 with corresponding numbers in  units
around 1 and 2, respectively.263 This level of error is well below the acceptable
range for most imaging applications, although use in color science experi-
mentation would require greater accuracy. 

A common problem with most AMLCD displays is one of limited
viewing angle. Due to the birefringent nature of liquid crystal (LC) mole-
cules, polarized light entering an LC material off axis is treated differently
from polarized light entering along the optical axis (0° angle of incidence
wrt to the normal). The LC molecules are less effective in performing the
proper rotation for polarized light that enters the LC material off axis. The
electro-optic transfer function of LCDs therefore tends to be angle depen-
dent.291(p. 430) In addition, the LCs are dispersive and operate differently on
different wavelengths of light, especially when responding to off-axis inci-
dent light. Thus, as one moves off axis (either up or down or from side to
side), significant variations in hue and contrast occur with the change in

∆E*ab ∆E*94
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viewing angle.91 As one moves far enough off axis, the contrast is dimin-
ished to the point that it limits the effective viewing angle. 

A change in viewing angle of 30° for an AMCLD display can result in
average color shifts of over 5  units.263 Figure 1.27 shows color shifts
observed in an experimental display for a change in viewing angle from 0
to 30° projected on the a*–b* plane. The lines in this plot represent the color
shifts with the “*” representing the color seen along a 30° viewing angle and
the other end representing the color seen along a 0° viewing angle. As the
viewing angle changes from 0 to 30°, the colors move toward the center of
the a* and b* plane. Thus, the color shifts are such that colors tend to desat-
urate as the viewing angle increases. The predominant effect seen in off-axis
viewing is a reduction in contrast and saturation. The large magnitude of
the differences indicates that such an LCD display should be used only for
a limited viewing angle if accurate color is desired. 

Several innovative techniques have been developed to increase this use-
ful viewing-angle range.119,15,161,230 Recent commercial displays include alter-
native technologies such as in plane switching to provide an improved usable
angle of viewing.197

1.11.1.3 Contone printers
Continuous tone printers are subtractive color devices. They use different
concentrations of the cyan, magenta, and yellow colorants to control the
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Figure 1.27 Color shifts in a* and b* for the LCD display test patches for a change
in viewing angle from 0 to 30°.
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absorption in the red, green, and blue regions and thereby produce different
colors. The term continuous comes from the fact that, at each spatial location,
these printers vary the colorant concentrations or amounts over a continuous
range (in contrast with halftone printers, which are discussed next). 

Most subtractive color reproduction systems are inherently nonlinear
and cannot be modeled as easily or accurately as additive systems. The
subtractive principle is schematically shown in Figure 1.28 for a transmissive
system. If the incident light spectrum is l(λ), the spectrum of the light trans-
mitted through the three layers is given by ,
where  is the spectral transmittance of the ith layer. If the colorants are
transparent (i.e., do not scatter incident light), and their absorption coeffi-
cients are assumed to be proportional to their concentration (Bouguer–Beer
law), it can be shown that 108(Chap. 7) the optical density of the ith colorant layer,
which is defined as the negation of the logarithm (base 10) of its transmit-
tance, is given by 

(1.62)

where  is the transmittance of the ith colorant layer, ci is the concen-
tration of the ith colorant (which varies between 0 and 1), and

 is the density at maximum concentration. 

Figure 1.28 Subtractive color reproduction.

g λ( ) l λ( )t1 λ( )t2 λ( )t3 λ( )=
ti λ( )

di ci; λ( ) log– 10ti ci; λ( ) cidi λ( )= =

ti ci; λ( )

di λ( ) di 1; λ( )=
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Using samples of the spectra involved, the spectrum of transmitted light
can be represented as300

(1.63)

where L = a diagonal matrix representing an illuminant spectrum
c = the vector of colorant concentrations

D = [d1d2d3]

The remaining boldface symbols represent sample vectors of the correspond-
ing spectral functions, and the exponentiation is computed component-wise. 

For prints produced on paper, the transmitted light is reflected by the
paper surface and travels once again through the colorant layers. This pro-
cess is readily incorporated in the model of Equation 1.63 as an additional
diagonal matrix that represents the reflectance spectrum of the substrate
and a doubling of the densities . Technically, for diffuse illumi-
nation the Kubelka–Munk model (see Reference 108, Chapter 7) should be
used with the scattering terms set to zero. The mathematical details are,
however, unaffected by this technicality, except for a change in the scaling
of densities. For simplicity, the substrate reflectance can be conceptually
included in the illuminant matrix L, and the same equations can be used
for reflective media. While the assumption of transparent layers with no
scattering and no interaction between layers is sometimes too simplistic (for
instance, for halftone prints and/or pigmented colorants), it is also fairly
accurate for a number of useful cases including typical photographic slides
and (to a lesser degree) photographic prints, and it has been successfully
used in these scenarios.261,262

An example of a photographic contone subtractive color reproduction
process is illustrated in Figures 1.29 and 1.30. The measurements used in
these figures correspond to a Kodak IT8 photographic target.217 Figure 1.29
illustrates the reflectances for white paper and for the maximum density
cyan, magenta, and yellow colorants on the target. Figure 1.30 shows the
estimated spectral densities for cyan, magenta, and yellow colorants (at
maximum concentrations) as determined from these measurements. In these
plots, the spectral regions corresponding to a high density value correspond
to spectral wavelengths where the colorants strongly absorb light and
regions of 0 density correspond to regions where the colorants transmit all
the light through with no absorption. Note that the colorants all have rela-
tively wide absorption bands with significant overlap between the absorp-
tion regions of the different colorants. 

Even the simplified model of Equation 1.63 cannot be used for a closed-
form calibration of a subtractive system. Analytical models therefore often
assume that the three dyes have nonoverlapping rectangular-shaped absorp-
tion regions that cover the visible region of the spectrum. This is known as
the block-dye assumption. Using the block dye assumption, colorant concen-

g L 10 Dc–[ ]=

di λ( ){ }i 1=
3
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trations required to produce a given CIE tristimulus can be determined in
closed form.300 Under the assumption of nonoverlapping spectral absorption
bands for the colorants, the colorants’ interactions are eliminated, and the
system can be transformed into an equivalent additive system. Because real
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Figure 1.29 Spectral reflectances for white paper, cyan, magenta, and yellow from
the Kodak IT8 target.
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target.
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colorants deviate from this ideal desired behavior, the absorptions for a
colorant in the visible band but outside its primary absorption band are often
referred to as unwanted absorptions. Because unwanted absorptions are a hard
reality of actual colorants, the utility of the block-dye assumption is restricted
to educational illustrations of the subtractive process. 

Most contone printers available currently use thermal dye diffusion
technology. The coloring dyes in such a system are transferred from a dis-
pensing film into the reproduction medium by means of heat-induced dif-
fusion. Often, a fourth black dye is used in addition to the cyan, magenta,
and yellow dyes to achieve greater contrast and better reproduction of
achromatic (gray) colors. A review of the physical processes involved in a
thermal dye diffusion printer can be found in References 113 and 114. Note
that conventional photography uses subtractive color reproduction; thus,
continuous tone printing is possible using photochemical methods that
mimic photography. For an overview of this method and for more details of
the dye diffusion printing process, the reader is referred to References 72
and 148. 

In practice, the models for subtractive printers described above are appli-
cable to only a small set of printers. For several applications, the colorants
are not completely transparent; therefore, the Kubelka–Munk theory,16,108,168

which accounts for scattering of light by the colorants, is more appropriate
than the Bouguer–Beer law. Because accurate determination of the model
parameters is fairly complicated, and there are interactions between the
media and the colorant layers that are not accounted for even in the
Kubelka–Munk theory, often purely empirical techniques are used to profile
color printers. The model in Equation 1.63, though somewhat restrictive, has
been successfully used to model and profile a thermal dye diffusion printer17

and has also proven very useful in analytical simulations of printers and in
making design choices.139

Typical empirical approaches for color printer calibration begin by mea-
suring the color of test prints corresponding to a uniform grid of control
values. This provides a sampling of the mapping from device control values
to a device-independent color space. A variety of interpolation-based tech-
niques are then utilized to determine the required inverse transformation,
typically in the form of a lookup table over a uniform grid in a color
space.128,218,240 Interesting alternate approaches have also utilized neural
networks160 and an iterated scheme that concentrates measurements in
regions of greatest impact.40

1.11.1.4 Halftone printers
Contone printers require reliable and accurate spatial control of colorant
concentrations, which is difficult to achieve and control accurately. As a result,
contone printers are rather expensive. Most desktop printers are therefore
based on the simpler technique of halftoning, which has long been the color
reproduction method of choice in commercial lithographic printing. Like CRT
displays, halftoning exploits the spatial lowpass characteristics of the human
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visual system. Color halftone images are produced by placing a large number
of small, differently colored dots on paper. Due to the lowpass nature of the
eye’s spatial response, the effective spectrum seen by the eye is the average
of the spectra over a small angular subtense. Different colors are produced
by varying the relative areas of the differently colored dots. In contrast with
contone printing, the concentration of a colorant within a dot is not varied,
so halftone printers are considerably easier and less expensive to manufac-
ture. Special processing of images is necessary to determine the dot patterns
for the different colors prior to printing on a halftone printer. This processing
is the subject of Chapter 6, “Digital Color Halftones,” and only the halftone
printing mechanism will be briefly discussed in this chapter.

For reasons similar to those for contone processes, most three-ink half-
tone systems use cyan, magenta, and yellow colorants for printing the dots
(see Reference 341, Chapter 3). Just as in contone printers, a fourth black
colorant is often introduced to conserve the more expensive colorants, reduce
ink usage, and produce denser blacks (see Reference 341, p. 282). 

A model for halftone printers was first suggested by Neugebauer,213 who
observed that the overlap of CMY colorant halftone dots produces eight
primary colors: the paper (no-ink), each of the three colorants (cyan, magenta
and yellow), combinations of two colorants (red, green, blue), and combina-
tions of all three (black). The observation generalizes from the three-colorant
case to the case of four or any arbitrary number of colorants. The colorants
combine subtractively over the regions in which they overlap and, in general,
produce up to 2K different colors with K colorants. These distinct colors are
called the Neugebauer primaries. Neugebauer proposed that the tristimulus
values of the print can be expressed as the weighted average of the tristimuli
of the Neugebauer primaries with the weights equal to their fractional area
coverages. Due to the penetration and scattering of light in paper, known as
the Yule–Nielsen effect† (or, alternatively, as the optical dot gain),51,340 the
simple Neugebauer model does not perform well in practice. As a result,
several empirical modifications have been suggested for the model.255

Recently, considerable success has been demonstrated in using a spectral
version of the Neugebauer model with empirical corrections for the
Yule–Nielsen effect,9,11,252,308,336 in which the reflectance of a CMYK halftone
print is modeled as

(1.64)

where  and wi are, respectively, the spectral reflectance and the frac-
tional area of the ith primary (there are 16 primaries for a 4-colorant [CMYK]
system); and n is the empirical Yule–Nielsen correction factor. As a further

† Note that in the printing of the original paper,340 Nielsen’s name was misspelled as “Neilsen.”
Both spellings have therefore been used in existing literature.
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simplification, the reflectances of the Neugebauer primaries composed of
overprints of more than one colorant may be expressed in terms of the
transmittances of the different colorant layers as was done in the subtractive
model of Equation 1.63. However, because this assumption of additivity of
densities reduces accuracy, it is usually not invoked; instead, the primary
reflectances  are directly measured from prints. 

Normally, the fractional areas wi are themselves related to the fractional
areas c, m, y, k covered by the cyan, magenta, yellow, and black colorants,
respectively. The relations determining the wi from c, m, y, k depend on the
method used to generate the halftone images. Equations for these relations
were first derived by Demichel69 by assuming independent random coverage
for the colorants. Rotated halftone screens341 that approximate this random
independent coverage assumption are often used for printing, because they
are robust to commonly occurring registration (alignment) errors between
the different colorants images (separations). Alternative halftone screens have
different characteristics and consequently different relationships between the
fractional colorant coverages and the primary areas.8,243

Prior to the work of Neugebauer, halftone color reproduction was often
confused with subtractive reproduction, and the Neugebauer model there-
fore offered very significant improvements.242 However, the actual halftone
process is considerably more complicated. As a result, several empirical
modifications have been suggested for the model, such as the Yule–Nielsen
parameter n and the spectral version of the model with the Yule–Nielsen
modification. While these models have had some success, complete and
accurate physical models for the color halftone printing process and the
Yule–Nielsen effect continue to be elusive. Promising new directions are
therefore a subject of continuing research.74,75,111 Additional details on the
research in this area can be found in Chapter 3. 

One obstacle in the direct use of Neugebauer models in characterizing
a halftone printer is that the relationship between the control values and the
printing area of the different colorants is usually not known a priori. Hence,
an empirical component is normally required even for characterization
schemes using a model. This empirical component is in the form of one-
dimensional pretransformations of device control values, which often serve
the additional purpose of increasing characterization accuracy along the
achromatic or neutral gray axis, where the eye has significantly greater sensi-
tivity.286 Purely empirical schemes similar to those used for characterizing
contone printers can also be used for halftone printers. The models men-
tioned above are nonlinear and nonseparable in the device control values
and cannot be inverted analytically. Hence, for both model-based and empir-
ical schemes, the inversion of the characterization needs to be performed
numerically. In either case, the final mapping from required color tristimuli
to device control values is realized as a multidimensional lookup table. The
models, however, have an advantage over a purely empirical approach in
that they offer a significant reduction in the number of measurements
required. An interesting generalization of the Neugebauer model is dis-
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cussed in References 8, 9, and 252, where the model is interpreted as inter-
polating between a number of end points specified by the primaries. Accu-
racy is improved by using local interpolation over smaller cells, which in
turn implies more measurements. The generalization, known as the cellular
Neugebauer model, thus offers a graceful trade-off between accuracy and
the number of measurements required. Due to the large number of effects
ignored by most models, they can offer only limited accuracy. Therefore, in
graphics arts and printing industries, where there is greater emphasis on
quality, measurement-intensive empirical schemes are often preferred.248 A
comparison of some model-based and measurement-based empirical
schemes for electronic imaging applications can be found in Reference 157. 

Halftone printers have been manufactured using very different technol-
ogies for printing dots on paper.148(p. 4–8) The most promising current technol-
ogies utilize inkjet, thermal transfer, and electrophotography to produce the
halftone dots. Even a brief mention of the principles and technology of these
devices is beyond the scope of this chapter, and the interested reader is
referred to References 72, 148, 241, and 254 for details. 

1.11.1.5 Recent advances in color displays and printing

The increasing use of portable computers and hand-held mobile devices has
fostered considerable research in a variety of display technologies. While the
LCD display is dominant in this class, a number of alternative technologies
are actively being developed. These include plasma displays, electrolumi-
nescent displays, and displays based on organic light-emitting diodes
(OLEDs). A description of the historical development, physical principles,
and relative merits and demerits of some of these technologies can be found
in References 37, 155, 199, and 272. Most of them are additive color systems
similar to a CRT and use a mosaic of red, green, and blue “dots” to produce
color, although some LCD devices are based on the subtractive principle155,321

or on spectrally selective reflection.107

A majority of the color display devices mentioned so far rely on the
spatial lowpass characteristics of the human eye to produce different colors
using a mosaic of differently colored regions. An alternative system for
producing color, known as field sequential color (FSC), is based on the temporal
lowpass nature of the eye’s response. In an FSC system, red, green, and blue
image frames are projected in rapid succession onto the viewing screen, and
the temporal averaging in the observer’s eye produces the illusion of a single
colored image. An FSC system was originally selected by the FCC for color
TV transmission but, before it could be commercialized, it was replaced by
the monochrome-compatible NTSC system in use today. The primary draw-
back in such a system was the high frame rate and bandwidth require-
ments.257(p. 218–219) Recently, there has been a resurgence of interest in FSC
systems. An interesting example of a recent FSC system is Texas Instruments’
digital micromirror device (DMD)339 that utilizes an array of deformable
micromirrors. In the deformed state, each micromirror deflects light from an
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illuminating lamp onto a single picture element (pixel) on the viewing screen.
The duty cycles of the deformation of different mirrors are modulated to
produce image intensity variations on the screen. Color is produced by
placing a color filter wheel between the lamp and the micromirror device
and synchronizing the red, green, and blue frames with the color wheel.
Alternative configurations using three separate DMD devices or two devices
in a five-primary projection system have also been reported.338 From a color
imaging standpoint, DMD displays are rather interesting, as they are almost
linear and allow considerable flexibility in the choice of the primaries
through the use of different color filters in the filter wheel. 

There have also been significant new advances in color printing in recent
years. Color halftone printers have continually improved in resolution,
speed, and cost. Some devices now incorporate limited contone capability
through a coarse variation in colorant concentrations/drop volumes. The
gamut of printers has also been enlarged by using improved colorants or,
more recently, by using more than three/four inks, which is referred to as
high-fidelity (hi-fi) printing.26,104,223 It is also common in inkjet printers to use
dilute cyan and magenta colorants in addition to the regular cyan, magenta,
and yellow colorants. This is particularly beneficial, because the lower den-
sity colorants produce more spatially uniform and less visible halftone struc-
ture in light regions such as Caucasian skin tones and pale blue skies, which
are quite critical to the good reproduction of photographs. 

The color profiling for several of the devices mentioned above is per-
formed using model-based or empirical techniques already in use for exist-
ing devices. Other devices are still in their infancy, and little information
if any is available on their color characterization and performance. As they
find increased acceptance, there will no doubt be a greater demand for
more accurate color characterization and for reasonable models of these
devices. This, therefore, will be an active area of color imaging research in
the future. 

1.11.2 Image characteristics

The spectral radiance or reflectance of an image carries the most complete
color information. Most color spectra are fairly smooth, and a 10-nm wave-
length sampling is normally sufficient for representing these spectra.303 The
spectra of fluorescent gas-discharge lamps have sharp spectral peaks and
therefore require a higher sampling rate or alternative model-based
approaches.189,264,302 A 10-nm sampling of spectra in the 400- to 700-nm region
provides N = 31 samples† for each spectrum. Thus, color spectra lie in a 31-
dimensional vector space. Color spectra are usually smooth, so they do not
really exhibit 31 degrees of freedom. A principal-component analysis of
common reflectance spectra reveals that a large fraction of the energy in

† The 400- to 700-nm interval is chosen for illustration and the exact interval is not central to
the argument here. Typical color measurement instruments report spectra over this or a larger
wavelength. region.
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these spectra is contained in a few principal components.149 Several research-
ers have investigated this problem and have estimated that color reflectance
spectra can be represented by using anywhere between 4 and 12 principal
components, depending on the accuracy desired.54,194,314,319

The spectral reflectance characteristics discussed in the last paragraph
covered almost the entire range of naturally occurring reflective objects.
Because most color reproduction systems exploit trichromacy and have only
three additive/subtractive primaries, their spectra often have even fewer
degrees of freedom. Thus, the spectra from a CRT display lie in a three-
dimensional space defined by the spectra of the phosphor primaries. The
same is true of all additive systems that utilize three primaries. For subtrac-
tive and hybrid systems, although there often are only three primaries, they
are not confined to a three-dimensional linear space, due to the nonlinearities
in the subtractive process. Despite the nonlinearities, the presence of only
three degrees of freedom in the color production process may often be
exploited in imaging applications.270

1.11.3 Computer-generated imager

The previous section focused on natural image scenes and hard-copy prints
of these images. In the area of multimedia applications, the computer is an
alternative, rapidly growing source of color images. Computer-generated
scenes and animations are now common in video games and movies.53,247

These applications strive for realistic images and therefore have to model
the interactions between lights and objects in the scene, using both geometric
optics and colorimetry to produce proper color, shading, and texture for the
surfaces involved.92(Chap. 14),93 For these applications to be successful in multi-
media applications, it is necessary that the color information be recorded in
a form that permits accurate rendering of the image on multiple output
devices. This is particularly relevant for recording on movie film, which has
entirely different characteristics from the CRT.171

Color can also be used to effectively encode information for presentation
and visualization. Bar graphs and pie charts used in presentations are simple
examples of the use of colors to distinguish different regions. The capabilities
of color encoding are also exploited more fully in applications that use color
to meaningfully represent quantitative differences in the data. Examples of
such applications include visualization of multispectral/stereo data using
pseudo-color images, and the use of color to portray three-dimensional rela-
tionships in multidimensional databases. The proper use of color in these and
other multimedia applications greatly enhances their effectiveness.92(p. 601),306

Usually, the color images are designed for viewing on a CRT monitor and
tend to exploit the full capabilities of the monitor. When printing these
images, it is necessary to preserve their information and effectiveness. This
is often a significant challenge, because the printer gamuts are significantly
smaller than monitor gamuts. Methods of compensating for this type of
gamut mismatch are discussed in Chapter 10.
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1.11.4 Color recording systems

Systems for recording color information include both color measurement
instrumentation useful for large uniform regions and color image capture
devices designed to capture spatially varying color information. Color mea-
surement instruments are used primarily for determining the color charac-
teristics of objects and of imaging input and output devices. They include
both spectral measuring devices such as spectroradiometers/spectropho-
tometers and filter-based instruments that directly measure colorimetry. The
correct color measurement instrument for a particular application depends
on several factors including the cost of the instrument, the accuracy desired,
the variety of viewing conditions for which a calibration is desired, and the
number and type of devices that must be calibrated. Color image capture
devices include conventional and digital color cameras, which record color
information from a scene of real world objects, and color scanners, which
record color information from a prior reproduction such as a printed color
image, slide, or negative. 

1.11.4.1 Spectroradiometers and spectrophotometers
Sampling of the spectral distribution provides the most direct and complete
technique for recording color information. A spectroradiometer is a device that
measures the power of optical radiation as a function of wavelength. Figure
1.31 shows the schematic cross section of a spectroradiometer. The light is
collimated by the lens onto a dispersive element, which decomposes it into
its spectrum. The spectrum is then sampled and recorded using single or
multiple detectors. Typically, a diffraction grating is used as the dispersive
element, because it provides an almost linear relationship between wave-
length and displacement in the detector plane, as opposed to an optical
prism, for which the correspondence is highly nonlinear. The linear relation-
ship considerably simplifies calibration procedures. 

Modern spectroradiometers use charge-coupled-device (CCD) arrays as
the detectors because of their linear characteristics. A sampling of the spec-
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Figure 1.31 Schematic cross section of a typical spectroradiometer.
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trum is achieved automatically through the placement of physically distinct
detectors in the measurement plane. Because the separation between the
detectors need not correspond directly to a convenient wavelength spacing,
the detector outputs are usually interpolated to obtain the final spectral
samples. Even though the CCDs are almost linear in their response at a given
wavelength, their spectral sensitivity is not uniform. Therefore, a gain com-
pensation procedure is usually necessary to obtain calibrated output from
the device.204(p. 338)

The range and the sampling interval of spectroradiometers vary accord-
ing to their intended application. Spectroradiometers used for color typically
report measurements over the range of 380–780 nm and are capable of a
spectral resolution ranging from 1 to 10 nm. For most color work (including
that using fluorescent lamps as sources), 2-nm sampling is sufficient.303 How-
ever, because some light sources have monochromatic emission lines in their
spectra, a deconvolution of the spectroradiometer measurements may some-
times be necessary to obtain greater accuracy.264

Spectroradiometers can be used to measure both self-luminous and
reflective objects. For the measurement of reflectance spectra, a spectrally
smooth (preferably, white) light source and a spectrally referenced sample
(preferably, white) are required. Comparison measurements between the
known sample and the sample under question are made under identical
conditions, allowing the determination of the unknown sample’s reflectance
spectrum, from which the color descriptor under any viewing illuminant
can be obtained. Normally, the exact spectrum of the illuminant used with
the spectroradiometer in the reflectance measurement is immaterial, pro-
vided it has sufficient power over the spectral range of interest. However,
for the measurement of fluorescent materials, the power in the ultraviolet
regions is also important, and the illuminant must closely approximate the
desired standard illuminant under which colors are to be computed.347

While spectroradiometers can measure both luminous and nonluminous
objects, they are expensive, larger, and less portable than the other instru-
ments, and they generally are more difficult to operate due to their multiple
operating modes. In particular, it can be difficult to set up a spectroradiom-
eter for measuring reflectance samples under controlled conditions. There
are automated systems for performing measurements on multiple samples
using an x-y stage and a single light source. 

An interesting application of spectroradiometry that extends beyond the
visible spectrum is in multispectral scanners carried by remote sensing satel-
lites. These scanners disperse radiation into different spectral bands in much
the same way as the spectroradiometers discussed above. Early cameras in
these satellites used 5 to 12 spectral bands extending from the visible into the
infrared region.36,287 The Airborne Visible Infrared Imaging Spectrometer
(AVIRIS),106 which samples the range of 400 to 2500 nm at 10-nm resolution,
is an example of more recent scanners that use a larger number of bands. 

A spectrophotometer is a device for measuring the spectral reflectance of
an object. Unlike a spectroradiometer, a spectrophotometer does not measure
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self-luminous objects. Therefore, spectrophotometers are useful for the cali-
bration of printers and scanners but not of CRT displays. Spectrophotometers
have their own internal light source that illuminates the sample under mea-
surement. There are many geometries for the sensor/illuminant combina-
tion, and each may be optimal for different applications. For color imaging
applications, the sensor and illuminant in the device are often set up for a
45°/0° condition as shown in Figure 1.32. Some devices illuminate the sam-
ple diffusely and measure off axis, allowing an option to include or exclude
the specular component from the sample. Some devices contain an optical
grating, others contain a filter wheel, and yet others use spectrally different
light sources to illuminate the sample. 

Spectrophotometers measure reflectance as the ratio of two (uncali-
brated) spectroradiometric measurements266, 347 using the same principle that
was described in the last section. This is shown schematically in Figure 1.33.
The light source is contained within the spectrophotometer and is used to
illuminate both a standard sample with known reflectance, , and the
test object whose reflectance, , is to be measured. If  denotes the
SPD of the light source, and the device makes K spectral measurements at

 wavelength intervals in the region , the reference
measurements can be represented as

where dk denotes the detector sensitivity at . Similarly, the object
measurements are given by
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Figure 1.32 45–0° measurement geometry.
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The object reflectance samples can therefore be determined as 

Mathematically, it can be seen that the detector sensitivity, dk, and the illu-
minant, , cancel out and have no impact on the measurement. However,
to obtain good performance in the presence of quantization and measure-
ment noise and errors due to the limited dynamic range of the detectors, it
is desirable that the product of these quantities be nearly constant as a
function of wavelength. For similar reasons, it is desirable that the reflectance
of the standard sample be close to unity at all wavelengths. To avoid unnec-
essary duplication of the optics and sensors, the measurements of the refer-
ence standard and the object are usually performed sequentially instead of
using the parallel scheme shown in Figure 1.33. In addition, for added
convenience and to save time, typical measurement devices make one mea-
surement of the standard that is stored and used for a number of successive
object measurements. 

Because most real-world reflectances are relatively smooth functions of
wavelength303 and have low dimensionality as discussed in Section 1.11.2,
most spectrophotometers work with much larger sampling intervals than
spectroradiometers, typically reporting reflectance at 5-, 10-, or 20-nm inter-
vals. The built-in illumination in these devices is usually a filtered incandes-
cent or xenon arc lamp whose spectrum is smooth (unlike fluorescent lamps)
and therefore does not unduly amplify the measurement noise and quanti-
zation errors. Spectrophotometers used in color work usually sample the
spectrum in the 380- to 780-nm range, although the lower-wavelength end

Illumination

Standard Test Object

Grating

Detector

Ratio

Figure 1.33 Spectrophotometer measurement.
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of the spectrum may be truncated or less accurate in some devices because
of the lower energy in incandescent lamps at the ultraviolet end. Owing to
the lower resolution requirement, and because of the less stringent calibra-
tion required (due to the normalization of illuminant and detector sensitiv-
ities), spectrophotometers are considerably less expensive than spectroradi-
ometers and are also more stable over time. 

The design of spectroradiometers and spectrophotometers should
account for a large number of factors excluded from the simplistic descrip-
tion given above. Both devices suffer from systematic and nonsystematic
deviations from the ideal behavior described above and must be accurately
calibrated to known radiant and reflectance standards prior to use. In par-
ticular, stray light, detector nonlinearity, effects of polarization, variations
in illumination and measurement geometry, and unaccounted fluorescence
and thermochromism of samples are sources of systematic errors. Detector
noise and quantum fluctuations in photon flux are examples of random
errors encountered in measurements. The reader is referred to References
108 (Chapter 8) and 109 (Chapter 9) for a thorough, though somewhat dated,
account of the systematic errors in these devices and their calibration pro-
cedures. A more current, though brief, overview is also provided in Refer-
ences 16 (pp. 74–86) and 135 (Chapter 5). Detector noise models for older
instruments that used thermal detectors and vacuum tubes are described
in Reference 35, and a more recent account of noise models for semicon-
ductor detectors of radiation is provided in References 28, 70, 144, and 204.
Some methods for accounting and correcting some of the systematic errors
in spectrophotometers are discussed in Reference 24. The propagation of
spectrophotometric errors in colorimetry has also been analyzed in Refer-
ence 83. 

Color recording devices that attempt to sample spectral information
suffer from a number of obvious drawbacks. First, because the total energy
in the spectrum is split into a number of spectral samples, a sizable mea-
surement aperture and/or long integration time will be required for reli-
able measurements of the spectra. In addition, the required optical com-
ponents make some of the spectral devices rather expensive and therefore
inappropriate for desktop use. Finally, measurement devices that exploit
trichromacy are less accurate but can offer acceptable color performance
and significant speed advantage at a fraction of the cost. Spectroradiome-
ters and spectrophotometers are therefore used primarily for color calibra-
tion, where the larger aperture and longer measurement times are not
prohibitive (in contrast with devices for recording complete spatially vary-
ing images).

1.11.4.2 Colorimeters and photometers
As suggested by its name, a colorimeter measures color tristimuli and reports
these as color values in CIE XYZ, CIELAB, or related color spaces. Some
colorimeters have an internal light source for the measurement of color of
reflective objects, whereas others measure only self-luminous or externally
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illuminated objects. For some devices, tristimulus values for the sample
under a few different illuminants are available. Most colorimeters are small
hand-held devices with no moving parts and a single light detector. They
achieve their spectral “separation” by way of color filters placed before the
detector or with spectrally different light sources used for illumination.† To
accurately report CIE colorimetry, colorimeters must record information
from which the colorimetry can be derived. The sensitivities of these devices
are therefore often designed to match a set of color-matching functions. It is
common for filter-based colorimeters to use four independent filters, one
each to approximate the , , and two to approximate the two indi-
vidual humps of the  color matching functions.16(p. 86)

Colorimeters are less expensive than spectrophotometers and spectrora-
diometers, but they do not provide the detailed spectral information that
allows the calibration of a printer for an arbitrary viewing illuminant. Those
that measure self-luminous sources are used in the calibration of CRTs.
Photometers are single-channel devices that provide a measurement of the
luminance of a self-luminous or externally illuminated object. They are inex-
pensive and find use primarily in the calibration of CRTs when the chroma-
ticity of the CRT phosphors is known. 

1.11.4.3 Photographic film-based recording schemes
Photographic film is not a digital recording device; however, a brief discus-
sion of this medium is worthwhile, as it often forms the primary input to
many digital color imaging systems. Film used for color photography records
the color information in three spectral bands corresponding roughly to the
red, green, and blue regions of the spectrum. 

The image to be recorded is focused by a lens onto the film. The film
contains three emulsion layers with silver halide crystals that act as the light
sensors and sensitizing dyes that make the crystals in the three layers
respond to different spectral regions. Typically, the top layer is blue sensitive;
this is followed by a yellow filter and green and red sensitive layers, respec-
tively. The yellow filter keeps blue light from getting to the lower layers that
are also sensitive to blue light. Light in each of the three spectral bands
initiates the formation of development centers in the corresponding film
layer. When the film is chemically processed, the silver halide crystals at the
development centers are converted into grains of silver, and unexposed
crystals are removed. The number of grains of silver in a given layer at a
particular location is determined by the incident light energy in the image
in the corresponding spectral band at that location. Thus, the spatial distri-
bution of silver grains in the three layers forms a record of the spatial
distribution of blue, green, and red energy in the image. 

The relation between the density of silver grains and the incident light
spectrum is highly nonlinear. In addition, the formation of silver grains is
not deterministic, and the randomness in grain formation contributes to

† The latter configuration is disadvantaged in the measurement of fluorescent samples.16(p. 75)
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noise in the recording process, known as film grain noise. Film grain noise is
often modeled as a Poisson or Gaussian random process143(pp. 619–622),258,259,294

and constitutes multiplicative noise in the recorded image intensity.234(p. 342)

An image record in the form of three layers of silver grains is obviously
of limited use. Therefore, further chemical processing of the film is necessary.
For the purposes of this discussion, it suffices to note that this processing
replaces the silver grains in the red, green, and blue layers with cyan,
magenta, and yellow dyes in accordance with the principles of subtractive
color reproduction, which were be discussed in Section 1.11.1.3. A more com-
plete description for color photography can be found in Reference 130, and
simplified mathematical models for the process are described in Reference
234 (pp. 335–339).

As an aside, one may note that, prior to the invention of spectrophotom-
eters and spectroradiometers, two techniques were developed to record the
spectral information of entire images on (monochromatic) film. In the micro-
dispersion method of color photography, the light from each small region
of image was split into its spectral components using dispersive elements,
and the corresponding spectra (of rather small spatial extent) were recorded
on film. The second method, known as Lippman photography, recorded the
color information in the form of a standing wave pattern by using a mercury
coating on the rear of the film as a mirror. Both methods required extremely
fine-grain film to achieve the high resolution required and long exposure
times to compensate for the low energy at each spectral wavelength. The
reader is referred to Reference 130 for a slightly more detailed account of
these techniques. 

1.11.4.4 Digital dolor cameras and scanners

Digital color cameras and color scanners are color recording devices that
operate on similar principles, though their intended use is quite different
and often poses different challenges. Both of these devices record color
information by transmitting the image through a number of color filters
having different spectral transmittances and sampling the resulting “col-
ored” images using electronic sensors.

Digital color cameras are designed to capture color images of real-world
objects in much the same way as conventional cameras, with the difference
that the images are recorded electronically instead of using film. Because the
scenes may involve moving objects, they typically have two-dimensional
CCD arrays that capture the image in a single electronically controlled expo-
sure. Different schemes may be used to achieve the spatial sampling and
color filtering operations concurrently. One arrangement uses three CCD
arrays with red, green, and blue color filters, respectively. In such an arrange-
ment, precise mechanical and optical alignment is necessary to maintain
correspondence between the images from the different channels. Often, the
green channel is offset by one-half a pixel in the horizontal direction to
increase bandwidth beyond that achievable by individual CCDs.118 For econ-
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omy and to avoid the problems of registering multiple images, another
common arrangement uses a color filter mosaic that is overlaid on the CCD
array during the semiconductor processing steps. Because the green region
of the spectrum is perceptually more significant, such mosaics are laid out
so as to have green, red, and blue recording pixels in the ratio 2:1:1 or 3:1:1.226

Image restoration techniques are then used to reconstruct the full images for
each of the channels.30,32,59,293,301 Recently, a novel camera design has been
developed that avoids the problems of both color filter arrays and of multiple
images by using a single sensor and effectively layering the red, green, and
blue filters by using the spectral selectivity of light penetration in silicon.94

One of the aspects of color capture that is more challenging for color cameras
than for scanners and colorimeters is the lack of control over scene illumi-
nation. While the eye adapts to the scene as described in Section 1.9.1,
producing a visual appearance that is largely independent of the scene
illumination, cameras do not incorporate these adapting mechanisms and
consequently produce images with severe color casts/shifts. Algorithms for
estimating the relevant scene illumination characteristics and correction of
the casts are therefore necessary. Details on the image processing for digital
color cameras can be found in Chapter 12. 

Scanners are usually designed for scanning images reproduced on paper
or transparencies and include their own sources of illumination. Because the
objects are stationary, these devices do not need to capture the entire image
in a single exposure. Typical drum or flatbed moving stage scanners use a
single sensor per channel which is scanned across the image to provide
spatial sampling. The single sensor makes the characterization of the device
easier and more precise and also allows the use of more expensive and
accurate sensors. For desktop scanners, speed is of greater importance, and
they usually employ an array of three linear CCD sensors with red, green,
and blue color filters. The linear sensors extend across one dimension of the
scanned image. This allows three filtered channels of the image along a line
to be acquired simultaneously. To sample the entire image, the linear array
is moved optically or mechanically across the other dimension of the image.
In another variation of these devices, three different lamps are used in
conjunction with a single linear CCD array to obtain a three-band image
from three successive measurements. 

Colorimeters, digital cameras, and scanners can be mathematically rep-
resented by very similar models. In the remainder of this section, a scanner
will be used for illustration of such a model. However, the same discussion
applies to colorimeters and cameras with trivial modifications that will be
pointed out where required. 

The schematic of a typical desktop color scanner is shown in Figure 1.34.
The scanner lamp illuminates the image, and the light reflected off a small
area is imaged by the lens onto a beam splitter that splits the light into a
number of channels with filters having different spectral transmittances (the
typical case of three channels is shown in the figure). The filtered outputs
are integrated over the electromagnetic spectrum by optical detectors to
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obtain a scanner measurement vector. This process is repeated over the entire
image to obtain a “color” representation of the image. In actual scanners,
the scanner measurements of the small area corresponding to a sampling
unit are influenced by the color of the surrounding areas.282 Ideally, restora-
tion schemes should be used to remove the blur from the recorded image.
However, due to the computational requirements, this is rarely done, and
this aspect of the problem will be ignored in the subsequent discussion. 

For sensors commonly used in electronic scanners, the response at a
single spatial location can be modeled in a manner similar to Equation 1.1 as 

(1.65)

where K = number of scanner recording channels

 = the spectral transmittances of the color filters

 = sensitivity of the detector used in the measurements

 = SPD of the illuminant

 = spectral reflectance of the area being scanned

 = measurement noise

=  is the product of filter transmittance and 
detector sensitivity

= the value obtained from the ith channel
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Figure 1.34 Schematic of a color scanner.
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In a manner analogous to Equation 1.3, Equations 1.65 may be replaced by
their discrete approximations using matrix vector notation as 

(1.66)

where ts = the K × 1 vector of scanner measurements
r = the N × 1 vector of reflectance samples

Ls = an N × N diagonal matrix with samples of the radiant spectrum 
of the scanner illuminant along the diagonal

M = an N × K matrix whose ith column, mi , is the vector of samples 
of the product of the ith filter transmittance and the detector 
sensitivity

ε = the K × 1 measurement noise vector

Note that, while these devices “sample” color spectra very coarsely, to assure
that the above model is accurate it is necessary to meet sampling restrictions
on the color spectra involved.303 Due to their higher efficiency and lower
heat dissipation, fluorescent lamps are often used in desktop scanners.
Because their spectra have sharp spectral peaks, the sampling rate require-
ments (with uniform sampling) in the model of Equation 1.66 can be pro-
hibitively high. A more efficient model for such a case is proposed in Refer-
ence 265, where a decomposition of the illuminant into the sum of a band-
limited (smooth) component and impulses (monochromatic emission lines)
is used to substantially reduce the dimensionality of the model while retain-
ing the mathematical form of Equation 1.66. 

For colorimeters and color cameras, the stimulus is normally a luminous
object or an object illuminated by an illuminant external to the device. For
these devices, the product,  (or its equivalent), defines the spectral radi-
ance whose color is to be recorded. From the model in Equation 1.66, it can
be inferred that, in the absence of noise, exact CIE XYZ tristimulus values
can be obtained from the data recorded by colorimeters and color cameras
if there exists a transformation that transforms the sensor response matrix,
M, into the matrix of CIE XYZ color matching functions, A.300 This is equiv-
alent to the requirement that the HVSS be contained in the sensor visual space
defined as the column space of M.310 For devices using three channels, this
reduces to the requirement that M be a nonsingular linear transformation
of A. This fact has been known for some time and is referred to as the
Luther–Ives condition.131,184 Recent reiterations of this result can be found in
References 102 and 127. A device that satisfies (generalizations of) the
Luther–Ives condition will be said to be colorimetric.

For color scanners, the analysis is slightly more involved, because the
illuminant used in the scanner is usually different from the illuminant under
which the scanned object is viewed by an observer. Under these conditions,
it can be shown that the CIE XYZ tristimulus values of the scanned object
under the viewing illuminant can be determined exactly from the noiseless

ts MTLsr ε+=

Lsr

© 2003 by CRC Press LLC



scanner measurements if the human visual (viewing) illuminant space
(HVISS) is contained in the scanner visual space (SVS) defined as the column
space of LsM. Because the spectra of fluorescent lamps used in most scanners
is quite different from that of the daylight illuminants used in colorimetry,
this condition is rarely met in practice. In addition, color tristimuli under
multiple viewing illuminants often need to be estimated from a single scan
of the image, and the above criterion would require an inordinately large
number of detectors. In addition to the problems caused by fluorescent
lamps, actual colorimeters, cameras, and scanners are subject to a wide
variety of restrictions arising out of economic considerations and limitations
of the processes and materials for manufacturing filters, optical components,
and sensors. Techniques from signal processing are therefore useful for the
evaluation and design of these devices. 

It is the filters, , over which the designer has the most control.
A quality measure for evaluating single-color filters was first proposed by
Neugebauer.214 Recently, this was extended to provide a computationally
simple measure of goodness for multiple filters in terms of the principal
angles between the HVISS and the SVS.310 The measure was used for the
evaluation and design of color scanning filters.311,312 The same measure was
also successfully applied to the combinatorial problem of selecting an appro-
priate set of filters for a scanner from given off-the-shelf candidate filters.313

A minimum-mean-squared-error approach, which requires more statistical
information than purely subspace-based approaches, was introduced in Ref-
erence 316, where numerical approaches for minimizing errors in uniform
color spaces were also considered. In Reference 317, noise was included in
the analysis, and References 324–326 emphasize the reduction of perceived
color errors in a hybrid device capable of measuring both reflective and
emissive objects through the use of linearized versions of CIELAB space.27

An alternate novel approach accounting for noise was proposed in Reference
76, where a filter-set was chosen from the multitude satisfying the
Luther–Ives condition so as to minimize the perceptual impact of noise. In
References 260 and 267, a unified treatment encompassing a number of these
approaches is presented, and their performances are compared. Recently, the
comprehensive figure of merit defined in References 260 and 267 has been
extended through the inclusion of a signal dependent noise model and has
been applied to the optimization of digital camera color sensitivities.235–238

It may be emphasized here that, for a rendition of the recorded reflec-
tance scene under multiple viewing illuminants, more than three channels
are usually necessary. A simple generalization of the Luther–Ives condition
would require three K channels for K different viewing illuminants. In prac-
tice, however, between four and seven optimally designed spectral channels
provide sufficient accuracy for common viewing illuminants.268,317

Note that, in recording color images digitally, both the spectrum and the
spatial dimensions need to be “sampled.” The different quality measures
mentioned above consider only the spectral sampling aspect of the above
problem. These are therefore suitable for evaluating the color recording fidel-
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ity for large patches of uniform color and do not represent the complete
performance for the image recording system. This is particularly true in CFA
camera devices where the spatial and spectral sampling are performed jointly.

In actual devices, it is possible to have systematic deviations from the
linear model of Equation 1.66. Sources of error include fluorescence of sam-
ples in scanners, stray light, inclusion of ultraviolet and infrared radiation
in the measurements (which is not accounted for if the visible region of the
spectrum is used in the model), and limited dynamic range of detectors.86

However, if proper precautions are taken, these errors are small and can be
included in the noise process with minimal loss of functionality.86

It should also be noted here that the above discussion applies to a system
for recording color where the input spectra are not constrained to lie in a
restricted set. In recording color information from color reproductions that
exploit trichromacy and utilize three primaries, the requirements for obtain-
ing precise color information are much less stringent, and sensors with any
three linearly independent channels typically suffice. A proof of this result
for a system using three additive primaries (whose spectra vary only in
amplitude and not in spectral shape) appears in Reference 125. An example
of an application where this can be readily seen is the measurement of colors
produced on a cathode ray tube (CRT).117 Note, however, that the calibration
of these noncolorimetric recording systems is highly dependent on the pri-
maries used in creating the images. Thus, they yield large color errors with
images that are not produced with the primaries used in calibration. 

For subtractive color reproduction systems (described in Section 1.11.1.3)
that use varying densities of cyan, magenta, and yellow dyes to reproduce
colors, one can conclude that any three sensors from whose measurements
the densities can be inferred will suffice. In fact, in such a restricted system,
not only is it possible to obtain colorimetric information about the original,
but it is also possible to reconstruct complete spectral information from the
three-channel record.261,262,270 The mathematical characterization of this
requirement requires assumptions on the spectra of the dyes and models for
the specific processes used, which are discussed in References 261 and 270.
In practical systems, it is sufficient to have any three reasonably narrow color
filters with peaks in the red, green, and blue regions.130(p. 247),249 Because this
is far less demanding as a design objective than the colorimetric criteria
discussed above, and because a large fraction of input images to scanners
are in the form of photographic prints that use subtractive reproduction,
most present-day scanners are designed to satisfy this requirement. The cost
levied by this design trade-off is greater user intervention, because distinct
calibrations of the scanner are required for accurately scanning reproduc-
tions produced with different subtractive primaries.112 With the explosion in
the number of color reproduction systems, it is difficult to maintain a corre-
spondingly large number of calibration profiles and the color accuracy of
such scanners is likely to be further compromised. 

If scanners are designed to be colorimetric, a linear transformation, inde-
pendent of the scanned object characteristics, can be used to accurately
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estimate the CIE XYZ tristimulus values from the scanner measurements.
However, due to the nonlinear relationship between density and tristimuli,
scanners designed to measure dye densities perform poorly with a linear
transformation. A number of heuristic nonlinear calibration schemes have
therefore been used in practice. Three-dimensional lookup tables,128 least-
squares polynomial regression,128,158 and neural networks160 are examples of
these approaches. Note, however, that these approaches offer significant
gains over a simple linear transformation only when the characterization is
performed for a restricted class of inputs.112

1.11.5 Multispectral recording and reproduction systems

A multispectral image is an image in which each pixel has multiple channels
that carry information about its spectral content. Multispectral images span
the domain of images from conventional three-channel color images to
hyperspectral imagery with hundreds of bands/channels used in remote
sensing applications. Multispectral scanners often utilize narrowband spec-
tral filters to record energy in different regions of the spectrum in a manner
very similar to the color recording devices mentioned in Section 1.11.4.4.
Traditionally, multiband sensors with more than three channels have been
used in remote sensing applications. A major difference between these and
the color recording devices arises from the fact that they are not attempting
to capture information so as to satisfy a human observer. Therefore, these
devices are not restricted to operating within the visible region of the elec-
tromagnetic spectrum and typically use infrared, visible, and microwave
regions of the spectrum.36 For the same reason, while dimensionality reduc-
tion of recorded data is often done while processing (see Section 1.11.5.1),
there is no direct analog of trichromacy in remote sensing. 

Traditionally, color imaging has worked with three channels, both for
capture and reproduction.† Recent years have, however, seen a significant
interest in multispectral image capture in the visible range of the spectrum
and reproduction of multispectral images using objectives beyond those of
simple color matching.

A variety of schemes have been proposed for multispectral image cap-
ture in the visible range. Devices in existence today are experimental, and
most of these perform image capture using a single-channel camera in front
of which are placed a number of spectrally selective filters that provide the
separation of the image into multiple bands. Proposed filtering options
include conventional absorption filters,297 electro-optic tunable filters,115 and
interference filters121 that offer narrow bandwidths. While absorption filters
produce wider spectral bands than the electro-optic tunable filters and the
interference filters, they also exhibit significantly less variation in their spec-
tral transmittance with change in angular placement, which is often a source

† While the use of four colorants is common in color printing, and additional colorants have
also been used in hi-fi color reproduction, the traditional approaches have chosen these in a
constrained fashion, with essentially only three independent channels.270,271
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of error in these systems. Because the number of channels is large, color-
filter array type schemes that jointly sample the image spectrally and spa-
tially are not common, though the use of filters in conjunction with trichro-
matic cameras has been investigated.138 The large number of filters also
implies a longer time for the scene capture and, consequently, the current
devices are capable of capturing only static scenes with no motion, such as
paintings or still-life scenes. For document imaging applications, the original
to be captured is often a reproduction, and in these cases it is often feasible
to recover spectral information from a simple three-channel record and real-
ize the benefits of multispectral imaging.20,262,270

Multispectral capture offers several benefits over conventional three-
channel capture. All of these advantages stem from the fact that the addi-
tional spectral data represent the information in the original scene more
completely. The data can be used, for instance, to simulate changes of the
SPD of the scene illuminant,116 which may then be used for display or print
renderings of the original as it would have appeared under a desired illu-
minant.† The use of multispectral data for this purpose is similar to the use
of spectrophotometers in color characterization, where colorimetry is then
calculated from the spectral measurements by specifying a desired illumi-
nant.‡ The additional information in the multispectral capture also enables
analysis of characteristics of the original22,193 that would not be captured by
conventional color capture. This is particularly valuable in the digitization
of art archives and provides a mechanism for preserving these digitally,
allowing better restoration and the ability to share them as more realistic
reproductions. Several academic and government institutions have, there-
fore, initiated research in this area. 

Additional capabilities of captured multispectral data are realized in
conjunction with multispectral output systems that use more than three
channels for output and can incorporate additional criteria for reproduction.
The additional capabilities enabled by multichannel output devices can be
used to try to effect a spectral match between the reproduction and the
original that was (multispectrally) recorded. Such a reproduction would
eliminate illuminant metamerism and provide a color match between the
original and the reproduction across any viewing illuminant. The compli-
cated nature of color hardcopy reproduction and limited availability and
capability of colorant materials make this ideal goal extremely difficult to
realize.18,305 Some preliminary experimental results on spectral hardcopy
reproduction using six colorants have recently been reported.292 The large

† As already noted in Section 1.9.2, a color appearance model is not designed to address this
problem. However, from the arguments at the end of Section 1.9.2, it is also clear that the benefit
of multispectral capture for this application can be evaluated by comparing its efficacy over
the incorrect use of a color appearance model in this situation. Such an evaluation is offered in
Reference 116 using CIELAB as a crude appearance model.
‡ Note also that this application suffers from the same pitfalls as the color measurements in
that the effects of fluorescence, if any, can be comprehended only to the extent that the illuminant
being simulated is similar to the illuminant under which the scene is captured.
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dimensionality of the spectral space ensures that, for any reasonable number
of colorants, most spectra are outside the spectral gamut of the reproduction
system. Practical systems in the near future can only hope to provide approx-
imate spectral matching at best. One limitation with this approach is that
the differences between the spectra of the original and the reproduction
might be visible under common lighting conditions, and, even under a single
lighting condition, color differences could result that could be eliminated by
colorimetric matching. Thus, it is beneficial to consider alternative reproduc-
tion objectives for multispectral output. One straightforward extension is to
minimize color differences under multiple common illuminants. This
addresses illuminant metamerism for the standard observer but does not
address observer metamerism arising due to differences among observers.
An alternative objective is to consider the color variations among observers
and use the freedom offered by the additional channels to minimize the
impact of observer metamerism.121 This is particularly meaningful for addi-
tive multiprimary displays and has been recently applied in that context.121,337

In addition to their use in color imaging applications outlined above,
multispectral data are also extremely useful as a research tool for the realistic
simulation of conventional imaging systems.31,309 Such simulation and anal-
ysis can help direct improved design of these recording systems. The encod-
ing of multispectral images is thus far in experimental formats, but some
recent work has proposed mechanisms for exchange and an encoding format
that is compatible with colorimetry in that three of the channels are selected
to correspond to colorimetry.165

1.11.5.1 Principal-component recording

The color recording devices of Section 1.11.4.4 attempt to sample the spectra
of images while preserving visual information. A recording of the spectrum
itself provides greater information but is extremely slow and expensive.
Because spectral information of reflective images is extremely useful for
determining color under different illuminants, alternative schemes for
recording their spectral information are of interest. 

Note that, in the absence of noise, the scanned image in Equation 1.66
can be directly used to determine the projection of the image spectra onto
the SVS. Hence, to obtain good reconstruction of reflectance spectra, the
sensors can be chosen so that a large fraction of the energy in reflectance
spectra lies in the SVS. In the absence of noise, the Karhunen–Loève (KL)
transformation provides the mathematical solution to this problem in terms
of the statistics of the ensemble of reflectance spectra.126 The best spectral
reconstruction of scanned spectra in a mean-squared error sense is obtained
from a K channel scanner when the SVS corresponds to the span of the K
principal components of the reflectance spectra, i.e., the eigenvectors associated
with the K largest eigenvalues of the spectral reflectance correlation matrix. 

The reflectance spectra of most naturally occurring objects are smooth
functions of wavelength; the same is true of spectra produced using pho-
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tography, printing, or paints. As a result, these spectra can be accurately
represented by a few principal components. Various studies of reflectance
spectra have estimated that between three and seven principal components
(depending on application) provide satisfactory reconstruction of reflectance
spectra for most color work.54,122,198,314,319 Note that this offers a significant
reduction in dimensionality in comparison with spectrophotometric mea-
surements using uniform sampling. 

Linear models for object reflectance spectra based on the principal-
components idea have been used by many researchers for recovering illu-
minant and surface reflectance data from recorded images and for color
correction applications.41,122,315,319 Most of this research used KL transform
on a spectrophotometrically recorded ensemble of reflectance spectra, and
the problem of designing spectral recording devices based inherently on the
principal-components approach has received little attention. There are, how-
ever, commercial color measuring devices that attempt to reconstruct spec-
tral data from sensor measurements.42 In addition, the principal-components
approach has been used in analyzing multispectral satellite imagery, and
the idea of a recorder based on principal components has also been sug-
gested for acquiring satellite images.287(Chap. 7)

One may note here that some naturally occurring reflectance spectra do
not adhere to the smoothness assumption. Examples of such spectra are
colors produced due to multiple film interference in certain minerals and
iridescent colors on some bird feathers and in shells containing calcium
carbonate.210(p. 261),267 A principal-components scheme leads to relatively large
errors in such spectra. Hence, in imaging applications involving these
objects, the principal-components approach would be inappropriate for
approximation of their spectra.

1.11.6 Quantization and coding

Color images recorded with the different input devices described in the last
section need to be quantized for digital processing. Both scalar and vector
quantization techniques can be used in the quantization of color data. For
simplicity, most color devices do independent quantization of the RGB
channels with 8 to 12 bits per channel, with either uniform quantizers or
companded quantizers that perform a gamma correction before the quan-
tization. As mentioned earlier, the gamma correction significantly reduces
the perceptibility of quantization errors, particularly in the eight-bit devices.
For computer color displays based on a frame buffer architecture,298 often
only 8, 12, or 16 bits of video memory are allocated to each pixel, thereby
allowing simultaneous display of only 28, 212, or 216 colors, respectively.
Vector quantization techniques have therefore been used extensively for
displaying images on these devices. Chapter 9 surveys and discusses these
techniques.

With the proliferation of digital color imagery, the problem of coding
color images for transmission and storage has gained increased importance.
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It was recognized early on that the highly correlated RGB spaces were not
suitable for independent coding.233 Consequently, most of the methods trans-
form the data into a luminance channel and two chrominance channels that
are then coded independently. A luminance-chrominance space also allows
coding schemes to exploit the properties of human vision by allocating
significantly fewer bits to the high-frequency chrominance components,
which are perceptually less significant. 

The most prevalent compression scheme at present is the JPEG standard
for still images228 and the MPEG standard for video data.207 These standards
are both based on the discrete-cosine transform (DCT).5 While these stan-
dards do not explicitly specify the color spaces to be used, in current imple-
mentations, it is common to use the YCrCb space,39 with the Cr and Cb
components subsampled by a factor of two along both spatial dimensions.212

The YCrCb color space is a luminance-chrominance color space, based on
gamma-corrected RGB, that has been proposed for use as a standard in
HDTV. The Y component is a luminance channel similar to L*, and the Cr
and Cb are opponent chrominance channels similar to a* and b*, respectively.
The chapter on color image compression provides more details on the com-
pression of color images and the new JPEG-2000 standard.

1.11.7 Device color spaces

The measurements from color recording devices and the control values for
color output devices are the color representations of recorded images or the
images to be reproduced, respectively. Hence, it is common to say that these
values represent colors in the device’s color space. Thus, typically there are
RGB color spaces for scanners, cameras, and other input devices, and there
are CMY/CMYK color spaces for color printers. Unlike the CIE standard
color spaces discussed in Section 1.5.1, most of these color spaces are not
standard and cannot be directly used for the meaningful archival/commu-
nication of image data. However, if these device spaces are related to the
standard color spaces in a clear unambiguous way, these can also be poten-
tially used for the exchange of color information. An advantage of such a
scheme is that no transformations of the image data are required for display
if the data are specified in the native color space of the device. Because a
large fraction of the images on the World Wide Web are primarily targeted
for display on CRT monitors that have very similar characteristics, a new
standard color space, sRGB, has been proposed for use based on these
characteristics.6 The sRGB color space is basically a gamma-corrected tris-
timulus space that uses the CRT phosphors as primaries for determining the
CMFs. In addition, the sRGB standard includes provisions for specifying the
viewing conditions (white-point chromaticities, image surround, flare, etc.).
The sRGB space is tied to the characteristics of common CRT displays and
is therefore limited in some respects. In particular, there are colors that can
be produced on common printers but lie outside the range of colors that are
can be encoded in sRGB. These colors tend to be in the cyan and bright
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yellow regions. Recently, extensions to the space to remedy some of its
limitations with regard to gamut have been proposed.283 However, as dis-
plays evolve to newer technologies, the original motivation for using the
sRGB standard as a method for keeping data in a format that requires
minimal transformation is also no longer valid. 

Standardized CMYK spaces have also been defined in the graphic arts
industry to allow color data to be supplied to printing press operators in a
form that can be unambiguously interpreted (unlike device CMYK specific
to a single press). The standards in this area vary by geography and include
SWOP288 (North America), Euroscale (Europe), and Japan Color (Japan).
These standards often combine multiple independent specifications based
on the printing conditions (e.g., for coated vs. uncoated substrates). 

1.12 Color management and calibration
For proper color reproduction, the input and output devices involved must
be calibrated. Historically, the systems used for color reproduction were
calibrated† in a closed-loop configuration. As shown in Figure 1.35, in a
closed-loop configuration, the complete system is calibrated from input
through output. Thus, for color photography, the film sensitivities, dye
absorptances, and developmental interactions were appropriately chosen so
as to result in acceptable reproduction. In offset printing, the scanner was
used to generate CMYK “separations” that were suitable for generating

† Note that, in Chapter 5, the terms calibration and characterization have specific meanings as
per-channel corrections and the full three-dimensional color correction that apply to the “cali-
brated” device. In this chapter, we do not follow that convention strictly, because the terms
calibration and characterization are in common use with overloaded meanings. The use of these
terms in this chapter should be apparent from the context.

Color Output Device

Color Input Device

Input-Output
Calibration Transform

+

-

Calibration
Error

+

Input Color Image

Output Color Image

Figure 1.35 Closed-loop system calibration.
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halftone prints. With the increased use of digital computers and the evolution
of desktop printing, it became obvious that such an approach has severe
limitations. In particular, as the number of devices increases, calibrations for
each input–output device pair are difficult to construct and maintain. In
addition, because the calibrated data in a closed-loop calibration scheme are
specific to one output device, they are not suitable for archival purposes or
exchange with devices outside the system. 

With the growth of networking and increased exchange of color image
data between geographically divided systems, it was recognized that several
of these problems can be solved by calibrating each device to a standard
device-independent (DVI) color space, which can then be used for the
exchange of data between different devices and for archival uses. As shown
in Figure 1.36, in these systems, the data from an input device are converted
to a device-independent color space and then transformed into the device-
space of the target device for reproduction. 

To enable proper management of color, several components are required.
Color measurement instrumentation discussed earlier in Sections 1.11.4.1
and 1.11.4.2 is necessary for calibrating input and output systems. Standard
formats for the storage and communication of these device calibrations are
required so that different applications can make use of the calibrations. Also
necessary are systems and algorithms that use the calibrations effectively to
achieve desired results. These components are briefly outlined in the remain-
der of this section. As with other topics, several are discussed in detail in
subsequent chapters. 

1.12.1 Calibration and profiles

Calibration of a color imaging device relates its input/output to DVI color
values. For an input device, calibration provides a mapping from device
measurement values (e.g., scanner RGB) to DVI color descriptors (e.g., CIE
XYZ, CIELAB etc.), and, for an output device, the calibration process yields
a mapping from DVI color descriptors to device control values (e.g., CMYK,
monitor RGB) which produce those color descriptors. 

1.12.1.1 Input device calibration
To calibrate a scanner, the first step is to select a collection of color patches
that span the gamut of interest. Ideally, these colors should not be metameric
for the scanner or the eye (under the illuminant for which the calibration is
being produced). Metamerism is defined as the property in which different
spectra map to the same values under a set of sensitivity functions. These
patches are measured using a color measurement instrument, such as a
spectrophotometer or a colorimeter, which will provide the device-indepen-
dent color values , where Mq denotes the number of patches. Any of
the (device-independent) color spaces such as CIE XYZ, CIELAB, etc. can be
used for this purpose. The use of CIELAB is common, as this space includes

tk{ }k 1=

Mq
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information on the viewing illuminant in the white point. The patches are
also measured with the scanner to obtain the scanner measurements

.
To determine the CIE values for an arbitrary measured patch, the col-

lected data are used to construct an interpolating function that maps from
the space of scanner measurement values to the chosen device-independent
color space. This function, F(·), can then be used to relate any of the scanner
RGB values to colorimetric XYZ values or LAB values, i.e., F(u) = t. Normally,
a parametric form is chosen for F(·), and the parameters are determined
through regression. Several different schemes have been used for this pur-

Color Input Device +

-

+
Error
Input Calib.

Input Color Image

Calibration Transform
          Input

Color Output Device

Output Color Image

+

-

+
Output Calib.
Error

Calibration Transform
          Output

Color Space

Device Independent Archival/
Exchange

Figure 1.36 Device-independent color calibration.
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pose, ranging from straightforward linear and polynomial regression to
neural networks.159(Chap. 11) Usually, F(·) is complicated and computationally
expensive. For this reason, F(·) is usually used to produce a finely sampled
lookup table (LUT) from which F(·) at arbitrary points is obtained by using
simple interpolation schemes.159(Chap. 4)

Calibration for digital cameras and video cameras is usually done in a
similar fashion by using a target of patches with known reflectances or color
values. Because the eye is very sensitive to deviations from the neutral
(achromatic) colors, sometimes an additional one-dimensional transform is
included on each of the RGB channels so that the R = G = B line corresponds
to neutral colors. This procedure is commonly referred to as gray/white bal-
ancing.

1.12.1.2 Output device calibration
For calibrating an output device, a transformation from DVI color values to
the space of device control values is required. This requires a two-step
procedure. In the first step, the printer characterization, which determines
the forward transformation from printer control values to DVI color values,
is determined. Then, this forward transform is used in the next step to
determine the inverse mapping from DVI color values to device control
values.

Because CRT monitors are represented well by the parametric models
described in Section 1.11.1.1, the forward characterization of these devices
is usually done by determining the model parameters from a few measure-
ments. It can also be readily seen that, due to their additive nature, the
inverse transformation from CIE XYZ (or other tristimulus) values to the
CRT control voltages can be computed by means of a simple matrix trans-
formation followed by a one-dimensional transform for the gamma correc-
tion. This scheme is used in all cases except those requiring the highest
accuracy, for which LUT-based schemes may be used, and additional cor-
rections may be made for the surface reflection (flare) from the monitor
screen. In addition, it may be necessary to correct for the significant spatial
nonuniformity over the CRT screen.63,266

For the forward characterization of printers, an empirical scheme sim-
ilar to that described for scanner calibration is commonly used. By selecting
a set of printer control values  covering the range of allowable
control values, measuring the corresponding DVI color values ,
and using some interpolation scheme, the forward mapping, v = G(c) from
control values to DVI color values is determined. For halftone printers,
alternatively, the Neugebauer models mentioned in Section 1.11.1.4 have
also been used. Because even the models are nonlinear and not readily
invertible, for the inverse mapping G–1(·), an interpolating function invari-
ably is used to get a finely sampled LUT. Due to the four degrees of freedom
in the control values of CMYK printers, there exist multiple control values
that result in the same printed color. Because this poses a challenge in
obtaining a smooth inverse mapping, the inverse often determines the

ck{ }k 1=
Mp

vk{ }k 1=
Mp
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amounts of three virtual CMY colorants from which the CMYK control
values are obtained by some functional relation. This process is viewed as
the incorporation of black ink and removal of underlying CMY inks and
is commonly referred to as undercolor removal (UCR). Typically, the UCR
mapping from the virtual CMY values to actual CMYK control values is
designed so as to better render achromatic colors, reduce total colorant
amounts (for faster drying/better adhesion to paper), and (in some cases)
reduce the use of the expensive CMY colorants. 

1.12.1.3 Device profiles
To make the calibration transformations available to different applications
that wish to use them, the calibration transformation for each device is stored
in a device profile. In the early days of color management, different manu-
facturers used their own proprietary formats for the storage of these profiles,
which were therefore useful only for applications from the same manufac-
turer. To realize the full benefits from the DVI calibration of devices, the
desktop publishing industry is increasingly moving toward open systems.
A standard format for the storage of device profiles has been defined and is
being widely adopted.62 This International Color Consortium (ICC) profile
format specifies a wide variety of input and output device profiles suitable
for efficiently representing the color calibration information. The use of a
standardized format allows the profiles to be used by different applications
from different manufacturers. Limitations of the profiles in some respects
have resulted in some nonstandard implementations that have compromised
compatibility, but these are being addressed by the ICC with input from
member corporations. 

1.12.2 Color management systems

A color management system (CMS) is responsible for interpreting the device
profiles and performing the appropriate transformations to and from the
device-independent space. The goal of a CMS is to provide predictable and
consistent color without requiring specialized skills from the user. Thus,
CMSs tie together device profiles with color matching modules that use these
device profiles to transform device-dependent image data to DVI color
spaces or to the device color spaces of target output devices on which the
images are to be displayed. In addition, the CMS provides the user with
flexibility to choose different rendering intents for different images. Thus,
for instance, in reproducing a company logo, a perfect colorimetric match
is usually desired; in producing bar graphs and pie charts for presentation,
it is desirable that the colors be highly saturated for maximal impact; and
in reproducing pictorial images, it is desirable that the closest perceptual
match be obtained (which will depend on viewing conditions). Color man-
agement functions can be performed at several different phases of the
imaging process — in the devices (e.g., Adobe’s Postscript level 2/3 for
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printers), in device drivers (e.g., Cannon Colorgear), applications (e.g.,
Adobe’s Photoshop/Acrobat), or in the operating system (e.g., Apple’s
ColorSync/Microsoft Windows 2000/XP). A description of some of the
practical aspects of color management in printing applications and a listing
of vendors of color management software and solutions can be found in
Reference 137. The notion of embedding color management in the operating
system has the potential of making the process transparent to the end user.
The system, however, also introduces limitations that can result in unex-
pected behavior when users are unaware of the color management or have
incompatible components. As a result, even though several vendors of
operating systems for desktop and workstation computers have incorpo-
rated CMSs into their products, these are not extensively utilized at present. 

Ideally, with color management, one could accurately transfer color
information from one medium (e.g., a CRT) to another (e.g., print). Unfor-
tunately, this is an extremely difficult task for two reasons: 

1. There are significant differences in gamuts of different devices (this
was mentioned and demonstrated in Section 1.11.1). 

2. The difference in typical viewing conditions for different media im-
plies that a simple colorimetric match does not give an appearance
match.

There is therefore significant interest in gamut mapping algorithms that map
the colors in an image to suitable colors that can be reproduced on the target
device. Methods that model the adaptations of the eye and allow the com-
putation of appearance matched images under different viewing conditions
are also an active area of research. 

1.12.3 Gamut mapping

Gamut mapping is the process of mapping the displayable colors from one
media to those of another media. As defined earlier, the ideal goal for color
matching depends on the type of image and the intent of the user. The
problem is probably most acute for pictorial images for which, ideally, one
would like to map the colors so as to obtain the best possible appearance
match between the images on the different media.206,286 The strategy for
gamut mapping could be either image dependent or image independent.
Because image-dependent methods can use different strategies for different
images, they often produce better results. However, they are also signifi-
cantly slower than image-independent techniques, because they require a
fresh computation for each image and are therefore seldom used in automatic
gamut-mapping schemes. Several color applications, however, indicate out-
of-gamut colors in an image via a key color or a flashing highlight (on a
CRT). This allows the user to perform a transformation such that these colors
are mapped satisfactorily. Such an approach, however, requires considerable
operator skill to obtain satisfactory results. 
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The simplest technique of gamut mapping (particularly for CRT moni-
tors) is clipping in the space of device control values. Because the space of
control values is not a UCS, clipping of control values does not yield the
closest printable color (as perceived by an observer). To remedy this problem,
a simple extension would be to map out-of-gamut colors to the nearest in-
gamut color in a UCS. While this approach offers significantly better results
than the device space clipping,98 it can often result in unacceptable hue shifts
that are perceptually very objectionable. An additional limitation of this and
the clipping approach is that smoothly varying regions beyond the device
gamut can potentially be mapped to a single color, creating undesirable
abrupt edges in the previously smooth regions and causing loss of significant
information (such as shape from shading).

Another approach used for gamut mapping is a gamut compression algo-
rithm that compresses all the colors in the image in a manner that reduces the
colorimetric dynamic range in the image while ensuring that the colors can
be reproduced. For example, one could move all the colors in the image toward
one point, such as a mid-gray, until all the colors in the image are within the
device gamut. Unlike the clipping approach, this method will retain some of
the variation in smoothly varying image regions that are beyond the device
gamut. In addition to UCSs, notions of hue, chroma, and saturation/value are
extremely useful in gamut mapping research, as these can be directly related
to viewers’ objections to artifacts produced by gamut mapping algorithms
and can be used in appropriately choosing the clipping and compression. In
Section 1.7, it was pointed out that, in addition to being a UCS, the CIELAB
space allows the computation of correlates of lightness, hue, and chroma. As
a result, CIELAB has been used extensively in gamut mapping research. In
the process, some limitations of CIELAB have also been discovered and have
been addressed through empirical modifications. The “blue hue nonlinearity”
was one such limitation that was discussed in Section 1.7.3. 

The transformations to and from the perceptual spaces are usually non-
linear, and speed is often an issue.60 For this reason, some CMSs may use a
high-resolution LUT along with a linear interpolator to perform the trans-
formation. Performing multiple transforms on the data can result in a loss
of fidelity and introduce visually noticeable errors due to the accumulation
of errors associated with finite precision arithmetic. Some CMSs can cache
input and output transformations, concatenate them, and perform these in
a single operation when the final image is desired. This not only saves time
but also improves accuracy. Some of these powerful techniques are discussed
in Chapter 11. 

1.12.4 Appearance matching

Section 1.9 briefly discussed the adaptation in the eye in response to change
in viewing conditions. Since different color reproduction media have differ-
ent viewing conditions, in reproducing images across these different media,
an appearance match instead of a pure colorimetric match is usually desired.
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The simplest instance of appearance matching is the white-point matching
method based on the von Kries transformation as mentioned in Section 1.7.
This transformation converts tristimuli into a space of cone responses and
applies a diagonal correction matrix that equates the white points under the
two viewing conditions.335(p. 432) White-point matching is often used in color
imaging applications, and there is support for it in several color management
applications and packages such as PostScript. 

In addition to white-point adaptation, there are several well character-
ized psychophysical effects that change with change in viewing conditions.
In particular, it is well documented that the apparent contrast (perceived
intensity gradient) of an image decreases in a dark surround in comparison
to a bright surround.134(pp. 49–57) Often, this change in contrast is modeled by
relating the luminance to the perceived lightness as a power–law relation,
similar to that for CIELAB in Equation 1.32, with the exponent increasing
as the surround gets brighter.80,134(pp. 56–57) Thus, gamma correction has also been
used extensively to compensate for these effects, in addition to correction
for monitor nonlinearity. 

There has been considerable research in defining color appearance mod-
els that account for chromatic adaptation, influence of surround, and other
psychophysical phenomena that affect the perception of images.81 These
models hold tremendous potential for use in cross-media color reproduction.
The CIE is involved in an ongoing attempt to define a standard appearance
model for use in imaging applications. An interim version of the model is
available as a standard.50 The model has also been recently refined in Refer-
ences 82 and 176. More details on the status of color appearance research
can be found in Chapter 2, which is devoted to this topic. 

1.13 Summary
This chapter provides an introduction to the fundamentals of color science
and technology as applied to color digital imaging. It also attempts to pro-
vide a systems view of color imaging systems, where the interactions
between image capture devices, image and color processing operations,
image display and printing systems, inherent characteristics of natural and
man-made images, and the human observer are outlined. Given the breadth
of subject matter covered in the chapter, the presentation of several aspects
is quite terse and abbreviated. A much more detailed view of several of the
individual “components” within this system is presented in the remaining
chapters of this book. 
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2.1 Introduction
What is color appearance, and how does it relate to digital color imaging?
Color appearance is, as the name suggests, the study of how a given color
stimulus is perceived by a human observer. While seemingly straightforward
at first glance, color appearance is governed by the extraordinarily complex
human visual system. How a stimulus appears is a function of many vari-
ables, ultimately including the spectral properties of the stimulus and the
light source in which it is viewed; the size, shape, and spatial properties;
and relationships of the stimulus, the background and surround, observer
experience, and the adapted state of the observer.

Consider a relatively simple color imaging system that consists of a CRT
computer display and a color printer. The desired goal of the system might
be to have color images displayed on the CRT monitor that match the hard
copy color images printed. It might be thought that using standard CIE
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tristimulus colorimetry to assure that the XYZ values displayed by the mon-
itor are exactly the same as those on the printed paper would be enough to
assure a visual match. As it turns out, this tristimulus match between the
monitor and paper would look very different to a human observer. This is
because CIE colorimetry was designed with a very specific goal — that two
simple stimuli that have identical tristimulus values match, for an average
observer, under a single specified viewing condition. The above-mentioned
color imaging system violates the assumptions that basic colorimetry
requires. The two stimuli, in this case the CRT and print images, are complex
stimuli viewed in wildly disparate conditions.

What is needed in the above situation is a method for ensuring that the
appearance of the two images is identical. To do this, we first must understand
what governs the appearance of a stimulus. This chapter focuses on just that
problem. To fully understand how colors are perceived, it is important to
understand the tools used to study color appearance.

In this chapter, we examine the terminology of color and color appear-
ance. This includes appearance attributes such as hue, chroma, lightness,
brightness, and saturation, as well as viewing condition attributes such as
surround and background. We also examine several of the factors that influ-
ence color appearance and how they might cause basic tristimulus colorim-
etry to fail. Because color is ultimately the result of human perception, it is
important to understand the tools used to quantify perception. Examples of
these tools and techniques, known as visual psychophysics, are described.

Ultimately, we would like to be able to describe and predict the color
appearance of complex stimuli under various viewing conditions. Toward
this goal, there is the formulation of chromatic adaptation models and,
ultimately, color appearance models. Several of these models and their his-
torical formulation are described. 

The study of color appearance is truly complex. This chapter barely
scratches the surface of such a large and diverse field. The interested reader
is encouraged to look at Fairchild’s1 more in-depth text on color appearance
as well as the other references presented here. In addition, this topic can still
be considered one of active research.

2.2 Terminology
In any field of study, it is important to have a common vocabulary so that
knowledge and insight might be communicated accurately and precisely. In
the study of color and color appearance, this vocabulary is often muddled,
as terms such as lightness and brightness are often confused and casually
interchanged by the average user. Why might this be more the case when
discussing color as opposed to other subjects? Perhaps it is the very nature
of color itself. Almost every person has experienced and discussed color,
often at a very early age, though the means of discussion are often varied.
Even in education, treatment of color is inconsistent. To the grade-school
child, color might be made up of three primaries: red, blue, and yellow. The
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printer is taught that the three primaries are cyan, magenta, and yellow,
while the television engineer is taught that color is made up of red, green,
and blue. In yet another manner, the physicist might be taught that color is
made up of a certain portion of the electromagnetic spectrum. While all of
these can be considered correct, they also can be considered incorrect.

In the field of color appearance, the de facto standard for vocabulary
comes from the International Lighting Vocabulary, published by the CIE.2 Hunt
provides very useful insight into the need for a standardized vocabulary
and also describes the work that led to publication of the CIE document.34

To add to this mixture, there is also a relevant American Society for Testing
and Materials (ASTM) document that describes appearance.5 The definitions
of terms presented below come directly from these important works.

2.2.1 Color
Perhaps some of the confusion in the field of color appearance stems from
the very nature and definition of color itself. Few people, when asked, can
give a precise definition of what exactly color is. It is almost impossible to
do without using an example, as evident from the CIE definition.

Color. Attribute of visual perception consisting of any combina-
tion of chromatic and achromatic content. This attribute can be
described by chromatic color names such as yellow, orange, brown,
red, pink, green, blue, purple, etc., or by achromatic color names such
as white, gray, black, etc., and qualified by bright, dim, light, dark, etc.,
or by combinations of such names.

This definition provides little satisfaction to the casual reader. To comfort
those readers, it also provides little satisfaction to the scientists who study
color. That the definition of color contains the word color makes for a circu-
larity that can be confusing. The authors of this definition were well aware
of this confusion and added a note that sums up the need for the study of
color appearance.

Note. Perceived color depends on the spectral distribution of the
color stimulus, on the size, shape, structure, and surround of the stim-
ulus area, on the state of adaptation of the observer’s visual system,
and on the observer’s experience of the prevailing and similar situation
of observations.

Many of the aspects described in this note will be discussed in much further
detail later in this chapter.

Perhaps the most important information that is encompassed in this
definition of color is the first sentence. Color is an attribute of visual percep-
tion. All terminology discussed in this section is similarly based on attributes
of perception. That is to say, without the observer, there can be no discussion
of color. The study of color appearance and color appearance models is an
attempt to generate physically realizable measurements that correlate with
these perceptual attributes.
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2.2.2 Related and unrelated colors

The definition of color is further enhanced with the notion of related and
unrelated colors. Though simple enough, these definitions are critical to
gaining a full understanding of color appearance.

Related color. Color perceived to belong to an area of object seen
in relation to other colors.

Unrelated color. Color perceived to belong to an area of object seen
in isolation from other colors.

These definitions are rather straightforward. Related colors are viewed in
relation to other color stimuli, while unrelated colors are viewed in isolation.
Color stimuli are rarely viewed in complete isolation, so most color appear-
ance models are designed to predict related colors. However, many color
vision experiments that have been used to gain an understanding of the
human visual system have been performed using simple unrelated color
stimuli. It is important to understand the differences between these stimuli
when trying to utilize models designed to predict one specific type of color.

Many color perceptions exist only for related or unrelated colors. One
very interesting case is of the perceptions of colors such as brown and gray.
These colors exist only as related colors. It is impossible to find an isolated
brown or gray stimulus, as evidenced by the lack of a brown or gray light
source. These lights would appear either orange or white when viewed in
isolation. Likewise, all of the “relative” perceptions defined below only exist
for related colors.

2.2.3 Hue

Hue is perhaps the easiest of the color terms to understand. Still, it is almost
impossible to define hue without using examples. The CIE recognized this
in its definition.

Hue. Attribute of a visual sensation according to which an area
appears to be similar to one of the perceived colors: red, yellow, green,
and blue, or to a combination of two of them.

Achromatic Color. Perceived color devoid of hue.

Chromatic Color. Perceived color possessing a hue.

Hue is often described with a “hue circle,” as shown in Figure 2.1. One
important note of this description, and the definition given by the CIE, is
the notion of unique hues; that is, red, yellow, green, and blue. These hues
follow the opponent color theory first postulated by Hering in 1920.6 Hering
noted that certain hues were never perceived together. That is to say, there
is no perception of a reddish-green, or a yellowish-blue. This formulated the
fundamental notion that human color vision is encoded into red–green and
blue-yellow channels. The interested reader is encouraged to read more
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thorough explanations as found in Kaiser and Boynton, Wandell, and Hur-
vich.7–9

The inclusion of the definitions for achromatic and chromatic colors is
also important. Though often described as an interval hue circle, there is no
natural meaning for a hue of “zero.” Achromatic colors describe colors that
are devoid of any hue information, but this definition does not extend to a
meaningful interval hue scale. The meaning of different numerical scales
will be described later in this chapter.

2.2.4 Brightness and lightness

The attributes of brightness and lightness are very often interchanged,
despite the fact that they have very different definitions.

Brightness. Attribute of a visual sensation according to which an
area appears to emit more or less light.

Lightness. The brightness of an area judged relative to the bright-
ness of a similarly illuminated area that appears to be white or highly
transmitting.

Note: Only related colors exhibit lightness.

Brightness refers to the absolute perception of the amount of light of a
stimulus, while lightness can be thought of as the relative brightness. The

Figure 2.1 Example of a psychometric function.
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human visual system generally behaves as a lightness detector, which can
perhaps be better described with an example.

A very simple example can be seen with a typical newspaper. This paper,
when read indoors, would have a certain brightness and lightness. When
viewed side by side with standard office paper, the newspaper often looks
slightly gray, while the office paper appears white. When the newspaper and
office paper are brought outdoors on a sunny summer day, they would then
have much higher brightnesses. Yet the newspaper still appears darker than
the office paper, as it has a lower lightness. The physical amount of light
reflected from the newspaper might be more than a hundred times greater
than the office paper was indoors, yet the relative amount of light reflected
has not changed. Thus, the relative appearance between the two papers has
not changed.

The above definitions include a note stating that only relative colors can
exhibit lightness. This is the reason why there cannot be a gray light source.
When viewed in isolation, the light source would be the brightest stimulus
in the field of view and would thus appear white.

Further on in this chapter will be a discussion of color appearance
models, which attempt to predict these appearance attributes. The various
color appearance terms can get easily confused. Often, it is convenient to
represent the relative terms with simple equations so as to gain a better
understanding. Equation 2.1 shows the simple mathematical construct for
lightness.

(2.1)

2.2.5 Colorfulness and chroma

The definitions of colorfulness and chroma are very similar to those of
brightness and lightness, in the fact that colorfulness is an absolute percep-
tion, while chroma is relative.

Colorfulness. Attribute of a visual sensation according to which
the perceived color of an area appears to be more or less chromatic.

Note. For a color stimulus of a given chromaticity and, in the case
of related colors, of a given luminance factor, this attribute usually
increases as the luminance is raised, except when the brightness is very
high.

Chroma. Colorfulness of an area judged as a proportion of the
brightness of a similarly illuminated area that appears white or highly
transmitting.

Note. For given viewing conditions and at luminance levels
within the range of photopic vision, a color stimulus perceived as a
related color, of a given chromaticity, and from a surface having a given

Lightness Brightness
Brightness (white)
------------------------------------------------=
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luminance factor, exhibits approximately constant chroma for all levels
of luminance except when the brightness is very high. In the same
circumstances, at a given level of illuminance, if the luminance factor
increases, the chroma usually increases.

Essentially, colorfulness describes the amount or intensity of the hue of
a color stimulus. Similarly, chroma is to colorfulness as lightness is to bright-
ness. This is also shown in Equation 2.2. Similarly to lightness, the human
visual system generally behaves as a chroma detector. It is interesting that
the appended notes attached to the above definitions are much longer than
the definitions themselves. When the luminance of the viewing conditions
increases, the chroma tends to remain constant as the brightness of a white
stimulus is increasing as well. However, in this same situation, the colorful-
ness generally increases. This can be visualized by thinking of an outdoor
scene. On a sunny day, everything looks very colorful, while on a cloudy
day everything appears less colorful.

(2.2)

2.2.6 Saturation

Saturation is often confused with colorfulness and chroma, though it has its
own unique definition.

Saturation. Colorfulness of an area judged in proportion to its
brightness.

Note: For given viewing conditions and at luminance levels
within the range of photopic vision, a color stimulus of a given chro-
maticity exhibits approximately constant saturation for all luminance
levels, except when brightness is very high.

Whereas chroma is defined as the colorfulness of an area relative to the
brightness of a similarly illuminated white stimulus, saturation is colorful-
ness relative to the brightness of itself. So, while only a related color can
exhibit chroma, both related and unrelated colors can exhibit saturation.

The standard definition of saturation, as given above, can be seen in
Equation 2.5. This definition can be supplemented with an alternate definition,
which is used in some color appearance models. This definition says that
saturation is the ratio of chroma and lightness. This is shown in Equation 2.3.

(2.3)

By substituting the above definitions of lightness and chroma (Equations 2.1
and 2.2, respectively), we get Equation 2.4.

Chroma Colorfulness
Brightness (white)
------------------------------------------------=

Saturation Chroma
Lightness
-------------------------=
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(2.4)

This equation can be simplified to the standard definition of saturation, as
shown in Equation 2.5. It is important to note that, for unrelated colors, the
ratio of chroma and lightness cannot be used to describe saturation, as those
terms are only valid for related colors. When dealing with unrelated colors,
Equation 2.5 must be used.

(2.5)

2.2.7 Digital color reproduction: brightness–colorfulness or 
lightness–chroma

When dealing with color reproduction, often it is sufficient to represent color
as trichromatic, as witnessed with the success of the CIE-based colorimetry.
Colorimetry is valid only when dealing with color matches in identical
viewing conditions. If the viewing conditions change, as when going from
a CRT monitor to a print, colorimetry becomes insufficient. When this is the
case, it becomes necessary to specify the actual color appearance. Complete
specification requires five perceptual dimensions: brightness, lightness, col-
orfulness, chroma, and hue. It should be noted that the specification of
saturation is not necessary. Saturation is redundant and can be inferred from
the other percepts.

Many times, when designing imaging systems, it might appear that
specifying all five color appearance attributes is also redundant. This is not
the case, however, as was described by Nayatani et al.10 In this article,
Nayatani et al. describe the distinction between brightness–colorfulness
(absolute) matches and lightness–chroma matches. For most imaging appli-
cations, it is often sufficient to attempt for a lightness–chroma match rather
than the absolute brightness–colorfulness match. This can be illustrated by
visualizing a common imaging system, such as consumer photography.
Often, people photograph an outdoor scene in bright sunlight. The photo-
graph is then printed and viewed in an indoor environment, at much lower
luminance levels. In this case, it is physically impossible to achieve an abso-
lute brightness–colorfulness match so that the measured energy coming off
the print is the same as the original outdoor environment. This same situation
can be easily reversed: if the original photograph was taken indoors and
then reproduced and viewed outdoors. In this situation, while physically
possible to reproduce the absolute attributes, it is undesirable. The repro-
duction would have to be unreasonably dark to match the absolute attributes
of the indoor scene. For these cases, and for most general imaging applica-
tions, it is desirable to create a lightness–chroma match for these reproduc-
tions so that the relationship between objects in the scene is held constant.

Saturation Colorfulness
Brightness (white)
------------------------------------------------ Brightness (white)

Brightness
------------------------------------------------⋅=

Saturation Colorfulness
Brightness

---------------------------------=
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2.3 Visual psychophysics
To gain an understanding of color, one of the foremost requirements is to
have a basic understanding of the human visual system. Traditionally, the
study of the human visual system generally falls into two categories: phys-
iology and psychophysics. The study of the physiology of the human visual
system involves examining the functionality of the receptors and neurons of
the eye and the brain. This study is beyond the scope of this chapter, though
there are several excellent texts on the subject.7–9 Visual psychophysics is a
technique for examining the relationship between physical measurements
of a stimulus with the perception of that stimulus. More details of the
experimental methods described in this chapter can be found in various
texts, notably by Fairchild,1 Bartleson and Grum,11 Gescheider,12 Torgeson,13

Thurstone,14 and Engeldrum.15

Physiology and psychophysics are not the only means used to study the
human visual system. To fully understand the complicated nature of vision,
one must combine the effort of many disciplines. This includes, but is not
limited to, physics, optics, chemistry, genetics, biology, and anatomy. The
remainder of this chapter, however, will focus on the use of psychophysics
to study color appearance.

2.3.1 Definition of psychophysics

Psychophysics is the scientific study of the relationships between physically
measured stimuli and the sensations and perceptions of those stimuli. Psy-
chophysics can also be defined as the methodology used to study the above-
mentioned stimulus-sensation relationship. An example of this study might
be the relationship between physical amounts of light (stimulus) and per-
ceived brightness (perception). Psychophysics can be used to generate quan-
titative measurements of color sensation and perception, though those are
often thought of as being very subjective. These measurements of perception,
when produced from a carefully designed experiment, are just as objective
as any other physical measurement (such as temperature). The difference
between physical and psychophysical measurements tends to lie in the
uncertainty of those measurements. Whereas a physical measuring device
tends to have relatively small amounts of uncertainty, psychophysical exper-
iments might have higher uncertainties. Care must be taken to understand
and consider these uncertainties.

2.3.2 Psychophysical techniques

Many different experimental techniques can be used to measure perceptions
of stimuli. For visual experiments studying images and color appearance,
these tend to fall into two broad classes: threshold and scaling experiments.
Many other types of experiments can be used, including categorization,
recognition, and reaction time, though those will not be discussed here.
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Threshold techniques include detection, discrimination, and matching
experiments. They are designed to measure visual sensitivity to small
changes in stimuli, or perceptual equality. An example of a detection or
discrimination technique used in imaging science is for developing and
testing image compression algorithms. An original image might be viewed
with a compressed image to determine if the difference can be detected. An
example of matching would be to have a person adjust the amount of
compression of an image until it appears to match the original.

Scaling techniques are designed to produce a relationship between phys-
ical and perceptual magnitudes. The above-mentioned relationship between
physical amounts of light and perceived brightness falls into this category.
Another example might be the relationship between perceived image sharp-
ness with measured spatial frequency information in the image.

2.3.3 Hierarchy of scales

When creating a scalar relationship between physical and perceptual mag-
nitudes, it is important to consider the nature and properties of that scale.
Various psychophysical techniques might produce different types of scales,
each with different mathematical properties and utilities. It is very important
to understand what mathematical operations are permitted, or vast misin-
terpretations can result. Four types of measurement scales will be defined,
each with varying mathematical complexity and power. These scales are
nominal, ordinal, interval, and ratio.

Nominal scales. These are the simplest form of numerical scales. Num-
bers are used as names for objects. An example of this type of scale would
be the numbers on players on a sports team. The values of the numbers have
no meaning other than to identify the different players. Any mathematical
operation performed on this type of scale is arbitrary (for example, doubling
every player’s number has no meaning). In color appearance, a nominal
scale can be given to color names, such as reds, greens, yellows, and blues.
This scale can then be used for determining the category of a given color
stimulus.

Ordinal scales. These scales have magnitudes of order associated with
them. Objects can be ranked in ascending or descending order based on the
magnitude of a certain trait. An example of this type of scale would be the
Olympic medals, where gold, silver, and bronze medals are given out for
first, second, and third place, respectively. It is easy to determine the order
of the contestants, but any other relationship between them is unknown. For
instance, did the gold medal long jumper jump twice as far as the silver
medal jumper? Or was the difference between the gold and silver jump the
same as the difference between the silver and bronze? A color appearance
example of this type of scale might be the sorting of a series of paint chips
in order of lightness. The resulting scale would reveal only that one paint
chip was lighter than others, and there would be no information as to how
much lighter. The only mathematical operation that is valid for an ordinal
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scale is the greater-than/less-than operator. Any other operation should be
considered arbitrary.

Interval scales. An interval scale is any scale that has equally spaced
units, or intervals. For example, in this type of scale, if one sample is judged
to be one unit away from an anchor, and a second sample is judged to also
be one unit away, though in a different direction, the differences between
the anchor and the first or second sample is still said to be perceptually
equal. There is no meaningful zero in an interval scale, meaning the value
of zero is arbitrary. A real-world example of this would be the Fahrenheit
and Celsius temperature scales. The zero value in the Celsius scale is arbi-
trarily defined to be the freezing point of water, while in the Fahrenheit scale
it is said to be 32° below the freezing point of water. Because the zero is
arbitrary, it is impossible to perform multiplication and division on an inter-
val scale. For example, we cannot say that 64°F is twice as warm as 32°. We
can say that the temperature difference between 32° and 42° is the same as
that between 52° and 62°. All of the mathematical operators that are valid
for nominal and ordinal scales are also valid for interval scales. Interval
scales, however, also allow for addition and subtraction.

Ratio scales. Ratio scales hold the most mathematical power of all the
scales. They have all the properties of the previous three scales, with the
addition of a meaningful zero point. The meaningful zero adds the ability
to equate valid ratios. A real-world example of a ratio scale would be the
meter scale for height and length. It should be obvious that zero means there
is no magnitude of height. In this case, 8 m is indeed twice as long as 4 m
and half as long as 16 m. Ratio scales also allow for the multiplication of
constants without losing the meaning of the scale. An example of this would
be converting between meters and centimeters, or meters and feet. In color
imaging, it is often desired, yet impossible, to calculate a meaningful ratio
scale. A hue scale is an excellent example of this. While it is relatively easy
to calculate an interval scale of hue, it is difficult to determine the meaning
of zero hue. Thus, zero hue is often arbitrarily assigned a location on the
scale (e.g., red).

2.3.4 Threshold and scaling: a historical perspective on Weber, 
Fechner, and Stevens

To properly study the psychophysical techniques used in color imaging
applications, it is often beneficial to begin with some history of the technique.
Three pioneers of psychophysics who still are making their mark in color
science today are Weber, Fechner, and S. Stevens.16,17

Weber began his work in the early nineteenth century, studying the
perception of lifted weights. He asked subjects to lift a given weight and
then added weight until the subjects were able to notice a difference between
the new weight and the original. This experiment was repeated with many
different starting weights. Weber noted that, as the starting weight increased,
the amount of added weight necessary to produce a noticeable change also
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increased. His experiments tended to show that, for a given starting weight,
I, the change in weight necessary to elicit a perceptual difference, ∆I, followed
a constant ratio ∆I/I. This stimulus change is often referred to as a just
noticeable difference, or a JND.

This simple relationship was found to hold approximately true for many
different stimuli and has since become known as Weber’s law. These findings
turn out to be rather intuitive and are quite common in everyday life. For
instance, often times when in a crowded places with loud music, people are
forced to yell to be heard by others. When the music suddenly stops, the
person yelling is instantly heard by everyone. The sound level coming from
the person’s mouth does not change but, because the background stimulus
suddenly drops, the change necessary to be heard becomes much smaller.
Other examples include the inability to see a candle in sunlight, though the
candle appears bright when placed in a darkened room. This is an example
of light adaptation and will be discussed further in this chapter. Weber’s law
helps explain these phenomena.

Later in the nineteenth century, Fechner proposed a method for extend-
ing Weber’s law to create a scale of sensation.16 Fechner theorized that a JND
was a unit of sensation, and thus he could integrate JNDs to create an
appropriate scale of sensation. Fechner attempted to create a transformation
from a physical intensity scale (such as measured weight) to a perceived
sensation scale (perceived heaviness) where each JND was of equal size for
all perceptual magnitudes. Fechner adapted Weber’s law and assumed that
the ratio ∆I/I was held constant in the limit. By integrating over that equation,
for all stimuli I, it is possible to calculate a metric that equates equal ratios
on the physical scale with equal increments on the perceptual scale. This
solution ends up being a simple logarithmic relationship, S = k log (I), where
S is the perceived sensation, k is some constant, and I is the measured
physical intensity. This solution became known as Fechner’s law.

The logarithm expressed by Fechner’s law represents a compressive
nonlinear relationship between the input stimulus intensity and the corre-
sponding perceptual sensation. The compressive nature essentially means
that, as the stimulus intensity increases, the perceived sensitivity to the
stimulus decreases. Going back to the person shouting in the loud room,
because the intensity of the background is so high, the sensitivity to the
sound decreases, and the person must shout to be heard. When the music
suddenly stops, the sensitivity increases, and the person shouting can sud-
denly be heard by everyone.

Fechner’s law relies on several fundamental assumptions. First, it
assumes that Weber’s law is indeed valid for all stimulus intensity (in the
limit, ∆I/I is a constant). His other assumption is that JNDs are indeed a valid
unit of sensation and that JNDs can be integrated to form a magnitude scale.
While the general compressive trends described by Fechner’s law are often
valid for many perceptions, they often do not follow the exact logarithmic
shape. Perhaps, because the two main assumptions often break down in real-
world situations, so Fechner’s law is not always accurate. Nevertheless, his
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contributions to the field psychophysics and vision science are quite sub-
stantial.

Nearly 100 years later, S. Stevens performed a series of experiments
testing the limits of Fechner’s law. He used magnitude estimation experi-
ments to derive relationships for over 30 different physical stimuli with their
resulting sensations. It was found that most of the relationships formed
straight lines when plotted on a log-sensation/log-intensity plot, rather than
the logarithmic relation predicted by Fechner’s law. The different perceptions
did not all form lines of the same slope. When plotted in log–log space,
straight lines indicate power functions in a linear space, where the slope
indicates the exponent of the power function. From these plots, Stevens
suggested that the relationships between physical stimuli and their corre-
sponding perceptual scales could be defined as power functions, where the
exponents vary for different perceptions. The general form of this is shown
below.

(2.6)

where S = perception 
k = experimental constant 
γ = exponential power value 

An exponent greater than 1 results in an expansive relationship; as the
physical stimulus increases, the perception increases at a greater rate. This
is often the case when the stimulus might result in danger, such as the
perception of pain. An exponent less than 1 results in a compressive rela-
tionship such as that described by Fechner’s law.

The power function relationship between physical and perceptual scales
has become known as Stevens’ power law. It has been used to model many
perceptions in color imaging, such as the prediction of lightness in the
CIELAB color space. Details on that will be explained later in the chapter.

Weber, Fechner, and Stevens formed the basis for many of the psycho-
physical techniques still used to develop and test color and appearance
today. It is important to note the specific differences between Weber’s goals
and Fechner and Stevens’ goals. In determining the amount of weight nec-
essary to elicit a noticeable change in perceived weight, Weber was deter-
mining the threshold of detecting a change, or a just noticeable difference.
Fechner and Stevens extended this to determine a scale of perceptual differ-
ences. These two techniques represent the main areas of psychophysical
study for general color appearance.

2.3.5 Psychophysical methods: threshold techniques

Weber’s weight experiment was a classical psychophysical threshold exper-
iment. Threshold experiments are designed to determine the perceptible
limits to a change in a stimulus, or the just noticeable differences (JND). Two

S kIγ=
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differing types of threshold JNDs can be calculated: absolute and difference.
An absolute threshold determines the minimum amount of stimulus neces-
sary to be detected. An example of this type of threshold might involve an
observer in a blackened room trying to detect a small flashing light. The
threshold would be determined from no stimulus (the blackened room) to
some stimulus (the flashing light). Difference thresholds determine the small-
est change detectable from a given stimulus. Weber calculated a difference
threshold when he added more weight to an already existing amount of
weight.

Three classical types of psychophysical techniques are used for deter-
mining thresholds. Over the years, many different experiments have been
developed based on these types. One of the overall goals of any visual
experiment should be simplicity. Simplicity often comes at a price, however.
The three techniques will be presented here in order of simplicity, with their
corresponding advantages and disadvantages also presented. The tech-
niques are:

• Method of adjustment
• Method of limits
• Method of constant stimuli

2.3.5.1 Method of adjustment
The method of adjustment is the most straightforward method for determin-
ing observer thresholds for a given stimulus. It this technique, the observer
has control over the magnitude of the stimulus itself. The observer must
adjust the magnitude of the stimulus to reach a desired goal, or criterion.
Example criterion might include adjusting a stimulus until it is just barely
perceptible (for an absolute JND) or adjusting a stimulus until it is different
from another (for a difference JND). The threshold is then determined by
taking the average adjustment across several trials as well as across several
observers. The standard deviation between a single observer and across
several observers can also be taken, and it provides an indication of the
variance and precision.

An example method of adjustment experiment for color imaging might
be determining the level of image compression that can be applied before
the observer notices a difference. For this type of experiment, an observer
might sit at a computer screen that has two images on it, an original and a
compressed image. The observer might have a slider that can be moved to
increase and decrease the amount of compression on the image. The task
would be to adjust the compression on the image until the subject just notices
a difference between the original and the compressed version. This would
be performed several times, and the average would be the compression
threshold for that given observer and image. The threshold might be different
depending on the starting value of the compressed image. If the image starts
out uncompressed, and the observer must increase the compression until
noticing a difference, you might get one value. If the image starts out very
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obviously compressed, and the observer must decrease the compression until
it is just barely noticeable it, you would probably get a different value.

The method of adjustment technique is advantageous in that it is fast
and very easy to implement. It is also easy to calculate a threshold from the
data it produces. There are several problems with this technique, though, as
illustrated above by the different thresholds determined from the different
starting points. This tends to show up as a bias, whereby if the observer
starts from above the threshold (obvious compression), the threshold may
be higher than if the observer starts from below (no compression). This bias
might result from a change in observer criterion from one trial to another,
or from adaptation to the starting stimulus. The criteria must be carefully
explained and understood at the beginning of the experiment, yet it still
might vary across different sessions or even across different trials. This
results in less precise threshold data than obtained with other methods. Due
to this lack of precision and ease of implementation of this technique, the
method of adjustment is often used as a pilot experiment to generate starting
values for some of the more complicated methods described below.

2.3.5.2 Method of limits
The method of limits provides more precise threshold data than the method
of adjustment, with a slight increase in complexity. In this technique, the
experimenter rather than the observer controls the presentation of the stim-
uli. The experimenter presents the stimuli at predefined discrete magni-
tudes. These magnitudes are presented in either a descending or ascending
series. For a descending series, the stimulus is first presented well above
threshold. The observer then must report, either verbally or through a
response-recording device, whether the stimulus is detected. If the observer
sees the stimulus (responds “yes”), then a new stimulus with a decreased
intensity is presented. This is repeated until the observer can no longer see
the stimulus.

For an ascending series, the first stimulus is presented such that it is
definitely not detectable. The observer is asked to respond “yes” if the
stimulus is seen, or “no” if not. If the observer responds “no,” the stimulus
intensity is increased. This is repeated until the observer can see the stimulus. 

The threshold is determined to be the average of when the observer first
detects the stimulus in the ascending series or does not detect the stimulus
in a descending series. It is not uncommon for the two series to produce
different thresholds. This might be caused by adaptation to the presenting
stimulus or from expectation errors. Running both ascending and descend-
ing series for a given observer is a way to compensate for these errors. To
further reduce the errors, it is possible to simultaneously run interleaved
ascending and descending series.

Another issue with the method of limits is determining the discrete levels
of stimulus intensity to present in the series. Because this is a threshold
experiment, the only information comes from the “transitions,” or where the
stimulus is first detected or undetected. Essentially, all of the other stimuli
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provide no information. Often, the method of adjustment is used to get a
rough idea as to where the transition point occurs so as to minimize the
“wasted” trials. There is also the same possibility of a change in observer
criterion as there is in the method of adjustment. Because the observer
ultimately must respond yes or no as to whether the stimulus is detected,
the criterion can be changed for any given trial.

2.3.5.3 Method of constant stimuli
The method of constant stimuli attempts to overcome the observer variability
by locking the observer criterion. This results in a more precise threshold
number. In this method, the experimenter chooses a fixed number of stimuli
at various intensity levels around threshold. The number of stimuli can vary,
but it is typically between 5 and 7. The stimuli are then presented to the
observer repeatedly, in a random order. For each trial, the observer must
respond as to whether the stimulus is perceived. Over the course of the
experiment, the frequency with which each stimulus level is detected is
recorded. From these data, a “frequency of detection” function can be
derived. This is often referred to as a psychometric function, which relates the
probability of detection with stimulus intensity level. An example of the
psychometric function is shown in Figure 2.1. From this function, it is pos-
sible to determine the threshold of detection as well as the uncertainty.
Typically, the threshold is chosen to be the stimulus level that has a 50%
probability of detection. The psychometric function can be determined indi-
vidually for each observer, through multiple repetitions of the trials, as well
as for a population of observers.

Generally, two types of constant stimuli experiments are run: yes–no
and forced-choice. In yes–no experiments, observers are simply asked to
respond yes if they detect a given stimulus or no if they do not. The psycho-
metric function is then fit to the percentage of yes responses for each discrete
stimulus level. An intensity that corresponds to 50% yes responses is taken
to be the threshold point. This method can be extended to a pass–fail tech-
nique for determining visual tolerances. In this situation, a reference stimulus
is presented, and observers either “pass” a stimulus that is less than the
reference or “fail” one that is greater. This technique has been used to develop
color difference equations, which will be described later in the chapter. For
that case, the reference stimulus was a color pair of known difference, and
the observers were asked to pass color pairs that had less of a difference and
fail pairs that had a greater difference. These techniques can still suffer from
changing observer criteria between trials.

A forced-choice experiment eliminates the observer criterion from the
overall results. This is accomplished by presenting the observer with either
spatial or temporal alternatives. For example, when attempting to determine
the threshold of image compression, a pair of images is presented on a screen.
The observer is then “forced” to choose which side of the screen displayed
the compressed image. This is known as two-alternative forced-choice. Alter-
natively, the images could be presented in one of two time intervals. The
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observer is then forced to choose in which interval the compressed image
was presented. A psychometric function is then plotted using the percentage
of correct responses against the stimulus intensity level. In a two-alternative
forced-choice experiment, the psychometric function ranges between 50 and
100%, rather than 0 and 100% as in a yes–no experiment. That is due to the
“forced” response nature of the experiment, whereby each observer must
always choose an interval or location. If the stimulus intensity is too low to
be detected, then the observer must make a guess. When two alternatives
are available, the guessing rate is 50%. A threshold level is typically taken
to be 75% correct. By forcing the observer to choose, the observer’s criteria
cannot influence the results.

The increased precision available from the method of constant stimuli
comes at a price of complicated experimental design. Ideally, the discrete
intensity levels need to be chosen so that the threshold falls in the middle
of the range of intensities, and so that the lowest and highest levels fall close
to 0% detected and 100% detected, respectively. To maximize this range, a
pilot study is often necessary. This can be done using a small number of
pilot subjects with a larger number of samples or by using another method
such as the method of adjustment. To obtain an accurate psychometric func-
tion, it is also necessary to have many trials for each given intensity level.
This can be accomplished by having a smaller number of observers do a
large number of trials, or by having a larger number of observers perform
fewer trials. Given the amount of time necessary to perform these experi-
ments, it is often more desirable to have a larger number of observers.
Another consideration is the seemingly arbitrary nature of selecting the
threshold level. It has been suggested here to choose the 50% value of the
psychometric function for a yes–no experiment and a 75% level for a forced-
choice experiment. This threshold level can be calculated more precisely, but
at the expense of losing the actual psychometric function itself. These tech-
niques are known as up–down staircase procedures.

Staircase procedures combine a modified method of limits with a forced-
choice experiment. They are designed to adaptively measure the threshold
point on the psychometric function. An experiment begins with a stimulus
of a given magnitude presented to an observer. This can be either a forced-
choice presentation or a method of limits presentation. The observer is asked
to respond to the presentation. A “yes” response, or a correct decision, will
cause the magnitude of the next stimulus to be decreased. A “no” response,
or an incorrect decision, will cause the magnitude of the next stimulus to be
increased. In this manner, the staircase narrows in on the transition threshold.
There are many variations and rules that can be used with these techniques.
These rules determine the overall precision of the threshold. Further details
can be found in psychophysical texts.11–13

2.3.5.4 Matching techniques
Matching techniques are generally similar to the method of adjustment, with
only the goal being different. Whereas the method of adjustment is used to
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determine the threshold level of a just noticeable difference, a matching
experiment is used to determine when two stimuli are not perceptibly dif-
ferent. This technique has been used extensively in the color imaging com-
munity and is the technique used to generate the CIE XYZ system of colo-
rimetry. In that situation, observers controlled the mixture of three light
sources to match a separate monochromatic light source. An example of this
is shown in Figure 2.2.

Matching techniques have also been used in the study of chromatic
adaptation and color appearance. These techniques include asymmetric
matching, where the stimuli are presented separately in disparate viewing
conditions. An example of this would be viewing a reference color under
daylight illumination and then attempting to match the color under incan-
descent illumination.

2.3.6 Psychophysical methods: scaling techniques

Threshold data can be useful when attempting to determine information
such as color tolerances, or compression limits. Oftentimes the goal is to
generate a scale of perception, rather than a single threshold. Scaling exper-
iments are used to derive relationships between sensations and physical

Figure 2.2 Example of a typical color matching experiment. The observer adjusts
the three light sources on the left to match the single source on the right.
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measurements of stimuli. Examples of scaling techniques were described
briefly above in the discussion of Fechner’s and Stevens’ works. Several
scaling techniques are used to generate these relationships. Depending on
the dimensionality of the scale, different techniques are available. One-
dimensional scaling is used when both the perceptual attribute and the
physical measurement are one dimensional. Examples of this include scaling
of lightness with luminance, where lightness is the perceptual attribute and
luminance is the physical measurement. It is possible that an attribute being
scaled actually consists of several distinct attributes, such as in the case of
image preference. Image preference might result from several distinct vari-
ables, such as color fidelity, sharpness, and contrast. As long as the same
criteria are used for each trial, one-dimensional scaling techniques can be
used. Often, it is difficult to control the criteria, so more robust multidimen-
sional scaling techniques should be used.

One-dimensional scaling techniques come in a variety of flavors. Some
of the most common techniques for color imaging application are as follows:

• Rank order experiments
• Rating and category scales
• Partition scaling 
• Magnitude and ratio estimation 
• Paired comparison

Rank order experiments are generally simple to implement and perform. A
series of stimuli are presented to an observer, who is asked to arrange the
series in order of increasing or decreasing magnitudes. The magnitudes lie
on the one-dimensional attribute that is being scaled. With enough observa-
tions, the data can be used to easily derive an ordinal scale of that particular
attribute. Remember, the only mathematical operations that are valid for an
ordinal scale are greater-than and less-than. Thus, the spacing between indi-
vidual samples might not be equal. With enough samples and trials, it is
possible to calculate an interval scale based on the law of comparative
judgment, which will be described in more detail below. This involves many
assumptions and simplifications and does not always produce accurate
results. Interval scales should be generated at your own risk.

Rating and category scaling experiments allow for relatively simple deter-
mination of both ordinal and interval scales. Perhaps the simplest technique
is the graphical rating scale. Observers are presented with a stimulus as well
as a graphical scale with well-defined endpoints. The endpoints can be
numerical, adjectival, or actual physical stimuli. For example, when attempt-
ing to scale chroma, the endpoints might say “no chroma” and “highest
chroma imaginable,” or simply 0 and 100. Observers are then asked to
graphically mark where on the scale the current stimulus lies. The interval
scale is then measured from the graphical scale. An example of scaling
colorfulness using actual physical stimuli along with a graphical scale is
shown in Figure 2.3. 
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Rating can also be performed without the benefit of the graphical scale,
as an observer might be told the numerical endpoints verbally. When pre-
sented with a stimulus, the observer would then rate the perception by assign-
ing a number between the endpoints. Another similar technique is called
category scaling, or adjectival rating. This technique is useful when dealing with
a large number of samples. An observer views a large sample population and
is asked to separate the samples into predetermined categories, or adjectives.
An oft-used example of categorical scaling is for sorting various hues into
color names. An observer might be asked to place the samples into distinct
color names categories such as red, green, yellow, blue, pink, orange, brown,
black, gray, and white. This would result in a nominal scale of hue. More
powerful scales are possible, such as an ordinal scale, if care is taken to select
categories that can be considered equal intervals along the attribute being
scaled. While this might be difficult when scaling hue, consider scaling col-
orfulness. The categories, or adjectives, given there might be “no colorful-
ness,” “mildly colorful,” “medium colorful,” “very colorful,” and “most col-
orful imaginable.” If these categories are proximate enough that the categories
into which the stimuli are placed are not the same for every person or obser-
vation, it is possible to generate an interval scale. This involves further sta-
tistical assumptions and the use of the law of categorical judgments.13,14

Partition scaling and fraction scaling are relatively straightforward exper-
iments for the calculation of interval or ratio scales through a method of
bisection. For example, in a partition scale experiment for image compression
algorithms, an observer would be shown two images of different compres-
sion — images A and B. The observer would be asked to select a third image
such that the difference between the third image and image A is the same
as the difference between the third image and image B. Through successive
bisection, as described above, a complete interval scale could be calculated.

Figure 2.3 Scaling experiment using physical stimuli as endpoints.
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When there is a distinct meaningful zero along the magnitude that is being
scaled, it is possible to generate a ratio scale using these techniques. For
instance, when scaling brightness, an observer might be presented with two
spots of light and told to choose, or adjust, a third spot to be halfway between
the first two spots. Alternatively, the subject might be flashed a spot of light
and told to set a spot that is half as bright. Because there is a meaningful
zero for brightness, no perceived light at all, this technique, through enough
bisection, can create a ratio scale of brightness.

The above-mentioned fractional scaling can also be considered a form of
ratio estimation. The easiest ratio estimation experiments are magnitude esti-
mation or production. In a magnitude estimation experiment, an observer
would be shown a stimulus and asked to assign a numerical value to that
stimulus based on the magnitude of the sensation being scaled. In magnitude
production, the observers are given a magnitude number, and they must
adjust the stimulus so that it represents that perceptual magnitude. More
complicated ratio experiments include the fractional brightness experiment
described above, wherein an observer is asked to generate a stimulus that is
half as bright as the previous stimulus. Another ratio estimation technique,
given two or more stimuli, would be to have an observer state the perceived
ratios between all the stimuli. For color imaging applications, where there is
often no known meaningful zero, ratio estimation often proves too difficult.

Although it is often difficult to generate ratio scales in color imaging
applications, interval scales can be generated with great success. A powerful
technique for generating interval scales is paired comparison. Observers are
presented with two stimuli and are asked to make ordinal judgments based
on the pair. For example, given a pair of compressed images, an observer
might be asked which image appears more compressed. This is valid only
if the observers understand image compression and how compression arti-
facts might be manifested. It might be more desirable to have the observers
choose which image is of higher quality, thus scaling quality as a function
of compression. Alternatively, an observer might be presented with an orig-
inal reference image and then asked which of the two compressed images
looks most like the standard. This will create an interval scale of similarity,
with regard to the image compression. Paired comparison experiments work
well for a smaller number of samples and a well-defined ordinal criterion.
To create an interval scale from these ordinal data, every possible pair of
stimuli must be presented. That is, every stimulus must be compared with
every other stimulus. For n stimuli, this leads to n(n – 1)/2 experimental
trials. Thus, the total number of trials increases very rapidly as the number
of stimuli increases. Thurstone’s laws of comparative judgment can then be
applied to generate interval scales.14 The law of comparative judgment has
several underlying assumptions, among them that the perception of any
stimulus results in a discriminal value on some psychological continuum
and that, due to internal fluctuations, these discriminal processes result in a
normal distribution of values. Assuming this normal distribution, then the
average and standard deviation of the values relate directly with the average
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and standard deviation of the perception itself. Thus, it is possible to convert
the ordinal data derived from the paired comparison, using the power of
the normal distribution, to a meaningful interval scale. The normal distribu-
tion also allows for the computation of statistically meaningful scales of
similarity and differences between any given stimuli. There are several other
simplifications and assumptions that can be made regarding the analysis
using Thurstone’s law. Bartleson and Grum11 and Torgeson13 give excellent
details of all of these assumptions as well as worked-through examples.

2.4 Viewing condition terminology
Along with the standard color terminology given above, it is also important
to have a sound understanding of the vocabulary used to describe the scene
in which a stimulus is viewed. This scene is known as the viewing field, or
more commonly as the viewing conditions. As you will see below, the viewing
conditions can have a profound affect on the color perceptions. This section
will define the common elements of a simplified viewing field, as shown in
Figure 2.4. These elements are divided into four distinct components: stim-
ulus, proximal field, background, and surround.

2.4.1 Stimulus

The stimulus is the color element of interest. In standard colorimetry, the
stimulus is typically a small uniform color patch that subtends 2° of visual

Figure 2.4 Specifications of the typical viewing field.
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angle. The CIE has a separate system of colorimetry designed to handle
larger color patches — the CIE 1964 supplemental standard observer. Most
color appearance research has been performed using similar-sized uniform
color patches. Ideally, the stimulus would be described by the full spectral
representation. Often, this is difficult to do, if not impossible. When the
spectral power distribution is unavailable, the stimulus is usually described
using a standard device-independent space, such as CIE XYZ tristimulus
values, or LMS cone responsivities.

For color imaging, the definition of the stimulus is somewhat blurred.
Is the stimulus a single pixel, a region of pixels, or the entire image? While
often more convenient to assume that the entire image is the stimulus, that
might be an oversimplification. Currently, there is no universally correct
definition of the stimulus for complex scenes. Therefore, when using images
for research, care should be taken to fully describe the manner in which they
are being used.

2.4.2 Proximal field

The proximal field is considered to be the immediate environment extending
from the stimulus for about 2° in all directions. The proximal field can be
useful for measuring local contrast phenomena such as spreading and crisp-
ening. These phenomena are described in detail later in this chapter. Ideally,
the proximal field would also be described both spatially and with a full
spectral power distribution. The question of defining the spatial proximal
field becomes very difficult when dealing with digital color images. Should
the proximal field for any given pixel be considered all of the neighboring
pixels? In most real world applications, the proximal field is just assumed
to be the same as the background.

2.4.3 Background

The background is defined to be the environment extending from the prox-
imal field for approximately 10° in all directions. If there is no proximal field
defined, then the background extends from the stimulus itself. Specification
of the background is very important in color appearance, as it is necessary
to model color appearance phenomena such as simultaneous contrast. Spec-
ifying the background with color patches is relatively straightforward. Spec-
ifying the background with color images suffers from the same problems as
specifying the stimulus and the proximal field. For any given image pixel,
the background actually consists of many of the neighboring pixels.
Researchers generally use two different assumptions when determining the
background for color imaging applications. The first is to assume that the
entire image is the stimulus, so that the background is the area extending
10° from the image edge. Another assumption is that the background is
constant and of some medium chromaticity and luminance, e.g., a neutral
gray. Alternatively, the mean color of the image itself can be used as the
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background. Because most imaging applications strive to reproduce images
of constant spatial structure and size, many of these concerns disappear.
Care must be taken when calculating color appearances across changes in
image sizes, though. Braun and Fairchild describe the impact on some of
these background decisions.18

2.4.4 Surround

The surround is considered to be anything outside of the background. For
most practical applications, the surround is considered to be the entire room
inhabited by the observer. Color appearance models tend to simplify the
surround into a few distinct categories: dark, dim, and average. For instance,
movie theaters are usually a dark surround, while televisions are viewed in
a dim surround. More detailed discussion on the effect of the surround is
given below.

2.4.5 Modes of viewing

Any changes in the above-mentioned viewing fields might result in a change
in the color appearance of a stimulus. The following sections on color appear-
ance phenomena explain some of these changes in detail. Other factors that
cannot be readily explained by the simplified viewing field also have an
effect on the perceived appearance of a stimulus. The perception of color is
not adequately explained by the physics of light alone, as the human
observer is the critical factor ultimately responsible for any sensation. The
human visual system relies both upon sensory mechanisms, governed by
biological and physical processes, as well as cognitive interpretations. These
cognitive mechanisms are not fully understood, though we are able to rec-
ognize some behaviors. Perhaps one of the most important cognitive affects
on color appearance is termed the mode of appearance. The mode of color
appearance is a difficult concept to grasp at first and might be best described
with an example.

Picture taking a walk outside on a clear winter night with only the full
moon providing light. The snow on the ground probably will look very
white, despite the fact that it is being illuminated almost entirely by the blue
night sky. If you were to come across a house in the distance, the windows
of the house might look bright orange. This orange light would be from the
incandescent light bulbs found in most houses. If you were inside the same
house, the light would not look nearly as orange and would most likely
appear white. At the same time, the snow outside the window might look
particularly blue. These are examples of changing modes of viewing, from
object mode to aperture mode.

There are five modes of viewing that affect color appearance: illuminant,
illumination, surface, volume, and film. These modes of viewing are
described briefly below, though a more complete description can be found
in The Science of Color, published by the Optical Society of America.19
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The Illuminant mode of appearance is color appearance based on the
perception of a self-luminous source of light. Because illuminant-color per-
ceptions generally involve actual light sources, they are often the brightest
perceptible color in the field of view. Examples of this are looking at a traffic
light or an actual desktop light bulb. The immediate assumption that the
brightest objects are actual light sources can lead to some interesting phe-
nomena when non-illuminant objects in a scene appear much brighter than
the surrounding scene. These objects might actually be perceived in an
illuminant mode and are often described as glowing. Examples of an object
appearing to glow might be when fluorescent objects are involved. Fluores-
cence is found in an object that absorbs energy (light) at one wavelength and
emits the light at much longer wavelengths. Fluorescent objects are often
referred to as “day-glow” objects, because they absorb light from nonvisible
portions of the spectrum and emit light in the visible portions, thus appear-
ing much brighter than the surrounding scene.

The illumination mode of appearance is similar to the illuminant mode,
except that perceived color appearance is thought to be as a result of the
illumination rather than properties of the objects themselves. Consider the
traffic light example given above. Clearly, when looking at a traffic signal,
there is no doubt that the red, yellow, or green color is being emitted from
the light itself. Thus, the light is viewed in illuminant mode. Any pedestrians
waiting for the light to turn might be bathed in red light and look quite red
themselves. Generally, people do not assume that the pedestrians are very
sick because of their red color. Instead, they recognize that the pedestrians
are red because they are illuminated by the red traffic signal. The perceived
color is a result of the prevailing illumination reflecting off the pedestrians’
skin. Many clues are available to a typical observer of a scene when deter-
mining whether the color is a result of illumination. These clues include the
color of the shadows, the color of the entire scene, as well as the color of the
observer.

The perceived color of an observer or a pedestrian as described above
is an example of the surface mode of appearance. In this mode, the color of
a surface is perceived as belonging to the object itself. In the case of the
pedestrians, the observer “knows” that the color of their skin and clothes
belongs to them, and an observer is able to partly discount the color of the
red traffic light. This is an example of “discounting the illuminant,” which
is described in further detail below. Any recognizable object provides an
example of the surface mode of appearance. It requires both a physical
surface and an illuminating light source.

The volume mode of appearance is similar to the surface mode, except
the color is perceived to be “belonging” to a bulk or volume of a transparent
substance. An example of volume mode appearance can be found in the
perceived color of liquids, such as beer. The color of beer is not thought to
be just on the surface but rather throughout the entire glass. As the beer is
shaken up, forming a thick head, the air bubbles cause light to scatter,
increasing the perceived lightness while decreasing the transparency. This
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is an example of a volume color changing into a surface color. Volume color
requires transparency as well as a three-dimensional shape and structure
(the shape and structure of a glass of beer, for example).

The final mode of appearances, the aperture or film mode, encompasses
all remaining modes of appearance. In the film mode, color is perceived as
an aperture that has no connection with any object. In the moonlit walk
example above, the orange window was perceived in an aperture mode of
viewing. The observer did not believe that the window was glowing or that
it was an actual light source. Rather, the window was perceived as an aper-
ture. Any object can switch from surface mode to aperture mode if there is
a switch in focus from the surface itself. This can be accomplished purposely
by using an aperture screen or a lens system.

2.5 Color appearance phenomena
This section deals with examples of stimuli that do not follow the predictions
of basic colorimetry. The CIE system of colorimetry was developed using a
color-matching experiment that was similar to the magnitude adjustment
experiments described above. Essentially, colorimetry states that, if two stim-
uli have identical tristimulus values, then those two stimuli will match each
other for a given viewing condition. Colorimetry does not attempt to predict
whether the colors will match if any aspect of the viewing condition changes.
This section will illustrate several examples of where the color matches will
indeed break down as various elements of the viewing conditions described
in the previous section are changed. Among the changes in viewing condi-
tion are changes in illumination level, illumination color, surround, back-
ground, and viewing mode. The examples shown here illustrate the limita-
tions of basic colorimetry and the need for advanced colorimetry, often called
color appearance modeling. The foundations of most color appearance models
stem from the study of these phenomena, so it is important to briefly review
them here. The recognition and understanding of these color appearance
phenomena are also important for a color imaging system designer, as many
of these examples show up in everyday imaging applications. This section
will describe several distinct forms of color appearance phenomena, includ-
ing spatially structured, luminance, illuminant color, and surround effects.

2.5.1 Spatially structured phenomena

Perhaps the most easily recognized color appearance phenomenon is that of
simultaneous contrast. Figure 2.5 illustrates an example of simultaneous con-
trast. The four small, gray patches are the same throughout the image. The
two patches on the solid gray background look identical, while the patches
on the white and black background look distinctly different. The patch on
the white background looks darker, while the patch on the black background
looks lighter. Simultaneous contrast causes the color of a stimulus to shift
in color appearance when the color of the background changes. The change
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in color of the stimulus tends to follow the opponent color theory of vision.
That is why, in Figure 2.5, the patch on the white square looks darker, and
the patch on the black square looks lighter. Simultaneous contrast can also
be found with chromatic samples as well as achromatic. In those cases,
following the opponent theory, a red background would tend to induce a
green color shift, green would induce red, blue induces yellow, and yellow
induces blue. Texts by Albers,20 Fairchild,1 Hurvich,9 and Kaiser and
Boynton7 go into further detail regarding this phenomenon.

Figure 2.6 illustrates the complex spatial nature of simultaneous contrast.
The centered ring in each of the circles is identical, as is the local contrast.
The simultaneous contrast is shown to be much more apparent in the second
circle pair. This suggests that spatial structure has a strong influence on
simultaneous contrast. Robertson21 and Shevell22 present interesting exam-
ples as well as some models of this spatial relationship. As the spatial fre-
quency of the stimulus increases, the contrast effect actually ceases and, in
some cases, reverses.

At a sufficiently high spatial frequency, simultaneous contrast is replaced
with spreading. With spreading, the color of a stimulus actually mixes with
the color of the background. Recall that, with simultaneous contrast, the
color of a stimulus took on the opposite color of the background. Often, it
is hypothesized that spreading is caused by blurring of the light coming
from the background with the light coming from the stimulus. While this
might be true for very high-frequency stimuli, such as halftone dots, it does
not fully explain the spreading phenomenon. Spreading can occur when the
stimuli are very distinct from the background. An example of this can be
seen in Figure 2.7. 

Research is ongoing to understand the transition point between simul-
taneous contrast, spreading, and the overall effects of spatial frequency on

Figure 2.5 Example of simultaneous contrast. The four small, gray patches are
identical.
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color appearance.22 Related, though more complex, phenomena include neon
spreading and the watercolor effect. Neon spreading combines spreading
with the perceptual attribute of transparency and is illustrated in Figure 2.8.
Bressan24 gives an excellent review of neon spreading. The watercolor effect,
as seen in Figure 2.9, can also create strong spreading illusions.25

Figure 2.6 (See color insert following page 430) A spatially complex example of
simultaneous contrast. The small inner rings are identical in size and color. The effect
of the simultaneous contrast should be greater in the bottom pair (B).

Figure 2.7 (See color insert) An example of spreading. There are only red and black
lines, though a faint pink circle should be evident. (Adapted from Kuehni, R. G.,
Color: An Introduction to Practice and Principles, John Wiley & Sons, New York, 1997.)
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Simultaneous contrast can also give rise to an increase in perceived color
difference between color stimuli. This effect is known as crispening and can
be seen in Figure 2.10. Crispening causes an increase in perceived color
difference when the background of the stimuli is close to the color of the
stimuli. In Figure 2.11, the differences between the small gray patches are
the same for all three backgrounds, but the difference looks greatest on the
gray background. Similar effects can be seen for color patches as well. More
details can be found in papers from Semmelroth26 and, more recently, Mor-
oney.27

2.5.2 Luminance phenomena

The above color appearance phenomena deal with color changes as a func-
tion of spatial structure and background. Profound color changes can also
occur when the illumination stimuli are viewed under changes. This can
include luminance level changes (dark to bright) or when the color of the

Figure 2.8 (See color insert) An example of neon spreading. There appears to be a
transparent pink circle in the center of the figure.

Figure 2.9 (See color insert) An example of the watercolor effect, where there ap-
pears to be surface colors caused by thin colored lines. Reproduced from Pinna et al.25
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illumination changes. Luminance changes are very common in everyday life.
The classic example is to think about a bright sunny day and a dark overcast
day. Objects tend to appear very bright and colorful on sunny day and
somewhat subdued on an overcast day. These occurrences can be well
described by both the Hunt effect and the Stevens effect.

Figure 2.10 An example of lightness crispening. The color difference for the pairs
of small squares are identical for each background, though they appear greatest on
the gray background.

Figure 2.11 (See color insert) An example of chroma crispening. The color difference
of the small pairs are identical but should look greatest on the background of most
similar chroma (far right).
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The Hunt effect states that, as the luminance of a given color increases,
its perceived colorfulness also increases. This effect was first identified in a
study by Hunt on the effects of light and dark adaptation on the perception
of color.28 Using a variation of a matching experiment called haploscopic match-
ing, observers were given one viewing condition in their left eye and another
in their right eye. Observers then used a method of adjustment technique to
create matches on stimuli viewed in each eye. It was determined that, when
one eye had a very low luminance level, it took much more colorimetric
purity to match a stimulus viewed at a very high luminance level. This
indicates that colorfulness is not independent of luminance level. Going back
to the sunny day analogy, that partially explains why objects appear much
more vivid, or colorful, when viewed in bright sunny environment. Scenes
also appear much more contrasty when viewed in a bright environment. 

This increase in contrast has been examined closely in a classic study by
Stevens and Stevens.29 This study showed that, as the luminance level
increases, so too does the brightness contrast. This effect has been coined
the Stevens effect. In this study, observers performed magnitude estimation
experiments on brightness stimuli across many different luminance adapting
conditions. This experiment has been described above in the discussion on
Fechner’s and Stevens’ laws. The results showed that brightness tended to
follow a power law relationship with luminance, thus forming the basis for
Stevens’ power law. However, this study also showed that the exponent of
the power function changed as a function of adapting luminance level.
Essentially, as the adapting luminance level increased, bright colors tended
to look brighter, and darker colors tended to look darker. So, as the adapting
luminance level increases, the rate of change between the brightness of the
dark and light colors increases. This rate of change is often considered to be
the contrast of the scene.

While the Stevens effect illustrates the change in brightness contrast with
luminance level, what happens when there is a color change as well? Bright-
ness is often erroneously assumed to be a function of luminance level alone.
This is not the case, as is well illustrated by the Helmholtz–Kohlrausch effect.
The Helmholtz–Kohlrausch effect shows that brightness also changes as a
function of saturation. That is to say, as a stimulus becomes more saturated
at constant luminance, its perceived brightness also increases. Another way
to describe this effect is to say that a chromatic stimulus will appear brighter
than an achromatic stimulus at the same luminance. If brightness were truly
independent of chromaticity, then this effect would not exist. It is important
to note that the Helmholtz–Kohlrausch effect is a function of hue angle as
well. It is less noticeable for yellows than for purples, for instance. Essentially,
this means that perceived brightness is actually a function of saturation and
hue, and not just luminance. Fairchild and Pirrotta published a general
review of the Helmholtz–Kohlrausch effect as well as some models for pre-
dicting the effect.30

Another interesting relationship between luminance level and chromatic
colors is the Bezold–Brücke hue shift. This phenomenon relates the perceived
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hue of monochromatic light sources with luminance level. It is often assumed
that the hue of monochromatic light can be described completely by its
wavelength. This is not the case, as the hue of a monochromatic light will
shift as the luminance of the light changes. The amount of hue shift also
changes, both in direction and magnitude as a function of hue. Experimental
results regarding the Bezold–Brücke hue shift can be found in work pub-
lished by Purdy.31 One important consideration for these hue shifts is that
all the experimental data were obtained using unrelated colors. Recall that
unrelated colors are stimuli viewed in complete isolation. Unrelated colors
occur very rarely in everyday life. Hunt published a report indicating that
the Bezold–Brücke hue shift disappears for related colors.32 This must be
taken into consideration when creating a model to predict color appearance.

2.5.3 Hue phenomena

We have seen above how luminance changes can cause large shifts in the
appearance of colored stimuli. This section examines two phenomena that
result from changing the hue of the viewing conditions. These hue changes
are less common than luminance changes, and they often are not very per-
ceptible. They are included here because many models of color appearance
models are capable of compensating for these effects.

The Bezold–Brücke hue shift illustrated that the wavelength of mono-
chromatic light sources is not a good indicator of perceived hue. As lumi-
nance levels change, the perceived hue can also change. Another similar
effect is the Abney effect. The Abney effect simply states that adding “white”
light to a monochromatic light does not preserve constant hue. Another way
of expressing this is to say that straight lines in a chromaticity diagram,
radiating from the chromaticity of the white point to the spectral locus, are
not lines of constant hue. Unlike the Bezold–Brücke hue shift, this effect is
valid for related colors as well as unrelated colors.

Another interesting, though difficult to reproduce, phenomenon involv-
ing monochromatic illumination is the Helson–Judd effect.33 This effect
describes that nonselective (gray) stimuli viewed under highly chromatic
illumination take on the hue of the light source if they are lighter than the
background, and they take on the complementary hue if they are darker
than the background. So, a dark gray sample viewed on a medium gray
background under red illumination will look somewhat green, while a light
gray sample would appear pinkish. This effect almost never occurs in com-
mon practice and is very difficult to reproduce in a laboratory setting. Nev-
ertheless, some color appearance models take this into account. More details
on this effect can be found in Fairchild1 and Mori et al.34

2.5.4 Surround phenomena

The Stevens effect demonstrated that contrast for simple patches increased
as a function of adapting luminance. Around the same time, Bartleson and
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Breneman were studying the effects of luminance level and surround on
complex stimuli, namely images.35 They were able to generate results similar
to those of Stevens and Stevens in regard to changes in luminance level.
More interestingly, they noticed interesting results regarding the change in
the relative luminance of the image surround. Recall that the surround is
considered to be the field outside of the background or, in practical situations,
the entire viewing room. Bartleson and Breneman determined that perceived
contrast in images increased as the luminance of the surround increased.
That is to say, when an image is viewed in a dark surround, the black colors
look lighter while the light colors remain relatively constant. As the surround
luminance increases, the blacks begin to look darker, causing overall image
contrast to increase.

These results modeled phenomena that were already taken into account
in the photographic world. Traditionally, for optimal tone reproduction,
photographic transparencies designed for viewing in a darkened room were
reproduced with a much higher contrast than those designed for viewing as
a print in a bright room. Hunt36 and Fairchild37 provide more in-depth
analysis of the history and prediction of optimal tone reproduction for com-
plex images. In their original publication, Bartleson and Breneman published
equations that predicted their results well. These equations were simplified
later to create equations for calculating optimal tone reproduction.38 Such
equations have been adapted and are included in many models of color
appearance.1

Surround compensation can play a key part in the design and imple-
mentation of a color imaging system. For instance, in designing a scanner
to convert movie film into video for display on a television, one must under-
stand the effects that surround will have on the final output image. Television
is typically viewed in a lighter surround than a darkened movie theater. If
the scanner does not take this change in surround into account, it is possible
for the video to appear to have a much higher perceived contrast than the
original film.

2.5.5 Color constancy and discounting the illuminant

Illumination can vary dramatically throughout many different environ-
ments. This includes both the physical amount of illumination and the color
of the illumination. Several of the examples above illustrate how these
changes in illumination can cause the appearance of colors to change dras-
tically. At the same time, most people will readily acknowledge that the
colors of objects do not change when moving from one viewing condition
to another. A red apple will look red when viewed under bright outdoor
illumination as well as when viewed inside at relatively dark incandescent
illumination. This is the effect known as color constancy. One of the mecha-
nisms for color constancy is chromatic adaptation, which is described in
much further detail below. Suffice it for now to know that chromatic adap-
tation is a result of sensory adaptation as well as cognitive behavior. The
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cognitive ability of an observer to interpret the color of an object based on
the illuminated viewing environment is known as discounting the illuminant.
Essentially, this is the mechanism that allows for observers to “know” that
the red apple is still red, despite potentially large changes in the color of the
illuminant. Color constancy is an area of active research. The publications
by Jameson and Hurvich39 as well as Fairchild1 provide good starting points
for the researcher interested in the study of color constancy.

2.6 Chromatic adaptation
The human visual system is capable of functioning across vast changes in
viewing conditions while providing relatively stable perceptions. The mech-
anism that allows the visual system to do this is known as adaptation. Adap-
tation allows the general sensitivity to any given stimulus to change based
on the conditions of the stimulus itself. Three types of adaptation are impor-
tant for modeling vision and color imaging: light, dark, and chromatic. Light
and dark adaptation describe the human visual system’s capability of func-
tioning across large changes in luminance levels. These changes need to be
considered when building color imaging systems that are designed to work
across wide luminance ranges, though those types of situations are relatively
rare. Chromatic adaptation is the ability of the human visual system to adjust
to changes in the color of illumination.

The previous section described many color appearance phenomena, or
examples where basic tristimulus colorimetry fails. Several of these examples
represent changes in luminance level, such as the Hunt and Stevens effects.
Many of the other phenomena described above can be considered second-
order effects, as the situations in which they occur happen relatively infre-
quently. Chromatic adaptation, and the similar concept of color constancy,
are perhaps the most important of the color appearance phenomena. This
section discusses the theory of chromatic adaptation and some of the mech-
anisms that enable adaptation. This section also describes some computa-
tional models of chromatic adaptation and how those models can be used
to calculate color appearance matches across different viewing conditions.
These matches are important when designing color imaging systems that
are capable of reproducing colors for view in various conditions.

2.6.1 Light and dark adaptation

Light adaptation is the decrease in visual sensitivity as a function of the
overall amount of illumination. Essentially, the more light illuminating a
scene, the less sensitive the human visual system becomes to light. This is a
very common occurrence. Imagine going to an afternoon cinema matinee.
When leaving the darkened theatre into the sunny afternoon light, your
visual system is often shocked — sometimes even to the point of physical
pain. It is very difficult to see anything for a few moments, and then your
visual system adjusts so that you can see objects normally. Dark adaptation
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is the opposite; the human visual system becomes more sensitive to light as
the overall amount of illumination decreases. This can be thought of as
walking from the sunny afternoon light into a darkened theatre and strug-
gling to find your seat. After several minutes, objects become recognizable
as your visual system adapts.

Light and dark adaptation, though very similar, function at different
speeds. The speed of adaptation is often referred to as the time-course for full
adaptation. Light adaptation works at a much faster rate than dark adaptation.
Consider the movie theatre discussion above. When leaving the theatre to
go outside, it is somewhat painful for several seconds, and then vision
returns to normal. Dark adaptation can take several minutes before objects
become noticeable. This indicates the mechanisms of dark adaptation are
much more gradual than those of light adaptation.

So what are the physiological mechanisms that enable light and dark
adaptation? One mechanism has been reproduced almost identically in pho-
tographic camera systems. This is the dilation and constriction of the pupil
in the eye. For many years, cameras have had an aperture control that enables
the photographer to adjust the amount of light that enters the lens. The
human eye works in a similar manner. In ordinary viewing situations, the
pupil can range in diameter from about 3 to 7 mm. From these different
diameters, we can conclude that the pupil can account for up to a 5× change
in luminance level. Considering that the range in luminance levels from
sunlight to starlight can differ upwards of 10 orders of magnitude, clearly,
the pupil dilation and contraction cannot be the only mechanism of adapta-
tion. Other mechanisms include the transition from cones to rods, and vice-
versa. In the human retina, there are two distinct types of photoreceptors:
rods and cones. Rods are more sensitive to light and are responsible for
vision at low luminance levels. Cones are less sensitive to light and are
responsible for color vision at higher luminance levels. The transition from
cones to rods can account for additional levels of adaptation. Additionally,
this transition can explain the difference in the time-course of adaptation
between light- and dark-adaptation mechanisms. The cones respond rela-
tively quickly to increased levels of illumination, while the rods respond
more slowly to decreased levels. Other mechanisms can account for light
and dark adaptation, including receptor gain control, where the photorecep-
tors themselves become less sensitive to light at increased luminance levels.
Receptor gain control is perhaps the most important sensory mechanism for
chromatic adaptation, and it will be revisited.

2.6.2 Chromatic adaptation

Chromatic adaptation refers to the human visual system’s ability to adjust to
the color of overall illumination rather than the absolute levels of the illu-
mination. This is perhaps best explained with a common example. Consider
a white object such as a piece of paper. This paper can be viewed under a
variety of light sources such as daylight, incandescent, and fluorescent.
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Despite the large change in the color of these sources (ranging from blue to
orange), the paper will always retain an approximate white appearance.
Chromatic adaptation is often thought to be a result of independent gain
control mechanisms on the three types of cone photoreceptors, as illustrated
in Figure 2.12. This is similar to the receptor gain control functions of light
and dark adaptation, though those can also be explained with a single gain
control function for all photoreceptors.

While this is certainly a valid hypothesis, there is no evidence that the
gain control mechanisms do not also occur at other stages of visual process-
ing. The theory of independent photoreceptor gain control was first pub-
lished 100 years ago in a seminal paper by von Kries.40,41 In that paper,
translated by MacAdam, he wrote:

…the individual components present in the organ of vision are
completely independent of one another, and each is fatigued or adapted
exclusively according to its own function.40,41

This insight, though now we know it is not entirely correct, provided an
excellent starting point on the theory of chromatic adaptation.

The receptor gain control idea of chromatic adaptation is very similar in
principle to an automatic white balance in a digital camera or camcorder.
Those devices adjust the sensitivities of their detectors such that the “bright-
est” object in the scene appears white. This is accomplished by normalizing

Figure 2.12 Iconic concept of independent cone gain control.
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all the detectors with the strongest detector signal. This type of adaptation
is classified as a sensory mechanism. A sensory mechanism is a mechanism
that responds automatically to the stimulus energy. If chromatic adaptation
were entirely a sensory mechanism, it would be much easier to understand
and model. Unfortunately (at least from a modeling standpoint), chromatic
adaptation is a combination of sensory and cognitive mechanisms. A cogni-
tive mechanism responds to a stimulus based on an observer’s knowledge
of scene content.

Some cognitive mechanisms have been discussed in previous sections.
Examples include discounting the illuminant and color constancy. Another inter-
esting cognitive mechanism is memory color. Memory color is the phenome-
non that recognizable objects often have a “known” color associated with
them. Typical memory colors might be green grass, blue sky, skin tones, and
the red apple example given above. Figure 2.13 illustrates the idea of cog-
nitive mechanisms, and perhaps memory color, for a yellow banana. The
image on the left of Figure 2.13 has a green filter placed over the entire image,
while the image on the right has the filter only on the banana. The banana
retains its yellow color when the entire image is filtered, while the identically
colored banana looks greenish when it is the only object filtered. 

When asked to produce memory colors in an experiment, using tech-
niques such as the method of adjustment, observers are generally able to
perform that task with relative ease. An interesting note is that memory
colors often are remembered differently with respect to the actual object. For
instance, when asked to produce a grass green, observers typically make a
green that is much more saturated than actual grass.42 Perhaps this is an
indication of observer preference blending into memory color. Cognitive
mechanisms of color appearance are discussed in much greater detail in
works by Evans,43 Jameson and Hurvich,39 Davidoff,44 and Fairchild.1

Figure 2.13 (See color insert) An example of cognitive mechanisms of chromatic
adaptation. The image on the left is covered with a green filter. The image on the
right has the same green filter placed only on the banana. The color of the banana
is the same for both images, though it retains its yellow appearance in the left image
and looks green in the right.
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2.6.3 Chromatic adaptation models

Models of chromatic adaptation are the first step toward the creation of a color
appearance model. Chromatic adaptation models extend the function of basic
tristimulus colorimetry. Basic colorimetry was designed to predict appearance
matches between stimuli within a single, constant viewing condition. The
color appearance phenomena described in the sections above illustrated areas
where basic colorimetry fails. Chromatic adaptation enables visual matches
to persist through wide ranges of viewing conditions. Two stimuli that are
viewed in different conditions, yet appear to match, are called corresponding
colors. For example, one stimulus might be viewed under daylight simulators,
while another is viewed under a tungsten light bulb. The two stimuli might
have different XYZ tristimulus values but, because of chromatic adaptation
to the illuminating light sources, they might appear to match.

Basic colorimetry is not designed to predict matches across different
viewing conditions. To predict these matches, we need a model of chromatic
adaptation. The general form of a chromatic adaptation was first described
by von Kries, as discussed above.40 He described a simple hypothesis for a
model of chromatic adaptation based on cone photoreceptor normalization.
There are two general misconceptions regarding von Kries’ ideas for chro-
matic adaptation. Although many chromatic adaptation models claim to
utilize a von Kries transformation, often called a von Kries coefficient or
proportionality law, the equations used in these types of models were never
actually proposed by von Kries. Rather, he simply proposed his idea for
independent cone adaptation. This idea was meant to serve as an interim
solution or a stepping stone for more advanced research. Little did he know
that, 100 years later, his simple hypothesis would still be in widespread use.

2.6.4 von Kries model 

Although von Kries himself did not formulate equations for chromatic adap-
tation, his hypothesis has been used to create a simple chromatic adaptation
model. Many chromatic adaptation models are designed to work in conjunc-
tion with CIE colorimetry. The hypothesis laid out by von Kries suggested
that the cone photoreceptors adapted independently of one another. To
model this in a meaningful physiological manner, it is necessary to transform
from CIE XYZ tristimulus values into LMS cone responses (sometimes
referred to as RGB or ργβ responses). The LMS cone responses can be calcu-
lated fairly accurately using a linear transform of CIE tristimulus values. An
example transformation, referred to as the Hunt–Pointer–Estevez transfor-
mation (normalized to illuminant D65), is described in Equation 2.7.45

(2.7)
L
M
S

0.4002 0.7076 0.0808–

0.2263– 1.1653 0.0457
0.0 0.0 0.9182

X
Y
Z

⋅=
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These LMS cone responsivities are then used in a modern interpretation of
a chromatic adaptation model, known as a coefficient model. This interpre-
tation is shown in Equations 2.8 through 2.10.

(2.8)

(2.9)

(2.10)

In these equations, L, M, and S represent the initial cone responses to a given
stimulus, and LMSadapted are the post-adaptation cone signals. To obtain the
adapted cone signals, each LMS response is scaled using the independent
gain control coefficients: αL, αM, and αS. How these gain control coefficients
are calculated is the key aspect to most chromatic adaptation models. For
the typical von Kries model, those coefficients are described to be the inverse
of the maximum LMS response in the scene. The maximum LMS response
is typically the scene white, so a von Kries adaptation is often referred to as
a white-point normalization. Equations 2.11 through 2.13 illustrate the idea of
a white-point adaptation.

(2.11)

(2.12)

(2.13)

Often, it is convenient to express the chromatic adaptation model as a linear
matrix transform. This is especially useful for concatenating transforms as
well as when programming models. The above interpretation of the von
Kries type of chromatic adaptation model is shown in Equation 2.14.

(2.14)

By expressing the chromatic adaptation transform as a matrix transforma-
tion, we can generate adapted CIE XYZ tristimulus values with a single
3 × 3 transformation. This is shown in Equation 2.15.

(2.15)

Ladapted aL L⋅=

Madapted aM M⋅=

Sadapted aS S⋅=

aL 1/Lmax   or   aL 1/Lwhite= =

aM 1/Mmax   or   aM 1/Mwhite= =

aS 1/Smax   or   aS 1/Swhite= =

Ladapted

Madapted

Sadapted

1/Lwhite 0.0 0.0
0.0 1/Mwhite 0.0
0.0 0.0 1/Swhite

L
M
S

⋅=

Xadapted

Yadapted

Zadapted

M 1–
1/Lwhite 0.0 0.0

0.0 1/Mwhite 0.0
0.0 0.0 1/Swhite

M
X
Y
Z

⋅ ⋅ ⋅=
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M and M–1 represent the Hunt–Pointer–Estevez transformation and
inverse transformation, respectively, as illustrated in Equation 2.7. While it
is useful to obtain the adapted CIE XYZ tristimulus values for a given
stimulus, it is often more useful to obtain corresponding colors data. Recall
that corresponding colors are two stimuli that appear to match when viewed
under disparate conditions. A model that can calculate the tristimulus values
necessary to obtain this perceptual match across different viewing conditions
is known as a chromatic adaptation transform, or CAT.

2.6.5 von Kries transform

Once a chromatic adaptation model is available, it is very easy to extend it
with the ability to “transform” CIE XYZ tristimulus values from one viewing
condition to another. The general form of this transformation is shown in
Equations 2.16 through 2.18.

(2.16)

(2.17)

(2.18)

L2, M2, and S2 are the predicted cone responses of the perceptual match for
the original LMS responses, though under the second viewing conditions.
Lwhite, Mwhite, and Swhite are the cone responses of the white point in the original
viewing condition, while Lwhite2, Mwhite2, and Swhite2 are cone responses of the
white point in the new viewing conditions. These equations are essentially
calculating the post-adaptation signals from the first viewing condition,
designated LMS, and setting those signals equal to the post-adaptation signal
from the second viewing condition. The chromatic adaptation model is then
inverted to calculate the pre-adaptation response necessary to elicit that
equal signal. The corresponding CIE XYZ tristimulus values can be found
by concatenating Equation 2.15 with Equations 2.16 through 2.18. This is
illustrated in Equation 2.19.

(2.19)

2.6.6 Nayatani’s model

The von Kries model of chromatic adaptation is a relatively straightforward
linear scaling of fundamental cone responsivities. This model was enhanced
by Nayatani et al. to include a nonlinear term in addition to the linear gain

L2 2L1/Lwhite  2=

M2 M1/Mwhite( ) Mwhite  2⋅=

S2 S1/Swhite( ) Swhite  2⋅=

X2

Y2

Z2

M 1–
Lwhite 2

Mwhite 2

Swhite 2

1/Lwhite 0.0 0.0
0.0 1/Mwhite 0.0
0.0 0.0 1/Swhite

M
X
Y
Z

⋅ ⋅ ⋅ ⋅=
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control.46,47 The nonlinear model was extended from a nonlinear model first
proposed by MacAdam.48 The Nayatani model is essentially a von Kries type
of gain adjustment, followed by a power function that has a variable exponent.
The exponent of the power function is determined by the overall luminance
of the adapting field. In addition to the power function, the Nayatani model
adds a noise term and a coefficient for forcing complete color constancy of
nonselective (gray) samples of the same luminance as the adapting field. The
power function enables the Nayatani model of chromatic adaptation to predict
luminance appearance phenomena, such as the Hunt and Stevens effect. The
noise term aids in the prediction of threshold data. Equations 2.20 through
2.22 show the generalized expressions of this nonlinear model.

(2.20)

(2.21)

(2.22)

where Ladapted, Madapted, Sadapted = adapted cone response signals
L, M, S = input cone response signals

Lwhite, Mwhite, Swhite = cone responses of the adapting condition
Ln, Mn, Sn = additive noise terms
βL, βM, βS = exponent terms for the power function and 

are based on the adapting luminance level 

In addition to these terms, aL, aM, and aS are coefficients determined to
produce color constancy for medium gray stimuli. 

The Nayatani model illustrates that a simple extension of a von Kries
type of chromatic adaptation model was capable of predicting many com-
plicated color appearance phenomena. This model has served as the basis
for many of the other chromatic adaptation and color appearance models
that were to follow. More information on this chromatic adaptation model
and several of its enhancements can be found in publications by Nayatani
et al.49 and Fairchild.1

2.6.7 Fairchild model

The original nonlinear Nayatani model suffered slightly from overpredicting
the degree of adaptation. That is to say, it predicted more complete adapta-
tion than was witnessed experimentally. Despite many claims that the
human visual system is “color constant,” often there are situations where

Ladapted aL
L Ln+

Lwhite Ln+
------------------------- 

 
βL

⋅=

Madapted aM
M Mn+

Mwhite Mn+
----------------------------- 

 
βM

⋅=

Sadapted aS
S Sn+

Swhite Sn+
------------------------- 

 
βS

⋅=
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chromatic adaptation is less than 100% complete.50 This prompted a series
of experiments attempting to measure the degree of adaptation for many
different forms of adapting stimuli, including both hard and soft copy.51

These experiments helped derive a linear chromatic adaptation model that
accounted for luminance effects, discounting the illuminant, and incomplete
adaptation.52,53

This model, like the von Kries and Nayatani models before it, is based
on a relatively simple extension of basic CIE colorimetry. The general form
of this model is similar to the von Kries model, as shown in Equation 2.23.

(2.23)

where aL, aM, aS are adapting gain control coefficients.

These gain control coefficients are calculated in a slightly more complex
manner than the typical von Kries method. Equations 2.24 through 2.26
illustrate the calculations for the L cone coefficients. The M and S cone
coefficients are calculated in a similar form.

(2.24)

(2.25)

(2.26)

While daunting at first, these equations really are essentially a modified von
Kries transformation. The Yn term refers to the adapting luminance in cd/m2.
Any term with an n subscript refers to the adapting stimulus, while terms
with an E subscript refer to the equal-energy illuminant. Equation 2.24 sim-
plifies to a complete von Kries adaptation term as p approaches 1. On the
other hand, Equation 2.24 can also simplify to zero adaptation as p
approaches the adapting cone response value. Any value in between repre-
sents a degree of incomplete adaptation. The amount of adaptation is a
function of both overall luminance level as well as deviation from the equal-
energy illuminant. Essentially, as the luminance level increases, so too does
the degree of adaptation, and the farther the adapting illuminant is from the
equal-energy illuminant, the less adaptation.
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Sadapted
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The original Fairchild model also included a luminance-dependent inter-
action among the three cone types. This was subsequently removed, when
it was determined to produce an overall increase in lightness predictions.54

Corresponding color data can be calculated using this model by cascading
Equation 2.23 with the Hunt–Pointer–Estevez primaries. The cascaded equa-
tion reduces to a simple 3 × 3 matrix multiplication, allowing for quick
calculations for large datasets. For this reason, the Fairchild chromatic adap-
tation transform, and the color appearance model that was based on it, are
useful for processing image data.

2.6.8 Spectrally sharpened chromatic adaptation models

Much chromatic adaptation research focus of late has been on the topic of
“spectrally sharpened” cone fundamentals.55–58 The research has been a con-
vergence of two rather distinct fields: color science and computational color
constancy. The first chromatic adaptation transform to use spectral sharp-
ened cone fundamentals was the Bradford transform.55 The Bradford trans-
form is also a modified von Kries gain control model, with a nonlinear term
similar to Nayatani’s model on the short wavelength cone signal. The cal-
culations in this model begin with a transform from CIE XYZ tristimulus
values into normalized cone responses. These calculations are shown in
Equations 2.27 and 2.28.

(2.27)

(2.28)

There are several interesting features of this transform. The XYZ tristimulus
values are all normalized by dividing by the Y. This is in effect luminance
normalization, as all stimuli with identical chromaticity coordinates will
have identical “cone” responses. The cone responses, RGB, do not represent
physiologically plausible cone responses. Instead, they represent spectrally
sharpened cone responses. What that means is that “cones” themselves have
narrower support as well as negative responsivity at some wavelengths.
Figure 2.14 illustrates the principle of sharpened sensors. The sharpened
responsivities tend to preserve saturation as well as color constancy. The
Bradford responsivities are not the only spectrally sharpened cones that can
be used in a chromatic adaptation transform. More details can be found in
publications by Finlayson57 and Calabria.58
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The remainder of the Bradford transform is relatively straightforward.
With the addition of terms for incomplete adaptation, this is the chromatic
adaptation model used in the CIECAM97s color appearance model, so fur-
ther details are given below.

2.7 Color appearance models
CIE tristimulus colorimetry was designed with a single purpose, for which
it has enjoyed good success. This purpose is to predict when two simple
stimuli will match, for the average observer, under a single viewing condi-
tion. We have already seen the limitations of basic colorimetry with some of
the color appearance phenomena described above. Chromatic adaptation
transforms, as described in the previous section, extend basic colorimetry so
that it is possible to predict matches across disparate viewing conditions.
Chromatic adaptation transforms are still limited, in that they do not help
describe the actual color appearance of a stimulus.

To accurately describe the color appearance of a stimulus, we must use
the color terminology described in an earlier section. These terms include
the relative terms of lightness, hue, saturation, and chroma as well as the
absolute terms of brightness, colorfulness, and hue (again). Even with a
chromatic adaptation transform, CIE tristimulus colorimetry is not able to
describe any of these appearance terms. To do that, it is necessary to use a
color appearance model.

So what is a color appearance model, exactly? The CIE Technical Com-
mittee TC1-34, Testing Colour Appearance Models, came up with a definition
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Figure 2.14 A comparison of spectrally sharpened cone responses (solid lines) and
physiological cone responses (dashed lines).
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of what constitutes a color appearance model.59 The definition agreed upon
is as follows: “A color appearance model is any model that includes predic-
tors of at least the relative color-appearance attributes of lightness, chroma,
and hue.” This is a relatively lenient definition of what constitutes a color
appearance model, though it does require some form of a chromatic adap-
tation transform at the very least. More complicated models are capable of
predicting absolute attributes, such as brightness and colorfulness, as well
as luminance-dependent effects, such as the Hunt and Stevens effects. Spa-
tially structured phenomena, such as crispening and simultaneous contrast,
require both models of spatial vision as well as color appearance.

Many color appearance models are available, each designed with specific
goals in mind. Among those models are CIELAB, Hunt, Nayatani, ATD,
RLAB, LLAB, ZLAB, and CIECAM97s. This section will describe CIELAB
as a rudimentary color appearance model, as well as CIECAM97s, which is
the CIE recommended model. Fairchild1 has presented a very thorough
review of all of these models.

2.7.1 CIELAB as a color appearance model

Although designed as a uniform color space for expressing color differences,
rather than a color appearance model, CIELAB does have predictors of
lightness, chroma, and hue. These predictors allow CIELAB to be labeled as
a color appearance model. We will use it here as a simple model to illustrate
the design of more complicated color appearance models.

CIELAB calculations require a pair of CIE XYZ tristimulus values, those
of the stimulus itself, as well as those of the reference white point. The
reference white point values are used in a von Kries type of chromatic
adaptation transform. The adaptation transform is followed by a compres-
sive cube-root nonlinearity and an opponent-color transformation. The exact
calculations are shown in Equations 2.29 through 2.32.

(2.29)

(2.30)

(2.31)

(2.32)

X, Y, and Z are the tristimulus values of the stimulus, while Xn, Yn, and
Zn are the tristimulus values of the adapting white. Several points need

L* 116 f Y/Yn( ) 16–=

a* 500 f X/Xn( ) f Y/Yn( )–[ ]=

b* 200 f Y/Yn( ) f Z/Zn( )–[ ]=

f x( ) x( )1 3⁄   if 0.008856>
7.787 x( ) + 16/116 if 0.008856≤ 

 
 

=
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to be emphasized. The white-point normalization, or chromatic adapta-
tion, is not performed in a physiological cone space. Rather, it is performed
in XYZ tristimulus space. This transform is sometimes referred to as a
“wrong von Kries” chromatic adaptation transform.60 The effects of per-
forming the chromatic adaptation in XYZ tristimulus space, rather than
cone space, are most noticeable in the hue predictions, often causing
inaccurate hue shifts.

The cube root power functions attempt to model the compressive rela-
tionship between physical measurements and psychological perceptions.
These compressive results were first discussed above in regard to Fechner’s
and Stevens’ laws. The cube root function is replaced by a linear function
for very dark stimuli as shown in Equation 2.32.

The CIELAB L* coordinate, as expressed in Equation 2.29, is a correlate
to perceived lightness. It can range between 0.0, for absolute black stimuli,
and 100.0, for diffuse white stimuli. The a* and b* coordinates approximate,
respectively, the red–green and yellow–blue of an opponent color space. A
positive a* value approximates red, while a negative value approximates
green. Similarly, a positive b* correlates to yellow, while negative values
correlate to blue. Achromatic stimuli, such as whites, grays, and blacks, have
values of 0.0 for both a* and b*.

The definition of a color appearance model requires a minimum of
predictions for lightness, chroma, and hue. CIELAB L* provides a lightness
prediction, but a* and b* do not fully predict correlates of chroma and hue.
These correlates can be calculated by transforming the Cartesian coordinates
of a* and b* into cylindrical coordinates of C*ab  and hab, where C*ab  represents
chroma, and hab represents hue angle. Equations 2.33 and 2.34 illustrate those
transformations.

(2.33)

(2.34)

With the cylindrical coordinates of chroma and hue angle, we now have
enough information to predict the color appearance of a stimulus, with
several caveats, however. The wrong von Kries transform is clearly a source
of color appearance errors. CIELAB is also incapable of predicting many of
the color appearance phenomena described above. These include all lumi-
nance, surround, background, and discounting-the-illuminant effects.
CIELAB also assumes 100% adaptation to the white point. Since CIELAB
was designed to predict only small color differences between similar objects
under a single viewing condition, it is impressive that it can be used as a
color appearance model at all. The CIELAB space is also known to have
hue nonuniformities, especially in the blue region.61–63 This becomes impor-
tant in certain image processing techniques, such as gamut mapping, where

Cab
* a*2 b*2+( )=

hab tan 1– b*/a*( )=
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it is desirable to follow lines of constant perceptual hue. Clearly, it is impor-
tant to have a color appearance model that was designed specifically for
the use.

2.7.2 The genesis of color appearance models

Color appearance research over the course of many years has resulted in
the formulation of many different color appearance models, each with
different goals and methods. Until recently, it was often difficult to decide
which model to use for any given task. This changed in 1997, with formu-
lation of the CIE-recommended CIECAM97s color appearance model.59 The
CIECAM97s model was designed to work as least as well as, if not better
than, all of the previous models for the color appearance phenomena it
predicts. Thus, it is essentially a hybrid of the best parts of many different
models. It is important to understand the pedigree of CIECAM97s so as to
understand why it takes the form it does. This pedigree stems from the
Hunt, Nayatani, RLAB, and LLAB models.59 The interested reader is encour-
aged to delve into this rich history of color appearance research. The texts
by Hunt36 and Fairchild1 provide many references to the development of
these models.

The Hunt model is very sophisticated and designed to predict many
color appearance phenomena. It has undergone relentless development
over the course of more than two decades.36 The high degree of sophistica-
tion in the model comes at the price of a high degree of complexity. Perhaps
the model is better described as a model of the human visual system
response. This model was designed to predict a wide range of appearance
phenomena, including changes in background, surround, luminance level,
and viewing modes. Many of the features, including the underlying color
space, found in CIECAM97s are direct descendents of the Hunt model of
color appearance.

The Nayatani model of color appearance is another model capable of
predicting a wide range of appearance phenomena. The Nayatani model
evolved directly from the nonlinear chromatic adaptation transform dis-
cussed in the previous section. This model has also undergone many revi-
sions over the years. The most recent revisions, as well as a thorough sum-
mary, were described by Nayatani et al. in 1995.64 This model was originally
designed as a model for predicting the appearance of objects under various
illuminants from an illumination engineering perspective. The ultimate goal
of predicting the color rendering properties of light sources is quite different
from some of the other color appearance models; therefore, the Nayatani
model predicts some phenomena differently than other models, such as those
designed with a goal of accurate color image reproduction.

One model designed with color image reproduction in mind is the RLAB
color appearance model.65 The RLAB model was developed as a simple color
appearance model designed for practical applications. It is based on the
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Fairchild incomplete chromatic adaptation transform and is thus capable of
predicting many significant color appearance phenomena. The RLAB model
was specifically targeted at cross-media image reproduction, such as a CRT
to print system, and was built to extend upon CIE colorimetry. Because of
its simplicity in design, it is incapable of predicting certain appearance
correlates such as brightness and lightness. It is also not designed for use
across wide luminance levels and does not predict luminance effects such
as the Hunt and Stevens effects.

Another similarly designed model is the LLAB color appearance model.65

This model was designed as a model of color appearance specification, color
difference calculation, and color match prediction. Like RLAB, it is designed
to extend CIE colorimetry and CIELAB. Built on the Bradford chromatic
adaptation, the LLAB model calculates predictions of lightness, chroma,
colorfulness, saturation, and hue. It is capable of predicting many appear-
ance phenomena, such as surround and background changes, discounting
the illuminant, and the Hunt effect. This model also has a specified color
difference equation. It is incapable of predicting the Stevens effect or incom-
plete chromatic adaptation. The LLAB model is relatively simple, lying
between RLAB and the Hunt model in complexity.

2.7.3 CIECAM97s

The existence of many different color appearance models, each derived with
different goals and techniques, has led to confusion in both industry and
research. Traditionally, it has been difficult to choose which model to use for
any given situation, and thus industry acceptance of color appearance mod-
els was tenuous at best. The CIE recognized this problem and created TC1-
34 with the task of creating a single color appearance model. The goal was
to create uniformity of practice with compatibility with modern color imag-
ing systems in mind.59 TC1-34 was successful in their task with the formu-
lation of the CIE 1997 Interim Color Appearance Model (simple version),
CIECAM97s. CIECAM97s is the amalgamation of the research efforts of
many people over many years.59

The CIECAM97s model requires certain input data. These data include
the luminance of the adapting field, expressed in cd/m2. This is normally
taken to be 20% of the luminance of white in the adapting filed and is
designated La. The CIE tristimulus values of the stimulus in the source
conditions, designated X, Y, and Z, as well as the source itself, Xw , Yw , and
Zw , are also necessary. Additional inputs include the relative luminance of
the source background, designated, Yb, also in the source conditions.

In addition to the above model inputs, several constants need to be
selected. These constants include the impact of surround, c; a chromatic
induction factor, Nc; a lightness contrast factor, FLL; and a factor determining
the degree of chromatic adaptation, F. These constants can be selected using
the following chart:
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2.7.3.1 Chromatic adaptation
The first step is to transform the stimulus from the source viewing conditions
into the conditions of the equal-energy illuminant. This chromatic adaptation
transform uses the spectrally sharpened cone responses, RGB, of the Brad-
ford transform given above. Equations 2.35 and 2.36 illustrate the transfor-
mation into the cone primaries as well as the inverse transform.

(2.35)

(2.36)

The chromatic adaptation transform itself is a modified von Kries type of
transformation, with a nonlinear power function on the short wavelength.
The degree of adaptation is determined using the variable D. The degree of
adaptation is set to 1.0 for complete adaptation or complete discounting the
illuminant, as is generally the case for reflecting materials. D is set to 0.0 for
no adaptation and can take on intermediate values for various other degrees
of adaptation. These values can be manually determined against existing
data or can be calculated using Equation 2.41. This calculation is based on
luminance levels as well as surround equations.

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Viewing Condition c Nc FLL F

Average surround, samples subtending > 4° 0.69 1.0 0.0 1.0
Average surround 0.69 1.0 1.0 1.0
Dim surround 0.59 1.1 1.0 0.9
Dark surround 0.525 0.8 1.0 0.9
Cut-sheet transparencies (on a viewing box) 0.41 0.8 1.0 0.9
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If B happens to be negative, then Bc also must be set to be negative. The
above calculations must also be performed for the source white, as they are
required in later calculations. Before further calculations can be performed,
various other factors must be determined. These factors include the back-
ground induction factor, n, the brightness and chromatic induction factors,
Nbb and Ncb, and the base exponential linearity, z. These factors are calculated
using Equations 2.42 through 2.46.

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

The post-adapted signals for both the sample and the source white point must
then be transformed back from the sharpened cone responses into physiolog-
ical cone responses. This is accomplished using the inverse of the Bradford
transform, , given in Equation 2.36, and the Hunt–Pointer–Estevez trans-
formation. The complete transformation is given in Equations 2.47 and 2.48.

(2.47)

(2.48)

The signals are then processed through a nonlinear response compression
to get post-adaptation cone responses. This is done for both the stimulus
and the adapting white. Equations 2.49 through 2.51 illustrate this calcula-
tion.

(2.49)

k 1/ 5LA 1+( )=

FL 0.2k4 5LA( ) 0.1 1 k4–( ) 5LA( )1 3⁄+=

n Yb/Yw=

Nbb Ncb 0.725 1/n( )02= =

z 1 FLLn1 2⁄+=

MB
1–

R'

G'

B'

MHMB
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RcY

GcY

BcY

=

MH
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= MH
1–

1.9102 1.1121– 0.2019
0.3710 0.6291 0.00
0.00 0.00 1.00

=

R'a
40 FLR'/100( )0.73

FLR'/100( )0.73 2+[ ]
-------------------------------------------------- 1+=
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(2.50)

(2.51)

2.7.3.2 Appearance correlates
The adapted cone responses are then used to determine correlates of appear-
ance. The first step is to calculate preliminary red–green and yellow–blue
opponent dimensions. This is accomplished using Equations 2.52 and 2.53.

(2.52)

(2.53)

The hue angle, h, is calculated in a similar manner as the CIELAB hue angle.
This calculation is done using Equation 2.54.

(2.54)

Often, it is desirable to have the hue correlates for the four unique hues (red,
green, yellow, and blue) lie opposite each other in a color space. This is
known as the hue quadrature. Each of the unique hues has different weights
in regard to the perceptual colorization of neutral colors, and this is known
as the hue’s eccentricity factor. Hue quadrature, H, and eccentricity factors, e,
are calculated from the following unique hue data via linear interpolation
between the following values for the unique hues:

An example of the linear interpolation used to calculate hue quadrature and
eccentricity values for any given hue angle is shown using Equations 2.55
and 2.56.

(2.55)

(2.56)

Red h = 20.14 e = 0.8 H = 0 or 400
Yellow h = 90.00 e = 0.7 H = 100
Green h = 164.25 e = 1.0 H = 200
Blue h = 237.53 e = 1.2 H = 300

G'a
40 FLG'/100( )0.73

FLG'/100( )0.73 2+[ ]
-------------------------------------------------- 1+=

B'a
40 FLB'/100( )0.73

FLB'/100( )0.73 2+[ ]
-------------------------------------------------- 1+=

a R'a 12G'a/11 B'a/11+–=

b 1/9( ) R'a G'a 2B'a–+( )=

h tan 1– b/a( )=

e e1 e2 e1–( ) h h1–( )/ h2 h1–( )+=

H H1
100 h h1–( )/e1

h h1–( )/e1 h2 h–( )/e2+
--------------------------------------------------------------+=
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The achromatic response is then calculated using Equation 2.57. This
response is used to calculate brightness and lightness, so the calculations
must be performed for both the stimulus and the adapting white.

(2.57)

Lightness, J, is then calculated from the achromatic response to both the
stimulus and the adapting white. This is shown in Equation 2.58.

(2.58)

Brightness is calculated using the lightness value and the achromatic
response for the adapting white. Brightness is designated Q and is calculated
using Equation 2.59.

(2.59)

Thus, we now have correlates of hue, brightness, and lightness. From these
values, we can calculate correlates of saturation, chroma, and colorfulness,
designated s, C, and M, respectively. Equations 2.60 through 2.62 illustrate
these calculations.

(2.60)

(2.61)

(2.62)

2.7.3.3 Using the model
As can be seen, the CIECAM97s model is rather complicated. In addition to
the complexity of the equations themselves, several constants need to be
determined prior to utilizing this model. All these choices can be quite
daunting to the casual user. To help alleviate these situations, Moroney has
provided usage guideline for CIECAM97s.67

Often, it is necessary to invert a color appearance model to predict how
a stimulus in one viewing condition might appear when viewed in a different
situation. To calculate these colors, it is necessary to invert the model. The
nonlinearities in the chromatic adaptation transform mean that CIECAM97s
can only be inverted using analytical models. Details on this inversion pro-
cess can be found in the CIE publication59 or in the text by Fairchild.1

A 2R'a G'a 1/20( ) B'a 2.05–( )+ +[ ]Nbb=

J 100 A/Aw( )cz=

Q 1.24/c( ) J/100( )0.67 Aw 3+( )09=

s
50 a2 b2+( )1 2⁄

100e 10/13( )NcNcb

R'a G'a 21/20( )B'a+ +
-----------------------------------------------------------------------------------=

C 2.44s0.69 J/100( )0.67n 1.64 0.29n–( )=

M CFL
0.15=
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2.7.4 Future directions

The CIE-designated name for CIECAM97s has great significance, as it is
called the Interim color appearance model. While it is considered the best of
what was available at the time of formulation, this does not mean that further
development has ceased altogether. Already, the CIE has formulated another
technical committee, TC8-01, that is charged with considering potential revi-
sions to CIECAM97s. Fairchild has published a list of proposed changes as
well as their implementation details.68 These changes are designed to sim-
plify the model, fix errors, and add accuracy. Among the proposed changes
are:

1. Linearize the chromatic adaptation transform, to facilitate inversion.
2. Fix surround compensation errors.
3. Fix lightness of perfect black.
4. Fix chroma scale expansion for low chroma colors.
5. Add continuously variable surround compensation.

It is expected that a new color appearance model incorporating these and
other changes will be approved for testing by the CIE in 2002.

Research on color appearance models will not end with the work of TC8-
01, either. Already, research is being conducted on the next generation of
color appearance models. Models of spatial and color vision are already
appearing, such as the spatial extensions of CIELAB proposed by Zhang and
Wandell69 as well as Johnson and Fairchild.70 Spatial models of vision and
color appearance, such as the multiscale model proposed by Pattanaik et
al.71 will allow for the prediction of the spatially structured appearance
phenomena described above. Spatial information is thought to be crucial
when dealing with the appearance of digital color images. The future is
indeed bright for color appearance research.
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3.1 Introduction

 

Numerous physical phenomena influence color: the light source, surface
reflection, light absorption, light scattering, reflection on the substrate, mul-
tiple-internal reflections at the ink–air interface, and the combination of
several light-absorbing and light-scattering substances. In the particular case
of halftone prints, additional effects, such as the optical dot gain (also called
Yule–Nielsen effect), must also be taken into account. This makes accurate
color prediction very difficult. Until recently, the physical phenomena
involved were described separately by several classical models: Lambert’s
law for diffuse light sources, the Fresnel reflection law, Beer’s absorption
law, the Saunderson correction for multiple internal reflections, and the
Kubelka–Munk model for absorbing and scattering media. The colors of
halftone prints were predicted using other theories: the Murray–Davis
model, the Neugebauer model, the Yule–Nielsen model, and the Clap-
per–Yule model for optical dot gain. 

This chapter is based, however, on a new global approach that incorpo-
rates all the physical contributing phenomena listed above into a single model
using a mathematical framework based on matrices. Classical results (for
example, the Murray–Davis equation, the Clapper–Yule relation, or the
Kubelka–Munk model) correspond to particular cases of this model. Further-
more, the model we present here predicts accurately the spectra of printed
color samples (uniform or halftoned), and it can be used for any inks or
colorants, including the standard Cyan, Magenta, Yellow, and Black (CMYK)
that are usually used in printing devices or any other nonstandard inks.

Throughout this chapter we will consider the entities , ,
, . . .  as spectra (transmission spectrum, reflection spectrum, density

spectrum, etc.). But, when the wavelength notation  is omitted, we will
consider them as coefficients (transmission coefficient, reflection coefficient,
density, etc.). We will consider these terms interchangeably as synonyms
according to our best convenience. 

We start our presentation with a few useful definitions from radiometry
given in Section 3.2. Sections 3.3, 3.4, and 3.5 introduce the basic physical

T λ( ) R λ( )
D λ( )

λ( )
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laws of light reflection, light absorption, and light scattering, respectively.
The complex interaction between light and matter forces us to use phenom-
enological models, which are presented in Section 3.6. The particular case
of fluorescent media is discussed in Section 3.7. Traditional models used to
predict the color of halftone prints are presented in Section 3.8. Finally, we
explain in Section 3.9 how all these models can be incorporated into a single
model for the prediction of halftones.

 

3.2 A few results from radiometry

 

Let us start with the definition of a few radiometric quantities and terms.

 

1

 

 

• A surface element of area  receiving a light flux  is said to be
under an 

 

irradiance

 

  (unit ).

(3.1)

• A surface element of area  emitting a light flux  has an 

 

exitance

 

 (unit ).

(3.2)

• A surface element of area  is said to be of 

 

radiance

 

  (unit
) if it emits a flux  in a solid angle  making an

angle  with the normal to the surface.

(3.3)

• The 

 

intensity

 

  (unit ) of a light flux  in a solid angle 
is defined by

(3.4)

• A light source whose radiance  is constant in all space directions
is said to be 

 

Lambertian

 

. The exitance  of such a source is 
(see Reference 2).

• A diffuse reflector of constant radiance  is said to be a 

 

Lambert
surface

 

3

 

 or a 

 

Lambertian reflector

 

. The exitance  of such a surface
equals its irradiance , so  and we have

(3.5)

da dφr

E W m 2–⋅

E
dφr

da
--------=

da dφe

M W m 2–⋅

M
dφe

da
--------=
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W sr 1– m 2–⋅ ⋅ d2φe dω

θ

L
d2φe

θcos ωdad
--------------------------=
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I dφ
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-------=
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This formula is called 

 

Lambert’s cosine law

 

. Note that, in the literature,

 

4

 

 Lam-
bert’s cosine law is often presented in terms of intensity,

(3.6)

where  is the area of the surface.
Equation 3.6 implies that the 

 

radiation pattern

 

 of such a surface (i.e., the
locus of the extremities of the intensity vectors, also called 

 

indicatrix

 

) is a
circle (see Figure 3.1). Another useful result is Lambert’s cosine law for a
conical light beam. The flux emitted in the direction given by the angle 
can be computed by considering the solid angle  (see
Figure 3.2). By replacing  in Equation 3.6, we deduce that a surface 
that receives from the upper hemisphere a total flux  emits a
diffuse flux  whose angular distribution is given by

 

5

 

(3.7)

Natural light has a rather diffuse behavior in which rays do not have a
privileged orientation. Therefore, it is useful to define the term 

 

diffuse irra-
diation

 

.

• Let  be an opening in an opaque plane (see Figure 3.3). The opening
is said to be under a 

 

diffuse irradiation

 

 from the upper hemisphere if
 is a Lambertian source in the lower hemisphere. From the point

I θ( )
ωd

dφe E
π
---A θcos I0 θcos= = =

A

I θ( )
dω
dφe E

π
--- A θcos= =

A

θ

Figure 3.1 According to Lambert’s cosine law, the intensity I of the light emitted by
a diffuse reflector of area A depends only on the cosine of the angle θ of observation
(note that the radiation pattern of such a reflector is a circle).

θ
dω 2π θdθsin=

dω A
φr E sd

S∫=
φe

1
φr
----   θ∂

∂φe 2 θ θcossin 2θsin= =

A

A
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of view of the upper hemisphere, the surface  is said to be a

 

Lambertian receiver

 

; its reception pattern or indicatrix is a circle. 

Finally, light sources are classified by the way they produce light. 

 

Incan-
descent

 

 sources produce light by thermal blackbody or near-blackbody radi-
ation. All nonthermal light production is called 

 

luminescence

 

. Hence, a 

 

lumi-
nescent medium

 

 is a medium that produces light by any means except thermal
excitation. A common kind of luminescence is photoluminescence, which

dω 2π θdθsin=

θ

dθ

da

Figure 3.2 Solid angle that must be used when considering a conical light beam
emitted by a Lambertian source or reflector. 

I θ( )
dω
dφe E

π
--- A θcos= =

A

Figure 3.3 Surface element A under diffuse illumination. If A is an opening in an
opaque plane that separates the upper and the lower hemispheres, the surface ele-
ment A is a Lambertian source in the lower hemisphere.

A
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includes fluorescence and phosphorescence. A photoluminescent medium
produces light when excited with photons. An extended list of forms of
luminescence is given in Reference 6.

3.3 Reflection and refraction
The term reflection refers to all interaction processes of light with matter in
which the photons are sent back into the hemisphere of the incident light.
We distinguish between two types of reflection: specular reflection, which
occurs on smooth surfaces (where the irregularities are small compared to
the wavelength of the incident light), and diffuse reflection, which occurs on
rough surfaces. A beam of light incident on a smooth surface is re-emitted
as a well-defined beam, whereas, on a rough surface, it is re-emitted as a
multitude of rays emerging in different directions. We define the reflectance
spectrum (or reflection coefficient)  as the ratio of the reflected light flux
to the incident light flux for a given wavelength .

The term refraction refers to the change of direction of a light beam when
entering a medium in which the speed of light is different. Therefore, we
define the refractive index  of a given medium as the ratio of the speed of
light in empty space to the speed of light in the medium. For example, the
refractive index is  for water,  for crown glass, and

 for rutile ( ).7 A medium that also attenuates electromagnetic
waves has a complex refractive index , where  is the attenu-
ation index. For example, the complex refractive index is  for
aluminium,  for iron, and  for platinum.8
Note that, in a metal, light is so intensely attenuated that it can penetrate to
a depth of only a few hundred atoms.

3.3.1 Basic laws

Let us recall the basic laws of light refraction and light reflection. A light
beam that, with an incidence angle , hits a refractive surface that separates
two media of refractive indices  and  is partially reflected into the first
medium and partially refracted into the second medium (see Figure 3.4).
The incident beam, the reflected beam, and the refracted beam lie in the
same plane, called the plane of incidence. The reflected beam makes with the
normal to the surface the same angle  as the incident beam, whereas the

R λ( )
λ

n

n 1.33= n 1.52=
n 2.907= TiO2

n̂ n 1 iκ+( )= κ
n̂ 1.44 i5.23+=

n̂ 1.51 i1.63+= n̂ 2.63 i3.54+=

θ1

n1 n2

θ1θ1
n1

n2
θ2

Figure 3.4 Reflection and refraction of a light beam at a refractive surface. 
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refracted beam makes with the normal an angle , which is related to 
by Snell’s law.

(3.8)

Note that, for , there is a critical angle  above
which the incident beam is totally reflected. 

The intensity of the reflected beam is calculated by considering two
polarized electromagnetic waves. One is polarized in parallel to the plane
of incidence, and the other is polarized perpendicularly. It can be shown9

that the reflection coefficient  for the parallel polarized wave and the
reflection coefficient  for the perpendicularly polarized wave are given by

 and (3.9)

where  = angle of incidence

 = angle of refraction according to Snell’s law (see Equation 3.8 
and Figure 3.4)

In the literature, these relations are known as the Fresnel relations. We denote
by  the reflection coefficient of a beam propagating in a medium of
refractive index , which has an incidence angle  with the refractive
surface delimiting a medium of index . Because natural light can be
considered as an equal mixture of both types of waves, its reflection coeffi-
cient is the mean value of  and ,

(3.10)

Note that Snell’s law is also valid for complex refractive indices , such
as the refractive indices of metals. In the particular case of a light beam
having normal incidence on a medium of complex refractive index , the
reflection coefficient is10 

(3.11)

For non-normal incidence ( ), the angle  is complex, meaning
that a phase change occurs on reflection. For example, a linearly polarized
light is reflected as elliptically polarized light. The generalized Fresnel’s
formulas for complex refractive indices are beyond the scope of this book,
but a detailed presentation can be found in the literature.10 
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3.3.2 Interface reflection under diffuse light

Let us now compute an average reflection coefficient  for diffuse light
arriving on a plane refractive surface. Such an average is calculated by
integrating, over all directions, the product of the angular distribution of
diffuse irradiation given by Equation 3.7 and the reflection coefficient of a
natural light beam given by Equation 3.10.

(3.12)

This calculation was done by Judd11 in 1942 for a large number of refractive
indices. A typical result is the particular case of the surface reflection 
between air (whose refractive index is ) and a medium of refractive
index n.

(3.13)

In the particular case of a plastic medium, we have . The com-
putation of Equation 3.13 leads in this case to . This value
expresses the average reflection coefficient under a perfect diffuse illumina-
tion. When diffuse light crosses the refractive surface in the other direction,
from a medium of refractive index  to the air, the reflection occurs within
the material medium, and it is therefore called the internal reflection ri.

(3.14)

The numerical result of the computation for  is, in this case,
. The numerical results for other refractive indices are given in

Table 3.1.
Note that for diffuse light, internal reflection values are always much

higher than surface reflection values. When the first medium has a higher
refractive index than the second, there is a critical incidence angle, according
to Snell’s law, above which light is totally reflected. This total reflection is
responsible for the high values of  when .

3.4 Light absorption
The term light absorption refers to all processes that reduce the intensity of a
light beam when interacting with matter. We must distinguish between true
absorption, where radiative energy is transformed into another kind of energy

rn1 n2,

rn1 n2, rn1 n2, θ( ) 2θsin⋅( ) θd
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(thermal agitation energy, ionization energy, etc.), and apparent absorption,
which is due to light scattering (see Section 3.5). To avoid confusion, we will
use the word extinction for all light intensity reducing processes and reserve
the word absorption for true absorption.

The absorption mechanisms are different in gases, liquids, and solids.
For gases and liquids, there are two main mechanisms. The first mechanism
is a quantified change of the energy state of the molecules or the atoms,
producing line spectra. The second mechanism is the dissociation of

Table 3.1 Reflection Coefficient at Normal Incidence r1,n(0), Surface Reflection 
Coefficient rs, and Internal Reflection Coefficient ri for Various Refractive Indices n

1.0 0.0000 0 0 1.3 0.0170 0.0611 0.4445
1.01 0.0000 0.0031 0.0228 1.31 0.0180 0.0627 0.4538
1.02 0.0001 0.0061 0.0446 1.32 0.0190 0.0643 0.4630
1.03 0.0002 0.0088 0.0657 1.33 0.0201 0.0659 0.4719
1.04 0.0004 0.0114 0.0860 1.34 0.0211 0.0675 0.4807
1.05 0.0006 0.0139 0.1056 1.35 0.0222 0.0691 0.4892
1.06 0.0008 0.0163 0.1245 1.36 0.0233 0.0706 0.4975
1.07 0.0011 0.0186 0.1428 1.37 0.0244 0.0722 0.5057
1.08 0.0015 0.0208 0.1605 1.38 0.0255 0.0737 0.5136
1.09 0.0019 0.0230 0.1777 1.39 0.0266 0.0753 0.5214
1.1 0.0023 0.0252 0.1943 1.4 0.0278 0.0768 0.5290
1.11 0.0027 0.0272 0.2105 1.41 0.0289 0.0783 0.5364
1.12 0.0032 0.0293 0.2261 1.42 0.0301 0.0799 0.5437
1.13 0.0037 0.0313 0.2413 1.43 0.0313 0.0814 0.5508
1.14 0.0043 0.0332 0.2561 1.44 0.0325 0.0829 0.5577
1.15 0.0049 0.0351 0.2704 1.45 0.0337 0.0844 0.5645
1.16 0.0055 0.0370 0.2843 1.46 0.0350 0.0859 0.5711
1.17 0.0061 0.0389 0.2979 1.47 0.0362 0.0873 0.5777
1.18 0.0068 0.0407 0.3110 1.48 0.0375 0.0888 0.5840
1.19 0.0075 0.0425 0.3238 1.49 0.0387 0.0903 0.5902
1.2 0.0083 0.0443 0.3363 1.5 0.0400 0.0918 0.5963
1.21 0.0090 0.0460 0.3484 1.51 0.0413 0.0932 0.6023
1.22 0.0098 0.0478 0.3602 1.52 0.0426 0.0947 0.6082
1.23 0.0106 0.0495 0.3717 1.53 0.0439 0.0962 0.6139
1.24 0.0115 0.0512 0.3829 1.54 0.0452 0.0976 0.6195
1.25 0.0123 0.0529 0.3939 1.55 0.0465 0.0991 0.6250
1.26 0.0132 0.0546 0.4045 1.56 0.0479 0.1005 0.6304
1.27 0.0141 0.0562 0.4149 1.57 0.0492 0.1020 0.6357
1.28 0.0151 0.0579 0.4250 1.58 0.0505 0.1034 0.6408
1.29 0.0160 0.0595 0.4348 1.59 0.0519 0.1048 0.6459

n r1 n, 0( ) rs ri n r1 n, 0( ) rs ri
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molecules or ionization of atoms, which produces continuous spectra with an
energy threshold. In solids, the behavior depends on the arrangement of the
atoms.12 The absorption of photons in isolators and ionic crystals induces
quantified changes of state that produce narrow band spectra. In semiconduc-
tors, the electrons require a small amount of energy to jump over the energy
gap between the valence and the conduction band. Therefore, photons are
absorbed only if their energy is higher than the band gap. Such materials
have a continuous absorption spectrum with a threshold. In metals, the
electrons belonging to the conduction band move almost freely in the whole
volume, acting as a free electron gas. The absorption of photons is so strong
over the whole spectrum that light is reflected. The reason is that incident
light is an electromagnetic wave that induces an alternating electrical current
in the conducting material. According to Maxwell’s theory, this current re-
emits light out of the metal. As far as alloys are concerned, there is no general
rule. Their behavior depends on their crystal structures.

The most widely known classical model for the absorption of light is the
Beer–Lambert–Bouguer law (which is also called, by abuse of language, Beer’s
law).13 This model describes the intensity variation of a collimated light beam
crossing a medium that contains identical light-absorbing particles at a con-
centration c. Let us consider an infinitely thin slice of thickness  of this
medium (see Figure 3.5). The model relies on the assumption that the absorb-
ing particles are independent. According to the Beer–Lambert–Bouguer law,
the intensity variation  of the light flux that crosses this slice is propor-
tional to the concentration c, to the flux intensity  of the light beam, and
to the thickness  of the slice. Hence, the flux of a collimated light beam
that crosses the infinitely thin layer varies as follows:

(3.15)

where  = the light wavelength, and the proportionality coefficient
 = the molar decadic absorption coefficient (or, in short, absorption 

coefficient) of the absorbing particle (unit: )

dx

φ φ + dφ

dx

Figure 3.5 Absorption of light by an infinitely thin layer containing light-absorbing
particles at a concentration c. 

dφ
φ

dx

φd ε λ( )cφ 10( )dln x–=

λ
ε λ( )

m2 mol 1–⋅
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The absorption coefficient  can be interpreted as the absorption cross-
section area of a mole of particles. For particles of radius r, we have

(3.16)

where NA =  = the Avogadro number

 = the absorption efficiency factor of the particle

Relation 3.15 is a linear differential equation of the first order whose
solution is given by an exponential function. This kind of function will play
a central role in our discussion. The integration of Equation 3.15 through a
layer of thickness  leads to

(3.17)

The transmittance spectrum (or in short transmittance)  is then defined as
the ratio between the outcoming flux  and the incoming flux .

(3.18)

The value  corresponds to a transparent medium, whereas the value
 means that no light is transmitted, in which case the medium is

said to be opaque. Beer’s law is often expressed in a logarithmic form,

(3.19)

where  is the (optical) density spectrum (or absorption spectrum), which
corresponds to the transmittance . In the density scale,  cor-
responds to a transparent medium, and the values of  increase loga-
rithmically when the transparency decreases. The extreme case of a totally
opaque medium corresponds to an infinite density, . The trans-
mission spectra and the corresponding density spectra of cyan, magenta,
and yellow inks at various concentrations are given in Figures 3.6,  3.7, and
Figure 3.8, respectively.

In a mixture of several different absorbing substances that do not inter-
act, the density of the mixture equals the sum of the densities of the indi-
vidual substances.

(3.20)

ε λ( )

ε λ( )
N A

10( )ln
-----------------πr2χabs λ( )=

6.022 1023⋅
χabs λ( )

X

φ X( ) Xcε λ( ) 10ln–[ ]exp φ 0( )⋅ 10 Xcε λ( )[ ]– φ 0( )⋅= =

T λ( )
φ X( ) φ 0( )

T λ( ) φ X( )
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----------- Xcε λ( ) 10ln–[ ]exp 10 Xcε λ( )[ ]–= = =

T λ( ) 1=
T λ( ) 0=

D λ( ) T λ( )10log– X c ε λ( )⋅ ⋅= =
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This equation can also be written using the transmittances of the individual
substances. The total transmittance equals the product of all transmittances.

(3.21)

In practice, Equation 3.21 allows us to compute the transmittance of the
mixture of purely light-absorbing inks. 

Finally, let us calculate the average density  of an infinitely thin
slice of an absorbing medium under diffuse illumination (see Figure 3.9). We
know the angular distribution of the diffuse light flux from Equation 3.7,
and Beer’s law gives the absorption in the direction , which equals
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Figure 3.6 Transmission and density spectra of a cyan ink at various concentrations c.
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Hence, the average density  can be computed by integrating over all
directions. 

(3.22)

This shows that the optical density under diffuse illumination is twice the
density observed for a collimated light beam. This fundamental result gives
us a generalization of Beer’s law for diffuse light.

(3.23)
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Figure 3.7 Transmission and density spectra of a magenta ink at various concentra-
tions c.
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3.5 Light scattering
The term light scattering refers to all physical processes that move photons
apart in different directions. This phenomenon is often caused by local vari-
ations of the refractive index within a heterogeneous medium. Other scat-
tering processes, as for instance the Raman effect and the Brillouin scattering,
also change the wavelength (i.e., the energy) of the incident photon, but
these phenomena are rare in nature.

In this chapter, we will be interested in scattering caused by small par-
ticles that are dispersed in a homogeneous medium. Let us consider a thin
slice of thickness  of this scattering medium (see Figure 3.10). The varia-
tion  of the collimated light flux that crosses this slice is proportional to
the flux intensity  of the light beam and to the thickness  of the slice.

(3.24)
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Figure 3.8 Transmission and density spectra of a yellow ink at various concentra-
tions c.
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where  = light wavelength

 = scattering coefficient of the medium

By analogy with the absorption phenomenon (see Section 3.4), we introduce
the molar decadic scattering extinction coefficient (or, in short, scattering coeffi-
cient)  (unit, ), which can be interpreted as the scattering
cross-section area of a mole of particles of radius r.

(3.25)

(3.26)

dx
θcos

------------

θ

dx

Figure 3.9 The average absorption of an infinitely thin slice under diffuse illumina-
tion is related to the average path of the light in the medium.

φ φ + dφ

dx

Figure 3.10 Light scattered by an infinitely thin layer containing light-scattering
particles at a concentration c.
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where  = concentration of the particles

NA =  = Avogadro number

 = scattering efficiency factor of the particle

Note that the total extinction coefficient  of a particle that has both
a scattering and an absorbing behavior corresponds to the sum of the scat-
tering and absorbing cross-section areas (Equations 3.16 and 3.26).

(3.27)

Remark: Sections 3.5.1 and 3.5.2 can be skipped or browsed rapidly for a first
reading and revisited later as required.

3.5.1 Rayleigh scattering

The Rayleigh scattering theory applies to independent scattering of particles
that are about ten times smaller than the wavelength of the incident light.
In 1871, Lord Rayleigh established the following equation, which gives ,
the intensity of the light scattered in a direction having an angle  with the
direction of the incident light beam:

(3.28)

where  = intensity of the incident collimated light beam

 = its wavelength in empty space

 =  = permittivity of empty space (unit, )

 = distance at which the intensity  is measured

 = polarizability of the medium

N =  = number of particles per unit volume

The scattering is rotationally symmetrical about the incident light beam. The
detailed calculation can be found in the literature.14 

The polarizability  of a medium of permittivity  containing
particles of refractive index  and of volume  is given by15 

(3.29)

The scattering coefficient  is calculated by integrating Equation 3.28
over a sphere of radius .
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(3.30)

Using Equation 3.26, we can also deduce the scattering efficiency factor
.

(3.31)

where  = wavelength in the medium of refractive index  

 = scattering efficiency factor of the particle

Note that  is proportional to , which means that blue light is
more strongly scattered than red light. Sunlight scattered in the atmosphere
is mostly blue, which explains why the sky is blue. At sunrise and at sunset,
the light from the sun has to traverse a thicker atmospheric layer than at
noon, so most of the blue light is scattered, and the remaining unscattered
light is mostly red.

3.5.2 Mie scattering

The Mie scattering theory16 is a generalization of the Rayleigh theory, which
predicts the scattering behavior of a medium of refractive index  contain-
ing particles of radius  and of refractive index . This theory
assumes the absence of multiple scattering. In practice, this means that the
distance between two particles is greater than . The Mie scattering is also
rotationally symmetrical about the incident light beam. The intensity  of
the light scattered in the direction making an angle  with the direction of
the incident light beam, as derived from Maxwell’s equations, is given by17 

(3.32)

where  = wavelength of the incident light in the medium of refractive 

index 

 = number of particles per unit of volume

 = distance at which the intensity  is measured

The coefficients  and  are defined by the following series:
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(3.33)

The angular functions  and  are defined by recurrence as follows:

(3.34)

where the first functions are

(3.35)

The coefficients  and  are combinations of Bessel and Hankel func-
tions. To simplify their mathematical expressions, let us introduce the fol-
lowing variables:

(3.36)

Furthermore, let us define the functions  and .

(3.37)

where  = Bessel function of the first kind

 = Bessel function of the second kind

 = a Hankel function

The properties of the Legendre polynomial, of the Bessel functions, and of
the Hankel function can be found in most handbooks of mathematics.18 Using
Equations 3.36 and 3.37, the coefficients  and  can be written as follows:
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(3.38)

Note that  and  are complex if the particles attenuate electromagnetic
waves ( ). 

For small ( ) and nonattenuating particles ( ), the series 
and  can be limited to the terms , , and b1.

(3.39)

Note that  corresponds to the contribution of the Rayleigh scattering. If
we neglect all terms beyond  in Equation 3.33, we obtain the Rayleigh
scattering Equation 3.28.

The scattering coefficient  and the absorption coefficient  are
obtained by integrating Equation 3.32 over a sphere of radius . This
calculation is tedious, as the coefficients  and  are very complex. There-
fore, the scattering efficiency factor  and the absorption efficiency
factor  for many different values of  and  have been calculated
in the past, and they can be found in tables listed in the literature.19 Using
the approximation for small and nonabsorbing particles (taking into
account the terms , , and ), the scattering efficiency factor  of
the particle is 

(3.40)

Note that the first term in this series corresponds to the efficiency factor of
the Rayleigh scattering that we have already seen in Equation 3.31. For larger
particles, further terms in the series  and  must be taken into account.
Nowadays, computers allow us to calculate all coefficients numerically. 

It is found that scattering is proportional to  in the Rayleigh region
( ) and that, with further increase of , it tends to become proportional
to , i.e., wavelength independent. Therefore, the light scattered by large
particles (e.g., smoke particles) is white. Furthermore, the forward scattering
becomes greater than the backward scattering with increasing . Figure 3.11
shows the scattering diagram of spherical gold particles for different radii.
The Mie theory successfully predicts the spectra of colloidal suspensions,
metallic suspensions, and atmospheric dust. 
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3.5.3 Multiple scattering

In the framework of the Rayleigh and the Mie theory, we assumed that the
scattering particles are independent; i.e., the light scattered by one particle
does not interact with other particles. With diminishing distance between
the particles or increasing thickness of the medium, this assumption no
longer holds, and single scattering gives way to multiple scattering. It can
be shown that, for a sufficient number of particles, regardless of the scattering
law used, an isotropic distribution ultimately arises.20 With multiple scatter-
ing, the characteristic properties of single scattering disappear more or less
rapidly according to the given conditions.
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Figure 3.11 Scattering diagram according to Mie for spherical gold particles
( , , ) with radii (a)  (  Ray-
leigh region), (b)  ( ), and (c)  ( ). The unit of the
axes is . 
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3.6 Phenomenological models
There is no general quantitative solution to the problem of multiple scatter-
ing for large particles ( ) that are tightly packed. In such cases,
phase relations and interferences arise among the scattered beams. Therefore,
new approaches based on phenomenological theories had to be developed.
Throughout Section 3.6, the wavelength designation  is dropped to sim-
plify the notation, but , , , , , , , , , and  are functions of
wavelength.

3.6.1 Radiative transfer

The astronomer S. Chandrasekhar established in 1947 the radiative transfer
equation,21 which corresponds to an energy balance. This equation describes
the intensity change  of a light beam of given wavelength along a path
of length  within a medium of density  and total extinction coefficient

. 

(3.41)

where  corresponds to the source function characterizing a light
source. In the particular case of a nonluminescent medium,  is a scattering
function defined as

(3.42)

The function  is called the phase function. It gives the amount of
intensity that is scattered into a solid angle  of direction  if a beam
of radiation in the solid angle  strikes a mass element of
the medium (see Figure 3.12). Note that the phase function is normalized as
follows:

(3.43)

where  = fraction of light lost from an incident beam due to scattering

Term  is the albedo of the medium. The simplest example of phase func-
tion is  in the case of isotropic scattering. Another case of
interest is Rayleigh’s phase function, which corresponds to the angular term
of Equation 3.28.
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(3.44)

where  is the angle between the direction of the incident radiation in 
and the direction of the solid angle . In general, the phase function can
be expanded as a series in Legendre polynomials of the form

(3.45)

where  = the Legendre polynomial of degree 

 = a constant

Combining Equations 3.41 and 3.42 leads to an integro-differential equa-
tion that is difficult to solve. Nevertheless, solutions could be calculated in
a few particular cases, such as for isotropic scattering in a medium made of
parallel planes.21

The radiative transfer equation is very powerful, but it requires a tedious
mathematical treatment. Therefore, simplified versions of this theory are
used in practice, e.g., the Kubelka–Munk model and the multichannel model,
which are presented in the following sections.

3.6.2 Kubelka–Munk model (two-flux model)

Let us consider a reflector made of a reflecting substrate of reflectance  in
optical contact with a light-absorbing and light-scattering medium of thick-
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Figure 3.12 The phase function gives the amount of intensity that is scattered into
a solid angle  of direction  if a beam of radiation in the solid angle

 strikes a mass element of the medium.
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ness  (see Figure 3.13). The scattering is assumed to have an isotropic
distribution, as it results from multiple scattering (see Section 3.5.3). In 1931,
Kubelka and Munk22 proposed a reflection model based on two diffuse light
fluxes:  oriented downward and  oriented upward.

Let us analyze the variation of these fluxes when they cross a layer of
infinitesimal thickness dx. The  axis is oriented upward, and the origin is
set at the top of the substrate. Let  be the phenomenological absorption
coefficient corresponding to the fraction of the light flux absorbed by the
infinitesimal layer. Let  be the phenomenological scattering coefficient
corresponding to the fraction of the light flux that is scattered backward by
the infinitesimal layer.

We first analyze the variation of  when it crosses the layer. The flux
 is reduced due to absorption within the infinitesimal layer by an amount

, and the backscattering further reduces the flux by an amount
. However, the flux  is increased by the light that is backscattered

when the flux  crosses the same layer: dx. Putting these elements
together leads to the following equation:

(3.46)

The same analysis performed for the flux  leads to a similar relation
(notice the orientations along the vertical -axis).

(3.47)

Note that, in a transparent medium,  equals 0, and differential Equations
3.46 and 3.47 lead to Beer’s law for diffuse light (Equation 3.23). 

X

i(x)

j(x)

dx

X

Substrate of reflectance ρg

Figure 3.13 Light-absorbing and light-scattering medium of thickness X that is in
optical contact with a substrate of reflectance ρg. The medium is divided into parallel
layers of infinitesimal thickness dx. Note that two fluxes are considered: i(x), which
is oriented downward, and j(x), which is oriented upward. 
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Equations 3.46 and 3.47 together form a system of linear differential
equations that describes the variation of  and  when they cross an
infinitesimal layer of thickness dx.

(3.48)

Kubelka and Munk solved Equation 3.48 using a traditional calculation
method.22 Here, we propose a more modern approach based on matrix
algebra. The system in Equation 3.48 can be written in matrix form as follows:

(3.49)

This kind of matrix differential equation has a well-known solution, which
is given by the exponential of the matrix.23 By integrating the equation
between  and , we obtain

(3.50)

where , , ,  = elements of the matrix exponential

,  = intensities of the fluxes  and j at x = 0

Note that the exponential of a matrix  is defined by the following power
series:

(3.51)

From Equation 3.50 and the boundary condition , we can
derive by algebraic manipulations24,25 all the well-known results of the
Kubelka–Munk theory that are listed in the literature.26 The most important
result is the hyperbolic solution of the Kubelka–Munk model,
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(3.52)

where  and . The ratio  is called the
body (or true) reflectance27 of the analyzed sample. To characterize the medium
alone, practitioners use the reflectance  of a medium that
is so thick that further increase in thickness fails to change its reflectance. In
other words, if an additional layer of thickness  is put on top of such a
medium, we have . According to Equation 3.50,
we have

(3.53)

From a mathematical point of view, this means that the vector  is
an eigenvector28 of the matrix given in Equation 3.50, and that

 is the corresponding eigenvalue. This observation per-
mits us to obtain  by calculating the eigenvectors of this matrix. By
solving the characteristic polynomial of the matrix,29 it can be shown that
this matrix has two eigenvalues,

(3.54)

that are associated with the following eigenvectors, respectively:

(3.55)

Being a reflectance value,  must be in the range between 0 and 1. But
because the second component of  is outside the range , the solution
given by  must be discarded, and  is simply the second component of
the eigenvector .
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(3.56)

This result is often presented in a more compact form known as the
Kubelka–Munk function.

(3.57)

Other important results are the reflectance  of a layer with ideal black
background ( ), and the reflectance  of a layer with ideal white
background ( ).

(3.58)

(3.59)

Traditionally, , , and the thickness  of the medium are used to
determine the coefficients  and S. In a first step, we extract  from Equa-
tions 3.58 and 3.59.

(3.60)

Once  is known,  is obtained immediately. In a second step, we
extract  from Equation 3.58.

(3.61)

Finally, from the definition of ,

(3.62)

Note that the phenomenological coefficients  and  can be related to
the fundamental optical properties introduced previously. In Section 3.4, we
generalized Beer’s law for diffuse light (see Equation 3.23), which is equiv-
alent to . Therefore, we have (see Equation 3.16)

(3.63)
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A similar calculation allows us to relate  to the scattering coefficient .
Because the scattering in the medium is assumed to have an isotropic dis-
tribution, the scattering coefficient must be divided by two, because 
accounts only for backward-scattered light. Hence, we obtain from Equations
3.25 and 3.26,

(3.64)

3.6.3 Surface phenomena and Saunderson correction

In the Kubelka–Munk theory, the diffuse reflector is modeled by a light-
absorbing and light-scattering medium in optical contact with a substrate
that is supposed to be a Lambertian30 reflector of reflectance . In a medium
having a refractive index  different from that of air, surface reflection and
multiple internal reflections occur31 as shown in Figure 3.14. As a conse-
quence, the reflectances prevailing in a medium of refractive index  can
differ greatly from the reflectances measured at its surface. Traditionally, this
is taken into account by applying the Saunderson correction32 to the com-
puted spectrum. In this section, we write the Saunderson correction in matrix
form, to be applied to Equation 3.50. 

Let us denote by  the incident flux on the external surface of the paper
and by  the flux emerging from the paper. Let  be the fraction of diffuse
light reflected by the air-medium interface (external surface of the reflector),
and let  be the fraction of diffuse light reflected internally by the
air–medium interface (internal surface of the medium); see Figure 3.15.
According to Equations 3.13 and 3.14, the values of  and  depend only
on the refractive index  of the medium. Judd11 has computed their numer-
ical values for a large number of refractive indices (see Table 3.1). 

The balance of the fluxes at the air–medium interface, as shown in
Figure 3.15, leads to the following system of equations for i(X), the incident
flux below the air–medium interface, and for j, the emerging flux above the
air–medium interface:

S σ λ( )

S

S 2 10ln σ λ( )
2

----------⋅ c⋅ N A c πr2 χsc λ( )⋅ ⋅ ⋅= =

ρg

n

Air

Substrate: 
Diffuse reflector

Medium of
refractive index n

Figure 3.14 Surface reflection and multiple internal reflections caused by the inter-
face between the air and the medium.
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(3.65)

Assuming that the refractive index of the medium is constant over the
whole visible range of wavelengths,  and  are also constant. Hence,
Equation 3.65 can be written in the following matrix form:

(3.66)

We call the matrix in Equation 3.66 the Saunderson correction matrix. Note
that this correction matrix can be generalized for any interface between a
medium of refractive index  and a medium of refractive index . Accord-
ing to Section 3.3.2, the values of  and  are then given by

 and (3.67)

The Saunderson correction is obtained by combining Equations 3.66 and 3.50.

(3.68)

1 rs–( )i

j X( )
                             

      
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ri j X( )

rsiAir

Medium of
refractive
index n

       j

                             



Figure 3.15 External and internal reflections of the upward and downward fluxes
on the air–medium interface. 
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We denote the elements of the product matrix by , , , and . These
coefficients and the boundary condition  allow the calculation
of the reflectance R. 

(3.69)

This equation allows us to compute the reflectance under diffuse light
illumination of a light-absorbing and light-scattering medium in optical
contact with a substrate of known reflectance . If we develop the product
in Equation 3.68 algebraically, we obtain the famous Saunderson corrected
reflection formula.33 

(3.70)

where ρ =  = the body reflectance given by the Kubelka–Munk 
model

Figure 3.16 shows the reflectance and the body reflectance of a cyan sample.
In the graphic arts, most measuring instruments use a 45°/0° measuring

geometry wherein the incident light beam is collimated with an incidence
of 45°, and the detector is placed at an angle of 0° (see Figure 3.17). This set-
up prevents the light reflected specularly from entering the detector, hence

. Furthermore, in the particular case of a nonscattering medium
( ), the refracted light beam, with the normal to the surface, forms an
angle of , where  is the refractive index of the medium.
The entering collimated light beam follows within the medium a path of
length , which is shorter than the average path of length 
followed by diffuse light (see Section 3.4). Because the detector is at an angle
of 0°, only the light emerging with an angle of 0° is detected. This emerging
light beam follows in the medium a path of length , which is also shorter

t' u' v' w'
j 0( )  ρg i 0( )⋅=

R j
i
--

v' ρg w'⋅+
t' ρg u'⋅+
-------------------------= =

ρg

R rs
1 rs–( ) 1 ri–( )ρ

1 riρ–
---------------------------------------+=

j X( ) i X( )⁄

R
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Figure 3.16 Body reflection spectrum (dashed line) and reflection spectrum (contin-
uous line) of a cyan sample.
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than the average path length of  followed by diffuse light. Because the
total path length of the light beam within the medium is shorter, the absorp-
tion of the light beam within the medium is not the same as for diffuse light.
Therefore, the Saunderson correction matrix in Equation 3.66 must be mod-
ified as follows so as to take the 45°/0° geometry into account:34

(3.71)

Considering the particular case of a medium with refractive index n = 1.5,
we have . The modified Saunderson correction
matrix leads, after developing Equation 3.69, to the Williams–Clapper equa-
tion,35 

(3.72)

Note that  is the reflectance of the substrate within the medium of
refractive index n. The surface phenomena do not allow us to measure 
directly. Let  be the reflectance of the substrate measured in air without
the medium on top of it. If the substrate has the same refractive index  as
the medium,  is deduced from  by deriving the following formula from
Equation 3.70:

(3.73)

In practice, the substrate is not always available without the coating
medium on top of it. This happens, for example, in the case of the high-

45˚

Collimated 
Detector

light source

Air

Medium

Diffuse
reflector

X

Figure 3.17 Path followed in the medium by the collimated light beam produced
by a measuring instrument having a 45˚/0˚ measuring geometry.
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quality paper used in graphic arts, where the fiber substrate is coated with
an ink-absorbing layer of refractive index n. Assuming that the coating is
transparent, we can deduce  from Equation 3.73 by replacing  with the
measured reflectance of the paper.

Note that the matrix formulation of Equation 3.68 gives a better overview
of the modeled system. Instead of using several functions nested within each
other, the analyzed sample is simply modeled by the product of two matrices.

3.6.4 Multichannel model

The two-flux model proposed by Kubelka and Munk corresponds to a sig-
nificant simplification of the radiative transfer equation (see Section 3.6.1).
To improve the quality of the prediction, Mudget and Richards in 1971
proposed an intermediate model by considering a larger number of light
fluxes.36 Each flux propagates in a different fraction of space called a channel
(see Figure 3.18). Therefore, this theory is called the multichannel model or the
multiple flux theory. In this context, the radiative transfer equation corre-
sponds to a model that considers an infinite number of fluxes.

The multichannel model considers  fluxes;  fluxes denoted  are
oriented upward, and  fluxes denoted  are oriented downward. Let us
denote  as the absorption coefficient in the th channel, and  as the
scattering coefficient from the pth channel into the lth channel. The scattering
coefficients  are computed by using a scattering model, as for instance
the Mie model presented in Section 3.5.2. 

As in the Kubelka–Munk model, we analyze the variation of each flux
when it is traversing an infinitesimal layer of thickness . This gives us

 linear differential equations of the first order with  variables. These
equations can be written in matrix form as follows:

ρg Rg

θ2

θ1

Figure 3.18 In the multichannel model the whole space is subdivided into 2m chan-
nels where the lth channel corresponds to the space between the cone of angle 
and the cone of angle .

θl 1–

θl

2m m jl

m il

Kp p Sp l,

Sp l,

dx
2m 2m
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(3.74)

The sign inversion in the first  rows occurs because the  axis is
oriented upward. The pth element on the diagonal of the matrix corresponds
to the attenuation of the pth light flux. This attenuation is caused by the light
absorption  in the pth channel and by the scattering of light from the pth
channel into all other channels,

The off-diagonal element  corresponds to the light received by the flux
 from the channel p. 

The solution of Equation 3.74 is also given by the exponential of the
matrix. As in the Kubelka–Munk model, the boundary conditions at the
surface of the substrate define the relations between the fluxes  and the
fluxes . An extended Saunderson correction matrix that allows us to

xd
d
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predict the reflectance with a higher accuracy can be also defined. The
complete treatment is beyond the scope of this chapter, but the mathematical
procedure is the same as presented in the Sections 3.6.2 and 3.6.3. Note that
practitioners in the paint industry normally use the four-flux theory.37 

3.7 The fluorescence phenomenon
Let us first recall the basic principles of molecular fluorescence.38 We consider
a theoretical molecule having two electronic energy states,  (ground state)
and  (excited state). Each electronic state has several vibrational states
(see Figure 3.19). Incident polychromatic light (photons) excites the mole-
cules that are in state  and makes them temporarily populate the excited
vibrational states of  (Figure 3.19a).

A vibrational excited state has an average lifetime of only  s. The
molecule rapidly loses its vibrational energy and goes down to the electronic
energy state . This relaxation process is nonradiative, and it is caused by
the collisions with other molecules to which the vibrational energy is trans-
ferred. This induces a slight increase of the temperature of the medium. The
excited state  has a lifetime varying between  and  s. Now, there
are two ways for the molecule to give up its excess energy. One of them is
called internal conversion, a nonradiative relaxation for which the mechanism
is not fully understood. The transition occurs between  and the upper
vibrational state of  (Figure 3.19b), and the lost energy raises the temper-
ature of the medium. The other possible relaxation process is fluorescence.
It takes place by emitting a photon of energy corresponding to the transition
between  and a vibrational state of  (Figure 3.19c). The remaining excess
energy with respect to  is lost by vibrational relaxation. To quantify the
number of photons emitted by fluorescence, the quantum yield is introduced
as the rate of absorbed photons that are released by radiative relaxation.
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Figure 3.19 The energy level diagram of (a) absorption, (b) nonradiative relaxation,
and (c) fluorescent emission. 
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The wavelength band of absorbed radiation that is responsible for the
excitation of the molecules is called the excitation spectrum. This spectrum
consists of lines whose wavelengths correspond to the energy differences
between excited vibrational states of  and the ground electronic state 
(according to the energy difference  produced by the absorption of a
photon of wavelength : , where  is Planck’s constant and

 is the speed of light). The fluorescence emission spectrum (or fluorescence
spectrum), on its part, consists of lines that correspond to the energy differ-
ences between the electronic level  and the vibrational states of . The
multitude of lines in both spectra is difficult to resolve and makes them look
like continuous spectra. Note that the fluorescence spectrum is made up of
lines of lower energy than the absorption spectrum. This wavelength shift
between the absorption band and the fluorescence band is called the Stokes
shift. A particular case in which the absorbed photon has the same energy
as the one re-emitted by fluorescence is called the resonance line. 

The shape of the fluorescence emission spectrum does not depend on
the spectrum of the absorbed light, but on the probability of the transition
between the excited state  and the vibrational states of . Often, the
fluorescence spectrum looks like a mirror image of the excitation spectrum
(Figure 3.25);39 this is due to the fact that the differences between vibrational
states are about the same in ground and excited states.

Experience shows that fluorescence is favored in rigid molecules that
contain aromatic rings.40 This can easily be understood, as a rigid molecule
has a lower possibility of relaxing by a nonradiative process. In fact, the
lower the probability of nonradiative relaxation, the higher the quantum
yield. Hence, a rise in the medium’s viscosity induces a higher fluorescence.
In the particular case of inks, the liquid substance fluoresces less than the
dried-up printed ink, whose molecules have less degrees of freedom. On the
other hand, a rise of the ambient temperature implies a higher probability
of nonradiative relaxation due to collisions with other molecules, and a drop
in fluorescence is observed.

The fluorescence spectrum is measured with a fluorescence spectrome-
ter.41 A sample of the unknown fluorescent substance is excited with a mono-
chromatic light beam whose wavelength is within the excitation band of the
molecule. The emitted light is analyzed, and the resulting spectrum is the
fluorescence spectrum. Its amplitude is maximal when the wavelength of
the incident light corresponds to the maximum absorption of the fluorescent
molecule. We denote by  the normalized fluorescence spectrum whose
integral equals 1. A method for determining the quantum yield is described
in Section 3.7.4. 

At high concentrations, the behavior of the fluorescent substance is no
longer linear. The absorption is too large, and no light can pass through to
cause excitation. Temperature, dissolved oxygen, and impurities reduce the
quantum yield; therefore, they also reduce the fluorescence. This phenome-
non is called quenching. In our model, we will suppose that no quenching
occurs.

E1 E0

E∆
λ E∆ hc( ) λ⁄= h

c

E1 E0

E1 E0

f λ( )
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3.7.1 Fluorescence: transparent layer

To establish a mathematical formula that predicts the behavior of a trans-
parent medium containing fluorescent molecules, we consider a slice of
thickness . We denote by  the absorption coefficient of the fluorescent
molecules, by  their concentration, and by  their quantum yield in this
medium. In the model for transparent media,42 only the positive direction
of propagation is taken into account (see Figure 3.20).

The intensity variation  of the light emerging in the positive direction
has two components. The first, , is due to the light that has been
absorbed. As we have already seen in Equation 3.23, for diffuse light, this
absorption is twice43 the value given by Beer’s law. 

(3.75)

The second component, , is the light emitted by fluorescence.
The fluorescent molecules emit a fraction  of the photons absorbed in the
excitation band  and spread them over the whole emission band defined
by the normalized fluorescence spectrum . Due to the fact that fluores-
cent emission is made in all directions of space, only one-half of the photons
go into the positive direction. Hence, the quantum yield must be divided by
two. The second component  is therefore given by

(3.76)

The integral between square brackets multiplied by  equals the
amount of absorbed energy. Equation 3.76 leads to the following differential
form, which is an extension of Beer’s law for diffuse light and fluorescent
media:

dx ε λ( )
c Q

φ φ +  φ d

dx

Positive direction

Figure 3.20 Absorption and emission in an infinitely thin fluorescent layer which
is irradiated by a diffuse light flux φ.
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(3.77)

This can be simplified due to the fact that we work with a finite number of
wavelength bands whose widths are , so the integral is replaced by a
finite sum. The new relation is given in Equation 3.78, where the index 
runs through the wavelength bands.

(3.78)

Writing Equation 3.78 for each of the bands leads to a system of linear
differential equations with constant coefficients that can be put into matrix
form. If we denote , we obtain Equation 3.79.

(3.79)
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The fact that the emitted photon has less energy than the absorbed one
implies that  for ; hence the matrix is triangular. 

The solution of equations such as Equation 3.79 has already been inves-
tigated by mathematicians.23 Systems of differential equations whose general
expression is  (where  is the constant square matrix of
Equation 3.79 and  is the column vector containing , . . . , )
admit as a solution, when  is integrated between  and ,

 (3.80)

The vector  is the spectrum of the incident light (light source), and
 is the spectrum of the light emerging from a slice of thickness  of

the fluorescent medium. The exponential of the matrix  is defined as
follows: 

(3.81)

where 

(3.82)

We will call  the fluorescence density matrix. The transmission spec-
trum  resulting from the combined action of fluorescence and absorp-
tion can be computed for each wavelength  using the expression  =

, where  and  are, respectively, components of
 and . Note that an accurate prediction requires measuring ,

which can be significantly different from a standard illuminant (see
Figure 3.21).

The solution given by Equation 3.80 is a generalization of Beer’s law;
for a purely absorbing substance when no fluorescence is present, the matrix

 consists of the terms  on the diagonal and of zeros anywhere
else. This simplification of Equation 3.80 leads to Equation 3.23, the absorp-
tion equation for diffuse light.43 
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This approach can be extended to cases involving two or more fluores-
cent substances but, for this end, we must distinguish between several pos-
sible cases. Let  and  be two different substances whose fluorescence
density matrices are  and  and whose respective concentrations are

 and . Hence, 

• If light goes first through a layer of thickness  of substance  and
then through a layer of thickness  of substance , we have,

(3.83)

• If light goes first through a layer of thickness  of substance  and
then through a layer of thickness  of substance , we have,

(3.84)

• If light goes through a layer of thickness  consisting of a mixture
of the substances  and , we have,

(3.85)

If either substance  or  is fluorescent, the matrices  and  do not
necessarily commute, so the resulting transmittance spectrum may be dif-
ferent in each of these three cases. As an example, let us consider the case
consisting of a yellow filter and of a fluorescent yellow filter that absorbs
blue light between 400 and 500 nm and emits green light between 500 and
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Figure 3.21 Relative radiance spectrum of the tungsten light source of a spectro-
photometer. It was measured by mounting the radiometer at the position of the
sample holder. Note that this spectrum is significantly different from the standard
illuminant A.
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600 nm (see Figure 3.22). If white light goes first through the yellow filter
and then through the fluorescent yellow filter (see Figure 3.22A), the blue
light is absorbed by the yellow filter, and it cannot cause fluorescence in the
fluorescent yellow filter. But, if white light goes first through the fluorescent
yellow filter and then through the yellow filter (see Figure 3.22B), green light
is produced by fluorescence in the first filter. This green light is not absorbed
by the second filter, hence the resulting spectrum is different from that of
the first case.

3.7.2 From a one-flux to a two-flux model for a reflective substrate

In the present fluorescence model,44 we consider a fluorescent medium in
optical contact with a substrate that is a diffuse reflector (see Figure 3.23).
This reflector is supposed to be Lambertian.30 Like in the Kubelka–Munk
analysis, we consider an upward flux  and a downward flux  going
through an infinitely thin layer of the medium, which contains a fluorescent
substance at concentration  (see Figure 3.24). The positive direction of the
variable  is oriented upward, and its origin is at the bottom of the fluores-
cent medium. To simplify the equations used in this section, let us introduce
the column vector , whose components are the intensities of the upward
flux at various wavelength, and the column vector i, whose components are
the intensities of the downward flux.

1

nm500 600400 700

1

nm500 600400 700

White light source Yellow filter Fluorescent yellow filter

1

nm500 600400 700
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1

nm500 600400 700

Spectrum
of the light
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Figure 3.22 The noncommutativity of a yellow filter and a fluorescent yellow filter.
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, 

We also write the fluorescence density matrix  of the ink as the difference
between a diagonal matrix  representing the absorption and a strictly
lower triangular matrix  representing the fluorescent emission.

Fluorescent

Substrate:

Air

Diffuse light fluxes

i j

X

0

Interface

Diffuse 
Reflector

 Medium

Figure 3.23 Model of a fluorescent reflector made of a fluorescent medium in optical
contact with a diffuse reflector. This model describes well a high-quality paper made
of an ink-absorbing layer in optical contact with a diffuse white reflector. The arrows
represent diffuse light fluxes (light is coming from all directions of one hemisphere
with an angular distribution corresponding to that of a Lambert surface). 

i

i + di

dx

j

j + dj
x

Figure 3.24 Absorption and emission in an infinitely thin layer of the transparent
medium containing a fluorescent substance. 
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(3.86)

Considering first the vector of upward flux j, its variation 
has two components. The first one is the absorption and fluorescent emission
caused by the upward flux which is, according to the results of Section 3.7.1,

. The second component is the fluorescence caused by the down-
ward flux i, which is emitted in the upward direction, . Hence, the
change of j is

(3.87)

The same reasoning is applied to the downward flux and leads to a
similar equation. Note that the downward orientation of i introduces a
change of sign. By combining the equations obtained for j and i, we get a
system of differential equations whose matrix form is

(3.88)

Equation 3.88 is a linear differential equation of the first order with
constant coefficients. When  is integrated between  and , it admits a
solution23 that is given by the matrix exponential

(3.89)

where  and  are, respectively, the spectra of the downward and of
the upward flux at vertical location . The matrix exponential is defined as
follows:

(3.90)
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At the bottom of the fluorescent medium, the spectrum of the upward
flux  is linked with the spectrum of the downward flux  by the
relation

(3.91)

where  is the reflection matrix of the substrate.45 For pure reflectors, this
matrix is diagonal, and the coefficients on the diagonal are the body reflec-
tances of the different wavelength bands. If the reflecting substrate contains
fluorescent substances (as, for instance, optical brighteners), the matrix 
is triangular. Note that commercial bispectral spectrofluorimeters can be
used to measure the matrix  (see Section 3.7.4). 

3.7.3 Spectral prediction for reflective fluorescent material

The reflective fluorescent material made of a diffusely reflecting substrate
with a fluorescent coating is modeled by means of three matrices: the Saun-
derson correction matrix (Equation 3.66); the matrix exponential (Equation
3.89), which models the fluorescent medium; and the reflection matrix 
of the substrate (Equation 3.91).

By multiplying the Saunderson correction matrix with the matrix expo-
nential, we obtain the following relation:

(3.92)

where T, U, V, W = matrices
I = the identity matrix

Thanks to Equation 3.91, it is possible to express the vector  as a function
of .

(3.93)

Because the multiplication of matrices is not commutative, the order of
the terms in Equation 3.93 must be respected. This corresponds to the fact
that superposed fluorescent layers do not commute, as we have already seen
in Section 3.7.1. 

If the fluorescent material is illuminated by a diffuse light source of spec-
trum , the spectrum of the diffuse reflected light is . The reflectance spec-
trum is computed by dividing the components of  by the components of .
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(3.94)

Figure 3.25 shows the absorption spectrum, the fluorescence spectrum,
and the reflectance spectrum of a fluorescent yellow ink printed on paper.

As in Section 7.1, this approach can be extended to cases involving two
or more fluorescent substances. Once again, we must distinguish among
several possible cases. Suppose  and  are two different substances whose

R λ( ) j λ( )
i λ( )
---------=
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fx100 Fluorescence Spectrum
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D Absorption Spectrum

Figure 3.25 Absorption spectrum , normalized fluorescence spec-
trum , and reflection spectrum  of a fluorescent yellow ink printed on paper.
In this particular case, the excitation spectrum and the absorption spectrum are
identical. The quantum yield of the yellow ink is Q = 0.7. The paper consists of a
transparent coating of refractive index n = 1.5 in optical contact with a diffusely
reflecting substrate without optical brighteners. The spectrum of the light source of
the measuring instrument is given in Figure 3.21. The measured reflection spectrum
(continuous line) is well predicted by the model (dotted line). The dashed line shows
the prediction result when only absorption is taken into account.
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fluorescence density matrices are  and , and
whose respective concentrations are  and . As a result,

• If a layer of thickness  of substance  is on top of a layer of
thickness  of substance B, we have,

(3.95)

• If a layer of thickness  of substance  is on top of a layer of
thickness  of substance A, we have,

(3.96)

• If light goes through a layer of thickness  consisting of a mixture
of the substances  and , we have,

(3.97)

If one of the substances  or  is fluorescent, the matrices  and 
do not necessarily commute, so the resulting reflectance spectrum may be
different in each of these three cases. As an example, let us consider the
case consisting of a yellow filter and of a fluorescent yellow filter that
absorbs blue light between 400 and 500 nm and emits green light between
500 and 600 nm (see Figure 3.26). If the yellow filter is superposed on top
of the fluorescent yellow filter (see Figure 3.26A), the blue light is absorbed
by the yellow filter, and it cannot cause fluorescence in the resulting spec-
trum. But if the fluorescent yellow filter is superposed on top of the yellow
filter (see Figure 3.26B), green light is produced by fluorescence in the
resulting spectrum.

3.7.4 Measuring the parameters of the fluorescence model

To compute the fluorescence density matrix , four elements have to be
determined: the excitation spectrum, the absorption coefficient , the
normalized fluorescence function , and the quantum yield . (Note
that  contains discrete values of the functions  and .)

Because the dye concentration  is unknown, it is impossible to deter-
mine the absorption coefficient . However, according to Equation 3.19,
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the density spectrum  and the absorption coefficient  are propor-
tional and the proportionality factor is the dye surface density . Note
that each non-zero element of the fluorescence density matrix  contains a
factor  (see Equation 3.79). Because, in Equation 3.80,  is multiplied
by q, each occurrence of  is multiplied by q, and this product equals the
density . Hence, for a given sample of density , we do not need
the actual values of  and of , and we can work relatively to the density
spectrum  of a reference sample so that

 (3.98)

where  is the proportionality factor between  and .
The excitation spectrum is determined in a two-step procedure. To avoid

deviations due to self-absorption, the fluorescence measurement must be
performed on a sample whose maximal density is smaller than 0.1 over the
whole spectrum ( ). This means that light emitted by fluorescence
is not reabsorbed by another molecule of the sample. At first, the whole
density spectrum  of our sample is measured with a spectrophotom-
eter. This instrument uses a monochromatic collimated light beam that goes
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Figure 3.26 The noncommutativity of a superposition of a yellow filter and a fluo-
rescent yellow filter covering a diffuse reflector.

D λ( ) ε λ( )
q cX=
M

ε λi( )  M
ε λi( )

D λi( ) D λi( )
q ε λi( )

D' λi( )

D λi( )  qε λ( ) q'D' λi( )= =

q' D' λi( ) D λi( )

D λ( ) 0.1≤

D λ( )

-ColorBook  Page 217  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



218 Digital Color Imaging Handbook

through the transparent sample before reaching a light detector. Because
only a small fraction of the fluoresced light passes through the entrance slit
of the detector, the deviation induced by the fluorescent emission can be
neglected. 

In the second step, the location of the excitation spectrum within the
density spectrum is determined. This can be done once we have an a priori
knowledge of the approximate position of the fluorescence spectrum (for
example, by a preliminary measurement using a fluorescence spectrome-
ter).41 This device has two monochromators; the first one is used to generate
a monochromatic light beam that excites the sample, and the second mono-
chromator is used to analyze the light emitted by the sample. In our present
measurement, the second monochromator is set to a fixed wavelength that
is supposed to be within the fluorescence spectrum (the a priori knowledge).
The first monochromator sweeps the whole spectrum, and the intensity of
the emitted light is recorded. This provides the excitation spectrum and its
location.

To determine the normalized fluorescence function, a fluorescence spec-
trometer is needed. The sample is excited with a monochromatic light beam
whose wavelength corresponds to the maximum absorption in the excitation
spectrum. Because the shape of the fluorescence emission spectrum does not
depend on the excitation wavelength (see Section 3.7), the normalized fluo-
rescence function is easy to compute by dividing the measured fluorescence
spectrum by its integral value, which is proportional to the number of flu-
oresced photons.

Once the excitation spectrum and the fluorescence function have been
measured, the quantum yield is determined using a method described in
the literature.46 This method is based on a measurement made relatively to
a standard fluorescent substance of known quantum yield. To be reliable,
the location of the excitation spectrum and the location of the fluorescence
spectrum of the standard substance must correspond to those of our sample.
Based on these criteria, the standard substance is chosen from tables given
in the literature.47 

The quantum yield of the unknown substance is given by46

(3.99)

In this equation, the subscript u stands for unknown and the subscript s for
standard.  is the absorption at the excitation wavelength, and  is the
quantum yield. The refractive indices of the solvent of the standard fluo-
rescent substance ( ) and of the medium of the unknown fluorescent
substance ( ) are also taken into account. The variable  is proportional
to the total number of photons emitted by fluorescence. This value is com-
puted by integrating the spectrum emitted by fluorescence during the
experiment.

Qu
AsFun2

AuFsn0
2

----------------- Qs⋅=

A Q

n0

n F

-ColorBook  Page 218  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



Chapter three: Physical models for color prediction 219

Within the excitation spectrum, we must select a single wavelength that
gives the highest possible fluorescence in both the standard substance and
our sample. These two substances are excited using the same fluorescence
spectrometer at the selected wavelength, and the spectrum of the fluoresced
light is measured. By integrating the fluorescence spectra of the standard
substance and of our unknown sample, we get the respective number of
photons,  and , emitted by fluorescence. Because the excitation spectra
of both substances are known, we have the respective absorption factors 
and  at the selected excitation wavelength. Finally, the quantum yield 
of our sample is calculated using Equation 3.99. Note that three values must
be found in the literature: the quantum yield  of the standard substance,46

the refraction index  of the medium containing it, and the refraction index
 of our sample’s medium.

This experimental determination of the quantum yield is rather difficult
to perform. Therefore, it is often preferred to estimate the quantum yield by
using a best-fit method applied on a test sample. This is an iterative process.
First we give  a start value, then we compute the reflectance spectrum of
the test sample and compare the result with the measured spectrum. If the
fluorescence is underestimated, we increase Q; otherwise, we decrease it.
The computation is then redone with the new value of Q. This iterative
process stops when the square of the difference between the computed and
the measured spectra is minimal. Note that this estimation method reduces
the number of experiments to be performed, but it no longer guarantees that
the real physical quantum yield is used.

Because the refractive index  of the fluorescent medium is known from
the literature,48 the internal and external reflection  and  can be computed
using Judd’s method (see Equations 3.13 and 3.14 in Section 3.3.2). The
reflection matrix of the substrate  is measured using the two monochro-
mator method described by Donaldson,45 using barium sulfate ( ) as
the white reference. Note that this measurement must be performed on an
identical sample without the fluorescent coating. Sometimes, only the coated
substrate without fluorescent substances in the coating is available, e.g., in
the case of coated paper. In this particular case, the measured reflection
matrix  corresponds to the matrix product.

(3.100)

This relation can be solved for the matrix  as follows:

(3.101)

Note that the multiplication of matrices is not commutative, so the order of
the terms in Equation 3.101 must be respected.
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3.8 Models for halftoned samples
Most printing devices are only bilevel, meaning that they are capable of
printing ink only at a certain fixed density or leaving the substrate unprinted,
but they cannot produce intermediate ink densities. In such devices, the
visual impression of intermediate tone levels is usually obtained by means
of the halftoning technique, i.e., by breaking the original continuous-tone
image into small dots whose area coverage varies depending on the tone
level. Halftoning is also used for most color printing devices, where each of
the inks [usually cyan (C), magenta (M), yellow (Y), and often black (K)] is
only bilevel. This gives to the eye, when looking from a sufficient distance,
an illusion of a full range of intermediate color levels, although the printing
device is only bilevel. In this section, we focus our discussion on predicting
the reflectance of halftoned samples, where dyes (or pigments) are no longer
uniformly distributed over the entire surface. 

3.8.1 The Murray–Davis equation

Let us consider a surface of unit area, and let  be the reflectance spec-
trum of a solid sample, i.e., a sample whose surface is fully covered with an
ink layer of constant density. The reflectance spectrum of the bare substrate
is denoted . The total reflectance spectrum  of a halftoned sample
having a fraction  of area covered with ink ( ) is given by the
following weighted sum (see Figure 3.27): 

Rs λ( )

Rg λ( )  R λ( )
a 0 a 1≤ ≤

0.2 0.4 0.6 0.8 1
a

0.2

0.4

0.6

0.8

1
R

Figure 3.27 Reflectance  of halftoned samples having a fraction a of
area covered with black ink (continuous line). The Murray–Davis model assumes a
linear behavior (dotted line), whereas the Clapper–Yule equation predicts a nonlinear
behavior caused by the light scattering in the substrate (dashed line).

R λ = 550 nm( )
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(3.102)

This relation is often written in a different way using the reflection density
spectrum . In this case, Equation 3.102 is called the Mur-
ray–Davis equation,49 

(3.103)

This equation is sometimes given in an alternative form that is useful for
converting densities into area coverage.

(3.104)

3.8.2 The classical Neugebauer theory

In 1937, Neugebauer proposed a method for predicting the spectra of half-
toned color prints produced by the superposition of cyan, magenta, and
yellow dot-screens.50 In traditional printing, a dot-screen is a regular lattice
of dots that are ordered in parallel rows along two perpendicular axes. The
dots have variable sizes so as to produce the correct halftone levels. Further-
more, the cyan, magenta, and yellow screens are mutually rotated by 30° or
60° to avoid moiré patterns.51 Neugebauer observed, under the microscope,
that such a halftone print was in fact a mosaic of eight colors, which corre-
spond to the  possible overlaps of the cyan, magenta, and yellow inks:
white (= no ink), cyan, magenta, yellow, red, green, blue, and black (see Table
3.2). These colors are called Neugebauer primaries. Neugebauer based his
model on the assumption that the dots in the different screens are almost
independent of each other. This assumption, attributed to Demichel,52 is,
however, only approximately true in traditional color printing.53 

To explain Neugebauer’s method, let c, m, and  be the fractions of area
covered by the cyan ink, the magenta ink, and the yellow ink, respectively.
From a statistical point of view, c, m, and  can also be interpreted as the
probabilities for a given point to be covered by one of the three inks. Hence,
the probability for a given point to be white, i.e., not covered by any ink,
equals  (no cyan ink) times  (no magenta ink) times  (no
yellow ink). By a similar reasoning, we deduce the fraction of area occupied
by the eight Neugebauer primaries as shown in Table 3.2. The reflectance
spectrum of the halftoned color print is then given by the following Neuge-
bauer equation: 

(3.105)
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This is a simple extension of Equation 3.102. Note that Equation 3.105 is a
polynomial of degree three for the dot area triplet .

The classical Neugebauer equation leads to color prediction errors of
about  in CIELAB. Several attempts have been made to improve
the Neugebauer model.54 One of the most important improvements is the
cellular Neugebauer method proposed in 1992 by Heuberger et al.55 The
CMY color space is subdivided into rectangular cells. The reflectance spectra

 of the samples corresponding to the corners of the cells are measured.
By means of Equation 3.105, the new reflectance spectra  ( ) of
eight equivalent primaries according to Table 3.2 are computed for each cell.
The reflectance spectrum  of a new given color defined by the dot area
triplet  is now computed in a two-step process. First, we find the
cell of the CMY color space to which it belongs; then, we assign the dot area
triplet  into the traditional Neugebauer equation with the equiva-
lent reflectances  that we have computed for the cell.56 Note that this
corresponds to a polynomial interpolation of degree three within each cell.
Using this improved model, the average prediction error drops to 
in CIELAB when the color space is subdivided into  cells; however,
this requires measuring  samples. The main drawback of this cel-
lular method lies, indeed, in the large number of samples that must be
measured. 

3.8.3 Extended Neugebauer theory

In some printing processes, the number of inks  is greater than three, and
each ink may have  density levels ( ). The Neugebauer theory can be
easily generalized to such cases by considering each of the  possible ink

Table 3.2 Fraction of Area Occupied by the Eight Primaries of the Neugebauer 
Model

Primary Ink Combination Reflectance Fraction of Area

White —  

Cyan Cyan  

Magenta Magenta  

Yellow Yellow  

Red Magenta, yellow  

Green Cyan, yellow  

Blue Cyan, magenta  

Black Cyan, magenta, yellow  
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superpositions as a Neugebauer primary. The generalized Neugebauer equa-
tion thus obtained is:

 with (3.106)

where  = reflectance of the Neugebauer primary 

 = fraction of area it occupies

Note that, if the superposed layers are not independent of each other, the
parameters  cannot be calculated as in the classical Neugebauer model. 

3.8.4 The Yule–Nielsen equation

Yule and Nielsen pointed out that light does not emerge from the substrate
at the point where it entered. This is a consequence of the light scattering in
the substrate. Therefore, a photon that penetrates the substrate in an area
without ink may emerge in an inked area, and vice versa. As a consequence
of this exchange of photons, the fraction of area  obtained from Equation
3.104 (the Murray–Davis equation) is greater than the real area covered by
ink. This phenomenon is called optical dot gain or the Yule–Nielsen effect. 

To improve the prediction of the reflection density  of a halftoned
print, in 1951, Yule and Nielsen suggested the following correction to Equa-
tion 3.103:

(3.107)

where  = reflectance density of the substrate

 = fraction of area covered by the ink whose solid reflectance 
density is 

 = an empirical correction factor called the Yule–Nielsen factor

Factor n must be determined experimentally and depends on the optical
properties of the substrate. In the literature, Equation 3.107 is called the
Yule–Nielsen equation.57,58 Note that, in the particular case of , Equation
3.107 gives the Murray–Davis equation (Equation 3.103). The generalization
of Equation 3.107 for  Neugebauer primaries was suggested by Vig-
giano.59 In the literature, this generalization is called the n-modified Neuge-
bauer equation, and it can be written as follows:
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(3.108)

3.8.5 The Clapper–Yule equation

After formulating the Yule–Nielsen equation, Yule worked with Clapper to
develop an accurate model for halftone prints, based on a theoretical analysis
taking into account surface-reflection, multiple-scattering, internal-reflec-
tion, and ink transmission.60 In this model, light is reflected many times
internally by the air–medium interface and by the substrate. A fraction of
light emerges at each reflection cycle, and the total reflectance is the sum of
all those fractions.

Let us denote  as the surface reflection,  as the internal reflection,
 as the body reflectance of the substrate, and  as the transmittance

spectrum of the ink under diffuse light. A light beam that strikes the surface
of a halftone print is partially reflected and partially transmitted into the
medium (see Figure 3.28). The reflected fraction is given by the surface
reflection . The transmitted fraction has two components. The first com-
ponent  enters the medium through the unprinted area; the
second component  enters the medium through the ink of
transmittance . Therefore, the irradiance in the substrate resulting from
the entering light is . The light is assumed to be
totally scattered within the substrate of body reflectance . The emerging
light emerging is again attenuated by a factor  as a result of
the ink pattern, and by a factor  because of the internal reflection.
The first emergence of light is given by . The
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Figure 3.28 In the Clapper–Yule model, fractions of light emerge at each reflection
cycle.
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internally reflected light suffers one further change. The fraction that
attempted to emerge through an inked area must pass through the ink a
second time, so its intensity must be multiplied by . The light that re-
enters the substrate after the internal reflection is then given by

. This sequence of events contin-
ues until the remaining light is negligible. The emerging fractions of light
are as follows (see Figure 3.28):

• Surface reflection,

• First emergence,

• Second emergence,

• Third emergence,

• . . . th emergence,

The sum of this geometrical series is the reflectance of the halftone print (see
Figure 3.27). This leads to the following Clapper–Yule equation, which was
published in 1953:60 

(3.109)

3.8.6 Advanced models

The Yule–Nielsen effect has a large impact on the color produced by halftone
prints. Intensive investigations have been made so as to relate the empirical
parameter  of the Yule–Nielsen equation to physical quantities. The result-
ing theories model the light scattering in the substrate by a point spread
function (PSF) , which expresses the density of probability for a pho-
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ton entering the substrate at location  to emerge at the location .
The light reflected at location  of a halftone print is then given by:

(3.110)

where  = convolution operator

 = body reflectance of the substrate

 = surface reflection

 = transmittance at location  

If there is ink in this location, then ; otherwise, .
The wavelength designation  is dropped to simplify the notation, but

, , and  are functions of wavelength. The reflectance
 of the whole halftone print is the spatial average of . Note that

the multiple internal reflections are accounted by the PSF .
In 1978, Ruckdeschel and Hauser derived the empirical Yule–Nielsen

factor  from the PSF and the period of the halftone screen.61 They assumed
a Gaussian PSF,

(3.111)

where  is a characteristic scattering length of the photon in the substrate. 
According to their calculations, the Yule–Nielsen factor is given by the

following relation:

(3.112)

where  = period of the screen

Note that the value of  approaches 1 as the substrate approaches a specular
surface ( , Murray–Davis model; see Section 3.8.1) and approaches 2
as the substrate becomes a perfect diffuser ( , Clapper–Yule model,
see Section 3.8.5). In 1997, Rogers showed that the characteristic scattering
length  is related to two physical parameters:62 the absorption in the sub-
strate and the optical thickness of the substrate. If there is no absorption in
the substrate,  increases without bound as the optical thickness of the
substrate tends to infinity. If absorption occurs, however, the scattering
length  reaches a limit. 
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Further investigations made by Rogers showed that the PSF is a series
of convolutions whose terms are the contributions of the multiple internal
reflections occurring in the substrate.63 

(3.113)

where  = internal reflection

 = internal point spread function (internal PSF), which does not 
take multiple internal reflections into account

Note that, for substrates having a low internal reflection , we have
. On a macroscopic scale, the PSF  shown in Equation

3.113 induces Yule–Nielsen factors  that are greater than 2. Such
Yule–Nielsen factors are often found in practice, and they are not explained
by the simple PSF given by Equation 3.111. 

The internal PSF derives from the radiative transfer equation (see Section
3.6.1), but its analytical form, which is a series in MacDonald functions (also
called modified Bessel functions), is cumbersome.62 According to Gustav-
son’s studies,64 the internal PSF is closely approximated by a function 
that has a circular symmetry ( ) and a strong radial decay. 

(3.114)

where  controls the radial extent of the internal PSF. In practice,  is
computed from the light profile measured across an optically sharp edge
between an inked and a non-inked area.65,66 

In 1997, Arney proposed a probabilistic approach that is less complex
than the PSF convolution.67,68 He introduced the scattering probability 
for a photon that enters the substrate through a region covered by the
Neugebauer primary  of transmittance , to emerge through a region
covered by the Neugebauer primary  of transmittance . The reflectance

 of a halftone print is then given by

(3.115)

where  = reflectance of the substrate

 = fraction of area covered by the Neugebauer primary 
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In the particular case of traditional halftone screens, Arney showed that the
scattering probabilities  are given by the following empirical relations:

(3.116)

where  = an empirical parameter.
Arney suggested that  is related to the characteristic scattering distance

 and the period  of the screen by , where  is an
experimentally determined proportionality coefficient. Note that the scatter-
ing probabilities  can also be computed from the PSF convolution.

 

3.8.7 The Monte-Carlo method

 

The reflectance of a medium that is inhomogeneous or anisotropic (e.g.,
biological tissue) can be computed by a Monte-Carlo simulation.

 

69

 

 The
medium is subdivided into volume elements called 

 

voxels

 

. Each voxel is
associated with an absorption coefficient and a scattering phase function (see
Section 3.6.1). 

The computer casts a virtual ray of unit intensity on the voxels. When
this ray enters a new voxel, its new intensity is computed from the absorption
coefficient of the voxel, and a random number is generated to decide, accord-
ing to the scattering phase function, in which direction the ray should be
scattered. The process is iterated until the ray leaves the voxels or until the
intensity of the ray drops below some predefined threshold. The reflectance
of the medium is deduced from the results of a large number of simulations. 

 

3.9 New mathematical framework 
for color prediction of halftones

 

The Kubelka–Munk model presented in the Section 3.6.2 assumes that the
coating medium is uniform, i.e., that the same amount of dye is everywhere.
In halftoned prints, this is no longer true, because ink is not applied uni-
formly over the whole surface. A photon can penetrate the printed media
through an inked region and leave the printed media through a non-inked
region, or vice versa (see the Yule–Nielsen effect in Section 3.8.4).

In this section, we generalize the models presented in Sections 3.6, 3.7,
and 3.8, and we incorporate them into a new mathematical framework based
on matrices.
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 For the sake of simplicity, we consider only two Neugebauer
primaries: inked and non-inked. In case of colored samples, more primaries
must be considered. Furthermore, because the ink layer is very thin (less than
10 µm), we assume that the exchange of photons between inked and non-
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inked areas takes place only in the substrate. We also assume that the ink
layer behaves according to the Kubelka–Munk model described previously.

Let us now consider such a surface having only two different inking
levels. As in the Kubelka–Munk model, we define for each inking level two
light fluxes: , which is oriented downward, and , which is oriented
upward. The index  takes the value 0 for the non-inked region and 1 for
the inked region (see Figure 3.29). Note that we drop the wavelength desig-
nation  to simplify the notation, but , , as well as , , , and ,
are all functions of wavelength.

The matrix Equation 3.49 can be extended to take several inking levels
into account. Let us denote  as this extended block matrix. For two
inking levels, the equation can be written as follows:

(3.117)

where , , , and  are, respectively, the absorption and scattering
coefficients of the non-inked medium and the inked medium. By integrating
Equation 3.117 between  and , we get

(3.118)

The definition of the matrix exponential is given in Equation 3.51. 
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Figure 3.29 A schematic model of the printed surface. On top of the substrate, each
surface element is considered to be a uniform layer which behaves according to the
Kubelka–Munk model.
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To take into consideration the multiple internal reflections, the Saunder-
son correction must also be applied here. Note that, in our case, the ink is
inside the medium and not on top of it. Hence, the interface between the air
and the ink-absorbing medium is the same in non-inked regions as in inked
regions. Therefore, from Equation 3.66, we can directly derive the resulting
Saunderson correction matrix .

(3.119)

The key to our model lies in the way optical dot gain is expressed
mathematically. Because we assume that the exchange of photons takes place
only in the substrate, the optical dot gain affects only the boundary condi-
tions at . This implies that the upward-oriented fluxes  and 
depend on both downward-oriented fluxes ,  and the body reflec-
tance  of the substrate. This can be written in a general way in matrix
form as follows:

(3.120)

where the coefficient  represents the overall probability of a photon
entering through a surface element having the inking level  to emerge from
a surface element having the inking level u. Note that the probability is taken
throughout the full sample area. This probabilistic approach was introduced
by Arney (see Section 3.8.6). Because we deal with probabilities, the sum of
the coefficients  belonging to the same line of the matrix in Equation
3.120 must equal 1. The computation of the scattering probabilities  will
be addressed in Section 3.9.2.

Now we can put all elements together and write the matrix equation of
our new prediction model. By combining Equations 3.118 through 3.120 we
obtain

(3.121)
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The first matrix of Equation 3.121 represents the Saunderson correction,
the second matrix corresponds to the Kubelka–Munk modeling of the ink-
absorbing layer, and the third matrix models the light scattering in the
substrate.

Computing the emerging fluxes  and  as functions of the incident
fluxes  and  requires rearranging the lines and columns of the matrices.
To keep the block structure of the matrices, we introduce a change of basis
matrix as shown in Equation 3.122. Note that this particular change of basis
matrix is its own inverse. Furthermore, the last vector of Equation 3.121 is
written in Equation 3.122 as the product of a  matrix by a two-dimen-
sional vector. 

(3.122)

After computing the matrix products in Equation 3.122, we get a 
matrix that can be split into two  matrices. The first matrix relates the
vector  to , and the second matrix relates  to

. By multiplying the second matrix by the inverse of the first
matrix, we derive a relation that expresses the emerging fluxes  and  as
linear functions of the incident fluxes  and . 

Because the incident light has the same intensity on inked and non-inked
regions, we have . Let  be the inked fraction of area and

 be the non-inked fraction of area. As in the Neugebauer model
(see Equation 3.106), the reflectance spectrum  of the whole surface is
given by the weighted sum of the emerging light divided by the incident
light, where the weights are the area coverages of the various primaries.
Hence, the final result is given by

(3.123)
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3.9.1 Some particular cases of interest

Let us consider the particular case in which the average lateral light scatter-
ing distance is large compared to the size of the halftoning element. This is
the assumption of complete scattering. In this case, for any inking level ,
the probability  equals the fraction of area  occupied by the inking
level u,

 and (3.124)

By introducing the relations of Equation 3.124 in Equation 3.122 and
assuming that , , , we obtain from Equation 3.123 the
well-known Clapper–Yule relation (see Equation 3.109),

(3.125)

where . Note that this derivation requires the help of a
mathematics software package.

In another particular case, lateral light scattering can be neglected.
Hence, the probability of a photon being scattered in a region with a different
inking level equals 0. This implies that  and  for . In
other words, the second to last matrix of Equation 3.122 is an identity matrix.
In this case, assuming , , , ,  leads to the
Murray–Davis relation (see Equation 3.102),

(3.126)

where . Note that  because  and .
In the case of a fluorescent ink or of a fluorescent substrate, each element

of the matrices in Equation 3.122 must be replaced by a matrix. Let us denote
 as the fluorescence density matrix of the fluorescent ink as defined in

Equation 3.86, and  as the reflection matrix. Furthermore, let us denote 
as the identity matrix, which has the same dimension as the fluorescence
density matrix  and the reflection matrix .

In the Kubelka–Munk matrix , the sum  has to be replaced
by M, and  has to be replaced by the matrix  defined in Equation 3.86.
In the same way,  and  must be replaced by matrices. If the ink-
absorbing medium is nonfluorescent, the scalar values  and  are
multiplied by the identity matrix . The body reflectance  is replaced by
the reflection matrix  introduced in Section 3.7.2. In the Saunderson cor-
rection matrix , each element is replaced by its scalar value multiplied
by . The same kind of substitution must be done in the change of basis
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matrix, its inverse matrix, and the matrix containing the scattering probabil-
ities . Note that , , , and  are replaced by vectors whose
number of components equals the number of columns of the matrix M.
Hence, the vector  equals the spectrum of the incident light
source, and  equals the spectrum of the reflected light.

3.9.2 Computing the area fractions and the scattering probabilities

The area fractions  and the scattering probabilities  are computed by
a numerical simulation.70 High-resolution grids model the printed surface,
one grid being used for each ink. The value of a grid point corresponds to
the local amount of a given dye (see Figure 3.30C). In the particular case of
inkjet printing, the density profile of an isolated ink impact, which was
measured under the microscope, can be approximated by a parabolic func-
tion.71 A single dot is modeled as a stamp (see Figure 3.30B). 

Digital printing systems use halftoning or dithering algorithms to deter-
mine whether a given location on the printed surface must be covered by a
dot. To simulate accurately a given printing system, the same halftoning or
dithering algorithm must be used to provide the locations of all printed dots
(Figure 3.30A). Wherever a dot is printed, the model is stamped at the cor-
responding location on the high-resolution grid. In the particular case of
inkjet printing, stamp overlapping is additive. 

In a color print using  inks,  halftoned ink layers are used. The ink
combination covering a surface element at position  is given by the set
of  values of the grid points  in the  superposed high-resolution
grids. The area covered by a given combination of  inks is estimated by
counting the number of grid points having the same set of  values. The
fraction of area  is determined by counting the number of grid points that
belong to the same inking level u. 

The light-scattering process can be seen as an exchange of photons
between a grid point and its neighbors. As we saw in Section 3.8.6, it can be
modeled by an internal point spread function  that expresses the
density of probability for a photon entering at location  to emerge at
location . The discrete form of the internal PSF gives the probability
for an entering photon to emerge from another grid point. The function
suggested by Gustavson64 is a good approximation of the internal PSF (see
Equation 3.114). The scattering probability  equals the weighted sum
over the whole grid of points having the inking level  with a neighbor
having an inking level . The weights of the neighbors are given by our
discrete internal PSF.

3.10 Concluding remarks
By using a global approach, all classical color prediction models were unified
within a mathematical framework based on matrices. This matrix framework
provides a new insight into color prediction by modeling a reflective surface
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(A) Locations of printed ink drops
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4 13 20 26 33 38 44 48 52 55 57 60 61 62 63 62 61 60 57 55 52 48 43 38 33 26 19 13 3

6 12 21 28 34 40 45 49 53 55 59 60 62 63 63 63 62 61 59 55 53 49 45 39 34 27 21 13 6

6 14 22 28 34 40 44 49 53 56 59 61 62 63 64 63 63 61 59 56 53 49 44 40 34 27 21 14 5

7 13 20 27 34 40 44 49 53 56 58 60 62 63 63 63 62 61 59 56 52 50 44 40 34 27 20 13 6

4 13 19 27 32 39 43 47 52 55 58 59 61 62 62 62 62 60 58 55 52 48 43 38 33 27 19 12 3

3 11 18 25 31 37 42 46 51 54 57 58 60 61 61 61 60 58 57 54 51 47 42 37 32 25 19 11 2

1 10 17 23 30 36 41 45 48 52 54 56 57 58 59 59 57 57 54 51 48 45 41 36 31 24 17 9 2

7 14 23 29 33 38 41 46 50 51 53 55 56 56 56 55 54 51 49 46 41 37 33 28 23 14 7

5 12 18 24 29 35 39 41 46 48 51 52 52 53 53 52 50 48 46 42 38 36 29 24 18 11 5

8 15 21 26 30 35 39 43 46 47 47 49 50 49 47 46 45 42 38 35 30 25 20 15 7 1

2 8 16 22 26 31 35 38 41 43 44 44 45 44 43 43 40 37 35 30 25 20 16 10 3

6 10 16 20 26 30 33 36 37 39 40 40 39 39 37 36 32 29 26 20 16 9 5

4 9 16 21 24 29 30 32 32 34 34 34 32 31 30 29 24 21 16 10 4

4 9 15 18 22 24 25 27 28 28 28 26 26 23 22 18 14 9 6

2 8 12 15 17 17 19 21 21 21 19 18 17 15 12 8 3

1 7 8 9 11 13 12 14 13 12 11 9 8 5 1

1 2 4 6 6 5 4 3 1

Figure 3.30 A high-resolution grid used for modeling the printed surface. The value of a grid point corresponds to the local amount of dye. 
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by three matrices: the Saunderson correction matrix, the Kubelka–Munk
matrix, and the light-scattering matrix. This approach also allows us to
predict colors with a higher accuracy because a larger number of physical
phenomena are taken into account.

However, this generalized approach does not provide the ultimate
answer to all color prediction needs. Several important physical phenomena
are not yet taken into account; and, effects induced by the surface roughness,
metallic pigments, or pearlescent pigments cannot be predicted. Neverthe-
less, the unified framework is more powerful than a collection of separate
classical models put side by side, because it also provides solutions for
difficult cases such as, for example, halftones printed with fluorescent inks
or printing with a large number of nonstandard inks. In most cases, solutions
are found by considering larger matrices. The difficulty is simply turned into
more work for the computer.

References
1. Wyszecki, G. and Stiles, W. S., Color Science: Concepts and Methods, Quantitative

Data and Formulae, 2nd ed., John Wiley & Sons, New York, 1982, 2.
2. Wyszecki, G. and Stiles, W. S., Color Science: Concepts and Methods, Quantitative

Data and Formulae, 2nd ed., John Wiley & Sons, New York, 1982, 274.
3. Wyszecki, G. and Stiles, W. S., Color Science: Concepts and Methods, Quantitative

Data and Formulae, 2nd ed., John Wiley & Sons, New York, 1982, 273.
4. Born, M. and Wolf, E., Principles of Optics, 7th ed., Cambridge University Press,

Cambridge, U.K., 1999, 195.
5. Kortüm, G., Reflectance Spectroscopy, Springer, Berlin, 1969, 108.
6. Nassau, K., The Physics and Chemistry of Color, John Wiley & Sons, New York

1983, 355.
7. Hecht, E., Optics, 3rd ed., Addison-Wesley, New York, 1998, 94.
8. Born, M. and Wolf, E., Principles of Optics, 7th ed., Cambridge University Press,

Cambridge, U.K., 1999, 746
9. Born, M. and Wolf, E. Principles of Optics, 7th ed., Cambridge University Press,

Cambridge, U.K., 1999, 42.
10. Born, M. and Wolf, E. Principles of Optics, 7th ed., Cambridge University Press,

Cambridge, U.K., 1999, 741.
11. Judd, D. B., Fresnel reflection of diffusely incident light, J. Natl. Bureau Stan-

dards, 29, 329–332, 1942.
12. Nassau, K., The Physics and Chemistry of Color, John Wiley & Sons, New York,

1983, Chap. 8.
13. Perkampus, H.-H., Encyclopedia of Spectroscopy, Wiley-VCH, Weinheim, Ger-

many, 1995, 63–64.
14. Hiemenz, P.C. and Rajagopalan, R., Principles of Colloid and Surface Chemistry,

3rd ed., Marcel Dekker, New York, 1997, 201–203.
15. Kortüm, G., Reflectance Spectroscopy, Springer, Berlin, 1969, 80.
16. Mie, G., Beiträge zur Optik trüber medien, speziell kolloidaler Metallösungen,

Annalen der Physik, vierte Folge, Band 25, 377–445, 1908 (in German).
17. Bohren, F. C. and Huffman, D. R., Absorption and Scattering of Light by Small

Particles, John Wiley & Sons, New York, 1983, Chap. 4.

-ColorBook  Page 235  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



236 Digital Color Imaging Handbook

18. Bronshtein, I. N. and Semendyayev, K. A., Handbook of Mathematics, Springer,
Berlin, 1997, 410–416.

19. Hiemenz, P. C. and Rajagopalan, R., Principles of Colloid and Surface Chemistry,
3rd ed., Marcel Dekker, New York, 1997, 233.

20. Kortüm, G., Reflectance Spectroscopy, Springer, Berlin, 1969, 94–100.
21. Chandrasekhar, S., Radiative Transfer, Dover, New York, 1960.
22. Kubelka, P. and Munk, F., Ein Beitrag zur Optik der Farbanstriche, Zeitschrift

für technische Physik, 12, 593–601, 1931 (in German).
23. Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations and Boundary

Value Problems, 6th ed., John Wiley & Sons, New York, 1997, 401–405.
24. Emmel, P., Modèles de Prédiction Couleur Appliqués à l’Impression Jet

d’Encre, Ph.D. thesis No. 1857, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, 1998, 55–58, http://diwww.epfl.ch/w3lsp/
publications/colour/thesis-emmel.html (in French).

25. Emmel, P. and Hersch, R. D., Towards a color prediction model for printed
patches, IEEE Computer Graphics Appl., 19(4), 54–60, 1999.

26. Judd, D. B. and Wyszecki, G., Color in Business, Science and Industry, 3rd ed.,
John Wiley & Sons, New York, 1975, 426–431.

27. Nobbs, J. H., in Colour Physics for Industry, 2nd ed., R. McDonald, The Society
of Dyers and Colourists, Bradford, U.K., 1997, 306.

28. Horn, R. A. and Johnson, C. R., Matrix Analysis, Cambridge University Press,
Cambridge, U.K., 1996, 35.

29. Horn, R. A. and Johnson, C. R., Matrix Analysis, Cambridge University Press,
Cambridge, U.K., 1996, 38.

30. Nobbs, J. H., in Colour Physics for Industry, 2nd ed., R. McDonald, The Society
of Dyers and Colourists, Bradford, U.K., 1997, 299.

31. Judd, D.B. and Wyszecki, G., Color in Business, Science and Industry, 3rd ed.,
John Wiley & Sons, New York, 1975, 415–417.

32. Nobbs, J. H., in Colour Physics for Industry, 2nd ed., R. McDonald, The Society
of Dyers and Colourists, Bradford, U.K., 1997, 304–307.

33. Saunderson, J. L., Calculation of the color pigmented plastics, J. Optical Soc.
Am., 32, 727–736, 1942.

34. Emmel P., Modèles de Prédiction Couleur Appliqués à l’Impression Jet
d’Encre, Ph.D. thesis No. 1857, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, 1998, 77–78, http://diwww.ep-
fl.ch/w3lsp/publications/colour/thesis-emmel.html (in French). 

35. Williams, F. C. and Clapper, F. R., Multiple internal reflections in photographic
color prints, J. Optical Soc. Am., 43(7), 595–599, 1953.

36. Mudget, P. S. and Richards, L. W., Multiple scattering calculations for tech-
nology, Appl. Optics, 10(7), 1485–1502, 1971.

37. Völz, H. G., Industrial Color Testing, Wiley-VCH, New York, 1995, Sec. 3.2.
38. Skoog, D. A., West, D. M., and Holler, F. J., Fundamentals of Analytical Chemistry,

6th ed., Saunders, New York, 1992, Chap. 23.
39. Perkampus, H. H., Encyclopedia of Spectroscopy, Wiley-VCH, Weinheim, Ger-

many, 1995, 204.
40. Vollhardt, K. P. C. and Schore, N. E., Organic Chemistry, 2nd ed., W. H. Free-

man, New York, 1994, Chap. 15, 549–593.
41. Perkampus, H.-H., Encyclopedia of Spectroscopy, Wiley-VCH, Weinheim, Ger-

many, 1995, 202.

-ColorBook  Page 236  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC

http://diwww.epfl.ch/w3lsp/
http://diwww.epfl.ch/w3lsp/publications/colour/thesis-emmel.html
http://diwww.epfl.ch/w3lsp/publications/colour/thesis-emmel.html
http://diwww.epfl.ch/w3lsp/publications/colour/thesis-emmel.html
http://diwww.epfl.ch/w3lsp/publications/colour/thesis-emmel.html


Chapter three: Physical models for color prediction 237

42. Emmel, P. and Hersch, R. D., A “one channel” spectral colour prediction
model for transparent fluorescent inks on a transparent support, in Proc.
IS&T/SID 5th Color Imaging Conference, November 17–20, 1997, Scottsdale,
70–77.

43. Kortüm, G., Reflectance Spectroscopy, Springer-Verlag, Berlin, 1969, 106–109.
44. Emmel, P. and Hersch, R. D., Spectral colour prediction model for a transpar-

ent fluorescent ink on paper, in Proc. IS&T/SID 6th Color Imaging Conference,
November 17–20, 1998, Scottsdale, 116–122.

45. Donaldson, R., Spectrometry of fluorescent pigments, Br. J. Appl. Phys., 5,
210–214, 1954.

46. Scaiano, J. C., CRC Handbook of Organic Photochemistry, Vol. I, CRC Press, Boca
Raton, FL, 1989, 233–236.

47. Olmsted, J., Calorimetric determinations of absolute fluorescence quantum
yields, J. Phys. Chem., 83(20), 2581–2584, 1979.

48. Brandrup, J. and Immergut, E. H., Eds., Polymer Handbook, 3rd ed., John Wiley
& Sons, New York, 1989, VI/451–VI/461.

49. Yule, J. A. C., Principles of Color Reproduction, John Wiley & Sons, New York,
1967, 212.

50. Neugebauer, H. E. J., Die theoretischen Grundlagen des Mehrfarbenbuch-
drucks, Zeitschrift für wissenschaftliche Photographie, 36(4), 73–89, 1937 (in Ger-
man).

51. Amidror, I., The Theory of the Moiré Phenomenon, Kluwer Academic Publishers,
Dortrecht, The Netherlands, 2000, 61.

52. Demichel, E., Le Procédé, 26(3), 17–21, 1924.
53. Amidror, I. and Hersch, R. D., Neugebauer and Demichel: dependence and

independence in n-screen superpositions for colour printing, Color Res. Appl.,
25(4), 267–277, 2000.

54. Rolleston, R. and Balasubramanian, R., Accuracy of various types of Neuge-
bauer models, Proc. IS&T/SID Color Imaging Conference: Transforms & Trans-
portability of Color, November 1993, Scottsdale, 32–37.

55. Heuberger, K. J., Jing, Z. M., and Persiev, S., Color transformations and lookup
tables, Proc. TAGA/ISCC, 2, 863–881, 1992.

56. Heuberger, K. J., private communication.
57. Yule, J. A. C., Principles of Color Reproduction, John Wiley & Sons, New York,

1967, 215.
58. Yule, J. A. C. and Field, G. G., Principles of Color Reproduction, GAFT Press,

Pittsburgh, 2000, 215.
59. Viggiano, J. A. S., Modeling the color of multi-colored halftones, in TAGA

Proceedings, 1990, 44–62.
60. Clapper, F. R. and Yule, J. A. C., The effect of multiple internal reflections on

the densities of half-tone prints on paper, J. Optical Soc. Am., 43(7), 600–603,
1953.

61. Ruckdeschel, F. R. and Hauser, O. G., Yule–Nielsen effect in printing: a phys-
ical analysis, Appl. Optics, 17(21), 3376–3383, 1978.

62. Rogers, G. L., Optical dot gain in a halftone print, J. Imaging Sci. Technol.,
41(6), 643–656, 1997.

63. Rogers, G. L., A generalized Clapper–Yule model of halftone reflectance, Color
Res. Appl., 25(6), 403–407, 2000.

64. Gustavson, S., Color gamut of halftone reproduction, J. Imaging Sci. Technol.,
41(3), 283–290, 1997.

-ColorBook  Page 237  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



238 Digital Color Imaging Handbook

65. Gustavson, S., Dot Gain in Colour Halftones, Ph.D. thesis No. 492, Linköping
University, Linköping, Sweden, September 1997.

66. Oittinen, P. and Saarelma, H., Influence of optical surface properties of paper
on information capacity, Paperi ja Puu — Paper and Timber, 75(1–2), 66–71, 1993.

67. Arney, J. S., Probability description of the Yule–Nielsen effect, I, J. Imaging
Sci. Technol., 41(6), 633–636, 1997.

68. Arney, J. S., Wu, T., and Blehm, C., Modeling the Yule–Nielsen effect on color
halftones, J. Imaging Sci. Technol., 42(4), 335–340, 1998.

69. Hanrahan, P. and Krueger, W., Reflection from layered surfaces due to sub-
surface scattering, Computer Graphics SIGGRAPH Proc., Anaheim, CA, August
1–6, 1993, 165–174.

70. Emmel, P. and Hersch, R. D., A unified model for color prediction of halftoned
prints, J. Imaging Sci. Technol., 44(4), 351–359, 2000.

71. Emmel, P., Modèles de Prédiction Couleur Appliqués à l’Impression Jet
d’Encre, Ph.D. thesis No. 1857, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, 1998, 114, http://diwww.epfl.ch/w3lsp/
publications/colour/thesis-emmel.html (in French).

-ColorBook  Page 238  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC

http://diwww.epfl.ch/w3lsp/publications/colour/thesis-emmel.html
http://diwww.epfl.ch/w3lsp/publications/colour/thesis-emmel.html


   

chapter four

 

Color management for 
digital imaging systems

 

Edward J. Giorgianni
Thomas E. Madden
Kevin E. Spaulding

 

Eastman Kodak Company

Contents

 

4.1 Introduction .
4.2 Color management paradigms
4.3 Digital color encoding
4.4 Color encoding methods
4.5 Image states 
4.6 Standard image-state color encoding specifications

4.6.1 Criteria for selection of 

 

RIMM/ROMM RGB

 

 color 
encoding specifications

4.6.2

 

ROMM RGB

 

 color encoding specification 
4.6.2.1

 

ROMM RGB

 

 conversion matrix 
4.6.2.2 Nonlinear encoding of 

 

ROMM RGB 

 

4.6.3

 

RIMM RGB

 

 color encoding specification
4.6.3.1

 

RIMM RGB

 

 conversion matrix
4.6.3.2 Nonlinear encoding of 

 

RIMM RGB

 

4.6.4

 

ERIMM RGB

 

 color encoding specification
4.6.4.1 Nonlinear encoding for 

 

ERIMM RGB

 

4.7 Image states in a color managed architecture 
4.8 Digital color management with JPEG 2000
4.9 Summary
References

 

-ColorBook  Page 239  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



 

240 Digital Color Imaging Handbook

 

4.1 Introduction

 

All successful color imaging systems employ some form of 

 

color management

 

.
Color management can be defined as a means for predicting, controlling,
and adjusting color information throughout the system — from the initial
color capture to the formation and display of output images. In chemical
and other analog-based imaging systems, color management may be imple-
mented in various ways, including equipment calibration, chemical process
control, and operator-controlled or automated color-printing adjustments.
In digital imaging systems, color management is generally implemented
using software designed specifically for that purpose. The principal function
of that software is to process (

 

transform

 

) image signals derived from an input
device to make them appropriate for a given output device. Digital color
management can be relatively simple when applied to imaging systems that
are restricted to only certain types of inputs and outputs, but, when applied
to systems having a variety of different types of input and output devices
and media, color management can become quite complex.

The successful implementation of digital color management depends on
a number of factors, including the use of appropriate 

 

device characterization

 

methods and suitable mathematical techniques for forming and applying
image-processing transformations. More fundamental to the success of the
color management, however, are the selection of an appropriate 

 

color man-
agement paradigm

 

 and the use of a correspondingly appropriate method for

 

color encoding

 

, i.e., a method for representing color in digital form throughout
the imaging process.

 

4.2 Color management paradigms

 

Underlying every color management approach is an implicitly or explicitly
defined 

 

paradigm — 

 

an underlying conceptual model that ultimately deter-
mines how an imaging system using that color management will behave.
The paradigm describes the expected relationships among the input images,
encoded images, and output images of the system. Although various types
of color imaging systems might behave quite differently, virtually all can be
described in terms of just three fundamental types of color management
paradigms. These paradigms will be referred to as Types

 

 A

 

,

 

 B

 

, and

 

 C.

 

1

 

Color imaging systems based on a Type

 

 A

 

 color management paradigm
are “input driven.” Their color encoding represents the colors of the input
images, and the colors produced by their outputs match (as much as possi-
ble) the input image colors. Color copiers, for example, operate according
to a Type

 

 A

 

 paradigm; the normal expectation is that an output image
produced by the copier will match the image input for copying. If an inter-
mediary image (such as a video preview) is provided, it too would be
expected to match the input and output images. This generally is the para-
digm that first comes to people’s minds when they think about color man-
agement. In fact, because the paradigm specifies that colors will match
throughout an imaging system, the paradigm might seem to be the only one
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that is needed. However, in many ways, the basic concept of the Type 

 

A

 

paradigm is quite limited, which is why many commercial systems instead
are based on Type

 

 B

 

 or Type

 

 C

 

 paradigms.
Systems based on a Type

 

 B

 

 color management paradigm are “encoding
driven.” Their color encoding is based on a unifying color encoding concept
that tends to reduce or eliminate the colorimetric differences inherent in the
system inputs. For example, some electronic prepress systems encode color
in terms of the colorimetric characteristics of a reference reflection-print
medium. Colors scanned from actual reflection prints are encoded essentially
in terms of their measured colorimetry. But colors scanned from photo-
graphic transparency films are 

 

re-rendered

 

, i.e., their measured colorimetric
values are

 

 

 

altered such that they correspond more closely to those that
typically would be measured from the reference reflection-print medium.
The current International Color Consortium (ICC) color management system
is also based on a Type

 

 B

 

 paradigm in that all input images must be re-
rendered to correspond to the properties of a reference imaging medium. As
in a Type

 

 A

 

 paradigm system, the colors produced by the outputs of a Type

 

B

 

 paradigm system are expected to visually match the colors represented by
the color encoding. However, unlike a Type 

 

A

 

 paradigm system, the colors
produced by a Type 

 

B

 

 paradigm system’s outputs do not necessarily match
the input image colors.

Systems based on a Type

 

 C

 

 color management paradigm are “output
driven.” Like Type

 

 B

 

 systems, they are based on a unifying color encoding
concept. However, their output colors do not necessarily match the colors
represented by this encoding, because additional re-rendering is performed,
subsequent to encoding, as part of the output signal processing. This delib-
erate additional re-rendering might be done for simulation, i.e., to make one
output produce images that imitate the appearance of images normally
produced by another type of output. Re-rendering also might be done to
enhance output images by taking advantage of the particular capabilities of
each output device or medium. For example, when an output medium
having a large color gamut is used, the output signal processing might
include some expansion of the gamut of the encoded colors so as to use the
full capabilities of that particular medium. This paradigm is often used in
digital photofinishing systems where the objective is for each output to
produce the best image possible from the encoded data. As a consequence
of the output-specific re-renderings and color enhancements that might be
performed, images produced on different types of output devices and media
generally will not (by design) match each other.

These three paradigms are sufficient for describing the basic functional-
ity of all existing types of color-managed imaging systems. Each paradigm
is widely used, and each is technically valid. Yet each produces very different
color results. The most appropriate paradigm for a given system will depend
on the specific application for which that system will be used. It is also
possible to design systems that function according to a 

 

Universal Paradigm

 

,
in which various input and output signal processing options are provided.

 

1
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Through the selection of appropriate options, such systems can be made to
operate according to any of the described paradigms.

 

4.3 Digital color encoding

 

In addition to the selection of a color management paradigm appropriate
for a given application, the successful implementation of digital color man-
agement requires the use of an appropriate method for digitally encoding
color. The basic function of the digital color encoding is to provide a digital
representation of colors for image processing, storage, and interchange
among systems. Within a given color imaging system, the encoding provides
a digital link between the system’s inputs and outputs.

In a simple system, having just one type of input and one type of output,
color encoding can be performed prior to any signal processing. The encod-
ing is therefore a direct representation of the color values measured by the
input device. In more complex systems supporting multiple types of inputs
and outputs, such an arrangement is impractical, because each combination
of input and output would require a separate signal-processing transform.
For example, a single-output system requires two different transforms to
process color values measured by two different input devices. The number
of required system transforms in this arrangement equals the product of the
number of inputs and outputs. Thirty-two signal-processing transforms are
required, for example, in a system having four inputs and eight outputs.

A much more efficient system results if the color signal processing is
split into two parts — input signal processing and output signal processing.
In this arrangement, each input and each output has its own associated
transform. Each input signal processing transform converts input color-
signal values to values for a defined 

 

color encoding specification

 

, and each
output transform converts values from the color encoding specification to
values appropriate for the particular output. In this arrangement, the number
of system transforms equals just the sum, rather than the product, of the
number of inputs and outputs. For example, only 12 signal-processing trans-
forms are required in a system having 4 inputs and 8 outputs.

The success of this approach depends on the use of an appropriate color
encoding specification. The specification must allow for color information
to be represented unambiguously and in a way that does not limit the desired
functionality of the system. A complete color encoding specification must
define two principal attributes of the color representation: a

 

 color encoding
method

 

 and a

 

 color encoding data metric

 

. The color encoding method deter-
mines the actual meaning of the encoded data, while the color encoding data
metric defines the color space and the numerical units in which encoded
data are expressed. Some considerations involved in the design of a color
encoding data metric will be discussed later.

The selection of the encoding method for a given system must be based
on some color property — a particular aspect of color — that all of the inputs
of that system have in common. It is that aspect of color that must be
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measured and digitally encoded so as to represent color completely and
unambiguously in the encoding specification. Three fundamental types of
measurement and encoding methods are discussed in the following section.

 

4.4 Color encoding methods

 

Densitometric color encoding

 

 is based on input-image color measurements
made according to defined sets of 

 

spectral responsivities

 

 that are not equivalent
to any set of visual color-matching functions. The responsivities can be those
of a particular type of densitometric instrument, such as an ISO 

 

Status A

 

 or

 

Status M densitometer

 

.

 

2,3

 

 The responsivities also can be those of an actual
scanner or of some hypothetical reference scanner. Encoded colors can be
expressed in terms of red, green, and blue (RGB) densities, transmittances,
or reflectances; cyan, magenta, and yellow (CMY) or cyan, magenta, yellow,
and black (CMYK) colorant amounts; or other values associated with the
densitometric measurements. The principal advantage of this type of encod-
ing is that it corresponds quite directly to physical measurements of input
images. Therefore, transformations from scanner RGB values to densitomet-
ric values, and transformations from densitometric values to output device
RGB values, generally are quite simple. That simplicity can translate into
optimum signal-processing accuracy and speed. However, the use of densi-
tometric color encoding generally is limited to situations where all system
input data are derived from essentially the same input medium. This often
is the case in graphic arts and motion picture applications.

 

Colorimetric color encoding

 

 is similar to densitometric color encoding,
except that it is derived from measurements made according to the spectral
responsivities of a human observer. One of the principal advantages of this
method is that it is based on well-established CIE recommendations for color
measurement. At first glance, colorimetric encoding would seem to offer the
perfect “device-independent” method for encoding color; in practice, colo-
rimetric encoding sometimes can be used successfully where methods based
on other forms of measurements will not work. Consider, for example, a
system that supports input from an assortment of reflection media with
image-forming colorants — printing inks, photographic dyes, thermal-trans-
fer dyes, etc. — having different spectral absorption characteristics. A color
encoding method based on RGB densitometric measurements alone would
not provide a meaningful representation of color in this system. For example,
a pair of colors on two different media might look identical, but they might
produce quite different RGB densitometric values. Conversely, a pair of
colors on two different media might appear quite different from one another,
but they might happen to produce the same

 

 

 

RGB densitometric values. These
inconsistencies occur because the spectral absorption characteristics of the
colorants used in the two media are different. Visual matches therefore will
be 

 

metameric

 

, not spectral. This makes colorimetric measurement a logical
choice for color encoding. By definition, metameric pairs of color stimuli will
have equal colorimetric values.
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It is important to remember, however, that metameric matching is view-
ing-illuminant dependent. So, areas of color on different media that match
when viewed under one illuminant might not match when viewed under
another. This means that color encoding based on standard CIE colorimetric
measurements can be used to encode color from multiple reflection media,
but only if two conditions are realized. First, a single reference illuminant
used for metameric matching must be specified, and, second, the encoded
colorimetric values must be determined according to the spectral power
distribution of that reference illuminant. 

A further limitation of color encoding based on standard colorimetry
alone is that it will not work for images input from media designed to be
viewed under different conditions. For example, reflection prints generally
are designed to be viewed under typical indoor conditions, while photo-
graphic slides are designed to be projected and viewed in a darkened room.
Because an observer’s perceptions will be affected by the differences in these
respective viewing conditions, the colorimetric properties of reflection-print
and projection-slide media must be fundamentally different. The colorimet-
ric values measured from one type of medium will not be appropriate for
use on the other. For example, if the colorimetry of a slide is measured and
reproduced exactly on a reflection print, that print will appear too dark, too
high in luminance contrast, and too cyan-blue in color balance. The use of
colorimetric encoding therefore must be limited to media designed for one
set of viewing conditions. 

This is a serious problem, because three fundamentally different types
of viewing environments are involved in the color imaging process, and
there are limitless possible sets of viewing conditions for each of those types.
On the input side of an imaging system, there are 

 

original-scene environments

 

,
i.e., the environments in which live original scenes are viewed and captured.
Also, on the input side, there are

 

 input-image environments

 

, where hardcopy
and soft-copy images that are to be input to a color imaging system are
viewed. Finally, there are

 

 output-image environments,

 

 where hardcopy and
soft-copy images produced by a color imaging system eventually are viewed. 

One means for dealing with the effects of various viewing conditions is

 

color appearance encoding

 

. In this technique, colorimetric values associated
with one set of viewing conditions are transformed to determine a visually
corresponding set of colorimetric values associated with another set of view-
ing conditions. The transformations, which are based on models of the
human visual system, can account for differences in factors such as absolute
image luminance level, image surround, and the observer’s state of chro-
matic adaptation. Such transformations can be used, for example, to deter-
mine the colorimetric values required for a slide projected in a darkened
room to visually match a reflection print viewed in a graphic arts viewing
booth. Although transformations based on a color appearance model could
be used quite directly in this particular example, other types of transforma-
tions are needed when an image is to be transformed from one 

 

image state

 

to another, as described in the next section.
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4.5 Image states

 

In a digital color imaging system, images can exist in several fundamentally
different states. The image state is a function of how an image was captured,
as well as any processing that may have been applied to the image. Although
the concept of an image state can be applied to all attributes of an image,
such as sharpness or noise, the aspect of image state that is of importance
for the current discussion relates to the interpretation of the color values of
the image. For example, the color values (digital code values) of an image
could correspond to the sensor RGB values from a digital camera, the CIELAB
values of a reflection print, or the ISO Status M RGB density values of a
photographic negative. These image examples vary in two respects. First,
they each use a different 

 

color space

 

 to encode the image (sensor RGB, CIELAB

 

,

 

and ISO Status M densities). However, just as importantly, each of these
image encodings corresponds to a distinctly different 

 

image state

 

 (an original
scene, a reflection print, and a photographic negative). Even if the same color
space, CIELAB for example, were used to encode all of these images, it would
still not be possible (or at least not optimal) to treat the images identically.
Obviously, something quite different would have to be done with the CIELAB
values of a color negative relative to the CIELAB values of a print. As will
be discussed in more detail later, the same also would be true for the CIELAB
values of an original scene relative to those of a print.

Most digital images can be broadly categorized into two types of image
states: 

 

unrendered

 

 and 

 

rendered

 

. Images in an unrendered image state are
directly related to the colorimetry of real or hypothetical original scenes.
Such images are sometimes called 

 

scene-referred

 

 images. Images in this cate-
gory would include raw digital camera captures and images stored in the

 

Kodak PhotoYCC color interchange space

 

.

 

4

 

 Images in a rendered image state are
representations of the colorimetry of output images (such as a print, a slide,
or a CRT display) and are sometimes called output-referred images. Many
common color encodings, such as sRGB

 

5

 

 and SWOP CMYK,

 

6

 

 fall into this
category. A third category of image state applies to the encoding of photo-
graphic color negatives. Unprocessed images captured by photographic
color negative film scanners are in this image state, although it typically is
a temporary state prior to forming a rendered image or determining a cor-
responding scene-referred image.

To enable the optimal use of digital images, it is important to distinguish
images in an output-referred image state from those in a scene-referred
image state. It is well known that the colorimetry of a pleasing rendered
image generally does not match the colorimetry of the corresponding scene.
Among other things, the tone/color reproduction process that “renders” the
colors of a scene to the desired colors of the output image must compensate
for differences between the scene and rendered image viewing conditions.

 

1,7

 

For example, rendered images generally are viewed at luminance levels
much lower than those of typical outdoor scenes. Consequently, an increase
in the overall contrast of the rendered image usually is required to compen-
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sate for perceived losses in reproduced luminance and chrominance contrast.
Additional contrast increases in the shadow regions of the rendered image
also are needed to compensate for the viewing flare associated with ren-
dered-image viewing conditions.

Psychological factors, such as color memory and color preference, also
must be considered in image rendering. For example, observers generally
remember colors as being of higher purity than they originally were, and
they typically prefer the reproductions of skies and grasses to be more
colorful than they were in the original scene. The tone/color reproduction
aims of well-designed imaging systems will account for such factors.

 

1,7

 

Finally, the tone/color reproduction process also must account for the
fact that the dynamic range of an output device or medium usually is
substantially less than that of an original scene. It is therefore typically
necessary to discard and/or compress some of the highlight and shadow
information of the scene to fit within the dynamic range of the rendered
output image. This is shown in Figure 4.1, which illustrates a typical backlit
scene. In this example, the approximate scene colorimetry was determined
from a scan of a color negative. The image on the left shows a rendering of
the scene appropriate for the foreground information, and the image on the
right shows a rendering of the scene appropriate for the background infor-

Figure 4.1 (See color insert on page 430) Rendering of large dynamic range scene
optimized for (a) foreground, and (b) background.

(a) (b)
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mation. In the first case, much of the highlight information was clipped by
the rendering process. Likewise, in the second case, much of the shadow
information was lost. This is illustrated further in Figure 4.2, which shows
a histogram of the scene luminance data for the image shown in Figure 4.1.
A conventional reflection print of this scene can reproduce only about six
stops (1.8 log luminance units) of scene information within the dynamic
range of the output medium. The indicated ranges show the subsets of the
scene luminance information corresponding to the two images in Figure 4.1.
It can be seen that only a portion of the total scene information is reproduced
in either of the rendered images.

Because the colorimetry of scenes and their corresponding rendered
images are intentionally and necessarily different, it would be ambiguous
to represent images in both image states using the same color encoding
specification. For example, if one were to send the CIELAB values for a
particular image, with no information about whether the color values were
original-scene color values or rendered-image color values, the recipient
would not know what to do with the image values so as to make a good
output image. If the CIELAB values were rendered color values appropriate
for the output viewing environment, it simply would be necessary to deter-
mine the device code values needed to produce the specified colorimetry.
However, if the color values corresponded to original-scene color values, it
would be necessary to modify the image colorimetry by applying an appro-
priate tone/color reproduction transformation before producing the output
image. Directly reproducing the scene colorimetry on an output image gen-
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Figure 4.2 Histogram of relative log scene luminance values for the scene shown
in Figure 4.1. A scene luminance range of about 1.8 log units can be reproduced on
a typical output reflection print. Because the dynamic range of the original scene is
substantially larger than this, a subset of the image data must be selected during the
rendering process. Different results are obtained depending on whether the fore-
ground or background region of the image is selected.
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erally would produce results that would be judged inferior. For example,
Figure 4.3 shows a pair of images generated from the same scene. Image (a)
approximately matches the colorimetry of the original scene, whereas an
appropriate tone/color reproduction transformation has been used to mod-
ify the colorimetry of image (b) to produce an image that generally would
be judged to have improved color reproduction.

One of the advantages of encoding images in a scene-referred image
state is that such encoding provides the capability of retaining the maximum
amount of image information. As was illustrated in Figure 4.1, once an image
is committed to a rendered output-referred image state appropriate for print-
ing or display, any extended dynamic range information is permanently lost.

Figure 4.3 (See color insert) Two different renderings of a scene. In image (a), the
colorimetry of the rendered image closely matches that of the original scene. In image
(b), the rendered image is not colorimetrically accurate, but the resulting image
generally would be judged to have improved color reproduction.

(a)

(b)
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Retaining the scene-referred image data preserves the maximum flexibility
for the potential uses of an image. This allows for the correction of image-
capture exposure errors and enables multiple renditions to be made from a
given image. For example, a photographer could decide at the time an image
is printed whether to optimally render the foreground information or the
background information from a backlit scene. It is valuable to preserve this
option because there often will not be a single “best” choice that can be made
when the image is captured. For the image shown in Figure 4.1, the final
decision would depend on whether the photographer was most interested
in the boys in the foreground or the scenic Alps in the background. Retaining
the extended dynamic-range scene information also enables other options,
such as employing advanced image processing techniques to produce a print
wherein both the foreground and the background are well rendered, as
shown in Figure 4.4. Comparable results could not be attained starting from
one of the conventionally rendered images shown in Figure 4.1.

 

4.6 Standard image-state color encoding specifications

 

The fact that images exist in many different image states and are expressed
in terms of numerous color spaces significantly complicates the development

Figure 4.4 (See color insert) In this rendering of the image shown in Figure 4.1, a
digital “dodge-and-burn” operation has been used to produce a print in which both
the foreground and the background are properly rendered.
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of software applications that use and manipulate images. For example, an
image-processing algorithm that works in one color space might not have the
expected behavior when used in another color space. To reduce complexity
of imaging system design, it is desirable to define standard color encodings
for each of the main classes of image states. This provides for the unambiguous
communication of color information and allows the development of standard
image-manipulation algorithms and standard color-processing paths.

Attempts to standardize color encodings typically have involved the
specification of a particular output-device-dependent color space that is
central to the workflow for a certain market segment. Examples of such color
spaces include sRGB and SWOP CMYK. Although such standardizations
can work well within the limited scope of a particular application, significant
compromises are necessary to use them in other applications. For example,
hardcopy media and CRT displays typically have very different color gam-
uts. Therefore, using sRGB (which is based on a particular CRT model) as a
standard color encoding necessarily involves clipping many colors that could
have been produced on a given hardcopy medium. This would be unaccept-
able in many hardcopy-based market segments, such as consumer photo
finishing and graphic arts.

The International Color Consortium (ICC) has defined a Profile Connec-
tion Space (PCS)

 

8

 

 that comprises a color encoding specification that can be
used to explicitly specify the color of an output-referred image with respect
to a reference viewing environment. It could be argued that the PCS could
serve as the standard color encoding specification for rendered images. How-
ever, it never was intended that the PCS be used to store or manipulate
images directly. Rather, it was intended to be a color space where device
profiles could be joined to form complete input-to-output color transforms.
Neither the CIELAB nor the CIE XYZ color encodings supported for the PCS
is particularly well suited for many common types of image manipulations.
Additionally, quantization errors introduced by encoding images in PCS
would be significantly larger than necessary, because a large percentage of
code value combinations correspond to unrealizable colors.

Given the limitations of the existing solutions, Eastman Kodak Company
has developed a family of color encoding specifications for use in the devel-
opment of its digital imaging products.

 

9,10

 

 These specifications are being
offered for use by other companies, and they also have been proposed for
international standardization. The following detailed discussion of the prop-
erties of these color encoding specifications will help to clarify several topics
previously discussed, including color encoding methods, color encoding
data metrics, and image states.

The first of these specifications, 

 

Reference Input Medium Metric RGB

 

(

 

RIMM RGB

 

), is ideal for the manipulation, storage, and interchange of images
from sources such as digital cameras that naturally capture 

 

scene-referred

 

 image
data. A companion specification, 

 

Reference Output Medium Metric RGB

 

(

 

ROMM RGB

 

), serves a similar purpose for images from sources such as print
scanners and other devices that produce images in a rendered 

 

output-referred
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image state. Figure 4.5 illustrates how these standard color encoding specifi-
cations can be used as the basis for a general imaging system architecture.

Before images can be sent to an output device, such as a printer, it
generally will be necessary to convert scene-state images to rendered-state
images using a tone/color rendering operation. However, in the same way
that a negative is much more versatile than a print, an image in a scene-
referred state will be much more versatile than one in a rendered-image
state. Therefore, it is desirable in many imaging systems to delay any con-
version to a rendered-image state until such time that an output image is to
be generated. This provides the maximum flexibility for the imaging system.

 

4.6.1 Criteria for selection of RIMM/ROMM 
RGB color encoding specifications

 

It was desirable that the  RIMM RGB

 

 and  ROMM RGB

 

 color encoding spec-
ifications be defined such that they are as similar as possible to one another.
Doing so simplifies the development of image-manipulation algorithms
across the two color encodings. It also simplifies the rendering process in
which a rendered  ROMM RGB  image is created from an original-scene image
encoded in  RIMM RGB

 

. This desired similarity is best achieved by basing
the data metrics of the two encoding specifications on the same color space.
A number of criteria were used to select this color space. Specifically, the
space should have the following properties:

• A direct relationship to the color appearance of the scene/image
• A color gamut large enough to encompass most real-world surface

colors using non-negative tristimulus values
• An efficient encoding of the color information to minimize quanti-

zation artifacts
• A simple transformation to/from ICC PCS

Standard Scene
Encoding

(RIMM RGB)

Standard
Rendered
Encoding

(ROMM RGB)

Printer

sRGB

Digital
Camera

Video
Camera

Tone/
Color

Render

Slide
Scanner

Print
Scanner

SWOP
CMYK

Negative
Scanner

Figure 4.5 Image state diagram showing standard color encodings.
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• A simple transformation to/from video RGB (e.g., sRGB)
• Be well suited for application of common image manipulations such

as tone scale modifications, color-balance adjustments, sharpening,
etc.

• Be compatible with established imaging workflows

All of these criteria can be achieved by the use of an additive RGB color
space with an appropriately selected set of wide-gamut primaries. When
images are encoded using a set of RGB primaries, there is a direct and simple
relationship to scene/image colorimetry, because such primaries are linear
transformations of the CIE XYZ primaries. RGB color spaces have the addi-
tional advantage that simple transformations based on a one-dimensional
lookup table (LUT), a matrix, and another LUT can be used to convert
to/from additive color spaces such as PCS XYZ, video RGB (sRGB), and
digital camera RGB.

However, two of the criteria that affect the selection of the particular
RGB primaries are somewhat conflicting. First, the chromaticities of the
primaries should define a gamut sufficiently large to encompass colors likely
to be found in real scenes and images. Such colors will then be defined by
non-negative tristimulus values, which generally simplifies subsequent sig-
nal processing such as tone scale modifications. At the same time, their use
should result in efficient digital encodings that minimize quantization errors.

Increasing the gamut to encompass more colors only can be achieved
by trading off against correspondingly larger quantization errors (given a
fixed bit depth). If the chromaticities of the primaries are chosen to include
the maximum possible color gamut (for example, choosing the XYZ prima-
ries would encompass the entire spectrum locus), a significant fraction of
the color space would correspond to imaginary colors and to colors that
would not commonly be encountered in real images. Therefore, in any encod-
ing using such a color space, there would be large numbers of code value
combinations that never would be used in practice. This would lead to larger
quantization errors in the usable part of the color space than would be
obtained with different primaries defining a smaller chromaticity gamut. It
is, therefore, desirable to choose primaries with a gamut that is sufficiently
large, but not larger than necessary.

Figure 4.6 shows the primaries selected for 

 

RIMM/ROMM RGB

 

. These
primaries encompass the gamut of real-world surface colors, without devot-
ing a lot of space to non-realizable colors outside the spectrum locus. Also
shown for comparison are the sRGB primaries. It can be seen that the area
defined by the sRGB chromaticity boundaries is inadequate to cover signif-
icant portions of the real-world surface color gamut. In particular, it excludes
many important high-chroma colors near the yellow-to-red boundary of the
spectrum locus.

Another important requirement for the RIMM RGB and ROMM RGB
color encoding specifications is that they be well suited for the application
of common image manipulations. Many types of image manipulations
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include the step of applying nonlinear transformations to each of the chan-
nels of an RGB image (e.g., tone scale modifications, color balance adjust-
ments, etc.). The process of forming a rendered image from a scene is one
important application of this type. One way to accomplish the rendering
operation is by the application of a nonlinear tone scale transformation to
the individual channels of an RGB image in a scene-referred image state. A
well-designed transformation of this type will have the desirable effects of
increasing the luminance and color contrast in the mid-tones, compressing
the contrast of the highlights and shadows, increasing the chroma of in-
gamut colors, and gamut mapping out-of-gamut colors in a simple but
visually pleasing way. If an input scene is represented using the RIMM RGB
color encoding, the result of applying such rendering transforms will be a
rendered image in the ROMM RGB color encoding.

Nonlinear channel-independent transforms will, in general, modify the
ratios of the red, green, and blue channel data. This can lead to unwanted
hue shifts, particularly for high-chroma colors. Hue shifts are particularly
problematic in reproductions of natural chroma gradients having constant
hue and saturation. Such gradients occur when rounded surfaces are illu-
minated by a moderately directional light source. In these situations, chroma
increases with increasing distance from the specular highlight and then
decreases again as the shadows deepen.

The induction of hue shifts by the application of the nonlinear channel-
independent transforms can never be completely eliminated. One objective
for optimizing the location of the primaries was to eliminate or minimize
objectionable hue shifts, sometimes at the expense of less noticeable or less
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Figure 4.6 Comparison of ROMM RGB and sRGB primaries in x-y chromaticity
coordinates.
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likely hue shifts. Hue shifts for a particular color can be eliminated when
the color lies on one of the straight lines passing through the primaries and
the white point on a chromaticity diagram.

The effects of nonlinear transforms on hue shifts were studied using a
chroma series for eight color patches from the Macbeth Color Checker. These
patches included red, yellow, green, cyan, blue, magenta, light skin, and dark
skin. Hue shifts in skin tones and yellows, particularly in the direction of
green, are considered the most objectionable. These hue shifts are most
strongly affected by the location of the blue primary. Other colors that were
considered particularly important during the optimization process were
blues and reds. 

There is a trade-off between the color gamut of the primaries, quantiza-
tion artifacts, and the extent of the hue shifts that occur during rendering.
If the primaries are moved out to increase the color gamut, quantization
artifacts will increase, and the hue shifts introduced during the application
of a nonlinear transformation generally will decrease. This results from the
fact that the RGB values in real images will be distributed over a smaller
range, thereby reducing the impact of nonlinear transformations. If the color
gamut is decreased by moving the primaries closer together, quantization
artifacts diminish, but hue shifts are generally larger, and color gamut is
sacrificed. 

Finally, a basic requirement for any commercially useful color encoding
is that it be compatible with typical commercial imaging workflows. In many
cases, Adobe Photoshop software is an important component in such imag-
ing chains. Conveniently, Adobe Photoshop versions 5.0 and higher have
incorporated the concept of a “working color space,” which is different from
the monitor preview color space. This is consistent with the concept of
storing/manipulating images in an extended color gamut space. Adobe has
placed a constraint on the definition of valid working color spaces that
requires the primaries to have all-positive x, y, and z chromaticity values.
This condition is satisfied for the ROMM RGB primaries.† (Because Adobe
Photoshop software operates within a rendered-image paradigm, it is inap-
propriate to use RIMM RGB as a Photoshop software working color space.)

During the selection of the RIMM/ROMM RGB primaries, an extensive
optimization process was used to determine the best overall solution to
satisfy all of these criteria. The CIELAB hue shifts associated with the selected
RIMM/ROMM RGB primaries are shown in Figure 4.7. This plot shows a
series of line segments connecting corresponding pairs of CIELAB a*, b*
values, before and after a nonlinear tone scale transformation was applied
to a chroma series in each of eight color directions. It can be seen that only
relatively small hue shifts are introduced for the highest chroma colors in
the blue and cyan directions, and the hue shifts elsewhere are virtually
negligible. Overall, these hue shifts are very small compared to those

† For more information about using ROMM RGB as a Photoshop software working space, see
the white paper posted at www.kodak.com (search on “ROMM”).
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associated with most other sets of additive primaries. Similar results were
obtained when this hue-shift analysis was carried out using several other
color spaces, including CIECAM97s,11 IPT,12 and the OSA_UCS color space.13

4.6.2 ROMM RGB color encoding specification

Reference Output Medium Metric RGB (ROMM RGB) is designed to be an
extended-gamut color encoding specification for representing the color
appearance of an output-referred image. In addition to specifying the image
state and color space, it is also necessary to specify an intended viewing
environment to define unambiguously an encoding of color appearance. One
of the requirements for ROMM RGB is that it be tightly coupled to the ICC
Profile Connection Space (PCS). Color values in the PCS represent the CIE
colorimetry of a defined reference medium that will produce the desired
color appearance when viewed in a reference viewing environment. The
reference viewing environment for ROMM RGB was based on that defined
in the latest ICC draft specification14 and is specified to have the following
characteristics:

1. The luminance level for the observer adaptive white is 160 cd/m2.
2. The observer adaptive white has the chromaticity values of CIE Stan-

dard Illuminant D50 (x = 0.3457, y = 0.3585).
3. The viewing surround is average, i.e., the overall luminance level

and chromaticity of the surround are assumed to be similar to be that
of the image.

4. There is 0.75% viewing flare, referenced to the observer adaptive
white.
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Figure 4.7 Hue shifts resulting from a typical nonlinear rendering transform for
(a) the RIMM/ROMM RGB primaries, and (b) an alternate set of wide-gamut prima-
ries. The hue shifts for the most important colors are visually negligible for the
RIMM/ROMM RGB color encoding.
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5. The image color values are assumed to be encoded using flareless
(or flare-corrected) colorimetric measurements based on the CIE 1931
Standard Colorimetric Observer.

The ROMM RGB color encoding is defined in the context of a reference
imaging medium associated with a hypothetical additive color device having
the following characteristics:

1. Reference primaries defined by the CIE chromaticities given in Table
4.1

2. Equal amounts of the reference primaries producing a neutral with
the chromaticity of D50 (x = 0.3457, y = 0.3585)

3. The capability of producing a white with a luminance factor of FW =
0.89 and a black with a luminance factor of FK = 0.0030911

Images intended to be viewed in other viewing environments, or on a
medium different from the reference medium, can be encoded in ROMM
RGB by first determining the corresponding tristimulus values that would
produce the intended color appearance on the reference medium when
viewed in the reference viewing environment. The corresponding tristimulus
values can be determined by using appropriate color appearance transfor-
mations to account for the differences between the actual and reference
viewing conditions. Additionally, it may be necessary to account for differ-
ences in the media characteristics.

The conversion of the PCS XYZ tristimulus values to ROMM RGB values
can be performed by a matrix operation followed by a set of one-dimensional
functions. This is equivalent to the operations associated with a basic monitor
profile, which means that ROMM RGB can be incorporated in a system
employing ICC profiles simply by using an appropriately designed display
profile.

Most current implementations of the ICC PCS incorporate the concept
of a reference medium wherein the black point of the reference medium is
mapped to YPCS  = 0, and the white point of the reference medium is mapped

Table 4.1 Primaries/White Point for 
Reference Imaging Medium 

Color x y

Red 0.7347 0.2653

Green 0.1596 0.8404

Blue 0.0366 0.0001

White 0.3457 0.3585
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to YPCS  = 1.0.15 Therefore, to relate actual CIE image colorimetry to PCS XYZ
values, an appropriate normalizing transformation is required as follows:

(4.1)

where X, Y, Z = CIE image tristimulus values
XPCS, YPCS, ZPCS = PCS tristimulus values

XW, YW, ZW = tristimulus values of the reference medium white 
point (XW  = FWX0 = 85.81, YW  = FWY0 = 89.00, and 
ZW = FWZ0  = 73.42, where X0  = 96.42, Y0 = 100.00, 
and Z0  = 82.49)

XK, YK, ZK = tristimulus values of the reference medium black 
point (XK = FKX0 = 0.2980, YK = FKY0 = 0.3091, and 
ZK = FKZ0 = 0.2550)

4.6.2.1 ROMM RGB conversion matrix
Given the defined primaries shown in Table 4.1, the following matrix can be
derived to compute the linear ROMM RGB values from the PCS image
tristimulus values: 

(4.2)

As required by the definition of ROMM RGB, this matrix will map image
tristimulus values with the chromaticity of D50 to equal ROMM RGB values.
A neutral with a YPCS value of 1.0, corresponding to the reference medium
white point, will map to linear ROMM RGB values of 1.0. Likewise, the
reference medium black point will map to linear ROMM RGB values of 0.0.

4.6.2.2 Nonlinear encoding of ROMM RGB
A nonlinear quantization function is used to store the ROMM RGB values
in integer form. A simple gamma function nonlinearity incorporating a slope
limit at the dark end of the intensity scale is defined for this purpose.

XPCS
X XK–( )

XW XK–( )
--------------------------=

XW

YW
--------

YPCS
Y YK–( )

YW YK–( )
-------------------------=

ZPCS
Z ZK–( )

ZW ZK–( )
-------------------------

ZW

YW
-------=

RROMM

GROMM

BROMM

1.3460 0.2556– 0.0511–

0.5446– 1.5082 0.0205
0.0000 0.0000 1.2123

XPCS

YPCS

ZPCS

=
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(4.3)

where C is R, G, or B;  = the maximum integer value used for the
nonlinear encoding; and

(4.4)

For the baseline 8-bit configuration,  is equal to 255. The linear
segment of the nonlinearity is used to impose a slope limit to eliminate
reversibility problems that otherwise would result from the infinite slope of
the gamma function at the zero point. Twelve-bit and 16-bit versions of
ROMM RGB are also defined. The only difference is that the value of 
is set to 4095 or 65535, respectively. In cases where it is necessary to identify
a specific precision level, the notations ROMM8 RGB, ROMM12 RGB, and
ROMM16 RGB are used. Table 4.2 shows some sample encodings for a series
of neutral patches of specified YPCS.

4.6.3 RIMM RGB color encoding specification

Reference Input Medium Metric RGB (RIMM RGB) is a companion color
encoding specification to ROMM RGB that can be used to encode the col-
orimetry of an unrendered scene. Both encodings utilize the same wide-
gamut color space defined by the primaries and white point given in
Table 4.1. The reference viewing conditions used to encode scene color

Table 4.2 Sample Neutral Patch Encodings

YPCS ROMM8 RGB ROMM12 RGB ROMM16 RGB

0.00    0     0       0

  0.001    4   66 1049

0.01   20 317 5074

0.10   71 1139 18236

0.18   98 1579 25278

0.35 142 2285 36574

0.50 174 2786 44590

0.75 217 2490 55855

1.00 255 4095 65535

C'ROMM

0; CROMM 0.0<
16CROMMImax; 0.0 CROMM Et<≤

CROMM
1.1.8Imax;    Et CROMM 1.0<≤

Imax; CROMM 1.0≥







=

Imax

Et 161.8 1 1.8–( ) 0.001953= =

Imax

Imax
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values for RIMM RGB are typical of outdoor environments and are defined
as follows:

• The luminance level for the observer adaptive white is 15,000 cd/m2.
• The observer adaptive white has the chromaticity values of CIE Stan-

dard Illuminant D50 (x = 0.3457, y = 0.3585).
• Viewing surround is average, i.e., the overall luminance level and

chrominance of the surround is assumed similar to that of the scene.
• There is no viewing flare for the scene other than that already includ-

ed in the scene colorimetric values.
• The scene color values are assumed to be encoded using flareless (or

flare corrected) colorimetric measurements based on the CIE 1931
Standard Colorimetric Observer.

Scenes captured under conditions different from those of the reference
viewing environment can be encoded in RIMM RGB by first determining
the corresponding tristimulus values that would produce the intended color
appearance in the reference viewing environment. For some applications,
the intended color appearance may be an estimate of the appearance of the
original scene if it had been captured in the reference viewing environment.
For other applications, it may be desirable to encode the color appearance
of the scene in its particular capture viewing environment. In this case,
corresponding tristimulus values can be determined by using appropriate
color appearance transformations to account for the differences between the
actual and reference viewing conditions.

4.6.3.1 RIMM RGB conversion matrix
Because ROMM RGB and RIMM RGB use a common color space, the con-
version from scene tristimulus values to corresponding linear RIMM RGB
values can be accomplished using the same conversion matrix that was given
in Equation 4.2, except that the input tristimulus values are scene XYZ values
rather than PCS XYZ values.

(4.5)

Note: The scene XYZ values are normalized such that the luminance of a
correctly exposed perfect white diffuser in the scene will have a value of
YD50 = 1.0.

4.6.3.2 Nonlinear encoding of RIMM RGB
Because the dynamic range of unrendered scenes is generally larger than
that of the medium specified for ROMM RGB, a different nonlinear encoding
must be used. The RIMM RGB nonlinearity is based on that specified by

RRIMM

GRIMM

BRIMM

1.3460 0.2556– 0.0511–

0.5446– 1.5082 0.0205
0.0000 0.0000 1.2123

XD50

YD50

ZD50

=
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Recommendation ITU-R BT.709

 

16

 

 (formerly known as CCIR 709). This is the
same nonlinearity used in the 

 

Kodak PhotoYCC color interchange space

 

 encod-
ing implemented in the 

 

Kodak Photo CD system

 

4

 

 and is given by

(4.6)

where 

 

C

 

 is either 

 

R

 

, 

 

G

 

, or 

 

B

 

; 

 

I

 

max

 

 is the maximum integer value used for the
nonlinear encoding; 

 

E

 

clip 

 

= 2.0 is the normalized scene luminance level that
is mapped to

 

 I

 

max

 

; and

(4.7)

For the baseline 8-bit/channel 

 

RIMM RGB

 

 configuration, 

 

I

 

max

 

 is 255. In some
applications, it may be desirable to use a higher-bit-precision version of

 

RIMM RGB

 

 to minimize any quantization errors. Twelve-bit and 16-bit per
channel versions of 

 

RIMM RGB

 

 are also defined. The only difference is that
the value of 

 

I

 

max

 

 is set to 4095 or 65535, respectively. In cases in which it is
necessary to identify a specific precision level, the notations 

 

RIMM8 RGB

 

,

 

RIMM12 RGB,

 

 and 

 

RIMM16 RGB

 

 are used.

 

4.6.4 ERIMM RGB color encoding specification

 

The 

 

RIMM RGB

 

 color space is defined to have an extended luminance
dynamic range that can encode information up to 200% of the luminance
value associated with a normally exposed perfect (100%) diffuse white
reflector in the scene. This should be adequate for many input sources, such
as digital cameras, which themselves have a somewhat limited dynamic
range. However, for some inputs, most notably scanned photographic neg-
atives, a greater luminance dynamic range is required to encode the full
range of captured scene information. For example, consider the histogram
of scene luminance data previously shown in Figure 4.2. The 

 

RIMM RGB

 

encoding would only retain scene information up to a log relative scene
luminance value of 0.3. A significant portion of the scene information would
be lost with a 

 

RIMM RGB

 

 encoding in this case. To provide an encoding
that can retain the full range of captured scene information, a variation of
the 

 

RIMM RGB

 

 color space, 

 

Extended Reference Input Medium Metric RGB
(ERIMM RGB)

 

, is defined.

C'RIMM

0; CRIMM 0.0<
Imax

Vclip
-----------4.5CRIMM; 0.0 CRIMM 0.018<£

Imax

Vclip
-----------1.099CRIMM

0.45 0.099� ;    0.018 CRIMM Eclip<£

Imax; CRIMM Eclip≥Ó
Ô
Ô
Ô
Ô
Ì
Ô
Ô
Ô
Ô
Ï

=

Vclip 1.099Eclip
0.45 0.099� 1.402= =
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As with RIMM RGB, ERIMM RGB is related directly to the colorimetry
of an original scene. The nonlinear encoding function is the only encoding
operation that is different. For ERIMM RGB, it is desirable to increase both
the maximum scene luminance value that can be represented as well as to
reduce the quantization interval size. The size of the quantization interval
is directly related to the minimum scene luminance value that can be accu-
rately represented. To satisfy both the extended luminance dynamic range
and reduced quantization interval requirements simultaneously, it is neces-
sary to use a greater bit precision for ERIMM RGB. A minimum of 12 bits
per color channel is recommended.

4.6.4.1 Nonlinear encoding for ERIMM RGB
A modified logarithmic encoding is used for ERIMM RGB. A linear segment
is included for the very lowest luminance values to eliminate the non-
invertibility of a strictly logarithmic encoding at the dark end of the scale.
The encoding was defined such that the linear and logarithmic segments
match in both value and derivative at the boundary. In equation form, this
encoding is represented by

(4.8)

where C is R, G, or B; Imax is the maximum integer value used for the nonlinear
encoding; Eclip = 102.5 = 316.23 = the upper scene luminance limit that gets
mapped to Imax; and

(4.9)

is the break point between the linear and logarithmic segments, e being the
base of the natural logarithm. For a 12-bit encoding, Imax is 4095, and for a
16-bit encoding, Imax is 65535. In cases in which it is necessary to identify a
specific precision level, the respective notations ERIMM12 RGB and
ERIMM16 RGB are used. 

To compute ERIMM RGB values, Equation 4.8 should be used in place
of Equation 4.6 in the previously described procedure for determining
RIMM RGB values. Examples of RIMM RGB and ERIMM RGB encodings for
neutral patches at different scene relative luminance levels are shown in
Table 4.3. It can be seen that the range of relative luminances that can be
represented in ERIMM RGB is greatly extended from that of RIMM RGB.

C'ERIMM

0; CRIMM 0≤
0.0789626

Et
------------------------- 

  CRIMM Imax; 0 CRIMM Et≤<

CRIMMlog 3.0+
5.5

-------------------------------------- 
  Imax; Et CRIMM Eclip≤<

Imax; CRIMM Eclip>











=

Et e/1000 0.00271828= =
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4.7 Image states in a color managed architecture
The use of color management systems, such as that developed by the ICC,
is becoming increasingly common in a variety of digital imaging applica-
tions. Color management systems typically are based on an architecture in
which the color response of an input device is characterized using an input
profile, which describes the relationship between the device code values and
color values in some profile connection space (PCS). Similarly, the color
response of an output device is characterized using an output profile, which
describes the relationship between the PCS color values and the correspond-
ing device code values needed to produce colors having those values. The
PCS used in the ICC color management architecture, and the color encodings
used in virtually every other color management system, are defined to be in
a rendered output-referred image state. This type of PCS, generally based
on reflection-print media viewed in indoor viewing environments, greatly
complicates the use of a color management architecture based on the image-
states paradigm. For example, a traditional input profile cannot be used for
an input device that captures scene-referred data if it is desired to convert
the image data to the standard scene-referred color encoding (i.e., (E)RIMM
RGB). This is because the output of such a profile would be PCS color values
in a rendered-image state. As discussed previously, the process of rendering
an image from a scene-image state to a rendered-image state typically will
involve an irreversible loss of information. Thus, transforming an image into
RIMM RGB by combining a device-to-PCS profile with a PCS-to-RIMM RGB
profile would seriously compromise the quality of the resulting image.

However, this does not mean that traditional color management archi-
tectures must be discarded altogether to build an imaging system around
the image-state paradigm previously shown in Figure 4.5. Rather, it simply
means that conventional input/output profiles cannot be used in the imaging

Table 4.3 Sample Scene Luminance Encodings

Relative
Luminance

Relative Log
Luminance

RIMM8 
RGB

RIMM12
RGB

ERIMM12
RGB

0.001 –3.00 1 13 119

0.01 –2.00 8 131 745

0.10 –1.00 53 849 1489

0.18 –0.75 74 1194 1679

1.00 0.00 182 2920 2234

2.00 0.30 255 4095 2458

8.00 0.90 NA NA 2906

32.00 1.50 NA NA 3354

316.23 2.50 NA NA 4095
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chain until the point at which the image is ready to be committed to a final
output rendering. Fortunately, most color management systems provide for
the concept of a device link profile that can be used to bypass the PCS and go
directly from an input color space to an output color space. (Typically, such
device link profiles would be created by cascading an input profile with an
output profile, but this is not a requirement.)

Figure 4.8 illustrates this approach in more detail. Device link profiles
are used to transform scene-referred input images into RIMM RGB. Input-
image sources might include digital cameras (when unrendered sensor RGB
values are available), as well as color negative film scanners (when special
transformations are used to extract scene colorimetry from scanned densit-
ometric values). In this case, not only is RIMM RGB used as a stopping point
where images can be stored or edited, but it also becomes the output color
space for the device profiles, effectively serving the role of a “scene-referred
profile connection space.” At the point when it is finally desired to produce
an image on an output device such as a printer or CRT, a conventional input
profile can be used to render the RIMM RGB image to the PCS. This profile
would include the desired system tone/color reproduction characteristics.
A conventional output profile then can be used to transform the PCS image
to the appropriate output device code values.

Conventional input profiles can be used for input devices, such as
print/slide scanners and CRTs, where the input images already are in a
rendered image state. These input profiles can be combined directly with
output profiles to produce an image for a particular output device. Alterna-
tively, the input profile can be combined with a ROMM RGB profile to
convert the image to ROMM RGB for the purposes of storage, interchange,
or editing. Because ROMM RGB is a simple LUT/matrix away from ICC

(E)RIMM
RGB

Digital
Camera

Video
Camera

Input Profiles

Output Profiles

Display Profiles

Device Link Profiles

sRGB

Inkjet
Printer

SWOP
CMYK

Print
Scanner

Slide
Scanner

PCS

Negative
Scanner

ROMM
RGB

Device Dependent
Color Encodings

Standard Color
Encodings

Figure 4.8 Image state architecture using color management.
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PCS XYZ values, it falls within the class of color encodings that can be
represented with a simple display profile.

It should be noted that the input profiles used for rendered images
intended to be viewed in environments significantly different from the ref-
erence viewing environment defined for the PCS must also include appro-
priate viewing environment transformations. For example, photographic
slides are typically intended to be viewed in a darkened room. The colori-
metric characteristics of slide films are designed with a higher luminance
contrast so as to produce pleasing images in that viewing environment.
Therefore, an input profile for a slide scanner must not only account for the
colorimetric characteristics of the scanner; it must also include an appropriate
transformation that will determine the visually equivalent colorimetry for
the PCS reference viewing environment. It may also be necessary for the
profile to perform some amount of re-rendering of the image to map the
extended dynamic range of the slide film into the reflection-print-like
dynamic range of the PCS reference medium.

During the process of working with images that are stored in the
RIMM/ROMM RGB color encodings, it frequently will be desirable to pre-
view the image on a video display. In a color-managed system, this can be
accomplished by combining the appropriate RIMM RGB or ROMM RGB
profile with a display profile for the particular video display. Because
RIMM/ROMM RGB are based on a simple additive color space, a simple
display-type profile using only a LUT followed by a matrix generally can
be used to get to PCS XYZ. Likewise, the output profile for the video display
would comprise a matrix followed by a gamma-function nonlinearity. For
cases where processing speed is a critical concern, these operations can be
combined, yielding a simple LUT–matrix–LUT processing chain that can be
implemented directly and optimized for speed.

An example of an imaging chain for a representative system utilizing
the standard image state architecture is shown in Figure 4.9. The input device
for this example is a color negative film scanner. A device link profile is used
to convert the raw film scanner image to a corresponding ERIMM RGB
image. This profile accounts for the characteristics of the scanner as well as
the characteristics of the film used to capture the image. Once the image is
in ERIMM RGB, many different types of algorithms can be used to operate
on the image. For example, a scene balance algorithm can be used to automat-
ically color balance the image to correct for any variations in capture illumi-
nation and/or film processing, or an advanced tone scale algorithm could
be used to properly darken the background of a backlit scene. ERIMM RGB
is an appropriate color encoding for applying many types of image-process-
ing algorithms, but it is especially important that algorithms utilizing the
extended dynamic range scene information of the encoding be applied in
ERIMM RGB before the image is rendered to an output-referred state.

After all scene-state image manipulations have been applied, the image
can be rendered to produce a corresponding rendered-state image. In this
example, the image is converted to a ROMM RGB representation where
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further operations will be applied. This conversion can be applied by com-
bining an ERIMM RGB input profile with a ROMM RGB profile. The
ERIMM RGB input profile is used to impart the system tone/color repro-
duction aims relating the scene color values to the corresponding rendered
image color values. These aims may be application dependent. For example,
consumer photographers generally prefer higher contrast and higher satu-
ration images than those preferred by professional portrait photographers.
In many cases, acceptable tone/color reproduction characteristics can be
achieved by applying a simple tone reproduction curve to the ERIMM RGB
scene-exposure values. In this case, the ERIMM RGB to ROMM RGB trans-
formation will involve only a simple one-dimensional LUT.

Once the image is in ROMM RGB, additional rendered-state image oper-
ations can be applied. For example, text annotations and a creative border
could be added to the image, or the image could be composited with an
image from a print scanner, etc. The final ROMM RGB image can then be
printed by applying a ROMM RGB profile and an output profile for the
particular output device.

4.8 Digital color management with JPEG 2000
Historically, many desktop imaging applications have been designed based
on the assumption that the digital image stored in a file is ready to display
directly on a CRT. This assumption has caused significant interoperability
problems for applications that have attempted to store images with other
color encodings. For example, if an application were to open a ROMM RGB
image and send the color values directly to a video display, the image would
appear very desaturated, because the image was encoded using a set of high-
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Figure 4.9 Imaging chain example using standard color encodings and color man-
agement.
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chroma primaries rather than video primaries. Special software must be used
to open and/or color manage images stored in various color spaces, and, as
a result, images stored in spaces other than video RGB cannot be used by a
large number of applications. The overall situation has effectively made it
impractical to use color spaces other than video RGB for most consumer
applications.

JPEG 2000 is a new file storage format that has been recently standard-
ized. One of the requirements that have been built into the format specifi-
cation is that all JPEG 2000 compliant file readers must be able to properly
decode an image stored in any color encoding specification that can be
defined using a restricted class of ICC profiles. In particular, the supported
ICC profile formats include any display-type profile that utilizes a LUT-
matrix transformation to get to PCS XYZ. Both the (E)RIMM RGB and the
ROMM RGB color encoding specifications can be represented using profiles
that fall within this definition. As a result, images can be stored using these
color encoding specifications without sacrificing interoperability. Applica-
tions designed to manipulate images in the color spaces of these encodings
will be able to do so. Other applications can simply use the attached ICC
profile to convert the image to a video RGB color space (e.g., sRGB) or to
some other color space for which the application was designed.

4.9 Summary
In digital imaging systems, the principal role of color management is to
transform image signals derived from one or more input devices to signals
that are appropriate for a given output device. Digital color management
can be relatively straightforward when applied to simpler systems, but it
becomes quite complex when applied to systems having a variety of different
input and output types.

The successful implementation of digital color management depends on
a number of factors, including the use of appropriate device characterization
methods and suitable mathematical techniques for forming and applying
image-processing transformations. In addition, an appropriate color man-
agement paradigm must be determined for the particular system being
developed. Virtually all current color-managed imaging systems are based
on one of three basic paradigms. A “universal” paradigm, in which various
input and output signal processing options are supported, has also been
defined. Through the selection of appropriate options, systems based on this
all-inclusive paradigm can be made to operate according to any of the three
basic paradigms.

Successful color management also requires the use of an appropriate
method for encoding color. Three basic color encoding methods were
described in this chapter. Densitometric color encoding is based on input-
image color measurements made according to any of various defined sets
of spectral responsivities. Colorimetric color encoding is derived from mea-
surements made according to the spectral responsivities of a standard human
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observer. Color appearance encoding is an extension of basic colorimetric
encoding. In this method, colorimetric values associated with one set of
viewing conditions are transformed to determine a visually corresponding
set of colorimetric values associated with another set of viewing conditions.
The transformations account for differences in a number of factors — includ-
ing absolute image luminance level, image surround, and the observer’s
state of chromatic adaptation — that influence an observer’s perception of
color.

In addition to an appropriate color encoding method, a properly
designed data metric must also be used. A data metric defines the color space
and numerical units in which encoded data are expressed. The combination
of a color encoding method and data metric forms a complete color encoding
specification. The selected color encoding specification must be consistent
with the state of the image to be encoded. The image state is a function of
how an image was captured and subsequently signal processed. Most digital
images can be categorized into two types of image states: unrendered and
rendered. Images in an unrendered state are directly related to the colorim-
etry of real or hypothetical original scenes. Images in a rendered state are
encoded representations of the colorimetry of output images. Transforma-
tions beyond those based on color appearance alone are needed when an
image is to be transformed from one image state to another. Image-state
transformations are greatly facilitated by the use of appropriate color encod-
ing specifications.

Eastman Kodak Company has developed a family of such specifications
for use in the development of its digital imaging products. These specifica-
tions have been proposed for international standardization. Reference Input
Medium Metric RGB (RIMM RGB) is designed for the manipulation, storage,
and interchange of images from sources that naturally capture scene-
referred (unrendered) image data. Reference Output Medium Metric RGB
(ROMM RGB) serves a similar purpose for images from sources that produce
images in an output-referred (rendered) image state. Images encoded in
terms of RIMM RGB or ROMM RGB are fully compliant with the JPEG 2000
file storage format.
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5.1 Introduction 

 

Achieving consistent and high-quality color reproduction in a color imaging
system necessitates a comprehensive understanding of the color character-
istics of the various devices in the system. This understanding is achieved
through a process of device characterization. One approach for doing this is
known as closed-loop characterization, where a specific input device is opti-
mized for rendering images to a specific output device. A common example
of closed-loop systems is found in offset press printing, where a drum scan-
ner is often tuned to output CMYK signals for optimum reproduction on a
particular offset press. The tuning is often carried out manually by skilled
press operators. Another example of a closed-loop system is traditional
photography, where the characteristics of the photographic dyes, film, devel-
opment, and printing processes are co-optimized (again, often manually) for
proper reproduction. While the closed-loop paradigm works well in the
aforementioned examples, it is not an efficient means of managing color in
open digital color imaging systems where color can be exchanged among a
large and variable number of color devices. For example, a system compris-
ing three scanners and four printers would require  closed-loop
transformations. Clearly, as more devices are added to the system, it becomes
difficult to derive and maintain characterizations for all the various combi-
nations of devices. 

An alternative approach that is increasingly embraced by the digital
color imaging community is the device-independent paradigm, where trans-
lations among different device color representations are accomplished via
an intermediary device-independent color representation. This approach is
more efficient and easily managed than the closed-loop model. Taking the
same example of three scanners and four printers now requires only 3 + 4
= 7 transformations. The device-independent color space is usually based
on a colorimetric standard such as CIE XYZ or CIELAB. Hence, the visual
system is explicitly introduced into the color imaging path. The closed-loop
and device-independent approaches are compared in Figure 5.1. 

The characterization techniques discussed in this chapter subscribe to
the device-independent paradigm and, as such, involve deriving transfor-
mations between device-dependent and colorimetric representations.
Indeed, a plethora of device characterization techniques have been reported
in the literature. The optimal approach depends on several factors, including
the physical color characteristics of the device, the desired quality of the
characterization, and the cost and effort that one is willing to bear to perform
the characterization. There are, however, some fundamental concepts that
are common to all these approaches. We begin this chapter with a description
of these concepts and then provide a more detailed exposition of character-
ization techniques for commonly encountered input and output devices. To
keep the chapter to a manageable size, an exhaustive treatment is given to
only a few topics. The chapter is complemented by an extensive set of
references for a more in-depth study of the remaining topics.

3 4× 12=
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5.2 Basic concepts

 

It is useful to partition the transformation between device-dependent and
device-independent space into a calibration and a characterization function,
as shown in Figure 5.2.

 

5.2.1 Device calibration

 

Device calibration is the process of maintaining the device with a fixed
known characteristic color response and is a precursor to characterization.
Calibration can involve simply ensuring that the controls internal to the
device are kept at fixed nominal settings (as is often the case with scanners
and digital cameras). Often, if a specific color characteristic is desired, this
typically requires making color measurements and deriving correction func-
tions to ensure that the device maintains that desired characteristic. Some-
times the desired characteristic is defined individually for each of the device
signals; e.g., for a CRT display, each of the R, G, B channels is often linearized
with respect to luminance. This linearization can be implemented with a set
of one-dimensional tone reproduction curves (TRCs) for each of the R, G, B
signals. Sometimes, the desired characteristic is defined in terms of mixtures
of device signals. The most common form of this is gray-balanced calibration,
whereby equal amounts of device color signals (e.g., R = G = B or C = M =
Y) correspond to device-independent measurements that are neutral or gray

Device-Independent Color Representation
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Figure 5.1 Closed-loop vs. device-independent color management. 
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(e.g., a*= b*= 0 in CIELAB coordinates). Gray-balancing of a device can also
be accomplished with a set of TRCs.

It is important to bear mind that calibration with one-dimensional TRCs
can control the characteristic response of the device only in a limited region
of color space. For example, TRCs that ensure a certain tone response along
each of the R, G, B axes do not necessarily ensure control of the gray axis,
and vice versa. However, it is hoped that this limited control is sufficient to
maintain, within a reasonable tolerance, a characteristic response within the
entire color gamut; indeed, this is true in many cases.

 

5.2.2 Device characterization

 

The characterization process derives the relationship between device-depen-
dent and device-independent color representations for a calibrated device.
For input devices, the captured device signal is first processed through a
calibration function (see

 

 

 

Figure 5.2) while output devices are addressed
through a final calibration function. In typical color management workflows,
device characterization is a painstaking process that is done infrequently,
while the simpler calibration process is carried out relatively frequently to
compensate for temporal changes in the device’s response and maintain it
in a fixed known state. It is thus assumed that a calibrated device maintains
the validity of the characterization function at all times. Note that calibration
and characterization form a pair, so that if a new calibration alters the
characteristic color response of the device, the characterization must also be
re-derived.

Input
Device Calibration Characterization

d d `
c

forward
inverse
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Figure 5.2 Calibration and characterization for input and output devices.
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The characterization function can be defined in two directions. The for-
ward characterization transform defines the response of the device to a
known input, thus describing the color characteristics of the device. The
inverse characterization transform compensates for these characteristics and
determines the input to the device that is required to obtain a desired
response. The inverse function is used in the final imaging path to perform
color correction to images. 

The sense of the forward function is different for input and output
devices. For input devices, the forward function is a mapping from a device-
independent color stimulus to the resulting device signals recorded when
the device is exposed to that stimulus. For output devices, this is a mapping
from device-dependent colors driving the device to the resulting rendered
color, in device-independent coordinates. In either case, the sense of the
inverse function is the opposite to that of the forward function.

There are two approaches to deriving the forward characterization func-
tion. One approach uses a model that describes the physical process by which
the device captures or renders color. The parameters of the model are usually
derived with a relatively small number of color samples. The second
approach is empirical, using a relatively large set of color samples in con-
junction with some type of mathematical fitting or interpolation technique
to derive the characterization function. Derivation of the inverse function
calls for an empirical or mathematical technique for inverting the forward
function. (Note that the inversion does not require additional color samples;
it is purely a computational step.)

A primary advantage to model-based approaches is that they require
fewer measurements and are thus less laborious and time consuming than
empirical methods. To some extent, a physical model can be generalized for
different image capture or rendering conditions, whereas an empirical tech-
nique is typically optimized for a restrictive set of conditions and must be re-
derived as the conditions change. Model-based approaches generate relatively
smooth characterization functions, whereas empirical techniques are subject
to additional noise from measurements and often require additional smooth-
ing on the data. However, the quality of a model-based characterization is
determined by the extent to which the model reflects the real behavior of the
device. Certain types of devices are not readily amenable to tractable physical
models; thus, one must resort to empirical approaches in these cases. Also,
most model-based approaches require access to the raw device, while empir-
ical techniques can often be applied in addition to simple calibration and
characterization functions already built into the device. Finally, hybrid tech-
niques can be employed that borrow strengths from both model-based and
empirical approaches. Examples of these will be presented later in the chapter.

The output of the calibration and characterization process is a set of
mappings between device-independent and -dependent color descriptions;
these are usually implemented as some combination of power-law mapping,
3 

 

×

 

 3 matrix conversion, white-point normalization, and one-dimensional
and multidimensional lookup tables. This information can be stored in a
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variety of formats, of which the most widely adopted industry standard is
the International Color Consortium (ICC) profile (www.color.org). For print-
ers, the Adobe Postscript language (Level 2 and higher) also contains oper-
ators for storing characterization information.

 

1

 

It is important to bear in mind that device calibration and characteriza-
tion, as described in this chapter, are functions that depend on color signals
alone and are not functions of time or the spatial location of the captured or
rendered image. The overall accuracy of a characterization is thus limited
by the ability of the device to exhibit spatial uniformity and temporal sta-
bility. Indeed, in reality, the color characteristics of any device will vary to
some degree over its spatial footprint and over time. It is generally good
practice to gather an understanding of these variances prior to or during the
characterization process. This may be accomplished by exercising the device
response with multiple sets of stimuli in different spatial orientations and
over a period of time. The variation in the device’s response to the same
stimulus across time and space is then observed. A simple way to reduce
the effects of nonuniformity and instability during the characterization pro-
cess is to average the data at different points in space and time that corre-
spond to the same input stimulus.

Another caution to keep in mind is that many devices have color-cor-
rection algorithms already built into them. This is particularly true of low-
cost devices targeted for consumers. These algorithms are based in part on
calibration and characterization done by the device manufacturer. In some
devices, particularly digital cameras, the algorithms use spatial context and
image-dependent information to perform the correction. As indicated in the
preceding paragraph, calibration or characterization by the user is best per-
formed if these built-in algorithms can be deactivated or are known to the
extent that they can be inverted. (This is especially true of the model-based
approaches.) Reverse engineering of built-in correction functions is not
always an easy task. One can also argue that, in many instances, the built-
in algorithms provide satisfactory quality for the intended market, hence not
requiring additional correction. Device calibration and characterization is
therefore recommended only when it is necessary and possible to fully
control the color characteristics of the device. 

 

5.2.3 Input device calibration and characterization

 

There are two main types of digital color input devices: scanners, which
capture light reflected from or transmitted through a medium, and digital
cameras, which directly capture light from a scene. The captured light passes
through a set of color filters (most commonly, red, green, blue) and is then
sensed by an array of charge-coupled devices (CCDs). The basic model that
describes the response of an image capture device with 

 

M

 

 filters is given by

(5.1)Di S λ( )
λεV
∫ qi λ( )u λ( )∂λ ni+= ,i 1,…,M=
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where 
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 = sensor response 
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 = spectral regime outside which the device sensitivity is 
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Digital still cameras often include an infrared (IR) filter; this would be incor-
porated into the 

 

u(

 

λ

 

)

 

 term. Invariably, 

 

M 

 

= 3 sensors are employed with
filters sensitive to the red, green, and blue portions of the spectrum. The
spectral sensitivities of a typical set of scanner filters are shown in Figure
5.3. Scanners also contain an internal light source that illuminates the reflec-
tive or transmissive material being scanned. Figure 5.4 shows the spectral
radiance of a fluorescent scanner illuminant. Note the sharp spikes that
typify fluorescent sources. The light incident upon the detector is given by
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(5.2)

where 
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 = spectral reflectance (or transmittance) function of the input 
stimulus 

 

I

 

s

 

(

 

λ

 

)

 

 = scanner illuminant 
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Figure 5.3 Typical scanner filter sensitivities.
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From the introductory chapter on colorimetry, we know that spectral radi-
ance is related to colorimetric signals by

(5.3)

where 

 

C

 

i

 

 = colorimetric signals
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 = corresponding color matching functions
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 = normalizing constants

Again, if a reflective sample is viewed under an illuminant 
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), the input
spectral radiance is given by
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(5.4)

Equations 5.1 through 5.4 together establish a relationship between
device-

 

dependent

 

 and device-independent signals for an input device. To
further explore this relationship, let us represent a spectral signal by a dis-
crete L-vector comprising samples at wavelengths 

 

λ

 

1

 

, . . . , 

 

λ

 

L

 

. Equation 5.1
can be rewritten as
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Figure 5.4 Spectral radiance of typical scanner illuminant.
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(5.5)

where 

 

d

 

 =  M-vector of device signals
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-vector describing the input spectral signal
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 matrix whose columns are the input device sensor 
responses

 

ε

 

 =  noise term

If the input stimulus is reflective or transmissive, then the illuminant term
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 can be combined with either the input signal vector 
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 or the sensitivity
matrix 

 

A

 

d

 

. In a similar fashion, Equation 5.3 can be rewritten as

(5.6)

where 

 

c

 

 = colorimetric three-vector
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 =

 

L

 

 

 

×

 

 3 matrix whose columns contain the color-matching 
functions ci(λ) 

If the stimulus being viewed is a reflection print, then the viewing illuminant
Iv(λ) can be incorporated into either s or Ac.

It is easily seen from Equations 5.5 and 5.6 that, in the absence of noise,
a unique mapping exists between device-dependent signals d and device-
independent signals c if there exists a transformation from the device sensor
response matrix Ad to the matrix of color matching functions Ac.2 In the case
of three device channels, this translates to the condition that Ad must be a
linear nonsingular transformation of Ac.3,4 Devices that fulfill this so-called
Luther–Ives condition are referred to as colorimetric devices. 

Unfortunately, practical considerations make it difficult to design sensors
that meet this condition. For one thing, the assumption of a noise-free system
is unrealistic. It has been shown that, in the presence of noise, the Luther–Ives
condition is not optimal in general, and it guarantees colorimetric capture
only under a single viewing illuminant Iv..5 Furthermore, to maximize the
efficiency, or signal-to-noise ratio (SNR), most filter sets are designed to have
narrowband characteristics, as opposed to the relatively broadband color
matching functions. For scanners, the peaks of the R, G, B filter responses
are usually designed to coincide with the peaks of the spectral absorption
functions of the C, M, Y colorants that constitute the stimuli being scanned.
Such scanners are sometimes referred to as densitometric scanners. Because
photography is probably the most common source for scanned material,
scanner manufacturers often design their filters to suit the spectral charac-
teristics of photographic dyes. Similar observations hold for digital still
cameras, where filters are designed to be narrowband, equally spaced, and
independent so as to maximize efficiency and enable acceptable shutter
speeds. A potential outcome of this is scanner metamerism, where two

d Ad
t s ε+=

c Ac
t s=
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stimuli that appear identical to the visual system may result in distinct
scanner responses, and vice versa.

The spectral characteristics of the sensors have profound implications
on input device characterization. The narrowband sensor characteristics
result in a relationship between XYZ and device RGB that is typically more
complex than a 3 × 3 matrix, and furthermore changes as a function of
properties of the input stimulus (i.e., medium, colorants, illuminant). A
colorimetric filter set, on the other hand, results in a simple linear charac-
terization function that is media independent and that does not suffer from
metamerism. For these reasons, there has been considerable interest in
designing filters that approach colorimetric characteristics, subject to prac-
tical constraints that motivate the densitometric characteristics.6 An alterna-
tive approach is to employ more than three filters to better approximate the
spectral content of the input stimulus.7 These efforts are largely in the
research phase; most input devices in the market today still employ three
narrowband filters. Hence, the most accurate characterization is a nonlinear
function that varies with the input medium.

Model-based characterization techniques use the basic form of Equation
5.1 to predict device signals Di given the radiance S(λ) of an arbitrary input
medium and illuminant, and the device spectral sensitivities. The latter can
sometimes be directly acquired from the manufacturer. However, due to
temporal changes in device characteristics and variations from device to
device, a more reliable method is to estimate the sensitivities from measure-
ments of suitable targets. Model-based approaches may be used in situations
where there is no way of determining a priori the characteristics of the specific
stimulus being scanned. However, the accuracy of the characterization is
directly related to the accuracy of the model and its estimated parameters.
The result is usually an M × 3 matrix that maps M (typically three) device
signals to three colorimetric signals such as XYZ. 

Empirical techniques, on the other hand, directly correlate colorimetric
measurements of a color target with corresponding device values that result
when the device is exposed to the target. Empirical techniques are suitable
when the physical nature of the input stimulus is known beforehand, and a
color target with the same physical traits is available for characterizing the
input device. An example is the use of a photographic target to characterize
a scanner that is expected to scan photographic prints. The characterization
can be a complex nonlinear function chosen to achieve the desired level of
accuracy, and it is obtained through an empirical data-fitting or interpolation
procedure.

Modeling techniques are often used by researchers and device manufac-
turers to better understand and optimize device characteristics. In end user
applications, empirical approaches are often adopted, as these provide a
more accurate characterization than model-based approaches for a specific
set of image capture conditions. This is particularly true for the case of
scanners, where it is possible to classify a priori a few commonly encountered
media (e.g., photography, lithography, xerography, inkjet) and generate
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empirical characterizations for each class. In the case of digital cameras, it
is not always easy to define or classify the type of stimuli to be encountered
in a real scene. In this case, it may be necessary to revert to model-based
approaches that assume generic scene characteristics. More details will be
presented in following sections.

A generic workflow for input device characterization is shown in Figure
5.5. First, the device is calibrated, usually by ensuring that various internal
settings are in a fixed nominal state. For scanners, calibration minimally
involves normalizing the RGB responses to the measurement of a built-in
white tile, a process that is usually transparent to the user. In addition, it
may be desirable to linearize and gray-balance the device response by scan-
ning a suitable premeasured target. Next, the characterization is performed
using a target comprising a set of color patches that spans the gamut of the
input medium. Often, the same target is used for both linearization and
characterization. Industry standard targets designed for scanners are the Q60
and IT8. Device-independent color measurements are made of each patch
in the target using a spectroradiometer, spectrophotometer, or colorimeter.
Additional data processing may be necessary to extract raw colorimetric data
from the measurements generated by the instrument. Next, the input device
records an image of the target. If characterization is being performed as a
separate step after calibration, then the captured image must be processed
through the calibration functions derived in a previous step. The device-
dependent (typically RGB) coordinates for each patch on the target must
then be extracted from the image. This involves correctly identifying the
spatial extent of each patch within the scanned image. To facilitate this, it is
desirable to include reference fiducial marks at each corner of the target and
supply target layout information (e.g., number of rows, columns) to the
image-processing software. Also, it is recommended that a subset of pixels
near the center of each patch is averaged, so as to reduce the effect of spatial
noise in the device response. Once extracted, the device-dependent values
are correlated with the corresponding device-independent values to obtain
the characterization for the device.

The forward characterization is a model of how the device responds to
a known device-independent input; i.e., it is a function that maps device-
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Figure 5.5 Input device characterization workflow.
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independent measurements to the resulting device signals. The inverse func-
tion compensates for the device characteristics and maps device signals to
corresponding device-independent values. Model-based techniques esti-
mate the forward function, which is then inverted using analytic or numer-
ical approaches. Empirical techniques derive both the forward and inverse
functions.

Figure 5.6 describes how the accuracy of the resulting characterization
can be evaluated. A test target containing colors that are preferably different
from those in the initial characterization target is presented to the image-
capture device. The target should be made with the same colorants and
media as used for the characterization target. The resulting captured elec-
tronic image is mapped through the same image-processing functions per-
formed when the characterization was derived (see Figure 5.5). It is then
converted to a device-independent color space using the inverse character-
ization function. The device-independent color values of the patches are then
extracted and compared with measurements of these patches using an appro-
priate color difference formula such as ∆  or ∆  (described in more
detail in Section 5.5). To avoid redundant processing, the same target can be
used for both deriving and testing the characterization, with different por-
tions of the target being used for the two purposes.

5.2.4 Output device calibration and characterization

Output color devices can be broadly categorized into emissive display
devices and devices that produce reflective prints or transparencies. Emissive
devices produce colors via additive mixing of red, green, and blue (RGB)
lights. Examples are cathode ray tube (CRT) displays, liquid crystal displays
(LCDs), organic light emitting diodes (OLEDs), plasma displays, projection
displays, etc. The spectral radiance emitted by a display device is a function
of the input digital RGB values and is denoted SRGB(λ). Two important
assumptions are usually made that greatly simplify display characterization.

• Channel independence. Each of the R, G, B channels to the display
operates independently of the others. This assumption allows us to
separate the contribution of spectral radiance from the three channels.
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Figure 5.6 Testing of input device characterization.
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SRGB(λ) = SR(λ) + SG(λ) + SB(λ) (5.7)

• Chromaticity constancy. The spectral radiance due to a given channel
has the same basic shape and is only scaled as a function of the device
signal driving the display. This assumption further simplifies Equa-
tion 5.7 to

SRGB(λ) = fR (DR) SRmax(λ) + fG (DG) SGmax(λ) + fB (DB) SBmax(λ) (5.8)

where  SRmax(λ) = the spectral radiance emitted when the red channel is at 
its maximum intensity

DR = the digital input to the display
fR() = a linearization function (discussed further in Section 5.8)

The terms for green and blue are similarly defined. Note that a constant
scaling of a spectral radiance function does not change its chromaticity (x-y)
coordinates, hence the term “chromaticity constancy.” 

These assumptions hold fairly well for many display technologies and
result in a simple linear characterization function. Figure 5.7 shows the
spectral radiance functions for a typical CRT phosphor set. Sections 5.8 and
5.9 contain more details on CRT and LCD characterization, respectively.
Recent research has shown that OLEDs can also be accurately characterized
with techniques similar to those described in these sections.8
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Figure 5.7 Spectral radiance of typical CRT phosphors.
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Printing devices produce color via subtractive color mixing in which a
base medium for the colorants (usually paper or transparency) reflects or
transmits most of the light at all visible wavelengths, and different spectral
distributions are produced by combining cyan, magenta, and yellow (CMY)
colorants to selectively remove energy from the red, green, and blue portions
of the electromagnetic spectrum of a light source. Often, a black colorant (K)
is used both to increase the capability to produce dark colors and to reduce
the use of expensive color inks. Photographic prints and transparencies and
offset, laser, and inkjet printing use subtractive color.

Printers can be broadly classified as being continuous-tone or halftone
devices. A continuous-tone process generates uniform colorant layers and
modulates the concentration of each colorant to produce different intensity
levels. A halftone process generates dots at a small fixed number of concen-
tration levels and modulates the size, shape, and frequency of the dots to
produces different intensity levels. (Color halftoning is covered in detail in
another chapter.) Both types of processes exhibit complex nonlinear color
characteristics, making them more challenging to model and characterize.
For one thing, the spectral absorption characteristics of printed colorants do
not fulfill the ideal “block dye” assumption, which states that the C, M, Y
colorants absorb light in nonoverlapping bands in the long, medium, and
short wavelengths, respectively. Such an ideal behavior would result in a
simple linear characterization function. Instead, in reality, each of these col-
orants exhibits unwanted absorptions in other bands, as shown in Figure
5.8, giving rise to complex intercolorant interactions and nonlinear charac-
terization functions. Halftoning introduces additional optical and spatial
interactions and thus lends complexity to the characterization function. Nev-
ertheless, much effort has been devoted toward the modeling of continuous
and halftone printers as well as toward empirical techniques. A few of these
techniques will be explored in further detail in Section 5.10.

A generic workflow for output device calibration and characterization
is given in Figure 5.9. A digital target of color patches with known device
values is sent to the device. The resulting displayed or printed colors are
measured in device-independent (or colorimetric) color coordinates, and a
relationship is established between device-dependent and device-
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Figure 5.8 Spectral absorption functions of typical C, M, Y colorants.
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independent color representations. This can be used to generate both cali-
bration and characterization functions, in that order. For characterization,
we once again derive a forward and an inverse function. The forward func-
tion describes the colorimetric response of the (calibrated) device to a certain
device-dependent input. The inverse characterization function determines
the device-dependent values that should be presented to a (calibrated) device
to reproduce a certain colorimetric input. 

As with input devices, the calibration and characterization should then
be evaluated with an independent test target. The flow diagram for doing this
is shown in Figure 5.10. The test target comprises a set of patches with known
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Figure 5.9 Output device characterization workflow.
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device-independent coordinates. If calibration is being tested, this target is
processed through the calibration functions and rendered to the device. If
characterization is being evaluated, the target is processed through both the
characterization and calibration function and rendered to the device. The
resulting output is measured in device-independent coordinates and com-
pared with the original target values. Once again, the comparison is to be
carried out with an appropriate color difference formula such as ∆  or ∆ .  

An important component of the color characteristics of an output device
is its color gamut, namely the volume of colors in three-dimensional colori-
metric space that is physically achievable by the device. Of particular impor-
tance is the gamut surface, as this is used in gamut mapping algorithms.
This information can easily be derived from the characterization process.
Details of gamut surface calculation are provided in the chapter on gamut
mapping.

5.3 Characterization targets and measurement techniques 
The generation and measurement of color targets is an important component
of device characterization. Hence, a separate section is devoted to this topic.

5.3.1 Color target design

The design of a color target involves several factors. First is the set of colo-
rants and underlying medium of the target. In the case of input devices, the
characterization target is created offline (i.e., it is not part of the character-
ization process) with colorants and media that are representative of what
the device is likely to capture. For example, for scanner characterization,
photographic and offset lithographic processes are commonly used to create
targets on reflective or transmissive media. In the case of output devices,
target generation is part of the characterization process and should be carried
out using the same colorants and media that will be used for final color
rendition.

The second factor is the choice of color patches. Typically, the patches
are chosen to span the desired range of the colors to be captured (in the
case of input devices) or rendered (in the case of output devices). Often,
critical memory colors are included, such as flesh tones and neutrals. The
optimal choice of patches is logically a function of the particular algorithm
or model that will be used to generate the calibration or characterization
function. Nevertheless, a few targets have been adopted as industry stan-
dards, and they accommodate a variety of characterization techniques. For
input device characterization, these include the CGATS/ANSI IT8.7/1 and
IT8.7/2 targets for transmission and reflection media respectively
(http://webstore.ansi.org/ansidocstore); the Kodak photographic Q60 tar-
get, which is based on the IT8 standards and is made with Ektachrome dyes
on Ektacolor paper (www.kodak.com); the GretagMacbeth ColorChecker
chart (www.munsell.com); and ColorChecker DC version for digital cam-

Eab
* E94

*
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eras (www.gretagmacbeth.com). For output device characterization, the
common standard is the IT8.7/3 CMYK target (http://webstore.ansi.org/
ansidocstore). The Q60 and IT8.7/3 targets are shown in Plates 5A and 5B. 

A third factor is the spatial layout of the patches. If a device is known
to exhibit spatial nonuniformity, it may be desirable to generate targets with
the same set of color patches but rendered in different spatial layouts. The
measurements from the multiple targets are then averaged to reduce the
effect of the nonuniformity. In general, this approach is advised so as to
reduce the overall effect of various imperfections and noise in the character-
ization process. In the case of input devices, target creation is often not within
the practitioner’s control; rather, the targets are supplied by a third-party
vendor such as Eastman Kodak or Fuji Film. Generally, however, these
vendors do use similar principles to generate reliable measurement data. 

Another motivation for a specific spatial layout is visual inspection of
the target. The Kodak Q60 target, for example, is designed with a gray ramp
at the bottom and neutral colors all collected in one area. This allows for
convenient visual inspection of these colors, to which we are more sensitive.

5.3.2 Color measurement techniques

5.3.2.1 Visual approaches
Most visual approaches rely on observers making color matching judgments.
Typically, a varying stimulus produced by a given device is compared against
a reference stimulus of known measurement. When a visual match is
reported, this effectively provides a measurement for the varying stimulus
and can be correlated with the device value that produced the stimulus. The
major advantage of a visual approach is that it does not require expensive
measurement instrumentation. Proponents also argue that the best color
measurement device is the human visual system, because, after all, this is
the basis for colorimetry. However, these approaches have their limitations.
First, to achieve reliable results, the visual task must be easy to execute. This
imposes severe limits on the number and nature of measurements that can
be made. Second, observer-to-observer variation will produce measurements
and a characterization that may not be satisfactory to all observers. Never-
theless, visual techniques are appealing in cases where the characterization
can be described by a simple model and thus derived with a few simple
measurements. The most common application of visual approaches is thus
found in CRT characterization, discussed further in Section 5.8.3.

5.3.2.2 Instrument-based approaches
Color measurement instruments fall into two general categories, broadband
and narrowband. A broadband measurement instrument reports up to three
color signals obtained by optically processing the input light through broad-
band filters. Photometers are the simplest example, providing a measure-
ment only of the luminance of a stimulus. Their primary use is in determin-
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Figure 5A (See color insert following page 430) Q60 input characterization target.

Figure 5B (See color insert) IT87/3 output characterization target.
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ing the nonlinear calibration function of displays (discussed in Section 5.8).
Densitometers are an example of broadband instruments that measure opti-
cal density of light filtered through red, green, and blue filters. Colorimeters
are another example of broadband instruments that directly report tristim-
ulus (XYZ) values and their derivatives such as CIELAB. In the narrowband
category fall instruments that report spectral data of dimensionality signif-
icantly larger than three. Spectrophotometers and spectroradiometers are
examples of narrowband instruments. These instruments typically record
spectral reflectance and radiance, respectively, within the visible spectrum
in increments ranging from 1 to 10 nm, resulting in 30 to 300 channels. They
also have the ability to internally calculate and report tristimulus coordinates
from the narrowband spectral data. Spectroradiometers can measure both
emissive and reflective stimuli, while spectrophotometers can measure only
reflective stimuli. 

The main advantages of broadband instruments such as densitometers
and colorimeters are that they are inexpensive and can read out data at very
high rates. However, the resulting measurement is only an approximation
of the true tristimulus signal, and the quality of this approximation varies
widely, depending on the nature of the stimulus being measured. Accurate
colorimetric measurement of arbitrary stimuli under arbitrary illumination
and viewing conditions requires spectral measurements afforded by the
more expensive narrowband instruments. Traditionally, the printing indus-
try has satisfactorily relied on densitometers to make color measurements
of prints made by offset ink. However, given the larger variety of colorants,
printing technologies, and viewing conditions likely to be encountered in
today’s digital color imaging business, the use of spectral measurement
instruments is strongly recommended for device characterization. Fortu-
nately, the steadily declining cost of spectral instrumentation makes this a
realistic prospect.

Instruments measuring reflective or transmissive samples possess an
internal light source that illuminates the sample. Common choices for
sources are tungsten-halogen bulbs as well as xenon and pulsed-xenon
sources. An important consideration in reflective color measurement is the
optical geometry used to illuminate the sample and capture the reflected
light. A common choice is the 45/0 geometry, shown in Figure 5.11. (The
two numbers are the angles with respect to the surface normal of the incident
illumination and detector respectively.) This geometry is intended to mini-
mize the effect of specular reflection and is also fairly representative of the
conditions under which reflection prints are viewed. Another consideration
is the measurement aperture, typically set between 3 and 5 mm. Another
feature, usually offered at extra cost with the spectrophotometer, is a filter
that blocks out ultraviolet (UV) light emanated by the internal source. The
filter serves to reduce the amount of fluorescence in the prints that is caused
by the UV light. Before using such a filter, however, it must be remembered
that common viewing environments are illuminated by light sources (e.g.,
sunlight, fluorescent lamps) that also exhibit a significant amount of UV
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energy. Hence, blocking out UV energy may provide color measurements
that are less germane to realistic viewing conditions. 

For reflective targets, another important factor to consider is the color
of the backing surface on which the target is placed for measurement. The
two common options are black and white backing, both of which have
advantages and disadvantages. A black backing will reduce the effect of
show-through from the image on the backside of a duplex print. However,
it will also expose variations in substrate transmittance, thus resulting in
noisier measurements. A white backing, on the other hand, is not as effective
at attenuating show-through; however, the resulting measurements are less
noisy, because the effect of substrate variations is reduced. Generally, a white
backing is recommended if the target is not duplex (which is typically the
case.) Further details are provided by Rich.9

Color measurement instruments must themselves be calibrated to output
reliable and repeatable data. Instrument calibration entails understanding
and specifying many of the aforementioned parameters and, in some cases,
needs to be carried out frequently. Details are provided by Zwinkel.10

Because color measurement can be a labor-intensive task, much has been
done in the color management industry to automate this process. The Gretag
SpectrolinoTM product enables the target to be placed on a stage and auto-
matically measured by the instrument. These measurements are then stored
on a computer to be retrieved for deriving the characterization. In a similar
vein, X-Rite Corporation has developed the DTP-41 scanning spectropho-
tometer. The target is placed within a slot in the “strip reader” and is auto-
matically moved through the device as color measurements are made of each
patch.

5.3.3 Absolute and relative colorimetry

An important concept that underlies device calibration and characterization
is normalization of the measurement data by a reference white point. Recall
from an earlier chapter that the computation of tristimulus XYZ values from
spectral radiance data is given by

Sample

Illumination

Detector and
Monochromator

45°

Figure 5.11 45/0 measurement geometry.
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(5.9)

where  = color matching functions
V = set of visible wavelengths
K = a normalization constant

In absolute colorimetry, K is a constant, expressed in terms of the maximum
efficacy of radiant power, equal to 683 lumens/W. In relative colorimetry, K
is chosen such that Y = 100 for a chosen reference white point.

(5.10)

where Sw(λ) = the spectral radiance of the reference white stimulus.
For reflective stimuli, radiance Sw(λ) is a product of incident illumination

I(λ) and spectral reflectance Rw(λ) of a white sample. The latter is usually
chosen to be a perfect diffuse reflector (i.e., Rw(λ) = 1) so that Sw(λ) = I(λ) in
Equation 5.10.

There is an additional white-point normalization to be considered. The
conversion from tristimulus values to appearance coordinates such as
CIELAB or CIELUV requires the measurement of a reference white stimulus
and an appropriate scaling of all tristimulus values by this white point. In
the case of emissive display devices, the white point is the measurement of
the light emanated by the display device when the driving RGB signals are
at their maximal values (e.g., DR = DG = DB = 255 for 8-bit input). In the case
of reflective samples, the white point is obtained by measuring the light
emanating from a reference white sample illuminated by a specified light
source. If an ideal diffuse reflector is used as the white sample, we refer to
the measurements as being in media absolute colorimetric coordinates. If a par-
ticular medium (e.g., paper) is used as the stimulus, we refer to the mea-
surements as being in media relative colorimetric coordinates. Conversions
between media absolute and relative colorimetry are achieved with a white-
point normalization model such as the von Kries formula. 

To get an intuitive understanding of the effect of media absolute vs.
relative colorimetry, consider an example of scan-to-print reproduction of a
color image. Suppose the image being scanned is a photograph whose
medium typically exhibits a yellowish cast. This image is to be printed on
a xerographic printer, which typically uses a paper with fluorescent whit-
eners and is thus lighter and bluer than the photographic medium. The
image is scanned, processed through both scanner and printer characteriza-
tion functions, and printed. If the characterizations are built using media
absolute colorimetry, the yellowish cast of the photographic medium is

X K S λ( )x λ( )∂λ,  Y
λεV
∫ K S λ( )y∂λ,  Z

λεV
∫ K S λ( )z λ( )∂λ

λεV
∫= = =

x λ( ), y λ( ), z λ( )

K 100

Sw λ( )
λεV
∫ y λ( )∂λ

-----------------------------------------=
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preserved in the xerographic reproduction. On the other hand, with media
relative colorimetry, the “yellowish white” of the photographic medium
maps directly to the “bluish white” of the xerographic medium under the
premise that the human visual system adapts and perceives each medium
as “white” when viewed in isolation. Arguments can be made for both
modes, depending on the application. Side-by-side comparisons of original
and reproduction may call for media absolute characterization. If the repro-
duction is to be viewed in isolation, it is probably preferable to exploit visual
white-point adaptation and employ relative colorimetry. To this end, the
ICC specification supports both media absolute and media relative modes
in its characterization tables.

Finally, we remark that, while a wide variety of standard illuminants
can be selected for deriving the device characterization function, the most
common choices are CIE daylight illuminants D5000 (typically used for
reflection prints) and D6500 (typically used for the white point of displays). 

5.4 Multidimensional data fitting and interpolation
Another critical component underlying device characterization is multidi-
mensional data fitting and interpolation. This topic is treated in general
mathematical terms in this section. Application to specific devices will be
discussed in ensuing sections.

Generally, the data samples generated by the characterization process in
both device-dependent and device-independent spaces will constitute only
a small subset of all possible digital values that could be encountered in
either space. One reason for this is that the total number of possible samples
in a color space is usually prohibitively large for direct measurement of the
characterization function. As an example, for R, G, B signals represented
with 8-bit precision, the total number of possible colors is 224 = 16,777,216;
clearly an unreasonable amount of data to be acquired manually. However,
because the final characterization function will be used for transforming
arbitrary image data, it needs to be defined for all possible inputs within
some expected domain. To accomplish this, some form of data fitting or
interpolation must be performed on the characterization samples. In model-
based characterization, the underlying physical model serves to perform the
fitting or interpolation for the forward characterization function. With empir-
ical approaches, mathematical techniques may be used to perform data
fitting or interpolation. Some of the common mathematical approaches are
discussed in this section. 

The fitting or interpolation concept can be formalized as follows. Define
a set of T m-dimensional device-dependent color samples {di} ∈ Rm, i = 1,
. . . , T generated by the characterization process. Define the corresponding
set of n-dimensional device-independent samples {ci} ∈ Rn, i = 1, . . . , T. For
the majority of characterization functions, n = 3, and m = 3 or 4. We will
often refer to the pair ({di}, {ci}) as the set of training samples. From this set,
we wish to evaluate one or both of the following functions:
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• f: F ∈ Rm → Rn, mapping device-dependent data within a domain F
to device-independent color space

• g: G ∈ Rn → Rm, mapping device-independent data within a domain
G to device-dependent color space

In interpolation schemes, the error of the functional approximation is
identically zero at all the training samples, i.e., f(di) = ci, and g(ci) = di, i =
1, . . . , T.

In fitting schemes, this condition need not hold. Rather, the fitting func-
tion is designed to minimize an error criterion between the training samples
and the functional approximations at these samples. Formally,

(5.11)

where E1 and E2 are suitably chosen error criteria.
A common approach is to pick a parametric form for f (or g) and mini-

mize the mean squared error metric, given by

(5.12)

An analogous expression holds for E2. The minimization is performed with
respect to the parameters of the function f or g. 

Unfortunately, most of the data fitting and interpolation approaches to
be discussed shortly are too computationally expensive for the processing of
large amounts of image pixel data in real time. The most common way to
address this problem is to first evaluate the complex fitting or interpolation
functions at a regular lattice of points in the input space and build a multi-
dimensional lookup table (LUT). A fast interpolation technique such as tri-
linear or tetrahedral interpolation is then used to transform image data using
this LUT. The subject of fast LUT interpolation on regular lattices is treated
in a later chapter. Here, we will focus on the fitting and interpolation methods
used to initially approximate the characterization function and build the LUT. 

Often, it is necessary to evaluate the functions f and g within domains F
and G that are outside of the volumes spanned by the training data {di} and
{ci}. An example is shown in Figure 5.12 for printer characterization mapping
CIELAB to CMY. A two-dimensional projection of CIELAB space is shown,
with a set of training samples {ci} indicated by “x.” Device-dependent CMY
values {di} are known at each of these points. The shaded area enclosed by
these samples is the range of colors achievable by the printer, namely its color
gamut. From these data, the inverse printer characterization function from
CIELAB to CMY is to be evaluated at each of the lattice points lying on the
three-dimensional lookup table grid (projected as a two-dimensional grid in

f
f opt minE1arg ci, f di( )(= i 1,… ,T= ); gopt minE2arg di,g ci( )(= i 1,… ,T= )

g

E1
1
T
---  
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T
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Figure 5.12). Hence, the domain G in this case is the entire CIELAB cube.
Observe that a fraction of these lattice points lie within the printer gamut
(shown as black circles). Interpolation or data fitting of these points is usually
well defined and mathematically robust, since a sufficient amount of training
data is available in the vicinity of each lattice point. However, a substantial
fraction of lattice points also lie outside the gamut, and there are no training
samples in the vicinity of these points. One of two approaches can be used
to determine the characterization function at these points.

1. Apply a preprocessing step that first maps all out-of-gamut colors to
the gamut, then perform data fitting or interpolation to estimate
output values. 

2. Extrapolate the fitting or interpolation function to these out-of-gamut
regions.

Some of the techniques described herewith allow for data extrapolation. The
latter will invariably generate output data that lie outside the allowable range
in the output space. Hence, some additional processing is needed to limit
the data to this range. Often, a hard-limiting or clipping function is employed
to each of the components of the output data.

Two additional comments are noteworthy. First, while the techniques
described in this section focus on fitting and interpolation of multidimen-
sional data, most of them apply in a straightforward manner to one-dimen-
sional data typically encountered in device calibration. Linear and polyno-
mial regression and splines are especially popular choices for fitting one-
dimensional data. Lattice-based interpolation reduces trivially to piecewise
linear interpolation, and it can be used when the data are well behaved and
exhibit low noise. Secondly, the reader is strongly encouraged, where pos-
sible, to plot the raw data along with the fitting or interpolation function to
obtain insight on both the characteristics of the data and the functional
approximation. Often, data fitting involves a delicate balance between accu-
rately approximating the function and smoothing out the noise. This balance
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Figure 5.12 Multidimensional lattice in CIELAB, overlaying printer gamut.
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is difficult to achieve by examining only a single numerical error metric and
is significantly aided by visualizing the entire dataset in combination with
the fitting functions.

 

5.4.1 Linear least-squares regression

 

This very common data fitting approach is used widely in color imaging,
particularly in device characterization and modeling. The problem is formu-
lated as follows. Denote 

 

d

 

 and 
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 to be the input and output color vectors,
respectively, for a characterization function. Specifically, 
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 vector. We wish to approximate the characterization function
by the linear relationship 
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mean squared error of the linear fit to a set of training samples, {
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To continue the formulation, it is convenient to collect the samples {
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The linear relationship is given by 
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(5.14)

See Appendix 5.A for the derivation and numerical computation of this
least-squares solution. It is important to understand the conditions for which
the solution to Equation 5.14 exists. If 

 

T

 

 < 

 

m,

 

 we have an underdetermined
system of equations with no unique solution. The mathematical consequence
of this is that the matrix 

 

D

 

t

 

D

 

 is of insufficient rank and is thus not invertible.
Thus, we need at least as many samples as the dimensionality of the input
data. If 

 

T

 

 = 

 

m,

 

 we have an exact solution for 

 

A

 

 that results in the squared
error metric being identically zero. If 

 

T

 

 > 

 

m

 

 (the preferred case), Equation
5.14 provides a least-squares solution to an overdetermined system of equa-
tions. Note that linear regression affords a natural means of extrapolation
for input data 

 

d

 

 lying outside the domain of the training samples. As men-
tioned earlier, some form of clipping will be needed to limit such extrapo-
lated outputs to their allowable range.

 

5.4.2 Weighted least-squares regression

 

The standard least-squares regression can be extended to minimize a
weighted error criterion,
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(5.15)

where wi = positive-valued weights that indicate the relative importance 
of the ith data point, {di, ci}.

Adopting the notation in Section 5.4.1, a straightforward extension of Appen-
dix 5.A results in the following optimum solution:

A = (DtWD)–1 Dt WC (5.16)

where W is a T × T diagonal matrix with diagonal entries wi.
The resulting fit will be biased toward achieving greater accuracy at the

more heavily weighted samples. This can be a useful feature in device char-
acterization when, for example, we wish to assign greater importance to
colors in certain regions of color space (e.g., neutrals, fleshtones, etc.). As
another example, in spectral regression, it may be desirable to assign greater
importance to certain wavelengths than others. 

5.4.3 Polynomial regression

This is a special form of least-squares fitting wherein the characterization
function is approximated by a polynomial. We will describe the formulation
using, as an example, a scanner characterization mapping device RGB space
to XYZ tristimulus space. The formulation is conceptually identical for input
and output devices and for the forward and inverse functions. 

The third-order polynomial approximation for a transformation from
RGB to XYZ space is given by

(5.17)

where wX,l, etc. = polynomial weights
l = a unique index for each combination of i, j, k

In practice, several of the terms in Equation 5.17 are eliminated (i.e., the weights
w are set to zero) so as to control the number of degrees of freedom in the
polynomial. Two common examples, a linear and third-order approximation,
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are given below. For brevity, only the X term is defined; analogous definitions
hold for Y and Z.

X = wX,0R + wX,1G + wX,2B (5.18a)

X = wX,0 + wX,1R + wX,2G + wX,3B + wX,4RG + wX,5GB 
+ wX,6RB + wX,7R2 + wX,8G2 + wX,9B2 + wX,10RGB (5.18b)

In matrix-vector notation, Equation 5.17 can be written as

(5.19)

or more compactly, 

c = p · A (5.20)

where c = output XYZ vector 
p = 1 × Q vector of Q polynomial terms derived from the input RGB 

vector d
A = Q × 3 matrix of polynomial weights to be optimized 

In the complete form, Q = 64. However, with the more common simplified
approximations in Equation 5.18, this number is significantly smaller; i.e., Q
= 3 and Q = 11, respectively.

Note from Equation 5.20 that the polynomial regression problem has
been cast into a linear least-squares problem with suitable preprocessing of
the input data d into the polynomial vector p. The optimal A is now given by

(5.21)

Collecting the samples {ci} into a T × 3 matrix C = [c1, . . . , cT], and {pi} into
a T × Q matrix P = [p1, . . . , pT], we have the relationship C = P · A. Following
the formulation in Section 5.4.1, the optimal solution for A is given by

A = (PtP)–1 PtC (5.22)

For the Q × Q matrix (PtP) to be invertible, we now require that T ≥ Q. 
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Polynomial regression can be summarized as follows:

1. Select a set of T training samples, where T > Q, the number of terms
in the polynomial approximation. It is recommended that the sam-
ples adequately span the input color space.

2. Use the assumed polynomial model to generate the polynomial terms
pi from the input data di. Collect ci and pi into matrices C and P,
respectively.

3. Use Equation (5.22 to derive the optimal A.
4. For a given input color d, use the same polynomial model to generate

the polynomial terms p.
5. Use Equation 5.20 to compute the output color c.

Figure 5.13 is a graphical one-dimensional example of different polynomial
approximations to a set of training samples. The straight line is a linear fit
(Q = 3) and is clearly inadequate for the given data. The solid curve is a
second-order polynomial function (Q = 7) and offers a much superior fit.
The dash–dot curve closely following the solid curve is a third-order poly-
nomial approximation (Q = 11). Clearly, this offers no significant advantage
over the second-order polynomial. In general, we recommend using the
smallest number of polynomial terms that adequately fits the curvature of
the function while still smoothing out the noise. This choice is dependent
on the particular device characteristics and is obtained by experimentation,
intuition, and experience. Finally, it is noted that polynomial regression
affords a natural means of extrapolation for input data lying outside the
domain of the training samples.
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Figure 5.13 One-dimensional example of different polynomial approximations.
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5.4.4 Distance-weighted techniques

The previous section described the use of a global polynomial function that
results in the best overall fit to the training samples. In this section, we
describe a class of techniques that also employ simple parametric functions;
however, the parameters vary across color space to best fit the local charac-
teristics of the training samples.

5.4.4.1 Shepard’s interpolation
This is a technique that can be applied to cases in which the input and output
spaces of the characterization function are of the same dimensionality. First,
a crude approximation of the characterization function is defined:  =
fapprox(d). The main purpose of fapprox() is to bring the input data into the
orientation of the output color space. (By “orientation,” it is meant that all
RGB spaces are of the same orientation, as are all luminance–chrominance
spaces, etc.) If both color spaces are already of the same orientation, e.g.,
printer RGB and sRGB, we can simply let fapprox() be an identity function so
that  = d. If, for example, the input and output spaces are scanner RGB
and CIELAB, an analytic transformation from any colorimetric RGB (e.g.,
sRGB) to CIELAB could serve as the crude approximation. 

Next, given the training samples {di} and {ci} in the input and output
space, respectively, we define error vectors between the crude approximation
and true output values of these samples: . Shepard’s
interpolation for an arbitrary input color vector d is then given by11

(5.23)

where w() = weights
Kw = a normalizing factor that ensures that these weights sum to 

unity as follows:

(5.24)

The second term in Equation 5.23 is a correction for the residual error
between c and , and it is given by a weighted average of the error vectors
ei at the training samples. The weighting function w() is chosen to be
inversely proportional to the Euclidean distance between d and di so that
training samples that are nearer the input point exhibit a stronger influence
than those that are further away. There are numerous candidates for w().
One form that has been successfully used for printer and scanner character-
ization is given by12

ĉ

ĉ

ei ci ĉi ,– 1, …,T= =

c ĉ= Kw w d di–( )
i 1=

T

∑ ei+

Kw
1

w d di–( )
i 1=

T

∑
--------------------------------=

ĉ
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(5.25)

where  denotes Euclidean distance between vectors d and di, and ρ
and ε are parameters that dictate the relative influence of the training samples
as a function of their distance from the input point. As ρ increases, the
influence of a training sample decays more rapidly as a function of its
distance from the input point. As ε increases, the weights become less sen-
sitive to distance, and the approach migrates from a local to a global approx-
imation. 

Note that, in the special case where ε = 0, the function in Equation 5.25
has a singularity at d = di. This can be accommodated by adding a special
condition to Equation 5.23.

(5.26)

where w() = given by Equation 5.25 with ε = 0
t = a suitably chosen distance threshold that avoids the singularity 

at d = di

Other choices of w() include the Gaussian and exponential functions.11 Note
that, depending on how the weights are chosen, Shepard’s algorithm can be
used for both data fitting (i.e., Equation 5.23 and Equation 5.25 with ε > 0),
and data interpolation, wherein the characterization function coincides
exactly at the training samples (i.e., Equation 5.26). Note also that this tech-
nique allows for data extrapolation. As one moves farther away from the
volume spanned by the training samples, the distances  and hence
the weights w() approach a constant. In the limit, the overall error correction
in Equation 5.23 is an unweighted average of the error vectors ei.

5.4.4.2 Local linear regression
In this approach, the form of the characterization function that maps input
colors d to output colors c is given by

c = d · Ad (5.27)

This looks very similar to the standard linear transformation, the important
difference being that the matrix Ad now varies as a function of the input
color d (hence the term local linear regression). The optimal Ad is obtained by
a distance-weighted least-squares regression,

w d di–( ) 1
d di– p ε+

------------------------------=

d di–

c ĉ Kw w d di–( )ei               

i 1=

T

∑+ if d di– t≥( )

ci if d di– t<





=

d di–
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(5.28)

As with Shepard’s interpolation, the weighting function w() is inversely
proportional to the Euclidean distance , so training samples di that
are farther away from the input point d are assigned a smaller weight than
nearby points. A form such as Equation 5.25 may be used.12 The solution is
given by Equation 5.16 in Section 4.2, where the weights w(d – di) constitute
the diagonal terms of W. Note that because w() is a function of the input
vector d, Equation 5.16 must be recalculated for every input vector d. Hence,
this is a computationally intensive algorithm. Fortunately, as noted earlier,
this type of data fitting is not applied to image pixels in real time. Instead,
it is used offline to create a multidimensional lookup table.

Figure 5.14 is a one-dimensional example of the locally linear transform
using the inverse-distance weighting function, Equation 5.25. As with Shep-
ard’s interpolation, ρ and ε affect the relative influence of the training sam-
ples as a function of distance. The plots in Figure 5.14 were generated with
ρ = 4 and compare two values of ε. For ε = 0.001, the function closely follows
the data. As ε increases to 0.01, the fit averages the fine detail while preserv-
ing the gross curvature. In the limit as ε increases, w() in Equation 5.25
approaches a constant, the technique approaches global linear regression,
and the fit approaches a straight line. Similar trends hold for ρ. These param-

Ad
opt minarg 1

T
--- ci di– Ad

2w d di–( )
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T
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 
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Figure 5.14 Local linear regression for different values of ε.
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eters thus offer direct control on the amount of curvature and smoothing
that occurs in the data fitting process and should be chosen based on a priori
knowledge about the device and noise characteristics.

As with Shepard’s algorithm, this approach also allows for data extrap-
olation. As the input point moves farther away from the volume spanned
by the training samples, the weights w() approach a constant, and we are
again in the regime of global linear extrapolation.

5.4.5 Lattice-based interpolation

In this class of techniques, the training samples are assumed to lie on a
regular lattice in either the input or output space of the characterization
function. Define li to be a set of real-valued levels along the ith color dimen-
sion. A regular lattice Lm in m-dimensional color space is defined as the set
of all points x = [x1, …, xm]t whose ith component xi belongs to the set li.
Mathematically, the lattice can be expressed as

(5.29)

where the second expression is a Cartesian product. If si is the number of
levels in li, the size of the lattice is the product s1 × s2 × … × sm. Commonly,
all the li are identical sets of size s, resulting in a lattice of size sm. 

In one dimension, a lattice is simply a set of levels {xj} in the input space.
Associated with these levels are values {yj} in the output space. Evaluation of
the one-dimensional function for an intermediate value of x is then performed
by finding the interval [xj, xj+1] that encloses x and performing piecewise
interpolation using either linear or nonlinear functions. If sufficient samples
exist and exhibit low noise, linear interpolation can be used as follows:

(5.30)

If only a sparse sampling is available, nonlinear functions such as splines
may be a better choice (see Section 5.4.8).

Let us turn to the more interesting multidimensional case. A three-dimen-
sional lattice in CMY space is shown in Figure 5.15, along with the corre-
sponding lattice in CIELAB space. The lines indicate the levels li along each
dimension, and the intersections of these lines are the lattice points. The lattice
size in this example is 5 × 5 × 5 = 125. A lattice partitions a color space into
a set of smaller subvolumes. The characterization transform is executed in
two steps: (1) Locate the subvolume to which an input color belongs, and (2)
perform some form of interpolation, effectively a distance-weighted average,
among the neighboring lattice points. By definition, the characterization func-
tion will coincide with the training samples at the lattice points.

Lm x Rm∈ |xi li,i∈ 1,…,m={ } or, equivalently,  Lm li

i 1=

m

∏= =

y yj=
x xj–

xj 1+ xj–
-------------------- 

  yj 1+ yj–( )+
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Note from Figure 5.15 that, while the lattice is regular in one space, it
need not be regular in the other space. In the case of the forward character-
ization function for an output device, the regular lattice exists in the input
domain of the function. Efficient interpolation techniques exist for regular
lattices, including trilinear, tetrahedral, prism, and pyramidal interpolation.
These are described in detail in Chapter 11 and thus will not be discussed
here. The more challenging case is evaluation of the inverse transform,
whereby the lattice that partitions the input domain of the function is irreg-
ular. We will describe a solution to this problem known as tetrahedral inver-
sion.13 Let us assume that the dimensionality of both input and output color
spaces are equal and assume, without less of generality, that the data are
three-dimensional. A regular lattice in three-dimensional space provides a
partitioning into a set of sub-cubes. Each sub-cube can be further partitioned
into several tetrahedra, as shown in Figure 5.16. A tetrahedron is a volume
bounded by four vertices and four planar surfaces. There are several ways
to split a cube into tetrahedra, the most common form being a partitioning
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Figure 5.15 Three-dimensional lattice in CMY and CIELAB space.
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Figure 5.16 Partitioning of color space into cubes, further subdivided into tetrahe-
dra.

-ColorBook  Page 302  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



Chapter five: Device characterization 303

into six tetrahedra that share a common diagonal of the cube. An association
is now established between each quadruplet of vertices that constitute a
tetrahedron on the regular lattice in device space and the corresponding
quadruplet of vertices on the irregular lattice in device-independent space,
as shown in Figure 5.17. The inverse characterization function g() is then
modeled as one that maps each tetrahedral volume in device-independent
space to a corresponding tetrahedral volume in device space.

Specifically, referring to Figure 5.17, let {d1, d2, d3, d4} be four vertices of
a tetrahedron Td in device space, and {c1, c2, c3, c4} be the corresponding
vertices forming a tetrahedron Tc in device-independent space. Here, di and
ci are 3 × 1 vectors. Given a point c lying within Tc, the corresponding point
d in Td is given by

d = g(c) = Ad · Ac
–1 · (c – c1) + d1 (5.31)

where Ad and Ac are 3 × 3 matrices given by

(5.32)

Equation 5.31 tells us that g() is being modeled as a piecewise affine
function. It can be shown that c is included within a tetrahedron Tc if all the
elements of the vector Ac

–1(c – c1) are nonnegative and their sum lies between
0 and 1.13

Tetrahedral inversion may be summarized as follows:

• Partition the regular lattice of training samples into a set of tetrahe-
dra.

• Establish a correspondence between tetrahedra on the regular lattice
in the one space and tetrahedra on the possibly irregular lattice in
the other space.

• Given an input point c, find the tetrahedron Tc to which the point
belongs, using the aforementioned membership test.
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Figure 5.17 Tetrahedral mapping from device CMY space to colorimetric CIELAB
space.
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• Use Equations 5.31 and 5.32 to evaluate the characterization function
d = g(c).

Because tetrahedral inversion requires membership in a tetrahedron, it does
not allow extrapolation to points c that lie outside the lattice defined by the
training samples. Hence, such points must first be mapped to the lattice
volume before carrying out the inversion algorithm. Also, it is worth noting
that tetrahedral interpolation on a regular lattice can be implemented with
a highly simplified form of Equation 5.31. These equations will be included
in the chapter on efficient color transformations.

In the context of deriving a characterization function, regular lattices of
training data can occur only for the case of output devices, as the patches
in the color target can be designed to lie on a regular lattice in device space.
With input device characterization, neither the captured device values nor
the measured device-independent values of the color target can be guaran-
teed to lie on a regular lattice.

5.4.6 Sequential interpolation

A primary advantage of a regular lattice is that it facilitates simple interpo-
lation techniques. However, it limits the freedom in the placement of control
points in multidimensional color space. Referring to Figure 5.12, one would
expect considerable curvature of the characterization function in certain
regions within the device gamut, while large regions outside the gamut
would never be used for interpolation calculations. It would be desirable,
therefore, to finely sample regions within the gamut, and coarsely sample
regions far away from the gamut. As shown in the figure, the regular lattice
does not permit this. A simple extension of regular lattice interpolation,
which we term sequential interpolation (SI), brings additional flexibility at a
modest increase in computational cost. 

In general terms, SI can be thought of as a two-stage interpolation pro-
cess. Consider a decomposition of the space Rm into two subspaces of dimen-
sions p and q, i.e., Rm = Rp × Rq, m = p + q. The m-dimensional lattice Lm can
also be decomposed into two sub-lattices Lp and Lq. Let s be the size of Lq.
We can think of Lm as being a family of s p-dimensional lattices. In a conven-
tional regular lattice each p-dimensional lattice is identical, and we have Lm

= Lp × Lq. In sequential interpolation, we let the p-dimensional lattice structure
vary as a function of the remaining q dimensions. 

To crystallize this concept, consider the three-dimensional lattice in Figure
5.18 used to implement a characterization function from device RGB to
CIELAB. This lattice can be conceived as a family of two-dimensional RG
lattices, corresponding to different levels of the third-dimension B. In Figure
5.18a, the RG lattices are identical as a function of B, which corresponds to a
regular lattice in RGB space. In this case, interpolation of an input RGB point
is accomplished by selecting a subset of the eight vertices V1, . . ., V8 that
enclose the point and performing a weighted average of the output values at

-ColorBook  Page 304  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



Chapter five: Device characterization 305

these vertices. In Figure 5.18b, a sequential structure is shown where the RG
lattice structure is allowed to change as a function of B. The interpolation
calculation is accomplished by first projecting an input RGB point onto the
B dimension and selecting the neighboring levels Bj and Bj+1. These correspond
to two lattices in RG space. The input RGB point is then projected onto RG
space, and two-dimensional interpolation is performed within each of these
lattices, yielding two output colors cj, cj+1. Finally, one-dimensional interpo-
lation is performed in the B dimension to produce the final output color. In
this example, SI would be advantageous if the characterization function is
known to exhibit different degrees of curvature for different values of B. If,
for example, the function curvature is high for small values of B, SI permits
a finer lattice sampling in these regions (as shown in Figure 5.18). Thus, with
more efficient node placement, SI enables a given level of accuracy to be
achieved with fewer lattice nodes than can be achieved with a regular lattice.
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Figure 5.18 Comparison of (a) conventional and (b) sequential interpolation lattices.
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Figure 5.19 is a flow diagram showing the general case of SI in m-
dimensions. Application of SI to CMYK printer characterization will be
described in Section 5.10.3. Another special case of SI is sequential linear
interpolation (SLI).14 In SLI, we decompose the m-dimensional space into
(m – 1) dimensional and one-dimensional subspaces, then decompose the
former into (m – 2) and one-dimensional subspaces, and so on until we have
a sequence of one-dimensional interpolations. SLI is described in more detail
in Chapter 11.

5.4.7 Neural networks

Neural networks have taken inspiration from natural computational pro-
cesses such as the brains and nervous systems of humans and animals. This
class of techniques has received much attention in color imaging in recent
years. In this section, we briefly describe the use of neural nets in device
characterization, referring the reader to Masters15 for excellent overviews,
algorithms, and further reading on the subject.

A neural network is an interconnected assembly of simple processing
units called neurons whose functionality is loosely based on the biological
neuron. The processing ability of the network is stored in the inter-neuron
connection strengths, or weights, obtained by a process of adaptation to, or
learning from, a set of training patterns. In the most common configuration,
the neurons are arranged into two or more layers, with inputs to neurons in
a given layer depending exclusively on the outputs of neurons in previous
layers. An example of such a multilayer feed-forward neural network is
shown in Figure 5.20. This network has three inputs, three outputs, and one
hidden layer of four neurons. The inputs are obtained from an external
source (e.g., in our application, color data from the characterization process),
and the outputs are the neural network’s approximation of the response to
these inputs. Let  be the ith neuron in the Lth layer, i = 1, …, NL. The
output from unit  is given by
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Figure 5.19 Block diagram of sequential interpolation.
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(5.33)

where wij = a synaptic weight that determines the relative 

strength of the contribution of neuron  to 

neuron 
function h() = a nonlinear function, such as a step function or 

sigmoidal (S-shaped) function

Examples of sigmoidal functions are the logistic function, cumulative Gaus-
sian, and hyperbolic tangent.15 Depending on the particular architecture
being implemented, constraints such as monotonicity and differentiability
are often imposed on h(). The functionality of the overall neural net is
determined by the number of layers and number of neurons per layer, the
interconnecting links, the choice of h(), and the weights wij. Note from Equa-
tion 5.33 that each layer feeds only to the immediately following layer; this
is the most typical configuration.

A popular method for neural network optimization is back-propagation,
where all parameters except the synaptic weights wij are chosen beforehand,
preferably based on some a priori knowledge about the nature of the function
being approximated. The wij are then derived during a learning process in
which a set of training samples in both input and output spaces is presented
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Figure 5.20 Three-layer (3–4–3) neural network.
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to the network. An error metric such as the mean squared error in Equation
5.12 is minimized at the training samples with respect to wij. Because the
overall neural network is a complex nonlinear function of wij, iterative error
minimization approaches are called for. An example is the gradient descent
algorithm, where a weight  at iteration k is given by

(5.34)

Here, E is the error metric being minimized, and R is a parameter known as
the learning rate. The iteration continues until some convergence criterion
is met with respect to the magnitude or the rate of change of E. The parameter
R dictates the speed and stability of convergence. A major shortcoming of
the gradient descent algorithm is that convergence is often unacceptably
slow. An alternative search technique favored for significantly faster conver-
gence is the conjugate gradient algorithm. As with all iterative algorithms,
rate of convergence also depends on the choice of initial estimates, i.e., .
Linear regression can be used to generate good initial estimates. Details are
given in the book by Masters.15 

The application to color characterization should be evident. A neural
network can be used to approximate either the forward or inverse charac-
terization functions. The training samples are the device-dependent and
device-independent colors {ci, di} obtained in the characterization process.
After the neural net is trained, arbitrary color inputs can now be processed
through the network. The architecture of the network is chosen based on the
expected complexity of the characterization function. As with polynomials,
increased complexity can result in a better fit up to a certain point, beyond
which the network will begin to track the noise in the data. 

Typically, the iterative training can be a highly computationally intensive
process. Fortunately, this is not a major concern, as this step is carried out
offline. Neural networks are also usually too computationally intensive for
real-time processing of image pixels. They can, however, be approximated
by multidimensional LUTs, which are more computationally efficient.

5.4.8 Spline fitting 

Spline interpolation constitutes a rich and flexible framework for approxi-
mating free-form shapes. One-dimensional splines can be used very effec-
tively for the calibration step, whereas the multidimensional versions are
applicable for characterization. The most common spline functions comprise
a set of piecewise polynomial functions defined over a partition of segments
in the input space, as shown for the one-dimensional case in Figure 5.21.
The behavior of the spline is dictated by control points, known as knots, at
the segment boundaries. The parameters of the polynomials are determined
so that the function passes through all the knots while maintaining certain
degrees of continuity across the segment boundaries. 

wij
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wij
k( ) wij
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Splines can be used for both interpolation and fitting. In the case of
interpolation, shown in Figure 5.21a, the knots coincide with the data points.
This approach is desirable when very few accurate data points are available.
In the case of fitting, shown in Figure 5.21b, the control points do not nec-
essarily coincide with the data and are actually free parameters chosen to
minimize an error criterion between the data points and the spline fit. This
approach is preferred when ample data is available but expected to be noisy
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Figure 5.21 Spline function used for (a) interpolation and (b) fitting.
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and therefore requiring some smoothing. The number and location of the
knots used for spline fitting are critical. Too few knots could result in an
excessively “stiff” spline that is unable to follow the curvature of the func-
tion, but too many knots could result in overshoots that follow the noise. A
general guideline is to use fewer knots than data points and to space them
approximately uniformly except in regions known to exhibit high curvature,
where a denser sampling of knots can be used. As advised earlier, it is highly
instructive to first plot and visualize the raw data so as to choose the knots
appropriately.

The major advantage of splines over straightforward polynomial
approximation is that the complexity of a spline can be tailored to suit the
local characteristics of the function. Equivalently, a local change in a calibra-
tion or characterization function can be accurately approximated with a
change in one local segment of a spline curve. Piecewise cubic and B-splines
are popular choices for data fitting applications. Figure 5.22 is a comparison
of cubic spline interpolation with the third-order polynomial approximation
using the same data as in Figure 5.13. Clearly, the spline is capable of fol-
lowing the data more closely.

Space constraints do not permit a detailed treatment of splines in this
chapter. The reader is referred to the book by Farin16 for a comprehensive
tutorial on the subject. C programs for cubic spline interpolation can be
found in Numerical Recipes in C.17 Users of Matlab can find an extensive set
of spline functions in the spline toolbox (go to www.mathworks.com for
details). As with other data-fitting techniques, the most suitable choice of
spline function requires knowledge of the nature of the characterization data. 
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Figure 5.22 Comparison of spline and polynomial fitting.
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5.5 Metrics for evaluating device characterization
Many of the mathematical techniques described in the previous section
minimize quantitative error metrics. The resulting error from the fitting or
interpolation is one indicator of the overall accuracy of characterization.
However, this information is not sufficient, for several reasons:

1. The error is available only for the training samples. 
2. The error is not always calculated in a visually meaningful color

space.
3. Noise and other imperfections that can occur with multiple uses of

the device are implicitly ignored.

To address the first concern, the notion of evaluating the characterization
with independent test targets was introduced in Section 5.2. To address the
second issue, evaluation of errors with visually relevant metrics is strongly
recommended. While color difference formulae are described in detail in an
earlier chapter, two of them, ∆  and ∆  are restated here, as they are
used extensively in this chapter. Given two CIELAB colors, and their com-
ponent-wise differences, ∆L*, ∆a*, ∆b* (equivalently, ∆L*, ∆C*, ∆H*), the ∆
color difference formula is simply the Euclidean distance between the two
points in CIELAB space,

(5.35)

It is important to bear in mind that ∆H* is not a component-wise hue differ-
ence but rather is given by

(5.36)

The ∆  formula is an extension of ∆  that applies different weights to
the various components as follows:

(5.37)

where SL = 1
SC = 1 + 0.045 C*
SH = 1 + 0.015 C*

The parameters kL, kC, and kH account for the effect of viewing conditions.
Under a set of nominal viewing conditions, these parameters are set to 1,
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and the overall effect is dictated solely by SC and SH, which reduce the
perceived color difference as chroma increases.

Another metric used widely in the textile industry is the CMC color
difference formula. This formula is similar in form to the ∆  equation and
has parameters tailored for perceptibility vs. acceptability of color differ-
ences. Finally, an extension of the ∆  formula has been recently developed,
known as the CIEDE2000 metric.18 This metric accounts for interactions
between the C* and H* terms and is expected to be adopted as an industry
standard until further developments arise. The reader is referred to Chapter 1
for details.

The next question to consider is what error statistics to report. Common
aggregate statistics cited in the literature are the mean, standard deviation,
minimum, and maximum of the ∆Es for a set of test samples. Often, a
cumulative statistic such as the 95th percentile of ∆E values (i.e., the value
below which 95% of the ∆E values in the test data lie) is calculated. For a
complete statistical description, histograms of ∆E can also be reported.

Having chosen an error metric, how does one determine that the char-
acterization error is satisfactorily small? First, recall that characterization
accuracy is limited by the inherent stability and uniformity of a given device.
If the errors are close to this lower bound, we know that we cannot do much
better for the given device. In the following sections, we will provide the
reader with some idea of the characterization accuracy achievable by state-
of-the-art techniques. It must be kept in mind, however, that “satisfactory
accuracy” depends strongly on the application and the needs and expecta-
tions of a user. A graphic arts color proofing application will likely place
stringent demands on color accuracy, while inexpensive consumer products
will typically play in a market with wider color tolerances. 

Another aspect that further confounds evaluation of color accuracy is
that the end user ultimately views not test targets with color patches but
images with complex color and spatial characteristics. Unfortunately, quan-
titative analysis of patches is not always a reliable indicator of perceived
color quality in complex images. (The latter is a subject of active research.19)
The reader is thus advised to exercise appropriate caution when interpreting
individual results or those cited in the literature, and to always augment
quantitative evaluation of color accuracy with a qualitative evaluation
involving images and individuals that represent the intended market and
application.

A special class of error metrics for input devices evaluates how accu-
rately the information recorded by the input device can be transformed into
the signals sensed by the human visual system for input stimuli with given
spectral statistics. Such error metrics do not directly evaluate the accuracy
of a characterization but rather the ability of the device to act as a visual
colorimeter. Hence, these metrics are relevant for filter design optimization
and can also suggest the most appropriate characterization technique for a
given input device. The reader is referred to papers by Sharma et al.20 and
Quan et al.21 for further details.

E94
*

E94
*
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5.6 Scanners
All scanners employ one of two primary types of sensing technology. Drum
scanners use photomultiplier tubes (PMTs), whereas the less expensive flat-
bed scanners employ charge-coupled devices (CCDs). Both of these technol-
ogies sense and convert light input into analog voltage. Drum scanners
consist of a removable transparent cylinder on which a print, which is reflec-
tive, transparent, or a photographic negative, can be mounted. A light source
illuminates the image in a single pass as the drum spins at a high speed.
The light reflected off or transmitted through the print is passed through
red, green, and blue filters then sent through the PMTs, which relay voltages
proportional to the input light intensity. The PMT is extremely sensitive, thus
providing drum scanners a large dynamic range. The drum scanners used
in offset printing applications contain built-in computers that are capable of
direct conversion of the RGB scan to CMYK output and are used to generate
color separations at very high spatial resolution. A limitation of this scanning
technology is that the original must be flexible so that it can physically be
mounted on the drum.

All flatbed scanners utilize CCD technology, which is simpler, more
stable, and less costly than PMT technology. These scanners have widely
varying sensitivity and resolution and, at the highest end, approach the
performance of drum scanners. Transparent or reflective prints are placed
on a glass platen and evenly illuminated from above the glass for transpar-
encies, and from beneath for reflective. As the light source moves across the
image, individual lines of the image are sensed by a CCD array, which relays
voltages that are proportional to the input light intensity. An integrating
cavity is usually employed to focus light from the scanner illuminant onto
the print. An undesirable outcome of this is that light reflected from a given
spatial location on the print can be captured by the cavity and returned to
the print at neighboring locations. Hence, the scanner measurement at a pixel
depends not only on the reflectance at that pixel but also on the reflectances
of neighboring pixels. A model and correction algorithm for this so-called
integrating cavity effect is given by Knox.22

Following the sensing step, an analog-to-digital (A/D) converter is used
to quantize the analog voltage signal to a digital signal represented by
between 8 and 16 bits per each of R, G, B channels. These raw digital values
are usually linear with respect to the luminance of the stimulus being
scanned. Additional image acquisition software often allows the raw data
to be processed through tone reproduction curves so that a power-law (or
gamma) relationship exists between digital value and luminance. This oper-
ation is carried out before the A/D conversion. One reason for doing this is
that quantization of nonlinear gamma-corrected signals is less visually dis-
turbing than quantization of data that is linear in luminance. (This is dis-
cussed in more detail in the section on display characterization.) A second
reason is to prepare the scanned data for direct display on a CRT, which
exhibits approximately a square law (gamma = 2) relationship.
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5.6.1 Calibration

Scanner calibration involves first establishing various settings internal to the
scanner, or in the scanner driver. To calibrate the white point, a reflective
white sample shipped with the scanner is scanned, and the gain factor on
each of the R, G, B signals is adjusted so that R = G = B = 1 for this sample.
As mentioned earlier, additional scanner software can offer selections for the
digital precision of the RGB output and transformations between analog and
digital representations (e.g., power-law functions). Once set, these parame-
ters must not be altered during subsequent characterization or scanning
operations. 

In addition, it is usually desirable to linearize and gray-balance the
scanner response. The result of this step is that an input ramp of gray stimuli
in equal increments in luminance will result in equal increments in R = G =
B scanner values. To achieve this, the scanner is exposed to a ramp of gray
patches of known luminance values (e.g., as found at the bottom of the Q60
target); the scanner RGB values are extracted for each patch, and a TRC is
constructed. A hypothetical example is given in Figure 5.23 to illustrate the
process. The TRC is constructed so that a triplet of raw RGB values corre-
sponding to a gray patch will map to the corresponding measured luminance
value (within a scaling factor). The measurements generally provide only a
subset of the data points in the TRC, the rest being determined with some

Scanner
R G B

Measured
Luminance

Scaled
Luminance

( 0 - 2 5 5 )

10 20 30 4 1 0

15 25 35 8 2 0
… …  …

100 104 109 4 5 1 1 5
… …  …

210 206 209 9 4 2 4 0

Input

Output

115

R
G

B

Figure 5.23 Illustration of gray-balance calibration for scanners.
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form of data fitting or interpolation technique. Because the data are likely
to contain some noise from the scanning and measuring process, it is pref-
erable that the fitting technique incorporate some form of smoothing. Kang23

reports that linear regression provides sufficiently accurate results for scan-
ner gray balance, while nonlinear curve fitting offers only a modest improve-
ment. In any event, polynomial and spline techniques are viable alternatives
for scanners that exhibit significant nonlinearity.

5.6.2 Model-based characterization

Model-based scanner characterization attempts to establish the relationship
between calibrated device-dependent data and colorimetric representations
via explicit modeling of the device spectral sensitivities. Adopting the nota-
tion in previous sections, consider a training set of T spectral reflectance
samples {si}, which can be collected into a matrix S = [s1, …, sT]t. The spectral
data is related to device data D = [d1, . . . , dT]t and colorimetric data C =
[c1, . . . , cT]t by Equations 5.1 and 5.2, respectively. In matrix notation, we thus
have

C = SAc ; D = SAd (5.38)

The column vectors of matrix Ac are a product of the color matching functions
and the viewing illuminant Iv, and similarly Ad is formed from a product of
the scanner spectral sensitivities and the scanner illuminant Is. The classic
model-based approach is to compute the linear 3 × 3 matrix transformation
M that best fits the colorimetric data to device-dependent data in the least-
squared error sense. The linear approximation is expressed as

(5.39)

and from Section 5.4.1, the optimal M is the least-squares solution,

M = (DtD)–1 DtC (5.40)

Plugging Equation 5.38 into Equation 5.40, we have

M = (Ad
tSt SAd)–1 Ad

tSt SAc (5.41)

Equation 5.41 tells us that the scanner characterization function is deter-
mined by

1. Color matching functions
2. Viewing and scanning illuminants Iv and Is

3. Spectral autocorrelation matrix StS of the training samples
4. Scanner spectral sensitivities

C D M⋅≈
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Note that Equation 5.40 can be directly used to estimate M from a set of
training samples {di, ci} without explicit knowledge of the spectral sensitiv-
ities. However, for accurate results, this empirical procedure would have to
be repeated for each different combination of input reflectances S and view-
ing illuminants Iv. The model-based formulation, Equation 5.41, allows pre-
diction of the scanner response for arbitrary input reflectances and illumi-
nants given the scanner sensitivities Ad and illuminant Is. The optimal M
can be computed using Equation 5.41 without having to make repeated
measurements for every combination of input media and illuminants. 

Each of the quantities of interest in Equation 5.41 will now be discussed.
Because the color matching functions Ac are known functions, they are not
included in the discussion.

Viewing illuminant. In general, it is difficult to ascertain a priori the
illuminant under which a given stimulus will be viewed. A common de facto
assumption for viewing reflective prints is the Daylight 5000 (D50) illumi-
nant. However, if it is known that images are to be viewed under a certain
type of lighting, e.g., cool-white fluorescence or an incandescent lamp, then
the corresponding spectral radiance should be used.

Scanning illuminant. Scanners typically employ a fluorescent source,
hence the spectral radiance function will contain sharp peaks as shown in
Figure 5.4. The spectral radiance function Is(λ) can be obtained from the
scanner manufacturer or can be estimated from the training data. However,
the peaks found in fluorescent sources can lead to unreliable estimates unless
these are explicitly modeled.24 Hence, it is generally preferable that this
quantity be directly measured.

Scanner spectral sensitivities. Deriving the scanner sensitivities is the
most challenging aspect of model-based characterization. Some scanner
manufacturers supply such data with their products. However, the informa-
tion may not be accurate, as filter characteristics often change with time and
vary from one scanner to another. Direct measurement of the scanner sen-
sitivities may be achieved by recording the scanner response to narrowband
reflectance data. However, this is a difficult and expensive process and
therefore impractical in most applications. The most viable alternative is to
estimate the sensitivities from a training set of samples of known spectral
reflectance. Several approaches exist for this and are briefly described below,
along with references for further reading.

The most straightforward technique is to use least-squares regression to
obtain the device sensitivity matrix Ad. The objective is to find Ad that
minimizes . From the linear regression formulation in Section
5.4.2, we have

Ad = (St S)–1 StD (5.42)

The problem with this approach is that, although the spectral reflectance
data is L-dimensional, with L being typically between 31 and 36, the true
dimensionality of the spectra of samples found in nature is significantly less.

D SAd– 2
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(Studies have shown that the samples in the Macbeth chart can be accurately
represented with as few as three basis functions.25) Alternatively phrased,
the system of Equations 5.42 contains only a small number of significant
eigenvalues. This results in the spectral autocorrelation matrix StS being ill
conditioned, in turn yielding unstable, noise-sensitive estimates of the sen-
sitivity functions Ad. One approach to mitigate this problem is to use only
the eigenvectors corresponding to the few most significant eigenvalues of
StS in the solution of Equation 5.42. This so-called “principal eigenvector”
(PE) method results in a solution that is far less noise sensitive than that
obtained from Equation 5.42. The reader is referred to Sharma24 for more
details.

One problem with PE is that it does not exploit a priori information
about the nature of the spectral sensitivity functions. We know, for example,
that the spectral sensitivities are positive-valued and usually single-lobed
functions. In the case where Ad only contains the passive filter and detector
responses (i.e., the illuminant is not included), we also know that the func-
tions are smooth. There are a number of ways to use these constraints to
generate estimates of Ad that are superior to those achieved by PE. One
approach is to define the aforementioned constraints as a set of linear ine-
qualities and formulate the least-squares minimization as a quadratic pro-
gramming problem. The latter can be solved using standard packages such
as Matlab. The reader is referred to Finlayson et al.26 for more details.
Another approach is to use a set theoretical formulation to express the
constraints as convex sets and to use an iterative technique known as pro-
jection onto convex sets (POCS) to generate the sensitivity functions.24 One
potential problem with the POCS technique is that the solution is not unique
and is often sensitive to the initial estimate used to seed the iterative process.
Despite this caveat, this technique has been shown to produce very good
results.24,27

Input spectral data. As alluded to in Section 5.2, the spectral reflectance
data S should be measured from media that are representative of the stimuli
to be scanned. If a single scanner characterization is to be derived for all
possible input media, it is advisable to measure the data from a wide range
of media, e.g., photography, offset, laser, inkjet, etc. An interesting case occurs
if S is constructed by drawing samples at random from the interval [–1, 1]
with equal likelihood. With this “maximum ignorance” assumption, the
spectral data are uncorrelated; therefore, the autocorrelation StS is an identity
matrix, and Equation 5.41 reduces to

M = (Ad
tAd)–1 Ad

tAc (5.43)

Note that the characterization transform now no longer depends on mea-
sured data. Observe, too, that Equation 5.43 is also the least-squares solution
to the linear transformation that relates the color matching functions Ac to
the device sensitivities Ad;
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Ac ≈ AdM (5.44)

Comparing Equations 5.39 and 5.44, we see that the optimal linear trans-
form that maps the color matching functions to the scanner sensitivities is
the same as the transform that optimally maps scanner RGB to XYZ under
the maximum ignorance assumption. As a corollary, if the scanner is perfectly
colorimetric, then Equations 5.39 and 5.44 become equalities, and the matrix
that relates the color matching functions to scanner sensitivities is precisely
the matrix that maps scanner RGB to XYZ for all media and illuminants.

One problem with the maximum ignorance assumption is that it includes
negative values, which can never occur with physical spectra. Finlayson et
al.28 show that a positivity constraint on the preceding formulation results
in the correlation StS being a constant (but not identity) matrix, which results
in a more accurate estimate of M.

Another class of model-based techniques, somewhat distinct from the
preceding framework, derives scanner characterization for a specific
medium by first characterizing the medium itself and using models for both
the medium and scanner to generate the characterization. The additional
step of modeling the medium imposes physically based constraints on the
possible spectra S and can lend further insight into the interaction between
the medium and the scanner. Furthermore, a priori modeling of the input
medium may simplify the in situ color measurement process. Berns and
Shyu29 postulate that scanner filters are designed to align closely with the
peaks of the spectral absorptivity functions of typical photographic dyes.
The relationship between scanner RGB and C, M, Y dye concentrations is
thus modeled by simple polynomial functions. The Beer–Bouguer and
Kubelka–Munk theories (discussed in Section 5.10.2) are then used to relate
dye concentrations to reflectance spectra for photographic media. Sharma30

models the color formation process on photographic media using the
Beer–Bouguer model. From this model, and using a small number of mea-
surements on the actual sample being scanned, the set Smedium of all reflectance
spectra reproducible by the given medium is estimated. For a given scanner
RGB triplet, the set Sscanner of all reflectance spectra that can generate this
triplet is derived with knowledge of the scanner spectral sensitivities, Ad.
The actual input reflectance spectrum lies in the intersection 
and is derived using POCS. Note that both these approaches generate spec-
tral characterizations, i.e., mappings from scanner RGB to spectral reflec-
tance. From this, colorimetric characterizations can readily be generated for
arbitrary viewing illuminants.

5.6.3 Empirical characterization

Empirical approaches derive the characterization function by correlating
measured CIE data from a target such as the Q60 to scanned RGB data
from the target. Most of the data-fitting techniques described in Section 5.4
can be used (with the exception of lattice-based approaches, as scanner

Smedium Sscanner∩
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characterization data cannot be designed to lie on a regular grid). Kang23

describes the use of polynomial regression to fit gray-balanced RGB data to
CIEXYZ measurements. He compares 3 × 3, 3 × 6, 3 × 9, 3 × 11, and 3 × 14
polynomial matrices derived using least-squares regression as described in
Section 5.4.3. Several targets, including the MacBeth ColorChecker and
Kodak Q60, are used. The paper concludes that a 3 × 6 polynomial offers
acceptable accuracy and that increasing the order of the polynomial may
improve the fit to training data but may worsen the performance on inde-
pendent test data. This is because, as noted in Section 5.4, higher-order
approximations begin to track the noise in the data. The paper also explores
media dependence and concludes that the optimal 3 × 3 matrix does not
vary considerably across media, whereas the optimal polynomial transform
is indeed media dependent and will generally offer greater accuracy for any
given medium.

Kang and Anderson31 describe the use of neural networks for scanner
characterization. They use a 3–4–3 network, trained by cascaded feed-for-
ward correlation. A cumulative Gaussian function is used for the nonlinear-
ity at each unit in the network (see Section 5.4.7). In comparison with poly-
nomial regression, the neural network reports superior fits to training data
but inferior performance for independent test data. Furthermore, the neural
network is reported as being fairly sensitive to the choice of training data.
Hence, while neural networks offer powerful capabilities for data fitting,
much care must be exercised in their design and optimization to suit the
nature of the particular device characteristics.

5.7 Digital still cameras
Digital still cameras (DSCs) are becoming a common source for digital imag-
ery. Their characterization is complicated by two factors.

1. The conditions under which images are captured are often uncon-
trolled and can vary widely. 

2. To compensate for this, DSC manufacturers build automatic image-
processing algorithms into the devices to control and correct for flare,
exposure, color balance, etc. 

DSC characterization is probably unnecessary in most consumer applications
and is called for only in specialized cases that require controlled, high-quality
color capture. In such cases, it is imperative that the automatic processing
be disabled or known to the extent that the raw DSC signals can be recovered
from the processed data. 

A few precautions are in order for proper digital capture of calibration
and characterization targets. First, it must be ensured that the illumination
on the target is uniform. A viewing/illuminating geometry of 0/45 is rec-
ommended so as to be consistent with the geometry of measurement devices
and typical visual viewing of hardcopy prints. Next, the lenses in most digital
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cameras do not transmit light uniformly across the lens area, so, for a fixed
input radiance, pixels near the center report higher signal levels than those
in the periphery. The ideal solution to this problem is to expose the camera
to a constant color (e.g., gray) target and digitally compensate for any spatial
uniformity in the camera response. (Such compensation may be built into
some camera models.) The effect can also be somewhat reduced by choosing
the distance between camera and target so that the target does not occupy
the full camera frame. Finally, it is recommended that any nonvisible radi-
ation to which the DSC is sensitive be blocked so that output RGB values
are not affected. Many DSCs respond to IR radiation, hence IR blocking filters
should be used.

Figure 5.24 shows the color calibration and characterization path for a
DSC. Much of the theoretical framework for image capture is common
between DSCs and scanners; hence, we will frequently refer to the formula-
tion developed in Section 5.6 for scanners while focusing here on DSC-
specific issues. For additional procedural details on DSC characterization,
the reader is referred to the ISO 17321 standard.32 

5.7.1 Calibration

It must be ensured that camera settings such as aperture size and exposure
time are in a known fixed state, and that all automatic color processing is
disabled. The main task in DSC calibration is to determine the relationship
between input scene radiance and camera response, typically for a range of
gray input stimuli. Determination of this function, known as the opto-elec-
tronic conversion function (OECF), is conceptually similar to the gray-bal-
ancing operation for a scanner (see Section 5.6.1). A target comprising gray
patches of known spectral reflectance measurements is illuminated with a
known reference illuminant. From the reflectance and illuminant data, the
luminance Y of each patch is calculated (see Equation 5.9). An image of the
target is captured with the DSC. The correspondence between input lumi-
nance Y and output RGB is used to generate an inverse OECF function as
described in Section 5.6.1 for scanners. This is a TRC that maps raw device

Opto-electronic
conversion

function

Scene illuminant
estimation

scene white reference white

Gray
measurements

Spectral sensitivities or
empirical data

Chromatic adaptation
transform

Inverse
characterization

XYZ
scene

XYZ
reference

D
b

DgDr

Figure 5.24 Block diagram of digital camera calibration, characterization, and chro-
matic adaptation transforms.
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RGB to R’G’B’ such that R’ = G’ = B’ = Y for the neutral patches. The raw
captured image is then always processed through this TRC to obtain a
linearized and gray-balanced image prior to subsequent processing. Further
details on specifications and experimental procedures for OECF determina-
tion are given in the ISO 14524 standard.33 

5.7.2 Model-based characterization

The goal is to obtain the optimal 3 × 3 matrix M that relates the DSC RGB
data to a colorimetric (e.g., XYZ) representation. As with scanners, derivation
of M is given by Equation 5.41 and requires knowledge of the color matching
functions, correlation statistics of scene data, and device spectral sensitivities.
Color matching functions are known and require no further discussion.
Scene correlation statistics should be used where possible. However, given
the diversity of scene content likely to be encountered by a DSC, the maxi-
mum ignorance assumption is often invoked, and scene statistics are elimi-
nated from the formulation. Derivation of M thus reduces to Equation 5.43
and requires only estimation of the DSC spectral sensitivities. 

The techniques described in Section 5.6.2 for estimating device sensitiv-
ities indirectly from the characterization data can be applied for DSCs. One
can also adopt a more direct approach of recording the device’s response to
incident monochromatic light at different wavelengths. The latter can be
generated by illuminating a diffuse reflecting surface with light filtered
through a monochromator. From Equation 5.1, the camera response to mono-
chromatic light at wavelength λ is given by

(5.45)

where i = R, G, B
Im(λ) = the monochromator illumination
Rd(λ) = the reflectance of the diffuse surface
S(λ) = Im(λ)Rd(λ) is the radiance incident to the DSC

For simplicity, the detector sensitivity u(λ) in Equation 5.1 is folded into the
term qi(λ) in Equation 5.45, and the noise term is assumed to be negligible.
The radiance S(λ) is measured independently with a spectroradiometer. The
spectral sensitivities qi(λ) are then obtained by dividing the camera response
Di(λ) by the input radiance S(λ). In the case where the DSC response is tied
to a specific reference illuminant Iref(λ), the products qi(λ)Iref(λ) can be stored.
More details are found in ISO 17321.32

The reader is reminded that, due to practical considerations, DSC sen-
sitivities are not linearly related to color matching functions, and that the
3 × 3 matrix being derived is only an approximation. However, this approx-
imation is sufficient for many applications. The accuracy of M for critical
colors can be further improved by imposing constraints on preservation of
white and neutral colors.34

Di λ( ) Im λ( )Rd λ( )qi λ( ) S λ( )qi λ( )= =
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5.7.3 Empirical characterization

As with scanners, empirical DSC characterization is accomplished by directly
relating measured colorimetric data from a target and corresponding DSC
RGB data obtained from a photographed image of the target. This approach
is recommended in the case where the DSC spectral sensitivities are
unknown, or when the target and illumination conditions used for charac-
terization are expected to closely match those encountered during actual
image capture. 

Hubel et al.35 compare several techniques for computing the optimal
3 × 3 matrix M. One of these is a model-based approach that uses a white
point preserving maximum ignorance assumption, while the remaining tech-
niques are empirical, using linear regression on training samples. They report
an extensive set of results for different illumination conditions. Average
∆ECMC values range from approximately 2.5 to 6.5, depending on the tech-
nique and illumination used. The model-based technique was often outper-
formed by an empirical technique for a given medium and illuminant. How-
ever, the model-based strategy, being oblivious to scene statistics, was
generally robust across different illumination conditions.

An empirically derived characterization need not be restricted to a linear
transformation. Hong et al.36 explore a polynomial technique to characterize
a low-performance Canon PowerShot Pro70 camera for photographic input.
A second-order polynomial was employed with 11 terms given by [Dr, Dg,
Db, DrDg, DrDb, DgDb, Dr

2 , Dg
2 , Db

2 , DrDgDb, 1]. The average characterization
error for 264 training samples from an IT8.7/2 target was ∆ECMC(1:1) = 2.2. A
similar technique37 was used to characterize a high-performance Agfa digital
StudioCam resulting in an average ∆ECMC(1:1) = 1.07. Note that these errors
are significantly lower than those reported by Hubel et al. This is not sur-
prising, because polynomials can be expected to outperform linear approx-
imations under a given set of controlled characterization conditions. The
other findings from these two studies are as follows:

• Correction for the OECF significantly improves overall characteriza-
tion accuracy.

• For polynomial fitting, 40 to 60 training samples seem adequate;
beyond this, there is little to be gained in characterization accuracy.

• The polynomial correction is highly dependent on the medium/col-
orant combination.

• For a single medium/colorant combination, increasing the order of
the polynomial up to 11 improves the characterization accuracy, with
some terms (notably DrDgDb and the constant term) being more im-
portant than others. With the high-performance camera, a 3 × 11
polynomial results in an average error of approximately 1 ∆ECMC(1:1).
The low-performance camera results in ∆ECMC(1:1) = 2.2. 

• For cross-media reproduction, increasing the order of the polyno-
mials is not of significant benefit. Typical accuracy with a 3 × 11
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correction lies between 2 and 4 ∆ECMC(1:1) when characterization and
test media are not the same.

5.7.4 White-point estimation and chromatic adaptation transform

The characterization step described in Sections 5.7.2 and 5.7.3 yields a
transformation between DSC data and colorimetric values corresponding
to the input viewing conditions. One must be able to convert this colori-
metric data to a standard color space (e.g., sRGB), which is based on a
different set of reference viewing conditions. This calls for a color appear-
ance model to account for the differences between input and reference
viewing conditions. The most important parameters pertaining to the view-
ing conditions are the input scene and reference white points. The appear-
ance model can thus be reduced to a chromatic adaptation transform (CAT)
between the two white points.

In general, the scene white is unknown and must be indirectly estimated
from the image data. A recent technique, known as color by correlation, has
shown promise as a simple and reliable method of estimating white point.
The idea is to acquire a priori sets of DSC training data corresponding to
different known illuminants. Data from a given image are then compared
with each training set, and the illuminant is chosen that maximizes the
correlation between the image and training data. If the DSC spectral sensi-
tivities are known, the training samples can be acquired via simulation;
otherwise, they must be gathered by photographing samples under different
illuminants. See Chapter 5 of Reference 7 for details of this approach.

There has been considerable research in finding the optimal color space
for the CAT. An excellent survey is given in Chapter 5 of Reference 7. Ideally,
the CAT should mimic visual adaptation mechanisms, suggesting that it
should be performed in an LMS cone fundamental space. Finlayson et al.38

use the added argument that orthogonal visual channels maximize efficiency
to orthogonalize the LMS space, forming their so-called sharp color space.
(The term “sharp” comes from the fact that the associated color matching
functions are relatively narrowband.) Psychophysical validation has shown
that the sharp space is among the best spaces for performing the CAT. A
physically realizable variant of this space is being proposed as an ISO stan-
dard for DSC characterization.32 This ISO-RGB space is a linear transforma-
tion of XYZ, and is given by

(5.46)

The procedure for applying the CAT in ISO-RGB space given the input and
reference white points is summarized as follows:

X
Y
Z

0.4339 0.3762 0.1899
0.2126 0.7152 0.0721
0.0177 0.1095 0.8728

R
G
G

= ;
R
G
B

3.0799 1.5369– 0.5432–

0.9209– 1.8756 0.0454
0.0531 0.2041– 1.1510

X
Y
Z

;
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1. Use the calibration and characterization transforms to convert DSC
device data to XYZin corresponding to input viewing conditions.

2. Convert the input and reference white points from XYZ to ISO-RGB
using Equation 5.46. 

3. Convert XYZin to ISO-RGBin using Equation 5.46.
4. Perform von Kries chromatic adaptation by multiplying ISO-RGBin

by the diagonal matrix,

(5.47)

where , , (C = R, G, B) are the white points under reference
and input viewing conditions, respectively. (The reader is referred to
an earlier chapter for details on von Kries adaptation.) This step
generates ISO-RGB data under reference viewing conditions, denot-
ed ISO-RGBref.

5. Convert ISO-RGBref to XYZref using Equation 5.46. This provides a
colorimetric representation under reference viewing conditions and
can be transformed to other standard color spaces.

Note that the matrices in the last three steps can be concatenated into a single
3 × 3 matrix for efficient processing.

5.8 CRT displays
The cathode-ray tube (CRT) is the most common type of display used in
computers and television. Color is produced on a CRT display by applying
modulated voltages to three electron guns, which in turn strike red, green,
and blue phosphors with electrons. The excited phosphors emit an additive
mixture of red, green, and blue lights. The assumptions mentioned in Section
5.2.4 on channel independence and chromaticity constancy, in addition to
the usual assumptions on spatial uniformity and temporal stability, result in
a fairly simple process for CRT calibration and characterization.

5.8.1 Calibration

Cathode-ray tube (CRT) calibration involves setting brightness and contrast
controls on the display to a fixed nominal value. In addition, the relationship
between the R, G, B input digital values driving the three gun voltages and

Rref
white

Rin
white

------------- 0 0

0
Gref

white

Gin
white
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0 0
Bref
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white
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the resulting displayed luminance must be established and corrected. This
relationship is usually modeled based on the power-law relationship between
the driving voltage and the beam-current for a vacuum tube, and is given by39

(5.48)

where DR = input digital value to the red gun 
YR = resulting luminance from the red channel 

 = luminance of the red channel at full intensity 

Doffset = largest digital count for which there is no detectable 
luminance from the screen 

Dmax = maximum digital count (e.g., in an 8-bit system, Dmax = 255)
f = flare that arises mostly from ambient illumination

KR = a gain factor
γR = nonlinear power law factor

Analogous expressions hold for the green and blue terms. Generally, the
calibration is done with all room lights turned off; hence, the flare term is
assumed to be negligible. In addition, with proper brightness and contrast
settings, the following simplifying assumptions are often made: KR = KG =KB

= 1, Doffset = 0. This reduces Equation 5.48 to

(5.49)

with analogous expressions for YG and YB. The parameters for the calibration
model are obtained by making measurements of a series of stepwedges from
each primary color to black using a spectroradiometer or colorimeter and
fitting these measurements to the model given by Equations 5.48 or 5.49
using regression. If Equation 5.49 is adopted, a simple approach is to take
logarithms of both sides of this equation to produce a linear relationship
between log(YR) and log(DR/Dmax). This can then be solved for γR via the linear
regression technique described in Section 5.4.1. Berns et al.39 provide detailed
descriptions of other regression techniques. Values of γR, γG, γB for typical
CRTs lie between 1.8 and 2.4. 

Once the model is derived, a correction function that inverts the model
is applied to each of the digital R, G, B inputs. If Equation 5.49 is assumed,
the correction is given by

(5.50)

YR

YRmax

------------ f KR+
DR Doffset–

Dmax Doffset–
-------------------------------- 

 
γR

if DR Doffset>

f if DR Doffset≤





=

YRmax

YR

YRmax

------------
DR

Dmax
------------ 

 
YR

=

DR Dmax
DR

,

Dmax
------------ 

 
1/γR

=
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with similar expressions for G and B. Here , ,  are linear in lumi-
nance, and DR, DG, DB are the raw signals that drive the gun voltages. The
calibration function, Equation 5.50, is often referred to as gamma correction
and is usually implemented as a set of three one-dimensional lookup tables
that are loaded directly into the video path. Plots of Equations 5.49 and 5.50
for γ = 1.8 are shown in Figure 5.25.

It is worth noting that digital quantization of the gamma-corrected signal
DR, DG, DB in Equation 5.50 results in smaller quantization intervals at lower
luminance values where the eye is more sensitive to errors, and larger inter-
vals at high luminances where the eye is less sensitive. The idea of applying
nonlinear preprocessing functions to reduce the visual perceptibility of quan-
tization errors (often known as companding) is widely employed in many
digital signal processing applications. In our case, gamma correction applied
prior to conversion to the digital domain not only calibrates the CRT, it also
fortuitously reduces perceived quantization error in color images intended
for CRT display.

The CRT with the gamma correction Equation 5.50 incorporated in the
video path exhibits a tone reproduction characteristic that is linear in lumi-
nance. That is,

DR
, DG

, DB
,

0 50 100 150 200 250
0

50

100

150

200

250

Input

O
ut

pu
t

power = 1.8
power = 1/1.8

Figure 5.25 Gamma function for γ = 1.8.
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(5.51)

with similar expressions for G and B. Some CRT calibration packages allow
the user to specify an overall system gamma, γsystem, so that Equation 5.51
becomes

(5.52)

This provides some control on the effective tone reproduction characteristic
of the CRT. To achieve this overall system response, the gamma correction
function Equation 5.50 is modified as

(5.53)

5.8.2 Characterization

We assume henceforth that the aforementioned calibration has been derived
so that Equation 5.51 holds. Recall that, with the assumptions on channel
independence and chromaticity constancy, Equation 5.8 describes the rela-
tionship between input device RGB values and output spectral radiance.
Spectral radiance is then converted to tristimulus XYZ values according to
Equation 5.9. Substituting the expression for SRGB(λ) in Equation 5.8 into
Equation 5.9., the relationship between the inputs , ,  to a linearized
CRT and resulting tristimulus values is given by

(5.54)

where XR, YR, ZR = tristimulus values of the red channel at its maximum 
intensity, and likewise for green and blue

In matrix-vector notation, Equation 5.54 becomes

c = ACRT d’; d’ = ACRT
–1

 c (5.55)
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The columns of ACRT are the tristimulus coordinates of R, G, B at maximum
intensity and can be obtained by direct tristimulus measurement. A more
robust approach would be to include additional tristimulus measurements
of other color mixtures and to solve for ACRT using least-squares regression
as described in Section 5.4.1. Note that ACRT assumes flare-free viewing
conditions. If flare is present, this can be captured in the d’ vector by using
calibration function Equation 5.48 with an appropriate value for f. 

The quality of the characterization can be evaluated by converting a test
set of color patches specified in XYZ to display RGB through the inverse
characterization mapping (i.e., the second part of Equation 5.55) and mea-
suring the displayed colors (see Figure 5.10). The original and measured
values are then converted to CIELAB coordinates, and the error is derived
using a suitable metric such as ∆  or ∆ . Berns et al.39 report excellent
results using this simple model, with average ∆  less than 1. Factors that
can contribute to additional errors include internal flare within the CRT,
cross-channel interactions not accounted for in the aforementioned model,
and spatial nonuniformity across the display.

Most CRTs exhibit fairly similar color characteristics, because the power-
law relationship, Equation 5.48, is a fundamental characteristic of vacuum
tube technology; furthermore, CRT manufacturers use very similar, if not
identical, phosphor sets. For this reason, and because CRTs are such a prev-
alent medium for the display and manipulation of color, there have been
several efforts to standardize on CRT RGB color spaces. The most notable
recent example is the sRGB standard (available at www.srgb.com). If one’s
CRT has not been characterized, one of the standard models can be adopted
as a reasonable approximation. Minimally, these RGB spaces are defined by
a gamma (assumed to be equal for all channels) and matrix ACRT . Sometimes,
instead of directly specifying ACRT, the x-y chromaticity coordinates of the red,
green, and blue primaries are provided along with the XYZ values of the
white point. ACRT is easily derived from these quantities (see Appendix 5.B).

5.8.3 Visual techniques

Because CRTs can be accurately characterized with simple models, a class
of techniques has emerged that obviates the need for color measurements
and relies upon visual judgments to directly estimate model parameters such
as gamma and offset.40–42 The basic idea is to display a series of targets on
the screen and provide the user with some control to adjust certain colors
until they match given reference stimuli. Based on the settings selected by
the user, an algorithm computes the model parameters. An example is shown
in Figure 5.26 for visually determining γ in Equation 5.49. The bottom half
of the target is a fine checkerboard pattern of alternating black and white
dots. The top half is a series of patches at different gray levels. The user is
asked to select the gray patch whose luminance matches the average lumi-
nance of the checkerboard. The assumption is that the average checkerboard
luminance Ycheckerboard is approximately halfway between the luminances of

Eab
* E94

*

Eab
*
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black and white. Reasonable a priori assumptions can be made for the latter
(e.g., Yblack = 0 and Ywhite = 100, respectively), and hence for the checkerboard
(e.g., Ycheckerboard = 50). A user who selects the gray patch to match the check-
erboard is effectively selecting the digital count Dmatch corresponding to lumi-
nance Ycheckerboard. This provides enough information to calculate γ by rear-
ranging Equation 5.49 as follows:

(5.56)

In this example, the same γ value is assumed for the R, G, and B channels.
The technique is easily extended to estimate γ for each individual channel
by displaying checkerboard patterns that alternate between black and each
respective primary. A demonstration of visual CRT calibration can be found
in the recent article by Balasubramanian et al.43 Visual determination of the
color of the primaries and white point (i.e., ACRT) requires more sophisticated
techniques44 and is an active area of research. 

5.9 Liquid crystal displays
Liquid crystal displays are becoming an increasingly popular medium for
color display. Their compactness and low power consumption, combined
with steadily increasing spatial resolution and dynamic range, have made
these devices increasingly prevalent in both consumer and professional mar-
kets. Consequently, color management for LCDs has received greater atten-
tion in recent years. 

The type of LCD most commonly used for computer display is the back-
lit active-matrix LCD (AMLCD) employing twisted nematic technology. In
this technology, each pixel comprises a pair of linear polarizers and a liquid
crystal substrate sandwiched between them. The polarizations are oriented
orthogonally to each other. Light from a source behind the display surface
passes through the first polarizer and is then reoriented by the liquid crystal
substrate before it is passed through the second polarizer. The light then
passes through one of red, green, or blue filters, arranged in a spatial mosaic.
The extent of optical reorientation by the liquid crystal, and thus the intensity

Figure 5.26 Target for visual determination of γ for displays.

γ
Ycheckerboard/Ywhite( )log

Dmatch/Dmax( )log
----------------------------------------------------------=
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of light finally emanated, is determined by an electric field applied to the
liquid crystal substrate. This field is determined by an applied voltage, which
in turn is driven by the digital input to the device. 

From the viewpoint of color characterization, twisted nematic technol-
ogy can pose several shortcomings: the strong dependence of perceived color
on viewing angle, poor gray balance for R = G = B input, and lack of
chromaticity constancy. Recent developments such as in-plane switching
technology45 overcome these problems to some extent.

5.9.1 Calibration

A major difference between CRT and LCD characteristics is the nonlinear
function that relates input digital values to output luminance, shown in
Figure 5.27. Unlike vacuum tubes that exhibit a power-law relationship, LCD
technology results in a native electro-optic response that is often better
modeled as a sigmoidal S-shaped function.46 However, many LCD manu-
facturers build correction tables into the video card that result in the LCD
response mimicking that of a CRT (i.e., a power-law response with γ = 1.8
or 2.2). Hence, it is recommended that some initial analysis be performed
before a particular function is chosen and that, if possible, built-in corrections
be deactivated so as to reliably calibrate the raw display response. As with
CRTs, the calibration function is derived by making color measurements of
a series of stepwedges in each of R, G, B. If a model-based approach is
adopted, the model parameters are fitted to the measurements via regression.

0 50 100 150 200 250
0

50

100

150

200

250

Digital count

N
or

m
al

iz
ed

 lu
m

in
an

ce

Red
Green
Blue

Figure 5.27 Typical opto-electronic conversion function for liquid crystal displays.
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Alternatively, if the LCD response does not appear to subscribe to a simple
parametric model, an empirical approach may be adopted wherein the mea-
sured data are directly interpolated or fitted using, for example, piecewise
linear, polynomial, or spline functions.

As mentioned earlier, some LCDs do not adhere to the chromaticity
constancy assumption. This is largely due to the non-smooth spectral char-
acteristics of the backlight and its interaction with the color filters.45 Kwak
et al.47 compensate for the lack of chromaticity constancy by introducing
cross terms in the nonlinear calibration functions to capture interactions
among R, G, and B. They claim a significant improvement in overall accuracy
as a result of this extension.

5.9.2 Characterization

Most of the assumptions made with CRTs (i.e., uniformity, stability, pixel
independence, and channel independence) hold to a reasonable degree with
AMLCDs as well. Hence, the characterization function can be modeled with
a 3 × 3 matrix as in Equation 5.54, and the procedure described in Section
5.8 for deriving CRT characterization can be used for AMLCDs in the same
manner. As mentioned earlier, an important caution for AMLCDs is that the
radiance of the emanated light can be a strong function of the viewing angle.
The only practical recommendation to mitigate this problem is that the
measurements should be taken of light emanating perpendicular to the plane
of the screen. The same geometry should be used for viewing images. For
further details on LCD characterization, the reader is referred to the works
by Marcu,45 Sharma,46 and Kwak.47

5.10 Printers

Printer characterization continues to be a challenging problem due to the
complex nonlinear color characteristics of these devices. Space consider-
ations do not permit a description of the physics of the numerous digital
printing technologies. Instead, we will offer general techniques that apply
to broad categories of devices (e.g., halftone vs. continuous tone; CMY vs.
CMYK, etc.).

Recall the basic calibration and characterization workflow in Figure 5.9.
The techniques for target generation and calibration and characterization
vary widely, offering a range of trade-offs between cost and accuracy. A
selection of common techniques will be presented in this section. 

5.10.1 Calibration

Two common approaches are channel-independent and gray-balanced
calibration.

-ColorBook  Page 331  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



332 Digital Color Imaging Handbook

5.10.1.1 Channel-independent calibration
In this type of calibration, each channel i (i = cyan, magenta, yellow, etc.) is
independently linearized to a defined metric Mi. An example of such a metric
is the ∆  color difference between the ith channel and medium white,
defined as

(5.57)

where d = input digital level
cmedium = CIELAB measurement of the medium

ci(d) = CIELAB measurement of the ith colorant generated at digital 
level d

Note that, by definition, . Linearizing with respect to this metric
will result in an approximately visually linear printer response along each
of its primary channels. 

The calibration is accomplished with the following steps:

• Generate stepwedges of pure C, M, Y patches at a few selected digital
levels dj. The number and spacing of levels required depend on the
characteristics of the printer. As a general guideline, between 15 and
20 patches per channel is sufficient for most printers, and a finer
sampling is recommended in the region of small d values to accu-
rately capture the printer response at the highlights. Also ensure that
the solid patch (i.e., d = dmax) is included. 

• Make CIELAB measurements of the stepwedges and of the bare
medium. Media relative colorimetry is recommended for the CIELAB
calculations.

• Evaluate Mi(dj) at the measured digital levels dj using Equation 5.57.
• Scale the data by a multiplicative factor so that Mi(dmax) = dmax. This

is accomplished by multiplying the function Mi(d) by the constant
[dmax/Mi(dmax)]. 

• Invert the scaled functions Mi(d) to obtain Mi
–1 by interchanging the

dependent and independent variables. Use some form of fitting or
interpolation to evaluate Mi

–1 for the entire domain [0, dmax]. If the
printer response is smooth, linear interpolation suffices; otherwise,
more sophisticated fitting techniques such as polynomials or splines
are called for (see Section 5.4.). The result is the calibration function,
which can be implemented as a set of one-dimensional TRCs for
efficient processing of images.

• Test the calibration by running a stepwedge of uniformly spaced
digital values of a single colorant through the TRC, printing and
measuring the resulting patches, and computing Mi. A linear rela-
tionship should be achieved between the digital input to the TRC
and the resulting Mi. Repeat this step for each colorant.

Eab
*

Mi d( ) cmedium ci– d( ) 2, i C,M,Y,0 d dmax≤ ≤= =

Mi 0( ) 0≡
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An example of the response Mi(d) for a Xerox DocuColor 12 xerographic
printer is shown in Figure 5.28a for 16 digital levels. The scaled Mi(d) are
shown in Figure 5.28b. The inverse function is shown in Figure 5.29 and is
the final calibration TRC for the DC12. Note that the calibration is essentially
a reflection of the printer response Mi(d) about the 45° line. To test the
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Figure 5.28 Raw device response, Mi(d) defined as ∆E*ab  from paper, for Xerox
DocuColor 12 printer: (a) unscaled and (b) scaled to dmax.
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calibration, the same C, M, Y stepwedge data were processed through the
calibration TRCs, printed, and measured, and Mi was evaluated using Equa-
tion 5.57 and plotted in Figure 5.30. The calibrated response is now linear
with respect to the desired metric Mi.

Other metrics can be used instead of Equation 5.57, e.g., optical density,
or luminance.48 The calibration procedure is identical.

5.10.1.2 Gray-balanced calibration
An alternative approach to calibration is to gray balance the printer so that
equal amounts of C, M, Y processed through the calibration result in a neutral
(i.e., a* = b* = 0) response. There are two main motivations for this approach.
First, the human visual system is particularly sensitive to color differences
near neutrals; hence, it makes sense to carefully control the state of the printer
in this region. Second, gray balancing considers, to a first order, interactions
between C, M, and Y that are not taken into account in channel-independent
calibration. However, gray balancing is more complicated than channel-
independent linearization and generally demands a larger number of patch
measurements.

In addition to determining the relative proportions of C, M, Y that
generate neutral colors, gray balancing can also achieve a specified tone
response along the neutral axis (e.g., linear in neutral luminance or lightness).
The following procedure can be used to gray balance and linearize the printer
to neutral lightness L*:
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Figure 5.29 Calibration curves correcting for response of Fig 5.28.
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1. Generate a training set of device-dependent (CMY) data in the vicin-
ity of neutrals across the dynamic range of the printer. One exemplary
approach is to vary C and M for fixed Y, repeating for different levels
of Y across the printer range. The number and spacing of steps for
C, M, and Y should be chosen so as to bracket the neutral a* = b* =
0 axis. Therefore, these parameters depend on printer characteristics,
and their selection will require some trial and error. 

2. Generate device-independent (CIELAB) data corresponding to these
patches. This can be accomplished either via direct measurement of
a target containing these patches or by processing the CMY data
through a printer model that predicts the colorimetric response of
the printer. (Printer models are discussed in a subsequent section.)
Media-relative colorimetry is recommended for the CIELAB calcula-
tions. If the CIELAB measurements do not bracket the neutral axis,
it may be necessary to iterate between this and the previous step,
refining the choice of CMY points at a given iteration based on the
CIELAB measurements from the previous iteration.

3. Given the training CMY and CIELAB data, obtain CMY values that
yield neutral measurements, i.e., a* = b* = 0, at a set of lightness levels

, i = 1, …, T, spanning the range of the printer. A sufficiently fine
sampling of measurements may allow the neutral points to be direct-
ly selected; however, in all likelihood, some form of fitting or inter-
polation will be required to estimate neutral points. A possible can-
didate is the distance-weighted linear regression function from
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Figure 5.30 Response Mi(d) of calibrated device.
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Section 5.4.4.2. The regression is supplied with the training data as
well as a set of input neutral CIELAB points ( , 0, 0). The output
from the regression is a set of weighted least-squares estimates (Ci,
Mi, Yi) that would produce ( , 0, 0). A hypothetical example is shown
in Figure 5.31a. Typically, 6 to 10 L* levels are sufficient to determine
gray-balance throughout the printer’s dynamic range.

4. To generate a monotonically increasing calibration function from
Figure 5.31a, invert the sense of the lightness values  to obtain
neutral “darkness” values, denoted , scaled to the maximum dig-
ital count dmax. The formula is given by

(5.58)

5. Group the data into three sets of pairs { , Ci}, { , Mi}, { , Yi},
and from this generate three functions, C(D*), M(D*), Y(D*) using a
one-dimensional fitting or interpolation algorithm. The use of splines
is recommended, as these have the flexibility to fit data from a wide
variety of printers and also possess the ability to smooth out noise
in the data. These functions are plotted in Figure 5.31b for the same
hypothetical example. Note that, above a certain darkness ,
it is not possible to achieve neutral colors, because one of the colo-
rants (cyan in this example) has reached its maximum digital value.
Hence, there are no real calibration data points in the input domain
[ , dmax]. One approach to complete the functions is to pad the
calibration data with extra values in this region so that the spline

Li
*

Li
*

x

∆

x

x

x

∆

∆

∆

Neutral L*

Digital count

L*
mingray

L*1

L*2

L*j

Digital count

Neutral D*

D*1 D*2 D*maxgray

x
x

x

∆

∆

x

∆
∆

(a) (b)

D*j

C
M

Y
C
M

Y

Figure 5.31 Illustration of gray-balance calibration for printers: (a) L* vs. digital
count for neutral samples, and (b) corresponding TRC.
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fitting will smoothly extrapolate to the endpoint, dmax. Figure 5.31b
shows schematically the extrapolation with dashed lines. To achieve
smooth calibration functions, it may be necessary to sacrifice gray
balance for some darkness values less than . In the case of
CMYK printers, the trade-off can be somewhat mitigated by using
the K channel in combination with C, M, Y to achieve gray balance.
Trade-offs between smoothness and colorimetric accuracy are fre-
quently encountered in printer calibration and characterization. Un-
fortunately, there is no universal solution to such issues; instead,
knowledge of the particular printer and user requirements is used to
heuristically guide the trade-offs.

6. Test the calibration by processing a stepwedge of samples C = M =
Y = d through the TRCs, and printing and measuring CIELAB values.
As before, it is convenient to assess the outcome by plotting L*, a*,
b* as a function of the input digital count d. For most of the range

, the calibration should yield a linear response with respect
to L*, and . If the deviation from this ideal aim is within
the inherent variability of the system (e.g., the stability and unifor-
mity of the printer), the calibration is of satisfactory accuracy. Recall
that, for gray levels darker than , a linear gray-balanced re-
sponse is no longer achievable; instead, the printer response should
smoothly approach the color of the CMY solid overprint. 

7. An additional test, highly recommended for gray-balance calibration,
is to generate a target of continuous ramps of C = M = Y, process
through the calibration, print, and visually inspect the output to en-
sure a smooth neutral response. The prints must be viewed under the
same illuminant used for the CIELAB calculations in the calibration.

A recent study by the author has shown that visual tolerance for gray in
reflection prints is not symmetric about the a* = b* = 0 point.49 In fact, people’s
memory of and preference for gray occurs in the quadrant corresponding to
a* < 0, b* < 0. In regions corresponding to positive a* or b*, a dominant hue
is more readily perceived; hence, tolerances for gray reproduction in these
regions are small. Colloquially phrased, people prefer “cooler” (blu-
ish/greenish) grays to “warmer” (reddish/yellowish) grays. This observa-
tion can exploited to improve the robustness of gray balancing for printers.
The device could be balanced toward preferred gray (a*, b* < 0) rather than
colorimetric gray (a* = b* = 0) with the same procedure described above.
The expected advantage is that, by setting the calibration aim-point in a
region with large visual tolerance, the errors inevitably introduced by the
calibration are less likely to be visually objectionable.

5.10.2 Model-based printer characterization

Several physics-based models have been developed to predict the colorimet-
ric response of a printer. Some of the common models will be described in

Dmaxgray
*

0 d D*≤ ≤
a*, b* 0≈

Dmax
*
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338 Digital Color Imaging Handbook

this section. Some overlap exists between this section and an earlier chapter
on the physics of color. That chapter focuses on modeling the interaction
between light, colorants, and medium at the microscopic level. The emphasis
here is in modeling the printer at a macroscopic level, with the goal of
deriving the forward characterization mapping from device colorant values
to device-independent coordinates such as spectral reflectance or CIEXYZ.
Derivation of the inverse characterization function is generally independent
of the forward model and is thus discussed in a separate section. 

To set a framework for the models to follow, it is instructive to examine
different ways in which light passes through a uniform colorant layer. These
are depicted in Figure 5.32. In Figure 5.32a, light passes though the colorant
layer in only one direction. Some of the light is absorbed, and the remaining
is transmitted. The absorption and transmission are functions of wavelength,
hence the perception that the layer is colored. This layer is said to be trans-
parent and occurs when the colorant particles are completely dissolved in
the medium. The dyes in a dye-diffusion printer can be reasonably well
approximated by this model. In Figure 5.32b, some of the light is transmitted
and some absorbed as in Figure 5.32a. However, due to the presence of
discrete particles, some of the light is also scattered. This layer is said to be
translucent. Xerographic and certain inkjet printers subscribe to this model.
In Figure 5.32c, a much higher presence of discrete particles results in all of
the light being either absorbed or scattered. This layer is said to be opaque,
and it applies to paints and some inkjet processes. In all cases, transmission,
absorption, and scattering are functions of wavelength. We will see shortly
that models for predicting the color of uniform colorant layers are based on
one of these three scenarios. More details are given in Chapter 3, which
focuses on the physics of color.

In the ensuing discussions, we will assume the exemplary case of a three-
colorant (CMY) printer. Extension to an arbitrary number of colorants is
usually straightforward.

5.10.2.1 Beer–Bouguer model
The Beer–Bouguer (BB) model plays an important role in colorant formula-
tion, being frequently used to predict light transmission through colored

a b c

. . .. ..... . ..
.. .

Figure 5.32 Light transport models for (a) transparent, (b) translucent, and (c)
opaque media.
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materials in liquid solutions. In digital color imaging, it is most applicable
for continuous-tone printing with transparent colorants and media (i.e., Fig-
ure 5.32a). The underlying assumption is that the spatial rate of change of
light radiance as it passes through an absorbing colorant layer is proportional
to the radiance itself. Mathematically, this is given by

(5.59)

where Ix(λ) = radiance at position x within the colorant layer
A(λ) = a proportionality factor given by

A(λ) = ξ w k(λ) (5.60)

where ξ = concentration of the colorant
w = thickness of the colorant layer

k(λ) = spectral absorption coefficient of the colorant

Substituting Equation 5.60 into Equation 5.59 and integrating with respect
to x over the thickness of the colorant, we obtain the following expression
for the radiance I(λ) emerging from the colorant:

(5.61)

where I0(λ) is the radiance of light that would be transmitted in the absence
of the colorant, which can be expressed as the product of the incident light
Ii(λ) and the bare transparency Tt(λ). Equation 5.61 essentially states that the
amount of light absorption depends directly on the amount of absorbing
material within the colorant, which in turn is proportional to both the con-
centration and thickness of the colorant layer. Often, the colorant thickness
w is assumed to be spatially constant and is folded into the absorption
coefficient k(λ). To this end, we no longer explicitly include w in the analysis. 

It is useful to introduce spectral transmittance T(λ) and optical density
D(λ) of a colorant layer.

(5.62)

For color mixtures, the additivity rule can be invoked, which states that
the density of a colorant mixture is equal to the sum of the densities of the
individual colorants.50 For a CMY printer, we thus have

DCMY(λ) = Dt(λ) + 0.4343(ξC kC(λ) + ξM kM(λ) + ξY kY(λ)) (5.63)

dIx λ( )
dx

---------------- A λ( )– Ix λ( )=

I λ( ) I0 λ( ) ξwk λ( )–( )exp Ii λ( )Tt λ( ) ξwk λ( )–( )exp= =

T λ( ) I λ( )
Ii λ( )
----------- Tt λ( ) ξk λ( )–( )exp ;= =

D λ( ) log10 T λ( )( )=Dt λ( ) 0.4343 ξ k λ( )+–=
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which can be written in terms of transmittance,

TCMY(λ) = Tt(λ) exp[–(ξC kC(λ) + ξM kM(λ) + ξY kY(λ))] (5.64)

The model can be extended to reflective prints under the assumption that
there is no scattering of light within the paper. This yields

(5.65)

where RCMY(λ) and Rp(λ) are the spectral reflectances of the colorant mixture
and paper, respectively. Note that, in reality, most reflective media do exhibit
scattering, hence reducing the accuracy of Equation 5.65.

For a given printer, the parameters of Equations 5.64 and 5.65 are esti-
mated from measurements of selected patches. The procedure for a CMY
reflection printer is as follows:

• Measure the spectral reflectance of the paper, Rp(λ), and solid C, M,
Y patches, RC(λ), RM(λ), RY(λ).

• Estimate the spectral absorption coefficient kC(λ) for the cyan colo-
rant. This is done by setting ξC = 1, ξM = ξY = 0 in Equation 5.65 to yield

(5.66)

Use analogous expressions to derive kM(λ) and kY(λ). 

• Derive the relationship between input digital level dj and cyan con-
centration ξCj by printing a stepwedge of pure cyan patches at dif-
ferent digital levels dj, and measure spectral reflectances RCj(λ). From
Equation 5.65, we know that

(5.67)

The quantity on the left is the absorption corresponding to concen-
tration at level dj; hence, we denote this as kCj(λ). A least-squares
estimate for ξCj can be computed by minimizing the error.

(5.68)

where the summation is overall measured wavelengths within the
visible spectrum. Using the least-squares analysis in Appendix 5.A,
the optimal ξCj is given by

RCMY λ( ) Rp λ( ) ξ( CkC λ( ) ξMkM λ( ) ξYkY λ( ) )+ +–[ ]exp=

kC λ( )
RC λ( )
Rp λ( )
--------------- 

 log–=

RCj λ( )
Rp λ( )
---------------- 

 log– ξCjkC λ( )=

kCj λ( ) ξCjkC λ( )– 2

λ
∑
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(5.69)

By definition, these estimates lie between 0 and 1. Using Equation
5.69, we obtain a set of pairs (dj, ξCj), from which one-dimensional
fitting or interpolation is used to generate a TRC that maps digital
count to dye concentration for all digital inputs 0 ≤ d ≤ dmax. This
process is repeated for magenta and yellow.

This completes the model derivation process, and all the parameters in
Equation 5.65 are known. The model can be tested by exercising it with an
independent set of CMY test data. The model predictions are compared with
actual measurements using a standard error metric such as ∆E94. For effi-
ciency of computation, the model can be used to create a three-dimensional
LUT that maps CMY directly to CIE coordinates.

The BB model works very well for photographic transparencies and, to
a reasonable extent, for photographic reflection prints. One of the shortcom-
ings of this model is that it does not account for scattering within colorant
layers, thus reducing its applicability for certain printing technologies. The
scattering phenomenon is explicitly introduced in the Kubelka–Munk model,
described next.

5.10.2.2 Kubelka–Munk model
The Kubelka–Munk (KM) model is a general theory for predicting the reflec-
tance of translucent colorants. An appealing aspect of this theory is that it
also models transparent and opaque colorants as special cases. The foremost
applicability for printer characterization is the case of continuous-tone print-
ing processes on reflective media. In this section, only the important formulae
are presented. Their derivations are rather lengthy and can be found in many
sources, including Allen.51

Kubelka–Munk theory assumes a special case of Figure 5.32b, with light
being transmitted or scattered in only two directions: up and down. The
most general form of the KM model for translucent colorant layers is given by

(5.70)

where R(λ) = the spectral reflectance of the sample
Rp(λ) = the reflectance of the paper

w = the thickness of the colorant layer
K(λ) and S(λ) = absorbing and scattering coefficients, respectively

ξCj
opt

kCj λ( )
λ
∑ kC λ( )

kC
2 λ( )

λ
∑

------------------------------------=

R λ( )

Rp λ( ) R∞ λ( )–
R∞ λ( )

------------------------------------ R∞ λ( )– Rp λ( ) 1
R∞ λ( )
---------------– 

  wS λ( ) 1
R∞ λ( )
--------------- R∞ λ( )– 

 exp

Rp λ( ) R∞ λ( )– Rp λ( ) 1
R∞ λ( )
---------------– 

  wS λ( ) 1
R∞ λ( )
--------------- R∞ λ( )– 

 exp–
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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 = the reflectance of an infinitely thick sample, given by

(5.71)

In practice, a sample is “infinitely thick” if any increase in thickness results
in a negligible change in reflectance. Equation 5.71 can be inverted to obtain

(5.72)

For colorant mixtures, the additivity and proportionality rules can be applied
to obtain overall absorbing and scattering coefficients from those of the
individual colorants.

(5.73)

where kp(λ) and sp(λ) = the absorption and scattering terms for the paper
ξi = the concentration of colorant i

The general KM model, Equation 5.70, can be simplified to the two limiting
cases of transparent and opaque colorants (Figure 5.32a and 5.32c), described
next. 

5.10.2.2.1 KM model for transparent colorants. For transparent colorant
layers, the scattering term in Equation 5.70 approaches zero, resulting in the
following expression:51 

(5.74)

where K(λ) is given by Equation 5.73. Note that this is very similar to the
Beer–Bouguer model, Equation 5.65. However, the absorption coefficients in
the two models are different, because BB assumes collimated light, whereas
KM assumes diffuse light. The procedure outlined in Section 5.10.2.1 for the
BB model can be used to estimate ki(λ) from C, M, Y samples at maximum
concentration and to derive the mapping between input digital value di and
dye concentration ξi from stepwedge measurements. 

Berns has used this model to characterize dye diffusion printers.52 In this
work, the model parameters [i.e., ki(λ) and ξi, i = C, M, Y] were initially
derived using essentially the procedure outlined in Section 5.10.2.1. A third-
order polynomial was used to fit the relationship between digital count and
dye concentration. The model resulted in unsatisfactory results (∆Eab = 12).

R∞ λ( )

R∞ λ( ) 1 K λ( )
S λ( )
------------

K λ( )
S λ( )
------------ 

 
2

2 K λ( )
S λ( )
------------ 

 +–+=

K λ( )
S λ( )
------------

1 R∞ λ( )–( )2

2R∞ λ( )
-------------------------------=

K λ( ) kp λ( ) ξiki λ( )
i C ,M ,Y=

∑ ;  S λ( )+ sp λ( ) ξisi λ( )
i C ,M ,Y=

∑+= =

R λ( ) Rp λ( ) 2wK λ( )–[ ]exp=
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It was discovered that a major source of error arose from the channel inde-
pendence assumption in the KM model, i.e., the cyan dye concentration
depends only on the cyan digital count, etc. The author observed that, due
to the sequential nature of the dye diffusion and transfer process, there is a
significant sequential interaction among the colorants. This was accounted
for by introducing a matrix with cross terms to relate KM predictions to
more realistic estimates. Coefficients of the matrix were obtained by regres-
sion on a set of measurements of colorant mixtures. This correction was
found to significantly improve the model prediction, resulting in ∆Eab = 3.
Details are given in the Berns reference. The empirical correction just
described is a common way of accounting for limitations in a physics-based
model and will be encountered again in discussions of the Neugebauer
model.

5.10.2.2.2 KM model for opaque colorants. For opaque samples, the lim-
iting case of infinite thickness in Equation 5.71 can be used to predict spectral
reflectance. Note that Equation 5.71 depends only on the ratio K(λ)/S(λ) for
the colorant mixture, which can be obtained from the absorption and scat-
tering coefficients of the individual colorants using Equation 5.73.

(5.75)

This is referred to as the two-constant KM model. With certain pigments, it
is reasonable to assume that the scattering in the colorants is negligible
compared to scattering in the substrate.51 In this case, the denominator in
Equation 5.75 reduces to sp(λ), and Equation 5.75 can be rewritten as

(5.76)

This is referred to as the single-constant KM model, as only a single ratio
k(λ)/s(λ) is needed for each colorant. 

To derive the model, the k(λ)/s(λ) terms for each colorant are obtained
from reflectance measurements of samples printed at maximum concentra-
tion, using Equation 5.72. Next, the relationship between digital count and
colorant concentration ξ are obtained from reflectance measurements of sin-
gle-colorant stepwedges and a regression procedure similar to that outlined
in Section 5.10.2.1. Finally, Equations 5.76 and 5.71 are evaluated in turn to
obtain the predicted reflectance. More details are found in papers by Parton
et al.53 and Kang.54 In these papers, the opaque single-constant KM model
is used to predict the spectral reflectance of solid area coverage in inkjet
prints. The prediction accuracies are in the range of 1.65 to 5.7 ∆

K λ( )
S λ( )
------------

kp λ( ) ξiki λ( )
i C ,M ,Y=

∑+

sp λ( ) ξisi λ( )
i C ,M ,Y=

∑+
------------------------------------------------------=
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S λ( )
------------
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*
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depending on the ink mixing process and the particular mixtures tested.
Note that most inkjet printers use halftoning, a process that is not well
predicted by KM theory. The latter only predicts the solid overprints in inkjet
prints, hence its application is in ink formulation rather than device charac-
terization.

5.10.2.2.3 Modeling front-surface and interlayer reflections. An important
effect not taken into account in the KM and BB models is reflection loss at
the boundaries between colorant layers, as well as front surface reflection
(FSR) at the boundary between the uppermost colorant layer and air. Because
a certain amount of light is lost due to FSR, this should ideally be subtracted
before computing reflectance. However, in a spectrophotometer, at least part
of the light from FSR reaches the detector. To correct for this effect,
Saunderson55 developed a relationship between the reflectance R(λ) as pre-
dicted by BB or KM, and the reflectance Rmeas(λ) as measured by a spectro-
photometer.

(5.77)

where k1 is the Fresnel reflection coefficient that accounts for front surface
reflection, and k2 models total internal reflection that traps light within the
colorant layers. The factor k1 depends on the refractive index η of the upper-
most colorant layer. A common assumption for η is 1.5, which corresponds
to k1 = 0.04. The theoretical value of k2 for the case of perfectly diffuse light
is 0.6.51 Alternatively, these parameters can be chosen to provide the best
empirical fit between measured and modeled reflectance data.

The Saunderson correction is performed as a final step after deriving the
BB or KM, and it has been shown to improve model accuracy.52,54 

5.10.2.2.4 Modeling fluorescence. Another drawback with both the BB
and KM models is that they do not account for fluorescence. Many paper
substrates employ optical brighteners that exhibit fluorescence and can thus
limit the utility of these models. Fluorescence modeling is discussed in more
detail in Chapter 3, which deals with the physics of color.

5.10.2.3 Neugebauer model
The Neugebauer model is used to model a halftone color printing process.
Each primary colorant in a halftone process is rendered as a spatial pattern
of dots, each dot being printed at one of a small number of concentration
levels. The impression of intermediate levels is achieved by modulating the
size, shape, and spatial frequency of the dots. (Techniques for color halfton-
ing are covered in more detail in a subsequent chapter.)

A process employing N colorants at Q concentration levels results in one
of QN colorant combinations being printed at any given spatial location. We
begin the formulation with the simplest case of a binary black-and-white

R λ( )
Rmeas λ( ) k1–

1 k1 k2 1 Rmeas λ( )–( )––
----------------------------------------------------------- ;=  Rmeas λ( ) k1

1 k1–( ) 1 k2–( )R λ( )
1 k2R λ( )–

--------------------------------------------------+=
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printer. This corresponds to N = 1 and Q = 2 (zero or maximum) concentra-
tion levels; thus, at any given spatial location, we have two possible colorant
combinations, black or white. The reflectance of a halftone pattern is pre-
dicted by the Murray–Davies equation,50

R = (1 – k)Pp + kPk (5.78)

where k = fractional area covered by the black dots
Pp, Pk = reflectances of paper and black colorant, respectively

The Neugebauer model is a straightforward extension of the Murray–Davies
equation to color halftone mixtures.56 Binary printers employing C, M, Y
colorants render one of 23 = 8 colorant combinations at a given spatial
location. The set of colorant combinations is S = {P, C, M, Y, CM, MY, CY,
CMY}, where P denotes paper white, C denotes solid cyan, CM denotes the
cyan–magenta overprint, etc. The Neugebauer model predicts the reflectance
of a color halftone as a weighted average of the reflectances of the eight
colorant combinations.

(5.79)

where S = the aforementioned set of colorant combinations
Pi = spectral reflectance of the ith colorant combination, 

henceforth referred to as the ith Neugebauer primary
weight wi = the relative area coverage of the ith colorant combination, 

which is dictated by the halftoning method used

In the original Neugebauer equations, the predicted color is specified by
three broadband reflectances representing the short, medium, and long
wavelength portions of the electromagnetic spectrum. In this work, spec-
trally narrowband reflectances are used instead of their broadband counter-
parts, as the former generally yield greater accuracy.57 The spectral Neuge-
bauer equations are

(5.80)

Because Pi(λ) are colors of solid overprints, they can be predicted from single-
colorant measurements using the BB or KM theories described in the previ-
ous sections. However, for any given set of colorants, there are only a small
number of such overprints; hence, they are usually measured directly.

5.10.2.3.1 Effect of halftone dot placement. A common assumption is
that the dot placements of the colorants are statistically independent; i.e.,

R wiPi
i S=
∑=

R λ( ) wiPi λ( )
i S∈
∑=
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the event that a particular colorant is placed at a particular spatial location
is independent of other colorants being placed at the same location. This
leads to the Demichel dot model.50 The Neugebauer primaries and the cor-
responding weights are given by

(5.81)

Here, c, m, y are the fractional area coverages corresponding to digital
inputs dc, dm, dy , respectively. A halftone screen for which statistical indepen-
dence is often assumed is the rotated halftone screen configuration, where
the screens for c, m, y are placed at different angles, carefully selected to
avoid moiré artifacts. This is shown schematically in Figure 5.33a. Validity
of the independence assumption for certain types of halftones such as rotated
screens has been demonstrated by Viggiano et al.58 

A geometrical interpretation of Equations 5.80 and 5.81 is that R(λ) is a
result of trilinear interpolation performed among the Pi(λ) in cmy space. (This
can be verified by comparing these equations with the trilinear interpolation
equations given in Chapter 11, dealing with efficient color transformations.)
An algebraic interpretation of the model is that Equations 5.80 and 5.81 form
a third-order polynomial in terms of c, m, y, with Pi(λ) being the polynomial
coefficients.

Another commonly used halftone configuration is the dot-on-dot
screen,59 where the C, M, Y dots are placed at the same screen angle and

Pi λ( )  SP∈ PP λ( ), PC λ( ), PMλ, PY λ( ), PCM λ( ), PCY λ( ), PMY λ( ), PCMY λ( ){ },=

wi Sw∈ { 1  c–( ) 1 m–( ) 1 y–( ), c 1 m–( ) 1 y–( ), m 1 c–( ) 1 y–( ),=

y 1 c–( ) 1 m–( ), cm 1 y–( ), cy 1 m–( ), my 1 c–( ), cmy}

MY

CMY
W

M

CM

CY

Y

C

CMY W

CY

C

Figure 5.33 Dot area coverages for (a) rotated screen and (b) dot-on-dot screen.

(a) (b)
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phase as shown in Figure 5.33b. While the basic form of the mixing equations
is similar to Equation 5.80, the weights 

 

w

 

i

 

 are different from those of ran-
domly positioned dots. Let X

 

i  be the colorant with the 

 

i th smallest area
coverage 

 

a

 

i

 

. For example, if [c, m, y] = [0.8, 0.5, 0.2], then X

 

1  = Y, X

 

2 

 

= M, X

 

3

 

= C; a

 

1 

 

= 0.2, a

 

2 

 

= 0.5, a

 

3  = 0.8. The set of Neugebauer primaries and corre-
sponding weights are now given by

(5.82)

The final output reflectance in Equation 5.80 is now a summation of, at most,
four terms.

Geometrically, Equation 5.82 represents tetrahedral interpolation among
the 

 

P

 

i

 

(

 

l

 

)

 

 at four of the eight vertices of the 

 

cmy  cube. (This can be verified
by comparing Equation 5.82 with the equations for tetrahedral interpolation
given in the Chapter 11.) Different Neugebauer primaries are selected for
the calculation depending on the relative sizes of the area coverages 

 

c, m, y

 

(equivalently, the tetrahedron to which the input 

 

cmy

 

 coordinate belongs).
However, the weights 

 

w

 

i

 

, and hence the resulting interpolated output 

 

R(

 

l

 

),

 

are continuous as the input 

 

cmy

 

 coordinate moves from one tetrahedron to
another in 

 

cmy

 

 space. Algebraically, it is easily seen from Equations 5.80 and
5.82 that, for fixed 

 

l

 

, 

 

R(
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 is a linear function of 

 

c, m, y

 

, with the 
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i
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l
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being
the weighting coefficients.

The aforementioned dot-on-dot mixing model assumes an ideal dot
pattern with no noise, a perfectly rectangular dot density profile, and no
misregistration effects. In practice, these assumptions may be violated. It has
been shown

 

59

 

 that a weighted mixture of the dot-on-dot and Demichel mix-
ing models can effectively capture some of these effects. The new predicted
reflectance is given by
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(5.83)

where

 

R

 

dod

 

(

 

l

 

) 

 

=  reflectance predicted by the dot-on-dot model

 

R

 

dem

 

(

 

l

 

) 

 

=  reflectance predicted by the Demichel model

 

a

 

 = a weighting parameter that determines the relative 
proportions of the two mixing models; this factor can be 
chosen to fit the model to a set of measured data

As alluded to earlier, all these versions of the Neugebauer model easily
generalize for an arbitrary number of colorants. For 

 

N

 

 colorants, the
Demichel model for independent dot placement will result in the summation
in Equation 5.80 containing 2

 

N

 

 terms, while the dot-on-dot model contains

 

N 

 

+ 1 terms.
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5.10.2.3.2 Effect of halftone screen frequency. The ideal Neugebauer
model assumes a perfect rectangular dot profile as a function of spatial
location. In reality, dots have soft transitions from regions with full colorant
to regions with no colorant. If the halftone screen frequency is relatively low,
or a clustered dot is used, the relative area of the paper covered by the
transition regions is small, and the Neugebauer model would be expected
to be relatively accurate. On the other hand, if the screen frequency is high,
or a dispersed dot is used, a relatively large fraction of the paper is covered
by transition regions, and the model breaks down. While some of the cor-
rections discussed in following sections partially account for soft transitions,
the reliability of the model has been seen to be greatest with clustered dot
screens with frequency less than 100 halftone dots per inch.

5.10.2.3.3 Effect of light scattering in the paper. An important pheno-
menon not modeled by the basic Neugebauer equations is the scattering of
light within the paper. To understand this phenomenon, consider the inter-
action of light with a black halftone print. The light that reaches the paper
is given by

Ip = Iin(1 – k + kTk) (5.84)

where Iin = incident light intensity
Ip = light reaching the paper
k = fractional black area coverage

Tk = transmittance of the black colorant

Figure 5. 34a shows the case where there is no optical scattering within the
paper. In this case, light incident on the print at a location containing colorant
will also exit through the colorant; likewise, light reaching the substrate will
exit from the same location. The reflected light is thus given by

Irefl = Iin{(1 – k) Pp + k Tk
2 Pp} (5.85)

where Pp is reflectance of the paper.
Define the reflectance of the solid black colorant as Pk = Tk

2Pp. The overall
reflectance is then given by the original Murray–Davies Equation 5.78.

Consider now the case where there is scattering within the paper, as
shown in Figure 5.34b. In this case, light that enters the paper through an
area with no colorant may leave the paper through an area that is covered
with colorant, and vice versa. To account for this, Yule and Nielsen60 proposed
a simple correction to the Murray–Davies model for a black printer. Assuming
that light reaching the paper is given by Ip in Equation 5.84, the light emerging
from the substrate is IpRp. If complete diffuse scattering is assumed, the light
is equally likely to re-emerge from the paper in all directions. In this case,
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the emerging light experiences the same transmission function, (1 – k + kTk),
as in Equation 5.84. The final reflected light is given by

(5.86)

With the black reflectance being defined as Pk = Tk
2Pp, the following expres-

sion is obtained for the overall reflectance: 

(5.87)

The Yule–Nielsen (YN) correction results in a nonlinear relationship between
the area coverage k and the resulting reflectance R. Figure 5.35 is a plot of
R vs. k with and without the YN correction. The latter predicts a smaller
reflectance (i.e., a darker print) than the linear Murray–Davies model. This
is indeed the case in reality. The darker print can be thought of as being
effected by a larger dot area coverage k; hence, the scattering phenomenon
is often referred to as optical dot gain.

Equation 5.87 can be generalized as follows:

(5.88)

Figure 5.34 Light reflection (a) without and (b) with optical scattering within the
substrate.
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where n is known as the YN parameter. When n = 1, Equation 5.88 reduces
to the Murray–Davies equation, i.e., the case of no optical scattering within
the substrate. When n = 2, we have the case of complete diffuse optical
scattering given in Equation 5.87. In reality, one would expect to encounter
partial diffuse scattering, which would yield intermediate values, 1 < n < 2.
Therefore, n is often treated as a free parameter chosen to optimally fit
measured data. The YN correction is readily applied to the spectral Neuge-
bauer equations.

(5.89)

Figure 5.36 is a plot of the prediction accuracy of the Neugebauer model as
a function of n for a rotated screen. The device being modeled was a Xerox
5760 CMYK laser printer. Details of the experiment that produced these
results are given in the paper by Balasubramanian.59 Clearly, inclusion of the
YN factor (i.e., n > 1) greatly improves model accuracy. Interestingly, for this
case, best results are achieved for n > 2, for which there is no direct physical
interpretation. Statistical or empirical fitting of model parameters can indeed
often result in nonphysical values. This is largely due to noise and other
characteristics such as front surface and internal reflections not being suffi-
ciently captured by the given model.

Other, more sophisticated techniques have been proposed that model
optical scattering with spatial point spread functions.61,62 These approaches
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Figure 5.35 Reflectance vs. area coverage for K colorant (a) without Yule–Nielsen
correction (n = 1) and (b) with Yule–Nielsen correction (n = 2).

R λ( ) wiPi λ( )1 n⁄

i S∈
∑ 

  n
=

-ColorBook  Page 350  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



Chapter five: Device characterization 351

are covered in more detail in Chapter 3. The following discussion is restricted
to the YN correction, as it is a very simple yet effective way of improving
model accuracy. 

5.10.2.3.4 Estimation of dot area coverages. In addition to the optical
dot gain just described, halftone printing also experiences mechanical dot
gain, which results from the physical spreading of colorant on the paper. A
combination of optical and mechanical dot gain results in a nonlinear rela-
tionship between the input digital counts to the halftone function and the
dot area coverages used in the Neugebauer calculation. Furthermore, in some
printing processes, optical interactions among the colorants can result in the
dot gain for a given colorant being dependent on the area coverages of the
other colorants. However, for pedagogical purposes, we will make the sim-
plifying assumption that there are no interchannel interactions so that the
cyan area coverage depends on only the cyan digital count, etc. This assump-
tion is reasonably upheld in many printing processes and allows the rela-
tionship between digital count and dot area to be determined from single-
colorant stepwedge data. From Equation 5.89, the reflectance of a cyan patch
produced at digital level dj is given by

(5.90)

The least-squares estimate minimizes the error

(5.91)
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Figure 5.36 Average ∆E vs. YN parameter n for spectral Neugebauer model with 24
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The optimal area coverage is obtained by setting to zero the partial derivative
of Equation 5.91 with respect to cj, yielding

(5.92)

The result is a set of pairs {dj, cj} from which a continuous function can be
derived that maps digital count to dot area coverage using some form of
one-dimensional fitting or interpolation. The process is repeated for the other
colorants. If a sufficiently fine sampling of stepwedge data is available,
piecewise linear interpolation should be adequate; otherwise, higher-order
functions such as splines are desirable. Figure 5.37 shows optimized magenta
dot areas for the DocuColor 12 printer for values of n = 1 and n = 2. For the
case where n = 1, the dot area coverages must account entirely for both
optical and mechanical dot gain. When n > 1, the YN correction partially
accounts for optical dot gain; hence, the dot area coverages are generally
smaller in magnitude.

An alternative technique for determining dot areas is to minimize the
error in CIELAB rather than spectral coordinates. Unlike the previous
approach, this is a nonlinear optimization problem that must be solved with
numerical or search-based techniques. Given this fact, one can extend the
training set to include colorant mixtures, e.g., C = M = Y, in addition to the
single-colorant stepwedges. Balasubramanian59 provides further details of
this approach.

5.10.2.3.5 Cellular Neugebauer model. The set of primaries Pi(λ) of the
basic Neugebauer model are derived from C, M, Y overprints of either 0 or
100% area coverages. This set can be generalized to include intermediate
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Figure 5.37 Optimized magenta dot area functions for n = 1 and 2.
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area coverages. For example, if 50% area coverages of C, M, Y are included
with 0 and 100%, then each colorant has three states, and there are 33 = 27
Neugebauer primaries. Geometrically, this is equivalent to partitioning the
three-dimensional cmy space into a grid of eight rectangular cells, formed
by nodes at 0, 50, and 100%. Hence, this is referred to as the cellular Neu-
gebauer model.63 A two-dimensional example is shown in Figure 5.38 for a
printer employing only cyan and magenta colorants. Depending on the type
of halftone screen, the appropriate mixing equations are applied within each
cell. The mixing equations are to be geometrically interpreted as a three-
dimensional interpolation of the Pi(λ)1/n at the cell vertices. For the case of
the random halftone, the logical extension from the noncellular model is to
perform trilinear interpolation within each cell whereas, for the dot-on-dot
case, tetrahedral interpolation is to be applied.

More explicitly, a given set of dot areas c, m, y can be represented as a
point in three-dimensional cmy space and will fall in a rectangular cell that is
bounded by the lower and upper extrema, denoted cl, cu, ml, mu, yl, yu, along
each of the three axes. That is, cl and cu are the two points along the cyan axis
that satisfy the constraint 0 ≤ cl < c < cu ≤ 1; cl, cu ∈ Ic, where Ic is the set of
allowable states or area coverages for the Neugebauer primaries correspond-
ing to the cyan colorant. Analogous definitions hold for the magenta and
yellow coordinates. To estimate the reflectance within a given cell, the dot area
values c, m, y, must be normalized to occupy the interval [0, 1] within that cell.

(5.93)

with analogous expressions for m’ and y’. The weights wi’ for the cellular
model are then given by Equation 5.81 for random screens and Equation
5.82 for dot-on-dot screens, with c, m, y being replaced by c’, m’, y’, respec-
tively. Let Pi’(λ) be the spectral Neugebauer primaries that correspond to the
vertices of the enclosing cell. The mixing equations for the cellular model
are then given by Equation 5.89, with wi replaced by wi’ and Pi replaced by Pi’. 

Input

Pw(λ)1/n P C(λ)1/n

PM(λ)1/n PCM(λ)1/n

C=0.5

M=0.5

Figure 5.38 Two-dimensional illustration of cellular Neugebauer model. Solid circles
denote spectral primaries interpolated to obtain reflectance R(λ)1/n at the input cm
value.

c, c cl–
cu cl–
--------------=
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Note that the cellular equations physically model a halftoning process
wherein each colorant can produce M > 2 concentration levels. For binary
printers, the justification for using a cellular model is empirical rather than
physical; the finer cellular subdivision of cmy space affords finer interpola-
tion of measured data, hence yielding greater accuracy. 

Figure 5.36 compares the accuracy of the noncellular model for a CMYK
printer with cellular versions employing 34 = 81 and 54 = 625 primaries. As
the number of cells increases, the model accuracy improves significantly. At
the same time, the dependence on the YN factor decreases. This is to be
expected, as the cellular model marks a transition from a model-based to an
empirical approach and hence would be less sensitive to model parameters.

5.10.2.3.6 Spectral regression of the Neugebauer primaries. Thus far, the
primaries Pi(λ) in Equation 5.89 are considered as fixed parameters that are
directly measured. An alternative is to treat these quantities as free variables
that can be optimized via regression on a training set of spectral reflectance
data. This technique will be described next for the case of a noncellular CMY
model employing rotated screens. (Extension to the cellular case, N colorants,
or dot-on-dot screen is straightforward). It is assumed that the optimal n
factor and dot area coverages have been derived using the aforementioned
techniques. To formulate the regression problem, it is convenient to express
the Neugebauer equations in matrix-vector form. Consider each spectral
measurement as an L-vector. Collect the YN modified spectral reflectances
R(λ)1/n of T training samples into a T × L matrix R. Similarly, collect the YN
modified Neugebauer primaries Pi(λ)1/n into an 8 × L matrix P. Finally, gen-
erate a T × 8 weight matrix W whose element wij is the area coverage of the
jth Neugebauer primary for the ith training sample. Equation 5.89 can then
be rewritten as

R = W · P (5.94)

From Appendix 5.A, the least squares solution for P is given by

Popt = (WtW–1)WtR (5.95)

The terms in P are raised to the power n to obtain optimized primary reflec-
tances. It must be emphasized that the choice of CMY samples in the training
set T is crucial in determining the condition or rank of matrix W. Namely, to
ensure sufficient rank, the samples should be chosen so that there are no null
columns in W. A simple way to assure this is to pick a regular three-dimen-
sional grid of training samples. Also, note that the foregoing analysis is based
on a particular choice of n and the dot area coverage functions. The process
can be iteratively repeated by rederiving n and the dot areas corresponding
to the newly optimized primaries, and then repeating the regression step.
Experiments by the author have shown that more than two iterations do not
generally yield significant improvements in model accuracy.59
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5.10.2.3.7 Overall model optimization. The following procedure may
be used to optimize the various parameters of the Neugebauer model for a
CMY printer:

• Select the resolution of the cellular Neugebauer model. In the au-
thor’s experience, three levels (i.e., two cells) per colorant offers an
acceptable trade-off between accuracy and number of samples re-
quired. Generate CMY combinations corresponding to the cell nodes
(i.e., the Neugebauer primaries).

• Select the resolution of C, M, Y stepwedges to generate dot area
functions. In the author’s experience, a minimum of 16 samples per
colorant is usually adequate.

• Select an additional set of CMY mixtures to test and refine the model.
One possibility is to use an N × N × N grid of CMY combinations
that does not coincide with the Neugebauer primaries.

• Combine the above CMY samples into a characterization target. (As
an alternative to designing a custom target, the standard IT8.7/3
printer characterization target described in Section 5.3 can be used,
as it contains the patches necessary to derive and test the Neugebauer
model.) Print the target and obtain spectral measurements.

• For a fixed value of n (e.g., n = 1), use Equation 5.92 to generate
estimates of dot area coverages for the stepwedge samples. Interpo-
late or fit the data to create functions that map digital count to dot
area coverages. With 16 or more samples per stepwedge, piecewise
linear interpolation should produce adequate accuracy.

• Evaluate the accuracy of the model in predicting the stepwedge data.
This is accomplished by computing a ∆E metric between model pre-
dictions with actual measurements.

• Optimize the model with respect to n by repeating the previous two
steps for several n values in some nominal range (e.g., 1 < n < 7) and
selecting the n that produces the minimum ∆E.

• Select a mixing model depending on the type of halftone screen (e.g.,
Demichel vs. dot-on-dot).

• If the dot-on-dot model is chosen, find the optimal blending param-
eter α in Equation 5.83 by iterating through different values of α,
computing ∆E for the model’s prediction of mixed color samples from
the test set, and selecting α that minimizes the ∆E.

• If spectral regression of the primaries is desired, select a set of mixed
color samples from the test set, and use Equation 5.95 to compute
optimal primaries Pi(λ). 

Figure 5.39 summarizes the steps in the application of the Neugebauer
model. Accuracy of the model must be evaluated on an independent set
of CMY samples. If the prediction error is within the variability of the
printer, the model is considered to be a satisfactory representation of the
real printer. 
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5.10.2.3.8 Accuracy of the various Neugebauer models. Table 5.1 com-
pares the performance of the various types of Neugebauer models applied
to the Xerox 5760 CMYK printer. Details are provided by Balasubramanian.59

Clearly, the YN parameter offers significant benefit to the model. The cellular
framework with 54 = 625 primaries offers the best accuracy, but this is at the
expense of a substantial number of measurements. The cellular model with
34 = 81 primaries, as well as spectral regression, offer a promising trade-off
between measurement cost and accuracy.

5.10.2.3.9 Further enhancements. Several researchers have explored
other refinements of the model. Arney et al.64 showed that the colors of both
the paper and the dots are functions of the relative dot area coverages, and
they extended the Neugebauer model to account for this. Lee et al.65 departed
from the Demichel model and used a sequential quadratic programming
method to estimate these parameters. Iino and Berns66 accounted for optical
interactions among the colorants by introducing a correction to the dot gain
of a given colorant that depends on the area coverages of the other colorants.
Hua and Huang67 and Iino and Berns68,69 explored the use of a wavelength-
dependent Yule–Nielsen factor. Agar and Allebach70 developed an iterative
technique of selectively increasing the resolution of a cellular model in those

Table 5.1 Effort Involved and Resulting Accuracy of the Various 
Neugebauer Models for a Rotated Dot

Model
No. of Spectral 
Measurements

Avg.
∆E*ab

95% 
∆E*ab

Basic spectral 72 8.88 16.3
Yule–Nielsen corrected 72 3.50 7.80
Cellular, 34 primaries, 

Yule–Nielsen corrected 137 2.96 6.0
Cellular, 54 primaries,

Yule–Nielsen corrected 681 2.01 5.0
Yule–Nielsen corrected, 
global spectral regression 188 2.27 5.3

C, M, Y
digital counts

Dot area
functions

halftone screen
type

c, m, y
dot areas

1-D mapping Mixing
Model

Primaries P (λ)i
1/n

cmyR      (λ)
1/n

( )
n

cmyR      (λ)

Figure 5.39 Block diagram of Neugebauer model calculation.
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regions where prediction errors are high. Xia et al.71 used a generalization
of least squares, known as total least-squares (TLS) regression to optimize
model parameters. Unlike least-squares regression, which assumes uncer-
tainty only in the output space of the function being approximated, total
least-squares assumes uncertainty in both the input and output spaces and
can provide more robust and realistic estimates. In this regard, TLS has wide
applicability in device characterization.

5.10.3 Empirical techniques for forward characterization

With this class of techniques, a target of known device-dependent samples
is generated, printed, and measured, and the characterization function is
derived via data fitting or interpolation. Linear regression is generally inad-
equate for printer characterization; any of the more sophisticated nonlinear
techniques described in Section 5.4 are applicable.

5.10.3.1 Lattice-based techniques
Perhaps the most common approach is to generate a regular grid of training
samples in m-dimensional device space, print and measure these samples,
and use a lattice-based technique to interpolate among the measured colo-
rimetric values (see Section 5.4.5). There is an inherent trade-off between the
size and distribution of the sample set and the resulting accuracy. This trade-
off must be optimized based on the particular printer characteristics and
accuracy requirements. Remember that, if the printer has been calibrated,
these functions must be incorporated into the image path when generating
the target; hence, they will also affect the overall printer characteristics. If,
for example, the printer has been calibrated to be linear in ∆E from paper
along each of the primary axes (see Section 5.10.1), then uniform spacing of
lattice points is a good choice, as these correspond approximately to equal
visual steps. The following is a simple procedure to determine a suitable
grid size for a CMY printer, assuming it has been either linearized channel-
wise to ∆E from paper or gray-balanced and linearized to neutral L*:

• Generate uniformly spaced lattices of size s3 in CMY space, where
. Also generate an independent test target of CMY samples.

The latter can be generated by invoking a random number generator
for each of the digital values dc, dm, dy or by using a regular lattice
that is different from any of the training sets. 

• Generate targets for both the lattice and the test data, process through
the calibration functions, print, and measure CIELAB values.

• From this data, generate a set of three-dimensional LUTs of size s3

that map CMY to CIELAB space.
• Select a three-dimensional interpolation technique, e.g., trilinear or

tetrahedral interpolation. Process the test CMY samples through each
of the LUTs to obtain CIELAB estimates. Compute ∆E between esti-
mated and measured CIELAB.

5 s 10≤ ≤
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• Plot average and 95th percentile ∆E as a function of s. A logical choice
for the lattice size is the smallest s for which an increase in lattice
size does not yield appreciable reduction in 95th percentile ∆E value.

Figure 5.40 shows such a plot for a Xerox DocuColor 12 laser printer. This
plot suggests that, for this printer, there is no appreciable gain in increasing
the grid size beyond s = 8.

The extension to CMYK printers is straightforward. Note, however, that
the lattice size (hence, the number of measurements) increases as s4 and can
quickly become prohibitively large. One method of improving the trade-off
between lattice size and accuracy is sequential interpolation, described next.

5.10.3.2 Sequential interpolation
The general framework for sequential interpolation (SI) was introduced in
Section 5.4.6. Here, we describe a specific application to CMYK character-
ization. Consider a decomposition of CMYK space into a family of CMY
subspaces corresponding to different levels of K, as shown in Figure 5.41. If
we were to print and measure the CMYK nodes of each CMY lattice, we
would obtain a series of volumes in L*a*b* space, as illustrated schematically
in the same figure. Each gamut volume corresponds to variations in C, M,
and Y, with fixed K. Note that as K increases, the variation in color, and
hence the gamut volume, decreases. For the case where K = 100%, we have
almost negligible color variation. The fact that the curvature of the function
strongly depends on K motivates an SI structure comprising a family of CMY
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Figure 5.40 ∆E vs. lattice size.
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lattices for different K. A finely sampled CMY lattice is used for K = 0, and
the lattice size decreases with increasing K, as shown in Figure 5.41. When
building the SI structure, each CMY lattice is filled with measured CIELAB
values. Interpolation to map CMYK to CIELAB is performed as follows:

• Project the input CMYK point onto the K dimension and select neigh-
boring levels Kj and Kj+1.

• Project the input CMYK point onto CMY space and perform three-
dimensional interpolation on the two CMY lattices corresponding to
levels Kj and Kj+1 to produce two CIELAB points.

• Use the input K value to perform one-dimensional interpolation of
these two CIELAB points.

Table 5.2 shows experimental results comparing the SI structure with a
regular lattice. For approximately the same lattice size, the SI technique offers
superior accuracy, hence improving the quality/cost trade-off. Further
details are given by Balasubramanian.72

It is noteworthy that the standard IT8.7/3 printer characterization target
described in Section 5.3 facilitates SI. The target contains 6 CMY lattices of
size 63, 63, 53, 53, 43, 23, corresponding to K values (in percentage) of 0, 20,
40, 60, 80, 100, respectively. 

C*

L*

Y

M

C K=100%

Y

M

C K=50%

M

Y

C K=0%

Figure 5.41 Sequential interpolation: a decomposition of CMYK into a family of
CMY subspaces at different K and corresponding CIELAB gamuts. The CMY lattices
become coarser as K increases.
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5.10.3.3 Other empirical approaches
Tominaga (Chapter 9 of Reference 7) describes an example of a neural net-
work for printer characterization. This is accomplished in two steps. First, a
four-layer neural net is derived for the forward transform from CMYK to
CIELAB using over 6500 training samples. Next, a cascaded eight-layer neu-
ral net is constructed, the first stage being the inverse mapping from CIELAB
to CMYK and the second stage being the previously derived forward map-
ping from CMYK to CIELAB. The second stage is kept static, and the first
stage is optimized to minimize the CIELAB-to-CIELAB error for the overall
system. Tominaga reports an average ∆Eab of 2.24 for a dye sublimation
printer. As with the other techniques, the optimal number of training samples
and the neural net structure depend on the printer characteristics and desired
accuracy, and they have to be initially determined by trial and error.

Herzog73 proposes an analytic model for the mapping between CMY
and CIELAB. The printer gamut is described as a family of nested shells in
both CMY and CIELAB space. A simple mathematical model of distortion
and scaling operations is used to relate each shell from one space to another
via an intermediate representation called a kernel gamut. Colors in between
the shells are mapped via linear interpolation. A total of 626 measurements
are required to derive the model, and average ∆Eab errors between 0.7 and
2.5 are reported for various data sets. 

5.10.4 Hybrid approaches

We have seen thus far that physical models and empirical techniques offer
different trade-offs between effort and accuracy. There are two ways to
combine the strengths of these two classes of techniques. The first is to use
empirical data to optimize the parameters of a physics-based model. Many
examples of this were encountered in the optimization of BB, KM, and
Neugebauer models. The second is to use empirical data to refine the pre-
diction of a printer model as a post-processing step, as shown in Figure 5.42.
The assumption is that the model is a good first-order approximation, and
that a small number of additional refinement samples is sufficient to correct
for objectionable inaccuracies in the model.12 The number and distribution

Table 5.2 Comparison of Accuracy and Number of Training Samples for 
Standard vs. Sequential Interpolation

Model

CIE ‘94 ∆E Number of 
LUT NodesAverage 95th Percentile

Regular 4 × 4 × 4 × 4 lattice 3.0 12.3 256

Sequential interpolation with 53, 43, 
33, 23 CMY lattices corresponding 
to k = 0, 85, 170, 255 1.8 6.25 224
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of refinement samples depend on the characteristics of the printer and the
model, as well as on accuracy requirements. If the printer model is known
to be erroneous in certain regions of color space, the refinement samples can
be chosen with a denser sampling in these regions. Similarly, regions of color
space to which the human visual system is more sensitive (e.g., flesh tones
and neutral colors) can be sampled more densely. In the absence of such
information, a reasonable approach is to span the gamut with an approxi-
mately uniform sampling.

In the case of forward printer characterization, the refinement is a colo-
rimetric function from, for example, CIELAB to CIELAB. Any of the multi-
dimensional data-fitting or interpolation techniques described in Section 5.4
can be applied to estimate this function from the refinement samples. Local
linear regression has been used successfully by the author12 to reduce average
∆Eab errors from approximately 5 to 2.5.

5.10.5 Deriving the inverse characterization function

The inverse printer characterization is a mapping from CIE color to device
colorant values that, when rendered, will produce the requested CIE color
under defined viewing conditions. This mapping is usually implemented as
a three-dimensional LUT, so it needs to be evaluated at nodes on a regular
three-dimensional lattice in CIE coordinates. Some of the lattice nodes will
lie outside the printer gamut; we assume that these points are first mapped
to the gamut surface with a gamut-mapping step (described in Chapter 10).
Hence, we restrict the inversion process to colors that are within the printer
gamut. 

In the case where the forward function is described by an analytic model,
a possible approach is to directly invert the parameters of the model via
analytic or search-based techniques. The most notable efforts in this direction

Device
input d Refinement Refined

color c´Printer model
Color c

Printer
model Printer

Training
samples {d }i

{c }i {c´ }i

Figure 5.42 Block diagram showing refinement of printer model.
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have been in the inversion of the Neugebauer model to estimate dot area
coverages from colorimetric values.74,75 Here, we adopt a more general inver-
sion process that is independent of the technique for determining the for-
ward function. The process is accomplished in two steps.

1. Use the forward characterization function to generate a distribution
of training samples {ci, di} in device-independent and device-depen-
dent coordinates.

2. Derive the inverse function by interpolating or fitting this data. 

5.10.5.1 CMY printers
In the case of three-colorant devices, the forward function from CMY to
colorimetric coordinates (e.g., CIELAB) is a unique mapping; hence, a unique
inverse exists. Any of the interpolation or fitting techniques described in
Section 5.4 can be used to determine the inverse function from the training
samples. Tetrahedral inversion, described in Section 5.4.5, can be used if the
device signals are generated on a regular lattice. Figure 5.43 compares four
fitting algorithms (local linear regression, neural network, polynomial regres-
sion, and tetrahedral inversion) as to their ability to invert a Neugebauer
model derived for a Xerox DocuColor12 laser printer. The neural network
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Figure 5.43 Comparison of various algorithms used to invert a Neugebauer model:
1. local linear regression, 2. neural network, 3. polynomial regression, and 4. tetra-
hedral inversion.
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used a feed-forward algorithm with one hidden layer containing six neurons.
The polynomial regression used a 3 × 11 matrix as in Equation 5.18b. A
training set of 103 = 1000 samples was used to derive the parameters for each
of the fitting algorithms. An independent set of 125 samples was used as the
test set. The test data, specified in CIELAB, were mapped through a given
inverse algorithm to obtain CMY, which was then mapped through the for-
ward printer model to obtain reproduced CIELAB values. The plot in Figure
5.43 shows the average and 95% ∆  errors between the original and repro-
duced values. Local linear regression and the neural network offer the best
performance. In the author’s experience, this observation holds generally
true for a wide variety of printers. Local linear regression possesses the added
advantage that it is less computationally intensive than the neural network.

Another factor that affects the overall inversion accuracy is the size of
the three-dimensional LUT used to finally approximate the inverse function.
An experiment was conducted to study overall inversion error as a function
of LUT size. The workflow is the same as described in the preceding para-
graph, except that the inverse function is now a three-dimensional LUT built
using local linear regression on 1000 training samples. Figure 5.44 is a plot
of overall inversion error as a function of LUT size. The error decreases with
increasing LUT size; however, beyond a certain point, the returns diminish.
From the plot, it is clear that a LUT size beyond 16 × 16 × 16 does not afford
a noticeable gain in accuracy — another observation that has been seen to
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Figure 5.44 LUT approximation error vs. LUT size.
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hold true for a wide variety of printers. Note that the relative spacing of
nodes along each dimension can also affect LUT accuracy. In this experiment,
the nodes were spaced uniformly, because the input space, CIELAB, in which
the LUT was built, is approximately visually uniform.

5.10.5.2 CMYK printers

Although, in principle, the three C, M, and Y colorants suffice to produce
all perceivable hues, very often, a fourth black (K) colorant is used for several
reasons. First, the K colorant is usually considerably less expensive than C,
M, and Y, and it can thus be used in lieu of CMY mixtures to render dark
neutrals and shadows. Second, the addition of K can result in an increase in
gamut in the dark regions of color space in comparison to what is achievable
using only CMY mixtures. Third, the use of K can help reduce the total
amount of colorant required to produce a given color, a feature that is critical
in certain technologies such as inkjet printing.

In the context of device characterization, the K colorant introduces
redundancy into the forward transform, as a large (in principle, infinite)
number of CMYK combinations can result in the same colorimetric measure-
ment. This results in the inverse function being ill posed, and additional
constraints are required to generate a unique CMYK combination for each
input CIE color. Some common methods of deriving the constrained inverse
are presented next.

5.10.5.2.1 Inversion based on K addition, undercolor removal, and gray
component replacement. The processes of black (K) addition, undercolor
removal (UCR), and gray component replacement (GCR) trace their origins
to the graphic arts printing industry.50 Together, they define a unique trans-
form from a set of canonical CMY primaries to the CMYK signals for the
given printer. Geometrically, the transform generates a three-dimensional
manifold within the four-dimensional CMYK space, with the property that
every CMYK combination within the manifold results in a unique colori-
metric response. Once this transform is established, the inversion can be
carried out on the canonical CMY device as described in Section 5.10.5.1.
Figure 5.45 shows the derivation and application of the inverse function
for a CMYK printer. The two functions in Figure 5.45b are usually concat-
enated into a composite inverse transform from CIE to CMYK signals.
Recall that the printer is assumed to have been calibrated, so the CMYK
signals resulting form the inversion process are finally processed through
the calibration functions prior to printing. In some implementations, the
calibration is concatenated with the characterization or stored in the same
profile.

There are numerous methods for designing K addition, UCR, and GCR
functions. They are usually chosen for an optimal trade-off among factors
such as gamut volume, colorant area coverage, and smoothness of transitions
from neutral to non-neutral colors. The trade-off is usually carried out
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heuristically with knowledge of the printer characteristics and quality
requirements. Some examples of these functions are presented next.

5.10.5.2.1.1 Black addition. This is commonly chosen to meet a
desired behavior along the C = M = Y axis. Suppose the printer has been
gray-balanced and linearized to neutral L*. If we define darkness D* as a
scaled inverse of L* using Equation 5.58, then we have C = M = Y = D* along
the neutral axis for the range . Here, is the maximum
digital count (e.g., 255 for an 8-bit system). We can then define K as a
monotonic increasing function f1 of neutral D*. Numerous functional repre-
sentations can be used, for example the power-law,

(5.96)

Here, γ and D*offset  are parameters that can be adjusted to suit the desired
behavior of K along the neutral axis. For γ > 1, larger values of γ and D*offset

result in less aggressive f1 (i.e., less K is used for a given amount of neutral
C = M = Y). As γ and D*offset approach 1 and 0, respectively, f1 becomes more
aggressive, with the amount of K approaching the amount of neutral C = M
= Y.
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Figure 5.45 Constrained inverse characterization of CMYK printers: (a) construction
of inverse 3–3 function and (b) combining the inverse 3–3 function with K addition,
UCR, and GCR to construct inverse 3–4 function.

0 D* D*max≤ ≤ D*max

f 1 D*( ) D*max
D* D*offset–

D*max D*offset–
------------------------------------- 

 
γ

    if D*offset D* D*max≤<

0 if 0 D* D*offset≤ ≤( )





=

-ColorBook  Page 365  Wednesday, November 13, 2002  10:55 AM

© 2003 by CRC Press LLC



 

366 Digital Color Imaging Handbook

5.10.5.2.1.2 Undercolor removal.

 

This  function describes the
amount of reduction in CMY primaries to compensate for the K addition. It
is also derived with attention to the neutral axis. A simple form of CMY
reduction is given by
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with analogous expressions for M and Y. Again, we are abounded with
numerous strategies for 

 

f

 

2

 

(D*).

 

 One approach is based on the rationale that
the CMY reduction should be proportional to the amount of K addition,

(5.98)

The case where 

 

a

 

 = 1 (i.e., CMY subtraction equals K addition) is often
referred to as 100% UCR. 

A more sophisticated approach is to derive 
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 to colorimetrically com-
pensate for the K addition. This can be performed as follows. For a given
neutral input C = M = Y sample, the resulting 
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* and hence 
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* that would
be produced by printing this sample can be predicted via the forward char-
acterization function. The amount of K associated with this input C = M =
Y is given by 
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 We can now derive the new smaller amounts, C’ = M’ =
Y’, which produce the same 
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* when combined with the given K. This step
is achieved by combining different C = M = Y levels with the given K, running
through the forward transform, and picking the combination that produces
the desired 

 

D

 

*. Finally, 
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 is the difference between the original C = M = Y
and final C’= M’= Y’.

A key factor to be considered in choosing black addition and UCR
parameters is the total area coverage (TAC) that is permissible for the given
device, especially in the dark portions of the gamut. For many CMYK print-
ers, TACs near 400% will result in defects (e.g., ink bleeding in inkjet printers
or improper toner fusing and flaking in xerographic printers). Hence, an
appropriate limit must be placed on TAC, and this in turn affects the K
addition and UCR parameters. If the colorimetric approach described in the
preceding paragraph is adopted, accuracy will likely be sacrificed toward
the dark end of the gamut due to TAC limits.

 

5.10.5.2.1.3 Gray component replacement.

 

Thus far, K addition and
UCR have been defined for neutral samples C = M = Y. GCR is a generali-
zation of these functions for the entire gamut of CMY combinations. A
fundamental assumption is that the gray component of an arbitrary CMY
combination is given by the minimum of C, M, Y. This gray component can
then be used as input to the K addition and UCR functions.

X = min(C,M,Y)

K = 
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C’ = C – f2(X)

M’ = M – f2(X)

Y’ = Y – f2(X) (5.99)

Clearly, one can conceive numerous enhancements to this simple model. The
CMY subtraction can be performed in other spaces such as optical density.
This can be accomplished in the current framework by applying a transform
to the chosen space before CMY subtraction and applying the inverse trans-
form after subtraction. Second, functions f1 and f2 can be multidimensional
functions that depend on more than just the minimum of C, M, Y. This may
be desirable if, for example, the optimal balance between K and CMY along
the neutral axis is different from that along the edges of the gamut. Finally,
CMY reduction can be accomplished by methods other than simple subtrac-
tion. For another perspective on UCR and GCR techniques, refer to Holub
et al.76

5.10.5.2.2 Direct constraint-based CMYK inversion. The previous ap-
proach used a CMY-to-CMYK transform to arrive at a constrained inverse.
A more general and direct method is to obtain the set of all CMYK combi-
nations that result in the given input CIE color and select a combination that
satisfies certain constraints. Examples of such constraints include:

1. Total colorant area coverage (i.e., C + M + Y + K) is less than a
threshold.

2. The amount of K with respect to the minimum and maximum K that
can produce the given color is constrained.

3. Stability is maximized (i.e., change in colorant values results in min-
imum change in CIE color).

4. Smoothness is maintained with respect to neighboring colors in CIE
space.

5. Gamut volume is maximized.
6. Spatial artifacts such as misregistration and moiré are minimized or

constrained. 

Constraint 5 implies that, if a color is achievable with only one CMYK com-
bination, this should be used, even if some of the other constraints are not
met. Space considerations do not permit us to elaborate on the other con-
straints. We refer the reader to Mahy77 for detailed discussions of constraints
1 through 4), and Balasubramanian et al.78 for a description of how UCR and
GCR are optimized to minimize moiré. Cholewo79 describes another con-
strained inversion technique that takes gamut mapping into account.

Note that the aforementioned two approaches can be combined. For
example, the UCR/GCR approach can be used to generate an initial CMYK
combination, which can then be refined iteratively to meet one or more of
constraints 1 through 6. 
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5.10.6 Scanner-based printer characterization

All the foregoing discussion implicitly assumes the use of a colorimeter or
spectrophotometer for color measurement. Another approach is to use a
color scanner as the measurement device in printer characterization. The
main advantage of this approach is that scanning a color target is less labor
intensive than spectrophotometric measurement; furthermore, the measure-
ment time does not depend on the number of patches on the target. Because
a scanner is generally not colorimetric, it must first be characterized. Fortu-
nately, the characterization needs to be derived only for the colorant-medium
combination used by the given printer, hence empirical techniques can be
used with very accurate results (see Section 5.6.3). The scanner characteriza-
tion produces a transform from scanner RGB to colorimetric or spectral
coordinates, thus turning the scanner into a colorimetric device for the given
colorants and medium. Printer characterization can then be carried out as
described in the foregoing sections, with the target measurement step being
replaced by scanning of the target followed by the necessary image process-
ing (i.e., mapping the scanned image through the scanner characterization
and extracting colorimetric values of each patch). Note that this approach
intimately links the scanner and printer into a characterized pair.

5.10.7 Hi-fidelity color printing

The term high-fidelity (hi-fi) color refers to the use of extra colorants in addition
to the standard C, M, Y, K. Two strategies can be adopted for hi-fi color
printing. In one approach, the additional colorants are of the same hues as
the standard colorants but of different concentrations. Usually, C and M are
chosen for this. The use of multiple concentrations allows for superior ren-
dering of detail in the highlights and shadows as well as smoother transitions
from highlights to mid-tones to shadows. In the second strategy, the extra
colorants are of hues that are different from C, M, Y. One purpose of this is
to extend the color gamut. Due to unwanted absorptions, printer gamuts are
often deficient in saturation and lightness in the secondary overprints, i.e.,
R, G, B. Hence, hi-fi colorants are chosen to extend the gamut in these regions
of color space, as shown in the schematic in Figure 5.46. Another purpose
is to reduce metamerism and enable spectral reproduction by using colorants
with relatively narrowband spectral characteristics (see Section 5.11).

5.10.7.1 Forward characterization
For forward characterization, the BB, KM, and Neugebauer models all extend
in a straightforward manner to an arbitrary number of colorants. In the case
of BB and KM, the number of measurements increases linearly with the num-
ber of colorants while, for the Neugebauer model, the number of measure-
ments increases exponentially due to the need for including solid overprints.
In the latter case, the number of overprints can become prohibitively large;
hence, a two-stage model can be employed. The BB or KM is used to predict
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the reflectances of solid overprints, and this is fed to the Neugebauer model,
which predicts the reflectances of arbitrary colorant mixtures. The reader is
referred to Section 6.6 of Reference 7 for further discussions and references.

Recently, a novel hi-fi color modeling approach has been proposed by
Van de Capelle and Meireson (Reference 7, Chapter 10) that obviates the
need for measuring overprints even for halftone processes. The main advan-
tage is therefore the substantial savings in number of measurements as the
number of colorants increases. Single-colorant stepwedges between 0 and
100% area coverage are printed under three conditions: 

1. On the naked substrate
2. On the substrate with 50% black 
3. On the substrate with 100% black 

From these measurements, three substrate-independent parameters are esti-
mated for each colorant, namely scattering, interaction, and absorption.
These parameters describe spectral properties of the colorants independent
of the underlying substrate and can be used to predict the reflectance of a
colorant layer on any given substrate. The reflectance of an n-layer mixture
of colorants is modeled iteratively by calculating the reflectance of the n – 1
layer mixture and treating this as the substrate for the nth layer. The authors
report average ∆Eab between 1.8 and 3.0 for various data sets. See the afore-
mentioned reference for details.

b*

a*

R

Y

MY

M

CM

B

C

CY

G
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Figure 5.46 Use of R, G, B hi-fi colorants to extend the gamut achieved with standard
CMYK printing.
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5.10.7.2 Inverse characterization
As with CMYK printing, hi-fi color introduces redundancy into the color
reproduction process in that many colorant combinations can result in the
same perceived (CIE) color. The inversion process must select a unique
colorant combination for each input CIE color. Additional considerations
include minimization of colorant area coverage, minimization of moiré in
the case of rotated halftone screening, and a smooth characterization function
from CIE to device signals. 

A common strategy is to partition the color gamut into subgamuts
formed from combinations of three or four colorants. Referring to Figure
5.46, one approach is to partition the gamut into six subgamuts formed from
the following colorant combinations: CGK, GYK, YRK, RMK, MBK, and
BCK. Here, R, G, and B represent hi-fi colorants chosen in the red, green,
and blue hues.80,81 (Often, orange is used instead of red; the idea still holds.)
Because C + Y combinations are spectrally redundant with G, the former are
disallowed, and only C + G and G + Y combinations are entertained. This
rule guarantees uniqueness, and is applied likewise for the other combina-
tions. Also, because only three screens angles are being used to render any
given input color, moiré can be handled using the same rules applied for
conventional printing. Another variant82 represents the gamut as overlap-
ping subgamuts formed by GYRK, YRMK, RMBK, MBCK, BCGK, and
CGYK. Several criteria, including minimization of colorant area coverage
and smoothness of transitions across subgamuts, are used to select unique
colorant combinations for a given input color. A third variant83 employs an
approach directly akin to UCR and GCR for CMYK printing. The gamut is
partitioned into the subgamuts formed by YRMK, MBCK, and CGYK. In the
YRMK subgamut, the M and Y signals are fed to an R addition function and
MY subtraction function. Analogous operations are applied in the other
subgamuts. The functions are chosen to produce a unique colorant combi-
nation for each input color while maximizing the volume of each subgamut.
As with conventional UCR/GCR, the latter can be aided by applying a
nonlinearity to the input signal and inverting this after the addition and
subtraction operations have been performed. Note that, with all these
approaches, hi-fi colorants are used to render colors that can also be achieved
with standard CMYK colorants. In a fourth variant, only CMYK colorants
are used to achieve colors within the standard CMYK gamut, and hi-fi
colorants are introduced only in those regions of color space that cannot be
reproduced with CMYK mixtures. This approach offers better compatibility
with standard CMYK devices. Details of these techniques are deferred to the
stated references.

5.10.8 Projection transparency printing

Overhead transparency projection continues to be a common medium for
communication of color information. Characterization for this application is
complicated by several factors. First, the final viewing conditions and
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projector characteristics are difficult to predict a priori and may be very
different from those used for characterization. Second, it is difficult to achieve
strict spatial uniformity, especially when the image is projected into a large
screen. Fortunately, color accuracy requirements for projected transparency
are usually not so stringent as to require careful characterization. But, if
accuracy is important, care must be taken to control the aforementioned
conditions as well as possible. 

The characterization procedure is conceptually the same as for conven-
tional printers. A test target is printed on a transparency and projected under
representative viewing conditions. The main factor that affects the latter is
ambient lighting. The projected image is measured with a spectroradiometer.
To minimize light scattering, the transparency can be masked to present only
one patch at a time to the spectroradiometer. The measured CIELAB values
and original printer coordinates are then used to build the characterization
transform. For all the reasons stated above, a simple transparency model
such as the Beer–Bouguer formula in Equation 5.64 may not suffice to predict
the characterization; rather, empirical approaches and three-dimensional
LUTs may be necessary to capture the various complex effects. The techniques
described in Section 5.4 and Section 5.10.3 can be used for this purpose. For
further reading, see Chapter 10 of Kang48 and the work by Cui et al.84

5.11 Characterization for multispectral imaging 
The discussion in this chapter is primarily based on colorimetric reproduc-
tion wherein the device-independent representation of Figure 5.1 comprises
three color channels. An emerging area of research that is gaining increasing
attention is multispectral imaging, whereby the goal is to capture, store, and
reproduce narrowband spectral information rather than three-dimensional
colorimetric data. A primary motivation for preserving spectral information
is that it mitigates the metamerism problems encountered in conventional
colorimetric reproduction. A related advantage is that colorimetric charac-
terizations can be computed dynamically for different viewing illuminants
from one set of spectral data. A schematic of a spectral imaging system is
shown in Figure 5.47. The input device records color in N channels, where
N is greater than three. This is usually accomplished by using N narrowband
filters in the image acquisition device. Spectral information is reconstructed
from the data via spectral characterization of the input device. 

A major concern in spectral imaging is the substantial increase in the
amount of data to be handled (i.e., from 3 to 30 or more channels). This
necessitates an efficient encoding scheme for spectral data. Most encoding
techniques are based on the well-known fact that spectra found in nature
are generally smooth and can be well approximated by a small number (i.e.,
between five and eight) of basis functions.85 The latter can be derived via
principal-component analysis (PCA) described in an Chapter 1. PCA yields
a compact encoding for spectral data and can serve as the device-indepen-
dent color space in a multispectral imaging framework. An important con-
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sideration in selecting the PCA encoding is to ensure compatibility with
current colorimetric models for color management.86

The goal of the output device is to reproduce the spectral (rather than
colorimetric) description of the input image via a spectral characterization.
As with input devices, a “spectral printer” must employ more than the
traditional C, M, Y colorants to facilitate spectral reproduction. The forward
characterization transform can be achieved using many of the techniques
described in this chapter; derivation of the inverse transform is, however, a
more challenging problem.

For further details, the reader is referred to the book by MacDonald and
Luo7 for a description of multispectral image capture and encoding tech-
niques; the work by Tzeng and Berns87–89 for contributions to multispectral
printing, including colorant selection and characterization algorithms; and
Rosen et al.90 for a description of a framework for spectral characterization.

5.12 Device emulation and proofing
Frequently, it is desired to emulate the color characteristics of one device on
another. Two classic examples are the use of a proof printer to emulate a
color press and the use of a softcopy display to emulate a printer. (The latter
is known as softproofing.) In both cases, the idea is to use a relatively inex-
pensive and easily accessed device to simulate the output of a device that
is less accessible and for which image rendering is costly. We will generically
refer to these two devices as the proofing device and target device, respec-
tively. Device emulation is a cost-effective strategy when iterative color
adjustments on an image are needed prior to final production. The iterations
are carried out on the proofing device, and the final production takes place
on the target device. 

Figure 5.48 is a flow diagram showing how a device emulation transform
can be generated from characterizations of the proofing and target devices.
A device-independent color input c is transformed to the target device space
dt via the function gt(). This transform should be the same as the one used
for final rendering of images on the target device. Because the target device
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Figure 5.47 Multispectral imaging system.
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is invariably a printer, dt is usually a CMYK representation. Next, the device
colors are transformed back to device-independent coordinates c’ via the
target device’s forward transform ft(). Thus, c’ describes the appearance of
the given input color on the target device. The remaining step is to match
this color on the proofing device. This is accomplished by applying the
inverse transform gp() for the proofing device and rendering the resulting
device coordinates dp to this device. Depending on whether the proofing
device is a printer or display, dp will be in CMYK or RGB space, respectively.
For efficiency, the operations in Figure 5.48 are usually concatenated into a
single emulation transformation.

In an alternative scenario, the input image may already exist in the target
device space dt, in which case only the last two blocks in Figure 5.48 need
to be executed. A common example of this occurs when CMYK files prepared
for a standard offset press (e.g., SWOP) are to be rendered on a digital CMYK
proofing device. The result is a four-dimensional CMYK-to-CMYK trans-
form. 

The four-to-four transform deserves brief mention. We learned in Section
5.10.5.2 that constraints are needed to produce a unique output CMYK
combination for each distinct input color, and we introduced the notion of
K addition, UCR, and GCR for this purpose. In the case where the input is
a CMYK space, an alternative constraint might be to determine the output
K as a function of input K. The simplest instantiation is to simply preserve
the input K signal. Techniques of this type are presented by Cholewo91 and
Zeng.92

5.13 Commercial packages
A number of calibration and characterization products are available that
offer a wide range of capabilities and performance. Comprehensive product
descriptions are beyond the scope of this chapter. However, for the more
application-oriented reader, the following is a list of mainstream color man-
agement products available at the time this book was published.

Note that this list mainly includes stand-alone packages and that cali-
bration and characterization functions are also often embedded within
device controllers (e.g., print controller products by Creo-Scitex, Electronics
for Imaging) or as applications bundled with current operating systems (e.g.,
Adobe Gamma for display calibration).

g
t
( )

c´Device-
independent

input c
f

t
( ) g

p
( )

d
t d

p

Figure 5.48 Block diagram for device emulation. Functions f() and g() denote for-
ward and inverse characterizations. Subscripts “t” and “p” refer to target and proof-
ing devices. Device-independent and device-dependent color representations are
denoted c’ and d.
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5.14 Conclusions
In this chapter, we hope to have provided the reader with the theoretical
foundation as well as practical procedures and guidelines to accomplish
device calibration and characterization. The chapter began with a general
conceptual overview and terminology associated with color characterization
of input and output devices. Two basic approaches to characterization were
presented: model-based and empirical. In addition, hybrid techniques were
described that combine the strengths of both approaches. Next, a treatment
was given of fundamental topics that apply to all forms of device character-
ization — namely color measurement technology, data interpolation and
fitting algorithms, and quantitative analysis tools. This was followed by a
detailed discussion of the calibration and characterization of several common
input and output devices, including scanners, digital cameras, displays, and
printers. Finally, the chapter concluded with several special topics, namely
characterization of hi-fi and projection transparency printers, device emula-
tion techniques, and commercial color characterization products. 

Clearly, there are many aspects to this subject, and we have not been
able to cover all of them in great depth. It is hoped that the extensive set of
references will serve for further enquiry into any given topic. Finally, it must
be emphasized that device characterization is not a topic that stands on its
own, and it cannot by itself guarantee high-quality results in a color imaging
system. The latter calls for a thorough system-wide understanding of all the
components in the color imaging chain and their interactions. This is evi-
denced by the numerous cross references to other chapters in this book.
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appendix 5.A

Least-squares optimization

Given a T × m matrix D of m-dimensional input data points, and a T × 1
vector c of one-dimensional output data points, we wish to find the optimal
m × 1 coefficient vector a that minimizes the squared error

(5.A.1)

where  denotes the L2 norm or vector length. We can write the error in
matrix-vector notation as

E = [c – D a]t[c – D a] = ctc – 2ctDa + atDtDa (5.A.2)

The a that minimizes E is found by differentiating with respect to a and
setting to 0.

(5.A.3)

This leads to

a = (DtD)–1Dtc (5.A.4)

To extend to n-dimensional output, vector c is replaced by a T × n matrix C.
The foregoing analysis is applied to each column of C, and the resulting
linear transformation is now an m × n matrix A rather than vector a. This
results in Equation 5.14.

Direct inversion of the matrix DtD in Equation 5.A.4 can result in numer-
ically unstable solutions, particularly if the system is noisy or ill conditioned.
A more robust approach is to use singular value decomposition (SVD). A
theorem in linear algebra states that any T × m matrix D of rank r can be
represented by SVD, given by

D = UΣVt (5.A.5)

E c D a–= 2

 2

∂E
∂a
------ 2DtDa 2Dtc– 0= =
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where U is a T × T unitary matrix whose columns u1, . . . , uT are the
orthonormal eigenvectors of DtD; V is an m × m unitary matrix whose
columns v1, . . . , vm are the orthonormal eigenvectors of DDt; and Σ is a T
× m matrix given by

(5.A.6)

where ∆ is a diagonal r × r matrix. Proof of this theorem, which is beyond
the scope of this chapter, is found in Noble and Daniel.93

The diagonal entries, σ1, …, σR, of ∆ are the singular values of D. Equation
5.A.5 can be written in series form as

(5.A.7)

Substituting Equation 5.A.7 into Equation 5.A.4, we get

(5.A.8)

An ill-conditioned or noisy system will result in some σi taking on very small
values, thus resulting in an unstable solution to Equation 5.A.8. Singular
value decomposition handles this situation gracefully. A stable least-squares
solution can be arrived at by simply eliminating terms corresponding to very
small σi in the summation of Equation 5.A.8.

A thorough formulation of SVD is given in Reference 93. C software for
computing SVD and using it to solve the least-squares problem is provided
in Chapter 2 of Reference 17. Popular mathematical packages such as Mat-
labTM also offer SVD based matrix inversion and least-squares solutions to
linear systems.

=∑ ∆ 0
0 0

D σiuivi
t

i 1=

r

∑=

a σi
1– viui

tc
i 1=

r

∑=
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appendix 5.B

 

Derivation of 3 

 

¥ 

 

3 matrix 
from display RGB to XYZ 
given white point and 
chromaticities of the 
primaries

 

Given chromaticity coordinates of the three primaries, [x

 

R

 

, y

 

R

 

], [x

 

G

 

, y

 

G

 

], [x

 

B

 

,
y

 

B

 

], and the tristimulus values of the white point, [X

 

w

 

, Y

 

w

 

, Z

 

w

 

], the goal is to
derive the 3 

 

¥

 

 3 matrix 

 

A

 

CRT

 

 that maps display RGB to XYZ as in Equation 5.55.
Assign an arbitrary value 

 

Y

 

R

 

 = 

 

Y

 

G

 

 = 

 

Y

 

B

 

 = 1 for the luminance of the three
primaries. This provides three-dimensional xyY descriptors for the prima-
ries. 

Convert the xyY coordinates of each primary to XYZ space as follows:

(5.B.1)

Analogous expressions apply for the green and blue primaries. This defines
a matrix 

 

A

 

’ given by

(5.B.2)

We now have to scale the column vectors of 

 

A

 

’ so that an input of RGB =
[1, 1, 1] results in the desired white point [X

 

w

 

, Y

 

w

 

, Z

 

w

 

]. This is done by the
following operation:

XR
, xR

yR
-----= ,   YR

, 1= ,   ZR
, 1 xR yR��

yR
--------------------------Ë ¯

Ê � zR

yR
-----= =

A,
XR

, XG
, XB

,

YR
, YG

, YB
,

ZR
, ZG

, ZB
,

xR yR§ xG yG§ xB yB§
1 1 1

zR yR§ zG yG§ zB yB§

= =
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(5.B.3)

where W is the white vector.

ACRT A, * diag A, 1–  * W( )=
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6.1 Introduction

 

Digital halftoning is a method of reducing the number or gray levels or
colors in a digital image while maintaining the visual illusion that the image
is still a continuous tone. This is done by trading spatial resolution for
grayscale resolution. Black and white or single-color pixels are clustered
together in groups so that, when viewed by the eye, they give the impression
of gradation of color.

A halftone is needed to display an image on media that cannot reproduce
many levels or colors. The prime example of this is the print media. With
the exception of a few continuous-tone desktop printers, the vast majority
of printed material uses halftones to represent images. Today, those images
are almost exclusively prepared digitally, with digital halftones. Most com-
puter monitors display images in color and continuous tone but, because of
bandwidth limitations, the very highest resolutions are shown with reduced
numbers of colors. To display an image on a monitor with reduced colors
requires color quantization and digital halftoning. Color quantization is
discussed in a separate chapter.

The goal of this chapter is to introduce the topic of digital color halftones.
The focus will be on color halftones for printed material, with an emphasis
on the problems and trade-offs that need to be made when choosing the type
of halftoning method or structure to use for a given image or print medium.
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From this chapter, one can learn to recognize the different types of halftone
structures and understand where and when to use which digital color half-
toning technologies.

 

6.1.1 History of halftoning

 

Halftoning had its start in photography. Before the first photograph was
made by Nicéphore Niépce in 1826, images were printed either by carving
an image on wood or metal. Intrigued by photography, William Henry Fox
Talbot began experimenting with capturing images with light in 1833. Later
that year, he developed the first negative–positive photographic process.

In an attempt to simplify the engraving of images on plates, Talbot
developed the first halftoning method,

 

1

 

 by recording an image directly on a
printing plate. He used a black, cloth screen that he placed between the
sensitized plate and the object to be reproduced, hence the term “screening.”
The weave of the cloth broke the image into small dots that varied with size,
depending on the amount of light present in the image.

Improvements in halftone screens came slowly by modern standards. In
1893, Louis and Max Levy created a crossline screen

 

2

 

 made of ruled lines on
two pieces of glass that were rotated 90° with respect to each other and bonded
together. The screen was placed in the camera a short distance away from the
sensitized plate. Because the screen was slightly away from the plate, the
exact position of the screen affected the tone reproduction of the process.

Sixty years later, a screen was developed that could be placed directly
in contact with the sensitized plate.

 

3

 

 The contact screen is a continuous-tone
image of the pattern produced by the crossline screen when it is in the proper
position. This removes the variability that is introduced by the position of
the crossline screen. Contact screens became the mainstay of the printing
industry until the advent of the digital halftone, at which point they became
the model for the digital halftone clustered dot screen.

The origins of digital halftoning begin in the 1960s with the need to
reproduce digital images on the early binary displays. Severe bandwidth
limitations restricted how much raster data could be transmitted over data
lines and displayed on monitors. The early work, in the 1960s, concentrated
on methods of adding a noise signal, or dither signal,

 

4

 

 to the image before
quantizing. Later work, in the 1970s, shifted to periodic patterns, or ordered
dither.

 

5

 

 Analysis of these patterns,

 

6

 

 showed that they were optimally distrib-
uted to minimize visibility of the halftone texture. Because the displays were
of such low resolution and they did not have the instability problems of
printers, dispersed texture patterns were acceptable and useful. Dispersed
halftone screens are still in use today on low-resolution and low-bit-depth
displays.

With the advent of laser and electronic printers in the 1970s, printer
manufacturers turned to the question of replicating the traditional analog
halftone screens. The early work on ordered dither recognized that replicat-
ing the analog screen

 

7

 

 was one of the possible ways of arranging the ordered
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dither signal. The higher resolution available on a printer made the use of
these clustered dot screens feasible. Besides, as printers had known for 100
years, clustered dots, as in analog halftoning, were less susceptible to printer
instabilities. As researchers worked through the decade, the problems of dot
gain and tone reproduction

 

8

 

 were analyzed and solved for digital halftones.
The invention of imagesetters in the late 1970s and early 1980s changed

graphics arts. Now, type and images could be created together in raster form.
Digital halftones of high resolution and high quality became an important
topic of study. Of particular interest were the issues of how the different
halftone screens interact in color printing. The initial digital halftone screens
could not be generated at arbitrary angles, so the problems of color moiré
became very important. This continues to be an area of current study. In this
chapter, we will look into these issues and describe some of the latest efforts
in this area of study in digital color halftones.

 

6.2 Digital color halftones

 

6.2.1 Halftone structure

 

Many different digital halftoning technologies have been being developed
over the last 40 years. This overview will describe a few of them and will
focus on the algorithms that a user is most likely to encounter. Two aspects
of the halftoning algorithms will be emphasized: the nature of the halftone
structure produced and the complexity of the implementation required to
generate them.

Halftone structure is the most visible characteristic of the halftone algo-
rithm. It is what the end user of the halftone sees. The quality of the image
will be based on how pleasing the halftoned image looks to the eye. The two
types of halftone structure are called 

 

amplitude modulated (AM)

 

 and 

 

frequency
modulated (FM).

 

The AM halftone structure is named for the amplitude modulation
encoding system used in telecommunications. A few levels of an AM halftone
are shown in Figure 6.1. Amplitude modulation encodes a signal by modu-
lating the amplitude of a carrier of fixed frequency. In the same way, the AM
halftone produces a pattern of halftone dots with a fixed frequency, where
the size of the dots varies with gray level.

Figure 6.1 AM halftone structure of a 32–level clustered halftone dot.
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The images shown in Figure 6.1 are the result of halftoning four different
gray patches. Because the input images are uniform constants, the dot pat-
tern itself can be studied. The images on the right side of the figure with the
larger black dots correspond to darker gray levels. This halftone dot pattern
is also called a

 

 clustered halftone dot,

 

 and it is analogous to the optical contact
halftone screen.

In a similar manner, the FM halftone structure is named for the frequency
modulation encoding system. An FM halftone structure is shown in Figure
6.2. Frequency modulation encodes a signal by changing the frequency of a
carrier of fixed amplitude. The FM halftone structure is made of many pixels
of the same size that are evenly dispersed, so the frequency of the pattern
is a function of the gray level represented.

If a uniform input patch is halftoned with an FM halftone algorithm, the
FM structure becomes visible. The input image levels are the same for both
Figures 6.1 and 6.2. The more closely spaced black pixels correspond to
darker gray levels, and widely spaced pixels to brighter gray levels. The
dispersed pattern shown was generated by error diffusion, which is dis-
cussed in greater detail in Section 6.8. Error diffusion is an adaptive algo-
rithm, so there is no fixed pattern for any given gray level.

 

6.2.2 Threshold array halftone algorithms

 

The complexity of the halftone algorithm implementation is an important
factor in deciding when to use that algorithm. If it is a very simple imple-
mentation, then it can be used both in high-volume systems, operated in
real-time, and in low-cost systems that cannot afford expensive, special-
purpose hardware. A more complex implementation requires either special-
ized hardware or a very patient user.

The simplest and most common implementation halftone method is the
threshold array. This is the method used to implement the most commonly
used halftone algorithm, the clustered dot screen. The threshold array is very
fast to execute and simple to implement. This makes it ideal for high-volume,
high-resolution, real-time systems. 

The threshold array is a two-dimensional array of numbers that defines
the halftone cell. For the clustered dot, this array is a digital representation
of the optical pattern used in the contact screen. In Figure 6.3, the halftone

Figure 6.2 FM halftone structure generated by error diffusion.
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screen is shown in one dimension as a sawtooth pattern. The halftone cell
is represented by a single tooth in that pattern. The cell is repeated across
the image to create the complete halftone screen.

A one-dimensional image is shown superimposed on the halftone pat-
tern. In this example, the image is shown as three different constant levels.
As the cell is replicated across the image, each element in the cell is compared
in value to the image pixel at that location. If the image pixel is larger than
the threshold value at that location, then a white pixel is stored in the output
array; otherwise, a black pixel is stored. This simple comparison will generate
an array of black and white dots across the image. The size of the dots will
vary, depending on the brightness of the image in that region. The darker
that region of the image is, the larger the black dots will be. The spacing
between the dots, or the frequency of the halftone screen, remains the same,
independent of the gray level of the input image. This makes the clustered
dot halftone screen an AM halftone algorithm.

Other halftone dot structures can be implemented with a threshold array
as well. A stochastic screen is a threshold array that generates a much
different-looking halftone structure than the clustered dot. The output of a
stochastic screen is a random-looking arrangement of black and white pixels.
An example can be seen in Figure 6.4. In a stochastic screened image, the
width of the individual dots remains the same — one pixel wide. It is the
density of dots that changes with gray level. In a bright region, the black
pixels are widely spaced in a low-spatial-frequency pattern. In darker
regions, the black pixels are closer together generating a higher spatial fre-
quency pattern. This change in frequency with gray level makes the stochas-
tic screen an FM halftone structure. More details about how to generate a
stochastic screen structure are given in Section 6.8.9.

A dispersed dot is a third type of threshold array halftone dot. An
example of its halftone structure can be seen in Figure 6.4. A dispersed dot

 

6

 

is a periodic, deterministic pattern that produces images with very high
spatial frequencies. It can still be seen on color images produced for reduced-
bit-depth displays. The thresholds in a dispersed dot are arranged so that
the black and white pixels are dispersed as widely as possible throughout
the pattern at each gray level. This change in spatial frequency as a function
of gray level makes it an FM halftone structure.

Image

Halftone

0

1

Figure 6.3 Threshold array halftone algorithm.
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6.2.3 Spatially adaptive halftone algorithms

 

A spatially adaptive halftone algorithm is one that makes a decision about
each pixel using image information from the neighborhood of that pixel. The
algorithm may be single pass, multiple pass, or even iterative. All of this
computation makes these algorithms very complex and computationally
intensive. They are unlikely to be used on high-speed systems without
specialized hardware assistance. To date, the majority of the algorithms using
spatially adaptive methods generate an FM halftone structure. Some
attempts have been made to modify these schemes to produce clustered dots
of the type in AM halftones.

 

9,10

Figure 6.4 Comparison of clustered, dispersed, stochastic and line screens.
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Error diffusion was the first of the spatially adaptive algorithms. It is
also the simplest. The algorithm is a single-pass method that computes the
output value of a given pixel based on the value of the pixel and the results
of all of the previously computed pixels. The details of the implementation
method are given in Section 6.8.

The nature of the error diffusion algorithm causes it to generate collec-
tions of dispersed black and white pixels, with the spatial frequency of the
patterns varying with gray level. This makes it an FM halftone structure.
Another inherent feature of error diffusion is that the algorithm automati-
cally edge enhances the input image. This enhancement is slight and direc-
tional, but it gives the impression that error diffusion reproduces detail better
than other algorithms. Although the implementation of this method is more
complex than the threshold array, its higher image quality has convinced
some manufacturers to build specialized hardware to implement it.

The other class of algorithms that are spatially adaptive are the iterative
algorithms. These algorithms involved a great deal more computation and
generally are not used in commercial systems. They involve a many-pass,
multiple-iteration calculation in which a cost function is evaluated, and the
image is adjusted until equilibrium is reached. The nature of the image
changes with the cost function chosen. Direct binary search

 

11

 

 uses a visual
filter to compare input and output images. Pulse density modulation

 

12

 

 uses
a criterion of maximum dispersion of the black and white pixels. Finally,
spectral shaping

 

13

 

 is used to adjust image quality with iterations between
frequency and image space. All of these algorithms produce an FM halftone
structure, are very compute intensive, and have to be performed individually
for each image. The algorithms that are based on a human visual system
(HVS) model are discussed in Chapter 7.

 

6.2.4 Trade-offs and color halftoning issues

 

The trade-offs and issues depend greatly on the intended output. Printer
issues are different from those of displays, and different types of printers
have different issues. There are some color issues that reach across all output
devices — for example, the problems of color gamut and of registration of
the color separations. Other issues such as dot gain, angled screens, and
color moiré are specific to printing and even to clustered dot screens.

Dot gain is a term describing an increase in darkness of a halftone print
as compared to what was intended by the binary digital pattern that was
produced. Dot gain consists of two parts, physical dot gain and optical dot
gain. Physical dot gain is due to the actual spreading of the ink or toner on
the paper. The black dots in the printed image are larger than intended, and
the image is darker. Optical dot gain, also called the Yule–Nielsen effect, is
caused by the scattering of light in the paper. Light in the white parts of the
paper, near the edges of the black halftone dots, will be scattered into the
dot and be absorbed, thereby increasing the darkness of the printed halftone
image. The effect of both dot gains is to make the size of the halftone dot
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larger and the halftone darker. The increase in darkness due to dot gain can
be measured, and the halftone dot can be calibrated to take the expected dot
gain into account.

The more isolated black pixels there are in a halftone pattern, the more
likely dot gain is to have an effect. This means that FM halftone structures,
such as error diffusion, stochastic screens, and dispersed dot screens, are
more susceptible to dot gain. Although calibration is possible, drifts in the
printer response make these halftone algorithms difficult to keep stable.

The clustered dot halftone screen grows a dot by adding black pixels to
the edge. The circular clustered pattern is the one shape that has the smallest
circumference for a given area coverage. Because the ink and light spreading
happens at the edges, the clustered dot screen is the least susceptible to the
effect of dot gain.

Resolution can have an effect as well. A very high-resolution printing
system may have difficulty holding single isolated black or white pixels.
These pixels may just not print or may fill in. This makes FM halftone
structures difficult to print when the resolution is very high. For this reason,
high-resolution printers have a preference for clustered dot halftones. Low-
resolution printing systems on desktop printers, on the other hand, often
can print isolated pixels easily. Because the resolution is so low on the
desktop printers, the high spatial frequency content of FM halftones is more
desirable.

Registration of the three- or four-color separations, CMYK, can be an
important issue. Depending on how the individual pixels in the four sepa-
rations overlap, different colors are produced. This happens because the inks
are not perfect, and they absorb in areas of the spectrum that interfere with
the other colors.

The registration problem is solved with clustered dot screens by com-
bining the screens together at different angles. The different screens beat
with each other, causing the familiar rosette patterns. These rosettes are a
moiré pattern that is created at a high enough spatial frequency to be accept-
able. If the angles of the screens are not exactly right, then other moiré
patterns will result that are unacceptable. These questions are discussed in
detail in other parts of the chapter.

Registration can be a problem for FM halftone structures as well. There
are no periodic screens in FM halftones, so moiré beat frequencies do not
occur. There is random overlapping of isolated pixels between the color
separations, however, that will cause color errors to occur.

In summary, clustered dot halftone screens are the digital emulation of
the optical contact screens from the graphic arts. They work best in high-
resolution printing systems, because their clustered dots are less susceptible
to dot gain, and their color reproduction is straightforward to calibrate.

Frequency-modulated halftone systems, such as error diffusion, stochas-
tic screens, and dispersed dots, work best in low-resolution systems such as
desktop printers and displays. The low-resolution systems can reproduce
the isolated pixels in the FM structures, and the high spatial frequencies of
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the halftones are less visible on the low-resolution systems. Color reproduc-
tion is not as easy to keep stable, but it is not as important on these systems.

 

6.3 Halftone selection

 

This section is a “cookbook” approach to halftone selection. It presents step-
by-step decisions for choosing the appropriate halftone screens for a new
digital color printer. The discussion is primarily centered around laser-scanned
xerographic printers; however, much of it applies to other devices as well.
Some conclusions might differ for other technologies such as LED arrays or
inkjet printing. Some of these differences are pointed out within the text. 

 

6.3.1 Noting the printer’s special characteristics

 

The first step is to analyze the digital printer to determine characteristics
that may affect halftone performance. It is assumed that the printer is driven
with a virtual raster image with orthogonal axes. For convenience, it is
assumed that the horizontal axis is the fast-scan direction, and the vertical
axis is the process direction. In the simplest case, the pixel frequency is the
same in both directions. The pixel frequency is commonly called the 

 

resolution

 

of the printer. This resolution should not be confused with actual optical
resolution, because the virtual pixels in the raster image do not normally
reach the paper without distortion (see “Dot gain” in Section 6.4.10.5).

It is not necessary for the pixel frequency to be the same in both direc-
tions. When this is the case, the base resolution is the direction that is most
difficult to change. This would be the scan lines per inch in the case of a
polygon scanning system, or the diode spacing on an LED bar system. It is
usually the lower frequency of the two directions and is also closer to the
actual optical resolution.

The other direction is easier to change and also is of higher frequency.
It is related to the base resolution by what is called the 

 

addressability

 

 factor
(see “High addressability” in Section 6.4.8). The addressability is usually an
integer multiple of the base resolution such as 2:1, 4:1, or 8:1. For example,
a polygon raster system of 600 lpi with a fast-scan frequency of 4800 pixels
per inch would be called a 600-lpi printer with 8:1 addressability. Note that
the scan line frequency is determined by the polygon and optics of the
system, while the higher fast-scan frequency is achieved simply with an
increase in the clock frequency along a scan line. 

An LED bar system base resolution is fixed by the LED spacing, while
the pixel frequency in the process direction is controlled by the LED clock
frequency. So the LED-bar addressability is vertical, while the polygon scan
addressability is horizontal.

If the addressability is not an integer multiple of the base resolution, it
may complicate the design of the halftone screens.

 

Dot gain

 

 is one of the most important limiting factors for halftone print-
ing. Dot gain is the extent to which halftone dots increase (or decrease) in
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size from the digital pixel map that is created by the image processing (see
“Dot gain” in Section 6.4.10.5). For an inkjet printer, the effective pixel will
be round and generally much larger than the virtual pixel. High address-
ability in an inkjet printer can be effective but must be used in conjunction
with an ink-reduction algorithm. 

For a polygon laser or LED-bar scanning system where the effective
beam is Gaussian in profile, high addressability can be very effective in
increasing the amount of information that can be delivered to the photore-
ceptor and thus the number of levels in a digital halftone screen. This is true
even though the optical resolution has not been changed with the increased
addressability. The use of an oversized Gaussian beam will add to the dot
gain in such a system. While the overall dot gain may be positive in a
xerographic printer, high addressability may result in some negative dot
gain in isolated high-addressability pixels if they are very narrow with
respect to the beam size.

Note whether the printer has 

 

multilevel writing

 

 capability or is inherently
a 

 

binary

 

 system. Thermal head, dye diffusion, and multi-drop inkjet printers
can be true multilevel writing systems. They may not need halftoning at all
or may use a hybrid halftone.

Xerographic or electrographic laser exposure printers are generally
binary. Even when multilevel writing is claimed, the intermediate levels may
be less stable and may be useful only for smoothing the periphery of other-
wise binary halftone dots. Some claimed multilevel writing is actually
achieved with high addressability.

The 

 

bit-depth

 

 that is carried through the image processing is generally
eight bits (256 values) per separation. This is a good match for what the eye
can see, what the printer can render, and the cost of image processing
circuitry. Many scanners deliver more than eight bits per separation, which
may be necessary in the early stages of image capture, especially when the
scanner works in reflectivity space. The conversion to units that are closer
to human visual will have some quantization loss. But after initial processing,
eight bits is generally sufficient. If higher bit depth is actually available, it
may be possible to increase the final image quality, but at a considerable
increase in complexity.

The 

 

repeatability

 

 or reproducibility of the printer must be determined
— in particular, the misregistration that is produced. The amount of
misregistration determines whether rotated halftone screens are necessary
or if dot-on-dot or line-on-line printing might be possible. The misregis-
tration also affects the requirement for trapping in the image processing
stage.

The 

 

noise

 

 level of the printer may affect the halftoning strategy. Image
noise sources include polygon jitter, polygon signature, paper speed varia-
tions, banding, streaking, colorant granularity, mottle, and LED variability.
The amount of noise may limit the choices of halftone frequencies to be used.
Some screen angles are more sensitive to printer noise — in particular, 0 and
45° screens.
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Interactions

 

 between color separations can limit halftoning choices. Ide-
ally, the color separations should not affect each other. It must be determined
whether the presence of one separation affects the laydown or the transfer
of another separation. In some conventional ink printing systems, the lay-
down of a subsequent ink layer may actually remove some of the earlier ink.
In some of the new intermediate-transfer xerographic printers, the presence
of toner from earlier separations on the intermediate belt or drum may
hamper transfer of new toner at some halftone frequencies. This could be
considered to be a 

 

mechanical moiré  rather than an optical moiré.
The color characteristics of the  colorants  (inks or toners) can have a big

effect on image quality. To have process color capability, the cyan, magenta,
and yellow colorants must be transparent. To the extent that they lack trans-
parency, image color quality will be compromised. The spectral characteris-
tics of the colorants are also most important. The size of the printer color
gamut is determined by the spectral characteristics. And much of the color
moiré comes from the unwanted absorption characteristics of the colorants.
The colorants used will also affect the 

 

under-color removal/gray-component
replacement (UCR/GCR)  strategy and thus the screen angles and frequencies
that can be used. 

6.3.2 Decisions involved in choosing halftone structure 

After considering the characteristics of the target printer, the next step is to
choose the basic halftone structure. The choices discussed below include:

• Continuous tone
• Line screens
• Clustered dots
• Dispersed screens (periodic)
• Stochastic screens
• Error diffusion

Figure 6.4 (page 392) shows a comparison of five of these screen types.
If 

 

continuous tone

 

 (contone) is really an option, it may be preferred, as it
can avoid most of the color moiré problems as well as the visibility of color
rosettes that result from rotated-screen printing. But if there is not enough
dynamic range for each color (i.e., not enough gray levels), then it may be
necessary to use a combination of contone with halftones to get enough
colors. In this case, the contone levels might be used to “soften” the edges
of the halftone dots.

Recent developments in color copiers have used a method that has been
called “contone” but is in fact a very fine-line screen (200–600 lpi). They also
use a “line-on-line” halftoning orientation that is unconventional in the
printing industry. There are several reasons why these methods might work
for a copier but should be avoided in a desktop publishing situation. To
begin with, copier output is not expected to be high quality. Originals to be
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copied are often of low quality and usually contain halftones that cause
difficulty in copying. Also, the “contone” line screen is a good match for the
relatively noisy xerographic process. The noise in the process appears to
mask or avoid the color instabilities that would occur if the same process
were used in conventional printing.

 

14

 

 Last, the copier is producing the final
print that is to be viewed. If sharp photo-ready images or printing plates or
films were the object, then this method might not be appropriate.

 

Clustered halftone dot screens

 

 are usually successful in digital binary print-
ing systems for reasons that are similar to why the conventional printing
industry uses them. The largest driving force is printer dot gain. If the printer
can produce a very reliable isolated printer pixel, then other strategies can
be considered, but clustered dots have the capability to calibrate out the dot
gain problem and limit the problem to the extreme highlights and shadow
regions.

 

Dispersed screens

 

 (periodic) are commonly seen on computer displays,
especially in website images. They are effective for several reasons; first, the
display resolution is low so that a clustered dot would be unacceptably
coarse. And, second, the display has virtually no dot gain. When the printer
has a very dependable isolated printer pixel, such as produced by an inkjet
printer, then dispersed screens can be considered. At lower resolutions, a
dispersed screen may be less objectionable than a stochastic screen or error
diffusion.

 

Stochastic screens

 

 (dispersed nonperiodic), including those called “blue
noise masks,” have become more popular but should be used with caution
on a laser-scanned printer. They are desirable because they can avoid color
moiré problems and subject moiré problems associated with cluster-dot
printing. They also can provide greater image detail and sharpness as well
as gradations without contours. However, they add a graininess or visible
noise to an image, and they are very difficult to calibrate and proof. And,
without a stable, repeatable printer pixel, they have extreme dot gain prob-
lems throughout the grayscale range.

The use of stochastic screens is becoming popular in digital printing
systems, with mixed success. It is true that the stochastic screen is an impor-
tant tool that should be considered as a supplement to clustered dot screen-
ing. Stochastic screens:

• Can eliminate subject moiré as well as color moiré
• Can provide greater image detail and sharpness
• Can provide smoother gradations without contours
• Can provide more latitude on the press for inking and pressure
• Are especially effective for low resolution

However, they come with a down side, as stochastic screens:

• Can add graininess or visible noise to an image
• Require stable, repeatable printer pixels
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• Have extreme dot gain problems across the grayscale range
• Are very difficult to proof, especially on a different printer
• Require cooperation between the creator and the printer
• Require sophisticated area-coverage models with knowledge of

neighboring pixels in all colorants to provide good color correction

In the 1980s, industry leader Dusty Rhodes said, “The success of elec-
tronic publishing will require the industry to evolve from the state where
the printer is an artist into the state where the printer is a technician.” For
this evolution, desktop and demand printing on remote devices will require
the use of printer-independent files and devices that are consistent and
predictable. The printer will need to maintain the devices in a nominal
calibrated condition.

It would seem that the growing use of stochastic screens in high-end
printing applications is a return to the state where the printer is more of an
artist. See more about stochastic screens in Sections 6.7 and 6.8.

 

Error diffusion  is a computationally intensive screening method that
avoids quantization errors by distributing errors into local neighborhoods.
It is most effective at low and intermediate resolutions and for computer
display screens. It gives the appearance of sharpness and eliminates con-
touring from insufficient levels. There is some edge enhancement inherent
the in algorithm. 15  Error diffusion can be very effective for inkjet printing.
However, it is nearly impossible to calibrate, especially in a printer with
significant dot gain. It is possible to use error diffusion techniques not for
binary halftoning but as a gray-to-gray operation in conjunction with other
halftoning methods.

In short, dispersed screens such as stochastic and error diffusion can be
important supplemental tools but may not produce the highest color image
quality in a laser-scanned or LED-driven printer. In the inkjet world, they
provide the best image quality and are therefore widely used.

 

6.3.3 Choosing frequencies, stochastic, cluster, error diffusion

 

After choosing the basic halftone structure, the next step is to choose the
appropriate size. For cluster dots, dispersed screens, and line screens, this
means choosing the screen frequency. For stochastic screens, this means
choosing the cell size (see Table 6.1). For error diffusion, it may mean choos-
ing the smallest spot size.

Experimentation with the target printer is the best way to determine
these values. A number of potential screens should be designed and tested.
These should include screens that are both higher as well as lower frequency
than the anticipated screens. The final screen is generally a compromise that
trades off higher frequency against printer defects, and it cannot be deter-
mined without considering all the possibilities.

The test screens do not need to be well designed or tuned. The quality
indicator to look for at this stage is whether the printer can hold the frequency.
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Poorly designed dots may result in contours in an image due to jumps in
effective density from level to level. This problem can be improved later with
halftone tuning.

The test image should include a diagonal wedge or gradation that
sweeps from white to black. Both horizontal and vertical wedges can be
ineffective, because certain printer problems can mask the performance of
the halftone screens. The diagonal sweep allows the eye to separate printer
problems from halftone problems. Printer problems such as banding and
streaking tend to be horizontal or vertical in appearance.

These test prints will show the trade-off that needs to be made. Halftones
with too low a frequency will have visible dots and may break up small text
and fine graphics. Halftones with too high a frequency may be more sensitive
to printer noise and may not have enough levels. High-frequency dots may
also be less robust and more difficult to calibrate. 

 

6.3.4 UCR/GCR strategy: minimum or maximum

 

Before investing heavily in detailed dot design and fine tuning, some con-
sideration should be given to the black-printer strategy. The black-printer
strategy, sometimes referred to as 

 

under-color removal (UCR)

 

 or 

 

gray component
replacement (GCR),

 

 includes the degree to which the black colorant carries
the neutral information.

In a three-colorant cyan–magenta–yellow printer, there is no black col-
orant. The neutral colors are produced by relatively equal combinations of
the three colorants. The four-colorant printer includes black as well as the
other three colorants.

In a strong UCR/GCR strategy, there is a heavy reliance on the black
colorant for all neutral colors. In the extreme 100% UCR case, it is possible
to ensure that all colors are made up of at most three colorants and that
cyan, magenta, and yellow do not occur simultaneously at any point on the
print.

In a skeleton black strategy, the black colorant is used primarily to extend
the color gamut in the shadows. This is often necessary when the three-color

 

Table 6.1

 

Cluster Dot Cell Size

 

Characteristic Large Dots Small Dots

 

False contouring Less More
Stability/uniformity More Less
Frequency response Lower Higher
Visibility/noticeability Higher Lower
Optical dot gain Lower Higher
Available angles More Fewer
Text performance Poor Better
Subject moiré Better Poor
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combination of cyan, magenta, and yellow is not dense enough or is not
close enough to neutral. The black colorant can be used to correct the color
deficiencies of the three-colorant system. There can be a continuum of strat-
egies among these extremes.

For the strong UCR/GCR strategy, the black print is much more apparent
and requires more attention to the black screen design. This strategy also
results in more chances for four-color moiré throughout the color range, so
more attention must be given to the screen angles for the four-dot set.

For the weak UCR/GCR strategy, the black print is much less apparent,
especially in the highlights and midtones. And there are fewer chances for
four-color moiré. Less attention may be required to the black screen design,
but more attention may be required for the other colors, as there are increased
chances for two-color moiré to occur.

Early testing for moiré may indicate that one of the UCR/GCR strategies
might be a requirement rather than an option.

 

6.3.5 Choosing family of angles

 

In digital color printing, the color separations are halftoned and imaged
independently. Because of this, there are many chances for very slight mis-
registration to occur from one separation to the next. Misregistration of
halftone dots can produce unpredictable colors because of the overlap of
colorants that have unwanted absorption in their spectra. Rotated halftone
screens are normally used to gain insensitivity to misregistration by random-
izing the overlaps.

The conventional strategy is to choose equally spaced angles for the
more visible screens of black, cyan, and magenta, and to insert the less visible
yellow screen between two of the others, e.g., 45º black, 15º magenta, 75º
cyan, and 0º yellow. This is the best strategy in most cases. In cases of
minimum UCR/GCR, it may be better to use the good 45º screen for cyan
or magenta instead of black. In cases of severe two-color moiré, it may be
desirable to use a nonclustered screen for the yellow (see “Moiré consider-
ations” in Section 6.4.12). Rotated screen printing produces a rosette pattern
that, at best, is about twice as large as the individual screen pattern. Accurate
angles are required to avoid low-frequency beats with even larger patterns.

 

6.4 Clustered halftone screen design

 

6.4.1 Implementation

 

Digital halftoning requires comparing input image data at each output
printer pixel with a halftoning function. This can be done in several different
ways: by adding the function to the image data and thresholding the sum,
by subtracting the function from the data and testing the sign, or by table
look up. Figure 6.5 shows schematically the subtraction of the function from
the data and the resultant binary output based on the sign.
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Note in this figure that is possible to have some detail in the resulting
binary output that is actually at a higher frequency than the halftoning
function. This ability is called 

 

partial dots 

 

and is the result of making a
separate comparison for every printer pixel rather than a single comparison
for a screen cell (see “Partial dots” in Section 6.4.3).

It is only necessary to store a single halftone cell during processing and
to step through the cell sequentially and repeatedly so as to create a virtual
full-page halftoning function. The individual cells must “tile” together in
order to tessellate the plane.

Figure 6.6 shows how a simple zero-degree halftone cell tiles together to
produce a uniform function. The figure also shows how a digital halftone
produces grayscale by modulating the area coverage of the colorant one pixel
at a time. It also hints at the basic trade-off in digital halftones: number of
levels vs. screen frequency. A larger cell has more pixels to turn on sequentially

Figure 6.5 Digital halftoning waveforms. 

Figure 6.6 Tiling with halftone cells.
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and thus has more possible gray levels. However, the larger cell replicates at
a lower visual frequency.

 

6.4.2 Spot functions, threshold arrays, table look-up

 

The spot function in PostScript™ was an early digital method of describing
the halftoning function. A spot function is a mathematical description of a
zero-degree screen. The screen is rotated to an approximation of the desired
angle in real time during processing. The method is susceptible to integer-
arithmetic roundoff and quantizations during processing. For high-end
imagesetters with high resolution, the method was adequate. No fine tuning
of the screen is possible with a spot function, so it is not as effective for a
mid-resolution printer where small errors can become very visible.

The threshold array method utilizes an array of threshold values that
are stepped through sequentially along with the image values, and a com-
parison is made on a pixel-by-pixel basis. The threshold array is generally
rectangular and most efficiently has the same number of pixel thresholds as
a single halftone cell. A PostScript™ Type 3 threshold array utilizes a single
rectangular array, whereas an Postscript™ Type 10 array utilizes two square
arrays rather than a singular rectangular array. While the threshold array
method requires the least amount of storage, it has the limitation that the
halftone dot growth must be monotonic; i.e., once a pixel is turned on in the
growth sequence, it remains on for the remainder of the growth sequence.

The table lookup method makes all the threshold comparisons during
screen design and stores the actual binary halftone output in a large array
that is addressed by both the data value as well as phase indexing informa-
tion. This method can require as much as 32 times as much memory, but it
has no monotonic growth requirement. Each halftone level can be indepen-
dent of the others.

Dispersed and stochastic screens (including blue-noise masks) are usu-
ally implemented as large threshold arrays in the same manner as clustered
dots. An error diffusion screen, however, is the result of a two-dimensional
neighborhood calculation and does not repeat on a regular basis.

 

6.4.3 Partial dots

 

One of the most important aspects of any digital halftone method is the
requirement for partial dots. 

 

Partial dots

 

 refers to the ability of the halftone
image to contain detail at greater resolution than the halftone screen mesh.
This ability produces halftone dots that can be irregular in shape, hence the
name 

 

partial dots.

 

 To achieve this effect, one sub-element of a halftone cell is
compared with one pixel of the image to generate one bit in the output
image. Each pixel of the image may, of course, be used more than once if
the image is magnified by replication. The use of a partial-dot technique
allows the high-contrast pixel resolution to be reproduced in the halftone
image as a sub-element of the halftone dot vs. the whole halftone dot for
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non-partial-dot techniques. This results in a dramatic improvement in detail
of an image displayed or printed on any system with a limited number of
bits across its width. A comparison of these two techniques, including exam-
ples, was made by Roetling.
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 Figure 6.7 shows the effect of partial dots.
Note that, along the high-contrast edges in the figure, many of the pixels

line up to produce image detail. If the halftoning were instead done on a
cell-by-cell basis like a “font,” then very coarse jaggies would be seen along
the edges.

Partial dots are achieved by making quantization decisions at the reso-
lution frequency of the basic printer raster matrix rather than one decision
per input sample. It is known that high-resolution and high-contrast infor-
mation, such as solid text or line art, can pass through a partial dot halftone
process without any modification, while a different process might produce
“jaggies” at the resolution of the halftone. Note in the figure that many of
the pixels line up to produce image detail along the high-contrast edges. 

Figure 6.8 is an example of a simple halftone using partial dots. The inset
picture is the halftone printed at normal resolution. The main figure is a

Figure 6.7 Partial dots.

Figure 6.8 Example of simple halftone with partial dots.
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blow-up of the child’s eye. It can be seen in the inset that there is a strong
impression of a circular pupil in the eye. The blow-up shows that impression
is created by the presence of partial dot detail along the high-contrast edge
of the pupil.

Partial dots are very important for image quality in digital printing, and
every halftoning implementation should use them. 

6.4.4 Dot growth

 

Figure 6.9 shows a typical dot growth sequence for a digital dot. It starts
with a single printer pixel turned on in each cell; for each succeeding level,
another pixel in the cell is turned on.

Note that there is a phase shift at the 50% growth point. In the highlights,
the dot is a growing spot of colorant. In the shadows, the dot is a shrinking
spot of white paper or a hole. At the 50% point, where the dots touch on all
corners, the pattern shifts from spots to holes with a change of phase. Note
also that, at the 50% point, the pattern forms a perfect checkerboard. This is
important and is the only way that the screen can progress from circular
spots to circular holes in a symmetric manner. 

6.4.5 Angled screens (Holladay)

 

Digital halftone screens normally have been implemented by storing a matrix
of screen thresholds in computer memory and comparing these thresholds
with the image data on a pixel-by-pixel basis at printer resolution. This
method is efficient and fast for simple 0° screens and 45° screens, but some
implementations require enormous storage and complexity to achieve angles
approaching the highly desirable ±15°. Holladay published a very efficient
implementation technique for rational-tangent screens in 1980.
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 Rational-
tangent screens, where the halftone dots are synchronized with the digital
raster pitch, were the best software implementation until recent develop-
ments. However, rational-tangent screens have an inherent limitation in
achieving all angles.

The Holladay halftone algorithm, as in most digital halftoning schemes,
compares a stored halftoning function with picture values to create a one-

Figure 6.9 Digital dot growth sequence.
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bit raster signal at printer resolution. The unique features of the Holladay
technique include its ability to describe exactly the halftoning function in an
efficient form for storage and its simplicity for either software or hardware
implementation.

Most digital halftone algorithms for angled screens are notoriously inef-
ficient in either one or all of the characteristics of speed, halftone screen
storage, and output buffer space for the halftone image. Earlier techniques
stored either a full page or a square section of the screen function that
contained an integer number of cycles, which could become unwieldy for
screens of arbitrary angles. The Holladay halftone technique requires storage
for only one cycle of the halftone screen function regardless of angle, is very
efficient in processing speed, and requires no output buffer. A more complete
description of the Holladay technique can be found in the 

 

Proceedings of the
Society for Information Display

 

 article titled, “An Optimum Algorithm for
Halftone Generation for Displays and Hard Copies.”
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Another benefit of the Holladay scheme is that the actual halftoning
function is described in storage for any given angle of rotation and number
of levels. This same function is used for each and every halftone cell, with
very predictable results. With each dot being identical, there is no low-
frequency moiré pattern introduced. In addition, these consistent dot pat-
terns can be reliably measured and calibrated. Because the effect of every
sub-element can be measured, the final version of halftone dot designs can
be “hand tuned.”

It is also possible, by assigning thresholds accordingly, to effectively
linearize the printed response of these halftone levels with respect to the
input grayscale sample data space. The calibration procedure can take into
account the dot gain of the lithographic printing process as well, if measure-
ments that are made on test patches are carried through from digital creation
to plate creation.

The insight that Holladay had was that for a uniform tessellating pattern,
any boundary drawn around a single repeating cell is completely arbitrary.
In Figure 6.10, the repeating visual cell with 20 elements (A through L and
0 through 9) forms a pattern at 64°. But the figure shows that the arbitrary
boundary can more easily be drawn as a simple rectangle with the same
number of elements.

The resulting Holladay brick is much easier to implement in a digital
system. It repeats horizontally across the page and has a horizontal shift for
each successive row of bricks. 

In general, there are three cases for Holladay dots. Figure 6.11 shows
that the 0° screen is the simplest case with a repeating square brick that abuts
on the corners without any shift.

The 45° screen is made from a 2:1 rectangle that shifts by half of its width
for each successive row of bricks.

The third case is for the other angles. It is usually a long and thin brick
with an odd shift. The figure shows the visual effect of the screens on the
left and the implementation bricks on the right.
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6.4.6 Rational tangent screens

 

A limitation of a digital raster scheme is that not all rotation angles and
screen frequencies can be produced exactly, although most can be closely
approximated. For example, both the 0° screen and the 45° screen can be
achieved exactly, but a 15° screen is usually approximated with perhaps a
14.04° or 18.43° screen. It should be noted that the screen angles that cannot
be achieved easily in the Holladay scheme are the same angles that would
produce the most objectionable moiré and low-frequency patterns in other
approaches.

The dots that can be realized in the Holladay halftoning method can be
categorized as vectors with integer values of x and y. There is only a finite
set of such vectors. It is known that only patterns with this characteristic
have the capability to tessellate a plane surface in the manner required by

Figure 6.10 Holladay halftone geometry.

Figure 6.11 Holladay halftone examples.
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digital halftoning. Because the angle that is achieved is the arc tangent of
the integers y/x, the screens are referred to as rational tangent screens.

Figure 6.12 shows that for a vector of 6, 2, an 18° pattern is produced
with 41 levels of gray. The visual patterns are identical, and the corners of
the cells line up on grid intersections.

Table 6.2 shows all possible square dots up to levels of 250 and the
associated angles for all combinations of integers of x and y up to 15. The
notation “5/26.6” refers to 5 levels at an angle of 26.6°. Angles are rounded
off to the nearest tenth of a degree. Only dots with angles between 0 and
45° are included. Others can be produced by interchanging x and y or making
mirror images of the dots horizontally and/or vertically.

It can be seen that these dots have no reference to resolution or frequency
but contain only screen angle and number of levels. It is a fundamental
maxim for digital halftones that the balance between resolution and gray-
scale levels is a classic trade-off, similar to a gain-bandwidth product.
Because the grayscale levels are produced by filling in a matrix of sub-
elements for each halftone dot, increasing halftone levels implies lower fre-
quency of the basic halftone screen mesh, and vice versa. A choice must be
made between spatial resolution and perceivable grayscale.

In addition, because only integer vectors can be realized, the achievable
ranges for resolution and grayscale are actually quantized into discrete
choices. Figure 6.13 includes a plot of grayscale levels vs. dot frequency for
various printer resolutions. Such plots are invaluable in choosing digital dots
for a printing device.

From these figures, it can be seen that, for a given printer resolution
choice and desired halftone screen frequency, a family of dots can be found
with each of 0, 15, 30, and 45° angles approximated. It is not possible for

Figure 6.12 Rational tangent screen example.
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Table 6.2 Available Rational-Tangent Screens
y x = 2 3 4 5 6 7 8 9

0 4/0∞ 9/0∞ 16/0∞ 25/0∞ 36/0∞ 49/0∞ 64/0∞ 81/0∞
1 5/26.6∞ 10/18.4∞ 17/14.0∞ 26/11.3∞ 37/9.5∞ 50/8.1∞ 65/7.1∞ 82/6.3∞
2 8/45∞ 13/33.7∞ 20/26.6∞ 29/21.8∞ 40/18.4∞ 53/15.9∞ 68/14.0∞ 85/12.5∞
3 18/45∞ 25/36.9∞ 34/31.0∞ 45/26.6∞ 58/23.2∞ 73/20.6∞ 90/18.4∞
4 32/45∞ 41/38.7∞ 52/33.7∞ 65/29.7∞ 80/26.6∞ 97/24.0∞
5 50/45∞ 61/39.8∞ 74/35.5∞ 89/32.0∞ 106/29.1∞
6 72/45∞ 85/40.6∞ 100/36.9∞ 117/33.7∞
7 98/45∞ 113/41.2∞ 130/37.9∞
8 128/45∞ 145/41.6∞
9 162/45∞

y x = 10 11 12 13 14 15 16 17

0 100/0∞ 121/0∞ 144/0∞ 169/0∞ 196/0∞ 225/0∞ 256/0∞ 289/0∞
1  101/5.7∞ 122/5.2∞ 145/4.8∞ 170/4.4∞ 197/4.1∞ 226/3.8∞ 257/3.6∞ 290/3.4∞
2 104/11.3∞ 125/10.3∞ 148/9.5∞ 173/8.7∞ 200/8.1∞ 229/7.6∞ 260/7.1∞ 293/6.7∞
3  109/16.7∞ 130/15.3∞ 153/14.0∞ 178/13.0∞ 205/12.1∞ 234/11.3∞ 265/10.6∞ 298/10.0∞
4 116/21.8∞ 137/20.0∞ 160/18∞ 185/17.1∞ 212/15.9∞ 241/14.9∞ 272/14.0∞ 305/13.2∞
5  125/26.6∞ 146/24.4∞ 169/22.6∞ 194/21.0∞ 221/19.7∞ 250/18.4∞ 281/17.4∞ 314/16.4∞
6  136/31.0∞ 157/28.6∞ 180/26.6∞ 205/24.8∞ 232/23.2∞ 261/21.8∞ 292/20.6∞ 325/19.4∞
7  149/35.0∞ 170/32.5∞ 193/30.3∞ 218/28.3∞ 245/26.6∞ 274/25.0∞ 305/23.6∞ 338/22.4∞
8 164/38.7∞ 185/36.0∞ 208/33.7∞ 233/31.6∞ 260/29.7∞ 289/28.1∞ 320/26.6∞ 353/25.2∞
9 181/42.0∞ 202/39.3∞ 225/36.9∞ 250/34.7∞ 277/32.7∞ 306/31.0∞ 337/29.4∞ 370/27.9∞
10 200/45∞ 221/42.3∞ 244/39.8∞ 269/37.6∞ 296/35.5∞ 325/33.7∞ 356/32.0∞ 389/30.5∞
11 242/45∞ 265/42.5∞ 290/40.2∞ 317/38.2∞ 346/36.3∞
12 288/45∞ 313/42.7∞ 340/40.6∞ 369/38.7∞
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each of the dots to have exactly the same frequency or number of gray levels
and to still have the simplicity, precision, and control associated with the
Holladay scheme.

Figure 6.14 shows the simple mathematics for rational tangent screens.
The parameters of dot area, printer resolution, and screen frequency are all
interrelated. It is not necessary to draw a boundary or count the pixels. If
you know the rational tangent vector and the printer resolution, then you
can easily calculate the screen angle, the frequency, and the dot area (and
the number of levels). Any one of the parameters can be computed from the
others.
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Figure 6.13 Trade-off of grayscale vs. frequency.

Figure 6.14 Halftone parameter equations.
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For the example with a vector of 2, 4:

• Screen angle is the arc tangent of the vector x, y,

α = arctan(y/x) = 63.4°

• Cell area in pixels is the square of the vector length,

Area = x2 + y2 = 20

• Grayscale levels is the area in pixels plus one,

Levels = Area + 1 = 21

• Vector length is the square root of the cell area.
• Frequency is printer resolution divided by the vector length,

Frequency = Resolution ÷  = 600 ÷  = 134 dpi

• Grayscale levels is one plus the square of the resolution divided by
frequency,

Levels = 1 + (Resolution/Frequency)2 

• Required resolution is the frequency times the square root of the area,

Resolution = Frequency * 

6.4.7 Supercells and accurate screens

High-end digital scanners have solved the angle problem with sophisticated
high-speed hardware. Dot-growth models can be electronically rotated in real
time in hardware. Recent software approaches have produced near-perfect
angles by the use of very large “supercells” (see Figure 6.15), which in reality
are still rational-tangent but contain enough individual halftone cells to dis-
tribute the error over a large area. This is in effect the same thing that the
high-speed hardware has achieved. These methods work well at the high
resolutions that have been employed in expensive imagesetters and scanners
in the past. When there are enough printer pixels in each halftone cell (in the
hundreds), it is easy to achieve the desired dot shape, frequency, and angle
with a simple algorithm. It is with lower-resolution desktop printers that the
methods fail. Printers utilizing resolution from 400 to as high as 1000 lpi
produce dots with less than 64 printer pixels. Here, the resulting difference
from halftone cell to cell is visually significant. Lower-resolution devices
require carefully “tuned” dot growth patterns to avoid visual patterns. 

Area 20

Area
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Figure 6.15 shows that the individual cells that make up a supercell are
not necessarily congruent. Each may have a slightly different shape and may
contain a slightly different number of pixels. It is only in the collective
average that the screen produces the desired effect. The figure shows that
only the corners of the larger array of cells need line up with grid points. It
is these longer grid point vectors that determine the angle — still a rational-
tangent angle but much more precise.

6.4.7.1 Multi-center screens
Mid-resolution printers have achieved better angles and frequencies with
smaller multi-center dots (2-, 4-, and as high as 10-center dots) that were
carefully hand tuned, but some visual low-frequency artifacts remain. 

A two-center dot, also called a dual dot, is common, because it is the
easiest way to implement a 45° screen. The dual 45° dot is implemented in
a 0° array that usually contains congruent cells that turn on in exactly the
same sequence. In this case, it is used simply to avoid the step-and-shift of
an angled screen and cannot be distinguished visually from a simple single-
cell 45° screen.

But it is not necessary for the individual cells to contain the same redun-
dant thresholds. The major goal in designing halftones is to achieve as many
gray levels as possible so as to avoid visual contours in images. By staggering
the thresholds in a multi-center dot so that the pixels turn on alternately in
one center and then the other, the total number of gray levels becomes one
plus the total number of pixels in the larger implementation array rather

Figure 6.15 Supercell halftones.

-ColorBook  Page 412  Wednesday, November 13, 2002  10:55 AM



Chapter six: Digital color halftones 413

than a single cell. This is a trick for the human eye: the visual frequency is
produced by the smaller sub-cells, but the gray levels are produced on the
average over the larger array. 

Figure 6.16 shows a four-center, or quad, dot with a vector of 11, 3. In
this case, we achieve two objectives by means of the multi-center dot; the
average angle for the resulting screen is much closer to 15° than would be
possible with the simple screen, and the dot has four times the gray levels.
The downside is that some visual artifacts are also produced, particularly in
the highlights and the shadows. The figure shows the first level turned on
in the upper left quadrant. Pixels in the other three cells are not yet turned
on. But also shown is this same first level turned on in adjacent copies of
the tiled quad dot. It can be seen that this first level produces a pattern that
is only one-half the desired frequency of the simple screen. When the next
level turns on in another cell, another undesired frequency pattern is created.
This happens again for the third level. It is not until the fourth level turns
on that desired frequency is achieved. This situation repeats throughout the
dot growth for the screen, although the undesired patterns are much less
noticeable as the dot approaches the midtone. This is because the pixels
causing the unwanted pattern become a much smaller fraction of the collec-
tive dot. But then, beyond the midpoint as the dot approaches the shadows,
the new pixels again become a larger fraction of the shrinking hole, and the
patterns become more visible.

Figure 6.17 shows a comparison of a multi-center quad dot with a simple
dot. The figure represents a gray diagonal wedge going from black in the
lower left corner to white in the upper right corner. The region above the
diagonal has been halftoned with a simple dot, and the region below the
diagonal with a four-centered dot. The simple dot shows very visible con-
tours between levels, because it only produces 19 levels. The quad dot does

Figure 6.16 Multi-center screens.
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not show contours, because it produces 73 levels on the average. On the
other hand, it does show some visual artifacts in the highlights and the
shadows. The two dots have identical frequencies and, for every fourth level
of the quad dot, it exactly matches up with the simple screen.

In general, the use of multi-center screens is a good trade-off in achieving
better image quality for a given printer. The printer can use the same hard-
ware and software and simply utilize a larger array.

6.4.8 High addressability

High addressability in a digital printer is where the addressability of the
writing device is finer than the writing spot. It is normally used in only one
direction of a raster scan — the direction that is easier to change and also
the higher frequency. High addressability is essentially anamorphic resolu-
tion for the printer. High addressability in both directions would simply be
called overscanning, if the writing spot were large for the scan pitch. High
addressability is related to the base resolution by what is called the addres-
sability factor. The addressability factor is usually an integer multiple of the
base resolution such as 2:1, 4:1, or 8:1. For example, a polygon raster system
of 600 lpi with a fast-scan frequency of 4800 pixels per inch would be called
a 600-lpi printer with 8:1 addressability. Note that the scan line frequency is
determined by the polygon and optics of the system, while the higher fast-
scan frequency is achieved simply with an increase in the clock frequency
along a scan line. 

In Figure 6.18, you can see that there are two benefits from the use of
high addressability: more gray levels and better dot shape. The figure shows
a typical highlight dot using 4:1 addressability. It also shows that the writing
spot has not changed from the simpler system. The dot on the right has 84
pixels instead of 21, so the dot can produce 4 times as many gray levels. And
with the additional pixels, the shape of the dot can more easily approximate
a circle.

Note that high addressability should not be confused with higher
resolution, as the writing spot and optics of the system are usually not

Figure 6.17 Comparison of single- and multi-center dots.
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changed. Figure 6.19 shows an idealized diagram of the performance of a
writing spot as it sweeps along a scan line. When the spot is turned on
and off, there is some finite rise time and fall time for the modulator
response, but this time is a small fraction of the pixel time, so there is good
correlation with the logical pixel stream of data. In the high-addressability
case, the response times may be larger with respect to the smaller logical
pixel stream. But it can be seen that, once the writing spot has been turned
on, the spot can be turned off accurately in time increments of one eighth
the size. Dot growth along a scan line will have eight times as many levels
that are equally spaced. There is, however, a downside in the highlights
where the dot has isolated high addressability pixels and also whenever

Figure 6.18 Halftone spot with high addressability.

Figure 6.19 Addressability vs. resolution.
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a halftone dot must grow onto a new scan line. Here, the attempt to turn
the relatively large writing spot on and off too quickly may result in little
or no response if the exposure does not get above threshold. There is
another problem in the extreme shadows, where attempting to turn the
writing spot off and back on again may result in a larger than expected
off pixel. However, the dot gain will probably cause these extreme shadow
levels to be lost, anyway.

The net result of using high addressability is a good trade-off — there
is a significant increase of available gray levels with no impact on system
optics or writing spot technology. There is, of course, an increased bandwidth
requirement and a requirement for a faster output clock. The resulting printer
performance curve of output density vs. requested level will have many
regions of reasonably linear increase separated by flatter, less stable sections
that are more susceptible to printer drift. It may be more important to
calibrate such a system more frequently.

Figure 6.20 shows an example of a screen that was designed with both
8:1 addressability as well as quad multiple centers. Here, the multi-centers
are used to achieve a more accurate angle, so the centers are not congruent.
Notice that half of the dot shapes face down, and the others face up. This
design required extensive hand tuning, because the rows of alternate up and
down orientations have a tendency to appear closer together or farther apart.
When this happens, the rows that are closer together form a visual unit, and
a pattern at half the desired frequency appears. Notice that special effort
was made to achieve a symmetric 50%-point checkerboard. The 50% black
dot is exactly the same shape as the 50% white hole.

6.4.9 Halftone grid relationships

It is easy to be confused about the various grids that are mentioned in a
discussion of digital halftoning. There are at least three grids: the basic
printer raster, the image sample raster, and the halftone screen grid. One
could also consider the halftone implementation grid that is a subset of the

Figure 6.20 Quad dot with 8× addressability.
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basic printer grid. Figure 6.21 shows graphically the relationships between
these various grids.

The basic printer grid is the binary logical pixel raster that is sent to the
printer after halftoning. The vertical component corresponds to the width
of the scan lines of the printer. For an LED-bar printer, one should rotate the
diagram 90°, as this corresponds to the width of an individual LED element.
The horizontal component corresponds to the clocking interval along a scan
line or the clocking interval for the LED elements. The scan line dimension
must be a multiple of the clock interval dimension or there will be compli-
cations in the rational-tangent screen design.

The sample grid is the contone pixel raster before halftoning. The vertical
component must be 1:1 or a multiple of scan lines. The horizontal component
is usually the same as the vertical component; thus, it will be a multiple of
high-addressability pixels. The pixel raster for a contone pictorial image is
normally square and may be lower resolution. Images should be scanned at
two or three times the frequency of the halftone screen that is used. This will
ensure at least four samples for each halftone cell so as to create partial dots.
The image raster may be any arbitrary resolution, but it must be resampled
or interpolated up to the sample grid before halftoning.

The halftone grid is the visual dot pattern produced by the halftoning
operation. It will be rotated for color halftone printing. It is made up of
elements of the basic printer grid, but there is no inherent synchronization
with the printer grid or the sample grid. The halftone implementation grid
is made up of rectangles with the same area as the halftone grid, but it is
not rotated. It is important to remember that the entire halftoning operation
is essentially rectilinear horizontally and vertically, and the visually rotated
screen patterns are entirely a consequence of the threshold values used in
the rectangular halftone threshold array.

Figure 6.21 Digital halftone grid relationships.
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6.4.10 Practical design considerations

This section contains some “tricks of the trade” and practical considerations
for clustered halftone dot design. Some of these topics are not intuitively
obvious until you see them explained. Most are common sense that come
from experience in designing dots.

6.4.10.1 Periphery is the noise source
The periphery of the halftone dot is the source of most of the image noise
in digital halftoning. The white paper and the solid film of colorant within
a dot are seldom a problem. The irregularity of the perimeter from dot to
dot is the problem. The best way to reduce noise is to design for minimum
dot edge-to-area ratio. This is achieved with circular spots in the highlights
and circular holes in the shadows. Single pixel appendages on dots are a
particular problem.

Stochastic screens appear to violate this design principle. Stochastic
screens generally have a high dot edge-to-area ratio and do indeed show a
greater amount of visual noise. This unpredictable dot periphery adds to the
inability to proof stochastic screens and also to the difficulty of calibrating
them.

There are a number of other image defects, sometimes also called
“noise,” that are associated with halftone printing. They are listed here in
order of decreasing visual frequency.

• Dot noise — very fine noise due to irregular edges of individual
halftone dots

• Granularity — dot-to-dot differences due to writing variations and
instabilities; more severe with multi-center dots

• Moiré (rosette) — the basic regular interaction of rotated color
screens; affected by rational-tangent screen angles and screen fre-
quencies

• Mottle — variations over multiple dots; may not be due to the dot
design; can be caused by paper fibers or texture

• Streaks — vertical process defect due to dirty optics, charging wires,
irregular LED elements, etc. 

• Banding — horizontal process defect due to paper motion variation,
scanning variation, etc.

• Moiré (color shift) — low-frequency interaction of halftone screens
due to small variations in screen frequency and angle, two-color
moirés, second-order or three-color moiré

6.4.10.2 Dot-center migration
Halftone dots should be designed so that the dot enlarges uniformly as it
grows and maintains a stationary center of gravity. Dots that do not grow
uniformly will have a stationary edge that can cause problems in image
quality. A stationary edge does not produce partial dots, so image sharpness
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can vary across an image. Figure 6.22 shows three examples of dots with
and without dot-center migration.

The migrating dot growth shown in Figure 6.22A begins in the upper
left corner of the dot and works its way down to the lower right. The
migrating center of gravity is shown on the right. This type of dot growth
can lower image quality. The dot growth shown in Figure 6.22B is called
spiral dot growth. It produces a relatively low-noise dot, because it has a
minimum of appendages and a compact perimeter. But it is slightly lopsided
and less symmetric. The dot growth shown in Figure 6.22C is called double
spiral dot growth. It is more symmetric but produces more visual noise due
to the extra appendages. Small dots may need the low-noise characteristic
more than the symmetry. Larger dots can instead concentrate on the sym-
metry, as the noise due to the periphery is less of an effect.

6.4.10.3 Dot cell boundary
It is not advisable to draw boundaries around a single halftone dot during
the dot design phase. It is important to remember that the halftoning function
is actually continuous in x and y, and any boundary is arbitrary and may
mislead the designer. In particular, a square boundary can be detrimental,
although it is tempting in the case of a zero-degree dot. Figure 6.23 shows
a square boundary drawn around a single cell in a repeating screen pattern
along with a three-dimensional view of the same cell’s growth structure.

The design of the highlight portion of the dot is no problem here; the
spots are well separated from each other. The problem arises after the 50%
point where the dots touch. If a square boundary were drawn around the
dot, then further growth of the dot must take place in four disjoint corners
of the dot simultaneously. In actuality, this growth is around a single “hole”
and should be considered all together.

Figure 6.22 Dot-center migration.
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Figure 6.24, on the other hand, shows the boundary drawn around the
50% boundary of the two phases of the dot and a three-dimensional view
of the cell’s growth structure. The best visual boundary for a halftone dot is
the 50% outline, a rectangle that encompasses one highlight peak and one
shadow depression. This boundary is a natural one in that the dot growth
from each direction converges at this rectangle.

There is a natural phase shift in halftone dots. The growing spots are
offset from the shrinking holes by this phase shift, as can be seen in Figure
6.9 in Section 6.4.4.

The only other boundary that should be drawn around the halftone dot
is the rectangular tile with which it is implemented. This boundary should
never be seen in the dot that is produced. Much of the hand-tuning process

Figure 6.23 Mythical dot boundary.

Figure 6.24 Significant 50% dot boundary.
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is to remove any traces or hints of where the implementation boundary
might be.

6.4.10.4 Dot growth considerations
The dot growth sequence of digital halftones has a strong impact on the
output quality, particularly in the case of laser raster devices. Digital halftone
dots at intermediate resolutions, 300 to 600 lpi, are usually carefully designed
and tested to avoid visual artifacts that can easily occur. A separate sequence
is designed for each dot size and angle of rotation. While a computer pro-
gram can make the first iteration on dot design, improvement on the design
can always be achieved after testing and measurement. Automatic rotation
of halftone dots is expected to produce dots that would be inferior to care-
fully hand-tuned dots.

Dot growth is important for several reasons. One consideration is geo-
metric. A digital halftone dot cannot grow uniformly as an optically variable
screen can, due to the basic spatial quantization of the raster matrix. The dot
can grow only by adding at least one printer-resolution pixel at a time. In
doing so, it is easy for the dot to become lopsided or asymmetrical, producing
visual artifacts that show up as undesirable textures or coarse patterns in
the print. At higher printer resolutions, the problem is greatly reduced,
because each printer pixel is an insignificant fraction of the resulting clus-
tered dots.

Figure 6.25 shows the 50%-point for a digital 18° rotated dot. The desired
checkerboard square is shown in the upper right of the figure. It can be seen
that approximation of this midpoint in the dot is rather coarse, but it is as
symmetric as possible, and the shape of the 50% spot is identical to the shape
of the 50% white hole.

6.4.10.5 Dot gain
Another consideration is the nonsymmetrical nature of most raster output
devices including laser raster systems. Figure 6.26 shows that a laser beam

Figure 6.25 Mid-point checkerboard.
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exposes a photoreceptor by sweeping across one scan line at a time. The
laser beam is Gaussian in exposure profile and larger than the width of the
scan line so as to fully expose between adjacent lines. The beam is also
nearly circular so, when it is turned on for a logical pixel, it may also
partially expose the previous pixel. And when it is turned off, it may have
already partially exposed the next pixel. The net result is that the halftone
dots that are produced are slightly larger than the logical data sent to the
modulator.

Laser beam shape and profile, modulator response characteristics, and
scan line overlap all affect the symmetry of digital halftone dot growth. It
has been found that two printer pixels together along a scan line can have
a much different contribution to print density as compared with two printer
bits together on adjacent scan lines. Hence, dots that are not carefully
designed can have sudden jumps in print density as well as many levels
with little or no density change at all. While most dot gain is positive growth,
high-addressability writing may produce some negative dot gain in isolated
pixels.

There are a number of sources for dot gain in electronic printing systems,
as follows:

• Laser beam size and shape
• Addressability not commensurate with beam size and raster pitch
• Photoreceptor voltage spread
• Development of toner or inking
• Intermediate transfer on some devices
• Transfer to paper
• The fusing, fixing, or drying process

Not all dots grow to the same degree. The largest dot gain is in the midtones
(40 to 60%), where the perimeter of the dots are at a maximum. The perimeters

Figure 6.26 Dot gain from laser scanning.
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of the dots are a less significant fraction of the image in both the highlights
and in the shadows.

Dot gain is also more pronounced at higher frequencies, where the
physical size of the dot spread is larger relative to the dots being produced.
This is why dot gain may be a big consideration in screen frequency choice.

There is also an optical effect that occurs in printing on paper. After the
dot is printed on the paper, the eye perceives this printed dot as larger than
actually printed. This effect is called optical dot gain and is a result of internal
scattering within the paper. The light is scattered within the paper, and some
of the light is absorbed on the underside of the toner or ink. This phenom-
enon is also referred to as the Yule–Nielsen effect,18 and it has the same effect
as printing a larger dot. Optical dot gain depends on the opacity and the
surface of the printed substrate.

Fortunately, for clustered dot printing, the dot gain is predictable and
can be compensated by the calibration process. Hand tuning the dot design
during testing can minimize irregular dot growth.

6.4.10.6 Dot calibration considerations
The net result of irregular dot growth in a digital raster printer can be
summarized in the simple statement, “Not all levels are equal.” This non-
equal nature is further affected by the normal dot gain characteristics of the
rest of the printing process. This is true of both lithography and xerography
as well as inkjet printing. It is difficult to predict exactly how a particular
digital halftone image will print on any random printer. For this reason, it
is important that the characteristics of the printer be known prior to the
actual creation of the halftone bit-map. The characteristics can be determined
by processing, printing, measuring, and analyzing test targets with the same
film, plate, drum, inks, and/or toners that are to be used for the desired print.

The use of a printer-independent file format is especially important from
this standpoint. It is known that a halftone bitmap created specifically for a
high-resolution film printer cannot be subsampled and printed adequately
on a lower resolution device. Even the line graphics and fonts suffer greatly
in a down-conversion process, where a complicated conversion algorithm
such as “black always wins” may be necessary to ensure that fine lines are
not lost altogether. Going from the printer-independent file to a bitmap for
each device will always produce higher quality. Dot calibration is further
discussed in Section 6.4.13.

6.4.10.7 Dot frequency
From a psychophysical standpoint, it is known that the need for image
resolution is image dependent. Pictorial images and images with large flat
color areas require grayscale resolution to avoid contours. Text, line art, and
images with much edge detail require spatial resolution, grayscale is less
important. Image type should be considered when choosing the appropriate
halftone frequency. High-frequency halftones have fewer grayscale levels
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but can more closely reproduce detail. Low-frequency halftones have more
grayscale levels but add a visual noise to the image.

6.4.10.8 Dot levels
The human visual system can detect at least 64 grayscale levels. Some people
wrongly assume that this means that 64 grayscale levels are adequate for a
halftone dot. The actual capability has to do with “just noticeable differ-
ences.” While just noticeable differences are considered to be equally spaced
in visual space (i.e., CIE L*), they are not well spaced in either reflectivity or
density space. Digital halftone dots are most closely linked with reflectivity
space, as the area coverage of the dot produces the grayscale. Unfortunately,
a one-pixel step in area coverage for the highlight region is considerably
more visible than the same one-pixel change in the shadow region. In other
words, the dots are not equally spaced visually. Because of this, many more
than 64 grayscale levels will be required to achieve smooth gradations with-
out contours. Dots with about 128 levels are practical but can still produce
contouring in the highlights. The image-processing path normally carries
only 8-bit data or 256 levels, but it is advantageous to create dots with as
many levels as possible so that the 256 data levels can be mapped into the
most appropriate halftone levels.

6.4.10.9 Screen angle
The human visual system is least sensitive to a screen pattern angled at 45°
and most sensitive to one at 0°. The 0° pattern should simply never be used,
except when required in a rotated dot set for color, and then only in the
yellow separation where it is not visible. The 45° screen is just as easy to
implement as the 0° screen and is much more effective.

6.4.10.10 Visual trade-offs
The biggest halftone trade-off is between grayscale levels versus frequency.
Again, you must balance the requirements for numbers of levels with the
requirement for edge detail and sharpness. This trade-off may be different
for each printing system considered, especially as the basic resolution is
changed. The use of multi-centered dots to increase the grayscale levels is
another trade-off, as increasing the number of dot centers adds lower-fre-
quency visual artifacts.

Another visual trade-off is the size of the rosette when printing color
with rotated screens. Sometimes a suboptimal individual screen for one
separation may result in an overall improvement in image quality if it
reduces the visibility of the rosette.

6.4.10.11 Dot shape
The most successful halftone dots have been circular in the highlights and
in the shadows. Peter Stucki (IBM Zurich Research) reported, “Experiments
have shown that the visibility and the perception of different shape dominant
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patterns may be subjectively disturbing in bilevel rendition of continuous-
tone data.” Circular dots have the smallest perimeter-to-area ratio and hence
the smallest chance for error and visual noise. The only symmetrical transi-
tion from circular dots to circular holes is the familiar checkerboard pattern
at the midtone. The checkerboard is sometimes distorted by using “elliptical”
dots when the density jump at the midpoint is too noticeable. However,
elliptical dots produce a “chaining” effect that can be more visually notice-
able. The unpredictable dot shapes produced by stochastic screening are
another reason to restrict their use to the special cases when they are
required.

A three-dimensional representation of the classic halftoning function is
shown in Figure 6.27. Several cycles of the function are shown, partly to
stress that it is a continuous function that repeats across the page. There is
no reason to associate one “hill” with either “valley.” The key thing is to
supply the appropriate threshold value to compare with the image data at
each printer pixel. It does not matter how the threshold was determined or
what neighboring thresholds might be.

It is not surprising that this function appears very sinusoidal. It can be
described as a function of two cosines in the simplest zero-degree case as
follows:

K = cos 2 π fx x + cos 2 π fy y

Figure 6.28 shows a topographical plot of a single zero-degree cell. It
shows a circular shape in the center highlight region, progressing to the
square checkerboard at the 50% point, and then progressing to a circular
shape in the shadow region. The shadow “valley” is broken into four parts
here and distributed into the four corners for this cell. When this cell is tiled
together to cover the page, the four corners from adjoining cells form the
valleys with no visible seams.

Figure 6.27 Halftone threshold function.
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The functions shown here are the theoretical ideal in that they are shown
as very smoothly varying functions. In a digital representation, they might
not be so smooth, because they are made up of a finite number of pixels that
can only approximate the desired ideal shape.

6.4.10.12 Where the dots touch
In particular, the 50% point where the dots first touch each other is a difficult
design problem. Figure 6.29 shows a simple 45° dot growing to the 50%
point. The 45° dot is the easiest to design here, as the checkerboard square
is aligned with the output raster, but the 50% point has other problems as
well.

The plot on the left in 6.29 shows that, even in lithography, where the
dots are not digital, there is a characteristic change in slope for the printer
response near 50%. This anomaly, predicted by Hunt19 before digital printing
began, may be partly due to an increase in optical dot gain as the dots change
from growing spots to shrinking holes.

Figure 6.28 Halftone function equation.

Figure 6.29 Where the dots touch.
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The plot on the right side shows that a noisy digital system like xerog-
raphy not only has the predicted change of slope but also a pronounced
increase of noise. This is partly due to the sharp edges of the 50% dot with
its high-frequency content. But it is also due to the unpredictable nature of
xerography, wherein the dots may either be drawn together or appear to
repel each other, depending on local conditions. These unpredictable condi-
tions include charges on the photoreceptor, transfers from photoreceptors to
the print, possible intermediate transfers, paper fibers on the print media,
and fuser behavior.

There is also the difficult design goal of keeping not only the spots
symmetrical but also the increasing need to keep the white holes symmetrical
as well.

There are several strategies for dealing with the dots touching. Figure
6.30 shows two different strategies. Notice that the two dot-growth methods
shown in the figure result in exactly the same angle and frequency and the
same number of levels. But they demonstrate different characteristics where
they touch.

On the left, the first connection between dots in the dot-growth sequence
is a solid connection — a pixel that bridges between dots on two sides. This
is a very low-noise connection. The dots are cleanly separated without it and
clearly connected with it turned on. The possible problem with this strategy
is that the connection is too good and that it may exacerbate the increase in
dot gain that is also happening at the 50% point. Because of this possible
jump in printer response at this level, as shown in the inset plot, this strategy
might be called boom dots.

On the right, the first connection between dots is a noisy connection —
a pixel that is well connected to one spot but just barely touches the other
spot on the corner of the pixel. This configuration increases the noise poten-
tial because of the problematic nature of this unpredictable connection. On
the other hand, the benefit of this strategy is that the noisy connection may

Figure 6.30 Strategy at the mid-point.
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mask or hide the sudden jump in dot gain. Because of the barely touching
nature of this method, this strategy might be called kiss dots.

These are both viable strategies and might be used in different cases.
For high-frequency screens with fewer levels, the kiss dots may be more
appropriate, because the jump in response would be significant fraction of
the total range. The increase in noise might be preferable to a visible contour
in the image. For low-frequency screens with many levels, the boom dots
may be preferred. With many levels, the jump in response would be insig-
nificant, and the reduced noise would be a definite benefit.

Another way to reduce the problem at the 50% point is the use of
elliptical dots. An elliptical dot does not have an exact checkerboard at the
mid-point, but dots touch in one direction first and then the other. This
can result in changing one significant tone contour in a troublesome area
into two smaller contours in different areas. The downside of elliptical
screens is the appearance of chaining in one direction when the dots begin
to touch.

6.4.10.13 Data precision and file size
Psychophysicists have determined that the human eye can perceive at least
64 shades of gray. This fact has often been misinterpreted as a requirement
for data precision. However, the number refers to shades of gray that are
equally distributed in human visual space, a condition not met by either the
scanner or the printer. CCD scanners scan in reflectivity space. This can be
observed by noticing that the raw scans are generally very dark, with most
of the data lumped in the shadow region. To be useful, the scans must be
transformed with either a logarithmic function (to convert to density) or a
cube root function (to convert to L*). If the scanner delivered data with 8
bits per pixel (256 shades) in each of RGB, the data become dangerously
close to human detectable quantizations in some areas of the range after
transformation. But, in addition, further processing for a tone reproduction
curve (TRC), image aesthetics, color correction, and printer dot gain calibra-
tion all result in further quantizations of the data. With all these consider-
ations, it is clear that eight bits per pixel from a CCD scanner is not enough.

State-of-the-art scanners now available allow a downloadable table look-
up that permits the data to be transformed from reflectivity into something
closer to human visual space before the data leave the scanner. For example,
the scanner may scan with 10 to 14 bits of precision in reflectivity for each
of RGB but transform to 8 bits of density delivered to the computer. In this
case, with well-conditioned data, eight bits of RGB should be adequate for
desktop publishing but not enough for high-end work. 

If the data are converted to colorimetric form, they are the most compact
and also printer independent. Images can be efficiently represented in 24
bits of L*a*b*. If they are converted to CMYK, they require 32 bits of dot
percentage, and they are printer specific. XYZ data, while colorimetric, is
not linear in a human-visual sense and requires more bits per pixel to avoid
quantization during further processing.
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Grayscale and resolution requirements are a function of image type.
Pictorial color (natural images) has high grayscale but low spatial resolution
requirements, while line art and text have the reverse. 

The eight bits per pixel in each color mentioned above are necessary for
pictorial color, but the number of pixels per inch can be very low. A rule of
thumb in the graphics arts industry has been that scanned natural images
require only twice the spatial resolution of the halftone screen that will be
used for printing. If the printing process utilizes a 150-dpi screen, then scan-
ning images at 300 pixels per inch should be adequate. Desktop printers with
coarser screens can use even lower resolution for images. This method ensures
four input samples for each halftone dot and allows “partial dots” to form,
which can reproduce higher frequencies than that of the halftone screen.

On the other hand, spatial resolution requirements for text and line
graphics are much higher, while their grayscale requirements are lower.
Good typography requires at least 800 pixels per inch to avoid detection of
“jaggies” by the human eye. This is due to the fact that, in high-contrast
areas of a scene, the eye is most sensitive to edge detection and linear acuity
but less sensitive to color and grayscale. Text and line art can be adequately
represented with only one or two bits per pixel. Rarely are high spatial
resolution and high color precision both needed at the same time. Some
block-truncation compression schemes take advantage of these characteris-
tics.

Some grayscale in scanned text and graphics is useful in that it softens
the pixel edges and prevents aliasing and jaggies from forming. But color
fidelity is less of a major consideration in high-contrast areas of a print. 

6.4.11 Angle family

Most of the halftone technology that has evolved for conventional printing
is still valid in the printing world, but there are some differences. While
contact halftone screens can be placed at any angle and have any arbitrary
frequency and high grayscale capability, digital halftone screens are normally
an engineering trade-off between spatial frequency and number of grayscale
levels that can be produced. It is also very difficult to achieve some screen
angles — in particular, the desirable ±15° screen angles that are used in
conventional printing. Much of the recent technological energy has gone into
solving this particular problem, with mixed results.

Digital printing systems still have problems with process color registra-
tion, although some are better than conventional printing presses. Unless
registration is perfect, there will be a problem in color fidelity, both from
area to area on the same print and from print to print, unless rotated screens
are utilized. Some think that “perfect” is a relative term but, in fact, as screens
approach perfect alignment, color moiré and screen moiré can become
increasingly visible.20 There has been a recent revival of frequency-modu-
lated screening techniques (stochastic screens) that may reduce or eliminate
moiré problems. However, these methods rely on uniformity and stability
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of the smallest printing unit or pixel at the finest resolution. Dot gain, paper
fibers, toner size, and laser beam uniformity all have taxing effects on the
finest printer dot. Conventional clustered halftone dots limit these effects to
the extreme highlight and shadow regions, while FM screening has problems
throughout the grayscale range. While the initial impression is one of sharp-
ness, color fidelity and the ability to calibrate may be problems.

6.4.12 Moiré considerations

Printing with rotated halftone screens often produces moiré in color prints
due to the interaction of the screen angles and frequencies. Moiré can be
exacerbated in digital halftoning by the approximate screen angles and fre-
quencies that are used by the rational-tangent screen algorithm.

6.4.12.1 Two-color moiré
The most common moiré is due to the use of the zero-degree screen for the
yellow colorant. When used with the usual 15, 45, and 75° screens for cyan,
black, and magenta, the yellow is only 15° away from the cyan and magenta
angles. The two-color moirés then appear most commonly in light greens
and pinks and tans. One method of avoiding this moiré is to change the
frequency of the yellow screen. See Section 6.6 for further discussion of
moiré.

6.4.12.2 Three-color and four-color moiré
Other than the two-color interactions, more complicated moiré patterns can
develop due to the use of rational-tangent screens that only approximate the
desired angles. Finding a compatible family of screens for a given printer is
often a difficult problem. Much experimentation is required and often will
lead to suboptimal screen frequencies but lower moiré.

6.4.12.3 Auto-moiré
Auto-moiré is the condition in which the screen beats against itself. This can
most easily occur if the screen is designed by a computer program. The best
solution is to hand tune the design.

Another very common form of auto-moiré is the beating of two screens
derived from the same design. It is common practice to design a +15° screen
for perhaps the cyan separation and to then flip the angle for use with the
magenta at 75°. Unfortunately, then every anomaly of the first screen will
also occur for the second screen and on the same scan line. It would be better
to design the second screen from scratch and vary the design. Changing the
phase of the second screen can also help to relieve the problem.

6.4.13 Calibration

The use of digital halftone screens requires them to be calibrated for the
printer with which they will be used. This is particularly important when
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the printer has a considerable dot gain characteristic or when the screens
have only a minimal number of grayscale steps.

Strictly speaking, calibration is an ongoing process that should compen-
sate for the current printing conditions. Instead, most desktop software sold
for printer calibration is actually based on printer characterization and is
only a one-time setup. The differences between calibration and characteriza-
tion can be summarized as shown in Table 6.3

Calibration is a short-term process that should be performed more often
as the printer drifts in performance. Characterization is a much more stable
process and only needs to be done once. Characterization is most important
for color halftoning. The attributes of calibration vs. characterization are as
shown in Table 6.3.

6.4.13.1 Screen threshold assignments
The first step in halftone screen calibration is to assign threshold values to
each level that can be produced. It is possible to include the actual screen
linearization calibration in these thresholds, but the calibration is usually
done separately by means of a tone reproduction curve (TRC). The TRC is
a table look-up. The TRC allows the calibration procedure to be separated
from the halftone dot design and to be performed more easily and frequently.

When the image path is using 8-bit precision and the halftone can only
produce 256 gray levels or less, then it is convenient to simply space the
thresholds equally between 0 and 255. This is equivalent to spacing them in
area-coverage space. In this case the spacing is unimportant, because the
TRC can address any of the gray levels, and the calibration will make the
appropriate mapping.

Table 6.3 Characterization vs. Calibration

Characterization Calibration

Stability Stable with time (assumption) Short-term drifts and 
environmental sensitivity

Process Time consuming Real-time, repeatable

Sensors Expensive colorimetry Inexpensive densitometry

Complexity Three-dimensional or four-
dimensional problem [3 × 3 
matrix, 3-D lookup table (LUT) 
with interpolation, includes 
black]

One-dimensional problem (four 
LUTs)

Required by Colorant characteristics, halftone 
orientation strategy

Dot gain, electrical and 
mechanical drift, dmax

Detail Smooth functions Detailed functions (can contain 
kinks and flat spots)

Method Statistical averaging process Measurement process
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When the halftone can produce more gray levels than the precision of
the image path, the threshold assignment becomes important. This is
because, with n bits, only 2n threshold values can be used, so some of the
halftone’s gray levels will not be addressable and cannot be used. In this
case, a nonlinear spacing is desirable. It is best to utilize all of the highlight
gray levels when possible and to sacrifice some of the shadow levels if
necessary. Missing levels in the highlights are much more apparent than in
the shadows.

6.4.13.2 Individual screen calibration
You can think of tone reproduction and gray balance as representing the
central axis of color space. Getting these correct can do more to make repro-
ductions look right than any other aspect of the subject of color reproduction.

There are a number of sources for dot gain in electronic printing systems,
as follows:

• Laser beam size and shape
• Addressability not commensurate with beam size and raster pitch
• Photoreceptor voltage spread
• Development of toner or inking of plates
• Transfer to paper

Note that dot gain can be negative as well as positive; i.e., the dot can be
reduced from the desired size. While each source can contribute to overall
dot gain, the effect is corrected with a single TRC that maps desired grayscale
into available grayscale dot levels. The TRC can be a look-up table (LUT)
through which the desired grayscale is passed. But, alternatively, the TRC
can be combined with the halftone threshold array so as to effectively linearize
the digital dot. LUTs can then be used for aesthetic correction or gray balance
instead of the detailed compensation of the halftone levels. This can be
important, as the optimal correction for a digital screen requires fine detail
in the TRC curve and intimate knowledge of the printer characteristics. In
addition, some color correction schemes depend on the individual screens
to be linear in density.

For a black-and-white printer, or for a color printer that relies on indi-
vidual separation linearity, calibration simply means distributing the half-
tone levels linearly with respect to some measurement space. The levels are
already distributed in area-coverage space, but this is of little value because
of dot gain and printer drift. The printing industry has long used density
space for linearization. It is becoming more popular to use a human-visual
space such as CIE L* to allow the gray levels to be used most efficiently.

Figure 6.31 shows the procedure for single-separation linearization.
Prints are made with a series of test patches that span the range from white
to solid colorant. The test patches are measured and plotted, shown in the
left plot as L*. These data are then normalized by stretching the white point
and the darkest point to full scale. In the case of L* measurements, they are
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inverted so that white is at the origin. The normalized and inverted data are
shown in the middle. The data are then simply transposed, so the x axis
becomes the y axis and vice versa. This becomes the linearizing TRC shown
on the right. If patch values are passed through this TRC and then reprinted,
the resulting plot of the new L* measurements will be linear. 

The normalizing step may also include an “aim” curve to compress the
shadows if the printer lacks density and dynamic range.

Linearizing each colorant halftone separately does not ensure that the
neutral axis is straight. Figure 6.32 shows conceptually that, on the left, the
cyan, magenta, and yellow vectors in the color space are calibrated, but the
neutral diagonal vector can be somewhat curved through the space. This
might be due to the halftones or the spectral characteristics of the colorants.
This nonlinearity in the neutrals would have to be corrected in the color
correction stage by means of the color characterization.

An alternate calibration method is the neutral balance calibration. Shown
on the right, by calibrating all three colorant halftones together, the neutral
diagonal becomes straight. This means that equal-valued triplets of cyan,
magenta, and yellow will produce neutrals. Some color characterization
methods can work more efficiently in this equivalent neutral space.

6.4.13.3 Neutral calibration
When printing, apart from calibration of the printer, it is useful to take steps
to guarantee that, when equal values C = M = Y are sent to the printer, a

Figure 6.31 Single-separation linearization in CIE L*.

Figure 6.32 Neutral axis effects from two calibration methods.
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neutral is produced on the print. An important consideration, often over-
looked or downplayed, is gray balance on a printer.21 The human eye is very
sensitive to differences in color in the region near gray. Gray balance on the
printer is accomplished by printing a series of near neutrals on the printer.
A set of five or seven values is selected to print magenta patches in the region
near a near-neutral. The same wedge in yellow is printed at right angles to
the magenta. A uniform cyan patch with the average of the five or seven
values is printed over the crossed wedges of magenta and yellow. It is hoped
that a gray color, a*b* = 0.0, will be printed on one of the 25 to 49 patches.
All areas of the test chart are measured with the colorimeter. Select the
patches closest to a*b* = 0.0, and interpolate the printer driver values that
would be expected to produce a*b* = 0.0 and the corresponding L*. Repeat
this procedure for additional values of L*. Six or seven additional samples
may be enough initially to plot curves of C, M, Y vs. L* to determine the
values of CMY necessary to produce neutral throughout gray scale.22 Three
one-dimensional tables are then created to guarantee that equal values for
CMY produces a*b* 0.0 on the print.

Figure 6.33 shows the CMY triplet values plotted with their resulting L*
value. As in the previous method, three smooth curves are drawn, and then
the data are inverted, normalized to white and black, and transposed to
produce three TRCs — one for each of C, M, and Y.

6.4.13.4 Color characterization
Color correction is the step that takes image data from red, green, and blue
values into the cyan, magenta, yellow, and black values that are then half-
toned. Color correction makes use of the color characterization data. There
are several methods used for color correction. The simplest method is the
use of a 3 × 3-matrix operation. More complex methods make use of three-
dimensional look-up tables and interpolation.

There is an order of importance for correcting images for printing.

• The first step is neutral balance. Any color cast in the image should
be removed before further processing. Three individual table look-
ups should be able to remove a color cast in RGB space.

Figure 6.33 Neutral axis linearization in CIE L*.
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• The second step is tone control. Tone control is a luminance operation.
A single lookup table is applied to the three separations in RGB space
or to the L* separation in CIE space. Tone control must correct for
the scanner as well as any aesthetic tone corrections.

• An assumed step is the linearization of the halftone screens.
• The final step is the color correction. This is actually a color transfor-

mation, not a correction. This step takes the RGB or L*a*b* image
data into the cyan, magenta, yellow, and black that are needed for
printing. This is a much easier problem after the previous steps are
accomplished.

6.4.13.5 Printer models
See Section 6.9 for a discussion on the use of printer models in halftone
calibration.

6.5 Halftone effect on color gamut
It is common practice in the printing industry to use four-color halftone
processes to produce color tonal renditions. The dot screens are angled 15
or 30° relative to one another. When only the three process colorants are
used, these angles produce overlapping dots with a random distribution of
eight colored areas: white, cyan, magenta, yellow, red, green, blue, and black.
As a result, the average color of a given area does not change if there is a
change in registration of the three colorant separations.23

The use of rotated halftone screen angles produces a moiré pattern called
a rosette. Registering dot screens at 30° angles minimizes the size of the
rosette, but the pattern is much more visible than the screen pattern by
itself.24,25 As the halftone frequency is increased, the moiré pattern becomes
less objectionable. 

Because digital high-frequency screens are difficult to produce, it is
attractive to consider other halftone arrangements. Two alternatives are often
proposed. One is to print the halftone dots on top of each other (dot-on-dot),
and the other is to print the halftone dots with minimal overlap (dot-off-
dot). Both of these methods require that the printer be able to register pre-
cisely because, in these cases, small changes in registration produce signifi-
cant changes in the color of a given area.26

The halftone orientation technique strongly affects the color gamut and
image texture of mixed color dots. A halftone model was created to compare
the potential color gamuts of three halftone orientations.14 The conclusions
are also applicable to line screens and stochastic screens.

6.5.1 Orientations

Figure 6.34 illustrates the three different halftone orientations. In the dot-on-
dot case, each halftone dot combines two colorants (in this case, cyan and
magenta) one on top of the other, making blue. In the rotated version, the
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screens are angled 30° relative to each other, producing a random distribution
of white, cyan, magenta, and blue (cyan plus magenta) areas. In the 

 

dot-off-
dot

 

 case, the cyan and magenta screens have the same angle, but they are
positioned so that there is no overlap until each colorant occupies more than
50% of the print area.

 

6.5.1.1 Dot-on-dot

 

In dot-on-dot printing, all of the color separations use the same halftone
screen and are printed one on top of each other. The preferred angle in
this case would be the less noticeable 45° angle. This orientation is very
sensitive to misregistration due to register error, paper speed variation,
multiple raster scanner variation, and vibration. Any slight misregister
forms a low-frequency pattern sometimes called 

 

color banding.

 

 The primary
color is a strong function of the unwanted absorptions of the colorants, in
their worst configuration where they have maximum interaction. The order
in which the colors are laid down also affects the color because of different
scattering coefficients. This orientation has the smallest color gamut, partly
because of the unwanted absorptions and partly because this configuration
has the most white paper visible which desaturates the colors. The color
variations resulting from misregister are actually cases in which the gamut
improves.

 

6.5.1.2 Dot-off-dot

 

In the dot-off-dot case, the screens have the same angle, but they are posi-
tioned so that there is minimal overlap of the colorants, especially in the
highlights. This orientation is less sensitive to the laydown order, but it is

Figure 6.34 (See color insert following page 430) Halftone dot orientations.
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as sensitive to misregistration as the previous method. Dot-off-dot poten-
tially has the largest color gamut. There is less interaction of the colorants
and less white paper to desaturate the vibrant colors. The color variations
resulting from misregister are cases in which the gamut decreases from its
optimal condition.

6.5.1.3 Rotated dots
In the rotated dot case, the screens are angled about 30° relative to each other,
producing a random distribution of the overlapped permutations of the
colorants. There is some effect due to the laydown order. This orientation is
very insensitive to misregistration. The gamut is somewhere between the
other two orientations and is very stable. This is the most common orienta-
tion used in the printing industry where the screens are exactly the same
frequency and rotated precisely to 30° separation. It is difficult to achieve
the appropriate frequencies and angles in digital printing where rational-
tangent angles are required, so there are generally larger rosettes and greater
moiré.

6.5.1.4 Stochastic dots
The stochastic dot case is most similar to rotated screens in that the color
overlaps are random. The color gamut should be similar but less stable due
to the unpredictable dot gain. Most of the following conclusions about color
gamut for rotated dots will apply also to stochastic dots.

6.5.2 Model predictions

The range of colors that a printer can produce is called the color gamut of the
printer. The gamut is determined largely by the characteristics of the colo-
rants or toners used, but it is also affected by other important factors such
as gloss levels, colorant density, and the halftone dot placement scheme.
Many think of the color gamut as the outline of colors in a CIE a*b* graph.
But, in actuality, the color gamut of a printer is the envelope of the full three-
dimensional color solid with dimensions of luminance and chrominance as
seen in Figure 6.35. By projecting the data onto a two-dimensional plane,
important information concerning color gamut is lost.

The gamut can be thought of as a cube standing on end so that the
diagonal from white to black is vertical. The diagonal represents the neutral
colors on the L* axis. When viewed from above, or when projected onto the
a*b* chromaticity plane, six of the corners are visible and form the more
familiar hexagonal shape. 

The model considered two-colorant combinations ranging in dot area
from 0 to 100%. After the two colorants are at maximum coverage, the third
colorant is then added to progress to the darkest color obtained with the
colorant set.

The color gamut of a real process is considerably distorted from an ideal
cube in CIE L*a*b* space. Yellow is much higher in lightness than either cyan
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or magenta, and blue is much lower in lightness than either red or green,
but the edges are nearly straight. The reason for this is that, on the 12 edges
of the gamut, only one colorant at a time is halftoned. For example, on the
edge progressing from blue to black, both cyan and magenta are already at
100%, and only the yellow colorant is changing from 0 to 100%.

Considering the projection onto the a*b* plane is misleading, as only
chrominance is addressed. Luminance information is not shown. In fact, the
boundary of a halftoning printer’s gamut is the same on the a*b* projection,
no matter what the halftone screen orientations are, even when the three-
dimensional gamuts vary dramatically. Again, this is because there are no
halftone interactions between screen orientations on the edges of the color
gamut.

On the faces of this hypothetical cube, the behavior is quite different.
Depending on the orientation of the screens, the cube can be puffed up like
a soccer ball or caved in like a used salt lick. The differences in color gamut
are seen only on the faces of the cube, where the surface may be concave or
convex.

In Figure 6.36, there is a large difference predicted in the chroma, c*,
between dot-on-dot and dot-on-dot configurations for the cyan–magenta
colorant combination. The rotated dot case lies between the other two,
approaching the dot-off-dot case in both the highlights and in the shadows.
The chroma increases on the topside of the gamut up to the 100% coverage
of the two colorants (blue). When the third colorant is added, the chroma
begins to decrease on the underside of the gamut where the three halftone
cases are equivalent from blue to black (only one colorant being halftoned).

Figure 6.35 Three-dimensional gamut diagram.

-ColorBook  Page 438  Wednesday, November 13, 2002  10:55 AM



Chapter six: Digital color halftones 439

This plot represents a vertical slice through the three-dimensional color
gamut. The space between the curves shows the increase or loss of color
gamut volume due to halftone orientation. In particular, note that the 50%
point for each of the curves is considerably separated in both chroma as well
as lightness. The predicted sharp discontinuity at 50% coverage is a unique
characteristic of the dot-off-dot configuration. It is obvious that the saturation
of the dot-on-dot halftone configuration is much lower than the dot-off-dot
configuration, while the rotated dot configuration is intermediate.

The a*b* projection in Figure 6.37 provides insight into the hue differ-
ences among the configurations. A straight line on this graph that originates
at a*b* = 0,0 implies that the hue is constant. The blue hue of the dot-on-dot
configuration bows toward the cyan. The hues of the other configurations
are redder, particularly the dot-off-dot configuration. Note again the pre-
dicted discontinuity at 50% for the dot-off-dot.

The predicted gamut effects are similar for both the cuts through the red
and the green hues of the color cube. The gamut activity is reversed top-to-
bottom for the cyan, magenta, and yellow hues as, in each case, there is only
one halftone on the top side of the color cube, and the interaction between
screens is on the bottom faces of the cube for these three hues.

6.5.2.1 Sensitivity to registration
Figures 6.36 and 6.37 illustrate the changes in gamut, both in chromaticity
and lightness, that would occur with changes in registration. The largest
change falls on an imaginary line connecting the three 50% coverage points.
These are the changes that would appear visually for identical separations

Figure 6.36 CIE L* vs. chroma for three halftone orientations.
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that are only displaced with respect to each other. With displacement of only
one-half of a halftone cycle, the appearance of the dot-on-dot case would
change to the dot-off-dot case and vice versa.

A good example of the possible changes can be seen in Figure 6A (see
color insert). In this figure, the same photograph is printed in three halftone
orientations. The examples show the change in color that can occur with
change in registration for the different orientations. The photographs on the
left and right can switch appearances with a change in registration of only
one half of a halftone cell size.

Figure 6.38 shows experimental results for a typical xerographic printer
using the three different configurations. In this lightness vs. chromaticity
plot, the data measured for the rotated configuration are very close to the
predicted model. The experimental results for the other cases show the same
tendency as the model. The dot-on-dot gamut is smaller than the dot-off-dot

Figure 6.37 CIE a* vs. b* for three halftone orientations.

Figure 6A (See color insert) Natural color image in three orientations: dot-on-dot,
rotated, and dot-off-dot. Examples show the change in color that can occur with a
change in registration for different halftone orientations. The photographs on the left
and right can switch appearances with change in registration.

-ColorBook  Page 440  Wednesday, November 13, 2002  10:55 AM



Chapter six: Digital color halftones 441

results, with the rotated case lying between. That the two halftone configu-
rations plot closer to the rotated dot results is likely due to the xerographic
noise in the experimental prints. Photomicrographs of the prints show many
isolated toner particles that appear random like the rotated dots.

The results of Rhodes and Hains have been confirmed by the theoretical
and simulation studies of Gustavson.27

6.5.2.2 Tone step uniformity
One of the major effects of halftone orientation is the resultant distribution
of tone levels. Figure 6.36 shows that the rotated dots have the most linear
distribution of gray levels, while the dot-on-dot case has more levels
bunched up in the highlights, and the dot-off-dot case has them bunched
up in the high-chroma region. Nonuniformity in tone distribution can lead
to tone-level contouring as well as lowering of the accuracy of the color
correction operation.

6.5.2.3 Sensitivity to moiré
Of the three orientations, only rotated dots produce regular moiré by inter-
action between the screens. This moiré may be due to either angle separation
and/or differences in screen frequency. In addition, a secondary moiré may
result due to an interaction between a black 45° screen and the resultant beat
between the ±15° magenta and cyan screens. Any or all of these effects can
also interact with detail or scanning artifacts in an image. The other two
cases can cause irregular low-frequency color moiré due to misregistration
as the two cases reverse themselves.

Figure 6.38 Experimental results for three halftone orientations.
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Dot-on-dot can interact with image detail or scanning artifacts that
come close to the single-screen frequency, but this interaction can be
strong due to the high visual contrast of the darker dots. Dot-off-dot
halftones have an extra chance for interaction due to the higher frequency
that is produced when several colorants have similar values. The inter-
action may be weaker due to the lower visual contrast of the individual
colorant screens.

6.5.3 Recommendations

If the colorants were “ideal,” there would be no difference in gamut due
to halftone orientation.24,28 It is the unwanted density of the two colorants
that causes the differences in color gamut with halftone orientation. The
dot-off-dot configuration has a significantly larger gamut than the other
two cases.

It is also apparent that the non-rotated cases are most sensitive to errors
in registration. Also, equal halftone percentages do not produce equal steps
in L*a*b*. This means that digital halftone printers would require the ability
to print a large number of gray levels to avoid tone contouring.

The discontinuity in the two-colorant dot-off-dot halftone at the 50% dot
coverage area would be a problem in printers with a limited number of gray
levels. 

It is attractive to speculate on how one might take advantage of the dot-
off-dot configuration’s larger gamut. Figure 6.34 was made with only two
colorants, where the 50% levels fit together tightly in a checkerboard pattern
with no overlap and no white showing. For four-color printing, some com-
promise would be required. This method could avoid the rosettes of rotated
dots as well as have the largest gamut. However, the change in color with
change in registration could be a serious problem, particularly if the process
were noise free. Therefore, the printer would have to be capable of precise
registration. In the meantime, the use of rotated dots is the safest bet.

6.6 Moiré
In digital color printing, the color separations are halftoned and imaged
independently. Because of this, there are many chances for very slight mis-
registration to occur from one separation to the next. Misregistration of
halftone dots can produce unpredictable colors because of the overlap of
colorants that have unwanted absorption in their spectra. Rotated halftone
screens are normally used to gain insensitivity to misregistration.

The conventional strategy is to choose equally spaced angles for the
more visible screens of black, cyan, and magenta and to insert the less visible
yellow screen between two of the others, e.g., 45º black, 15º magenta, 75º
cyan, and 0º yellow. This is the best strategy in most cases. In cases of severe
two-color moiré, it may be desirable to use a nonclustered screen for the
yellow.
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6.6.1 Rosettes

Rotated screen printing produces a rosette pattern that, at best, is about twice
as large as the pattern of an individual screen. The 30° angles are chosen to
give the highest frequency rosette pattern between C, M, and K. The rosette
itself is a moiré pattern, but one that forces all possible dot overlaps in the
smallest area. Thus, the result is a stable average color that is less sensitive
to registration. Accurate angles are required to avoid low-frequency beats
that would display even larger patterns. Particular attention should be made
in designing the screens so as to cancel out low-frequency beats.

The “strength” of the rosette structure also depends on the separation
technique. The more black is used in highlights and midtones (when a high
GCR level is used), the more pronounced the rosette structure will be. Con-
versely, the less cyan and magenta used in the shadows (when a high UCR
level is used), the less visible the rosette structure will be.29

The rosettes are meant to be random:

No matter how far you go from an exactly registered dot-centered
rosette, you will theoretically never find another in exact register,
because the tangents of the screen angles and the ratios of the distances
between dots are irrational numbers. In practice, however, this does
not apply because of accidental inaccuracies, and even in the theoretical
pattern many of the rosettes are in register within the accuracy of visual
examination.23 

 In digital halftoning, it is even more likely that the pattern repeats, as the
screens are implemented with rational tangent angles — even with large
supercells.

6.6.2 Dot center phase

The rosette structure can be designed with one of two aims, the dot-centered
or the hole-centered strategy. 

A dot-centered rosette pattern forms when the dot centers of the CMK
screens are registered at the same point. The smallest black structure in the
highlights has the size of 2P.30

A clear-centered rosette pattern forms when the hole centers of the CMK
screens are registered at the same point. The smallest black structure in the
highlights has the size of .30 Figure 6.39 is a blow-up showing the
appearance of these two structures.

The two rosette structures have different characteristics. The dot-cen-
tered rosette has a bigger color gamut. This may be because there is less
overlap of the cyan and magenta screens, so their unwanted absorption
spectra have less of a chance to interact. It may also be because there is less
white paper visible to desaturate the colors.

The clear-centered rosette is less visible in the highlights and midtones
than the dot-centered rosette, due to the smaller structure.29–31 The clear-

2 * P
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centered rosette also preserves the gradation better in the dark tones than
the dot centered-rosette (results in a smoother TRC, perhaps less dot
gain).29,31

Different rosette structures require different color calibrations. The clear-
centered rosette tends to render neutral colors too green, and dot-centered
rosette tends to too magenta. The color difference is the maximum between
these two extremes among all rosette structures.30

A clear-centered rosette is converted into a dot-centered rosette, and vice
versa, when the screens are digitally inverted. A clear-centered rosette can
also change to a dot-centered rosette through many different screen phase
changes, and vice versa. The phase changes may be due to alignment, reg-
istration, and moiré.

An example of a low-frequency moiré due to switching between clear-
centered and dot-centered rosettes can be seen in Figure 6B (see color insert).†

6.6.3 Two-color moiré

Printing with digital halftone screens often produces moiré in color prints
due to the approximate screen angles and frequencies that are used by the
rational-tangent screen algorithm. The most common moiré is due to the use
of the zero-degree screen for the yellow colorant. When used with the usual
15, 45, and 75° screens for cyan, black, and magenta, the yellow is only 15°
away from the cyan and the magenta angles. The two-color moirés then

† Thanks to Dr. Robert P. Loce of the Xerox Corporation for his thoughts and his collection of
moiré references, and to Shirley Cheng for the rosette figure.

Figure 6.39 (See color insert) Rosette characteristics.
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appear most commonly in light greens, pinks, and tans. One method of
avoiding this moiré is to change the frequency of the yellow screen.

. . . it appears that there is some justification for using a 133-line
screen for yellow when the others are of 120-line screens.32

An excellent overview of the moiré phenomenon in color separation can be
found in Amidror.33

6.6.4 Three-color moiré

Other than the two-color interactions and the drift between dot-centered and
hole-centered rosettes, more complicated moiré patterns can develop due to
the use of rotated screens.

Indeed, the prints made with classic non-digital rotated screens can also
have a very low-frequency moiré. The following discussion refers to this
more complex moiré. It is paraphrased from Tollenaar.20

If we print the plates for cyan, black, and magenta with screen
angles inaccurately set to separations of 15°, 45°, and 75° with respect
to the yellow screen, we find a large checkered moiré, which is espe-
cially troublesome in the darker areas. At a first glance, this moiré is
surprising, since the three mentioned screens vary in position every
30° and in that way should not be able to produce a visible moiré.
However, let us attend only to the interference of the magenta and cyan
printers, the screens of which are separated by 60°. The interaction of
these two screens produces a structure upon the print that is invisible

Figure 6B (See color insert) Four-color moiré. This figure illustrates the low-fre-
quency moiré that results from the rosette switching between clear-centered and dot-
centered phases. 
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to the naked eye but is present without any doubt. This structure is
further oriented according to the bisector of the angle between the red
and blue screens and, therefore, is parallel to the 45° line. Now, this
structure interferes with the period of the black print, which has the
same period and is printed at 45°. A small angular variation of one of
the screens or plates causes, therefore, a moiré, which can be avoided
only by locating very accurately the angles for the screens — at any
rate, as long as one insists on the use of plates with uniform screens.

The pattern is large, because the angle between the black printer and
the interfering moiré of the cyan and magenta printers is very small.
In fact, it should be zero in an ideal print. Therefore, any small devia-
tions of this angle or small dimensional changes in the paper during
the printing procedure cause large changes in the appearance of the
pattern.

In practice, a correctly made print does not show a regular pattern of
this kind but, instead, very faint clouds of rosette-like groupings of
screen dots, irregularly distributed all over the printed area. If the screen
angles are not correctly set but deviate as little as one degree, the clouds
arrange themselves into the regular pattern of very low frequency.

6.7 Nonorthogonal halftone screens

6.7.1 Introduction

Most halftone screens used in color reproduction are orthogonal screens or
screens in rectangular shapes, more likely in squares. Nonorthogonal screens
refer to screens in general parallelogram shapes. In 1970, Holladay devel-
oped an efficient way of encoding the halftone screens.34 The method gives
a unique halftone description with the advantages of simple implementation
and a small memory requirement. The algorithm is based on geometry of
general parallelograms; therefore, as explicitly pointed by Holladay, any
nonorthogonal halftone screens can be produced and implemented by his
method exactly as orthogonal screens. Obviously, orthogonal screens are
only a small subset of the complete set of all nonorthogonal screens. How-
ever, using general nonorthogonal halftone screens had not shown any major
advantage over orthogonal ones and, as a result, not much interest had been
previously brought in the halftoning field until recently.35,39 Wang, Fan, and
Wen suggested using nonorthogonal screens for moiré-free color halftoning
by searching integer equation solutions.35 

In a typical screening process, a halftone screen is applied repeatedly in
a way similar to a tiling process indicated by the gray lines in Figure 6.40.
With any constant input, the halftone output by this halftone screen will be
a two-dimensional spatial periodical function. From Fourier analysis, it is
clear that the spectrum of the halftone output is composed of, and only of,
the two fundamental frequencies and their higher-order harmonics from the
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Fourier transform of the halftone screen. There is no component with a
frequency lower than the two fundamentals. For most of moiré analysis in
halftone screen design, we may concentrate on fundamental frequencies of
halftone screens, because the dominating moiré is most likely due to the
interaction between fundamental frequencies of individual halftone screens
for different color channels. First, let us consider a typical rotated orthogonal
screen, as shown in Figure 6.40. The geometry of this halftone screen can be
specified by the dual representation of the Fourier transformation. In the
spatial domain, the rectangular screen is specified by two orthogonal vectors,
v1 and v2, shown in Figure 6.41; while in the Fourier transform domain, it
is represented by two orthogonal frequency vectors, V1 and V2, shown in
Figure 6.42. As properties of the Fourier transformation, the two frequency
vectors, V1 and V2, are perpendicular to the two spatial vectors, v1 and v2,

Figure 6.40 Digital grid with an orthogonal halftone screen outlined by red lines.

v1v2

x

y

v1v2

x

y

Figure 6.41 Spatial vector representation of an orthogonal halftone screen.
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respectively, and the moduli, or the absolute values, |V1| and |V2|, are
equal to 1/|v2| and 1/|v1|, respectively. 

From discussions in Chapter 5 and elsewhere in this chapter, one may
have learned that, to eliminate or reduce moirés caused by interaction
between different color channels, it is often critical to have precise rotation
angles of halftone screens. For example, to avoid three-color moirés, tradi-
tional analog halftoning uses an identical dot screen for cyan, magenta, and
black channels with 15, 75 and 45° rotation, respectively. Unfortunately, in
digital halftoning, the selection of possible rotations for halftone screens is
greatly restricted by a digital grid, or raster, defined by the location of
physical pixels. The tangent of the rotation angle, specified by the argument
of the spatial vector v, or the argument of the frequency vectors V, has to be
a rational number, because the two Cartesian-coordinate components of a
spatial vector v have to be integers. For example, a 45° rotation of a halftone
screen, as shown in Figure 6.40, may be achieved in digital halftoning,
because tan(45°) = 1. However, neither 15 nor 75° rotation of a halftone screen
can be implemented digitally, because the tangents of these angles are irra-
tional. Various digital halftoning methods have been proposed for precisely
or approximately reaching certain desired rotation angles of halftone
screens.36–39 Perhaps the most popular approach is the supercell, which is a
rational tangent screen composed of many smaller subcells that are not
uniform in size and shape.37 The drawback of supercells is that a large
halftone screen contains low fundamental frequencies. If the fundamentals
or their spatial harmonics fall in the range of the sensitivity function of the
human visual system, additional effort has to be made during the screen
design process to avoid possible low-frequency artifacts that might be shown
in the halftone outputs. In general, designing a supercell is much more
difficult than designing simple halftone screens with single or a few centers.
On the other hand, the selection of small orthogonal screens with different
rotation angles is quite limited, especially for devices with relatively low
resolutions, which makes it almost impossible to find a moiré-free solution
using rotated simple orthogonal halftone screens for color halftoning. 

In the following sections, a general analysis on nonorthogonal screens
will be discussed, which will lead to a method proposed by Wang et al.35 for
searching moiré-free solutions using simple nonorthogonal halftone screens. 

fx

fy

V1
V2

V1V2

fx

fy

V1
V2

V1V2
Ð Ð

Figure 6.42 Frequency vector representation of an orthogonal halftone screen.
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6.7.2 Dual representation of nonorthogonal screens

A general nonorthogonal halftone screen is outlined by the red lines in Figure
6.43. The shape of this parallelogram screen can be specified by two vectors,
v1(x1, y1) and v2(x2, y2), shown in Figure 6.44. The two fundamental frequen-
cies of the Fourier transform of this screen can be represented by two fre-
quency vectors, V1(fx1, fy1) and V2(fx2, fy2), shown in Figure 6.45. Similar to the
orthogonal case, V1 and V2 are perpendicular to v1 and v2, respectively.
However, the moduli of the frequency vectors |V1| and |V2| are not given
by the reciprocals of |v2| and |v1| as for the orthogonal screens. Instead,
|V1| and |V2| are equal to the reciprocals of h1 and h2, which are the heights,
or the pitches, shown by the dot lines in Figure 6.44. Because the product
|v1|*h1 = |v2|*h2 = A is the area of the specified parallelogram, we may write
the moduli of the frequency vectors V1 and V2 as the following equations:

(6.1a)

(6.1b)

Figure 6.43 Digital grid with a nonorthogonal halftone screen outlined by red lines.

v1(x1, y1)

x

v2(x2, y2)

h1h2 v1(x1, y1)

y

v2(x2, y2)

h1h2

Figure 6.44 Spatial vector representation of a nonorthogonal halftone screen.
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where A is given by the absolute value of the cross product of two vectors,
v1 × v2, i.e., 

(6.2)

Because the spatial vector v1(x1, y1) and the frequency vector V1(fx1, fy1) are
perpendicular to each other, so are v2(x2, y2) and V2(fx2, fy2), and from Equa-
tions 6.1a and 6.1b, it is not difficult to prove that

(6.3a)

(6.3b)

(6.3c)

(6.3d)

Under above-mentioned digital grid constraint (i.e., all spatial vectors are
specified by integers in the Cartesian coordinate), the area A given by Equa-
tion 6.2 must be a nonnegative integer. Consequently, all frequency-vector
components in the Cartesian coordinate are rational numbers. Imagine a
parallelogram specified by the two frequency vectors V1 and V2; one may
see that it would be a rotated and scaled version of the parallelogram halftone
screen with 90° rotation and 1/A scaling. If the condition

(6.4)

fx

fy
V1 V2

V2 V1

fx

fy
V1 V2

V2 V1
Ð Ð

Figure 6.45 Frequency vector representation of a nonorthogonal halftone screen.
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is satisfied, the general parallelogram becomes rectangular. Furthermore, if 

(6.5a)

and 

(6.5b)

the parallelogram becomes a square. 
It is interesting to notice that changing one spatial vector, say v1, of an

orthogonal screen will only affect the frequency V1, while changing v1 of a
nonorthogonal screen will affect, in general, both frequencies, V1 and V2.
Because the two spatial vectors can be specified independently for a paral-
lelogram, the number of different frequencies by using nonorthogonal
screens is approximately N2, comparing with N by using orthogonal screens.
In practice, it is possible to obtain many nonorthogonal screens that look
just like orthogonal screens by choosing the two vectors with an angle
between them close to 90°. This might be not difficult to implement, espe-
cially for devices with relatively high resolutions in either one or two
dimensions. In addition, a diamond-shaped parallelogram can produce
halftone outputs with a hexagon-like halftone texture, which might also be
interesting.

6.7.3 Moiré-free conditions

One particular application of nonorthogonal halftone screens is to provide
perfect solutions for moiré-free color halftoning. Moiré patterns may appear
in the printed documents for several possible reasons. In color printing, the
most unwanted moiré is due to the superposition of the halftone screens of
the different process colors and due to “unwanted absorptions” in the col-
orants. If there are no unwanted absorptions, there is no moiré, as the
colorants do not interact. Using Fourier analysis provided for halftone
screens, we can express the result caused by superposition of two different
colors as their frequency-vector difference, Vcm = Vc ± Vm, where Vc and Vm

are two frequency components from two different colors, e.g., cyan and
magenta, and Vcm is the difference vector. Because each Fourier component
has a corresponding conjugate (i.e., there is always a frequency vector –Vc

that represents the conjugate component of Vc), the sign definition of fre-
quency vectors is rather arbitrary. For each parallelogram screen, there are
two fundamental frequency vectors; therefore, the color mixing of two
screens for two different colors yields four difference vectors as illustrated
by Figure 6.46. If any one of these difference vectors is much shorter than
the cut-off frequency of the sensitivity function of human visual system and
not very close to zero, there is a possibility that two-color moiré will appear
on the halftone output at the frequency represented by the corresponding
difference vector. The common strategy to avoid any two-color moiré is to

x1 ±y2=

y1 +x2=
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make sure that no two-color difference vector will be too small. The two-
color moiré-free condition can be summarized by

(6.6)

where Vc = Vc1, Vc1, −Vc2, −Vc2; Vm = Vm1, −Vm1, Vm2, −Vm2, and Vmin is a
frequency limit set at somewhere between 50 and 70 lpi for just-noticeable
moirés.

It is well known that the most troublesome moiré is the three-color moiré,
usually appearing as the cyan–magenta–black moiré in outputs by CMYK
four-color printers. As an extension of the two-color case, the three-color
moiré-free condition can be summarized by

(6.7)

where Vc = Vc1, −Vc1, Vc2, −Vc2; Vm = Vm1, −Vm1, Vm2, −Vm2; Vk = Vk1, −Vk1, Vk2,
−Vk2, and Vmin is set similarly to the two-color case. Because there are, all
together, 16 different combinations of different color components, in practical
terms, it is difficult to make all three-color difference vectors, as well as all
two-color difference vectors, large enough to avoid any color moiré unless
the halftone screens have very high-frequency fundamentals — say, higher
than 200 lpi. An common alternative approach is to make two of the three-
color difference vectors null while keeping rest large. Given that both the
signs and the indices of frequency vectors are defined somewhat arbitrarily,
without losing the generality, the three-color moiré-free condition can be
specified by the following two vector equations:
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Figure 6.46 Difference vectors by interaction of two colors with different halftone
screens.
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(6.8a)

and

(6.8b)

It is not difficult to prove that, once Equations 6.8a and 6.8b are satisfied,
the rest of the combinations of three-color components are equal to linear
combination of higher-order harmonics from two colors. In most practical
applications, they will satisfy the inequality of Equation 6.7. An example is
illustrated by Figure 6.47.

Using scalar representation of Equations 6.3a through 6.3d, one can
easily rewrite the moiré-free condition as follows:

(6.9a)

(6.9b)

(6.9c)

Vc1 Vm1 Vk1+ +  0=

Vc2 Vm2 Vk2+ +  0=
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Figure 6.47 Three-color moiré-free conditions illustrated by two triangles formed
by vector summations.
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and

(6.9d)

where the values of parallelogram area are given by Equation 6.2 or rewritten
as

(6.10a)

(6.10b)

(6.10c)

Alternatively, two vector equations in spatial vectors can be derived from
Equations 6.9a through 6.9d, i.e.,

(6.11a)

and

(6.11b)

If all Cartesian components of spatial vectors are integer specified, areas Ac,
Am, and Ak are also integers. So, by rearranging Equations 6.9a through 6.9d,
the three-color moiré-free condition can be fully specified by the following
four integer equations: 

(6.12a)

(6.12b)

(6.12c)

and

(6.12d)

Obviously, other moiré-free conditions by the inequalities of Equations 6.6
and 6.7 can be also converted to integer inequalities in a similar manner.
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6.7.4 Searching for moiré-free solutions

From the previous section, it is apparent that, although the original moiré
analysis is mostly based on frequency calculation, all moiré-free conditions
for nonorthogonal screen halftoning can be completely specified by spatial
vectors, which define the shape and size of parallelograms. Furthermore, for
digital halftoning, all these moiré-free conditions can be stated by either
integer equations or integer inequalities. Therefore, the number of moiré-
free solutions is finite, and all solutions can be searched by a computer, even
though there are not enough equations and/or inequalities for analytic solu-
tions. We have also learned that, due to the digital grid constraint, the choices
of different parallelograms are quite limited, which, on the other hand,
allows us to do a quick search for possible combinations for moiré-free color
halftoning. For example, if we restrict the halftone screens to a frequency
range above 120 lpi for a 1200 × 1200 dpi printer, the search is limited to all
integers less than 10. Briefly, a possible search routine might be described
by the following steps:

1. Search all possible parallelograms that meet the required screen sizes
and shapes, and store them as two integer-specified spatial vectors,
(x1, y1; x2, y2) into a screen list.

2. For each set of three parallelograms, say (xc1, yc1; xc2, yc2), (xm1, ym1;
xm2, ym2), and (xk1, yk1; xk2, yk2), from the stored screen list, check
a. Whether three-color moiré-free conditions, integer Equations

6.12a through 6.12d, are satisfied
b. Whether all other two- or three-color moiré-free conditions, inte-

ger inequalities derived from Equations 6.6 and 6.7, are satisfied
c. Whether other possible additional constraints, e.g., symmetry ap-

pearance, are satisfied
3. Save the result if all constraints are satisfied, otherwise, stop checking

and continue to the next combination.
4. Evaluate the result. If necessary, change the requirements for screen

size, shape, moiré frequency limit, or other factors, and redo the
search.

5. Conduct a final evaluation by designing halftone screens based on
selected geometries and by generating and printing testing patterns.

Of course, the above description provides only a skeleton of a possible search
routine. Many possible variations might be implemented to speed up the
search and/or meet additional requirements.

6.7.5 An example of moiré-free nonorthogonal screens

If we assume that all three nonorthogonal screens have the same area, i.e.,
Ac = Am = Ak = A, integer Equations 6.12a through 6.12d can be significantly
simplified, and the search for moiré-free solutions could be done even with-
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out a computer. As an example, by selecting A = 60, a possible moiré-free
solution is given by

vc1 = (8, 2), vc2 = (–2, 7)

vm1 = (2, 7), vm2 = (–8, 2), and

vk1 = (6, 5), vk2 = (–6, 5)

The three parallelograms and their spectral representations are shown in
Figure 6.48. When this set halftone screens is applied to a color printer with
1200 × 1200 dpi resolution, the halftone output will have the following
frequency properties:

fx

fy

Vc1

Vc1

Vc2

Vk2Vk1

Vm2

Vm1

Vk2 Vk1

Vm2

Vm1 Vc2

Vc1

Vk1

Vm1

Vc2

Vm2

Vk2

fx

fy

Vc1

Vc1

Vc2

Vk2Vk1

Vm2

Vm1

Vk2 Vk1

Vm2

Vm1 Vc2

fx

fy

Vc1

Vc1

Vc2

Vk2Vk1

Vm2

Vm1

Vk2 Vk1

Vm2

Vm1 Vc2

Vc1

Vk1

Vm1

Vc2

Vm2

Vk2

Vc1

Vk1

Vm1

Vc1

Vk1

Vm1

Vc2

Vm2

Vk2

Vc2

Vm2

Vk2

–

–

–

–

–

–

Figure 6.48 Three nonorthogonal halftone screens satisfying moiré-free conditions.
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Cyan tan–1(8/2) ≈ 75.96°, 164.9 lpi and tan–1(−2/7) ≈ 15.95°, 145.6 lpi

Magenta tan–1(2/7) ≈ 15.95°, 145.6 lpi and tan–1(–8/2) ≈ 75.96°, 164.9 lpi

Black tan–1(6/5) ≈ 50.2°, 156.2 lpi and tan–1(–6/5) ≈ 50.2°, 156.2 lpi

where the angle is defined as tan–1(x/y), and x and y are the two integer
components of the spatial vector v(x, y).

Figure 6.49 shows the output by this set of nonorthogonal halftone
screens with certain constant input for cyan, magenta, and black channels.
There are two scaled-up versions of the output with different scale factors
in Figure 6.49. It is interesting to notice that the rosette pattern generated by
this set of nonorthogonal screens has clear repeated structure, which is quite
different from rosette patterns generated by classical rotated orthogonal
screens.

6.8 FM halftoning methods

6.8.1 Introduction

There are several FM halftoning algorithms (see Section 6.2). Of these, error
diffusion is the easiest FM halftoning method to implement. It also produces
very high image quality, due to its low noise and inherent edge enhancement.
This section will describe the error diffusion algorithm in detail, along with
a threshold array emulation of error diffusion, stochastic screens.

Error diffusion was invented by Floyd and Steinberg in 1975. It was a
simple algorithm created to improve the display of their images.40 They did
not understand why, but the algorithm produced very high-quality images,
especially as compared with other algorithms available at the time.

Figure 6.49 (See color insert) Sample halftone outputs by a set of moiré-free non-
orthogonal halftone screens displayed in different scales.
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Much work has been done to analyze and understand the workings of
error diffusion

 

41

 

 over the 25+ years since its invention. We now understand
that much of its detail rendition comes from an inherent edge enhancement

 

42

 

built into the algorithm. An understanding of the errors generated

 

43

 

 and
what limits to place on them has developed. New filters

 

44

 

 have been designed
to limit texture artifacts. Extensions to color and vector error diffusion have
deepened our understanding of the nature of the algorithm. Error diffusion
continues to be one of the best digital halftoning algorithms available for
image quality, detail rendition, and pleasing textures.

 

6.8.2 Error diffusion algorithm

 

Error diffusion is an adaptive thresholding algorithm that converts each pixel
in the image to one of two levels, either black or white. Because the original
pixel was not binary, an error was made in this process. This error is diffused
to the neighboring pixels that are still to be processed, hence the name of
the algorithm.

Figure 6.50 illustrates the algorithm part of the way through an image.
The algorithm processes the pixels in an image sequentially, typically
addressing the pixels from left to right and top to bottom. The pixels in the
top half of the image have already been converted to black or white, and the
pixel in the middle has just been converted to white. Because this pixel was
originally gray, an error was made by setting it to white. The total picture is
now too bright, by the difference of the input and output values of this pixel.

To correct for making the picture too bright, the error is divided into a
small number of parts, which are then subtracted from the neighboring
pixels that have not yet been processed. The original distribution of four
parts used by Floyd and Steinberg is shown in Figure 6.51. Floyd and
Steinberg chose this distribution because it gave them the most even dis-
tribution of textures in the output image with the fewest artifacts. Larger

Figure 6.50 Error diffusion algorithm.
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error arrays45 and longer error arrays44 also have been tried, yielding slightly
better results.

Having modified the continuous-tone values of the neighboring pixels,
the average brightness of the total image is now returned to its original value.
In the process, however, the values of the remaining continuous-tone pixels
have been changed. As the algorithm moves to threshold the next pixel in
the middle scan line, that pixel’s value will be different from its original
value and may be closer to either black or white. That change will make this
pixel more or less likely to be converted to either black or white.

When the algorithm has finished, all of the pixels in the output image
will be either black or white. The only thing that the algorithm has guaran-
teed is that the total sum of all of the binary pixels will be very close to the
total sum of the pixels in the original image. It turns out that the algorithm
also guarantees that local averages of the binary image also are very close
to the local averages of the corresponding regions of the original grayscale
image. To understand how this occurs and why error diffusion has such
good tone reproduction requires an analysis of the equations governing its
behavior.

The diagram outlining this algorithm is shown in Figure 6.52. The input
image is i(x, y) and the output binary image is b(x, y). The thresholding step
is represented by the nonlinear function, q[], and the filter, ajk, represents the
error distribution weights, such as those shown in Figure 6.51.

The output image does not have to be binary. If the nonlinear function,
q[], is a quantization rather than a thresholding step, then a multilevel output
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Figure 6.51 Floyd and Steinberg error distribution weights.
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+--
i(x, y) b(x, y)

e(x, y)

Figure 6.52 Schematic diagram of the error diffusion algorithm.
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image will result. In general, the output can be any number of levels, but
the basic assumption of the halftoning process is that the number of output
levels is smaller than the number of input levels.

6.8.3 Error diffusion equations

The error diffusion algorithm can be described by two coupled, nonlinear
equations (see Equations 6.13 and 6.14. Because of the nonlinearity, a closed-
form solution of the output binary image, as a function of the input image,
is not possible. The algorithm described in the previous section produces an
empirical solution to these equations.

To simplify the discussion, white will be assumed to have a value of 1,
and black is 0. In this case, both the input and output images can vary
between 0 and 1 but cannot go outside those bounds. The errors are bound
between ±1/2.

With these conditions, the error diffusion algorithm can be described by
the following equations:

b(x, y) = q[i(x, y) – Σ(ajk e(x – j, y – k))] (6.13)

e(x, y) = b(x, y) – i(x, y) + Σ (ajk e(x – j∆x, y – k∆y)) (6.14)

where the summations are carried out over indices j and k, covering a small
neighborhood of the current pixel. In the first equation, the value of the
output image at every pixel, b(x, y), is the thresholded value of the modified
image pixel value at that point. The threshold function, q[], compares its
argument to 1/2 and outputs white if the argument is greater than 1/2, and
outputs black otherwise. The modified input value is the difference between
the original value of the pixel, i(x, y), and the weighted errors from the
neighboring pixels processed earlier. The weights are assumed to sum to
unity.

The second equation defines the error at each pixel location, e(x, y). This
error is simply the difference between the output pixel value and the mod-
ified input pixel value. It is this error that is weighted and distributed to the
neighboring pixels in the first equation. The error, e(x, y), is a two-dimen-
sional function and can be viewed as an image.46

If the nonlinear thresholding step is generalized to a quantization func-
tion, then multilevel halftoning is enabled. The more general quantization
function, q[], compares its argument to a series of levels and outputs the
value of the level that is closest to the argument. All other parts of the two
equations remain the same.

6.8.4 Spectral analysis of error diffusion

Although the two equations cannot be solved together, the error equation,
which is a linear equation, can be further analyzed by using Fourier trans-
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forms. After Fourier transforming Equation 6.14 and collecting all of the
error terms together, it becomes

B(u, v) = I(u, v) + F(u, v) E(u, v) (6.15)

where the filter function, F(u, v) is given by

F(u, v) = 1 – Σ (ajk exp(–i(j∆x + k∆y))) (6.16)

In these equations, capital letters are used to represent the Fourier transforms
of the corresponding image functions.

Although Equation 6.15 still contains two unknown functions, B(u, v)
and E(u, v), it brings to light an amazing relationship between them. Equation
6.15 states that the spectrum of the output image, B(u, v), is identically equal
to the input image spectrum, I(u, v), plus a filtered version of the error
spectrum, E(u, v). Because the image spectrum is the desired output spec-
trum, the only source of artifacts or halftone textures in the output image
must come from the error spectrum.

The error spectrum is still an unknown but, independent of its nature,
an important conclusion from Equation 6.15 is that the contribution of the
error spectrum to the output image has to pass through the filter function,
F(u, v). That means that any texture artifacts in the output image also must
pass through this filter function. It is important, therefore, to understand the
nature of this filter.

From Equation 6.16, it can be seen that the filter function, F(u, v), depends
on the error distribution weights, ajk. In Figure 6.53, the magnitude of the
filter function, F(u, v), is shown for the Floyd and Steinberg weights. In this
figure, the zero frequency point is in the center, and the corners are located
at ±1/2 the scan frequency, or the Nyquist frequency. Larger filter values are
shown as brighter values in the image.

Figure 6.53 Error diffusion filter for the standard error weights.
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There are two clear observations to be made from the image in Figure
6.53. The first is that the filter function, F(u, v), is a highpass filter. It blocks
DC values and passes the high spatial frequencies. The second observation
is that the filter is asymmetric. It suppresses the low spatial frequencies in
one direction much more strongly than it does in the perpendicular direction.

These two observations lead to two very important conclusions about
error diffusion. The first conclusion is that the halftone textures in the error
diffusion image contain no very low spatial frequencies. The textures must
come from the error spectrum, and the error spectrum must pass through a
high-pass filter. Therefore, the output halftone image is made of only high-
spatial-frequency halftone textures. This is the origin of the well known blue
noise characteristics of error diffusion.41

The second conclusion is that these textures are asymmetric. The filter
function suppresses texture frequencies oriented roughly at –55°. This
enhances texture frequencies perpendicular to that direction or at roughly
35°. This is the origin of the “worms” in the highlights and shadows.

In the highlights, the gray level is very close to white. As an FM half-
toning algorithm, a highlight level is represented as a few widely spaced
black pixels in a white field. This creates a lower-spatial-frequency halftone
pattern, which is passed through the asymmetric part of the filter function.
The result is a pattern that is closely spaced in one direction and widely
spaced in the perpendicular direction, i.e., lines of black pixels, or “worms.”
The same effect happens in the shadows, where a few white pixels on a black
background form directional lines. The many attempts to fix the problem of
the “worms” by altering the way the error are distributed are described
elsewhere.47

6.8.5 Error image and edge enhancement

Another distinct advantage of error diffusion over other halftoning algo-
rithms is that it inherently builds edge enhancement into the output half-
toned image. Error diffusion images look sharper than images halftoned
with other techniques, because they have been edge enhanced. 

The edge enhancement arises from the influence of the error image,
e(x, y). Although the error image cannot be predicted from the input image
and the error weights, the error image can be calculated empirically by
modifying the error diffusion algorithm to save the errors as the algorithm
progresses.

An example of an error diffusion image and its error image are shown
in Figure 6.54. It is clear from this figure that the error image looks quite a
bit like the input image. A correlation measurement of the two images
suggests that there is a linear component of about 1/2 of the continuous-
tone input image in the error image, for the standard Floyd and Steinberg
weights. There are different amounts for other error distributions.46

The linear component of the input image in the error image can be
expressed as
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E(u, v) ~ 1/2 I(u, v) + R(u, v) (6.17)

where R(u, v) is the spectrum of the remainder of the error image after the
linear component is subtracted. To the eye,46 this remainder error image
appears to be uncorrelated to the original image. If Equation 6.17 is substi-
tuted into Equation 6.15, the output spectrum becomes

B(u, v) = I(u, v) (1 + 1/2 F(u, v)) + F(u, v) R(u, v) (6.18)

From this equation, it can be seen that the output spectrum is related to
an input spectrum that has been enhanced by the addition of a high-pass
term that boosts the high spatial frequencies. This is the origin of the inherent
edge enhancement in error diffusion.

6.8.6 Color error diffusion

In the analysis presented so far, only monochrome images have been con-
sidered, and it does not directly apply to color input images. The introduction
of color into error diffusion changes the nature of the algorithm along with
the visual characteristics of the output image. A different error diffusion
algorithm is required to halftone a color input image. At the time of this
writing, research on color error diffusion is ongoing, and it is clear that new
and improved algorithms will be continue to be developed in the future.

The simplest color error diffusion algorithm, and the first one developed,
is color scalar error diffusion. Although each pixel in a color image is actually

Figure 6.54 Error diffusion image and its corresponding error image.
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a three-element color vector, a scalar method can be applied to each color
separation independently. The scalar method used is just the monochrome
error diffusion method described earlier. For display applications, the pixel
values remain in RGB color space but, for printing applications, the pixel
values are first converted to CMY or CMYK.

Error diffusion is known as a high-spatial-frequency halftone method
that preserves detail and reduces halftone texture. This is still true of each
of the three-color separations of the output scalar color error diffusion image.
This is no longer true, however, of the combined output color image. When
the three separations are processed independently, the output pixels at any
given location are uncorrelated with the pixels at the same location in the
other separations. As a result, color errors and low-spatial frequencies are
introduced as the three separations are combined together in the output
image.

The interaction of three uncorrelated error diffusion patterns can be seen
in the monochromatic combination of three light gray error diffusion pat-
terns in Figure 6.55. The three patterns, shown on the right in the figure, are
made from gray patches at three slightly different levels. The three error
diffusion patterns are all high-spatial-frequency patterns that have little low-
spatial-frequency content.

The image on the far left of the figure is the union of the three patterns;
i.e., at each pixel, if one of the three patterns is black, then this pixel is turned
black. This union is a simulation of the effect of combining the three patterns
in color and is only a rough measure of the luminance of the resultant image.
From the left image, it can be seen that a strong low-spatial-frequency noise
component is introduced into the texture pattern. In a color image, this
pattern is less pronounced but is still objectionable.

The noise pattern is introduced because, when the three patterns are
combined together, the uncorrelated arrangements of pixels sometimes over-
lap and sometimes lie adjacent to each other. The individual pixels from the
three separations are different colors, i.e., cyan, magenta, and yellow. Because
inks have unwanted absorptions,48 different combinations of the same col-
ored pixels produce different colors. This introduces low-spatial-frequency
color errors in addition to the luminance errors already mentioned. These
errors in color reproduction cannot be removed by calibration, and they
make scalar color error diffusion unacceptable for color printing. There are

Figure 6.55 Combination of three uncorrelated error diffusion patterns.
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no unwanted absorptions on color displays, but the low-spatial-frequency
luminance patterns are still present.

6.8.7 Vector error diffusion

Vector error diffusion was developed to extend error diffusion to color dis-
plays with a limited palette. Scalar error diffusion gave very poor quality
on such displays, while vector error diffusion greatly expanded the color
resolution of the displayed image. Later, vector error diffusion was also
applied to printing to solve the problem of the errors in color reproduction
that are introduced by scalar error diffusion. Although vector error diffusion
solved both the problem of palette imaging and random color errors, it
introduced its own problems related to runaway errors. Despite its problems,
in general, vector error diffusion produces a higher quality image than does
scalar error diffusion.

The vector error diffusion algorithm is a very simple vector extension
of standard error diffusion. The first step in that extension is to choose a set
of primary colors. These primaries can be anywhere in the allowable color
space. In scalar error diffusion, the primaries correspond to the maximum
and minimum allowable values; for example, black and white in the mono-
chrome case.

The basic extension of vector error diffusion is to generalize the quanti-
zation function, q[], in Equation 6.1 to a vector choice. In the monochrome
case, the quantization function is either a threshold, for black and white, or
a quantization to a smaller number of levels for the multilevel case. In either
case, one matches the input level to a set of allowable output levels and
chooses the closest output level. In vector error diffusion, the quantization
function measures the vector distance from the input color to all of the
allowable primaries and chooses the primary that has the shortest distance.

(6.19)

The  symbol represents the Euclidean distance measure of the differ-
ence vector argument, and the “arg min” function chooses the value of pk

that minimizes the distance measure. The choice of the color space in which
to measure the error distance has a great influence on the performance of
the algorithm. A visually uniform color space, such as L*a*b*, is typically
used to make the error measurements related to visual perception.

In the case where the errors are measured in the same color space as the
output values, and the primaries are the eight corners of the color cube, the
vector calculation produces the identical result as the scalar calculation.
Vector error diffusion produces a different result when nonlinearity is intro-
duced by the choice of the color space or of unevenly spaced primaries.

Vector error diffusion was first introduced to deal with color monitors.49

Early displays, and even some contemporary ones, operate with a reduced
number of colors, e.g., 256. These graphics boards have an 8-bit lookup table

q i x y,( )[ ]  min i x y,( ) pk–( )arg=

·
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that provides a palette of 256 colors, which can be arbitrarily chosen out of
the full range of 24-bit colors. Color displays are a special case in which
multiple levels can be shown and for which RGB is an appropriate color
space to use. Even so, the limit of 256 colors is a severe restriction that greatly
hampers the quality of the output image when produced by scalar error
diffusion.

Although it may seem that 256 colors is a very small number of colors,
it is much larger than the 8 primary colors that the binary scalar error
diffusion would use. This enables the vector error diffusion algorithm to be
multilevel, thereby reducing the visibility of the texture patterns that are
produced by a proper choice of additional primary colors. The L*a*b* color
space was shown50 to be a suitable choice for choosing visually uniformly
spaced colors, after an adjustment that more heavily weights the luminance.
Methods have also been studied51 to create universal palettes that can be
used on more than one image simultaneously.

More recently, groups have begun to study how to adapt vector error
diffusion to printed images. The print medium is significantly different from
displays because of the nonlinearity introduced by unwanted absorptions
of the inks. The techniques to address color calibration issues are covered
elsewhere in this book, in the discussions on colorimetric reproduction.

The goal of applying vector error diffusion to printed images is to
address the problem of errors in color reproduction caused by the interac-
tions of uncorrelated error diffusion patterns in scalar error diffusion. By
calculating the color errors directly from the vector differences, the color
differences in the output image can be minimized. In vector error diffusion,
the texture patterns in the CMYK separations are well correlated, so low-
spatial-frequency texture patterns are minimized, producing less visual tex-
ture noise to the eye.

The use of L*a*b* color space to measure the color differences can help
choose less-visible alternative patterns that scalar error diffusion cannot
choose. For example, it has been pointed out52 that a gray level can be
represented either by an alternating pattern of black and white pixels or by
a higher spatial frequency pattern of cyan, magenta, yellow, and white pixels.
The latter combination of colored pixels has a lower luminance contrast and
would be more likely chosen by the color difference quantization function
in Equation 6.19. The tendency to choose lower contrast and higher spatial
frequencies means that vector error diffusion produces much higher quality
images than does scalar error diffusion.

This higher quality does not come without problems, however. Two
problems arise as a consequence of measuring errors in L*a*b* color space
while printing the output colors in a different color space, such as CMY. To
achieve the proper combination of colored pixels that reproduce the input
color, the feedback algorithm in error diffusion causes the production of very
large errors. Because the errors are large, it can take many pixels to reach
the equilibrium position. Also, at input color transitions, the accumulated
error distorts the new color causing a colored smear over the transition
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boundary. These two problems53 are called slow response and color smear.
Methods to limit the errors within the algorithm have been developed53,54 to
solve these problems. 

6.8.8 Semi-vector error diffusion

A new algorithm, called semi-vector error diffusion, was recently proposed55

that combines the best parts of both scalar and vector error diffusion while
avoiding the major problems. Semi-vector error diffusion is designed for
printing applications, and it is intended for CMY images. Any color correc-
tion is done before error diffusion is performed. The output images have
very good image quality and are close to those achieved with vector error
diffusion.

The algorithm is simple. It starts by applying standard scalar error dif-
fusion to the yellow component. It turns out that yellow has the least bright-
ness change and also the least unwanted absorptions. For all practical pur-
poses, the yellow component is visually independent of the cyan and
magenta components. If this is not the case, the yellow component can be
processed with the other two components in a slightly more complicated
sum and difference algorithm.56

The cyan and magenta separations are now quantized together using
the following rules, as shown in Figure 6.56. First, because CMY are dark-
ness-increasing components, a value of 1 means full ink, and a value of 0
means white, or no ink. If the sum of cyan and magenta is greater than 1.5,
then set the output color to blue. If the sum is less than 0.5, then set the
output color to white. Otherwise, set the output color to cyan or magenta,
depending on which is larger. The cyan and magenta errors are calculated
separately and diffused within their independent separations.

The semi-vector algorithm is a clear mixture of the scalar and vector
algorithms. The error handling is done independently, as in the scalar
method, but the quantization is calculated with the cyan and magenta sep-
arations simultaneously, as in the vector algorithm.

  

 

  
 

  

 

  

 

Figure 6.56 Schematic diagram of semi-vector quantization.
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Because the errors are calculated in the scalar manner, the errors are very
stable, and they do not exhibit runaway modes as the errors do in vector
error diffusion. As a result, semi-vector does not exhibit the problems of
slow response or color smear.

Because the cyan and magenta separations are calculated together, the
error diffusion patterns in the two separations are well correlated, and the
combination contains high-spatial-frequency textures. Semi-vector error dif-
fusion, therefore, avoids the random color errors and low-spatial-frequency
patterns that scalar error diffusion exhibits.

Finally, semi-vector error diffusion is a simple algorithm that avoids the
complexity and computation of vector error diffusion while providing a high
level of image quality with high spatial frequencies and few artifacts.

6.8.9 Stochastic screens

In general, FM halftoning methods, such as error diffusion, pulse density
modulation, etc., are spatially adaptive algorithms. These methods adjust
the output pixel value based not only on the immediate input pixel value
but also based on neighboring input and output values. It is because of the
adaptive nature of the FM halftoning algorithms that they can achieve the
high-spatial frequencies and the high image quality that they do.

A stochastic screen is a standard threshold array halftoning screen that
is designed to produce an output halftoned image that looks like an error-
diffusion image. The application of the screen is not done in a spatially
adaptive method but rather as a point process that does not depend on the
neighboring values of the input image. The texture patterns in an image
halftoned with a stochastic screen are made up of pixels that are randomly
dispersed in the image in a high-spatial-frequency manner. The spatial fre-
quencies of the screen have been shaped so that the output textures are
similar to those produced by error diffusion.

The trick in a stochastic screen is in the design of the screen. This design
step requires a spatially adaptive algorithm that iterates many times to search
for optimal solutions. Constraining the threshold array itself to high spatial
frequencies57 is not sufficient. The output halftone patterns at many levels
need to be constrained to contain high spatial frequencies.

The blue noise mask58 is a stochastic screen that is constructed by con-
straining the output halftone patterns. The pattern for a given level is
designed by an iterative process that starts with a random seed pattern. This
pattern is blurred with a filter whose width is narrowest at mid-gray. The
rms error between the pattern and the seed is calculated. The errors are
sorted by value and a set of M pixels with the largest opposite errors are
swapped. A new rms error is calculated, and the M swaps are accepted if
the rms error decreases. An example of an initial seed pattern, the errors
generated by blurring, and the final pattern produced after many iterations
are shown in Figure 6.57.
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After the pattern for a given level is determined, the seed pattern for
the next level is generated by adding M random nonoverlapping, black
pixels to it, where M is the number needed to achieve the next average gray
level. The process is repeated at this level to generate a new pattern. The
threshold array is generated by filling each pixel location with the gray level
value at which the pixel turns from black to white.

Other methods of generating stochastic screens have been developed
using visual metrics59 and genetic optimization.60 All of these have the prop-
erty that individual gray levels are first optimized and then combined to
create the threshold array.

There is one method for generating a stochastic screen that works
directly with the threshold array values.61 This method starts by generating
a random array of threshold values. A cost function is computed that penal-
izes pairs of thresholds that will generate pixels of the same color that are
close together. This cost function is computed over all gray levels and com-
bined into one result. As the iterations proceed, swaps between pairs of
thresholds are considered and, if the merit function improves, the swap is
accepted. Because no individual gray level patterns are generated, there is
no need to reconstruct the array at the end.

By comparing thresholds, all levels are optimized simultaneously. This
enables a more uniform optimization to be done over the whole gray-level
range of the halftone dot, and it avoids the problem of optimizing some
levels so well that there is no room to optimize the last few levels.

The extension of stochastic screens to color involves the same issues that
were discussed with vector error diffusion. The same problem of combining
three different colored texture patterns without introducing new low-spatial-
frequency texture patterns, or any new color errors, exists for stochastic
screens. The solution is the same — to generate the arrays simultaneously
with an optimization criteria designed to minimize low-spatial-frequency
patterns. Techniques have been developed59,62 to generate color stochastic
screens with varying degrees of success.

The stochastic screen offers an interesting alternative to error diffusion.
Because it is a threshold array, it is easy to compute the output halftone
image. Error diffusion, especially in color, is a more complex algorithm and
requires much more computation.

Figure 6.57 Stochastic screen seed, errors, and pattern for level 249.
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This simplicity, however, comes at a cost. The constraint, required of a
threshold array, that a pixel set at one gray level cannot be unset at a different
gray level, puts limits on the type of patterns that can be generated at all
gray levels. Because it is an adaptive algorithm, error diffusion does not have
this restriction; therefore, it has the potential to generate much more visually
pleasing patterns at all gray levels and colors.

6.9 Calibration

6.9.1 Introduction

Most current hard-copy devices, including inkjet printers and laser printers,
are essentially binary devices; i.e., the output dots by such devices are either
on or off. To use such devices to represent a continuous-tone image, the
image has to be halftoned first. We may describe a such halftone printer by
the diagram shown in Figure 6.58. A continuous-tone image, usually repre-
sented by eight-bit signals, is processed by a digital halftoning unit and
converted to a binary image, represented by one-bit signals. The binary
image is further sent to the physical output device to generate a hard copy.
For color printing, the typical representations of the continuous-tone image
and the binary image are eight-bit and one-bit CMYK signals, respectively.
By considering the halftoning process and the binary printer together as a
complete unit, we may treat the halftone printer as a continuous-tone printer,
which takes eight-bit input signals and generates a hard copy. Therefore,
various continuous-tone printer models, used for printer characterization,
calibration, and other applications,63 can be applied to halftone printers as
well. On the other hand, a true binary printer model should be halftoning
independent and should predict the output color at the pixel level from a
binary input image. There will be two main advantages to having the true
binary printer model. First, it will make the printer calibration halftone-
algorithm independent. So, it will be possible to use different halftone meth-
ods or halftone screens without repeated and often time-consuming calibra-
tion for each halftone choice. Second, it will provide prediction of the color
output at the pixel level, while all continuous-tone printer models can only

Digital
Halftoning8-bit

CMYK
Hardcopy

OutputPrinter

Halftone Printer

1-bit
CMYK

Digital
Halftoning8-bit

CMYK
Hardcopy

OutputPrinter

Halftone Printer

1-bit
CMYK

Figure 6.58 Digital halftone printer consisting of a halftoning unit and a physical
binary printer.
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estimate spatially averaged colors for halftone printers. Thus, using a binary
printer model will allow one to preview the output image without actual
printing and to compare the predicted output with the desired one in a pixel-
by-pixel manner. Further image processing might follow the comparison for
color correction, image enhancement, and many other possible applications.
Up to now, very few binary printer models have ever been proposed, and
most of the study has been limited to black-and-white (monochromatic)
binary printers.

 

64–67

 

 In this section, we will describe a binary printer model
based on a novel two-by-two (2 

 

¥

 

 2) centering concept. First proposed by
Wang, it can be applied to black-and-white printers

 

68,69 

 

as well as color print-
ers.

 

70,71

 

 The 2 

 

¥

 

 2 printer model provides a truly measurement-based method
to characterize a variety of binary printers, regardless of the actual physics
and mechanics behind printing. 

 

6.9.2 Dot overlapping

 

An idealized color printer is expected to print all dots spatially uniformly,
in perfect square shape, and to have no overlapping between adjacent dots.
For example, the dot pattern shown in Figure 6.59 consists of four different
color pixels that are perfect cyan, green, white, and black squares, generated
by an idealized CMY color printer. Because all four colors above are among
the eight primaries, or solid colors, used by a CMY printer, the color appear-
ance of each pixel can be exactly predicted from measurement of patches
printed in corresponding solid colors. Because there is no overlapping
between adjacent dots, no color other than primary colors needs to be con-
sidered. The idealized printer model can describe the color output at the
pixel level for any binary input patterns. 

In reality, the actual outputs from different printers are much more
complicated than the idealized case. Dots have irregular shapes, and the
size, shape, and density vary with time and location. The scattering of the
light in the paper substrate adds further complexity, making a detailed

Figure 6.59 (See color insert) Idealized printer model with all output pixels in perfect
square shape. The input is a spatially and periodically repeated 2 ¥ 2 binary pattern
with cyan, yellow, green, and black, four different colors.
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microscopic model of the overlapping very difficult to construct. A circular-
dot printer model, shown in Figure 6.60, is perhaps still too idealized in fact.
The circular-dot model assumes that all dots have an identical round shape
and size, and each circular dot is located at the center of the square defined
as the output pixel. Because, to the first order, the human visual response
can be assumed to be a lowpass filter, it is not necessary to have a complete
knowledge of the overlapping for printer modeling. Instead, an estimation
of the average color appearance of each output pixel will be sufficient.
Clearly, with overlapping considered, the average color of each square pixel
depends not only on the dot centered at this pixel but also on the surrounding
dots — at least eight immediate neighbors. For example, in the pattern shown
by Figure 6.60, each cyan dot is surrounded by two green dots, two white
dots (spaces), and four black dots. Because each dot has eight possible
primary colors for a CMY color printer, the total number of all possible
combinations of 9 dots, including the center one and eight immediate neigh-
bors, is given by the power 8

 

9

 

, or 134,317,728. This number is definitely too
large to handle for any possible characterization attempts. Furthermore, even
a simple dot pattern such as the one shown in Figure 6.60 is a combination
of four different 3

 

 ¥ 

 

3 dot combinations, which are centered by cyan, green,
white, and black dots, respectively. Measurement of a printed patch with
the above dot pattern will only provide a result of mixed colors by four
different output pixels. Finding out the contribution from each type of com-
binations requires additional calculation.

Pappas and others studied printer modeling for monochromatic binary
printers,

 

65

 

 which have only two primary colors: black and white. So, the total
number of all possible 3

 

 ¥ 

 

3 dot combinations is equal to 2

 

9

 

, or 512. Assuming
that the overlapping is symmetric about both 

 

x

 

 and 

 

y

 

 directions, one can
reduce the number 512 to 102. This number can be further reduced to 50
under specified assumptions.

 

65

 

 In other words, there are 50 different reflec-
tance values to be determined for all possible output pixels from a black-
and-white printer. Unfortunately, even with this much reduced number, it
is still not trivial to solve for individual reflectance. The characterization

Figure 6.60 (See color insert) Circular-dot printer model showing geometrical overlap
of adjacent dots from an input with the same binary pattern as the one in Figure 6.59.
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process conducted by Pappas and others might be briefly described as fol-
lows: 200 different patches with periodically repeating binary structures
were generated and printed by a specific printer, and the average reflectance
from each patch was measured. The result of each measurement was con-
sidered as a linear combination of 50 unknown parameters, and the deter-
mination of these parameters became a matrix inversion problem. Because
the matrix involved was not with a full rank, and there were discrepancies
in the measurement, the solution had to be solved through a rather compli-
cated optimization calculation. Practically, it is currently unfeasible to extend
this approach to characterizing any color printers. 

6.9.3 Two-by-two centering concept

Before the discussion of the 2 × 2 centering concept, it should be worthwhile
to remark that a solid color, which has all pixels printed with exactly the
same color, can be determined by a macroscopic measurement — not just
for the average color of a large area but also for each individual pixels. A
true continuous-tone printer can generate solid colors for any color values.
Therefore, it is not difficult to characterize a continuous-tone color printer
using direct measurement-based methods. However, a halftone color
printer can print only a few primary colors (e.g., cyan, magenta, yellow,
red, green, blue, black, and white for a CMY color printer) as solid colors.
No binary patterns, other than primaries, can be considered as solid colors
at the pixel level.

The difference between the 2 × 2 centering concept and the traditional
approach is in the definition of output pixels. There is no physical reality
directly tied with the square-shape output pixels. The grid defining the
output pixels is a conceptual coordinate for modeling purpose. Any change
of the grid, or the definition of output pixels, will not affect the actual
physical output of the printer at all. Therefore, we may redefine the output
pixels by shifting the grid to a new position, as shown in Figure 6.61, so that
each dot, representing the physical output, will be centered at one cross point

Figure 6.61 (See color insert) Same dot-overlapping pattern in Figure 6.60 is shown
with the 2 × 2 centering coordinate.
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of the shifted grid. Although the dot pattern in Figure 6.61 is exactly the
same one in Figure 6.60, overlapping details within output pixels defined
by the new grid are completely different from output pixels defined by a
conventional coordinate, shown in Figure 6.60. In Figure 6.61, there are four
different output pixels, which are also displayed separately in Figure 6.62.
It is not difficult to see that all these four patterns are mirror images of each
other. Hence, all pixels in Figure 6.62, as well as all pixels in Figure 6.61,
should have an exactly same averaged color over the pixel area. In other
words, the binary pattern of Figure 6.61 may be considered as a “solid” color.
By looking at another dot pattern, shown in Figure 6.63, with a more-or-less
arbitrary binary input, one may find that the output pixel, indicated by a
heavy outline square, has exactly the same “solid” color defined by the 2 ×
2 pattern in Figure 6.61. Obviously, the rest of the output pixels in Figure
6.63 also have their corresponding “solid” colors, respectively. As a matter
of fact, all output pixels defined by the 2 × 2 centering concept are “solid”
colors and can be determined by a straight measurement-based character-
ization process, including generating patches with periodically repeated 2 ×

a b

c d

a b

c d

Figure 6.62 (See color insert) Four different output pixels in Figure 4 are illustrated
as mirror images of each other.

Figure 6.63 (See color insert) Dot overlap with an arbitrary binary input is shown
with the 2 × 2 centering coordinate. The output pixel indicated by a heavy outline
has the “solid” color, or the 2 × 2 color, defined by the binary pattern of Figure 6.59.
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2 binary patterns and measuring patches macroscopically by a conventional
color measurement instrument. 

Because each 2 × 2 pattern is defined by four color input values, the total
number of different 2 × 2 patterns, or 2 × 2 colors, depends on the total
number of different input colors, or primary colors, of the color printer. One
may prove that the total number of 2 × 2 colors, N, for a color printer with
P primary colors, is given by the following equation: 

(6.20)

where

As listed in Table 6.4, a black-and-white printer has N = 7 2 × 2 colors, a CMY
color printer has N = 1072, and a CMYK color printer has N = 16,576. Figures
6.64 and 6.65 show all calibration patches used for characterizing 2 × 2 colors
for a black-and-white printer and a CMY color printer, respectively. 

Clearly, the 2 × 2 printer model can be also applied to printers with dot
shapes other than circles and with different resolutions between x and y
directions. In general, the 2 × 2 printer modeling requires only that all
overlapping dots should be symmetric about both the x and y axes and
should be no larger than the size of two output pixels in both dimensions.
Details of the analysis and generalizations of the 2 × 2 centering concept can
be found in a recent paper by Crounse.72 These conditions are well satisfied
by many binary output devices. Even if the above conditions do not hold
exactly, the 2 × 2 modeling still provides the best estimation of the output
colors at the pixel level — at least in the statistical sense. 

Table 6.4 Total Number, N, of Different 2 × 2 Colors for a Binary Color Printer 
with C Different Colorants and P Different Primary Colors

No. of 
Colorants, C

No. of Primary 
Colors, P = 2C Power P4

No. of Independent 
2 × 2 Colors

1 2 16 7

2 4 256 76

3 8 4,096 1,072

4 16 65,536 16,576

N 6CP
4 9CP

3 5CP
2 CP

1+ + +=

CP
k P!

P k–( )! k!⋅
---------------------------- if k P≤=

0 otherwise=
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6.9.4 Neugebauer equations and Yule–Nielsen modification

The 2 × 2 printer model predicts output colors at the pixel level. To estimate
the average color of a large area by a binary color printer, one may use the
modified Neugebauer equations described in this section. 

For binary printers, the Neugebauer equation73 predicts average colors
through combination of the primary colors. For the following discussion,
colors are specified in spectral reflectance, although they could be in tristim-
ulus values XYZ as well. The predicted color reflectance R(λ) of an output
by a binary printer is given by

(6.21)

where ai and Ri(λ) are the area coverage and the spectral-reflectance of each
primary color, respectively, and N is the total number of primary colors. For
black-and-white printers, N = 2. For CMY three-color printers, N = 8.

Considering the scattering of light within the paper, Yule and Nielsen
modified the Neugebauer equation by the following equation:74

(6.22)

where n is the Yule–Nielsen factor, often chosen as a fitting parameter.
The difficulty in applications of Neugebauer equations with conven-

tional printer models is to accurately estimate the area coverage of primaries,
mainly due to the complexity of dot overlapping. However, this difficulty
should be completely overcome by the 2 × 2 printer model.

T0 T1 T2 T3

T4 T5 T6

T0 T1 T2 T3

T4 T5 T6

Figure 6.64 Seven 2 × 2 patterns defining seven “solid” gray levels, or 2 × 2 colors,
generated by a black-and-white printer.

R λ( ) aiRi λ( )
i 1=

N

∑=

R λ( )1 n⁄ aiRi λ( )1 n⁄

i 1=

N

∑=
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The modified Neugebauer equation, shown by Equation 6.22, can be
directly applied to the 2 × 2 printer model for predicting average colors of
any dot combinations. As the case stands, Ri(λ) in Equation 6.22 represents
the measured spectral reflectance of each 2 × 2 color. The area coverage ai of
each 2 × 2 color is directly proportional to its occurrence mi in number of
pixels and can be calculated by the following equation, where N is the total
number of different 2 × 2 colors involved:

(6.23)

Figure 6.65 (See color insert) A page consisting of 1072 2 × 2 color patches used to
characterize a CMY color printer.

ai
mi

mj

j 1=

N

∑
--------------=
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Again, although the spectral reflectance 

 

R

 

(

 

l

 

) is used to describe the Neuge-
bauer equations above, tristimulus values XYZ or other color measures
might be also suitable for most applications. By storing all measured 2 

 

¥

 

 2
colors in the power of 1/

 

n

 

 into a lookup table, estimation of the average
color of any binary input pattern by a 2 

 

¥

 

 2 printer model should be pretty
straightforward.

 

6.9.5 Calibrating 2 

 

¥

 

 2 printer models with reduced measurement

 

The 2 

 

¥

 

 2 printer model is truly measurement based, i.e., all 2 

 

¥

 

 2 colors can
be directly measured macroscopically. The accuracy of the 2 

 

¥

 

 2 printer model
can be quite high, as long as the physical dot size really matches the claimed
printer resolution. Because the industry has developed several automated
color measurement instruments (e.g., the Spectrolino spectrometer by Gretag
and the DTP-41 scanning spectrophotometer by X-Rite), measuring all 2 

 

¥

 

 2
colors, even for a four-colorant CMYK printer, is not impractical. However,
for some applications, it would be appreciated to have a smaller measure-
ment base. Due to the intrinsic geometry of the 2 

 

¥

 

 2 patterns, all 2 

 

¥

 

 2 colors
can be quite accurately predicted by measuring and rendering only a small
part of the complete 2 

 

¥

 

 2 set. In general, for three-colorant (CMY) and four-
colorant (CMYK) printers, most 2 

 

¥

 

 2 colors made of three or four colorants
can be easily predicted based on the measurement of all 2 

 

¥

 

 2 colors made
of one or two colorants. For example, the 2 

 

¥

 

 2 color shown in Figure 6.61,
as shown by the 2 

 

¥

 

 2 pattern on the top of Figures 6.66 and 6.67, is made
of three colorants (cyan, magenta, and yellow) by a CMY printer. It is possible
to decompose this 2 

 

¥

 

 2 pattern into three 2 

 

¥

 

 2 patterns made of single
colorant, as shown in Figure 6.66, or into three 2 

 

¥

 

2 patterns made of two
colorants, as shown in Figure 6.67. There are many possible approaches that
can provide satisfactory results for calibrating the 2 

 

¥

 

 2 printer model with
reduced measurement base. Interested readers can find the details of one
method reported by Wang, Fan, and Quan.

 

71

 

 Table 6.5 shows the choices of
sub-sets used for the reduced measurement with this method. The number
of measured color patches has been reduced from 1072 to 224 for character-
izing a CMY printer, and from 16,576 to 468 for a CMYK printer.

Figure 6.66 (See color insert) Decomposition of a 2 ¥ 2 color made of three colorants
into three 2 ¥ 2 colors made of a single colorant.
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6.9.6 Halftone printer characterization

An immediate application of the 2 × 2 printer model is in characterizing
halftone printers. Two levels of characterization can be implemented using
2 × 2 printer models: for the individual channels, and for the full color
characterization. Of course, characterizing a single channel of a color printer
is essentially the same as characterizing a black-and-white (monochromatic)
halftone printer. For a given halftone method, the halftone output with any
constant input is a determined binary pattern. Using the 2 × 2 printer model
and the measurement of all 2 × 2 colors, we can quickly calculate the expected
average color of the determined binary pattern using the modified Yule–Niel-
son equation, Equation 6.22.

At the first level of characterization, fundamentally only seven patches,
shown by Figure 6.64, need to be generated and measured. To determine an
optimized Yule–Nielson correction, i.e., to optimize the coefficient n in Equa-
tion 6.22, additional patches with known binary patterns should also be
printed and measured at the same time as for the seven 2 × 2 colors, or 2 × 2
gray levels. For a chosen halftone screen or a halftone method, a tone repro-
duction curve (TRC), which would be obtained traditionally by measuring
patches with sampled input levels and certain data-fitting techniques, can be

Table 6.5 Two-by-Two Patterns Used for Characterizing CMY or CMYK Printers 
with Reduced Measurement Bases

Type of 2 × 2 Colors CMY Printers CMYK Printers

White 1 1
One colorant 18 24
Two colorant 189 378
Additional with primaries 16 65
Total used for characterization 224 468
Total number of 2 × 2 colors 1072 16,576

Figure 6.67 (See color insert) Decomposition of a 2 × 2 color made of three colorants
into three 2 × 2 colors made of two colorants.
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fully calculated based on the measured seven 2 

 

¥

 

 2 gray levels. Typically
described as halftone calibration, an inversion procedure is usually applied
to the characterization result for correcting any nonlinear effect caused mainly
by dot overlapping. A method to apply the 2 

 

¥

 

 2 printer model to calibrate
the error-diffusion halftoning method is described in Reference 68. Figure 6.68
shows the comparison of the output of an uncalibrated error-diffusion method
and results of calibration by the 2 

 

¥

 

 2 printer model with the Yule–Nielson
coefficient 

 

n

 

 = 

 

1 and 

 

n

 

 = 

 

3, respectively. 
As the full-color level characterization, a 2 

 

¥

 

 2 color printer model pro-
vides a complete description of the specified binary printer with any chosen
color halftone algorithm and/or halftone screens. For example, with the
measurement of all patches shown in Figure 6.65 for characterizing a CMY
binary printer, we can calculate output colors for any chosen halftone screens
equipped to the specific printer with any CMY input values. An experiment
was conducted for characterizing a CMYK binary printer with reduced mea-
surement. As reported also in Reference 70, a total of 488 patches represent-
ing the selected subset of 2 

 

¥

 

 2 colors, listed in Table 6.5 for CMYK printer
characterization, were printed on one page at 600

 

 ¥ 

 

600 dpi resolution from
a color xerographic printer and measured in spectral reflectance. The com-
plete set of independent 2 

 

¥

 

 2 colors, 16,576 in total for a CMYK printer, was
derived by a rendering method described in the Reference 70. A separate
page with 500 patches representing different CMYK input values was gen-
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Figure 6.68 Measured output reflectance vs. desired input: (a) ■, uncalibrated error
diffusion method, (b) ▲, calibrated by the 2 ¥ 2 printer model with Yule-Nielson
coefficient n = 1, and (c) ●, calibrated by the 2 ¥ 2 printer model with n = 3.
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erated by a selected halftone screen set, which had four different rotated
cluster halftone screens for CMYK, respectively, in the frequency range about
150 lpi. Using the 2 × 2 printer model and the derived 2 × 2 colors, the
expected colors of the 500 halftone patterns were calculated and compared
with the measurement. The average ∆E between the calculation and the
measurement is about 3.7, and the maximum ∆E is about 8.3.

6.9.7 Feedback using a 2 × 2 printer model

Using feedback with 2 × 2 printer models for image enhancement was
proposed by Wang and Fan.75,76 As an example, in this section, we briefly
describe a system for eliminating subject moiré caused by rescreening. The
topic has also been addressed for black-and-white images in other publica-
tions.77,78 When a halftone image is copied, different artifacts might be intro-
duced during the copying process. A subject moiré is referred to the inter-
ference between the original halftone screen(s) of the image and the halftone
screen(s) used for printing the copy.

Because color printing is a nonlinear color mixing process, a cross-chan-
nel effect, such as the two-color moiré, may not show up as a low-frequency
artifact in individual channels but may be present on the actual printout.
Thus, it is necessary to compare the actual printout and the original image
in a common color space for evaluating image quality and detecting possible
artifacts. Usually, this comparison is conducted manually by the operator
with an original image and an actual printed output. But it is also possible
to apply a 2 × 2 printer model to predict the output appearance from a
processed CMYK image without the actual printing process being per-
formed. In other words, pixel by pixel, the 2 × 2 printer model maps the
binary CMYK image to an output image represented in the same color space
as the original input image. Therefore, a human vision model, which might
be a simple lowpass filtering process, can be applied to emulate an operator
examining the physical printout for detecting moiré or other artifacts. Fur-
thermore, prediction of the potential artifacts from halftoning and printing
allows us to make corresponding adjustments to the process to reduce or
eliminate the actual occurrence of any artifact. 

The flow chart in Figure 6.69 illustrates the proposed system for moiré-
free color halftoning. The process starts with an initial input image specified
in a standard color space (say, the CIE Lab space). Using the result of printer
calibration, the CIE Lab image is converted into a continuous-tone CMYK
image. Next, the continuous-tone image is converted into a binary CMYK
image by the halftone process. Instead of sending the binary image to drive
the printer for output, a calibrated 2 × 2 printer model is applied to convert
the binary CMYK image to a CIE Lab image, which represents the predicted
appearance of the potential printout from the chosen CMYK printer. As the
ultimate goal of printing is to reproduce the original image, the entire pro-
cess, combining three boxes in Figure 6.69 (printer calibration, color halfton-
ing and printer modeling), is theoretically equivalent to an identity system.
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Although each individual process (especially halftoning and printer model-
ing) has been known as a nonlinear process, the combined process here is
really close to a linear system in the low-frequency range, at least for a well-
calibrated and conducted halftone system. Therefore, we may adapt the well
known feedback concept for system control to the halftone process. Because
an identity system has a unity gain to compensate any deviation of the output
from the input, we need a negative feedback of the exact amount of the
deviation. Based on the analysis above, a feedback path, as shown in Figure
6.69, is added to the conventional halftone system. The difference between
the estimation by the 2 × 2 printer model and the initial input is calculated
and further processed by a lowpass filter. From the previous discussion, it
is clear that the linear system analogy is true only for the image content in
the low-frequency range. The lowpass filter should be close to the human
vision model and also can be optimized based on the halftone method used
in the system. One may interpret the filtered color difference as a detected
moiré or artifact due to the halftoning and/or printing.

To achieve moiré-free halftoning, we subtract the detected color differ-
ence from the original input image to yield an adjusted CIE Lab input image.
This adjusted input is then converted by the printer calibration to a contin-
uous-tone CMYK image and further processed by halftoning again. The
halftone result can then be sent to the CMYK printer for a hard copy as the
final output of the proposed moiré-free halftoning system. Obviously, the
feedback process may be conducted with more than a single feedback loop
for improved moiré removal. 

In the discussion above about the moiré-free halftoning, we used the
CIE Lab space as a standard color space for defining the input image as well
as for the 2 × 2 printer modeling. However, it also should be noticed that
the proposed feedback process can be applied to any other measurable color
spaces, such the XYZ color space, or the reflectance or density for grayscale
images. The linear-system analogy used in our previous analysis is still true
for any other color space, as long as all corresponding color calibrations in
the system are conducted properly for the specific space. 

To demonstrate the feedback technique for moiré-free halftoning, a pic-
ture of the chapel of University of Rochester was scanned from a previously
generated halftone image with unknown halftone screens. The scanned
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Figure 6.69 Moiré-free color halftoning system.
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image was converted to the CIE Lab space by the scanner calibration and
was used as the original input for the experiment described here. The input
image was converted to a continuous-tone CMYK image and was then
halftoned using selected halftone line screens. The CMYK binary output of
halftoning is shown in Figure 6.70a. One may see that a moiré with a very
low spatial frequency near 45 is clearly shown on the halftone picture due
to the interference between the line screens and the previously generated
unknown halftone structure. A 2 × 2 printer model was calibrated by the
procedure discussed previously with a chosen CMYK printer. The applica-
tion of the 2 × 2 printer model to the binary halftone image, shown in Figure
6.70a, provided an estimated color appearance of the projected printer out-
put. The difference between the original input and the predicted output was
calculated and further processed by a lowpass filter. The filtering was con-
ducted in the spatial domain with a 7 × 7 standard lowpass filter correspond-
ing to a cutoff frequency approximately equal to 70% of the line frequency

Figure 6.70 (See color insert) (a) Halftone output from a scanned image with un-
known halftone structures and without feedback compensation. (b) Low-pass-filter-
ing output (with enhanced contrast for display) from the difference between the
original input image and the predicted color output of a by the 2 × 2 printer model.
(c). Final halftone output with moiré-free compensation. (d) Low-pass-filtering out-
put from the difference between the original input image and the predicted color
output of the final halftone image c by the 2 × 2 printer model.

(a) (b)

(c) (d)
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of the line screens used in this experiment. The filtered difference image is
shown in Figure 6.70b with a constant bias added and contrast enhanced for
the demonstration purpose. The difference image was then used as the
feedback subtracted from the initial input image to generate a compensated
input. The second-round halftoning created an improved halftone image,
shown in Figure 6.70c. For further comparison, the difference between the
original input image and the estimated color appearance by the 2 × 2 printer
model from the final output in Figure 6.70c was also calculated. The result,
shown in Figure 6.70d with the same bias and contrast as Figure 6.70b, can
be compared with the first-round result in Figure 6.70b, and the improve-
ment, in terms of moiré-removal, is quite clear.
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7.1 Introduction

 

Digital color halftoning is the process of transforming continuous-tone color
images into images with a limited number of colors. The importance of this
process arises from the fact that many color imaging systems contain output
devices, such as color printers and low-bit-depth displays, that are bilevel
or multilevel with only a few levels. The goal is to create the perception of
a continuous-tone color image using the limited color discrimination capa-
bility and the lowpass characteristics of the spatial sensitivity of the human
visual system (HVS).

The algorithms for digital monochrome halftoning can be categorized
into three classes, in decreasing order of how myopically they transform a
given image into a halftone and, thus, in increasing order of computational
complexity and halftone quality. 

In the first class are the point-wise approaches such as screening or
dithering, whereby the image is compared pixel by pixel to an array of
thresholds, and the pixels exceeding this spatially varying mask of thresh-
olds are changed to black. Halftone screens are of two types: clustered-dot
and dispersed-dot. Clustered-dot screens produce binary textures in which
the individual printer dots are grouped into clusters. Dispersed dot screens
spread the individual printer dots as far apart as possible. They work well
for printing processes that produce consistently positioned and sized dots
with little or no dot gain. Clustered-dot halftones render well on printers
that have difficulty generating an isolated dot (e.g., electro-photographic
printers). They are quite robust to dot gain and variations in the process
parameters. 

The next class of approaches uses the information about a neighborhood
of pixels to decide the halftone state of a given pixel. Error diffusion is the
most important example of this category. 

The third class consists of iterative approaches whereby several passes
over the image pixels are made to minimize an error metric or satisfy certain
constraints before the halftoning process is completed. 

All three of these algorithm classes can be generalized to digital color
halftoning with some modifications, as color halftoning can be viewed as an

 

L

 

-dimensional generalization of the monochrome process where 

 

L

 

 depends
on the number of primaries that the rendering device possesses. For example,

 

L

 

 is equal to three for CMY (cyan, magenta, yellow) printers and four for
CMYK (cyan, magenta, yellow, black) printers. 
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The naive digital color halftoning approach is to apply these mono-
chrome halftoning techniques scalarly and independently to these color
(RGB) or colorant planes (CMYK). As expected, this scalar approach leads
to color artifacts and poor color rendition, because it does not exploit the
correlation between color or colorant planes, which is a key element in our
color perception and appreciation of the halftone quality. 

Color printing presents many problems that we also encounter in mono-
chrome printing. However, it also presents some problems that are unique
to color printing. For instance, if the colorants are printed on top of each
other, this will result in dots that contrast undesirably with the paper in the
highlights. Another problem unique to color halftoning is that of 

 

misregis-
tration

 

. This is due to the difficulty of controlling the relative offsets of the
different colorant planes. If the colorants are ideal, the visual appearance is
independent of small registration errors.

 

1

 

 Unfortunately, real colorants are
not ideal, and registration errors can cause significant color shifts. Therefore,
an important objective of the color halftoning scheme is robustness to reg-
istration errors and minimization of dot-on-dot printing. 

As mentioned earlier, the HVS is responsible for mapping the physical
color halftone image to the percept of a continuous-tone color image. To
achieve this, all halftoning algorithms depend on the limited spatial resolu-
tion of the HVS. In addition, all color halftoning algorithms rely on colorim-
etry to assure correct macroscopic color reproduction. It is reasonable to
suppose, however, that even better image quality might be achieved if the
color halftoning algorithm were to make explicit use of a detailed spatio-
chromatic model for the HVS rather than simply depending on very general
spatial properties of the HVS and using only a macroscopic color model-
based on colorimetry. Indeed, this conjecture is the subject of this chapter,
which deals with color halftoning algorithms that have embedded within
them a detailed spatiochromatic model for the HVS. 

Between the digital color halftone image and the HVS lies the physical
printing mechanism, including the colorant and media. To effectively use an
HVS within a color halftoning algorithm, it is essential to also take this part
of the imaging pipeline into account. Thus, we discuss color hardcopy mod-
els in Section 7.2. Then, in Section 7.3, we review color human visual system
models. Both topics are treated in greater depth elsewhere in this book.

Iterative search-based halftoning techniques have the flexibility and
power to make the most effective use of detailed color hardcopy and HVS
models. This is the subject of Section 7.4. These algorithms generate dis-
persed dot textures that, as mentioned earlier, are suitable for printing
devices that can stably render isolated dots. Inkjet printers are perhaps the
best example of such devices. Iterative search-based algorithms are generally
not practical for direct use in printing applications. These methods can,
however, be used as a gold standard for what is possible with dispersed-dot
halftoning. In addition, they can serve as the basis for design of other half-
toning algorithms that are practically implementable, such as halftone
screens. 
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Beyond screening, error diffusion is the other dispersed-dot halftoning
method that is widely used in applications. In Section 7.5, we briefly review
the use of color HVS models within the context of error diffusion. 

So far, we have discussed the use of color hardcopy and HVS models
only with dispersed-dot halftoning algorithms. In Section 7.6, we turn our
attention to the use of these models to design screens that produce clustered-
dot periodic textures. Such screens largely form the basis for commercial
printing and are also widely used with electrophotographic (laser) printers
that are too unstable for dispersed-dot textures. Finally, in Section 7.7, we
wrap up with a summary and conclusions.

 

7.2 Color hardcopy models

 

It is common practice to conceptualize a printer as producing dots that are
perfect -in

 

2

 

 squares (with a rectangular dot profile) where 

 

R

 

 is
the printer resolution in dots per inch (dpi) as shown in Figure 7.1a. Fur-
thermore, we usually assume that the colorants are ideal, i.e., that they have
the following properties that lead to the additivity of dot interactions: 

1. They are transparent (do not scatter incident light).
2. Their absorptance coefficients are proportional to their concentration

(Beer–Bouguer law).

 

2

 

 
3. They satisfy the block dye assumption (absorptance functions have

nonoverlapping rectangular shape).

The visual appearance of halftones created with ideal colorants is indepen-
dent of small registration errors.

 

1

 

 
In reality, most printers fail to satisfy these assumptions. They produce

dots that may overlap (as depicted in Figure 7.1b), the colorants are not ideal,
the colorant interactions are not additive, and the printer dot profiles for
different colorants may be considerably different, as can be observed in a
high-resolution scan of a color halftone. 

1 R§ 1 R§¥

Figure 7.1 (See color insert following page 430) (a) Ideal and (b) actual printer dots.

(a) (b)
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Color halftoning algorithms that do not account for the nonideal char-
acteristics of colorants and the complicated dot interactions suffer from
incorrect color reproduction unless other corrections are introduced.
Researchers have developed several techniques to model and characterize
color printing, and the techniques are utilized in the design of color halfton-
ing algorithms. Such techniques can be broadly classified into three groups.
In the first group are the spectral and colorimetric printer model-based
approaches that characterize the spectral distribution or the color created by
a certain combination of colorants dots at a given printer-addressable loca-
tion using a model of the printing process. In the second group are the dot-
model-based approaches in which a model accounting for nonideal dot
profiles and interactions between neighboring dots is incorporated into the
halftoning algorithm. In the third group are the empirical tone-correction-
based approaches that precompensate for dot interactions by modifying the
image data using a lookup table (LUT) prior to halftoning and printing. 

The most important spectral (colorimetric) model used in color printing
is the spectral (colorimetric) Neugebauer color mixing model.

 

3

 

 The spectral
Neugebauer color mixing model states that , the spectral distribution as
a function of wavelength 

 

λ 

 

of a color halftone obtained using three colorants,
can be written as an area-weighted sum of the reflectances of the one, two,
or three color overprints of the three colorants and of the paper substrate, i.e.,

 

 

 

(7.1)

These eight colorant combinations are called the 

 

Neugebauer primaries.  The
term  is the spectral distribution of the patch with only the 

 

i

 

th Neuge-
bauer primary on it, and the weight 

 

w

 

i

 

 is the fractional proportion of the 

 

i th
Neugebauer primary in the given halftone. The monochrome version of this
model is called the Murray–Davies model. The spectral distributions, mea-
sured by a Gretag–Macbeth †

 

 SPM 50 spectrophotometer, of the eight
Neugebauer primaries printed with an HP DeskJet 970C three-colorant inkjet
printer are shown in Figure 7.2. 

The linear Neugebauer (Murray–Davies) color mixing model fails to
account for an important phenomenon called 

 

optical dot gain

 

. This phenom-
enon, first studied by Yule and Nielsen,

 

4

 

 is defined as the change in the
measured reflectance due to surface and subsurface scattering in the paper
substrate, between and inside colorant layers. Yule and Nielsen proposed an
empirical power-law correction to the Murray–Davies model. Viggiano

 

5

 

extended this correction to color and obtained the following expression: 

(7.2)

 

† Gretag-Macbeth AG, Althardstrasse 70, 8105 Regensdorf, Switzerland.

R λ( )

R λ( ) wiRi λ( )
i 1=

8

∑=

Ri λ( )

R λ( )1 n⁄ wiRi λ( )1 n⁄

i 1=

8

∑=
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where the factor 

 

n

 

 is called the Yule–Nielsen factor, and it is empirically
derived from the best fit of the model to the training data set. Numerous
versions of the Yule–Nielsen corrected Neugebauer models have been
used to predict the spectral distributions and tristimulus values of color
and monochrome halftones.

 

6–14

 

 We will also use a similar model in Section
7.6.3. Other color macroscopic (at the color halftone patch level) hardcopy
models and theories used in predicting the color of color halftones include
the Clapper–Yule model equation,

 

15

 

 the Beer–Bouguer law,

 

16

 

 and the
Kubelka–Munk theory.

 

17

 

 
In addition to the macroscopic models listed above, models that use the

halftone microstructure information and model the color (tone) reproduction
microscopically (at the dot level or even finer) have also been developed.
One of the earliest and the most important works following a microscopic
approach was carried out by Ruckdeschel and Hauser.

 

18

 

 They defined the
reflectance at given location (

 

x

 

, 

 

y

 

) on the paper substrate, 

 

R

 

(

 

x

 

, 

 

y

 

) as 

(7.3)

where 

 

R

 

p

 

(

 

x

 

, 

 

y

 

) = reflectance of the paper substrate

 

T

 

(

 

x

 

, 

 

y

 

) = transmittance of the colorant layer

 

G

 

(

 

x

 

, 

 

y

 

) = point spread function of the paper substrate
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Figure 7.2 Spectra of the eight Neugebauer primaries measured from prints made
with an HP Deskjet 970C printer.
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In this approach, the incident light is assumed to pass through the colorant
with no scattering, be partially absorbed, then scatter in the paper substrate
and exit by passing through the colorant layer, where it is partially
absorbed once more. Other similar approaches include the dot gain mod-
eling by Gustavson,

 

19

 

 the probabilistic framework developed by Arney and
Katsube,

 

20,21

 

 the probabilistic scattering model for clustered-dot halftones
proposed by Huntsman,

 

22

 

 the model based on photon transport and dif-
fusion by Rogers,

 

23

 

 the model incorporating light scattering and ink
spreading devised by Emmel and Hersch,

 

24

 

 the three-dimensional model
developed by Yang and Kruse,

 

25

 

 and the generalization of the Ruckdeschel
and Hauser model by Agar.

 

26

 

 Further details about these models can be
found in Chapter 3.

The second group of color hardcopy model-based approaches used in
color halftoning employs a dot model that characterizes nonideal dot profiles
and interactions between neighboring dots. One of the most widely used
dot models for monochrome printers is the hard circular dot model intro-
duced by Roetling and Holladay.

 

27

 

 This popular model is an idealization of
printer behavior, and it assumes that every printer dot is a perfect circle as
depicted in Figure 7.3. The circular dot modeling approach is easily gener-
alizable to color halftones. Pappas

 

28

 

 generalized the circular dot model to
three-colorant printers where the color of a given pixel in the halftone is
expressed as a sum of the overlapped colors of the segments, weighted by
the areas of the segments, written in terms of the parameters 

 

α

 

, β, and γ as
shown in Figure 7.3. He used this model for color error diffusion and an
iterative least-squares-model-based color halftoning technique. This para-
metric circular color dot overlap model was also used by Kim et al.29 They
incorporated the model into color error diffusion in the device independent
Commission Internationale de l’Eclairage (International Commission on

β

α

γ X

X

Figure 7.3 Hard circular dot model.
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Illumination, CIE) 

 

L

 

*

 

a

 

*

 

b

 

* space and employed a Neugebauer color mixing
model to find the average color of a target region in a printed test pattern
made up of segments displaying different overlapped colors. Lee et al.

 

30

 

used a similar area coverage LUT-based color dot interaction model to
modify the dot diffusion halftoning algorithm introduced by Knuth.

 

31

 

 Lai
and Chen

 

32

 

 exploited the circular dot model presented

 

28

 

 for vector color
error diffusion in YCrCb space, and they also incorporated edge enhance-
ment. Crounse

 

33 

 

presented the generalization and analyzed the limitations
of the same dot model. 

Another novel dot-interaction model first introduced for monochrome
printers and later extended to color printers is the 2 

 

¥ 

 

2 centering model,
which was developed by Wang et al.

 

34

 

 and generalized to color by Wang.

 

35

 

In this model, the printer grid is assumed to be offset from the pixel grid for
the continuous-tone image to be halftoned. This results in a structure wherein
four (2 

 

¥ 

 

2) neighboring printer dots in the printer grid contribute to the
rendered tone (color) of one image pixel as shown in Figure 7.4. The param-
eters of the model for the monochrome (color) case are the reflectances of
all possible 2 

 

¥ 

 

2 monochrome (color) overlap patterns. The Yule–Nielsen
effect can also be incorporated into this model.

 

36

 

 We will discuss the use of
this model in detail in Section 7.4.3. 

The third group of color hardcopy characterization approaches used in
color halftoning is motivated by the frequently used technique in mono-
chrome halftoning called 

 

tone correction

 

.

 

27,37

 

 This approach precompensates
for dot interactions by modifying the image data prior to halftoning and
printing, using a LUT of input absorptance vs. printed absorptance. In color
halftoning, the method theoretically can be applied by halftoning and print-
ing all possible colors, making colorimetric measurements of the resulting
halftones, and applying the inverse mapping of this transformation to color
images prior to halftoning to obtain halftones with desired colorimetric
values. Because measuring halftone patches for a large set of colors (e.g.,
256

 

3

 

 

 

ª 16,750,000 

 

for an 8-bit color imaging system) is not feasible, it is
impossible to have a complete 

 

color correction

 

 LUT. Instead, a limited number
of halftoned colors are stored in a LUT, and interpolation schemes are
employed to obtain the colorimetric values for the remaining colors. See
Chapter 5 for additional details. 

Printer & 
Image Grid

Printer Grid
Image Grid

Figure 7.4 (See color insert) Alignment of the printer and image grids: (a) conven-
tional method and (b) 2 ¥ 2 centering method.

(a) (b)
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7.3 Color human visual system models
Psychophysical studies prove that color/tone discrimination and appearance
closely depend on spatial pattern in addition to the global differences in
perceptual attributes such as hue, saturation, and brightness.38,39 This finding
has motivated the use of color human visual system (HVS) models for design
and evaluation of the performance of digital monochrome and color half-
toning algorithms that aim to minimize the visual differences between con-
tinuous-tone images and their halftones. 

In monochrome halftoning, the HVS models that have been incorporated
into halftoning algorithms have been limited to linear shift-invariant filters
based on the contrast sensitivity function (CSF) of the human viewer.40 In
color halftoning, different modeling approaches have been used. Pappas28

employed a two-dimensional filter to model the HVS characteristics, which
he called the “eye filter.” This two-dimensional finite impulse response (FIR)
filter was obtained as a separable combination of one-dimensional approx-
imations to the spatial frequency sensitivity function of the HVS, estimated
by Manos and Sakrison.41 He applied the same filter to all the color compo-
nents (red, green, and blue) in his halftoning algorithm and minimized the
least-squares error metric independently for each color component. Other
researchers have employed models based on representing the output of the
human visual system with one achromatic channel and two opponent-color
chromatic channels, a feature common to many of the color appearance
models and color vision models.42,43 Mulligan was perhaps the first to pro-
pose that color halftone textures could be made less visible by selectively
partitioning the error between the continuous-tone original and its halftone
reproduction into achromatic and chromatic channels.44,45 

Zhang et al. used an opponent-channel-representation-based HVS model
called S-CIELAB, proposed by Zhang and Wandell,43 to predict the perceived
quality of color halftone images.46 In S-CIELAB, a spatial extension of
CIELAB, a color image is transformed into an opponent-color space and
decomposed into a luminance, a red–green (R-G), and a blue–yellow (B-Y)
image. Each opponent-color image is filtered by a different two-dimensional
separable spatial kernel of the form

(7.4)

where 

(7.5)

and x, y, and σi are in degrees of visual angle. In the discrete implementation,
the scale factor ki is chosen so that Ei sums to 1. The scale factor k is chosen

f x,y( ) k wiEi x,y( )
i

∑=

Ei x,y( ) ki
x2 y2+( )–

σi
------------------------ 

 exp=
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so that, for each color plane, its two-dimensional kernel f sums to one. The
parameters (wi, σi) for the three opponent-color images are summarized in
Table 7.1. After filtering each opponent-color image, the filtered representa-
tion is transformed to a CIE XYZ representation, and the S-CIELAB values
are computed using the standard CIE L*a*b* formulae. 

Agar and Allebach47 embedded a luminance/chrominance-based HVS
model developed by Flohr et al.48 into an iterative halftoning scheme. Lin
and Allebach49 exploited the same model within a least-squares search algo-
rithm to design color screens. This model, which we will refer to as the Flohr
HVS model,48 is based on the uniform color space CIE L*a*b*. The nonlinear
transformation from CIE XYZ tristimulus values to CIE L*a*b* values cas-
caded with the linear transformation from red, green, blue (RGB) image
coordinates to CIE XYZ tristimulus values does not preserve the spatially
averaged tones of images,50 which is undesirable in halftone color reproduc-
tion. Therefore, Flohr et al.48 linearized the CIE L*a*b* color space about the
reference stimulus (Xn, Yn, Zn). They denoted this linearized color space by
YyCxCz, and defined it as follows:

(7.6)

The Yy component serves as a correlate of luminance, and the Cx and Cz

components are similar to the red–green (R-G) and blue–yellow (B-Y) oppo-
nent-color chrominance components that Mullen studied.51 

In the linear, channel-independent, and shift-invariant Flohr HVS
model,48 the luminance channel combines models presented by Nasanen52

Table 7.1 Parameters for the S-CIELAB 
HVS Model

 wi σi

Luminance 0.921 0.0283 
Luminance 0.105 0.133 
Luminance –0.108 4.336 
Red–green 0.531 0.0392 
Red–green 0.330 0.494 
Blue–yellow 0.488 0.0536 
Blue–yellow 0.371 0.386 

Yy 116 Y
Yn
------=

Cx 200 X
Xn
------ Y

Yn
------–=

Cz 500 Y
Yn
------ Z

Zn
------–=
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and Sullivan et al.

 

53

 

 The luminance spatial frequency response  is
given by

(7.7)

where 

 

a 

 

= 131.6

 

b 

 

= 0.3188

 

c 

 

= 0.525

 

d 

 

= 3.91

 

L

 

 = average luminance of the light reflected from the print (in 

)

 = spatial frequency coordinates in cycles/radian subtended at the 
retina

The chrominance spatial frequency response of the Flohr HVS model is
based on an approximation by Kolpatzik and Bouman

 

54

 

 to experimental data
collected by Mullen.

 

51

 

 This chrominance frequency response denoted by
 is common to both of the opponent-color chrominance compo-

nents and is given by 

(7.8)

where 

 

a 

 

= 0.419

 

A 

 

= 100 
 = spatial frequency coordinates in cycles/radian subtended at 

the retina

Figure 7.5 shows the luminance and chrominance spatial frequency
responses 

 

H

 

Y

 

y

 

(

 

u

 

, 

 

v

 

), 

 

H

 

C

 

x

 

C

 

z

 

(

 

u

 

, 

 

v

 

) for 600-dpi prints viewed at 9 inches, where
(

 

u

 

, 

 

v

 

) are the spatial frequency coordinates in cycles/sample. 
To enable adjustment of the relative importance between the luminance

and chrominance errors in the error metric, the luminance frequency
response is multiplied by a weighting factor, 

 

k

 

. As 

 

k 

 

increases, more of the
error is placed into the chrominance components. Flohr et al. employed this
model in color image quantization

 

48 

 

and showed that, as 

 

k 

 

exceeds unity, the
textures in the resulting halftones shift from being contrasty and monochro-
matic to being smoother and multicolored. They found that 

 

k 

 

= 4 gives
visually pleasing results. The same weighting factor was also used by Bala-
subramanian et al.

 

55

 

 to form a visually weighted error metric in quantization
of color images in a luminance/chrominance-based color space and by Kol-
patzik and Bouman

 

54

 

 to form a visually weighted error metric in error dif-
fusion for color displays. 

HYy
u, v( )

HYy
u,v( ) aLb 180( ) u2 v2+
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Taking the two-dimensional inverse continuous space Fourier trans-
forms of  and  gives the impulse response functions

 and  where the spatial coordinates  have units of
radians subtended at the retina. For a printed page viewed from a distance

 

D

 

 in inches,

 

 

 

a length 

 

x

 

 in inches on the page corresponds to 

 

tan

 

–1

 

(

 

x

 

/

 

D

 

) radians
subtended at the retina, and  radians, for . Substi-
tuting this approximation into  and , we obtain the HVS
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Figure 7.5 Spatial frequency responses for 600-dpi prints viewed at 9 inches: (a)
luminance  and (b) chrominance .HYy
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point spread functions  for 

 

i

 

 =

 

Y

 

y

 

,

 

C

 

x

 

,

 

C

 

z

 

, where  now has units
of inches measured on the print. 

(7.9)

(7.10)

As the viewing distance 

 

D

 

 increases, the supports of the HVS point spread
functions increase; i.e.,

 

 

 

a larger surrounding area affects our perception of a
given point on the printed page.

The HVS models have been used in all three classes of digital color
halftoning algorithms: the point-wise approaches such as screening, the
neighborhood based approaches such as error diffusion, and the iterative
approaches. In the next section, we discuss the HVS model-based iterative
color halftoning algorithm. We present the application of HVS models to
neighborhood-based approaches and to screen design in Section 7.5 and
7.6, respectively.

 

7.4 HVS model-based iterative color halftoning algorithms

 

In iterative color halftoning algorithms, several passes over the image pixels
are made to minimize an error metric or satisfy certain constraints before
the halftoning process is completed. In these algorithms, HVS models are
commonly used to predict the perceived difference between the continuous-
tone original image and its halftone in the error metric. A wide range of
iterative approaches to digital halftoning were developed during the early
1990s.

 

56

 

 In 1992, three groups simultaneously reported iterative approaches
to minimizing frequency-weighted mean-squared error between the contin-
uous-tone and halftone images.

 

57–59

 

 This work forms the basis for the iterative
halftoning algorithm to be developed in this section. 

Pappas

 

28

 

 developed a least-squares model-based color halftoning algo-
rithm that employed both a color hardcopy model and a HVS model. He
used the circular dot overlap model described in Section 7.2 and the two-
dimensional eye filter described in Section 7.3. In this algorithm, starting
with a totally white (or black) halftone or a halftone obtained using error
diffusion, the pixels in the halftone are visited in some fixed (such as raster)
or random order. For each pixel in the halftone, the optimal halftone state
(colorant combination) that minimizes the squared error between the per-
ceived value of the halftone pixel found using the circular dot overlap model
and the two-dimensional eye filter, and the perceived value of the corre-
sponding pixel in the original continuous-tone image found using the two-
dimensional eye filter is selected. The iterations over the image pixels are

p� x x( ) x x, y( )∫

p� Yy
x( ) 1

D2
------hYy

x
D
----Ë ¯

Ê � F 1� HYy
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x
D
----Ë ¯

Ê � F 1� HCxCz
Du,Dv( ){ }= = =

 

07  Page 503  Monday, November 18, 2002  8:56 AM



504 Digital Color Imaging Handbook

stopped when there are no more halftone state changes that reduce the
perceived error. This algorithm results in a local minimum of the error metric,
and the final local minimum depends on the initial choice of halftone used.

Another example of HVS model-based iterative color halftoning algo-
rithms is the model-based color halftoning using direct binary search devel-
oped by Flohr et al.48 and Agar and Allebach,47 which uses the Flohr HVS
model48 described in Section 7.3. Below, we describe this dispersed dot color
halftoning method in detail. 

7.4.1 Preliminaries
We use [m] = [m, n]T and (x) = (x, y)T to denote discrete and continuous
spatial coordinates in an image, respectively. We denote a continuous-tone
color image by a three-dimensional vector valued function ftype[m}: R2 → R3

where the input values are the discrete spatial coordinates in the image and
the output values can be the RGB, cmy, XYZ, or YyCxCz values at a given
location in the image, depending on the subscript type. This function can be
decomposed into three scalar valued functions fi: R 2 → R ; i = R, G, B; i = c,
m, y; i = X, Y, Z; or i = Yy, Cx, Cz. Similarly, we denote a color halftone bitmap
by a vector valued L-D function gtype[m]: R2 → RL where the input values are
again the discrete spatial coordinates in the image, and L is the number of
colorants that the color halftone contains. This function can again be decom-
posed into L scalar valued functions. 

We restrict our analysis to bilevel three-colorant CMY printers and
bilevel four-colorant CMYK printers where full undercolor removal is
employed; i.e., at a given pixel (printer addressable point), a black dot
replaces cyan, magenta, and yellow dots if and only if all three are present
there. Therefore, we assume that L = 3. For the initial analysis, we also assume
that the dot interactions between neighboring pixels in the printer grid are
additive. As discussed in Section 7.2, this assumption is generally not true.
The interaction of the colorants of the neighboring printer pixels with each
other and the paper substrate is fairly complex. We will discuss how we
incorporate a dot-interaction model into the color direct binary search half-
toning algorithm in Section 7.4.3. 

7.4.2 Color direct binary search
The color direct binary search (CDBS) halftoning method is an iterative
search-based algorithm that minimizes a measure of perceived error by
starting from an initial halftone and modifying the halftone locally. Figure
7.6 illustrates the overall structure of the algorithm. The initial halftone is
obtained by halftoning the R, G, and B components of the continuous-tone
color image separately using the same screen, which is obtained with the
monochrome DBS halftoning method,60,61 and then superimposing these
three halftones under the assumption that C = 1 – R, M = 1 – G, Y = 1 – B.
For the initial halftone, we compute the perceived error in the device-inde-
pendent opponent-color space of YyCxCz as suggested by Flohr et al.48 and
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discussed below. Then, we process the pixels of the halftone in a raster-scan
order. At each pixel, we compute the effect on the error metric of toggling
(changing the colorant combination) of the pixel and swapping it with its
eight nearest neighbor (NN) pixels. We accept the trial change, if any, that
most reduces the error metric, and we iterate until there are no more accepted
trial changes, i.e., until the error metric reaches a local minimum. 

To compute the perceived error, we first need to convert the original
continuous-tone color image 

 

f

 

[

 

m

 

] and the color halftone bitmap 

 

g

 

[

 

m

 

] from
the device-dependent color spaces of 

 

RGB

 

 and 

 

CMY,

 

 respectively, to the
device-independent opponent-color space of 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 using transformations
calibrated for a given color imaging system. To transform 

 

g

 

[

 

m

 

] into 

 

Y

 

y

 

C

 

x

 

C

 

z

 

,
we use an eight-entry 

 

CMY

 

 

 

Æ 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 

 

LUT. This LUT contains the 

 

Y

 

y

 

C

 

x

 

C

 

z

 

values of the eight possible colorant combinations known as the Neugebauer
primaries (

 

C

 

, 

 

M

 

, 

 

Y

 

, 

 

R

 

, 

 

G

 

, 

 

B

 

, 

 

K

 

, 

 

W

 

), measured with a spectrophotometer, for
a given printer and paper substrate. 

To transform 

 

f

 

[

 

m

 

] into 

 

Y

 

y

 

C

 

x

 

C

 

z

 

, we use a simple 

 

RGB 

 

Æ

 

 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 

 

transfor-
mation employing a common undercolor removal (gray component replace-
ment) strategy. This strategy is based on the assumption that the printing
geometry is dot-on-dot; i.e.,

 

 

 

the colorants are placed exactly on top of each
other. In this method, the colorants 

 

C

 

, 

 

M

 

, and 

 

Y

 

 are referred to as 

 

subtractive
primaries.

 

 The colors corresponding to two-color overprints 

 

R

 

(

 

M 

 

+ 

 

Y

 

), 

 

G

 

(

 

C

 

+ 

 

Y

 

), and 

 

B

 

(

 

C 

 

+ 

 

M

 

) are referred to as subtractive secondaries. The three-color
overprint is called 

 

K,

 

 and the unprinted substrate is defined as 

 

W

 

. The
method computes the proportions of the eight Neugebauer primaries, 

 

fi

 

, for

 

i 

 

= 

 

W

 

, 

 

C

 

, 

 

M

 

, 

 

Y

 

, 

 

R

 

, 

 

G

 

, 

 

B

 

, 

 

K

 

 for a given desired color in an image defined by a
three-tuple 

 

(R

 

i

 

, G

 

i

 

, B

 

i

 

)

 

 according to the following equations: 

Figure 7.6 Block diagram for the color direct binary search (CDBS) algorithm.
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fW = min(Ri, Gi, Bi)
fK = 1 – max(Ri, Gi, Bi)
if Ri = min(Ri, Gi, Bi)

fR = 0; fM = 0; fY = 0; fC = min(Ri,Gi) – fW; fG = Gi – fC – fW; fB =
Bi – fC – fW

end
if G = min(R,G,B)

fG = 0; fC = 0; fY = 0; fM = min(Ri,Bi) – fW; fR = Ri – fM – fW; fB =
Bi – fM – fW

end
if B = min(R,G,B)

fB = 0; fC = 0; fM = 0; fY = min(Ri,Gi) – fW; fR = Ri – fY – fW; fG =
Gi – fY – fW

end

Because Ri, Gi, and Bi are color coordinates in an additive color system such
as a display, fW is set equal to the minimum of Ri, Gi, Bi; fK is set equal to
one minus their maximum. For example, if Bi = min(Ri, Gi, Bi) as shown in
Figure 7.7, then fW is set equal to Bi , and the proportion of the corresponding
subtractive secondary fB is set equal to zero. Because we assume dot-on-dot
printing geometry, this also implies that fC and fM are equal to zero. In this
method, the desired color can always be created using only one subtractive
secondary (R, for Figure 7.7), one subtractive primary (Y, for Figure 7.7),
black, and white. This method necessitates the measurement of the YyCxCz

values of only the eight Neugebauer primaries. After fi, for i = W, C, M, Y,
R, G, B, K have been computed, the YyCxCz coordinates of the desired color
can be found as a weighted sum of the YyCxCz values of the eight Neugebauer
primaries, using the fi as weights. Because this method assumes that the
color printer has three colorants and that the color black is obtained by
putting down C, M, and Y together, referred to as composite black, caution
should be taken in generalizing this strategy to four-colorant CMYK printers
that use a black colorant to create the color black, referred to as process black.

1

0

fK

fR

fY

fW

Figure 7.7 Undercolor removal strategy.
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Generally, process black is noticeably darker than composite black and has
a 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 value significantly closer to (0, 0, 0) than composite black. For 

 

CMYK

 

printers, we have observed, as have others,

 

62,63

 

 that favoring composite black
dots over process black dots improves the color texture of the halftones.
Therefore, for 

 

CMYK

 

 printers with full undercolor removal, we modify this
undercolor removal strategy as follows: we decrease the proportion of the
black color 

 

fK

 

 and linearly increase the proportions of the remaining Neu-
gebauer primaries using Equation 7.11 so that the sum of 

 

fi

 

’ equals 1, as the
physical area coverage of the Neugebauer primaries should sum to 1. We
again find the 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 coordinates as a weighted sum of the 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 values of
the eight Neugebauer primaries using the modified weights 

(7.11)

We denote the 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 continuous-tone original color image and the

 

Y

 

y

 

C

 

x

 

C

 

z

 

 rendered color image by  and , and their com-
ponents by , 

 

i

 

 =

 

Y

 

y

 

,

 

C

 

x

 

,

 

C

 

z

 

 and , 

 

i

 

 = 

 

Y

 

y

 

,

 

C

 

x

 

,

 

C

 

z

 

, respectively. Note that
we also represent the 

 

R

 

, 

 

G

 

, 

 

B

 

 components of a continuous-tone color image
by . The quantity that  stands for will be clear from the context.
We define the error image in the 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 color space and its components as 

(7.12)

Using the linear, channel-independent, and shift-invariant Flohr HVS model
introduced in Section 7.3, and assuming additive interaction between neigh-
boring dots, we model the perceived error  in the 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 opponent-
color space, which is defined on the continuous spatial coordinates (

 

x

 

) as 

(7.13)

where  is the HVS point spread function for the 

 

i

 

th
component of the 

 

Y

 

y

 

C

 

x

 

C

 

z

 

 opponent-color space  convolved with the
printer dot profile , 

 

X

 

 is a periodicity matrix whose columns form the
basis for the lattice of printer addressable dots, and diag(·) is a diagonal
matrix with the diagonal elements listed between the parentheses. With a
printer for which the lattice of addressable points is rectangular with hori-
zontal and vertical spacing X, 

 

X

 

 = diag(X, X). Because the printer dot profile
has much more limited support than the HVS point spread function, and
we assume that the printer dot profile has unit volume, then .
Therefore, we can rewrite Equation 7.13 as 
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(7.14)

where

(7.15)

We define the error metric 

 

E

 

 to be the sum of the total squared perceived
errors in all three components of the 
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 color space. 

(7.16)

Substituting Equation 7.14 into Equation 7.16, we get 

(7.17)

We denote the matrix of autocorrelation functions of , for 

 

i

 

 = 

 

Y

 

y

 

,

 

C

 

x

 

,

 

C

 

z

 

,
by , and the matrix of cross-correlation functions between  and

, for 

 

i

 

 = 

 

Y

 

y

 

,

 

C

 

x

 

,

 

C

 

z

 

 by . 

(7.18)

(7.19)

Evaluating these two matrices at the pixels in the printer grid 

 

x

 

 = 

 

Xm

 

 gives
us  and . Then, we can rewrite Equation 7.17 as 

(7.20)

We use an efficient technique for calculating the effect of trial halftone
changes (toggles and swaps) on the error metric 

 

E

 

, a generalization of a
technique developed by Analoui and Allebach

 

60

 

 and further refined by Lie-
berman and Allebach

 

61

 

 for monochrome halftoning using DBS, which we
describe below. 

For a bilevel three-colorant CMY printer, each halftone pixel displays
one of eight (2

 

3

 

) possible colorant combinations. These combinations corre-
spond to one-, two-, and three-color overprints of the colorants 
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to no colorant on paper (
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is therefore 
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 respectively. Similarly, for a
binary four-colorant printer with full undercolor removal, there are also eight
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possible combinations, which are labeled 
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Y
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MY
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CY
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MY

 

, and 

 

K,

 

respectively. Therefore, a toggle for CDBS is defined as changing the value
of a halftone pixel from a given colorant combination to a different one out
of these eight. 

Consider a trial halftone pixel toggle at index 

 

m

 

t

 

. We denote the change
that this toggle will cause in the 
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y
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z

 

 color rendered image  at
index 
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t

 

 by 
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[
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t

 

] = . We then define  =
. With this toggle, , , and  will

change as follows: 

(7.21)

(7.22)

(7.23)

where the prime denotes the version after the toggle. The change  in 

 

E

 

due to the toggle can then be written as 

(7.24)

where we have used  and  =
. The computational cost of evaluating  can be reduced signifi-

cantly by storing  and  in LUTs. If the toggle under trial is
accepted, then we update only the  and  LUTs using Equa-
tions 7.21 and 7.23, respectively. 

Another type of trial halftone change we will analyze is swapping the
colorant combination of a given pixel in the halftone with that of another
pixel. A swap is a more subtle change to the halftone under test than a toggle.
By definition, it conserves the average local “color” in the area containing
the swapped pixels and can be interpreted as two consecutive toggles. Con-
sider a trial swap of the halftone pixels at indices 
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we define A[ms] ≡ diag(a[ms]). Then, the change in the error metric ∆Es due
to the swap can be written as 

(7.25)

where ∆Et is the change in the error metric due to the toggle of the halftone
pixel at mt to the colorant combination at ms, and  is the cross-
correlation vector after this toggle, evaluated at m = ms. Substituting Equa-
tions 7.23 and 7.24 into Equation 7.25, we obtain 

(7.26)

Similar to , the computational cost of finding  can also be
reduced greatly by keeping LUTs for  and . If the swap under
trial is accepted, the  and  LUTs are updated as follows: 

(7.27)

(7.28)

In a recent paper, Lieberman and Allebach61 showed that the time com-
plexity of monochrome DBS can be improved considerably by using two
efficient search techniques instead of computing the effect of every possible
toggle and every possible NN swap in raster-scan order. We generalize and
apply these two strategies to CDBS. First, we limit the search of possible
swapping pixels to those in the anticausal neighborhood of a given pixel
only and hence decrease the number of trial swap computations by 50%.
Second, we exploit the fact that the cost of a trial change computation is
much lower than that of the actual update if the trial change is accepted.
Pixels of the halftone image are partitioned into C × C cells. These cells are
processed in raster-scan order. Within each cell, the effect of all possible
toggles and swaps are computed, but only one halftone pixel change is
allowed for the whole cell. Only the one toggle or swap within the cell that
causes the largest decrease in the error metric is accepted. We found empir-
ically that C = 3 gives the lowest time complexity for CDBS. 

Figure 7.8 compares two halftones of the faxballs image, one obtained by
applying CDBS in the RGB space and the other by applying CDBS in the
YyCxCz space. To apply the CDBS halftoning algorithm in the RGB color space
instead of YyCxCz, we use , the HVS point spread function for the
luminance channel, for all three color channels; we set κ = 1; and we choose
our error metric to be the sum of total squared RGB errors after passing
through this HVS filter. This approach is similar to the one presented by
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Pappas28 for nonseparable printer models. The two 600-dpi scans of the 300-
dpi halftones, printed on a Hewlett Packard 692C printer, display the differ-
ence in halftone texture. This is a CMYK inkjet printer with full undercolor
removal so, at any pixel location where the halftoning algorithm puts dots of
all three colorants cyan, magenta, and yellow on top of each other, these three
dots are replaced by a single black dot. The comparison of these two scans
shows that the use of a luminance/chrominance-based space such as YyCxCz

gives us an overall finer (and therefore more pleasing) texture. The differences
in the visual consequences of the chosen color space are especially noticeable
in highlights, such as the white ball, and all light shadow regions, such as the
perimeter of the yellow ball and the light green ball that overlaps it.

Figure 7.8 (See color insert) 600-dpi scans of the 300-dpi halftones of the faxballs
image obtained using CDBS (a) in the RGB space and (b) in the YyCxCz space, with
the simple RGB → YyCxCz calibration.

(a)

(b)
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Even though texture rendition is improved by the choice of a luminance/
chrominance-based space instead of a device-dependent color space, there
is room for further improvement, especially in the darker shadow areas of
Figure 7.8b, where there are artifacts due to the interactions between dark
dots neighboring light dots, e.g., in the shadow regions of the green ball and
the cyan ball overlapping the lower part of the white ball. These artifacts
are a result of the lack of a printer model in the CDBS halftoning algorithm
and the invalidity of the assumptions made in the analysis above about the
printer dots, i.e., that the dot profiles are identical for all colorants and that
dot interactions are additive. In the next subsection, we will explain how we
incorporate the measurement-based 2 × 2 centering printer dot interaction
model34,35 into CDBS to prevent the artifacts due to dot overlap and to
improve color texture quality. 

7.4.3 Two-by-two centering-based CDBS

The 2 × 2 centering printer dot interaction model34,35 discussed in Section
7.2 provides a means of quantifying dot overlap in color halftones with only
1072 measurements. The novelty of this method is the idea that the printer
grid is assumed to be shifted by (0.5, 0.5) pixels from the image grid as
shown in Figure 7.4b. When the image grid is imposed on top of the printer
grid as depicted in Figure 7.4b, every pixel in the image grid has the same
rendered “color” that is created by the four (2 × 2) printer pixels and the
overlaps in between these four printer pixels. Because there are eight pos-
sible colorant combinations per printer pixel for the three-colorant bilevel
printers or four-colorant bilevel printers with full undercolor removal that
we are modeling, this approach results in 84 (4096) possible (2 × 2) colorant
combinations (i.e., “colors”) for each rendered image pixel instead of the
eight that the conventional method provides (Figure 7.4a). The assumption
that the dots are symmetric with respect to their vertical and horizontal
axes decreases the number of unique 2 × 2 colorant combinations to 1072.
Calibration of the model necessitates the colorimetric measurement of these
1072 overlapping patterns. Symmetry characteristics of the pattern allows
us to tile the 2 × 2 colorant combinations vertically and horizontally to form
a color patch with an average XYZ tristimulus value equal to the XYZ
tristimulus value of this combination as shown in Figure 7.9. We macro-

Figure 7.9 (See color insert) Two examples of the 2 × 2 colorant combination bitmaps.
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scopically measure the XYZ tristimulus value directly using a spectropho-
tometer. 

Macroscopic measurement of the colorant combinations allows us to
quantify the dot overlap in these patterns and to measure the overlapped
rendered color of the four colorant combinations making up the pattern.
These 1072 measurements depend on both the colorant set and the paper
substrate. We convert these measured XYZ values to YyCxCz and store them
in a LUT to incorporate into our CDBS halftoning algorithm, as was done
by Pappas et al.64 with a LUT of reflectances of all unique 3 × 3 pixel
neighborhoods for monochrome error diffusion. 

Incorporating the 2 × 2 centering method34,35 into CDBS requires changes
in the definition of the YyCxCz-rendered color image and the computation of
the effect of trial halftone changes on the error metric. In 2 × 2 centering-
based CDBS, the YyCxCz centering based rendered color image at pixel loca-
tion m, which we will denote by , is no longer a function of only
g[m]; it is a function of the colorant combinations at the four printer pixels
contributing to the rendered color at this pixel (Figure 7.4b). We denote the
neighborhood of these four printer pixels that intersect with pixel m in the
image pixel by N (m). Therefore, in centering-based CDBS 

(7.29)

where  is the function that generates the rendered YyCxCz for a given
input 2 × 2 overlapping colorant combination using the LUT of the measured
YyCxCz values for the 4096 such combinations. We define a dual neighbor-
hood  in the image grid which denotes the neighborhood made of
four image pixels that intersect with pixel m in the printer grid, i.e., the four
image pixels that are affected by the choice of the colorant combination in
the halftone at pixel m in the printer grid. 

For the 2 × 2 centering-based CDBS, the error image in the YyCxCz color
space  is given by 

(7.30)

The remainder of the equations defining the error metric for CDBS (Equa-
tions 7.13 through 7.20) also apply to the 2 × 2 centering-based CDBS. The
modifications to the computation of the effect on the error metric of the trial
toggles and swaps are described below. 

In centering-based CDBS, a trial toggle at halftone pixel mt from a given
colorant combination to a different one out of the eight possible colorant
combinations causes a change in the YyCxCz-rendered color image at the four
image pixel locations in  as shown in Figure 7.10a. This trial toggle
will change the YyCxCz-rendered color image by a[n] at the pixels

. Similar to A[mt], we define . This trial
toggle will affect , , and  as follows: 

gYyCzCz

o m[ ]

go
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(7.31)

(7.32)

(7.33)

where the prime denotes the version after the toggle. We observe that, for a
given trial toggle, centering-based CDBS changes a larger area in the 
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-
rendered color image than regular CDBS does, affecting four image pixels
instead of one. However, the changes 
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 observed at these four loca-
tions  are generally smaller in magnitude than we see
at the single pixel location for regular CDBS. The change in 

 

E

 

 due to this
trial toggle can be written as 

(7.34)

If the toggle under trial is accepted, we modify the  and 
LUTs using Equations 7.31 and 7.33, respectively. 

toggled
printer pixel

4 affected
image pixels

swapped
printer pixels

7 affected
image pixels

Figure 7.10 (See color insert) Effect of a (a) trial toggle and (b) trial swap.
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Now, consider a trial swap of the halftone pixels mt and ms. This trial
change to the halftone will modify the YyCxCz-rendered color image at the
pixels in . Assuming that mt ≠ ms, 
may contain either six or seven pixels, depending on the relative locations
of mt and ms. Figure 7.10b depicts the seven image pixels that will exhibit
a change in YyCxCz values when the colorant combinations at the two diag-
onally touching pixels mt and ms are swapped. 

Similar to the trial toggle analysis, we denote the change that this
swap will create in the YyCxCz-rendered color image at the pixels

 by . We again define . The
effect of this trial swap on , , and  is given by
the generalization of Equations 7.31 through 7.33 with  replaced by

. Similarly, ∆Es, the change in E due to this trial swap,
is given by Equation 7.34 with the same modification. If the swap under trial
is accepted, we alter  and  accordingly. We note that, as
in the case of regular CDBS, in centering-based CDBS, a swap is a more
subtle change (of larger support and smaller effect per pixel) to the YyCxCz-
rendered color image than a toggle, and it tends to conserve the average
local “color” in the area containing the swapped pixels. We also note that,
due to the fact that a toggle in centering-based CDBS brings a much more
subtle change to the halftone than one in regular CDBS, we obtain very high-
quality halftones doing only toggles in centering-based CDBS. Unlike regular
CDBS and monochrome DBS, swaps do not lead to a significant improve-
ment in texture. As with regular CDBS, for efficient implementation of cen-
tering-based CDBS, we again exploit the modified search strategies discussed
above. 

Figure 7.11 shows 600-dpi scans of the 300-dpi halftones of the faxballs
image obtained using CDBS and centering-based CBDS. Comparison of
Figures 7.11a and 7.11b, which were both created using the simple RGB →
YyCxCz calibration shows that the 2 × 2 centering model has been very
effective in reducing dot interaction artifacts, especially in the green and
cyan balls. The dot interaction model also improves the color textures and
gives us much smoother transitions between the light and dark areas. It aims
to improve halftone texture and does not try to preserve lightness and
saturation. Therefore, Figure 7.11b is generally lighter and less saturated than
Figure 7.11a. This side effect may be eliminated with a tone correction prior
to halftoning. 

Both CDBS (Figure 7.11a) and centering-based CDBS (Figure 7.11b) with
the simple RGB → YyCxCz calibration method give colorant-wise acceptable
results for the faxballs image, but applying CDBS to the ramps of six Neu-
gebauer primaries (CMYRGB) (Figure 7.17a) reveals the need for a different
RGB → YyCxCz calibration method for business graphics where the intent
is to preserve the purity of colors. In Figure 7.17a, we notice phantom dots,
i.e., dots with wrong colorant values such as magenta dots in the yellow
ramp and cyan dots in the red ramp. This is a consequence of the fact that
CDBS (centering-based CDBS) operates with an input in the device-inde-

N  1– mt( ) N  1– ms( )∪ N  1– mt( ) N  1– ms( )∪

n N  1– mt( )∈ N  1– ms( )∪ a n[ ] A n[ ] diag a n[ ]( )≡
go

YyCxCz m[ ] eYyCxCz
m[ ] cp̃ ẽ m[ ]

N  1– mt( )
N  1– mt( ) N  1– ms( )∪

go
YyCxCz m[ ] cp̃ ẽ m[ ]
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pendent space of YyCxCz and that it is not a colorant-space-based, colorant-
level-preserving halftoning algorithm. CDBS minimizes a least-squares
error metric in the YyCxCz space, and this error minimization favors color
textures that are pleasing to the human viewer due to the HVS model
incorporated. Our experimentation has shown that CDBS is biased to create
visually pleasing halftones at the expense of leading to YyCxCz values that
are somewhat different from the desired input YyCxCz values, especially in
the very dark colors. Subject to this bias and limit in accuracy, CDBS is a
colorimetric technique developed to minimize a measure of perceived error
in YyCxCz. Therefore, it is not calibrated on a colorant basis. This is mainly
due to the fact that different spatial arrangements of a single desired colo-

Figure 7.11 (See color insert) 600-dpi scans of the 300-dpi halftones of the faxballs
images obtained using (a) CDBS and (b) centering-based CDBS with the simple RGB
→ YyCxCz calibration.

(a)

(b)
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rant combination in a region in the image can lead to different YyCxCz values.
To allow the CDBS algorithm to be used in applications where the calibra-
tion of the color printer on a colorant basis is important, such as business
graphics as in the example of the ramps of six Neugebauer primaries, we
devise the following iterative RGB → YyCxCz calibration scheme that can
control the colorant combination in a CDBS halftone. 

7.4.4 Iterative RGB → YyCxCz calibration

This method uses a cellular measurement-based grid structure that is itera-
tively updated and then exploits tetrahedral interpolation. It is developed
solely for centering-based CDBS. To convert RGB f[m] to , we first
change the RGB values to CMY using C = 1 – R, M = 1 – G, Y = 1 – B. We
denote this continuous pseudo-colorant space by . Our goal is to
increase the accuracy of the simple undercolor-removal-strategy-based RGB
→ YyCxCz calibration method using a cellular-measurement-based grid struc-
ture and iterative update of the grid structure. This calibration method does
not require extra colorimetric measurements. It uses the 1072 measurements
made before. We first discuss how we construct the initial cellular grid
structure. Then, we explain how we update this grid structure. 

We start by feeding the measured YyCxCz values for the 1072 2 × 2 colorant
combinations into CDBS to obtain halftone patches for them. We choose to
start with these values, as they form a good estimate of what the printer
gamut will be for this halftoning algorithm. Because we macroscopically
measure the YyCxCz values of the tiled version of these 2 × 2 colorant com-
binations (Figure 7.9), theoretically, these YyCxCz values correspond to 
values

where . For a four-colorant printer with full under-
color removal, we assume that a K dot is equivalent to C, M, and Y dots put
down together. These theoretical  values are the grid points of the
uniform 5 × 5 × 5 grid in  shown in Figure 7.12a. We compute the
actual  values for the 1072 CDBS halftone patches we created by
counting the number of dots of each colorant present in the bit maps. If
CDBS were an algorithm calibrated on a colorant basis, these values would
fill the whole unit cube in  and would be exactly equal to the grid
points of the 5 × 5 × 5  grid of Figure 7.12a. We typically obtain 
values as shown in Figure 7.12b. 

Among these 1072  values, we pick the 125 that are closest in
Euclidean distance to the grid points of the 5 × 5 × 5 grid in . This
gives us a nonuniform grid structure that does not fill the unit cube in 
as shown in Figure 7.13a and a corresponding nonuniform grid structure in
YyCxCz as shown Figure 7.13b. There is a 1-1 and onto mapping between the
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Figure 7.12 (a) Theoretical 5 × 5 × 5  grid and (b) actual  measurements
superimposed on the 5 × 5 × 5 grid.
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Figure 7.13 (a) Actual  grid, (b) YyCxCz grid, and (c) tesselation of a subcube
in  into tetrahedra.
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grid points of the ideal 5 × 5 × 5  grid, the actual  grid, and the
YyCxCz grid. 

We then divide each subcube of the ideal 5 × 5 × 5  grid into six
tetrahedra as shown in Figure 7.13c. We use this specific tetrahedralization
among all possible tetrahedralizations of a cube, because deviations from
the equi-faced tetrahedra are limited, and all interfaces between tetrahedra
are oppositely congruent, as stated necessary by Gennetten65 for accurate
interpolation. Furthermore, this tetrahedralization with the lower left vertex
located at the smallest CMY value satisfies the minimum brightness variance
criterion,66 which states that, in selecting from possible colorant sets to render
a desired color in a halftone, choosing the set with minimum brightness
variation reduces the halftone noise and results in visually more pleasing
halftones. We carry out the same tessellation in the actual  grid and
the YyCxCz grid. Figure 7.14 depicts the two-dimensional versions of these
three grid structures wherein each subsquare is divided into two triangles.
For a desired  we locate the tetrahedron that the color belongs to in
the ideal  grid and calculate interpolation weights. Then, we use the
YyCxCz values of the vertices of the corresponding tetrahedron in the YyCxCz

space to interpolate the YyCxCz value for the desired 
Even though this calibration method gives better results than the simple

Neugebauer-model-based RGB → YyCxCz transformation discussed above, it
is still incapable of producing CDBS halftones that span the whole unit cube
in  since the rendered colors are restricted to the ones in the convex
hull of the nonuniform grid structure shown in Figure 7.13a. We take the
following iterative grid expansion and correction approach to fill a larger
portion of the  unit cube, and to bring the grid points closer to the
grid points in the ideal  grid, i.e., to render a larger set of colors and
to attain more accurate colorant distributions using CDBS. 

For a given grid point CMYtarget in the ideal 5 × 5 × 5  grid, we find
the tetrahedra in the ideal  grid for which this point is a vertex.

CMY CMY

CMY

CMY

C

M

C

M

Cx

Cy

Figure 7.14 Illustration of the relation between different grid structures for a two-
dimensional example with a 3 × 3 grid: (a) ideal  grid, (b) actual  grid,
and (c) YyCxCz grid.
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Depending on the location of CMYtarget in the unit cube, CMYtarget may be a
vertex of up to 20 tetrahedra. For each such tetrahedron, we use the corre-
sponding tetrahedron in the actual  grid to find the weights for tetra-
hedral extrapolation or interpolation of CMYtarget. Figure 7.15a depicts a grid
point extrapolated from two tetrahedra. Using these weights and the YyCxCz

values of the vertices of the corresponding tetrahedra in the YyCxCz grid, we
find approximate YyCxCz values for CMYtarget. We feed these values into CDBS,
obtain halftone patches, and compute the  for the resulting halftones. 
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Figure 7.15 (a) Extrapolation of CMYtarget and (b) the  grid structure after the
first update.

CMY

(a)

(b)

CMY

-ColorBook  Page 521  Wednesday, November 13, 2002  10:55 AM



522 Digital Color Imaging Handbook

We pick the  value with minimum Euclidean distance ∆CMY from
CMYtarget. If this new  value for CMYtarget is closer to CMYtarget then the
already existing grid point in the actual  grid structure, we update our

 and YyCxCz grid structures. We repeat this process in parallel for all
of the 125 grid points. This expansion and correction approach may be
iterated until the desired accuracy in the CMY rendition is obtained with the
halftones. Figure 7.15b shows the new iterated  grid structure that is
noticeably closer to the ideal 5 × 5 × 5 grid. The ∆CMY error vectors for the
initial  grid structure (Figure 7.13a) and its iterated version (Figure
7.15b) are depicted in Figure 7.16, and the maximum and mean ∆CMY values
are summarized in Table 7.2. 

The expansion and correction approach provides a significant decrease in
the ∆CMY errors. Comparison of the scan of the halftone of the ramps of the
Neugebauer primaries obtained using centering-based CDBS with this iter-
ated  grid-structure-based calibration (Figure 7.17b) with that obtained
using centering-based CDBS with the simple calibration (Figure 7.17a)
emphasizes what we have gained by incorporating the iterative calibration.
The colorant rendition is almost perfect, i.e., we have considerably fewer
phantom dots. The subtractive primary ramps (C, M, Y) are almost solely
made up of dots of the desired respective colorant. For example, there are
almost no magenta dots in the cyan and the yellow ramps. Similarly, the
subtractive secondary ramps (R, G, B) contain very few dots of the wrong
colorant; e.g., the number of cyan dots in the red ramp and the number of
magenta dots in the green ramp have decreased significantly. While attaining
improved colorant rendition, we still maintain the visually pleasing smooth
color textures of CDBS. 

In the presentation of this halftoning calibration algorithm, we have
assumed that the color printer has three colorants CMY. However, this algo-
rithm can also be applied to four-colorant CMYK printers with full under-
color removal. For a four-colorant CMYK printer with full undercolor
removal, each CMYK value can be mapped to a CMY value according to
CMYK → (C + K)(M + K)(Y + K). Because favoring composite black dots over
process black dots improves the color texture of the halftones, we modify
the previously described method for choosing the points for our grid struc-
tures in  as follows. We add an empirically determined penalty term
(K – min(CMYgrid)2)2 if K > min(CMYgrid)2 to our distance metric ∆CMY. That
is, given two candidate points for a given grid point with the same CMY
values, we favor the one with less K coverage. This penalty serves to limit

Table 7.2 Comparison of Initial and Iterated  Grid Structures

Initial  Grid Iterated  Grid

Maximum ∆CMY 0.3221 0.2607 
Mean ∆CMY 0.0703 0.0383 
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Figure 7.16  DCMY error vectors of (a) the initial  grid structure and (b) the
iterated  grid structure.
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the process K in the halftones, like the modification to the interpolation
weights discussed in simple undercolor-removal-strategy based RGB →
YyCxCz transformation.

7.5 HVS-model-based color error diffusion
Error diffusion has been more successfully applied to color halftoning using
the generalized version, vector error diffusion, where the error due to half-
toning at a given pixel is diffused to color planes jointly or the error diffusion
is carried out in a device independent space. However, vector error diffusion
poses unique challenges, as pointed out by Sharma and Trussell.67 Haneishi

Figure 7.17 (See color insert) 600-dpi scans of the 300-dpi halftones of the ramps of
the six Neugebauer primaries obtained using (a) centering-based CDBS with the
simple calibration and (b) centering-based CDBS with the iterated  grid-struc-
ture-based calibration.

CMY
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(b)
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et al.68 employed vector error diffusion in the device-independent color
spaces of XYZ and CIE, compared their performances to scalar error diffu-
sion in RGB, and proposed a method to decrease the spatial artifacts due to
error accumulation. Marcu and Abe69 investigated the effect of the shape and
the size of the threshold array, the weights, and the color space in vector
error diffusion. Shu70 proposed a modified scalar error diffusion that uses
the inter-color frame knowledge to enforce exclusion of nonharmonic colors
in a local area in the image. Klassen et al.63 applied vector error diffusion in
a distorted color space, where they made it less likely to have dark primaries
(RGBK) in light regions and light primaries (WCMY) in dark regions. Kim
et al.29 diffused the error over 2 × 2 pixel blocks. Shu and Boyce,71 Akarun
et al.,72 and Bozkurt et al.73 used adaptive vector error diffusion wherein they
adjusted the diffusion coefficients to improve halftone smoothness or to
locally minimize the mean-squared error between desired and rendered
colors. Lau et al.74 combined Knox and Eschbach’s threshold modulation75

and Levien’s output-dependent feedback76 in a vector framework and added
an interference matrix to control the overlap of dots from different colorants.
Their framework admitted the possibility of coupling between color planes,
but they did not provide any guidance regarding how the matrices that
controlled this coupling should be designed. Damera-Venkata and Evans77

propose and validate a model for a vector error diffusion system in which
the quantizer is replaced by a gain matrix followed by additive noise that is
uncorrelated with the input. They then used this model to design filter
coefficients that are optimal under Poirson and Wandell’s opponent-color
human visual system model.78 

7.6 HVS-based clustered-dot color screen design
In Section 7.4, we saw how a direct binary search for the optimal color
halftone value at each pixel, combined with color rendering device and
spatiochromatic HVS models, could effectively develop a very high-quality
dispersed dot halftone rendering of a continuous-tone color image. As
pointed out earlier, by designing textures for patches of constant color, this
approach may also be used as the basis for design of dispersed dot color
halftone screens.49 In Section 7.5, we briefly described the work of Damera-
Venkata and Evans,77 which also employs a numerical search in combination
with a spatiochromatic HVS model to optimize the parameters associated
with color error diffusion, another dispersed dot halftoning approach. In this
section, we again use a color rendering device and spatiochromatic HVS
models in combination with a numerical search, but this time, our objective
is to optimize the parameters of screens that will generate periodic clustered
dot halftones. 

In traditional clustered-dot color screening, the screen for each colorant
is rotated to a different angle relative to the others. If the angles are not
carefully chosen, visible moiré and rosette artifacts may appear. These
artifacts primarily result from the interaction of the periodic structures
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associated with the halftone screens of different colorants. Registration
errors can also introduce unwanted artifacts in the screened images. Using
lattice theory and a model for the perceived rendered halftone, we present
a systematic method for designing moiré- and rosette-free clustered-dot
color screens for discrete-raster color systems. We also investigate strategies
for choosing the periodicities so that the resulting screen is robust to reg-
istration errors. 

Clustered-dot screens produce binary textures in which the individ-
ual printer dots are grouped into clusters. To avoid confusion between
the individual printer dots and these clusters, we refer to the latter as
macrodots. When the meaning is clear from the context, we drop the prefix
“macro.” 

The moiré phenomenon is an optical effect that appears when periodic
or quasiperiodic structures intersect.79 These periodic structures could be
line gratings or macrodot screens. Moiré consists of a visible pattern that is
clearly observed at the intersection, although it is not present in any of the
original structures. Unwanted moiré patterns may appear in the printing
process for various reasons. For instance, if the image contains some periodic
fine details, then a moiré pattern may be caused as an interference between
the periodic fine details of the original image and the frequency of the
halftone screen. This type of moiré also appears in black-and-white printing.
In color printing, the most notorious moiré is due to the superposition of
halftone screens of different process colors. A rosette pattern is formed in
rotated halftone screens due to the symmetry of the crossline ruling that
causes angular separations among screens in the first quadrant to be repeated
in the other three quadrants, forming a circular or polygonal pattern.1 Gen-
erally, rosette patterns are relatively less objectionable than moiré patterns,
but they represent an unstable moiré free state. Rosette patterns can be clear
centered, dot centered, or something in between.

The theory of moiré suppression in monochrome halftoning is well
studied. Several techniques have been proposed. For example, Allebach and
Liu80 proposed a random quasiperiodic halftone screen. It consists of a peri-
odic array of cells where, within each cell, the screen profile is independently
randomized. The fixed cell structure and independence between cells results
in a loss of macrodot and macrohole integrity. A random nucleated screen
that maintains the integrity of macrodots and macroholes has also been
suggested.81 Using the nonlinearities in the spectral analysis of the halftone
image to suppress moiré has also been investigated.82,83 Roetling84 proposed
the ARIES method that adjusted the thresholds in the dither matrix cell by
cell to ensure correct average tone over the halftone cell, thus suppressing
moiré that results from slowly varying periodic errors in average tone.
Because ARIES is based on discrete cells, it can introduce artifacts at the cell
boundaries. Levien85 extended ARIES to suppress boundary artifacts. Rao
and Arce86 looked into improving clustered-dot screening by using arbitrary
screen periodicities. A frequency domain analysis of screening for arbitrary
sampling lattices and screen periodicities has also been done.87 Green noise
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masks that reduce moiré by randomizing the location and size of the dot
clusters have also been explored.74,88

Mathematical approaches analyzing moiré due to superposition of clus-
tered-dot screens for color halftoning have also been reported. The geometric
model1,89 is based on periods and angles of the superposed layers. It provides
equations that under certain limitations predict the geometric properties of
the moiré patterns. The algebraic approach90 also gives the same result.
Amidror et al.91 analyzed moiré formation in the frequency domain, while
Kaji et al.92 proposed a method to minimize moiré at the expense of rosette
formation. 

It is suggested in the literature1 that, for a three-colorant halftone, the
screen angles should be separated by 30°. The angles have to be quite
accurate to avoid the appearance of moiré. In the graphic arts industry,
the rotation angles are achieved by using the following three
approaches:93 rational tangent, irrational tangent, and rational supercell.
The rational tangent method (conventional approach) only allows integer
elements in the periodicity matrices, thereby restricting the available
screen angles. The irrational tangent technique94 is used in high-end
graphic arts plotters. It employs floating-point arithmetic and registers
to attain precise angles. The drawback is that the screen cells are different
from location to location, which can cause moiré.93 In the rational super-
cell approach, a large cell that contains an array of cells is fit to the raster
grid. Screen angles can be achieved to any desired precision by increasing
the supercell size. This method requires less processing than the irrational
tangent method. However, the possibility of moiré still exists. To allow
more latitude in the choice of screen angles, nonorthogonal halftone
screens that avoid moiré have also been proposed.95 While the theory of
moiré and rosette formation due to superposition of the halftone screens
has been thoroughly studied, little work has been done to develop a
systematic method for designing moiré- and rosette-free clustered-dot
color screens. Mostly, the screen angles are chosen based on the designer’s
experience. 

Lattice theory is a well-developed branch of abstract algebra that has
various applications in signal and image processing. It has been used in the
time sequential sampling problem96–98 and for the analysis of multidimen-
sional multi-rate filter banks.99 We use it to analyze the structure of CMYK
clustered-dot halftone patterns with arbitrary periodicities and offsets for
the individual colorants. 

A CMYK halftone screen is completely specified by the periodicity
matrix, the offset vector, and the dot profile for each of the four colorants.
We use a perceptual model to determine the perceived error between the
texture predicted by the halftone and the input image and jointly optimize
over the set of periodicities and offsets to minimize this error. The objective
is to ascertain periodicity matrices and offsets for the colorants that minimize
the visibility of moiré and rosette artifacts. In addition, the screens should
be robust to registration errors. 
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7.6.1 Preliminaries

As we did in Section 7.4, we represent spatial quantities, i.e., position or
displacement by boldface lower-case letters. We use [m] to represent discrete
spatial coordinates and (x) to represent continuous spatial coordinates. The
function ftype[m] denotes the three-tuple discrete space continuous-tone
image, and gtype[m] represents the three-tuple digital halftone, where the
subscript type is one of cmy, XYZ, or YyCxCz. When we wish to refer to all
three of these simultaneously, we will simply eliminate the subscript. Each
pixel of fcmy[m] contains a three-tuple of colorant values for the primaries,
each ranging between 0 and 1. These colorant values represent the fractional
area of coverage for each colorant. The pixels of gcmy[m] have the three binary
values of the colorants that are either 0 (no colorant) or 1 (100% colorant). 

7.6.1.1 Lattices
Multidimensional digital signal processing requires sampling on an array of
points. For images, these points are arranged on a plane lattice,100,101 which
is a discrete subgroup L of R2 defined by two linearly independent vectors
v1 and v2,102

(7.35)

The generating set  is called the lattice basis. If ,
then L may be expressed as , where the sampling matrix V
is nonsingular, and the absolute value of its determinant  represents
the area of any unit cell. For example, the unit cell could be a parallelogram

, defined by the columns of V or a Voronoi box.96 For a lattice L, there
are many valid sampling matrices. For example, if E is any unimodular
matrix, i.e., det(E) = ±1, then  is another sampling matrix for L. In
this chapter, we assume that the continuous-space, continuous-tone image
f(x) has been sampled on a rectangular lattice X to yield the discrete-space
continuous-tone image f[m], where X = diag[X, X] and X is the horizontal
and vertical distance between printer addressable points. The digital halftone
g[m] is defined on the same lattice. 

7.6.1.2 Periodicity matrix
The two-dimensional discrete-parameter signal  is said to be periodic
if ∃ two linearly independent vectors n1 and n2 such that σ[m] = ,
for , and . The integer matrix N is called the periodicity
matrix. The columns of N indicate vectors along which the sequence is
periodically replicated. N is nonsingular, and its density  represents
the area of a cell that can be replicated to cover the entire two-dimensional
space without gaps or overlaps. Like the sampling matrix, for a particular
density, the choice of the periodicity matrix is not unique, i.e., N = NE, where
E is unimodular and is also a valid periodicity matrix. The density of N
gives the number of unique samples contained in a single period. 

L m1v1 m2v2+ m1 m2,( ) Z∈( ){ }=

v1 v2,( ) R2∈ V v1 v2,[ ]=
Vm m∀, Z2∈{ }

det V

P R2∈

V′ VE=

σ m[ ]
σ m Nq+[ ]

N n1 n2[ ]= q∀ Z2∈

det N( )
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7.6.2 Clustered-dot color screen design

Each colorant plane is independently halftoned as if it were a separate
monochrome image. Screening for the jth colorant consists of thresholding
the discrete space signal fj[m] with a spatially periodic threshold matrix
σj[m] whose periodicity is defined by a periodicity matrix Nj. Because σj[m]
is periodic with period Nj, it contains  distinct threshold elements
(k + 1/2)/ , k = 0, 1, …  – 1. If fj has constant value b, (k +
1/2)/  ≤ b < (k + 2/3)/ , exactly k of the thresholds in each
period of σj will be exceeded. This will result in the printing of k dots in
each period according to the dot profile function82 

(7.36)

where  = , for any . For the halftone process to be
realized by screening, the dot profile function must satisfy the stacking
constraint82 

(7.37)

As pointed out earlier, the halftone screens for each colorant are also
offset relative to each other. Thus, we can write the shifted dot profile func-
tion as 

(7.38)

Here,  is the unshifted dot profile function, and  and 
represent the periodicity matrix and the offset vector for the jth colorant,
respectively.

For a CMYK halftone screen, we have four periodicity matrices and four
offset vectors. For simplicity, here we shall confine our screen design to the
cyan, magenta, and yellow colorants. The resulting framework easily can be
extended to incorporate the black colorant. The periodicity matrices and
offset vectors for the cyan, magenta, and yellow colorants can be expressed as 

(7.39)

and

(7.40)

det N j( )
det N j( ) det N j( )

det N j( ) det N j( )

g j
k m[ ] 1,    k
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----------------------- δ j m[ ]≥
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


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g j
k m[ ] g j

k m N jq+[ ] q Z2∈
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Once Nc, Nm, Ny, oc, om, and oy are selected, the screen design consists of
finding the discrete parameter halftone cell (DPHC) and defining the dot profile
for each colorant. For ease of notation, we define the following augmented
matrices to represent the periodicities and offsets of the cyan, magenta, and
yellow colorants:

(7.41)

(7.42)

In the following, we elucidate the screen design procedure for a given
colorant in terms of its periodicity matrix and offset vector. The screens for
the other colorants can be similarly designed. The selection of Ncmy and ocmy

will be addressed in Sections 7.6.3 and 7.6.4. 

7.6.2.1 Discrete parameter halftone cell
For the purpose of illustration, let the periodicity matrix for a given colorant
be 

(7.43)

Without loss of generality, we assume that the offset vector for this colorant
is the null vector. We start with a lattice defined by n1 and n2. We call the
unit cell of this lattice the continuous parameter halftone cell (CPHC). An illus-
tration of the CPHC is given in Figure 7.18. The shaded region represents
the unit cell  defined by the columns of N as 

(7.44)

From the CPHC, we need to find the DPHC. The DPHC should be able
to tile the entire two-dimensional discrete-parameter space without gaps or
overlaps. To do this, we first compute the number of pixels in the unit cell.
This is given by . Then we find the intersecting area of the CPHC
and the pixels in the DPHC by using the procedure outlined in Reference
103. Generally, computing the overlapping area of two arbitrary polygons
will have quadratic complexity in the number of vertices of the polygons.
However, because the CPHC is always convex, the overlapping area can be
determined with linear complexity.103 The area of overlap of each pixel for
the CPHC given by the periodicity matrix in Equation 7.43 is shown in Figure
7.19a. Here, 0 indicates that the pixel does not overlap with the CPHC, and
1 means that the pixel is completely contained in the CPHC. 

Ncmy Nc Nm Ny[ ]=

ocmy oc om oy[ ]=

N n1 n2[ ] n11 n12

n21 n22

5 2
2– 3

= = =

P R2∈

P xn1 yn2+ x y, R∈ 0 x y, 1≤ ≤( );{ }=

det N( )
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n1
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n 2
→

Figure 7.18 Continuous parameter halftone cell defined by N = [n1, n2] = [(5 – 2)T;
(2 3)T].
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Figure 7.19 Finding the discrete parameter halftone cell for N = [(5 – 2)T; (2 3)T],
det(N) = 19: (a) area of overlap of each pixel with the continuous parameter halftone
cell and (b) discrete parameter halftone cell.
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Then we assign pixels to the unit cell in order of decreasing area of
overlap with the CPHC. During this process, we skip the pixels that are
congruent to a pixel that has already been assigned to the DPHC. To deter-
mine if the pixel at location l is congruent to the pixel at location m, we
compute  and test to see if . Note that because N has
linearly independent columns, it is always invertible. The pixels assigned to
the DPHC are marked by the letter X in Figure 7.19b. 

7.6.2.2 Macrodot shape and growth
The best macrodot/macrohole shape is generally accepted to be circular in
the highlights and shadows, becoming elongated as we move toward the
mid-tones so that dots/holes join at two points rather than four.104 For
simplicity, we used a fixed circular dot/hole shape throughout the tone scale,
although our algorithm can easily handle the more general case where the
dot/hole shape varies with gray level. 

Starting from the center of the DPHC, we grow the macrodot in a con-
tiguous manner such that pixels having smaller Euclidean distance from the
center are assigned first. In this manner, we define an index matrix i[m]. It
takes on integer values 0, 1, …  – 1 that indicate the order in which
the dots are added to the DPHC. Specifying the index matrix in this manner
results in a dot profile that satisfies the stacking constraint. Finally, the
threshold matrix σ[m] = (i[m] + 0.5)/  is computed. The sequence
of index values and the corresponding thresholds for the DPHC in Figure
7.19 are given in Figure 7.20. 

The textures for various absorptances for the threshold matrix in Figure
7.20b are shown in Figure 7.21. The macrodots develop as expected in the
highlights (Figure 7.21a) and mid-tones (Figure 7.21b). However, in the
shadow areas (Figure 7.21c), the macroholes do not have a circular structure
and can give rise to objectionable textures. Macrodots grow by starting with
the smallest threshold and increasing to the largest threshold. To preserve
the integrity of both macrodots and macroholes, we follow the procedure
described in Reference 81, i.e., grow holes (simultaneously with dots) in the
3 × 3 neighborhood of halftone cells by starting with the largest threshold

q N 1– m l–[ ]= q Z2∈

det N( )

det N( )

0

1

47 8

3

5

2

6

9 1018 17

14

11

16

12

13

15

1
38
3

38

5
38

7
38

9
38

11
38

15
38

13
38

17
38

19
38

21
38
23
38

25
38

27
38

29
38

31
38

33
38

35
38

37
38

Figure 7.20 (a) Index values and (b) thresholds for the DPHC in Figure 7.19.
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Figure 7.21 Textures obtained by growing dots only according to the threshold
matrix in Figure 7.20b: (a) absorptance = 0.26, (b) absorptance = 0.53, and (c) absorp-
tance = 0.74.

(a)

(b)

(c)
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and decreasing to the lowest threshold. Without loss of generality, we assume
that the leftmost vertex is located at the origin. The macrodot centers are at
the center of the cells, while the macrohole centers are positioned at the
vertices. The location of the 9 macrodot and 16 macrohole centers can be
written in terms of the periodicity matrix  as 

where · indicates rounding to the nearest integer, [0, 1, 2]2 denotes the nine-
point set of two-tuples formed by the Cartesian product of [0, 1, 2] with
itself, and [0, 1, 2, 3]2 is defined similarly. 

Following the sequence of index values shown in Figure 7.20, we grow
the 9 dots and 16 holes simultaneously. If a location has already been taken,
we skip to the next available position, proceeding in order of increasing
distance from the dot/hole center. In this way, the circular structure of both
dots and holes is preserved. As an example, consider growing only one dot
and two holes as shown in Figure 7.22. When we get to the ninth entry for
the hole to the right of the dot, this location is already taken by the sixth
entry for the dot. So, we go to the next available location. The resulting
thresholds for our example are shown in Figure 7.23. The textures obtained
by growing dots and holes simultaneously are given in Figure 7.24. Note
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Figure 7.22 Illustration of growing dots and holes simultaneously.
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that holes retain the circular structure in the shadow areas. Now we have a
way of generating the halftone cell for a periodicity matrix of arbitrary shape.
To facilitate implementation, we represent it by a rectangular region. 

7.6.2.3 Representing a nonrectangular halftone 
cell by a rectangular region

An equivalent rectangular halftone cell of the same density can be created
from the nonrectangular halftone cell by using the method described by
Holladay.105 In this method, the periodicity matrix N is used to obtain four
parameters.

1. Height K of the equivalent rectangular region
2. Width L of the equivalent rectangular region
3. Shift D in the vertical direction
4. Shift E in the horizontal direction

Successive displacements by D in the vertical direction and E in the hori-
zontal direction will translate the original sub-element of the halftone cell
to the next corresponding position in the vertical direction. For the period-
icity matrix in Equation 7.43, K = L = 19, D = 1, and E = 7. These variables
are shown in Figure 7.25. Here, the shaded region corresponds to the equiv-
alent rectangular region of the halftone cell. 

Using the method described in this section, we can generate the halftone
 for arbitrary periodicities and offsets for any absorp-

tance level k. In the following section, we describe the perceptual model and
the error metrics used for selecting Ncmy and ocmy .

7.6.3 Printer and perceptual model and error metrics
The objective is to find periodicity matrices and offset vectors that achieve
a uniform rendition of any printable color using cyan, magenta, and yellow

1
38
3

38

5
38

7
38

9
38

11
38

15
38

13
38

17
38

19
38

21
38

23
38

25
38

27
38

29
38

31
38

33
38

35
38

37
38

Figure 7.23 Threshold matrix obtained by growing dots and holes simultaneously.
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Figure 7.24 Textures obtained by growing dots and holes simultaneously for the
index values in Figure 7.23: (a) absorptance = 0.26, (b) absorptance = 0.53, and (c)
absorptance = 0.74.

(a)

(b)

(c)
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colorants. To achieve this, we would like to independently design the half-
tone texture for all combinations of cyan, magenta, and yellow colorants,
where each is present in an amount between 0 and 100% — but all we can
do is design the individual textures of the colorants. To achieve our goal, we
design halftone patterns for the colorants simultaneously along the neutral
axis with each color present in an equal amount. A similar strategy was
followed by Lin and Allebach49 in FM color screen design, but they designed
the levels in sequence, so the optimality was conditional on the constraints
imposed by the previous level. Here, there is no such conditional depen-
dence. We find the jointly optimal set of periodicity matrices and offset
vectors for all textures along the neutral axis. 

The perceptual model consists of a color device model (to be discussed
shortly) and two other components that were discussed in Section 7.2. These
are the linearized uniform color space (YyCxCz) defined in Equation 7.6 and
the luminance and chrominance spatial frequency responses described by
Equations 7.7 and 7.8, respectively. 

7.6.3.1 Color device model
With a clustered-dot screen, the resulting macrodots for a given colorant will
consist of relatively large regularly shaped areas of contiguous printer dots
of the same colorant. Away from the boundary of these colorant areas, the
colorant spectral reflectance distribution will match that measured from a
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Figure 7.25 Representing a nonrectangular halftone cell by a rectangular region.
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large solid area printed with this colorant. On the shoulder of the macrodot,
the spectral distribution will consist of some mixture of that corresponding
to the solid colorant and that corresponding to the unprinted substrate. But,
because the ratio of macrodot area to macrodot perimeter is large, the con-
tribution of these dot edges can, to a first approximation, be ignored. Thus,
we assume a hard, binary macrodot profile in reflectance amplitude. 

Similarly, we assume that the spatial microstructure of the edge profile,
which is governed by the spatial shape of the individual printer dots, is
inconsequential. The validity of this assumption rests with the fact, discussed
earlier, that the extent of the point spread function for the human visual
system is much greater than the printer pitch 

 

X 

 

and, hence, the size of the
individual printer dots. Thus, we simply assume a square 

 

X

 

 

 

¥

 

 

 

X

 

 shape for
these dots. 

Finally, we extend this model to the case in which clustered-dot textures
for two or three different colorants overlap. Here we find that the resulting
composite print contains relatively large irregularly shaped areas consisting
of contiguous printer dots with the same two or three colorants. The spectral
distribution of these areas will again match that measured from a large solid
area printed with these colorants. 

It should be noted that these assumptions can be relaxed by using a
table-based equivalent grayscale model,

 

64

 

 preferably with an offset between
the printer and model lattices to reduce the number of measurements
required.

 

36

 

 These steps would be critical for colorimetrically accurate mod-
eling of a dispersed-dot halftoning process.

 

47

 

 Even these steps will not,
however, account for the lateral scattering of light within the substrate from
unprinted areas to printed areas where it is trapped. This phenomenon is
the Yule Nielsen effect,

 

18

 

 which was discussed in Section 7.2.
Based on the assumptions discussed above, at any given location  m , we

can print one of the eight possible Neugebauer primaries discussed in Sec-
tion 7.2, with spectral distributions . The measured spectral distribu-
tions of the eight Neugebauer primaries printed with an HP DeskJet 970C
printer are shown in Figure 7.2. Now that we have discussed the perceptual
model, we are in a position to derive an expression for the mean squared
error (MSE) and to discuss the metrics used for error minimization. 

 

7.6.3.2 Error metrics

 

Suppose we have a given set of screens for CMY defined by .
Assuming that the periodicity matrices of the three colorants have the same
fixed density, i.e., , i = 

 

c, m, y,

 

 we consider the halftone pattern
generated for the 

 

k

 

th level of each of the three screens, where . To
get the predicted color for the halftone at the 

 

k

 

th level, we transform the
three-tuple halftone  obtained for the 

 

k

 

th level to the CIE
XYZ color space according to 

(7.45)
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Ncmy ocmy,( )
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where A is the (3 × 31) operator matrix whose rows are the color matching
functions (CMFs) , , and .106 I is the (31 × 31) diagonal matrix
containing the relative irradiance spectrum of the D65 illuminant;106 and R
is the 31-element vector containing the measured spectral reflectance of the
colorant combination given by . 

So the error image at the kth level can be written as 

(7.46)

where  is the desired color at the kth level obtained by converting
fractional CMY colorant amounts to the corresponding CIE XYZ tristim-
ulus value. Using Equation 7.6, this error is transformed to the error

 in the linearized uniform color space. 
To avoid computing the spatial domain convolution of 

 and the point spread functions of the HVS corresponding
to the luminance and chrominance channels, we evaluate the perceptual
error in the Fourier domain. We use the fast Fourier transform (FFT) to
efficiently compute the discrete Fourier transforms (DFTs) of the luminance
and chrominance channels of . To avoid spatial aliasing, the size S
of the S × S colorant bitmaps should be chosen so that it contains an integer
number of replications of each of the three periodicities. Also, note that the
two-dimensional Fourier transform of a P × Q matrix typically requires

 multiplications.100 So it is desirable to keep the size of the
FFT as small as possible. 

To determine the smallest size S of the colorant bitmaps that does not
result in aliasing, we use the widths of the equivalent rectangular region for
the three colorants obtained in Section 7.6.2.3. The largest width max(Lc, Lm,
Ly) of the equivalent rectangular regions of the three colorants gives the
smallest size S of the bitmaps that does not result in aliasing. As an illustra-
tion, consider the following periodicity matrices:

The widths of the equivalent rectangular regions for the three colorants are
Lc = 4, Lm = 8, and Ly = 16. So, for this example, the smallest size of the
colorant bitmaps that does not result in aliasing is 16 × 16. Here, the cyan,
magenta, and yellow bitmaps contain 4 × 4, 2 × 8, and 1 × 16 replications of
their respective periodicities.

Taking the DFT100 of , we get 

(7.47)

x λ( ) y λ( ) z λ( )
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where
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 = diag[
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As a measure of the error over the entire halftone pattern we use the
standard two-norm (||.||

 

2

 

). Therefore, the MSE  per pixel at the 

 

k

 

th
level can be expressed as 

(7.48)

where , , and 

 

k

 

 is a weighting
factor for adjusting the relative weight between the filtered luminance and
chrominance responses, which was discussed in Section 7.2. 

To design the screen, we define two error metrics. Given a set of peri-
odicity matrices and offset vectors, these metrics are the average RMSE 

 

f

 

avg

 

of all levels and the maximum RMSE 

 

f

 

max

 

 at any level. They can be expressed
as 

(7.49)

 

7.6.4 Optimization

 

To evaluate the efficacy of our technique, we devise the following four
optimization conditions for each of the error metrics in Equation 7.49: 

1. Jointly minimize the metric over 

 

N

 

cmy

 

 and 

 

o

 

cmy

 

 to find the best case.
2. Jointly maximize the metric over 

 

N

 

cmy

 

 and 

 

o

 

cmy

 

 to find the worst case.
3. To evaluate the effect of registration errors for periodicity matrices

designed for perfect registration, we use 

 

N

 

cmy

 

 obtained for the best
case and determine 

 

o

 

cmy

 

 that maximizes the error metric.
4. To design screens that are robust to registration errors, we maximize

the metric over 

 

o

 

cmy

 

 and then minimize over 

 

N

 

cmy

 

. 

The eight conditions (four for each metric) are listed in Table 7.3.
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As mentioned before, we need three periodicity matrices and three offset
vectors, given in Equations 7.39 and 7.40, for the cyan, magenta, and yellow
halftone screens. This implies that there are 18 variables to optimize. Our
optimization is based on an exhaustive search strategy with the following
restrictions: 

• We choose the same fixed density M for each of the three colorants
and consider only those screens for which screen angles are between
20 and 160°, and vector lengths in the periodicity matrices are within
the following limits: . We expect a reasonable solu-
tion within these constraints. 

Furthermore, we do the following:

• Search over three variables of the periodicity matrix and compute
the fourth to satisfy the chosen density M; e.g., if M is 19 and c11, c12,
and c21 are 5, 2, and –2, respectively, then 5c22 + 4 = 19, i.e., c22 = 3.

• Vary the elements of the periodicity matrices from  + 1 to 
– 1, and the elements of the offset vectors from 0 to  – 1.

• Take the offset vector of the cyan colorant to be the null vector. This
reduces the number of variables to 13. 

Table 7.3 Optimization Conditions and Their Interpretation

Case Expression Interpretation

1 minimize φavg over Ncmy 
and ocmy 

2 minimize φmax over Ncmy 
and ocmy 

3 maximize φavg over Ncmy 
and ocmy

4 maximize φmax over Ncmy 
and ocmy

5 maximize φavg over ocmy 

given 

6 maximize φmax over ocmy 

given 

7 maximize φavg over ocmy 
then minimize over 
Ncmy

8 maximize φmax over ocmy 
then minimize over 
Ncmy

Ncmy
1 ocmy

1,( ) arg min φavg Ncmy ocmy,( ){ }=
Ncmy ocmy,

Ncmy
2 ocmy

2,( ) arg min φmax Ncmy ocmy,( ){ }=
Ncmy ocmy,

Ncmy
3 ocmy

3,( ) arg max φavg Ncmy ocmy,( ){ }=
Ncmy ocmy,

Ncmy
4 ocmy

4,( ) arg max φmax Ncmy ocmy,( ){ }=
Ncmy ocmy,

Ncmy
1 ocmy

5,( ) argmax φavg N1
cmy ocmy,( ){ }=

ocmy Ncmy
1

Ncmy
2 ocmy

6,( ) argmax φmax N2
cmy ocmy,( ){ }=

ocmy Ncmy
2

Ncmy
7 ocmy

7,( ) arg min max φavg Ncmy ocmy,( ){ }=
Ncmy ocmy,

Ncmy
8 ocmy

8,( ) arg min max φmax Ncmy ocmy,( ){ }=
Ncmy ocmy,

1 n1 n2, M≤ ≤

M– M
M
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7.6.5 Experimental results

Our target platform is the HP DeskJet 970C printer. We printed the eight
Neugebauer primaries on it and measured their spectral reflectances as
discussed in Section 7.2. These primaries are used in the color device model
described in Section 7.6.3.1. As discussed in Section 7.2, we use a weighting
factor κ = 4 for our experimental results. For comparison with screens
rotated by the conventional (rational tangent) approach, we rotate cyan,
magenta, and yellow screens to 0, 33.69, and 68.19°, respectively. The result-
ing periodicity matrices, offset vectors, and values of the error metrics for
the eight cases in Table 7.3 and the conventional screen, for M = 16, are
listed in Table 7.4.

The error metrics φavg and φmax for the best cases (cases 1 and 2) are
comparable. Both worst-case conditions (cases 3 and 4) result in the same
periodicity matrices and offset vectors. For the worst case, φavg and φmax are
about 14 times larger than φavg and φmax for the best cases. When the screens
designed for the best cases have worst-case registration errors (cases 5 and
6), the error metrics go up by factors between 4 and 5 as compared with the
best cases. However, they are still about three times smaller than the error

Table 7.4 Periodicity Matrices and Offset Vectors for the Screens Described in 
Table 7.3 for the Case where M = 16

Case φavg φmax

1 0.0032 0.0057

2 0.0034 0.0053

3, 4 0.0439 0.0825

5 0.0163 0.0279

6 0.0140 0.0250

7, 8 0.0143 0.0259

Conventional 0.0210 0.0374
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metrics for the worst case. The optimization for the worst-case registration
errors (cases 7 and 8) yields the same set of periodicity matrices and offset
vectors. The resulting φavg and φmax are four to five times larger than the ones
for the best cases and three times smaller than the ones for the worst case
overall (cases 3 and 4). For the conventional case, φavg and φmax are six to
seven times larger than the corresponding errors for the best cases, about
two times smaller than that of the worst case, and 30 to 45% larger than the
error metrics in cases 5, 6, 7, and 8.

The magnitude of the Fourier transform for the error in YyCxCz weighted
with the appropriate HVS spatial frequency responses for the best (case 1),
worst (case 3 or 4), and conventional screens for absorptance = 0.25 are given
in Figures 7.26, 7.27, and 7.28, respectively. The frequency units in all three
figures are cycles/sample. The spectrum for the best case has a few low-
amplitude, high-frequency spectral peaks in the luminance and chrominance
channels, which cause no moiré or rosette artifacts. The amplitudes of the
spectral peaks in the luminance and chrominance channels go up by a factor
of ten for the worst case as compared with the best case. Moreover, these
spectral components are in the low-frequency region, which can result in
significant moiré artifacts. In the spectra of the error in YyCxCz for the con-
ventional screen, there are a number of smaller peaks (as compared with the
worst case) throughout the low-frequency region. This can result in rosette
artifacts. 
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Figure 7.26 Magnitude of the Fourier transform of the error in YyCxCz weighted with
the HVS spatial frequency responses obtained for the screen in case 1 in Table 7.4
for absorptance = 025. The frequency units are cycles per sample.
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Figure 7.27 Magnitude of the Fourier transform of the error in YyCxCz weighted with
the HVS spatial frequency responses obtained for the screen in case 3 or 4 in Table
7.4 for absorptance = 025. The frequency units are cycles per sample.
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Figure 7.28 Magnitude of the Fourier transform of the error in YyCxCz weighted with
the HVS spatial frequency responses obtained for the conventional screen in Table
7.4 for absorptance = 025. The frequency units are cycles per sample.
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To test the performance of the designed screens, we use the following
images: (1) gray patches with absorptance ranging from 0.0625 to 0.9375,
and (2) the sailboats image. We chose a printer resolution of 150 dpi for
printing the images to illustrate the halftone structure. The halftoned images
of the gray patches printed with the periodicity matrices and offset vectors
in Table 7.4 are shown in Figures 7.29 and 7.30. Magnified scanned textures
of the gray patches at an absorptance of 0.25 for the screens in Table 7.4 are
also shown in Figure 7.31. 

The best screens (cases 1 and 2) give the most smooth regions with no
moiré or rosette artifacts. For some levels, the image obtained by the screen
designed by case 2 yields slightly better results. The worst-case screen (cases
3 and 4) contains objectionable moiré patterns. Rosette patterns exist in the
image halftoned by the screen rotated at conventional angles. There are no
moiré or rosette artifacts in screens that are designed for ideal registration
but printed with the worst-case registration (cases 5 and 6) and screens that
are robust to registration errors (cases 7 and 8). The image quality is also
similar. Therefore, it is not important to have good registration of the screens
if we use the appropriate periodicity matrix. Of course, it is necessary to
have very accurate control of angular alignment. 

The halftones of the sailboats image for the periodicity matrix and offset
vectors in Table 7.4 are given in Figures 7.32 and 7.33. The worst-case screen
introduces objectionable moiré artifacts, while the conventional screen shows
rosette formations. The screen obtained for case 2 gives the best performance
for this image. The contouring that is visible in these images is due to the
low value chosen for the density. If we increase the density of the 3 colorants
from 16 to 64, this contouring will be mitigated. 

To analyze the effect of the perceptual weighting, we designed screens
for M = 16 without the HVS model. The results were dramatically different
from the ones with perceptual weighting. The best case yielded a dot-on-
dot screen. There was less variance among the metrics. Therefore, the dis-
crimination capability of the algorithm is diminished if HVS models are not
used. We also performed designs for M = 8 according to the metrics in Table
7.3. We observed that the relative performance under the various metrics is
generally similar to that for M = 16. However, there is a much larger differ-
ence between the best and worst cases. It is interesting to note that the
periodicity matrices (see Table 7.4) for the different colorants for the best
cases (cases 1 and 2) are exactly the same for our chosen density (M = 16).
We have observed the same behavior for densities of four and eight. How-
ever, it remains to be seen if this effect holds for other values of M and/or
other dot shapes and colorant spectra. 

7.7 Summary and conclusions
In this chapter, we have addressed the use of color human visual system
(HVS) models in the context of color halftoning. Because the use of an HVS
model in a color halftoning algorithm will not be effective without also taking
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Figure 7.29 (See color insert) The halftoned images of the gray patches printed
with the periodicity matrices and offset vectors in Table 7.4: (a) case 1, (b) case 2,
(c) cases 3 and 4, and (d) case 5.

(a) (b)

(c) (d)
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Figure 7.30 (See color insert) The halftoned images of the gray patches printed
with the periodicity matrices and offset vectors in Table 7.4: (a) case 6, (b) cases 7
and 8, and (c) conventional.

(a)

(b) (c)
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Figure 7.31 (See color insert) Magnified scanned textures for various screens in Table
7.4 for absorptance = 0.25 (printed at 300 dpi on an HP Deskjet 970Cxi, magnified
6¥): (a) case 1, (b) case 2, (c) cases 3 and 4, (d) case 5, (e) case 6, (f) cases 7 and 8, and
(g) conventional.

(a) (b)

(c)

(e)

(d)

(f)

(g)
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into account the impact on the final rendered image of the marking engine,
colorant, and media, we first reviewed models for color hardcopy systems.
We then reviewed spatiochromatic models for the HVS. The model on which
we focused consists of three stages. In the first stage, the color image is
transformed from a colorant space to a colorimetric space. In the second

Figure 7.32 (See color insert) Halftones of the sailboats image for the periodicity
matrix and offset vectors in Table 7.4: (a) case 1, (b) case 2, (c) cases 3 and 4, (d) case 5.

(a) (b)

(c) (d)
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stage, the image is further transformed to an opponent-color space. Finally,
within the color opponent space, each channel undergoes spatial filtering,
which reflects the broader spatial frequency response of the luminance chan-
nel compared with the two chromatic channels. By computing the error
between the continuous-tone original image and the halftone rendering of

Figure 7.33 (See color insert) Halftones of the sailboats image for the periodicity
matrix and offset vectors in Table 7.4: (a) case 6, (b) cases 7 and 8, and (c) conventional.

(a) (b)

(c)
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that image in this space, we obtain the basis for a more preceptually relevant
measure of halftone image quality. 

We considered the application of this color HVS model to two specific
color halftoning tasks: design of an optimal dispersed-dot halftone rendering
for a specific continuous-tone image, and design of optimal periodic, clus-
tered-dot screens. Both of these design tasks require a search in a high-
dimensional parameter space to find a local minimum of the error metric.
Thus, the optimality of our results must be interpreted in the context of both
the chosen error metric and the fact that only a local minimum is found. We
also briefly reviewed the use of color HVS models in error diffusion. 

Our algorithm for dispersed-dot halftoning is based on an extension of
the direct binary search (DBS) algorithm to color (CDBS). We find that using
the YyCxCz luminance/chrominance-based space and incorporating a HVS
model into the halftoning process does indeed give us visually pleasing color
textures. The 2 × 2 centering dot interaction model improves the color texture
rendition, especially in dark and light areas where accurate accounting of
the dot interaction of minority colorants with the majority colorant is impor-
tant. 

The DBS algorithm and the efficient search strategies provide faster
implementation. Even though CDBS in the YyCxCz space is a colorimetric
halftoning technique that cannot guarantee a desired colorant combination,
the calibration algorithm we have developed, cascaded with CDBS, allows
us to create color halftones with high texture quality and desired colorant
composition. Our calibrated CDBS halftoning algorithm leads to color half-
tones with very good overall color texture quality and faithful colorant
reproduction, except in very dark colors where the underlying HVS model
fails to give us a good measure of perceived error. 

For design of clustered-dot periodic halftone screens, we have presented
a systematic technique based on lattice theory, a color device model, and a
spatiochromatic human visual system model for choosing the screen peri-
odicities and offsets that minimize the visibility of moiré and rosette artifacts.
We also designed screens that not only suppress moiré and rosette artifacts
but are also robust to registration errors. However, at the chosen density,
screens that are robust to registration errors do not offer a significant advan-
tage over screens that have been designed for perfect registration, but have
worst-case registration errors. Overall, it appears that jointly minimizing the
maximum RMSE at any level over the set of periodicity matrices and offset
vectors gives the best performance. 

A number of extensions can be made to the screen design process. For
instance, to get a wider choice of screen periodicities, pulse-width modula-
tion (PWM) can be incorporated. With PWM, each pixel may be in one of
several states rather than just two states as is the case for conventional
printers. Kacker et al.107 use PWM in a model for electrophotographic print
processes. 

Looking into the future, there remains an opportunity to incorporate
within color halftoning algorithms more sophisticated HVS models that
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include multiple channels and masking effects, such as those proposed by
Daly,108 Lubin,109 and Taylor et al.110 These models have been extended to
color by Jin et al.111 and Wu et al.112 They would couple well with detailed
microscopic models for the interaction of light with the media and colorant
and would reduce the need for more approximate macroscopic models, such
as Neugebauer and Yule–Nielsen, or measurement-intensive printer charac-
terization approaches that are currently used today. The benefits of a more
closed-form approach to color halftoning algorithm design would be espe-
cially important for reducing the effort required to recalibrate printers and
store separate LUTs to account for different combinations of media and
colorants. 
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In this chapter, we intend to cover the basic aspects of color image compres-
sion. Basic aspects of color images can be found elsewhere in this book, and
compression details can also be easily found in the literature. Even though
we give a very brief introduction to compression methods, we intend to
explore the issues pertaining to the intersection of the two topics (compres-
sion and color) without exploring them individually. 

 

8.1 Compression basics

 

Image compression methods rely on the removal of information within
images to reduce the amount of data necessary to represent them.

 

1–7

 

 The
information to be removed is usually characterized as one of two classes,
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statistically redundant

 

 or 

 

visually irrelevant.

 

 The removal of (statistically)
redundant data often yields reversible or lossless compression; i.e., the image
data can be completely retrieved from the compressed data. On the other
hand, removing the (visually) irrelevant information inflicts losses on the
reconstructed image; it is hoped, however, that such losses are not objection-
able for a given destination viewer. 

 

Statistical

 

 redundancy is the extra amount of bits used to represent a
given sequence of symbols. For example, if a sequence of symbols from the
alphabet {A,B,C} is to be encoded, there are several ways to encode the
symbols into binary code words. Examples of code words are {00, 01, 10},
{001, 100, 111}, {0, 10, 11}, etc. Some representations are clearly longer than
others. In other words, if we start from a given representation, by changing
the binary encoding, one might represent the same information with fewer
bits. For example, if the probabilities of occurrence are

 

p

 

(A) = 0.5

 

p

 

(B) = 0.2

 

p

 

(C) = 0.3

then the average bit rate 

 

R

 

 per symbol achievable by each code is

which clearly shows how the rate could be reduced by 25% by only modi-
fying the code. There are several means by which one can encode a particular
sequence of symbols. The above examples are for instantaneous codes where
each symbol is assigned a unique code. Instantaneous codes are those for
which no code word is a prefix of another code word. (For example, 01 is a
prefix of 010.) Also, the above examples are block codes; i.e., each symbol is
independently mapped to a code string and vice versa.

 

8

 

 
If the symbols have probabilities 

 

p

 

i

 

, the entropy of the source is defined
to be

(8.1)

One cannot encode a source with average rate below the entropy rate without
losses; i.e., 

 

H

 

 is the lower bound for coding a particular source.

 

8

 

 Furthermore,
one can always construct codes with length 

 

L

 

i

 

 such that the average length
 is bounded by . 

Huffman codes are typical examples of uniquely decodable and instan-
taneous block codes that are optimized for a particular source.

 

2,3,7,8

 

 However,

A = 00
B = 10
C = 01 þ

Ô
ý
Ô
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R 2 bits/symbol=
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C = 11 þ
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as any block code, Huffman codes cannot have less than one bit per symbol.
So, when the entropy is far below one bit per symbol, Huffman codes are
not so efficient. In fact, one can encode the symbols at an average rate very
close to 

 

H

 

, even if

 

 H 

 

<< 1. One example is the arithmetic coder,

 

3

 

 which
combines multiple symbols and codes to achieve higher performance. 

Insofar as there is no distortion to the data, this reduction in the data
size can be viewed as statistical redundancy extraction. Yet another type of
information that can be removed is the visually irrelevant one. To remove it,
the image data are manipulated (preprocessed) so as to improve the statistical
redundancy extraction step. However, an attempt is made to make all image
changes invisible to the final observer. If the changes are perceptible, they
are supposed to have low visibility, at least. The most common method to
remove visual redundancy is to remove image details of little importance or
frequency components that are not discernible. The removal of information
from the image data is performed through the quantization operation. 

A quantizer 

 

Q

 

 maps the input (a random variable, e.g., 

 

X

 

) into another
symbol of a reduced set. For example, if 

 

X

 

 assumes numbers in the real line,
it can be broken into 

 

q

 

 intervals by defining 

 

q

 

 – 1 decision levels, 

 

t

 

n

 

, in the
real axis that effectively divide the axis into 

 

q

 

 intervals. In this example, 

 

X

 

 is
assigned to level 

 

k

 

 if {

 

X = x | t

 

k– 1

 

 

 

≤

 

 x < t

 

k

 

}. The inverse quantization operation
(

 

Q

 

–

 

1

 

) restores a number in the domain of 

 

X

 

 from the received coded level
number 

 

k

 

. Typically, the reconstructed value lies within the interval to where
the original value belongs; i.e., the reconstructed value for the 

 

k

 

th level 
would lie within the interval [

 

t

 

k–1

 

, t

 

k

 

). In other words, quantization maps the
input (continuous or discrete) to a set of integer numbers, while the inverse
quantization maps the range back into the input domain, i.e., 

As a many-to-one mapping, quantization implies losses. However, losses
are the price paid to largely reduce the number of possible input values and
the data entropy. A typical quantization is the uniform one with center recon-
struction where

(8.2)

This form of quantization can be very efficiently implemented and is
often used in compression standards because of its low complexity. A vari-
ation of the uniform quantizer is the one including a small 

 

dead zone

 

 in the
middle,

(8.3)

x )
X l X→ →

)Q
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Q

xq round x
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where 

 

⋅

 

 means a round-off toward zero or “floor” function. The function
of the dead zone is to nullify numbers close to zero, which is an efficient
means to remove noise. 

To remove only statistical redundancy implies lossless compression; i.e.,
the data after decompression are bit by bit identical to the original. When
lossy compression is applied, the data cannot be recovered thereafter, thus
implying the use of some form of data quantization. Lossy compression is
much more efficient than lossless compression; i.e., by accepting data losses
(not too visible), much more compression can be applied to a particular
image. This is a general trade-off in compression: rate vs. distortion. Example
coders will be discussed later on as well as rate-distortion paradigms. 

As far as compression techniques are concerned, this chapter is merely
introductory, and the reader is referred to the many texts in image compres-
sion to understand compression techniques in more detail.

 

1–7

 

 The central
focus of this chapter is to cover representation of color image information
and its interaction with the compression.

 

8.2 Compression models

 

8.2.1 Transform coding

 

Transform coding is perhaps the most popular method of compression. A
typical compression system based on transform coding is depicted in Figure
8.1. The input image data is transformed, quantized, and encoded. The
encoding step provides lossless compression and simply converts numbers
(symbols) to some binary representation in a reversible manner. The quan-
tization step implies losses but does not compress the data. In fact, it controls
the compression and the distortion. The transform step does not control
distortion or compression, nor does it provide the compression by encoding
the data. However, it is the key enabler for successful image compression.
Its job is to convert the image pixels into something that would make sense
to quantize and encode. Figure 8.1b depicts the transform and quantization
steps in greater detail. The data are transformed, and each transformed
sample may undergo different quantization. The process of selecting quan-
tizers is historically tied to the process of 

 

bit allocation

 

.

 

2,4,6,7

 

 This is so because,
in the past, each quantizer used to be associated with its own 

 

encoder; 

 

i.e.,
a quantizer result was directly mapped into output binary codes. In this
situation, the transform output was directly related to the compressed bit
rate. In fact, under some reasonable conditions, the compression efficiency
can be related to 

 

energy compaction

 

,

 

7,9

 

 which is a measure of how much
energy is concentrated in a few transformed coefficients. A useful measure
can be the ratio of geometric by arithmetic means of the energy of each
transformed sample if we apply orthogonal transforms.

 

7

 

 In this scenario,
for very simple quantization and coding, with a few additional assump-
tions,

 

7

 

 the optimal transform can be found as the one that provides the most
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energy compaction

 

. The Karhunen–Loeve transform (KLT)

 

2,4,7,9

 

 achieves opti-
mal compaction. If, in the past, each quantizer was associated with its
encoding method, it is a modern practice to analyze multiple quantized
samples at once before entropy coding the whole quantized data stream.
Even so, the connection between energy compaction and compression effi-
ciency is clear from practice.

As an example of how energy compaction can be useful, let us consider
the example in Figure 8.2. Recall that an orthogonal transformation is a
simple rotation of the input space. Refer to Figure 8.2, where two contiguous
samples in an image are being computed. For every pair of pixels, one point

Transform Quantizer Encoder

Block
Transform

xnM , xnM+1 ,…, xnM+M-1

y0(n)

y1(n)

yM-1(n)

Q0

Q1

QM-1

Color
Transform

R

G

B

Monochrome Compression

Transf. Quant. Encoder

Monochrome Compression

Transf. Quant. Encoder

Monochrome Compression

Transf. Quant. Encoder

M

U

X

C0

C1

C2

(a)

(b)

(c)

Figure 8.1 Basic steps of typical transform coding systems: (a) and (b) Details of the
transform and quantization steps. The transformed samples for each channel com-
monly are processed using different quantizers. (c) Typical coding system for color
images, exemplified for an RGB input image. After a pixel-wise color transform, each
resulting color plane is compressed independently, while the resulting compressed
bit streams are multiplexed to produce the output.
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in plotted in the (

 

x

 

n

 

, 

 

x

 

n

 

+1

 

) plane. Because neighbor pixels are likely to be
similar, it is expected that points would cluster along a diagonal. Hence, an
axis rotation of 

 

p

 

/4 might align one of the resulting axes to the data cluster.
With this, one achieves compaction of the energy necessary to represent the
data around one axis (

 

y

 

n+1

 

) so that 

 

y

 

n

 

 tends to have small values. If one had
the ability to keep only one of the samples, it is clear that, in the (

 

y

 

n

 

,

 

y

 

n

 

+1

 

)
domain, the distortion incurred by discarding (setting to 0) 

 

y

 

n

 

 is much smaller
than discarding either 

 

x

 

n

 

 or 

 

x

 

n

 

+1

 

. Hence, the advantage of providing a trans-
form step that yields energy compaction becomes clear.

The 

 

p

 

/4 rotation we just described is accomplished, for example, with
a size-two discrete cosine transform (DCT).

 

9

 

 In practical compression, vectors
with eight samples are transformed using the size-eight DCT.

 

9

 

 Let 

 

X

 

 be a
matrix containing a block with 

 

M

 

 

 

¥

 

 

 

M

 

 pixels. In two dimensions, pixel blocks
are transformed by a separable transform such that

(8.4)

where 

 

Y

 

 is the matrix with the transformed data and 

 

D

 

 is the size-

 

M

 

 DCT
matrix whose entries {

 

d

 

ij

 

} are given by

(8.5)

The DCT is asymptotically optimal for some image models and performs
well for most images.

 

9

 

 In fact, for an order-1 autoregressive model, the DCT

xn

xn+1

yn

yn+1

Figure 8.2 An orthogonal transformation is a simple axis rotation. In an image,
neighbor pixels (xn, xn+1) are likely to have similar values. A rotation of p/4 provides
a representation that is better aligned with the data; i.e., there is compaction of energy
in one of the variables (yn+1).
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approaches the KLT as the correlation between samples increases. The DCT
works well to compact the input energy into few transformed samples, as
illustrated in Figure 8.3.

Another powerful transform tool in image compression is the wavelet
transform.10,11 The wavelet transform is based on an elementary two-channel
filter bank. Each bank decomposes the image into lowpass and highpass
sub-bands. The filter bank has a lowpass and a highpass filter, and each is
followed by a 2:1 decimator. At every stage of the two-channel filter bank,
the number of input samples is maintained; i.e., for N input samples, there
are N/2 lowpass output samples and N/2 highpass ones. The decomposition
is also said to be the analysis. To recompose the original signal from the
lowpass and highpass sub-bands, in a process called the synthesis, one uses
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Figure 8.3 The eight-basis functions of the DCT in the one-dimensional case (a)
and its two-dimensional separable counterpart (b). The pixels of the 8 × 8 block are
projected into each of the bases shown. The projection enables energy compaction.
For example, the signal shown in (c) is a scan line of a test image. By breaking the
vector into eight sample segments and transforming each one, the energy of the
DCT coefficients is depicted in (d). Note the concentration of energy in a few low-
frequency coefficients. 
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1:2 up-samplers followed by the lowpass and highpass filters. The filtered
output for both channels is added to resynthesize the input data. For the
two-dimensional case, the image is decomposed into four decimated sub-
bands by applying analysis filter banks in each of horizontal and vertical
directions as depicted in Figure 8.4a for the analysis and Figure 8.4b for the

Horizontal HorizontalVertical Vertical

LPF

LPFHPF

HPF

HPF

HPF

HPF

HPFLPF

LPF

LPF

LPF

Subband
stage

Subband
stage

Subband
stage

N stages

(b)

(c)

(d) (e)

(a)

Figure 8.4 Wavelet transform of an image is based on the elementary two-channel
filter bank, which, in two dimensions, decomposes the image into lowpass and
highpass sub-bands in each of the horizontal and vertical directions (a). The decom-
position (analysis) is achieved through filters, followed by 2:1 down-samplers. The
synthesis is formed by 1:2 up-samplers, followed by filters. The wavelet transform
is the association of filter banks (c) such that the lowpass of one stage is input into
another stage. In this way, the image in (d) is decomposed into the sub-bands depicted
in (e).
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synthesis section. The wavelet transform is an association of filter banks as
in Figure 8.4c such that the lowpass output of one stage is input to another
stage. In this way, the image in Figure 8.4d is decomposed into the sub-bands
depicted in Figure 8.4e.

The different sub-bands contain information at a different orientation
and different scale. However, unlike the DCT, higher-frequency bands are
wider and have more samples. In other words, some bands have poor fre-
quency resolution (wide bandwidth) but high spatial resolution (better fea-
ture location). Some other bands have better frequency resolution but poor
spatial location (narrow bandwidth and just a few samples to represent the
whole image). This resolution trade-off is an attractive feature of the wavelet
transform and has been extensively studied.10,11

In a manner similar to block transforms, the wavelet transform aims at
transforming the image data into a representation where a few coefficients
convey most of the information to reconstruct the image. Referring back to
Figure 8.1, the transform is used to convert the image data to a more suitable
representation. It is left to the quantization step to perform the job of actually
reducing the amount of information to be conveyed to the decoder. Then,
the encoder is left with the job of actually compressing the quantized trans-
formed data. For example, for 8-bit image data, the transformed samples
can be floating point numbers, which are quantized to integer numbers using
a fixed-point representation of, for example, 16 bits (a 1:2 expansion so far).
The entropy encoding step is the one that achieves the compression, properly
enabled by the previous steps.

8.2.2 Predictive coding

In predictive coding,2,6 the image data are not compressed in the manner
described in Figure 8.1. Instead, one predicts the image pixels and computes
a prediction error. The prediction error is actually the information that is
quantized and encoded. In general, predictive coding is similar to DPCM
systems,2 which were commonly used before computer technology made
transform coding affordable. Figure 8.5 depicts a typical predictive coding
system. The actual pixel is predicted somehow from information conveyed
through the past (already processed) pixels, and only the prediction error is
quantized and encoded. The decoder applies the same prediction step as the
encoder. Given the predicted value, the decoder simply integrates the error
to the predicted value so as to produce the reconstructed pixel. A feedback
loop is required at the encoder side to synchronize encoder and decoder.
However, predictive systems are often used for “lossless” compression; i.e.,
the data are not quantized and, hence, there is no need for the feedback loop.
There are several methods for adaptive or nonadaptive prediction. Typically,
the pixel illustrated in Figure 8.5c and labeled “X” is predicted from its
neighbors (pixels labeled “A” through “H”) using some weighted combina-
tion. Commonly, the immediate neighbors (pixels “A” through “D”) are used
to predict the actual pixel “X.”
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8.2.3 Rate-distortion trade-off

To select compression systems or features, one needs to somehow evaluate
the compression performance. If we ignore computational complexity, we
can look at “how much compression can we achieve” and at “what is the
image quality” as the major issues in compression. The cost of compressing
an image can be expressed in the amount of data needed to record the
information, i.e., the amount of bits consumed. In compression jargon, this
is the rate (R) achieved by compressing a given image. The benefit of com-
pressing the image is the image quality, or how well we approximate the
original image, assuming possible lossy compression. By defining some mea-
sure of distortion D as the distance between the images before and after
compression, we can quantify the compression process as a rate-distortion
trade-off.12 Commonly, the more distortion is allowed, the lower the achiev-
able rate. Conversely, the more bits are spent (higher R), typically, the more
accurate the representation (lower D). 

Compressors are guided by parameters that are set by the user or appli-
cation. Examples of parameters are quantizer steps, etc. For a given image,
for each parameter choice, the (de)compression system achieves a particular
rate R0 and a particular distortion D0; i.e., a instantiation of the coder is a
point on the RD plane. Let the set of all realizable RD points be Ω. If Ψ is
the set of all parameters to be adjusted, the coder can be seen as a map from
the domain of Ψ to points in Ω. We always want to minimize rate and
distortion at the same time; that is, we want to have better quality at higher
compression ratios: 

(a) (b)

(c)

Q

Predictor

Encoder

E A X
F B C D

G H

Q-1

Predictor

Decoder

Figure 8.5 In predictive coding (DPCM), the pixels are predicted from past
values, and the prediction error is quantized, encoded, and transmitted (a). The
receiver (b) decodes the error and adds it to its own predicted value. For syn-
chronizing transmitter (a) and receiver (b) predictions, the transmitter incorpo-
rates a local decoder in the form of a feedback loop. A prediction template is
illustrated in (c). In this template, pixels “A” through “H” are used to predict
pixel “X.”
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(8.6)

The points satisfying the above equation make the lower (typically) convex
hull (LCH) of Ω as illustrated in Figure 8.6. Theoretically, coders should
operate at an operational point on the LCH for best performance. Typically,
if optimization is involved, to get Equation 8.6, one can minimize the cost
function R + λD. If we move a line with inclination –1/λ, the first point in
Ω it touches is the point that minimizes R + λD. This point belongs to the
LCH. Actually, varying λ would move the operational point on the LCH. 

The important message is that compression performance has a two-
dimensional range. It does not matter if a coding method compresses more
than another without regard to the distortion. Even if both rate and distortion
changes are computed, a fair comparison between methods would require
comparing RD curves and regions. One good method is to fix either R or D
and compare the other dimension.

8.2.4 Distortion measure

The computation of distortion involves some measure of the distance
between the original and decompressed images. A common measure of
distortion between images is the mean squared error (MSE). If the N color
channels of the original image are denoted as Ck(m, n) for a pixel at position
(m, n), then

(8.7)

minD R RT≤ or minR D DT≤ , R D, Ω∈
Ψ Ψ

R

D

LCH

R+λD

Figure 8.6 In all lossy coders, there is an RD trade-off. While Ω is the space of all
attainable RD points, there is typically a lower convex hull (LCH) to the distribution.
The LCH contains the desirable operational points. Often, the cost function is chosen
as R + λD, which is minimized by the point in Ω that first touches the line with
inclination –1/λ.
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where  denotes the reconstructed image planes, and there are NP pixels
in the image. In practice, the MSE is often presented in another form: the
peak signal-to-noise ratio (PSNR). PSNR is by far the most commonly used
distortion measure for images and is defined for eight bits per pixel (bpp)
images as

(8.8)

While PSNR is easy to compute, it provides a poor approximation of the
perceived difference between images, except when the PSNR values are
relatively high. In general, MSE-like measures do not anticipate human
visual characteristics. For example, if one compares an image with a version
of itself spatially shifted by a couple of pixels, the resulting MSE number
will be high, even though the images are almost indistinguishable. Also,
MSE or PSNR are not commonly applied to color images. Nevertheless, if
one compares compression methods yielding high PSNR (e.g., above 30 to
35 dB), an advantage of 1 dB typically implies noticeably better image quality. 

The perfect distortion measure still eludes researchers and is the subject
of intense debates (see Reference 13, Chapters 11 through 15.) Another mea-
sure of distortion better suited to color images is CIE’s ∆E14,15 and its exten-
sion, the so-called spatial ∆E (S∆E).16 In the S∆E, the image is mapped into
a device-independent CIELAB color space (and, optionally, farther into a
linear luminance-chrominance color space). The luminance is filtered using
a spatial filter that provides a linear shift invariant approximation to the
spatial response of the human visual system for luminance signals. Another
filter is applied to the chrominance channels, where the filter was properly
designed for approximating the HVS chrominance sensitivity. The average
CIE ∆E between the filtered images results in the final S∆E number. The
whole process is illustrated in Figure 8.7.

8.3 Standard image coders
So far, we have not explained image compression methods in detail. There
are two good reasons for this. First, the compression field is so vast that it
is impossible to cover it here with reasonable depth. Second, there are a few
standard image compression systems that are widely used. The inner work-
ings of common compression engines are well known and available to many
implementers. Hence, one can buy them off the shelf, and we can treat them
as black boxes that are used to compress a number of monochrome images.
The reader is referred to Figure 8.1c for a diagram of a typical color image
compression system. After a pixel-by-pixel color transform, each trans-
formed image plane is fed to monochrome compressors whose compressed
bitstreams are multiplexed somehow to produce the output compressed
stream. The color spaces and color transformations are often application

Ĉk

PSNR 10 log10
2552

MSE
------------- 
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dependent, and we will devote the future sections to the discussion of color
transforms and the nature of the resulting color planes. For this discussion,
in this chapter, the reader may take these standard compression schemes at
face value and treat them almost as black boxes.

The most popular image compression scheme is the JPEG standard.17

Details along with the standard’s text can be easily found in the literature.17

JPEG compresses up to four color planes independently, and details such as
color spaces are left to the application level. Application information can be
conveyed to the receiver through so-called application markers. Interestingly
enough, JPEG is highly popular because of its publicly available implemen-
tation developed by the Independent JPEG Group (IJG).18 In the absence of
any standard method for describing color, the IJG defined the “JFIF” appli-
cation marker. When present, among other things, it indicates to the decoder
that the color space was YCbCr, which is a simple linear transform of the
input RGB data that will be described later. 

JPEG encodes each color plane following the steps in Figure 8.1. The
image is broken into blocks of 8 × 8 pixels, and each block is transformed
using the DCT, the transformed samples being uniformly quantized. Each
of the 64 quantizers is governed by the entries of the “quantizer table,” which
contains the quantization steps and is the main degree of freedom in JPEG
compression. The quantized data of a block are scanned following a zig-zag
path as shown in Figure 8.8. The vector is input to an entropy coder, which
combines run-length counting and variable length coding of the counts. The
DCT samples are supposed to be small for high frequencies, and most are
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Figure 8.7 Distance between two color images for computing distortion: spatial
∆E. The color is converted to device-independent CIELAB. The channels are
spatially filtered using separate filters for either luminance or chrominance
planes. The average ∆E between filtered CIELAB images can be used as a distor-
tion measure.
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set to zero (discarded) by the quantization process. Effectively, most samples
are zero at the end of the zig-zag path, and this fact is explored for compres-
sion. In essence, the more zero-value quantized samples there are in the zig-
zag scanned vector, the higher the compression. A better introduction and
complete description should be sought elsewhere.17 For now, we just need
to think of it as a coder that processes each color plane independently. JPEG
is available in virtually all software that involves digital images.

Another compression system that has recently been approved as an
international standard is the JPEG 2000.19–21 JPEG 2000 is meant as an
improvement on DCT-based JPEG, but, instead of solely increasing the com-
pression efficiency, it provides increased functionality via new compression
paradigms. Conceptually, JPEG 2000 is a transform coder that is based on
the steps depicted in Figure 8.1. It employs a wavelet transform and uniform
quantization. Commonly, the steps sizes are very small, which, in effect,
makes the quantization an integer representation of the wavelet transformed
data. The data can be represented in binary code so that the transformed
coefficients can be seen as formed by bit planes as illustrated in Figure 8.9.

j

iDC

Figure 8.8 Zig-zag scanning of the DCT samples of a JPEG block of pixels into
a one-dimensional vector.

LSB

MSB

Sign

Figure 8.9 Each sub-band of the wavelet transform is represented via the sign
and magnitude of each of its coefficients, thus forming bit planes. Each bit plane
of each sub-band is compressed using arithmetic coding.
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In essence, the most significant bit plane is encoded first, followed by the
other planes. Compression is achieved by applying arithmetic coders to
compress the bit planes, using contextual modeling of the probabilities.19–21

Compressed data for each bit plane, and for each sub-band, can be encap-
sulated separately. As a result, data for reconstructing the image can be
progressively sent to the receiver. The progression can be either by resolution
(sending all bit planes for one sub-band level before proceeding to the next
higher resolution level) or by quality (sending one bit plane information for
all sub-bands before proceeding to the next bit plane). The process is illus-
trated in Figure 8.10. 

JPEG 2000 was meant from its conception to be feature rich. There are
many other features in JPEG 2000. The reader is encouraged to read the
standard itself, or one of the many papers on the JPEG 2000 effort, to appre-
ciate its full feature set.19–21 For our purposes, it suffices to say that it is an
efficient state-of-the-art wavelet-based compression method that can be used
to compress a multitude of color planes. JPEG 2000 provides for a few color
transformations. Most interesting is the reversible color transform, which
will be discussed later. 

Another important compression method is the JPEG-LS standard.22,23 It
is a low-complexity compressor aimed at lossless or near-lossless image
compression. JPEG-LS is based on pixel prediction and prediction error
encoding (a very sophisticated DPCM coder, in essence). Prediction is adap-
tive, and compression is based on variable length coding. 

All these JPEG coders were devised to fulfill different purposes and to
address different image compression needs, but all of them treat each color
image channel independently. Hence, for the following discussion, it would
be sufficient to assume the compression will be performed using any one of
these compressors (JPEG, JPEG 2000, or JPEG-LS).

Bit plane k, Sub-bands

Bit plane k+1, Sub-bands

Bit plane k, Sub-bands+1

Bit plane k+1, Sub-bands+1

P
A
R
S
E
R

Progressive
by resolution
or by quality

Lossy,
scalable to
lossless

Regions of
interest

Figure 8.10 The data for each bit plane and for each sub-band are packetized. The
compressor can write the file once, and the transmitter or decoder can decide how
to read the data by parsing and gathering the compressed data in any suitable order.
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8.4 Multidimensional color model and transforms
A color image is represented as a finite number of color image planes. Each
color is obtained by filtering the image (pixel) spectrum and by measuring
the resulting luminosity energy. In this way, each pixel color is represented
by a few values, corresponding to a few filters. Usually, three filters (RGB)
are used, but multispectral data as well as subtractive spaces such as CMYK
use more than three channels. A sampled color image is an array of N-tuples:
every pixel is a vector. For a continuous (not spatially sampled) image,
another interpretation is that an image is a Riemannian surface in (N + 2)-
D space. For the typical three-channel case, the image is a five-dimensional
parametric surface where the parameters are chosen as the spatial coordi-
nates xy. One and only one point is mapped to each point in the xy plane.
To see this, imagine a scan line of the image (one-dimensional signal) and
one single-color signal (monochrome). Then, the “image” is a simple function
as in Figure 8.3c. If the image is a single -two-dimensional plane (mono-
chrome), it is a surface; i.e., it is parameterized in two-dimensions as illus-
trated in Figure 8.11a and 8.11b. To add more than one color signal, imagine
a one-dimensional signal (scanline) and two color signals. The “image”
would be a line in three-dimensions as depicted in Figure 8.11c. Extending
the space to two-dimensions and the number of color channels to three, it
is easy to conclude that a three-color image is a surface in five-dimensional
parameterized by two out of five axes. This abstraction is useful to re-
emphasize that there is correlation not only across color planes or across
space within a color plane, but also across both color planes and space
coordinates. In other words, correlation exists within a five-dimensional
space! Furthermore, this simple topological representation is linear. 

Of interest to us are the properties of color images related to compres-
sion. In particular, well-correlated signals or regions without much detail
tend to compress better than more noisy or detailed images; i.e., smooth
regions compress better than regions involving too many edges. 

Let Ck(m, n) denote the kth color plane at pixel position (m, n), and let
c(m, n) be a vector containing all such color planes; i.e., cT(m, n) = [C0(m, n),
C1(m, n), …, CN–1(m, n)]. Let us form a composite vector 

uT = [cT(m,n), …, cT (m + k1, n + k2), …] (k1, k2) ∈ Ξ (8.9)

where Ξ is a set determining a neighborhood of K pixels around the origin.
A measure of correlation among neighbor pixels across color planes can be
made via the autocorrelation matrix of u, i.e.,

(8.10)Ru E uuT{ }

Γ0 Γ1 … ΓK

Γ1 Γ0

ΓK Γ0

= =

..
.

...
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where Γ0 is the plain correlation across color planes, while ΓK represents the
correlation of color values over spatially displaced pixels. 

To decorrelate the samples of u, a transformation A such that y = A u
can be used to decorrelate the data. The KLT we mentioned earlier is the
one such that 

Ry = E{yyT} = A Ru AT (8.11)

is a diagonal matrix.2,4,5,7,9 This can be accomplished by choosing the rows
of A as being the eigenvectors of Ru. Note that the transform A will simul-
taneously decorrelate the image within and across color planes. In other
words, it achieves both color and space decorrelation. 

The following example will illustrate the process. Assume the immedi-
ate horizontal, vertical, and diagonal neighbors so that Γh = E{c(m, n)cT(m +
1, n)}, Γv = E{c(m, n)cT(m, n + 1)} Γd = E{c(m, n)c(m + 1,n + 1)}. For the RGB
image shown in Figure 8.12, uT = [r(m, n), g(m, n), b(m, n), r(m, n + 1), …,
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Figure 8.11 Geometric representation of color images (a) a monochrome image
displayed as light intensity, (b) the same image represented as a surface in three-
dimensions, and (c) a one-dimensional image with two color channels represented
as a parametric line in three dimensions.
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g(m + 1, n + 1), b(m + 1, n + 1)] and the following correlation matrices were
found:

(8.12)

As expected, the within-pixel cross correlation is the largest, followed
by the correlation among planes of horizontal or vertical neighbor pixels.
What is less expected is the large correlation among samples of different
planes and pixels. The matrix A that diagonalizes Ru is shown in Figure 8.13,
while the standard deviations of the transformed signals are

[diag(Ry)]1/2 = [1.0000 0.1716 0.1448 0.1196 0.0788 0.0684 …
… 0.0221 0.0116 0.0113 0.0071 0.0050 0.0014] (8.13)

Figure 8.12 Color (RGB) channels of the image used for the multidimensional trans-
form example.

Γ0

0.9757 0.9551 0.8661
0.9551 1.0000 0.9242
0.8661 0.9242 0.9185

Γh

0.9392 0.9195 0.8346
0.9195 0.9630 0.8912
0.8346 0.8912 0.8862

= =

Γv

0.9295 0.9073 0.8212
0.9073 0.9521 0.8788
0.8212 0.8788 0.8749

Γd

0.9096 0.8889 0.8059
0.8889 0.9329 0.8624
0.8059 0.8624 0.8591

= =

0.2888 0.2974 0.2796 0.2888 0.2974 0.2796 0.2888 0.2974 0.2796 0.2888 0.2974 0.2796
-0.3490 0.0022 0.3580 -0.3490 0.0022 0.3580 -0.3490 0.0022 0.3580 -0.3490 0.0022 0.3580
0.2913 0.2951 0.2794 0.2913 0.2951 0.2794 -0.2913 -0.2951 -0.2794 -0.2913 -0.2951 -0.2794

-0.2953 -0.2995 -0.2704 0.2953 0.2995 0.2704 -0.2953 -0.2995 -0.2704 0.2953 0.2995 0.2704
0.2117 -0.4020 0.2089 0.2117 -0.4020 0.2089 0.2117 -0.4020 0.2089 0.2117 -0.4020 0.2089

-0.2868 -0.2961 -0.2830 0.2868 0.2961 0.2830 0.2868 0.2961 0.2830 -0.2868 -0.2961 -0.2830
0.3372 0.0008 -0.3691 -0.3372 -0.0008 0.3691 0.3372 0.0008 -0.3691 -0.3372 -0.0008 0.3691

-0.2215 0.4004 -0.2015 0.2215 -0.4004 0.2015 -0.2215 0.4004 -0.2015 0.2215 -0.4004 0.2015
-0.3739 0.3292 0.0422 -0.3739 0.3292 0.0422 0.3739 -0.3292 -0.0422 0.3739 -0.3292 -0.0422
-0.2014 -0.1988 0.4122 0.2014 0.1988 -0.4122 0.2014 0.1988 -0.4122 -0.2014 -0.1988 0.4122
0.1591 0.2336 -0.4125 0.1591 0.2336 -0.4125 -0.1591 -0.2336 0.4125 -0.1591 -0.2336 0.4125
0.3566 -0.3504 0.0052 -0.3566 0.3504 -0.0052 -0.3566 0.3504 -0.0052 0.3566 -0.3504 0.0052

Figure 8.13 Transformation matrix A for the example image.
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Note the rapid decay of the energy of the transformed samples, i.e., the
high energy compaction, which is often a sign of high compression. The
multidimensional transform will outperform the compaction provided by
separate color transforms followed by linear spatial transforms (such as
DCT) of the same sizes. Despite the theoretical advantage, these transforms
are not commonly known or used. They are image dependent, and some
image-independent separate transforms also provide reasonable perfor-
mance, as we will discuss later.

8.5 Color transforms
Often, the spatial and color transforms are independent, as depicted in Figure
8.1c. Each pixel is first transformed separately to remove color redundancy,
then a spatial transform is applied to reduce the spatial redundancy. 

If the color transform is a linear matrix Q, the within-pixel color trans-
form process is reduced to constraining the space–color transform into a
block diagonal matrix,

A = diag(Q, Q, …, Q) (8.14)

The reason for using color transforms is to enhance the compression
performance. As we discussed, compression is improved if we reduce both
rate and distortion or a cost function that is a linear combination of both.
Typically “smooth” images (i.e., those lacking too many details and sharp
edges) are more easily compressed than textured and detailed images. By
“more easily,” we mean achieving higher compression for the same dis-
tortion or less distortion for the same compression. How do we chose Q
in Equations 8.11 and 8.14 so as to favor compression? It can be shown
that, if the transform has the form of Equation 8.14, and if we make Ry =
B⊗D, we can optimize the RD trade-off, given some mild conditions,
where B is some Toeplitz matrix, D is a diagonal matrix, and ⊗ denotes
the Kronecker product. 

Decorrelation of the color planes without spatial considerations is
achieved by the pixel-wise Karhunen-Loeve transform (KLT).4,5 To find the
KLT, one just uses Ξ = {(0, 0)} in Equation 8.9, or u = c(m, n), so that Ru= Γ0

in Equation 8.10, and A = Q is selected as the matrix containing the eigen-
vectors of Ru = Γ0. The KLT approach is general and should provide good
performance for any color space, including multispectral data. 

The disadvantage of the KLT is the fact that one needs to gather the
statistics of the image (Ru). However, some useful transforms provide rea-
sonable plane decorrelation for most typical images. Color spaces such as
YIQ, YUV, and YES are simple linear transformations of linear RGB planes.
In fact, a very important (perhaps the most used) color transformation is the
one that brings RGB into YCbCr. YCbCr is a variant of YUV and is defined
by the following matrix transformation:
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(8.15)

In the JPEG 2000 jargon, the above transform is also referred to as an
irreversible color transform (ICT),19–21 as it uses floating point numbers, and
the YCbCr samples need to be re-quantized. However, in JPEG 2000, one
can use reversible wavelets that would allow lossless compression. All the
efforts to provide lossy-to-lossless scalability in the JPEG 2000 architecture
would be in vain if the ICT was used. The JPEG 2000 committee decided to
approve an approximation of ICT as an optional transform that would allow
total reversibility while providing reasonable decorrelation. Such an approx-
imation is the reversible color transform (RCT), which is defined by the
following formulae:19

(8.16)

where Y0, Y1, Y2 are the transformed color planes, and ⋅ denotes the “floor”
operator; i.e., discard the decimal places. The original color planes can be
perfectly reconstructed from an integer representation of Y0, Y1, Y2 as 

(8.17)

Note that Y1 and Y2 require one more precision bit than Y0.
Other important color spaces for compression are CIELAB and CIELUV,

which are covered elsewhere in this handbook. Color fax systems demand
compression of images in a CIELAB color space.24 In all these cases, the
conversion takes RGB data into some luminance–chrominance color space.
An important aspect of these color spaces is that the human eye has lower
sensitivity to high-frequency components (details) of the chrominance
images. Hence, it is easy to subsample, or rather compress, more aggressively
the chrominance components.

QYCC

0.299 0.587 0.114
0.168– 0.332– 0.5
0.5 0.418– 0.082–

QYCC
1–

1 0 1.402
1 0.344– 0.714
1 1.772 0

= =

Y0
C0 2 C1 C2+( )+

4
---------------------------------------=

Y1 C2 C1–=

Y2 C0 C1–=

C1 Y0
Y1 Y2+

4
------------------–=

C0 Y2 C1+=

C2 Y1 C1+=

-ColorBook  Page 578  Wednesday, November 13, 2002  10:55 AM



Chapter eight: Compression of color images 579

Other noteworthy transformations are those pertaining to the compres-
sion of CMYK image data.25–27 JPEG’s SPIFF file header specification28 defines
the YCbCrK color space as a derivation of CMYK data. Let us start with the
negative (inverse) of CMY, i.e., C0C1C2C3 are indeed RGBK. Then, the trans-
formation from RGBK (CMYK) to YCbCrK is simply

(8.18)

An improved version of the above transformation is the one that brings
the data into the Y+Y–CbCr or YYCC color space. If we invert all CMYK
channels so that C0C1C2C3 becomes RGBW, where W (white) is just the inverse
of the K (black or key) channel, then the transform is defined as

(8.19)

which can be implemented as in the flow graph depicted in Figure 8.14. Note
that CMYK planes are often device-specific data. Simple linear transforma-
tions of CMYK data will only aim to compact the data better, while remaining
oriented to a particular device.

Several devices (e.g., printers with more than four inks) use additional
colorants, for example, by adding orange colorants to the CMYK set. Multi-
spectral data is also relevant and may use many color planes. For these cases,
there is no common transform method. The KLT would work for all cases,
but sometimes the image statistics are unavailable. There are some proposals
of using conventional transforms such as DCT or wavelets to transform the

QYCCK

  0
QYCC   0

  0
0 0 0   1

=

QYYCC

1 2⁄ 0 0  1  2⁄
0 1 0  0
0 0 1  0

1 2⁄ 0 0  1  2⁄–

  0
QYCC   0

  0
0 0 0   1

=

T
C
M
Y

K

R

G

B Y+

Y

W W

Cb
Cb

CrCr
I
I
I
I Y--

1/2

1/2

Figure 8.14 Color transform implementation from CMYK to Y+Y–CbCr (or YYCC),
where I means inversion (negative).
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samples across color planes. Nevertheless, their efficacy is still being studied
and naturally varies with each case.

8.6 Compressing RGB images
As we discussed, transforms that aim to decorrelate the color planes can also
produce planes that more easily compressed. Figure 8.15 shows an example
of three color planes before and after color transformation to YCbCr. Note
how the CbCr channels are much smoother than the RGB channels. If we
go back to the image planes shown in Figure 8.12, apply a transformation
to YCbCr, and then remeasure the correlation as in Equation 8.12, we obtain 

(8.20)

Y                                  Cr                                 Cb

R                                    G                                   B

Figure 8.15 YCbCr color channels compared to the original RGB ones. Note the lack
of details in the chrominance (CbCr) channels.

Γ0

1.0000 0.1140 0.0204
0.1140 0.0559 0.0239
0.0204 0.0239 0.0739

Γh

0.9424 0.1103 0.0196
0.1103 0.0541 0.0232
0.0196 0.0232 0.0715

= =

Γv

0.9281 0.1116 0.0232
0.1116 0.0539 0.0234
0.0232 0.0234 0.0712

Γd

0.9030 0.1089 0.0220
0.1089 0.0531 0.0231
0.0220 0.0231 0.0804

= =
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Note how decorrelated the planes are as compared to the RGB channels
in Equation 8.12. The cross correlations are largely reduced, and the energy
is concentrated in one channel. If we model the image planes as a first-order
Markov process with correlation coefficient ρ, in this example, this coefficient
is about 0.92 to 0.94 for the luminance channel and about 0.96 to 0.97 for the
chrominance ones. This fact is additional evidence that the chrominance
channels are typically “smoother” than luminance channels. Similar conclu-
sions can be reached by inspecting the Fourier transforms of the resulting
YCbCr color planes. 

It is clear that the transformation RGB–YCbCr produces “compression-
friendly” color planes. The question is, how do we compare this space with,
for example, device-independent CIELAB? To answer this question, RD plots
are shown in Figure 8.16, comparing JPEG compression using both CIELAB
and YCbCr. In these experiments, default (example) luminance and chromi-
nance tables were used, and distortion is given as both PSNR and S∆E. Also,
the RD curves in Figure 8.16 were obtained by varying a scaling parameter
for quantizer tables, luminance, and chrominance. This scaling is also known
as the quality factor and gives one knob to regulate compression; i.e., a single
parameter yields the RD points, hence a curve in RD space. The plots shown
in Figure 8.16 are averages over several images. For same rate, YCbCr typ-
ically yields higher PSNR or lower S∆E. Conversely, for the same distortion,
YCbCr typically demands less rate than CIELAB. The plots in Figure 8.16
are typical and serve to illustrate that it is commonly advantageous to com-
press RGB images using the transformation to YCbCr instead of compressing
under CIELAB. The exception is for very low bit rates, where CIELAB
becomes more competitive.

A typical JPEG (or JPEG 2000) compressor implementation would treat
the luminance channel differently from the chrominance ones. The differ-
entiation can be to employ different quantizer tables and to subsample the
chrominance planes. Often, CbCr will be reduced by a factor of two in each
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Figure 8.16 RD plots comparing compression using YCbCr and CIELAB. Results
show average distortion for several images using the JPEG coder. The YCbCr space
is typically slightly superior to CIELAB, except for very low bit rates.
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direction before compression. The claim is that, because we are less sensitive
to the high frequency of chrominance components, one could reduce the
image planes from the start without loss of visual fidelity. The problem with
that argument is that, by reducing the data, one increases distortion and
compression. If one does not reduce the chrominance planes but instead
relies on the increasing quantizer steps, one would also increase distortion
and compression. The question is, which one is a better trade-off? Because
of subsampling, data are irreversibly lost no matter how high the bit rate.
So, for high enough bit rates, it is better not to subsample the planes. For
low rates, subsampling artifacts might be better than compression artifacts.
So, the best approach may actually depend on the bit-rate target. There is
a breakpoint at which the curves with and without subsampling would
cross. To clarify this issue, RD plots comparing the performance of a JPEG
coder with and without chrominance (Cb and Cr) subsampling are shown
in Figure 8.17. The plots were obtained in the same conditions described for
Figure 8.16. For rates above a certain breakpoint, it is always better not to
subsample the CbCr planes. This breakpoint is commonly around 0.2 bpp
or at a compression ratio about 120:1 (starting with the original 24-bpp RGB
image). 

It is safe to say that, for the average compression of RGB images, one
would be better off using the YCbCr transformation and not subsampling
chrominance planes.

8.7 Compressing CMYK images
CMYK data is targeted for a particular device. The correlation between K
and the other channels can change drastically from device to device. A color
transform for compressing CMYK images likely would not work across all
devices. For that reason, we would be content with a “good” solution that
works across most devices, as the alternative is a case-by-case study. 
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Figure 8.17 RD plots comparing the performance of a JPEG coder with and without
chrominance subsampling. For rates above a certain breakpoint, it is always better
not to subsample the CbCr (or ab) planes. This breakpoint is commonly ≈0.2 bpp.
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The key difference between compressing CMYK and RGB images lies
in the concept of luminance–chrominance models.25–27 Even though “lumi-
nance” and “chrominance” are derived from colorimetric principles (e.g.,
luminance aligned to an achromatic axis), as far as compression is con-
cerned, what determine an image luminance are the spatial characteristics
of the color planes. With three-plane images, it is easy to define luminance
and chrominance. In Figure 8.15, it is natural to assign the channel that
most resembles a “monochrome” version of the image as the luminance
channel. However, if we replace Y channel by any of the RGB channels,
i.e., an RGB to RCbCr transformation, one would likely designate R as the
luminance. This is so because the “chrominance” channels are definitely
distinct from what one perceives as a monochrome version of the color
image. Figure 8.18a through 8.18d shows typical CMYK color planes,
already inverted (i.e., 1 – C, 1 – M, 1 – Y, 1 – K, or RGBW). This particular
rendering was performed for a given xerographic device. Note the large
correlation between the K color plane and each of the others. That, of
course, depends on the strategy for calculating K from CMY. If we use the
transformation from CMYK to YYCC depicted in Figure 8.14, the resulting
color planes corresponding to those at Figure 8.18a through 8.18d are
shown in Figure 8.18e through 8.18h. Back to our discussion on luminance
vs. chrominance, Figure 8.18e likely contains what most of us would call
“luminance,” whereas Figure 8.18g and 8.18h contain images that we
would call “chrominance.” However, it is difficult to fit the image in Figure

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.18 CMYK color planes for a test image. The inverses of CMYK planes are
shown in (a) through (d), respectively. After the transformation to YYCC space, the
color planes are (e) Y+, (f) Y–, (g) Cb, and (h) Cr.
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8.18f to any of the “models.” It contains typical luminance and chrominance
spatial characteristics. This ambiguity is amplified for multispectral data
where there are more channels, and any transformation of the input data
will produce some with both luminance and chrominance spatial charac-
teristics. So, why do we need to designate a color plane as luminance or
chrominance anyway? It is common for compressors to have more aggres-
sive settings for chrominance planes than for luminance. By tagging the
channel as chrominance (thus, visually less important), one can exploit the
benefits of more aggressive compression while being more conservative in
compressing the luminance. This is a complex issue beyond the scope of
this chapter. It is advisable, however, in the YYCC case to apply “chromi-
nance” settings to two of the channels while applying “luminance” settings
to the other two.

There are several transform options for the compression of CMYK data,
including

1. No transform, i.e., compress CMYK independently
2. Compress YCbCrK planes
3. Compress YYCC planes

Figure 8.19 shows RD plots for the different compression schemes for sev-
eral images. Distortion is given as both S∆E and PSNR. The plots include
results with and without subsampling of the CbCr planes in the YCbCrK
and YYCC schemes. YYCC typically outperforms the others for most bit
rates. As in the case of compressing RGB images, chrominance subsampling
is just effective for high compression ratios, i.e., ratios larger than 150:1 (less
than 0.2 bpp starting with CMYK at 8 bpp each). Summarizing, YYCC space
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Figure 8.19 Compression performance. For a number of CMYK images rendered
for different devices, the RD plots compare to the JPEG compression of the planes
under three different color spaces. Distortion measure was computed as both S∆E
and PSNR. For the YCbCrK and YYCC cases, tests were performed with and without
chrominance subsampling.
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without chrominance subsampling seems to be a good choice for compress-
ing CMYK data.

8.8 Summary
In this chapter, we exposed the reader to the basic aspects of the compression
of digital color images. That includes basic compression concepts such as
coding and quantization and the fact that compression is achieved by remov-
ing the statistical redundancy and the visual irrelevancy contained in the
image. In fact, removing these two types of information determines whether
one attains lossy or lossless compression. We have presented the transform
coding model, along with the motivation for energy compaction image trans-
formation in the context of compression. For that, the DCT and the wavelet
transform were described. 

Another model is the predictive coding model, which is popular for
lossless and near-lossless compression. The key factor in devising and apply-
ing compressors to images is to understand that there is always a rate-
distortion trade-off in setting up compression parameters. The best opera-
tional point lies somewhere on the LCH of the RD points. As for distortion,
popular objective distortion measures are the PSNR, and S∆E distance mea-
sures. Standard coders exist and are ready for our use, which include JPEG
2000, JPEG, and JPEG-LS. We should use them but understand the effects of
their parameter choices on the image quality, along with the choice of the
proper color transform.

We did not intend to describe compression systems in detail, which are
often designed for monochrome images. Furthermore, the popular compres-
sion systems are international standards, which are very well covered else-
where. The focus of this chapter was on the interaction between the color
image representation and existing compression systems.

A multidimensional color model was discussed to show that there might
be strong correlation within and across pixels, simultaneously. We have
shown simple color and spatial correlation measurements. Even though
there is a multidimensional correlation, most of the compression systems
apply color transforms independently from the spatial transform. Popular
color transforms for compression were discussed in detail. That includes the
transformation from RGB to YCbCR and the KLT. The YCbCr transformation
is the irreversible color transform. This, and the reversible color transform,
make up the main color transform options for JPEG 2000. Apart from the
KLT, other color transforms for non-RGB data were discussed, including the
transformations from CMYK to YCbCrK and to YYCC. The concepts of
luminance vs. chrominance were discussed with respect to the compression
settings. Compression of RGB and CMYK images was discussed, comparing
color transforms and other settings. 

We aimed at presenting a few basic compression concepts applied to
color images. We regard this chapter as an introduction to the subject so,
rather than serving as a thorough reference, we hope this chapter will inspire
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the reader to explore the subject further in the following references and
through independent experimentation. 
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9.1 Introduction

 

Color image quantization is used to reduce the number of colors in a digital
image with a minimal visual distortion. Color quantization can also be
defined as a lossy image compression operation. Until lately, quantization
was used to reproduce 24-bit images on graphics hardware with a limited
number of simultaneous colors (e.g., frame buffer displays with 4- or 8-bit
colormaps). Even though 24-bit graphics hardware is becoming more com-
mon, color quantization still maintains its practical value. It lessens space
requirements for storage of image data and reduces transmission bandwidth
requirements in multimedia applications. 

Given a color image 

 

I

 

, let us denote by 

 

C

 

I

 

 the set of its colors and by 

 

M

 

the cardinality of 

 

C

 

I

 

. The quantization of 

 

I

 

 into 

 

K

 

 colors, with 

 

K 

 

< 

 

M

 

 (and
usually 

 

K

 

 << 

 

M

 

) consists in selecting a set of 

 

K

 

 

 

representative colors

 

 and
replacing the color of each pixel of the original image by a suitable repre-
sentative color. 

Because the first applications of quantization were used to display full-
color images on low-cost color output devices, quantization algorithms from
the beginning had to face to two constraints. On one hand, the quantized
image must be computed at the time the image is displayed. This makes
computational efficiency of critical importance. On the other hand, the visual
distortion between the original image and the reproduced one has to be as
small as possible. The trade-off between computational times and quantized
image quality is application dependent, and many quantization methods
have been designed according to various constraints on this trade-off. 

One straightforward way to obtain quantized images with low compu-
tational times consists of using a preselected set of representative colors.

 

29,49

 

Such methods, described in Section 9.2, are referenced as 

 

image-independent
quantization

 

 methods (see also arrow 1 in Figure 9.1). Quantized images with
higher quality are generally obtained by building the set of representative
colors according to the color distribution of the input image. Such methods
are called 

 

adaptive quantization

 

 methods or 

 

image-dependent quantization

 

 meth-
ods (arrow 2 in Figure 9.1).
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Given an input image and a set of representative colors, the mapping of
each color of the original image to a representative one is performed by the

 

inverse colormap operation

 

 (Figure 9.1 and Section 9.7). Because each color of
the original image is mapped onto a representative color, the definition of the
set of representative colors induces a partition of the image color set 

 

C

 

I

 

. The
notions of color set partition and representative colors are thus closely linked,
and many quantization methods define first a partition of 

 

C

 

I

 

 into a set of
clusters and induce from it a set of representative colors. The brute force of
enumerating all possible partitions of the set 

 

C

 

I

 

 with 

 

M

 

 colors into 

 

K

 

 subsets
is out of the question here, as the number of all possible partitions,

 

5,75

 

is astronomical for even very small values of 

 

M

 

 and 

 

K

 

. 
The definition of a partition of 

 

C

 

I

 

 is thus achieved by different heuristics
described throughout this chapter (see also Reference 58 for an overview of
digital color imaging). Each heuristic is designed according to some con-
straints on processing times and a particular definition of the visual distor-
tion between the input and output images. Note that this notion of visual
distortion may also be application dependent. 

One other family of quantization methods first defines an initial set of
representatives and improves it iteratively by using the partition of 

 

C

 

I

 

induced by the set of representatives. Such methods are referenced as 

 

post-
clustering methods

 

 and are closely linked to the tracking of function minima
by iterative methods. 

The optimal goal of adaptive quantization methods is thus to build a set
of representative colors such that the perceived difference between the orig-
inal image and the quantized one is as small as possible. The definition of
relevant criteria to characterize the perceived image quality

 

62,63,65

 

 is still an
open problem. The difficulty of this problem is reinforced by our limited
knowledge of the human visual system (HVS). There is thus no universal
criterion available to characterize the perceived image similarities. One cri-
terion commonly used by quantization algorithms is minimization of the
distance between each input color and its representative. Such criteria may
be measured, for instance, using the total squared error (Section 9.4), which
minimizes the distance within each cluster. A dual approach attempts to
maximize the distance between clusters (Section 9.4.3). Note that the distance

24-bit per pixel
image

(2)(2)

(1)

Adaptative
Quantization 

Inverse Colormap Dithering output image

Figure 9.1 The sequence of algorithms applied to produce the output image.

1
K!
------ 1–( )K k– K

k 
  kM

k 0=

K

∑

 

-ColorBook  Page 591  Wednesday, November 13, 2002  10:55 AM



 

592 Digital Color Imaging Handbook

 

from each color to its representative is relative to the color space in which
the total squared error is computed. The choice of one color space allows us
to take into account the characteristics of the human visual system encoded
by this color space. The perception of the spatial arrangement of colors may
also be encoded by weighting the distance of each color to its representative
according to the local spatial arrangement of colors (Section 9.5). This idea
has been developed recently by several quantization methods (Section 9.8.4)
that simultaneously optimize the selection of the representative colors and
their spatial arrangements. 

The spatial arrangement of representative colors may also be optimized
by a post-processing step called 

 

dithering

 

 (Section 9.8). This last step reduces
visual artifacts such as false contours, which lower the output image quality
noticeably. 

 

9.2 Image independent quantization methods

 

Digitized images are generally quantized with eight bits of resolution for
each color component R, G, and B. Therefore, full-color digital display sys-
tems use 24 bits to specify the color of each pixel on the screen, which can
thus display 2

 

24

 

 (16.8 million) colors.
The uniform quantization of a color space 

 

Ω

 

 divides it into 

 

K

 

 equal size
sub-boxes and defines the set of representative colors as the sub-box cen-
troids. Uniform quantization techniques differ according to the geometry of
the color space in which the quantization is performed. Thus, while the color
space can be quantized naturally in cubical sub-boxes, the 

 

YIQ

 

 color space
must be quantized in skewed rectangular sub-boxes; otherwise, many rep-
resentative colors fall outside the 

 

YIQ

 

 color gamut

 

†

 

 and hence cannot be
reached by any colors in any original image (see Figure 9.2). Likewise, the

 

† Color gamut refers to the range of realized colors associated with a particular device.

R

B

CW

G

M

1.0

1.0

1.0(0 0 0)

B

I

Q

Y

Y

R

B

CW

G

M

1.0

1.0

1.0(0 0 0)

B

I

Q

Y

Y

(a)                                                                                                      (b)

Figure 9.2 Uniform quantization of color space YIQ into (a) rectangular sub-boxes
and (b) skewed rectangular sub-boxes.
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CIELAB color space must be linearly quantized in sub-boxes with a specific
shape, even if the CIELAB color coordinates have been computed from a
nonlinear transformation from the color space. The main problem of the
uniform quantization of the CIELAB color space is that the exact shape of a
given CIELAB color gamut is device dependent.

Image-independent color quantization techniques

 

49

 

 may be viewed as a
generalization of uniform quantization where the chosen quantization
regions are not of the same size but are still independent of the image to be
quantized. Such techniques are often used to divide a color space according
to a criterion that varies throughout the color space. For example, Kurtz

 

42

 

divides the RGB color space in such a way that the distance between the
representatives of any two adjacent regions are perceptually constant.
Because RGB color space is not perceptually uniform, the size and shape of
the region associated with each representative are relative to its location in
the RGB color space.

Image-independent quantization algorithms place the 

 

K

 

 representative
colors in the color gamut independently of their frequency of occurrence in
a specific image, and of any other color characteristics computed from the
studied image. These quantization methods are therefore computationally
less expensive and simpler to implement than many image-dependent color
quantization algorithms. However, using such methods, many representa-
tive colors may be assigned to locations in the color gamut where few colors
of the original image reside. This is why image-dependent color quantization
algorithms that use representative colors based on the image to be quantized
are typically preferred. 

 

9.3 Preprocessing steps of image-dependent 
quantization methods

 

Due to the complexity of color quantization, preprocessing steps are com-
monly employed for reducing the data processed by quantization algo-
rithms. The major techniques used to reduce the data are 

 

prequantization,

 

which reduces the range of each coordinate in the color space, and the

 

histogram calculation,

 

 which allows us to manage the image color set more
efficiently. 

 

9.3.1 Prequantization

 

Prequantization, in five bits for each color component, is commonly used by
many algorithms as a basic step for the quantization process. The main
purpose of this prequantization is to enable a trade-off between quantizer
complexity and image quality. Indeed, Fletcher

 

25

 

 has shown that this initial
step noticeably reduces the memory and computational time requirements
of quantization algorithms. Other approaches have exploited this advantage
further by using a prequantization in four bits of resolution for each color
component,

 

37

 

 or even in three bits of resolution for each color component.

 

32
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The main drawback of these approaches is that they do not take into
account the nonuniformity of the human visual system to perceived color
differences. Indeed, while this prequantization may produce unnoticeable
degradations in high-frequency areas, it can simultaneously produce visible
degradations in low-frequency areas or at the borders of contours.

 

61,63

 

Balasubramanian

 

8,10

 

 proposed basing the prequantization step on an activity
measure defined from the spatial arrangement of colors (Section 9.5). How-
ever, in this case, the computational cost of the prequantization step is no
longer negligible, and the additional computation time induced by this step
has to be compared to the computation time of the quantization algorithm
without prequantization. 

A last approach proposed by Kurz

 

42

 

 estimates the color distribution of
an image and its relative importance by examining the pixels at a fixed
number of random locations. Kurz proposes the use of 1024 random loca-
tions for a 512 

 

×

 

 512 image. Randomizing the pixel locations avoids repeated
selection of certain colors in the color set, particularly in images with periodic
patterns. 

 

9.3.2 Histogram calculation

 

The first preprocessing step of an image quantization algorithm generally
consists of histogram computation of the image color set, i.e., a function 

 

H

 

is computed such that 

 

H

 

(

 

R

 

, 

 

G

 

, 

 

B

 

) is equal to the number of pixels of the
image whose color is equal to (

 

R

 

, 

 

G

 

, 

 

B

 

). Using the color space, one straight-
forward implementation of this function is to allocate a 256 

 

×

 

 256 array.
Given this array, the computation of the histogram is performed by incre-
menting the corresponding entry of each pixel’s color. However, this method
has several disadvantages:

• First, the size of the image being quantized is generally much smaller
than the size of the full histogram indicated above, and many entries
of the histogram are set to 0 or very small values. This last property
may induce some unwanted behavior for some algorithms. For ex-
ample, determination of the most commonly occurring color may
“lose” important colors if they are encoded in the histogram by a set
of adjacent entries with low frequencies.

• Second, this encoding requires the storage of 256

 

3

 

 indexes. Encoding
each entry of the array by 2 bytes leads to a storage requirement of
32 MB.

• Finally, for many quantization algorithms using color spaces other
than RGB

 

,

 

 the allocation of an array enclosing the color gamut of
these color spaces reinforces the problems linked with the sparse
property of the histogram and its storage requirements. 

One partial solution to this problem, proposed by Heckbert,

 

35

 

 consists
of removing the three least significant bits of each component so as to store
the histogram in an array of size 32 

 

×

 

 32 

 

×

 

 32. This solution reduces both the
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memory requirements and the problems induced by the sparseness of the
histogram. However, the removal of the three least significant bits is equiv-
alent to prequantization, which may induce a visible loss of image quality
when the output image is quantized into large number of colors such as 256
(Section 9.3.1). Moreover, using a color space other than RGB, one has to
define the box enclosing the reduced color space. According to the color
space, this box may remain large relative to the uniform quantization step. 

One simple encoding of the histogram allocates an array whose size is
equal to the number of different colors contained in the image. Each entry
of this array is defined as a couple of fields encoding, respectively, a color
contained in the image and the number of image’s pixels of the correspond-
ing color. This array may be initialized using a hash table and is widely used
by tree-structured vector quantization algorithms (Section 9.4.2). Note that
this last data structure is not designed to facilitate the determination of the
number of image’s pixels whose color is equal to a given value but rather
to traverse the color space or a part of it to compute some of its statistical
parameters such as the mean or the variance. 

Xiang

 

77

 

 proposes an encoding of the histogram based on a two-dimen-
sional array of lists indexed by the 

 

R

 

 and 

 

G

 

 color coordinates. During the
traversal of the image, each pixel with color (

 

R

 

, 

 

G

 

, 

 

B

 

) induces an update of
the list of 

 

B

 

 values stored in the entry (

 

R

 

, 

 

G

 

) of the array. If the component

 

B

 

 is not present in the list, a new node is inserted with a color component
storing the 

 

B

 

 value and a frequency field initialized to 1. If 

 

B

 

 is already
present in the list, the frequency of the corresponding node is incremented.
Each list is doubly linked and sorted in ascending order according to the
blue field (see Figure 9.3a). Therefore, if 

 

S

 

 denotes the mean size of the blue
lists, the retrieval of the number of pixels whose color is equal to a given (

 

R

 

,

 

G

 

, 

 

B

 

) triplet requires  comparisons. Balasubramanian10 improves the
search by storing, in each entry of the (R, G) array, a binary tree ordered
according to the blue values (see Figure 9.3b). The computational time
required to retrieve a given (R,G,B) is then reduced to .

9.4 Clustering methods
Clustering techniques perform a partition of the color space according to
some criteria. Such criteria do not attempt to optimize the spatial

(a)                                                                                                          (b)

G

R

G

R

8, ƒ3

8, ƒ4
15, ƒ5

15, ƒ5
10, ƒ4

10, ƒ1
6, ƒ2

6, ƒ2

2, ƒ1

2, ƒ3

Figure 9.3 The histograms of (a) Xiang77 and (b) Balasubramanian.10

O S 2⁄( )

O S( )log( )

-ColorBook  Page 595  Wednesday, November 13, 2002  10:55 AM



596 Digital Color Imaging Handbook

arrangement of representatives, which may be improved by a dithering
algorithm applied as a correcting step (Section 9.8). The input data of such
algorithms are thus the image color set CI and the frequency of occurrence
of each color c in the image f(c).

As anticipated in Section 9.1, quantization algorithms may be decom-
posed in two main families: post-clustering methods, which define a set of
K representatives improved by an iterative scheme, and preclustering meth-
ods, which define a partition of CI into K clusters and associate one repre-
sentative to each cluster. Clustering quantization methods belong to the latter
family. Each cluster  of the partition may be characterized by
statistical properties such as its mean, its variance along one coordinate axis,
or its covariance matrix. All these parameters may be deduced from the
following quantities: 

(9.1)

where  denotes the squared value of the ith coordinate of the
vector c and f(c) denotes the number of pixels of the original image whose
color is c. 

The quantities card(C), M1(C) and M2(C) are, respectively, called the
cardinal, the first, and the second cumulative moments of the cluster. Note
that card(C) is a real number, while M1(C) and M2(C) are three-dimensional
vectors. The quantity R2(C) is a 3 × 3 matrix whose diagonal is equal to M2(C). 

The main advantage of the above quantities is that they can be efficiently
updated during the merge or split operations performed by clustering quan-
tization algorithms. For example, if two clusters, C1 and C2, must be merged,
the cardinal of the merged cluster is equal to  =  +

. The same relation holds for M1, M2, and R2. Conversely, if one
cluster C is split into two sub-clusters C1 and C2, and if both the statistics of
C and C1 are known, the statistics of C2 may be deduced from the ones of C
and C1. For example, the cardinal of C2 is defined as . The
mean, the variances, and the covariance matrix of one cluster may be
deduced from the cardinal, the moments, and the matrix R2 by the following
formula: 

Ci( )i 1 … K, ,{ }∈

card C( ) f c( )
c C∈
∑=

M1 C( ) f c( )c
c C∈
∑=

M2 C( ) f c( ) c1
2 c2

2 c3
2, ,( )

c C∈
∑=

R2 C( ) f c( )c ct⋅
c C∈
∑=

ci
2( )i 1 2 3, ,{ }∈

card C1 C2∪( ) card C1( )
card C2( )

card C( ) card C1( )–
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(9.2)

where 

 

var

 

i

 

 and µ

 

i

 

 denote, respectively, the variance of cluster 

 

C

 

 along the
coordinate axis 

 

W

 

i

 

 and the 

 

i

 

th coordinate of the mean vector µ. The symbol

 

Cov

 

 denotes the covariance matrix of the cluster. 
Within the clustering quantization scheme, the covariance matrix of one

cluster is used to determine the direction in which it spreads the widest.
This direction, named the 

 

major axis

 

 of the cluster, is defined as the first
eigenvector of the covariance matrix. Note that — the covariance matrix
being real, symmetric, and positive — it can be diagonalized on an orthog-
onal basis. Each eigenvalue of the covariance matrix is equal to the variance
of the cluster along the associated eigenvector (Figure 9.4). Moreover, the
information held by one eigenvector is measured by

(9.3)

where  denotes the eigenvalue corresponding to eigenvector 

 

e

 

i
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(a)                                                                                                 (b)

Figure 9.4 (See color insert following page 430) (a) Lenna test image and (b) its color
set with the three eigenvectors (v1, v2, v3) of its covariance matrix. The length of each
vector is proportional to its eigenvalue.
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Given a partition of CI into K clusters , clustering quantiza-
tion algorithms associate one representative ci with each cluster Ci. The sum
of quantization errors committed when mapping pixels whose colors fall in
Ci to ci is equal to the weighed sum of the squared distance between each
color c in Ci and ci ,

A well known statistical result30 states that this sum is minimal when ci is
equal to the mean µi of Ci. The resulting sum of distances is called the squared
error of Ci and may be understood as the error committed when assimilating
Ci to its mean

(9.4)

The squared error of one cluster C is related to the variances vari computed
along each coordinate axis  by the following formula: 

(9.5)

Each quantity  represents the contribution of the
axis i to the squared error of C and is called its marginal squared error along
axis i. Note that, if the color space is defined from the three eigenvectors of
the covariance matrix, the variance along each axis is equal to the eigenvalue
of the associated eigenvector. We thus obtain

(9.6)

where  denotes the eigenvalues of the covariance matrix for the
cluster. 

The squared error of one cluster may be efficiently computed from its
cardinal and the cumulative moments by the following formula (see Equa-
tions 9.2 and 9.5): 

(9.7)

where  and  denote, respectively, the jth coordinate of vectors
 and . 
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Using the squared error, the total quantization error induced by a par-
tition  of the image color set is measured by the total squared
error (TSE) defined as the sum of the squared errors of the clusters defining
the partition, 

(9.8)

The TSE criterion is usually used in three different ways:

1. Many papers on quantization use this criteria only a posteriori to
demonstrate the efficiency of the proposed method.

2. This criterion is also used by some methods to improve a posteriori
the color palette initially designed.

3. Finally, some authors base their quantization method on a minimi-
zation of the TSE. This category generally provides quantized images
with a higher visual quality than the two previous ones. However,
these algorithms are generally computationally intensive. 

The different heuristics used to cluster colors may be decomposed into
four main families:

1. The 3 × 1-D splitting methods described in Section 9.4.1 use the
optimal algorithms defined for one-dimensional data to perform sca-
lar quantization along each coordinate axis. 

2. The 3-dimensional splitting methods split the three-dimensional im-
age color set into a set of K clusters (Section 9.4.2). A large majority
of these methods split recursively the initial image color set by using
a top–down scheme. 

3. Grouping methods, described in Section 9.4.3, use a bottom–up
scheme by defining a set of empty clusters and aggregating each
color of the image to one cluster. 

4. Finally, merge methods described in Section 9.4.4 use a mixed ap-
proach by first splitting the image color set into a set of clusters and
then merging these clusters to obtain the K required clusters. 

9.4.1 3 × 1-D quantization methods

Using only one-dimensional data, a partition minimizing the total squared
error may be computed with a complexity KM,72,73 where M is the cardinality
of the image color set. One first approach to take advantage of these optimal
algorithms within the color quantization scheme computes the three mar-
ginal histograms of the image color set along each of the coordinate axis.
The value hj(r) of the jth marginal histogram is defined as the number of
pixels whose jth color coordinate is equal to r. Using the three marginal
histograms, a scalar quantization algorithm is applied independently on each

P C1 … CK, ,{ }=

E P( ) SE Ci( )
j 1=

K

∑=
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axis of the color space. Such algorithms are referenced as independent scalar
quantization (ISQ) algorithms.38 However, because the ISQ uses only the mar-
ginal distribution of each scalar component, it cannot take inter-data corre-
lation into account. As a result, many representatives are wasted in regions
where the input colors have zero probability of occurrence, as shown in
Figure 9.5a on a two-dimensional example.

Another approach, proposed by Balasubramanian19 and named sequen-
tial scalar quantization (SSQ), consists of first performing a scalar quantization
of the first coordinate axis Ω1 into a predetermined number of levels K1. This
quantization of the first axis induces a partition  of the
image color set by planes orthogonal to Ω1 as illustrated in Figure 9.5b. Then
the marginal histograms along Ω2 are computed for each cluster

. A scalar quantization based on these marginal histograms is
performed and splits each cluster  into n2j sub-clusters separated by
planes orthogonal to Ω2. This quantization step produces a total of K2 clusters

. Finally, a last scalar quantization along Ω3 is performed
on the third marginal histogram of each cluster , splitting it
into n3j sub-clusters. This last quantization step produces the required num-
ber K of clusters.

As claimed by the authors, this method has a lower computational cost
than most existing quantization methods. However, it raises some problems
only partially solved by the authors. First, the final total squared error is
dependent on the order in which the scalar quantizations are performed (we
have tacitly assumed that the Ωj are quantized in the order Ω1, Ω2, Ω3). The
only means of finding the best order is to apply the quantization scheme on
each of the 3! = 6 possible orders. The authors address this problem by using
the YCrCb color space with one luminance (Y) and two chrominance (Cr and
Cb) axes. The authors first perform two scalar quantizations on the chromi-
nance plane (Cr , Cb) followed by one scalar quantization of the luminance
axis Y. This strategy being based on a fixed order of the quantizations may
lead to suboptimal results. The second problem raised by this method is the
determination of the number of quantization levels along each axis. In other
words, what values of K1, K2, , and  should be picked

Ω2                  Ω2                  

Ω2                  Ω1                   
a)                                                                            b)

c 2
4

c 2
3

c 2
2

c 2
1

c 2
1

Figure 9.5 (a) Independent scalar quantization into K = 25 levels and (b) sequential
scalar quantization into K = 11 levels.
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to obtain the required number K of final clusters? The authors estimate these
quantities by using results from the asymptotic quantization theory. This
theory being valid only for very large values of K, the authors perform a
preliminary quantization for some initial choice of K1 and K2 and correct
these initial values as follows: 

(9.9)

where  and  are the initial choices for K1 and K2, and d1, d2, and d3

denote the marginal total squared errors along each axis. Symbols
 and  denote, respectively, the jth coordinate of the

color vector c and the ith representative ci.

9.4.2 Three-dimensional splitting methods
Various three-dimensional splitting methods have been intensively
explored8,9,12–13,14,70–72,74,75 since 1982, and the median cut method was pro-
posed by Heckbert.35 These methods create a partition of the image color set
into K clusters by a sequence of K – 1 split operations. 

The initial image color set is thus split by a set of planes named cutting
planes, each plane being normal to one direction named the cutting axis. The
location of the cutting plane along the cutting axis is named the cutting
position. One justification for the use of planes within the three-dimensional
splitting scheme is provided by the inverse colormap operation. Indeed, as
mentioned in Section 9.4, given a set of representative colors {c1, . . . , cK}, an
optimal mapping with respect to the set of representatives maps each initial
color to its closest representative. This optimal mapping induces a partition
of the image color set by a three-dimensional Voronoï diagram60 defined by
the representatives. Each cell of a three-dimensional Voronoï diagram being
delimited by a set of planes, the use of planes within the three-dimensional
splitting scheme does not induce a loss of generality. Note that, if each plane
is assumed to be perpendicular to one of the coordinate axes, each cluster
is a hyperbox. 

As mentioned in Section 9.1, the set of all possible partitions into K
clusters of the initial set of M data points is too large for an exhaustive
enumeration. The three-dimensional splitting scheme must thus use a set of
heuristics to restrict the set of possible partitions. The main heuristics used
by splitting quantization algorithms may be decomposed into four steps
common to all algorithms of this family: 

1. Selection of a splitting strategy
2. Selection of the next cluster to be split
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3. Selection of the cutting axis 
4. Selection of the cutting position

The remainder of this section describes the main heuristics used for each of
the above steps. The different choices performed by the methods described
in this section are summarized in Table 9.1.

9.4.2.1 Splitting strategy
A large majority of 3-D splitting methods8,12,13,70–72,75 recursively split the
initial image color set into two sub-clusters until the K final clusters are
obtained. This bipartitioning strategy may be encoded by a complete binary
tree, and quantizers following this scheme are called tree-structured vector
quantizers.74 The internal nodes of this tree encode intermediate clusters and
have exactly two siblings. The final clusters are encoded by the leaves of the
binary tree (Figure 9.6).

The number of recursive splits that may be performed using the bipar-
titioning strategy is equal to the number of binary trees having exactly K
leaves,28 

Table 9.1 Different Strategies Used by Five Tree-Structured Vector Quantizers

1 2 3 4 5

Cluster selection Greatest squared error * * *
Greatest eigenvalue *
Greatest cardinality *

Cutting axis Longest coordinate axis *
Coordinate axis with greatest variance *
Major axis * * *

Cutting position Median cut *
Marginal squared error minimization *
TSE minimization * *
Pass through the mean *

Note: 1 = Heckbert,35 2 = Wan and Wong,71 3 = Bouman and Orchard,12,13 4 = Wu,75 and 5 =
Braquelaire and Brun.14

C

Figure 9.6 A complete binary tree defining a partition into five clusters. 
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This number is typically too large for an exhaustive enumeration. Chou et
al.21 and Lin et al.44 create a binary tree of N leaves with 

and then prune the tree so as to select the K leaves that induce the lowest
partition error. However, according to Wu,74 this strategy incurs a high
overhead as compared with a strategy generating only the K required clusters
and does not induce a significant decrease of the total squared error. 

The main drawback of the bipartitioning scheme is that each bipartition-
ing is performed regardless of its impact on further subdivisions performed
deeper in the binary tree. This greedy local criterion may contradict the total
squared error criterion, which should be globally minimized. Wu74 proposed
performing a first splitting step of the image color set by κ planes normal
to the major axis of the color set. The relative position of these planes along
the major axis are globally optimized using a dynamic programming scheme.
The κ + 1 generated clusters are then recursively split into two sub-clusters
using the recursive bipartitioning scheme described previously until the final
number K of clusters is generated. The value of the critical parameter κ is
estimated during the construction of the κ + 1 clusters. According to exper-
iments performed by Wu, this value falls between four and eight, according
to the distribution of the image color set. 

9.4.2.2 Cluster selection
Using a bipartitioning scheme, each iteration of the quantization algorithm
selects one leaf of the binary tree and splits it into two sub-clusters. The
criterion used to select the cluster to be split varies according to the criteria
minimized by the quantization algorithm. 

The median cut algorithm proposed by Heckbert35 divides the color space
Ω into rectangular clusters Ck with the same cardinality. Therefore, to equalize
the cardinality of clusters, Heckbert selects at each step the cluster with the
greatest cardinality. Several splitting algorithms based on k – d trees11 (Section
9.7.3) use an approach similar to the one of Heckbert. These algorithms assign
an approximately equal number of colors to all leaves of the tree. However,
such a counterbalancing is not really adapted to image quantization. Indeed,
there is no relevant justification to require that each cluster should contain a
nearly equal number of colors while ignoring how these colors are distributed
in the color space.70 Using such a method, a cluster with a large quantization
error may not be split, while a cluster containing only one color (with a high
occurrence frequency) may be subdivided instead. 

1
K
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A large majority12–14,70–72,74,75 of methods attempt to minimize the total
squared error. To obtain homogeneous clusters, Bouman13 selects, at each
iteration, the cluster whose data spread the widest along the splitting direc-
tion. Because Bouman splits clusters along their major axis, the method
selects the cluster whose principal eigenvalue is maximal. 

Wan et al.70 proposed splitting, at each step, the cluster with the greatest
squared error. The basic idea of this strategy is to split the cluster whose
contribution to the TSE is the largest. This strategy may be compared to the
one of Bouman by writing the squared error into the base defined by the
three eigenvectors of the covariance matrix,

The heuristic of Bouman may thus be understood as an approximation of
the one of Wan, neglecting the possible decrease of the variance along the
directions defined by the two remaining eigenvectors. 

One slightly different strategy has been proposed by Wu.75 It consists of
selecting, at each iteration, the cluster whose bipartitioning yields the largest
reduction of the total squared error. Given a partition of the image color set
into k clusters , the splitting of one cluster Ci into two sub-
clusters  modifies the total squared error as follows: 

(9.10)

Note that, if both  and  are non-empty, the value SE  + SE  –
SE  is strictly negative. Therefore, the total squared error is a strictly
decreasing function of the number of split operations. 

Wan’s heuristic may thus be considered as an approximation of the
heuristic of Wu, neglecting the squared errors of the two generated clusters.
However, using the heuristic of Wu, each cluster must be split to estimate
the decrease of the total squared error. According to experiments performed
by Wu,74 the difference between the two criteria in terms of final quantization
errors is marginal, while the increase in computational costs is twofold for
the second criteria. The selection at each iteration of the cluster with the
greatest squared error is thus a good compromise between the computational
time and the final quantization error. 

9.4.2.3 Cutting axis
Given the cluster  to be split, one has to determine the normal and the
location of the cutting plane. Because the decrease of the total squared error
after the split of  into  and  is equal to SE  + SE  – SE ,
the optimal cutting plane is the one that minimizes SE  + SE . How-
ever, the freedom to place such a plane is still too enormous, and we need
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to fix the orientation of this plane to make the search feasible. Because the
cutting of the cluster mainly decreases the variance along the cutting axis,
one common heuristic consists of selecting the cutting axis among the direc-
tions with a high variance (Equation 9.5). 

Heckbert35 approximates the variance by enclosing the cluster in a rect-
angular box. The two sides of this box normal to the coordinate axis Ωi

enclose the color vectors with minimum (resp. maximum) coordinates along
Ωi. The spread of the data along each coordinate axis is then estimated by
the length of the box along this axis, and the box is cut perpendicularly to
its longest axis. 

Braquelaire et al.14 compute the variance along each axis and split each
cluster along its coordinate axis with the greatest variance. This heuristic
decreases the variance along the coordinate axis, which brings the major
contribution to the squared error. One computational advantage of this heu-
ristic is that, with the dataset being split along three fixed directions (the
coordinate axis), the image color set may be preprocessed to optimize the
determination of the cutting plane.14 However, the coordinate axis with the
greater variance is generally not the axis along which the dataset spreads
the widest. This direction is provided by the major axis of the cluster and
the relation between the squared error of the cluster, and the three eigenval-
ues of the covariance matrix is provided by Equation 9.6. Note that if 
denotes the principal eigenvalue of the major axis, we have 

Therefore, a greater decrease of the total squared error may be expected by
cutting the cluster along its major axis. This last heuristic is used by Wan,70,71

Wu,74,75 and Bouman.12,13

9.4.2.4 Cutting position
Given a selected cluster C and one cutting axis defined by a unit vector A,
let us denote by m and M, respecitvely, the minimal and maximal projections
of C on the cutting axis. Because the cutting plane is normal to A, its projec-
tion on the cutting axis is equal to one real number t. Any value of 
causes a bipartition of C into two sub-clusters  and  as illustrated in
Figure 9.7. Note that, if we assume that the cutting plane belongs to , we
have  and  while 
and  where ε is any positive real number. More precisely,
the function δ defined by

is an increasing function of t from [m, M] to [0, 1].
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The value of t such that  corresponds to a split of the initial
cluster into two sub-clusters with the same cardinality. The median cut
algorithm of Heckbert35 defines a partition into K clusters with an equal
cardinality. Therefore, given the selected cluster and the cutting axis, Heck-
bert sweeps the cutting plane along the cutting axis from t = m until

. 
Bouman12,13 selects as the value of t the projection of the mean on the

cutting axis: , where µ is the mean of C. This strategy avoids the sweeping
of the cutting plane along the cutting axis. However, the validity of this choice
is demonstrated only for large clusters with Gaussian distribution. 

Wan et al.70 maximize the decrease of the marginal squared error along
the major axis (Section 9.4 and Equation 9.5). The optimal value topt maxi-
mizing the decrease of the marginal squared error along the major axis is
defined by70

where vart
1 and vart

2 denote, respectively, the variance of  and  along
the major axis of C. The above formula uses both parameters from clusters

 and . This last property induces an update of the parameters of 
and  when sweeping the cutting plane from t = m to t = M. Wan et al.70,72

proved that the cutting position is also provided by

(9.11)

where µ and  denote, respectively, the mean of C and . 
The main advantage of this last formula is that topt is now only a function

of the parameters of  that may be incrementally updated when sweeping
the plane along the major axis of C. Moreover, using theoretical results from
scalar quantization,72 Wan et al. show that the interval [m, M] may be
restricted to
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Figure 9.7 Splitting of one cluster along axis A.
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Note that this last interval encloses the cutting position  selected by
Bouman. Nevertheless, Wan et al. maximize only the decrease of the mar-
ginal squared error along the major axis of the cluster while, according to
Equation 9.6, the squared error is equal to the sum of the marginal squared
errors along the three eigenvectors. 

Wu74,75 maximizes the decrease of the total squared error (Equation 9.10)
defined by . Wu proved that this last formula is
minimal for a value of topt defined by

(9.12)

This last expression uses only the cardinality and the first moment of cluster
 that can be efficiently updated when sweeping the cutting plane. How-

ever, the uses of the squared value of the first moment may lead to rounding
errors. Brun14,16 has shown that the value topt maximizing the decrease of the
partition error may also be defined as

(9.13)

This new formulation may be considered as an extension of Equation
9.11 to the three-dimensional case. It allows us to manipulate smaller quan-
tities than Equation 9.12 and thus avoids rounding errors induced by this
last formula. 

Brun has also shown that the function g(t) is bounded above by one
parabola U and below by a hyperbola L (see Figure 9.8). The parabola U
allows us to stop the search of the optimal value topt as soon as 
as indicated in Figure 9.8. According to experiments performed by Brun, the
mean reduction of the interval [m, M] with a quantization into 16 colors is
about 10%. Note that, becausee the functions U and L reach their maximum
when δ is equal to 1/2, the maximum of g(t) is reached for a value of t such
that  is about 1/2. The value δ = 1/2 corresponds to the median position
of the splitting plane selected by Heckbert’s median cut algorithm. 

9.4.3 Grouping methods

Grouping techniques generate the K representative colors during one tra-
versal of the image. Using such a scheme, each representative is defined
according to the representatives already selected and the current color set.
Indeed, the color set used at each iteration of the algorithm may be restricted
to the already scanned colors. Alternative techniques31 define K representa-
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tives by scanning the K first colors of the image and updating this set during
the traversal of the image.

9.4.3.1 The merge and box algorithm
The merge and box algorithm, proposed by Fletcher,25 is based on an iterative
process that is repeated until the boxes with the K representative colors are
formed. This algorithm iterates the following steps: each distinct color of the
color space is placed into a sub-box of side length equal to one. If the input
color can be approximated with an error no greater than half the length of
box’s diagonal, by one of the sub-boxes already generated, this color is
included in the corresponding sub-box. Otherwise, a new sub-box of side
one is added to the list. To obtain a list that does not exceed K sub-boxes, a
merging process is used when the number of sub-boxes is equal to K + 1 to
gather the pair of sub-boxes, which must be merged into a single sub-box.
The merging pair is the one that minimizes the largest side of the merged
sub-box. 

According to Fletcher,25 the heuristic used by the merger generates
roughly cubical sub-boxes with a similar size. Using a Manhattan distance
between corners would result in elongated sub-boxes, causing larger quan-
tization errors. This algorithm may be parallelized on a SIMD parallel pro-
cessor. Moreover, its calculating time may be further reduced by using a
spatial sampling to approximate the image color set accurately. 

Gervautz31 proposed a similar approach based on a hierarchical decom-
position of the RGB cube by an octree. Using this decomposition, each cube
of side one used by Fetcher is encoded as a leaf of the octree. Gervautz builds
the first K leaves of the octree by scanning the first K colors of the image.
Each leaf of the tree thus represents one cluster of the RGB color space. If
an additional color belongs to one of these clusters, the mean color of the
associated leaf is updated, and the structure of the octree remains unchanged.

L

U

0                                                   δmax                      1
0.5                                              δ

g(δ)

Figure 9.8 Evolution of the total squared error induced by the split of one cluster
by a plane as a function of the cardinality of one of the two clusters. 
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Otherwise, a new leaf is created from the merger of its children so as to keep
only K leaves. The set of K representative colors is then defined from the
centroid of the clusters associated with each leaf of the octree. 

9.4.3.2 The max-min algorithm
The max-min algorithm, first proposed by Houle and Dubois,37 iterates the
following steps (see Figure 9.9):

1. A single color c1 is first selected from the original image. It could be
the most frequently occurring one. 

2. A new representative color ck is then computed; ck is the unselected
color whose minimum distance to any of the representative colors
thus far selected is maximal; i.e., ck must verify

where symbols  and  denote, respectively, the image color set and the
set of representatives already selected. 

Step 2 of the max-min algorithm is iterated until K representative colors
are selected.

A similar approach has been proposed by Xiang,76 who initializes the
first color c1 arbitrary. Note that an arbitrary selection of the first color avoids
computation of the image’s histogram. This quantization scheme has also
been investigated by Trémeau et al.64 to extend it to a vector quantization
process based on the nearest color query principle. 

According to Houle and Dubois, the set of representatives generated by
this algorithm is uniformly distributed and extends right to the boundary
of the image color set. This distribution is well suited when a pseudo-random
noise vector is added to the color value of the pixel to be quantized, i.e.,

R

G

XX C1 C2

N1

N4

N2

N3

CX

Figure 9.9 The max-min algorithm. In this example, the algorithm first selects the
most commonly occurring color, c1, and then c2 and c according to the distance to
the previously selected colors. 

min ck ck ′– 2 min c ck ′– 2 c∀ ΩI ΩQ–{ }∈≥
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when we try to minimize errors of quantization by dithering the quantized
image (Section 9.8). In this last case, the max-min algorithm gives better
depiction of low contrast details — but at the expense of granularity due to
the pseudo-random quantization. 

9.4.4 Merge methods

Methods described in Section 9.4.2 split recursively the image color set CI

until the required number K of clusters is obtained. Such methods obtain
generally quantized images with high visual quality but must traverse each
color log2(K) times. On the other hand, the grouping methods described in
Section 9.4.3 traverse each pixel of the original image to map its color to one
cluster. Therefore, such methods traverse the original image only once. How-
ever, the function used to map each color to one cluster must have a very
low computational cost to achieve overall low processing times. This con-
straint forbids the use of complex heuristics in the mapping function. 

Merge methods may be understood as intermediate methods between
pure split or pure grouping methods. Such methods perform a first splitting
step so as to define a set of N > K clusters and then perform a sequence of
merges to obtain the K final clusters. The first splitting step has to reduce
the number of data points while keeping the main properties of the image
color set. Based on this reduced set of data, the merge algorithm may apply
heuristics with a higher computational complexity than the ones designed
within the grouping quantization framework. The set of clusters, along with
their adjacency relationships, may be thought of as a graph where each vertex
encodes one cluster, and each edge an adjacency relation between two clus-
ters. Then, the merge of two clusters is equivalent to the contraction of the
edge encoding their adjacency and the removal of any multiple edges
between adjacent clusters. The value of each edge encodes the distance
between two clusters. After the merge of two clusters, the value of the edges
incident to the newly created cluster has to be updated. Using the TSE
(Equation 9.8), the value of each edge is defined as the increases of the total
squared error induced by the merge of the two adjacent clusters. 

If  and  denote, respectively, the partition of the image color set
before and after the merge of two clusters  and , we have 

and the total squared error of , E  may be deduced from  by

(9.14)

The value of an edge encoding an adjacency relationship between clus-
ters  and  is thus equal to

P P′
Ck Ck ′

P′ P Ck Ck ′,{ }–( ) Ck Ck ′∪{ }∪=

P′ P′( ), E P( )

E P′( ) E P( )
card Ck( ) card Ck ′( )⋅
card Ck( ) card Ck ′( )+
---------------------------------------------------- µk µk ′– 2+=

Ck Ck ′
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(9.15)

Note that one is effectively minimizing a weighted Euclidean distance
between the two centroids  and  of the two clusters  and . This
is the reason why such methods are often referred to as pair-wise nearest
neighbor clustering.10,23 

The main computational cost of merge methods comes from the merger
that has to traverse all pairs of adjacent clusters at each step. Two approaches
have been proposed and sometimes combined10 to reduce this computational
cost: the reduction of the number of initial clusters and the use of heuristics
in the merge strategy. 

Brun and Mokhtari17 first perform a uniform quantization of the RGB
cube into N clusters and then create a complete graph from the set of clusters.
This graph is reduced by merging, at each step, the two closest clusters
according to Equation 9.14. Experiments performed by Brun et al. show that,
if K is lower than 16, very low values of N, such as 200 or 300, are sufficient
to obtain high-quality quantized images. 

Dixit22 reduces the initial number of clusters by a subsampling of the
image at random locations. According to Dixit, as few as 1024 random
locations on a 512 × 512 image are sufficient to obtain a good estimate of the
distribution of the image color set. The set of clusters is then sorted in
ascending order according to the cardinality of each cluster. The sorted table
of clusters is then traversed from the clusters with lowest cardinality, and
each current cluster is paired with the closest remaining one according to
Equation 9.14. These two clusters are then excluded from the merge. There-
fore, no cluster is allowed to be paired with more than one cluster, and the
set of clusters is reduced by a factor two at each iteration. Note that this
fixed decimation ratio between two successive iterations may lead to the
merger of clusters that are far apart. 

Xiang and Joy77 create the initial set of clusters by using a uniform
quantization of the RGB color space into N clusters. Xiang reduces the N
initial clusters to K final clusters by a sequence of N – K merges. At each
step, the merge criterion selects two clusters such that the newly created
cluster is enclosed by a minimal bounding box. Xiang thus estimates the
homogeneity of one cluster by the size of its bounding box. Using an initial
uniform quantization into 2 × 1 × 4 boxes, each cluster has approximately
the same luminance in the YIQ–NTSC system. Therefore, the size of a bound-
ing box may be understood as the shift in luminance within the associated
cluster, and the Xiang algorithm mainly attempts to minimize the shift in
luminance within the quantized image. Such shifts may produce significant
visual artifacts in the ray-traced images used by Xiang. 

Equitz23 reduces the computational cost of the merger by using a k – d
tree (see Section 9.7.3), which decomposes the set of initial clusters into a set
of regions each composed of eight clusters. The complete graph defined by

∆k k ′,
card Ck( ) card Ck ′( )⋅
card Ck( ) card Ck ′( )+
---------------------------------------------------- µk µk ′– 2=

µk µk ′ Ck Ck ′
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Brun17 is thus decomposed into a set of non-connected complete sub-graphs,
each composed of eight vertices. Then, Equitz finds the two closest clusters
in each sub-graph according to Equation 9.14 and merges a fixed fraction of
them (such as 50%). After each iteration, the decomposition of the initial graph
into regions is also updated so as to obtain roughly equal size sub-graphs.
Note that this merge strategy neglects adjacencies between vertices belonging
to different sub-graphs. Equitz’s heuristic has been improved by Balasubra-
manian and Allebachm,10 who first perform a prequantization step described
in Section 9.5. Balasubramanian also weights the distance between two clus-
ters by an activity measure defined from the initial image (Section 9.5).

9.4.5 Popularity methods

This family of methods, introduced by Heckbert,35 uses the histogram of the
image color set to define the set of representatives as the K most occurring
colors in the image. This simple and efficient algorithm may, however, per-
form poorly on images with a wide range of colors. Moreover, it often neglects
color in sparse regions of the color set. Likewise, this algorithm performs
poorly when asked to quantize to a small number of colors (say, <50).35

This algorithm was modified and optimized by Braudaway15 in 1986.
Braudaway encodes the image histogram by a uniform partition of the color
space Ω into L × L × L sub-boxes Ωk of equal size N/L (see Section 9.3.2 and
Figure 9.10). To prevent the next representative color from being chosen too
close to the previous one, a reduction function is applied to the histogram
after the selection of each representative. The cardinal  (Equation
9.1) of each sub-box Ωk is then reduced by a factor  where r is the
distance between Ωk and the previously selected color.

The degree of histogram reduction for a fixed value of r is controlled by
α. In the investigation done by Braudaway, α was chosen so that the histo-
gram was reduced by a factor of 1/4 at a distance r = N/4 between the
studied sub-box Ωk and the previous selected color.

9.5 Quantization algorithms based on weighted errors
We saw, in Section 9.4.2, several methods based on a minimization of the
total squared error. The use of the total squared error within the quantization
framework relies on the assumption that a partition of the image color space
into homogeneous clusters produces an output image visually closed to the
original. This assumption is partially justified by the following equation: 

(9.16)

where m × n denotes the size of the images and  denote,
respectively, the color of the pixel (i, j) in the original and quantized images. 

card Ωk( )
1 e α  r2––( )

E C( ) SE Ci( )
i 1–

K

∑ I i j,( ) I′ i j,( )– 2

i j,( ) 1 … m, ,{ } 1 … n, ,{ }×∈
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The total squared error may thus be understood as the sum of the
squared distances between the pixels of the original image and the quantized
one. Despite this interesting property, the total squared error should not be
considered as a visual distance between the original and quantized images.
This is confirmed by the experiments displayed in Figure 9.11. The 55,510
different colors of Figure 9.11a are reduced to 8 colors by a quantization
algorithm.17 The quantized image is displayed in Figure 9.11b. Figure 9.11c
is obtained from 9.11b with an additional dithering step performed by the
Flyod–Steinberg27 algorithm (Section 9.8). Although Figure 9.11c seems visu-
ally closer to 9.11a than 9.11b, the total squared error of Figure 9.11c

* *

* r = 2
2

r = 1
2

*

0
N/L

G

B
R

N–1

0

N– 1

N/L

Figure 9.10 The reduction factor applied by Braudaway’s algorithm.15 The color
space is enclosed in an N × N × N box and subdivided into L3 sub-boxes. The symbol
r denotes the distance of each sub-box from the center one.

(a)                                                          (b)                                                        (c)

Figure 9.11 (See color insert) (a) The original image, (b) the quantized image with
eight colors, and (c) image improved with a dithering algorithm.
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computed, per Equation 9.16, is nearly twice as large as the one of Figure
9.11b. This surprising result is due to the different criteria used by the
dithering and quantization algorithms. The dithering algorithm attempts to
optimize the local arrangement of representatives, while the quantization
algorithm minimizes the global homogeneity of clusters.

One method to take into account the local properties of the image during
the quantization step is to replace the frequency function f in the squared
error’s equation (Equation 9.4) by a weighted frequency function W, where
W(c) is defined as a sum of local attributes computed on each pixel with
color c. Note that, from this point of view, the usual squared error may be
understood as a special case of weighted squared error where the weight of
each color is equal to the number of pixels mapped to it. Given an initial
color space C partitioned into K clusters , the weighted TSE is
thus defined by: 

(9.17)

One prominent artifact of a limited palette size is false contouring. False
contours occur when a smoothly varying region is mapped into a small
number of colors from the colormap. Instead of displaying slow variations
of colors across the region, smaller regions with a constant color are dis-
played with abrupt changes across region boundaries. These abrupt color
changes are perceived as contour in the quantized image. Bouman12,13 esti-
mates the size of uniformly quantized regions by using the variations of the
luminance defined in the NTSC system,

(9.18)

where the color of pixel p, I(p), is defined in the RGB color space. 
Bouman has shown that, within a region with a linear variation of the

luminance with slope , the ratio between the distance of each pixel’s color
to its representative and the local gradient of the luminance is proportional
to the width of the uniformly mapped regions. More precisely, we have

where Rn denotes the set of pixels p whose color I(p) is mapped to cn. The
cardinality of this set is denoted by . The symbol ∆ denotes the width
of a uniformly quantized region in the direction of the luminance gradient

. 
Therefore, to minimize the size of the uniformly mapped regions (esti-

mated by ∆), Bouman uses a weighting inversely proportional to the
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luminance gradient of the image. For each color c of the original image, the
weighting W(c) is defined by

(9.19)

where the constants 16 and 2 bound the dynamic range of the gradient, while
the function h is a smoothing kernel, the convolution of which allows us to
estimate the mean gradient over the regions. 

Note that any scale of the luminance component in the original image
by a factor s scales the weighting factor W(sc) by 1/s2, while the squared
distance between c and its representative is scaled by a factor s2. Therefore,
the factors  and the weighted TSE (see Equation 9.17) are insen-
sitive to any global scaling of the luminance. This obeys Weber’s law,55 which
suggests that any measure of subjective image quality should be invariant
to absolute intensity scaling. 

Bouman integrates the weighting defined by Equation 9.19 into a tree-
structured vector quantizer (Section 9.4.2 and Table 9.1). Using the weighted
TSE (Equation 9.17), the weighted moments of a cluster C are simply defined
by substituting f(c) by W(c) in Equations 9.1. The weighted mean and cova-
riance of the cluster are then defined from the weighted moments using
Equation 9.2. Bouman uses the weighted mean  and covariance matrix

 of each cluster Ci to adapt his tree-structured vector quantizer as
follows: 

1. Select the cluster Cm whose weighted covariance matrix has the great-
est eigenvalue. Let us denote by em the eigenvector associated with
this eigenvalue.

2. Split the selected cluster by a plane that is orthogonal to em and
passing through .

Note that, because the introduction of weights modifies the distribution
of the initial image color set, it modifies all key steps of Bouman’s recursive
split algorithm. Moreover, the weights introduced by Bouman may be easily
adapted to other recursive splitting schemes. For example, a weighted min-
imization of the TSE may be achieved by computing the weighted squared
error using the weighted moments (see Equations 9.19 and 9.7) and selecting,
at each step, the cluster whose weighted squared error is maximal. 

One other characteristic of the human visual system is its greater sensi-
tivity to quantization errors in smooth areas than in busy regions of the
image. Balasubramanian and Allebach8,10 define a color activity measure on
each pixel by
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where Pk is an 8 × 8 block centered around pixel k. The symbols cp and 
denote, respectively, the color of pixel p and the mean color of Pk. 

These values are then accumulated on colors by associating with each
color the minimal color activity measure of the color over all spatial blocks, 

(9.20)

where Kc denotes the set of blocks in which color c occurs. 
Because the luminance component has the greatest variations, the gra-

dient of the luminance is also used as an alternative9 or to complement10 the
measure of the spatial masking. Experiments show that the masking of
quantization noise by image activity at a pixel depends not only on the
luminance gradient at the pixel but also on gradients at the neighboring
pixels. Based on these experiments, Balasubramanian9,10 computes the gra-
dient  of the luminance defined in the NTSC system (Equation 9.18) on
each pixel. Then, the luminance activity  of each 8 × 8 block k is defined
as an average value of its gradient. The luminance activity of each color is
then defined as the average value of the block’s gradient in which this color
occurs,

(9.21)

where Kc denotes the set of blocks in which color c occurs. 
The color or luminance activity may then be used to weight the colors

during the quantization step. Balasubramanian chose

and

respectively, in References 9 and 10. In both cases, the importance of colors
with low activity measures is reinforced by the weighting, to the detriment
of colors with high activity measures whose quantization errors are less
readily perceived by the human visual system. 

Balasubramanian uses the color and luminance activity measures within
his quantization algorithm based on a merge scheme10 (see Section 9.4.4).
The prequantization step performed by his method is based on the activity
measure defined by Equation 9.20. Colors are then categorized as belonging
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Chapter nine: Color quantization 617

to low, medium, or high activity classes according to two thresholds (t1 and
t2) determined experimentally. The luminance activity measure (Equation
9.21) is used in complement to color activity to decompose the set of colors
with low color activity measures into two subsets corresponding to low and
high luminance activity. This decomposition is based on an additional thresh-
old, g. Based on this color classification, the image color set is decomposed
into a set of cubes with length l = 2, 4, or 8, all colors of one cube belonging
to a same class (see Figure 9.12). Therefore, the merge process tends to avoid
the merger of clusters associated with low activity measures, while colors
associated with high activities are already grouped into larger clusters. 

Balasubramanian uses also color activity measures to weight the distance
between clusters. Using the same scheme as the aggregation of the activity
measure on colors (see Equation 9.20), Balasubramanian defines the color
activity of one cluster as the minimal activity of its colors. Therefore, given
two clusters Ci and Cj with color activities  and , the color activity of
the merged cluster  is equal to . The weight  of two
clusters is then defined as 

To attach large weights to the distance between clusters with small activities,
and vice versa, Balasubramanian defines the weighted distance between
clusters Ci and Cj as  where  is the increase of the total squared
error induced by the merge of clusters Ci and Cj (Equation 9.14). Using such
weights, clusters with high activity measures are more likely to be merged
before low activity clusters. 

Balasubramanian and Bouman combined their methods8 so as to inte-
grate the color weights defined by Balasubramanian within the tree-struc-
tured vector quantizer defined by Bouman. This method defines the aggre-
gate weight of each cluster as the average weight of its colors. Because the
cluster’s weights are more meaningful for small and close clusters, Bala-
subramanian et al. perform  unweighted binary splits (Section 9.4.2
and Table 1.1). Then, the (1/3)K remaining splits are performed by splitting,

color c                          obtain ãc                            ãc < t1                                compute ∇y                     ∇y < g                   Medium cube
Y

N

Y

N

Y

N

Small cube

Medium cube

Large cube

ãc < t2α̃c

α̃c α̃c

Figure 9.12 Block diagram of prequantization scheme.
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at each step, the cluster whose weighted eigenvalue  is maximal. The
symbols  and  denote, respectively, the weight and the maximal eigen-
value of cluster Ck.

9.6 Post-clustering methods
Quantization strategies presented so far use a pre-clustering scheme that
computes the set of representatives only once. Another strategy consists of
defining an initial set of representatives and improving it iteratively. Such a
quantization scheme is called a post-clustering strategy. The pre-clustering
strategy is commonly used, whereas the post-clustering one is less popular.
Indeed, the use of a post-clustering strategy generally induces three main
drawbacks.

1. First, because the number of iterations is unbounded, quantization
algorithms using a post-clustering scheme may be computationally
intensive. 

2. A much bigger disadvantage generally is the loss of the structure
induced by the original strategy, which often makes the mapping
step very computationally intensive. 

3. Last, the iterative improvement of the set of representatives generally
converges to the local minimum the closest to the initial solution. 

Therefore, such algorithms are often trapped in local minima of the opti-
mized criterion. However, several heuristics presented in this section have
been proposed to improve the computational efficiency of post-clustering
algorithms. Moreover, by using a post-clustering scheme, information such
as the interrelationships between neighboring clusters and the spatial dis-
tribution of colors may be naturally integrated into quantization algorithms.
Finally, one common heuristic consists of combining the pre- and post-
quantization schemes as follows: First, an initial set of representatives closed
from the optimal solution is determined by a prequantization algorithm.
This initial set of representative is then moved to the global optimum by a
quantization algorithm based on a post-clustering scheme. 

9.6.1 The LBG and k-means algorithms

Let us first introduce the LBG algorithm. The design of locally optimal vector
quantizers was investigated by both Llyod47 in 198246 and by Linde et al. in
1980. The initialization step defines one set of representatives. This could be
the K most commonly occurring colors or any set of colors chosen arbitrary.
The iteration begins by assigning each input color to one representative
according to some distortion measure. These assignments define a partition
of the image color set into clusters, each cluster being associated with one
representative. The set of representatives is then modified to minimize the
errors relative to input colors. This two-step process is iterated until no

wkλk

wk λk
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significant change occurs within the set of representatives between two
successive iterations. 

Several quantization processes, such as those proposed by Heckbert35

and Braudaway,15 use the LBG algorithm to improve the set of representa-
tives obtained from their quantizers. However, because the LBG algorithm
converges only to a local minimum, this step often yields only slight
improvements.58 

Several investigations have been performed to improve the performance
of this algorithm, such as the one by Goldberg,32 who extends this algorithm
to a high-resolution solution that selects a set of representative vectors from
input vectors. Likewise, Feng24 has extended this algorithm to a vector quan-
tizer that exploits the statistical redundancy between the neighboring blocks
to reduce the bit rate required by the algorithm. 

More significant improvements can be obtained from other heuristics
that attempt to select the palette through a sequential splitting process while
reducing the TSE at each step. Several investigations such as those of Orchard
and Bouman13 or the one of Balasubramanian8 propose various splitting
procedures and different selection criteria to reduce the TSE. 

The k-means algorithms belong to the same category of post-clustering
techniques. These algorithms are based on an iterative process that is
repeated until it converges to a local minimum solution, i.e., until the cluster
centers of the K generated clusters do not change from one iteration to the
other. The number of iterations required by the algorithm depends on the
distribution of the color points, the number of requested clusters, the size of
the color space, and the choice of initial cluster centers.70 Consequently, for
a large clustering problem, the computation can be very time consuming.
Recently, faster clustering approaches have been proposed. Among them are
some that are commonly used in color image quantization,56 although these
approaches were originally developed for color image segmentation appli-
cations, such as the C-means,19 the fuzzy C-means,43 and the genetic C-
means56 clustering algorithms or the hierarchical merging approach.7 

9.6.2 The NeuQuant neural-net image quantization algorithm

The NeuQuant neural-net image quantization algorithm has been developed
to improve the common median cut algorithm (Section 9.4.2). This algorithm
operates using a one-dimensional, self-organizing Kohonen neural network,
typically with 256 neurons, which self-organizes through learning to match
the distribution of colors in an input image. Taking the position of each
neuron in RGB space gives a high-quality colormap in which adjacent colors
are similar. 

By adjusting a sampling factor, the network can produce either extremely
high-quality images slowly or good images within reasonable times. With a
sampling factor of 1, the entire image is used in the learning phase; with a
factor of, e.g., 10, a pseudo-random subset of 1/10 of the pixels is used in
the learning phase. A sampling factor of 10 gives substantial speed enhance-
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ment with a small quality penalty. Careful coding and a novel indexing
scheme are used to make the algorithm efficient. This confounds the frequent
observation that Kohonen neural networks are necessarily slow. 

9.6.3 The local K-means algorithm

The local K-means algorithm (LKM), introduced by Verevka and Bucha-
nan,68,69 is an iterative post-clustering technique that approximates an opti-
mal palette using multiple subsets of image points. This method is based on
a combination of a K-means quantization process and a self-organizing map
(or Kohonen neural network). The aim of this method is to simultaneously
minimize both the TSE and the standard deviation of squared error of pixels,

Meanwhile, small values of the TSE guarantee that a quantization process
accurately represents colors of the original image, and the minimization of
the standard deviation preserves variations of colors in the quantized image.
The main limitation of this method comes from the two employed measures
that treat each pixel independently. Consequently, the spatial correlation
among colors is not taken into account. The main advantage of this method
is its ability to select a palette without making any assumptions about the
boundaries of color clusters.

9.7 Mapping methods
The inverse colormap operation is the process that maps an image into a
limited set of representative colors. These representatives may be defined by
a quantization algorithm or imposed by the default colormap of the output
device. To minimize the visual distortion between the input image and the
output one, inverse colormap algorithms map each color c of the input image
to its nearest representative Q(c). The function Q may be defined by

(9.22)

where C represents the set of colors of the input image, and  the
set of representative colors. The expression  denotes the Euclidean
norm of the three-dimensional vector z–c computed in a given color space. 

The value  for a given color c may be computed using an exhaustive
search of the minimum of  for all representative colors. Given a 256
× 256 image and a colormap of 256 colors, this trivial algorithm requires more
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than 16 million distance computations (see Equation 9.22). Thus, despite its
simplicity and the fact that this method provides an exact solution, it is not
practical for large images or interactive applications. Several methods
described below have thus been designed to optimize the search of the closest
representative. The complexity of the main algorithms is outlined in Table 9.2.

9.7.1 Improvements of the trivial inverse colormap method

Improvements of the trivial inverse colormap algorithm are numerous.
Poskanzer52 proposed improving the search by using a hash table, which
allows one to avoid the search of the nearest representative for any color
already encountered. However, this optimization remains inefficient for
images with a large set of different colors, such as outdoor scenes. One other
approach consists of approximating the L2 Euclidean norm by a less expen-
sive distance metric. Chaudhuri et al.20 proposed the Lα norm as an approx-
imation of the Euclidean distance, with the Lα norm of a color c being defined
by

According to experiments performed by Verevka,68 the  norm signifi-
cantly speeds up the search without introducing a noticeable loss in output
image quality. 

Table 9.2 Complexity of the Main Inverse Colormap Methods

Complexity

Algorithm
Exact 

Computation?
Inverse 

Colormap Step
Preprocessing 

Step

Trivial method Yes

k – d tree Yes

Locally sorted search Yes

Three-dimensional 
Voronoï

No

Two-dimensional 
Voronoï

No

Note: Symbols  and K denote, respectively, the size of the input image and the number of
representatives. Symbols L and N are defined in Section 9.7.4, and symbol  is
defined in Section 9.7.6.
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The search can be further reduced by using the following consider-
ations:36

• Partial sum. Using the square of the L2 distance, the L1 norm, or the
 norm, the distance between the input color and one represen-

tative is defined as a sum of three terms. The partial sum should be
compared to the current minimal distance before each new addition.
The distance calculation terminates if the partial sum is greater than
the current minimal distance. 

• Sorting on one coordinate. Let us assume that the representatives are
sorted along one coordinate axis (e.g., the first one). Then, the search
starts with the representative whose first coordinate is the closest to
the input color and continues in the increasing first coordinate dis-
tance order. The process terminates when the first coordinate distance
between the next representative and the input color is greater than
the current minimal distance. Note that one should use an axis with
a large variance to accelerate the termination of the search. 

• Nearest neighbor distance. Given a representative cj with ,
its closest representative  is defined by

Let us suppose that the current representative ci traversed by the
inverse colormap algorithm is the current closest representative from
the input color c. We additionally suppose that the current minimal
distance  is less than one half of . We thus
have

Then, given any other representative color ck, 

The inverse colormap algorithm should then terminate, as no repre-
sentative may be closer to c than ci. 

L1 2⁄

j 1 … K, ,{ }∈
cq j( )

q j( ) arg min d c j ck,( )=
k 1 … K, ,{ }∈ k j≠,

Σmin d c ci,( )= d ci cq i( ),( )

Σmin d c ci,( )=

Σmin
1
2
---d ci cq i( ),( )≤







2Σmin d ci cq i( ),( ) d ci ck,( ) d ci c,( ) d c ck,( )+≤ ≤≤

2Σmin Σmin d c ck,( )+≤⇒

Σmin d c ck,( )≤⇒
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9.7.2 Inverse colormap algorithms devoted 
to a specific quantization method

As mentioned in Section 9.1 (see also Figure 9.1) any quantization algorithm
requires an inverse colormap step. The set of representatives defined by
quantization algorithms is built so as to minimize a quantization error
defined within some color space (e.g., CIELUV or YIQ). On the other hand,
inverse colormap algorithms map each color to its nearest representative
using an Euclidean norm also defined within a given color space. Therefore,
the inverse colormap algorithm should use the same color space as the
quantization algorithm to be consistent with the criterion used to design the
set of representatives. 

The assignment of each color to its nearest representative by inverse
colormap algorithms induces a partition of the image color set by a three-
dimensional Voronoï diagram defined by the representatives. The partition
defined by pre-clustering quantization methods generally does not constitute
a Voronoï diagram but may be used as a close approximation of it if the
partition has a low total squared error. Moreover, using the partition defined
by quantization algorithms, data structures generated by these algorithms
may be used to reduce the computation cost of the mapping function. For
example, using a tree-structured vector quantizer (Section 9.4.2), the binary
tree generated by the quantization algorithm may be used to retrieve the
representative of an input color with approximately  operations. 

9.7.3 Inverse colormap operations using k – d trees

Inverse colormap methods may also be studded within the more general
nearest neighbor framework. Friedman11 proposed an algorithm based on
an optimized k – d tree to determine the m nearest neighbors of a given color.
Given a set of colors, the k – d tree is built by a recursive bipartitioning
scheme (Section 9.4.2), each cluster being split along its coordinate axis with
the greatest variance so as to have an equal number of colors in both sub-
clusters. The recursive split algorithm terminates when each leaf of the
binary tree generated by the algorithm contains less than a given number b
of colors. 

The search procedure initializes a list of the m closest colors encountered
so far. Whenever a color is examined and found to be closer than the most
distant member of this list, the list is updated. If the node under investigation
is not terminal, the recursive procedure is called for the sub-cluster enclosing
the query color. When control returns, a test is made to determine if it is
necessary to consider the other sub-cluster. This test checks if the box delim-
iting the sub-cluster overlaps the ball centered at the query color with radius
equal to the distance to the mth closest color so far encountered. This test is
referred to as the bounds overlap-ball test. If the bounds overlap-ball test fails,
none of the colors on the other sub-cluster can be among the m closest
neighbor of the query color. If the bounds do overlap the ball, then the colors

O log2 K( )( )
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of the other sub-cluster should be examined, and the procedure is called
recursively on this sub-cluster. 

The above algorithm may be applied to the inverse colormap framework,
by setting m = 1 and using the set of representative as the initial set of colors
encoded by the k – d tree. According to Friedman, the closest representative
is determined in  operations. 

9.7.4 The locally sorted search algorithm
Heckbert’s locally sorted search algorithm35 uses the same basic idea as the
bounds overlap-ball test but, instead of performing a recursive decomposi-
tion of the color set, Heckbert defines a uniform decomposition of the cube
into a lattice of N cubical cells. Each cell of this lattice contains the list of
representatives that could be the nearest representative of a color inside the
cell. Each cell’s list is defined by computing the distance r between the
representative closest from the center of the cell and the farthest corner of
the cell (see Figure 9.13). This distance gives an upper bound on the distance
of any color in the cell to its nearest representative. Therefore, any represen-
tative that has a distance to the cell greater than r may be rejected from the list.

Given an input color c, Heckbert’s method determines which cell con-
tains c and traverses its associated list to determine its closest representative.
The complexity of this method depends on the mean size of the representa-
tive list, which is determined by the number and distribution of representa-
tive colors and by the number N of cells composing the lattice. If we denote
by L the mean size of the representative lists, the complexity of the prepro-
cessing step that defines the lattice of N cells and sorts the representative
lists is equal to O(NK + NL(L)).35 Experiments performed by Heckbert show
that the number of distance computations required to determine the repre-
sentative Q(c) of a color c may be decreased by 23 for 256 representative

O log2 K( )( )

+

sub-box studied

in list

not in listC

D

A
r r

r

sub-box the most
distant to A

Figure 9.13 The locally sorted search algorithm. The representative A is the closest
from the center of the studded sub-box. The distance from A to the farthest corner
of the sub-box defines the distance r. The representative D belongs to the list associ-
ated with this sub-box, while C is r units away from the sub-box and is thus rejected
from the list. 
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colors and 512 cells. Nevertheless, with a fixed number N of cells, this method
remains approximately linear with respect to the number K of representa-
tives. Moreover, the optimal number N of cells is difficult to estimate. 

The locally sorted search shows the greatest advantage over an exhaus-
tive search when K is large and when the colors in the input image have a
wide distribution.35 In these cases, the preprocessing time to create the data-
base is overshadowed by the savings in search time.

Some variants of this algorithm, such as those of Houle and Dubois37

and Goldberg,32 have been proposed. 

9.7.5 Inverse colormap operation using a three-dimensional 
Voronoï diagram

Thomas’s method60 computes the values of the function Q based on a three-
dimensional discrete Voronoï diagram defined by the representative colors
of the colormap. A discrete Voronoï diagram defined by p points is a partition
of a discrete image into a set of p cells, all pixels of one cell being closer to
one representative than the others. One advantage of discrete Voronoï dia-
grams as compared with real ones is that they can be computed, using
incremental methods that initialize the n-dimensional image to be parti-
tioned. Thus, using a discrete Voronoï diagram, the cell enclosing a given
pixel is retrieved by reading its index in the n-dimensional image. 

Using the Thomas method, the Voronoï diagram is encoded with the
help of a three-dimnensional array of integers. Each entry of this array
represents a color and contains the index of its nearest representative. The
main advantage of Thomas’s method is that, once the three-dimensional
array encoding the three-dimensional Voronoï diagram has been computed,
the representative of any input color may be retrieved without any compu-
tation. This method is thus quite adapted to mapping any color to the default
colormap of a screen. However, it has several drawbacks. First, this algo-
rithm computes the representative of each displayable color. Thus, it
involves many useless computations when applied to a few images. Second,
using the RGB color space, computation of the three-dimensional Voronoï
diagram requires the storage of 2563 indexes. To reduce the number of
initialized values and the amount of required memory, Thomas removes the
three least significant bits of each R, G, and B component. The three-dimen-
sional Voronoï diagram is then computed on a 32 × 32 × 32 cube. This
heuristic significantly decreases the amount of required memory but intro-
duces several quantization errors (Section 9.2). Moreover, many quantiza-
tion methods14,70,74 use color spaces such as CIELUV, CIELAB,59 or YCrCb,10

which are more adapted to human vision than the RGB one. In this case,
the inverse colormap algorithm has to use the same color space (Section
9.7.2). Using Thomas’s method and a different color space, we have to
allocate and initialize a three-dimensional image that encloses the transfor-
mation of the space. This constraint reinforces the problems linked to the
number of data that must be allocated and initialized.
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9.7.6 Inverse colormap operation by a two-dimensional 
Voronoï diagram

The basic idea of this method proposed by Brun18 approximates the three-
dimensional image color set by one of its two-dimensional projections so as
to perform the inverse colormap operation with a two-dimensional Voronoï
diagram instead of a three-dimensional one. Experiments performed by
Ohta48 show that up to 99% of the information (see Equation 9.3) of an image
color set is contained in the plane defined by the first two eigenvectors of
the covariance matrix. 

Given an image color set, Brun computes the first two eigenvectors of
the covariance matrix (Equation 9.2) and defines a projection operator p onto
the plane Pprinc defined by these two eigenvectors. The three-dimensional
Voronoï diagram associated with the colormap  is then approx-
imated by a two-dimensional diagram VI  defined by the sites

. 
The mapping of a color c to the representative whose associated cell in

VI encloses p(c) induces two successive approximations. First, the three-
dimensional distances are approximated by two-dimensional ones. This first
approximation neglects the variations of the dataset along the third eigen-
vector. Second, the use of a discrete Voronoï diagram involves rounding of
each projected color p(c) to the nearest pixel in VI.

Due to these successive approximations, this first mapping function
often fails to map the input colors to their closest representatives. However,
these approximations cause minor errors in the distance computations, so
the errors often affect the indices of adjacent Voronoï cells. The correction of
the approximations thus requires us to compute the neighborhood of each
Voronoï cell. This neighborhood may be encoded by using the dual of the
Voronoï diagram VI, named a Delaunay graph6 and denoted by DI. The data
structures VI and DI are then combined in the following manner.

Given an input color c, Brun reads in VI the index VI[p(c)] of the cell
enclosing p(c). The set DI[VI[p(c)]] containing VI[p(c)] and the index of the
cells adjacent to it is then read from the Delaunay graph DI. The color c is
then mapped to its closest representative among DI[VI[p(c)]].

(9.23)

where  denotes a representative color of the colormap . 
Note that Equation 9.23 uses three-dimensional distances, the two-dimen-

sional Voronoï diagram being used only to restrict the number of distance
computations. Therefore, this method is similar to the one of Heckbert (Section
9.7.4), which performs a partition of the color space and associates a list of
representatives to each cell of the partition. The complexity of this inverse
colormap method is determined by the mean size of lists DI[VI[p(c)]] (see
Equation 9.23), which is related to the mean number of neighbors of a two-

c1 … cK, ,{ }

p c1( ) … p cK( ), ,{ }

Q c( ) arg min c ci– 2=
i DI VI p c( )( )[ ]∈

ci c1 … cK, ,{ }
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dimensional Voronoï cell. It can be shown53 that this number is bounded by
six. Therefore, once the diagrams VI and DI are computed, this method requires
less than seven distance computations per pixel. The overall complexity of the
method is bounded by O(9|I|+|VI|) where |I| and |VI| denote, respec-
tively, the size of the input image and the array VI.

9.8 Dithering methods
Until recently, digital halftoning was commonly considered to be a process
of displaying continuous tone images on bilevel output devices (e.g., print-
ers).34,39,41,50 To extend these methods to color images, several generalizations
have been proposed. 

Considering that the capability of the human visual system to distin-
guish different colors declines rapidly for high spatial frequencies, digital
halftoning has been exploited to enhance a posteriori quantization processes
by adding complementary perceived colors. Indeed, the human visual sys-
tem may create additional perceived colors by averaging colors in the
neighborhood of each pixel. Thus, halftoning trades off high spatial reso-
lution in favor of increased color resolution. Several investigations33 have
shown that excellent image quality with color palettes of very small size
(as few as four colors) can be obtained when digital halftoning is used. A
variety of halftoning techniques have been proposed to reach this objective,
such as error diffusion techniques, dithering techniques, and model-based
halftoning techniques. 

The common problem of these approaches is that they consider each
color component to be an individual grayscale image; consequently, due to
the correlation between the color components, color shifts and false textural
contours appear on the resulting image.4,58,67 This problem is all the more
noticeable when the number of colors that forms a palette is very small. That
is why some investigations have been proposed to develop vector error
diffusion techniques to reduce effects induced by the correlation between
color components. 

To optimize the performance of dithering techniques, some adaptive
techniques4,66 have been also investigated. The key idea of these techniques
is to compensate quantization errors by using an image-adaptive cost func-
tion. More recently, other approaches have combined dithering and quanti-
zation processes or designed quantizers to match the requirements of dith-
ering algorithms. 

9.8.1 Error diffusion methods
The object of error diffusion is to quantize the image in such a way that the
average value of the quantized image in a local region is the same as the
average value of the original one in the same local region. In error diffusion,
any errors produced in the quantization process in a pixel are propagated to
neighboring pixels to be negated subsequently (see Figure 9.14) so that, in a
small group of neighboring pixels, the average color is more accurate. 
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Let I’(x, y) be the pixel value resulting of the pseudo-random process,
and  be the quantization error at pixel location
(x, y); then, I’(x, y) can be described by

with 

which represents a two-dimensional spatial filter (see Figure 9.15), such that

–

X X X

Delay Delay Delay

Previous Errors

(x,y)∆

I(x,y)

δ(x,y)

Σ
Input pixel

Second step: quantization of image I’

First step: quantization of image I

(Color Mapper)

Quantizer

Σ
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I’(x,y)

I   (x,y)
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I   (x,y)
Q

Output (Quantized) pixel

Figure 9.14 The dithering algorithm. Input pixels are dithered by the weighted sum
of the previous quantization errors before being quantized for the second time. 
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Figure 9.15 The Floyd–Steinberg algorithm: (a) the propagation of the quantization
error to neighboring pixels and (b) the contribution of neighboring pixels to the noise
vector. 
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where the indexes i and j define the neighborhood over which quantization
errors are accumulated according to coefficients Cij. 

The constraints on Cij ensure that, locally, the quantization error averages
to a zero value. Because the objective of error diffusion is to preserve the
average value of the image over local regions, a unity-gain, lowpass, finite
impulse response (FIR) filter is used to distribute the error. Because the eye
is less sensitive to high spatial frequencies, the image resulting from an error
diffusion process typically appears closer to the original image than those
obtained with ordered dither58 (Section 9.8.2).

This algorithm was originally proposed by Floyd and Steinberg27 in 1975.
Several variants have been proposed, such as those proposed by Fletcher,27

Heckbert,35 Bouman,12 Dixit,22 and Akarun.3 Several improvements have also
been proposed to speed the process, such as the parallel implementation
proposed by Fletcher25 and the fuzzy technique proposed by Akarun.1
According to Fletcher,22 this optional pixel correction function is usually
necessary when the number of output colors is very small, e.g., 32 or fewer. 

Several investigations have shown that the error diffusion algorithm
presents some major drawbacks. For example, according to Fletcher27 and
Bouman,12 the colormap selection algorithm may be altered by the dithering
process when input colors lie outside the convex hull of the representative
colors. It is thus necessary to guarantee that all colors in the original image
may be generated by taking a linear combination of colors in the colormap.
Likewise, according to Knuth,41 another major drawback of the error dif-
fusion algorithm is its inherent serial property; e.g., the value I’(x, y)
depends in all pixels of input data I(x, y). Furthermore, it sometimes puts
“ghosts” into the picture. Even if the ghosting problem can be ameliorated
by choosing the coefficients Cij so that their sum is less than 1, the ghosts
cannot be exorcised completely in this way. Finally, according to Bouman,12

when the error diffusion algorithm is used in conjunction with an unstruc-
tured color palette, it requires an exhaustive search of the closest represen-
tative (Section 9.7). Although some basic improvements to the exhaustive
search method have been made (Section 9.7.1), this method remains com-
putationally intensive. 

9.8.2 Ordered dither methods

The ordered dithering methods add non-random patterns  to blocks
of pixels I(x, y) before the quantization step. The quantized image I’(x, y) is
thus deduced from the original one by 

C00 0 and Cij

j 0=

n

∑
i 0=

m

∑ 1= =

δ i j,( )

I′ x y,( ) I x y,( ) δ x mod n y mod n,( )+=
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where  is an n × n matrix of dithering values. The matrix δ is designed
to have a 0 average value and an energy spectrum with a minimal energy at
low spatial frequencies.41 The amplitude of the pattern is determined so that
any area of constant color value is quantized into a variety of nearby color
values, thereby breaking up regions of false contouring. This reduces the
correlated error patterns that are characteristic of areas of false contouring.

In contrast to random dithering processes, the basic idea of ordered
dither techniques is to use a finite, deterministic, and localized threshold
function to decrease the correlation of quantization errors. Likewise, in con-
trast to random dithering processes, ordered dither techniques are image-
adaptive; i.e., these techniques exploit the local characteristics of the image
to obtain improvements over a constant filter. 

Several investigations have shown that the ordered dither algorithm
presents some major drawbacks. According to Bouman,12 the application of
ordered dithering is complicated by the nonuniform spread of colors within
the palette. As the distance between nearby colors may vary significantly
across the color space, it may be impossible to determine the amplitude that
will sufficiently dither all areas of constant color value in the image without
adding noticeable noise to other areas. Bouman et al.12 have thus proposed
some adjustments to improve this technique. Nevertheless, it has been
shown that no ordered dither method guarantees that, after quantization,
the error spectrum will remain concentrated at high spatial frequencies. 

According to Kim et al.,40 ordered dither methods have the disadvantage
of producing a binary-recursive and computerized texture that is unfortu-
nately unsuitable. Meanwhile, the Floyd–Steinberg method has the disad-
vantage of producing intrusive and snake-like patterns that are also unsuit-
able. They thus proposed the dot diffusion method, which avoids both of
these unsuitable properties and combines the sharpness of the Floyd–Stein-
berg method with the parallelism of the order dither method. According to
Kim et al., dot diffusion methods have the desired property but tend to blur
the image in the edge regions through the diffusion of the quantization error.
This last problem is solved by an activity-weighted dot diffusion method
that divides the dithering process into two sub-processes, one dependent on
the object frequencies and one independent. 

Another approach to an ordered dithering technique has been proposed
by Lin et al.45 to enhance performance of compression schemes such as joint
bilevel group (JPIG) techniques. The interest of this approach, based on a
pixel interleaving (i.e., grouping pixels with similar dithering thresholds)
strategy is that it could be also extended to quantization scheme. 

9.8.3 Vector dither methods

The major drawback of scalar diffusion techniques is that the color compo-
nents are analyzed independently while they are highly correlated. Indeed,
the natural ordering used by scalar quantizers is lost within the vector
quantizer framework. Imposing an ordering, or organization, on a vector

δ i j,( )
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quantizer requires careful considerations. Rather than defining an ordering
on vectors, some investigations proposed a two-stage approach. In the first
stage, the original image is quantized by a scalar process, and an error
propagation mask is applied to compensate the quantization errors. In the
second stage, the color palette is ordered, and the resulting image is once
again quantized by a vector process based on the ordered palette. Finally,
an error propagation mask is used one more time to compensate for the
quantization errors. This approach has been used by Goldschneider et al.33

to propose an embedded multilevel error diffusion technique. 
Another strategy of vector error diffusion has been proposed by Akarun

et al.4 In their paper, the authors proposed two new adaptive diffusion
techniques, respectively based on vector and scalar diffusion, to correct the
disturbing effects of error diffusion strategies. The proposed adaptation cri-
terion is based on the statistics of the quantization error obtained from the
dithered image. Rather than considering each color component as an indi-
vidual grayscale image to obtain a scalar diffusion, Akarun et al.4 proposed
using either the Karhunen–Loeve color coordinate system or a pseudo-Kar-
hunen–Loeve system, which provides better results than the two other scalar
diffusion techniques. 

9.8.4 Joint quantization and dithering methods

Instead of performing a posteriori the dithering process to eliminate contour-
ing effects or other disturbing effects, some investigations have combined
the dithering and quantization processes. Because the error diffusion step
changes pixel values after the quantization step, the set of representative
designed by the quantizer is obviously not optimal in regard to the corrected
image. 

A first attempt to design the set of representatives based on a dithering
process has been proposed by Akarun et al.2 Akarun’s method combines a
tree-structured vector quantizer (Section 9.4.2) and a dithering process based
on a controlled displacement of cluster centers. The key idea is to obtain a
wider colorspace so as to obtain more quantization colors in the color palette
and hence eliminate color impulses and false contours. 

Another strategy consists of processing a joint optimization of the selec-
tion of the representatives and their locations to benefit from the spatial
averaging performed by the human visual system (HVS). Indeed as men-
tioned in Sections 9.5 and 9.8, one notable characteristic of the HVS is the
rapid decline of its ability to distinguish different colors for high spatial
frequencies. This phenomenon creates additional perceived colors by a visual
local averaging of the representatives. This effect is widely used by dithering
techniques but cannot be readily incorporated in usual quantization algo-
rithms, because the set of representatives is known only after the quantiza-
tion step.

A joint optimization of the selection of the representatives and their
locations has been proposed by Scheunders et al.57 This method combines a
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quantization process based on a competitive learning clustering technique
and a dithering process based on a simple local error diffusion technique.
To take the error diffusion process into account, an objective error function
is first computed and next minimized based on a competitive learning
scheme that alternatively updates the palette colors in the color space and
the color pixels in the color image.

Other authors26,54 use a model of the spatial averaging performed by the
HVS within the joint quantization scheme. This spatial averaging may be
modeled by three lowpass filters,26,51 . Let us denote by Si,k the
spatial support of filter Wk at position i. Given an image ,
the kth component of the perceived image  is given by

Given a set of representatives , the location of each represen-
tative may be encoded by an N × K Boolean matrix such that M(i, j) equals
1 if the pixel Ii is mapped to cj, and 0 otherwise. Using the K × 3 vector R of
representatives such that R(i, k) is the kth coordinate of ci, the output image
IQ is defined as

where M(i, .) denotes the ith line of matrix M. 
The perceived output image  is then given by

where R(., k) denotes the kth column of matrix R. Note that IQ(i)k =
M(i, .)R(., k). 

The distance between the perceived input and output images may then
be defined as the squared Euclidean distance between perceived colors,

The minimization of the error H(M, R) thus requires us to set both the
matrices M and R. A minimization of H(M, R) using a fixed value of R has
been proposed by several halftoning methods.26,51 However, a joint
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minimization of M and R has been proposed only recently by Puzicha,54 who
uses an alternating minimization scheme: (1) minimize H(M, R) with respect
to M, keeping R fixed; and (2) minimize H(M, R) with respect to R, leaving
M fixed. This two-step strategy is iterated until convergence. Each optimi-
zation step is performed by an annealing method whose convergence is
accelerated by a hierarchical decomposition of the image. 

9.9 Conclusion and perspectives
This chapter has surveyed the current research on color quantization. Pro-
spectively, significant gains in image quality may be obtained through fur-
ther research on processing algorithms and display techniques, and consid-
erable improvements should result from research on color metrics designed
for complex image scenes instead of the CIE metrics, which are based on
large uniform areas. That is, only a few papers take into account the percep-
tual aspects of color within quantization algorithms. Two strategies have
nevertheless been investigated to extend the use of perceptual aspects within
quantization algorithms. 

The first strategy consists of using either a perceptually uniform or a
luminance/chrominance color space. The main characteristic of a uniform
color space is that the perceived difference between two colors is propor-
tional to the Euclidean distance between their representations in the uniform
color space. A number of such spaces (e.g., CIELAB color space) that achieve
this objective to varying degrees have been used in color image quantiza-
tion.29 Most uniform color spaces are also based on a luminance/chromi-
nance separation. Some investigations29,38,54 studied the influence of the color
space on the quality of the quantized images. However, none of these studies
exhibited one color space as having definitive advantages within the quan-
tization framework. 

The second strategy consists of using spatio-color parameters that enable
us either (a) to compensate a posteriori the main visible degradations between
the original image and the quantized one or (b) to minimize a priori the
number of visible degradations that may appear on the quantized image
with regard to the original image. The strategy that minimizes a priori the
spatio-color distortions should obviously be the best one. However, quanti-
zation algorithms using this strategy are generally computationally inten-
sive. Moreover, the design of analytic measures taking into account all visual
distortions of a quantized image is still an open problem. 

With image context playing an important role in human color vision,
the use of a uniform color space is not sufficient to quantify perceptual color
distance. Likewise, the relative positions of different colors in the image
plane greatly influence our color interpretation. To handle this characteristic
of the human visual system, several approaches, such as those described in
Section 9.5, have integrated a color activity criterion into the quantization
scheme. Unfortunately, such approaches remain highly heuristic and are far
from offering a mathematical model for context dependency of colors that
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can be integrated as an objective function to a quantization process.40,74 In
this context, color appearance models appear promising. However, most of
them are fairly complex, and their suitability for color imaging remains to
be comprehensively evaluated.58 The development of simple models, more
adapted to complex image scenes, is a promising challenge for color imaging
applications.62 
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10.1 Introduction

 

The ability to reproduce color images on various imaging media (e.g., com-
puter and television displays, print, or projection screens) is required in an
ever increasing range of contexts. Examples include displaying web content
on a given computer’s display, viewing a DVD on a television screen, print-
ing some holiday pictures, and projecting a business presentation. Further-
more, the images to be reproduced can come from a variety of sources such
as the surrounding environment, image data captured with digital cameras,
conventional photographs, or original artwork in either analog or digital
form. 

As the media mentioned above can, and often do, have different achiev-
able ranges (gamuts) of colors, it is frequently the case that some colors
cannot be made to match the original exactly. For example, the appearance
of some bright green colors that can be displayed on a television in a dark
room cannot be achieved in a printed newspaper, so we can say that the
gamuts of these two media do not match. As a result of such 

 

gamut mis-
matches,

 

 it becomes necessary to alter the original colors to ones that a given
medium is capable of reproducing. How this replacement, which is fre-
quently referred to as 

 

gamut mapping

 

, is to be done so as to end up with a
good reproduction of the original image is the question that this chapter
intends to discuss and for which it intends to provide a framework. While
the above kind of gamut mismatch is also an issue for reproducing single
colors, there is a simple solution to that (i.e., the original color is reproduced
by the closest reproducible color), so we will here focus exclusively on the
gamut mapping of complex images.

Unlike many previous discussions about gamut mapping, which are
surveys of work carried out related to this topic and which present its various
aspects in a general way,

 

41

 

 this chapter intends to approach the subject from
the point of view of what happens to an image when it is reproduced
between a pair with media with different gamuts. The reason for doing this
is to provide the reader with a clear framework for implementing a gamut-
mapping solution. Furthermore, this will be done by frequent reference to
an example cross-media reproduction scenario that is introduced early in
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this chapter, and relevant parts of the theory will be discussed and illustrated.
A further feature of this chapter is that it relies heavily on material covered
in other parts of this book, to which the reader will be directed for details
of transformations that an image needs to undergo both before and after
gamut mapping itself.

Before introducing the example scenario, however, it is necessary to
define some key terms. While the reader will be familiar with many of these,
it is still important to define them as used in this chapter (for more rigorous
definitions, see Reference 46).

The first key term is that of an 

 

image

 

, which here will be understood to
mean a two-dimensional visual stimulus. Associated with this is the concept
of 

 

digital image data, 

 

which are two-dimensional arrays of value multiplets
containing information about an image. In other words, while an image is
something that is by definition visible, digital image data are not. 

Next, it is necessary to introduce the term 

 

color imaging medium, 

 

which
here will stand for a medium for capturing or displaying color information
(e.g., scanners, digital cameras, displays, prints, projections). 

 

Color imaging
devices

 

 are then devices that bring about color reproduction media and can
either be identical to them (e.g., a display is both a device and a medium)
or different from them (e.g., a printer is a device that is used for obtaining
a print — the medium).

Finally, a 

 

color gamut

 

 is the range of a set of colors. Because these can be
represented as locations in a three-dimensional color space, a color gamut
can be represented as a volume in such a space. Given that a gamut is a
volume and that this volume is finite, it also has a surface, and this is referred
to as the 

 

gamut boundary

 

. Examples of sets of colors whose gamuts are of
interest are the colors in an image or the colors that are reproducible within
a given medium.

The example scenario we will work with in this chapter involves an
image on a cathode-ray tube (CRT) display, which has a white point simu-
lating 

 

CIE Standard Illuminant D50

 

 (CIE, 1981). We want to obtain a printed
reproduction of it using a color laser printer (Figure 10.1) whereby this

CRT Display Colour Laser Printer

?

Figure 10.1 Example cross-media color reproduction scenario.
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reproduction will be seen in a viewing cabinet using a D50 simulator light
source. Furthermore, the chromaticities of the display are set to be very close
to the chromaticities of the printed substrate as seen in the viewing cabinet,
and both white points have a luminance of approximately 100 cd/m

 

2

 

. This
is done so as to exclude chromatic adaptation and dynamic response differ-
ences between original and reproduction conditions and thereby focus more
clearly on the gamut mismatch. Note that, while all details of this scenario
are from an actual image displayed on a particular display and reproduced
using a particular printer, the commercial details of the devices involved
will not be revealed, as they are not relevant to this chapter. Many more
aspects of this scenario will be introduced or determined as we progress
through the chapter.

Before looking at the issues related to overcoming the gamut mismatch
between our original and reproduction media, we will consider a number
of preliminary topics in the following section.

 

10.2 Preliminary issues

 

10.2.1 Reproduction intent

 

First, we need to consider the desired properties of the reproduction. This
is the basis for making decisions for all of the various aspects of the repro-
duction system that will exist between the original and reproduction media.
(In Figure 10.1, this is represented by the black box.) The specification of
what properties we want in the reproduction (or what properties it actually
ends up having) is customarily referred to as a 

 

color rendering intent 

 

or 

 

color
reproduction objective, 

 

and there are a number of ways to define it.
Hunt

 

20

 

 introduced the following six color reproduction objectives:

•

 

Spectral reproduction.

 

The spectral power distributions of original
and reproduction should match.

•

 

Exact reproduction.

 

The relative luminances, chromaticities, and ab-
solute luminances should match.

•

 

Colorimetric reproduction.

 

The chromaticities and relative luminanc-
es should match.

•

 

Equivalent reproduction.

 

The chromaticities and relative and absolute
luminances of the original should appear to match the reproduction.

•

 

Corresponding reproduction.

 

The chromaticities and relative lumi-
nances in the reproduction should appear to match the original when
both have the same luminance levels.

•

 

Preferred reproduction.

 

Appearance match should be sacrificed to
achieve a more pleasing result.

Another way of defining reproduction objectives is to specify only two main
types: 

 

accurate reproduction

 

 and 

 

pleasant reproduction

 

.

 

40

 

 Accurate reproduction
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is characterized by the reproduced image appearing as close to the original
image as possible with respect to gamut differences, and pleasant reproduc-
tion aims to ensure that the reproduced image is pleasant in isolation. Note
that this implies that accurate reproduction aims to preserve the pleasantness
level of the original (i.e., unpleasant originals are reproduced as unpleasant
and pleasant originals are reproduced as pleasant), whereas pleasant repro-
duction aims to make the reproduction pleasant regardless of the original’s
pleasantness.

Returning to Hunt’s reproduction objectives, it can be seen that the first
five objectives set targets for the relationship between colors in the original
and the reproduction in colorimetric terms, and they define various degrees
of accurate reproduction. The sixth (preferred) reproduction objective is then
identical to pleasant reproduction in that it sets an objective for the repro-
duction that does not refer to the original and instead specifies that the
reproduction needs to have a certain property in isolation — i.e., to look
pleasant.

Another important set of rendering intents was defined for the purposes
of color management systems by the ICC and consists of the four enumerated
below.

 

21

 

1.

 

Perceptual intent.

 

“The exact gamut mapping of the perceptual in-
tent is vendor specific and involves compromises such as trading off
preservation of contrast in order to preserve detail throughout the
tonal range. It is useful for general reproduction of images, particu-
larly pictorial or photographic-type images.”

2.

 

Saturation intent.

 

“The exact gamut mapping of the saturation intent
is vendor specific and involves compromises such as trading off
preservation of hue in order to preserve the vividness of pure colors.
It is useful for images which contain objects such as charts or dia-
grams.”

Next, there are two colorimetric intents that “preserve the relationships
between in-gamut colors at the expense of out-of-gamut colors. Mapping of
out-of-gamut colors is not specified but should be consistent with the
intended use of the transform.”

3.

 

Media-relative colorimetric intent.

 

“This intent rescales the in-gamut,
chromatically adapted tristimulus values such that the white point
of the actual medium is mapped to the white point of the reference
medium (for either input or output). It is useful for colors that have
already been mapped to a medium with a smaller gamut than the
reference medium (and therefore need no further compression).”

4.

 

ICC-absolute colorimetric intent.

 

“For this intent, the chromatically
adapted tristimulus values of the in-gamut colors are unchanged. It
is useful for spot colors and when simulating one medium on another
(proofing). Note that this definition of ICC-absolute colorimetry is
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actually called ‘relative colorimetry’ in CIE terminology, since the
data has been normalized relative to the illuminant.”

Again, the last two of these rendering intents specify variants of accurate
reproduction, whereas the first two are forms of pleasant reproduction. Fur-
thermore, it is possible to think of cases where a hybrid combination of
accurate and pleasant reproduction is required. For example, an image show-
ing both objects having corporate identity colors and people might be repro-
duced so that accuracy is the aim for the former and pleasantness for the latter.

In the context of our scenario, we too need to decide the reproduction
objective; we will try to achieve 

 

accurate reproduction

 

. The reason is that
accurate reproduction has been studied extensively, and there is relatively
little recent research that looks at pleasant color reproduction, which is a
significantly more complex task than accurate reproduction. In a sense, pleas-
ant color reproduction should be considered only after accuracy can be
achieved.

 

10.2.2 Original and reproduction data and intermediate color spaces

 

Having decided the rendering intent, we can now proceed to specifying a
color reproduction system that can be used for pursuing it. This system will
have the original image’s data as its input, and it should produce data for the
reproduction medium that, when rendered on it, will result in an image that
satisfies the rendering intent. In our scenario, the reproduction should be as
close to the original’s appearance as possible.

Before looking at how to transform image data, it is necessary to look at
what will be transformed. We need to consider the data we have for the original
image and the data we need for the reproduction medium. In addition, as both
of these descriptions of the image are medium specific (or device dependent),
we also need to decide what intermediate color space to use. An intermediate
color space is used for the reasons discussed in Chapter 4 (i.e., to reduce the
number of transformations that must be computed for communicating images
between a number of media) and because of the requirements of gamut map-
ping in terms of the space in which it is to be preformed.

 

10.2.2.1 Original data

 

In our scenario, the original image is displayed on a CRT display and as
such will be available in a digital file containing red, green, and blue (RGB)
values for each picture element (pixel). Sending these digital image data to
the display results in an image. Because we intend to reproduce the appear-
ance of this image, it is necessary to quantify it. This can be done by first
using a characterization model to compute tristimulus values for each pixel.
Then, we must take into account the influence of viewing conditions so as
to predict the appearance attributes (e.g., lightness, chroma, and hue) corre-
sponding to the tristimulus values of each pixel. For this, a color appearance
model is used.
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10.2.2.2 Intermediate color space

 

The obvious choice of intermediate color space is one based on a color
appearance model that takes viewing conditions into account. However, it
is necessary to ensure that the intermediate color space used in a color
reproduction system is suitable for gamut mapping, and this might require
further transformations of image data before gamut mapping is carried out.
Most gamut mapping algorithms (GMAs) intend to preserve some appear-
ance attributes of an original color while changing others (e.g., preserve hue
and adjust lightness and chroma so as to move an original color into the
reproduction gamut). It is therefore important to have a color space whose
dimensions accurately represent the appearance attributes with which a
given GMA intends to work. In this context, we need to discuss two impor-
tant issues. 

1. What appearance attributes should a GMA use?
2. What color space predicts those attributes most accurately?

In terms of the first issue, there are two options: first, 

 

lightness, chroma,

 

 and

 

hue,

 

 and, second, 

 

brightness, colorfulness,

 

 and 

 

hue

 

 (see Chapter 3). Which of
these to use will depend on the specifics of the rendering intent, which in
turn shows that rendering intents need to be specified more narrowly than
was done in Section 10.2.1. From this point of view, it is important to specify
to what extent the chromaticity and absolute intensity of the light source
under which the original is seen should be taken into account. If appearance
is to be reproduced in an absolute way, then brightness and colorfulness are
used; if the original’s appearance relative to the adopted white is of impor-
tance, then lightness and chroma are used. In most cases, the latter is chosen,
which will also be the case for our scenario. An example of where the former
could be appropriate is art reproduction, where one might want to maintain
the appearance of a painting as seen in its original surroundings, including
the effect of the original viewing conditions’ intensity and possible color cast.

The second issue relating to color space choice needs to be considered
very carefully. Because most GMAs intend to work with appearance
attributes, and because this can be done only in terms of a color space, it is
important that the values in a color space accurately predict appearance
attributes. If a given algorithm intends to maintain hue, then this is imple-
mented by maintaining the hue predictor of a given color space; if this hue
predictor is not accurate; then the reproduction will have unwanted prop-
erties. Imagine a highly chromatic blue color in the original and an algorithm
that intends only to reduce its chroma and leave lightness and hue
unchanged. To do this, it is necessary to have a color space whose appearance
predictors are accurate, otherwise, changing the chroma predictor’s value
might also result in changes of other color appearance attributes (even
though those attributes predictors’ values would be left unmodified). If such
a transformation is done in the CIELAB color space, then the resulting color’s
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hue would change from blue to purple, even though CIELAB hue angle
would be maintained. 

Note therefore that this limitation of color spaces (that they predict
appearance attributes imperfectly), and the fact that GMAs work in terms
of their dimensions, means that the algorithms described in subsequent parts
of this chapter can deal only with the predictors and not with the actual
appearance attributes. Hence, an algorithm that intends to preserve hue in
effect preserves only the hue predictor of the color space in which it is
implemented (e.g., CIELAB’s 

 

h*

 

ab

 

 or CIECAM97s’ 

 

h

 

).
As a result of this situation, a number of recent studies have evaluated

the degree to which various color spaces (in particular, CIELAB

 

7

 

 and
CIECAM97s

 

29

 

) predict given color appearance attributes. The deficiencies of
hue predictors have been described by Hung and Berns

 

19

 

 and Ebner and
Fairchild,

 

11

 

 and these studies show that none of the current color spaces
predicts hue well for all parts of color space. A number of papers propose
solutions to these imperfections of existing color spaces. Ebner and Fair-
child,

 

12

 

 for example, describe the IPT color space developed so as to improve
hue uniformity, Marcu

 

36

 

 describes the mLAB space developed for the same
reason, McCann

 

37

 

 discusses additional general shortcomings of CIELAB, and
Zeng

 

60

 

 proposes a gamut mapping solution that uses different color spaces
for different parts of color space.

Related to the decision regarding the intermediate color space in which
gamut mapping is performed, we need to choose the reference (or adapted)
white that is used when calculating its coordinates. It is important to ensure
that this choice actually reflects the viewing conditions under which original
and reproduction are to be viewed. If they are viewed apart from each other,
then their respective medium white points (i.e., the brightest achromatic
colors achievable on their media) are the reference whites; alternatively, if
they are viewed simultaneously, then the medium white with the higher
brightness (or luminance) should be the reference white for both media. A
third option is the use of the perfect diffuser as the reference white, which
is appropriate if the original and reproduction are to be viewed in an envi-
ronment that includes other content.

Having decided what intermediate color space to use, what the reference
white is, and what appearance attributes to use for the gamut mapping, a
GMA can be applied, and this results in such colors being assigned to all
pixels that can be achieved in the reproduction medium.

 

10.2.2.3 Reproduction data

 

Once color appearance space coordinates are available for the reproduction
image’s pixels, it is necessary to compute device-dependent data for the
reproduction medium. In the case of a print medium, this can either be values
for each of the colorants it uses (i.e., in most cases, cyan, magenta, yellow,
and black, CMYK) or RGB values (if the printer cannot be controlled directly
in terms of its own native data). Again, this transformation consists first of
an inverse color appearance or color space transform that provides the
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tristimulus values for the pixels, and second of an inverse medium charac-
terization model that computes medium-specific data to produce the speci-
fied tristimulus values (see Chapter 5). To summarize the issues discussed
in this section, see Figure 10.2, which shows the data discussed here as well
as the five-stage transform

 

31

 

 that it implies.
For our example scenario, we will be using the CIECAM97s color space’s

lightness, chroma, and hue predictors as the intermediate color space and
the medium whites as the adapted whites.

 

10.3 Color gamuts

 

Now that we have covered the preliminary issues of what the reproduction
should be like and what color space will be used, we can turn to under-
standing the gamuts that are involved in cross-media color reproduction. As
defined previously, a color gamut is the range of a set of colors. Here, we
discuss the implications of this definition and introduce methods for describ-
ing and visualizing color gamuts. Although the definition of a color gamut
is very simple, its implications are often overlooked. Some of them

 

50

 

 will
therefore be made explicit here.

 

10.3.1 Implications of color gamut definition

 

The phenomenon of color requires an 

 

observer

 

, a 

 

stimulus,

 

 and 

 

viewing con-
ditions.

 

 Because this is the case for individual colors, it necessarily is also the
case for their ranges — color gamuts. Consequently, it is essential to specify
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Figure 10.2 Original and reproduction data and the intermediate color space.
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the details of all three of these components when talking about a color, and
hence also when talking about a color gamut. Therefore, it is also meaning-
less to talk about the color gamut of a set of stimuli in general (e.g., the
gamut of a given CRT). Such a set has a color gamut only when seen by an
observer under some viewing conditions. 

For example, discussing the color gamut of a printed image is meaning-
less, as it could assume a number of different forms that are subject to
viewing conditions and observers; a printed image has a set of possible color
gamuts rather than a single one. Looking at such an image in the dark gives
a zero-volume gamut (to use an extreme example); different levels of illu-
mination result in different gamut volumes. Illumination chromaticity
changes gamut shape as well as volume, and viewing distance and flare in
the environment make a difference, too. Hence, the question, “What is the
gamut of this print?,” cannot be answered and should instead be rephrased
as, “What is the gamut of this print under viewing conditions 

 

X 

 

for observer

 

Y

 

?” 

 

10.3.2 Describing color gamut boundaries

 

Given a set of stimuli viewed by a given observer under a given set of
viewing conditions, we can describe their color gamut. The outcome of this
will be a 

 

gamut boundary descriptor 

 

(GBD). The calculation of a GBD will
consist of analyzing the set of colors it is to describe and of determining their
range. 

If, for example, we only wanted to describe the gamut boundaries of
grayscale images and grayscale imaging media, this problem would be one
dimension and have a single solution; i.e., the GBD would consist of the largest
and smallest lightnesses either present in an image or achievable by a medium.
However, as we are dealing with chromatic as well as achromatic data, the
problem of gamut boundary description is a three-dimensional one, and a
number of approaches can be used. Before we discuss some methods for
gamut boundary description, let us first take a closer look at some sets of
colors whose gamuts we might want to compute.

 

10.3.2.1 Colors of image and media in example scenario

 

In terms of our example scenario, we need to describe the gamuts of the
original image and of the reproduction medium. For some algorithms, we
also need to know the gamut of the original medium. To calculate the gamuts
of these sets of colors, we can either analyze all of them or deal only with
smaller samples. In the original image, there are in excess of 60,000 distinct
colors. This number was obtained by calculating the three-dimensional color
histogram of the image in CIECAM97s, with a bin size of one unit in each
dimension, and counting the number of bins that had pixel frequencies
greater than zero. For the two media, on the other hand, the number of colors
resulting from all the possible data that can be sent to them is of the order
of magnitude of hundreds of thousands. Note that we are not talking about
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the number of RGB combinations (of which there are 2

 

24 

 

@ 

 

16.8

 

 ¥ 

 

10

 

6

 

 for the
media when controlled in terms of 8 bit/channel RGB) but about the number
of distinguishable colors as predicted by some color appearance model. 

Given this volume of data, it is useful to take a smaller sample for the
purposes of our first view of the gamuts involved here, even though we
might want to base our actual gamut boundary calculations on an analysis
of all the colors of the image and the media. The sampling that was used
for the gamut visualization shown in Figures 10.3 through 10.5 was as
follows.

The medium dependent coordinates (i.e., RGB) for the two media were
sampled at 10 intervals per channel, resulting in 1000 RGB triplets. For these,
CIECAM97s coordinates were calculated by first obtaining XYZ values using
medium characterization models and then calculating CIECAM97s lightness
(

 

J

 

), chroma (

 

C

 

), and hue (

 

h

 

) predictors for an average surround (a background
that had 50% luminance compared to the adapted white’s luminance under
test conditions). It was further assumed that the original and reproduction
media are seen separately, and the adapted white for each medium was
therefore that medium’s white point. Figures 10.3 and 10.4 show the result
of this sampling. An alternative to this kind of sampling strategy (i.e., one
that takes samples from the entire volume of the medium’s medium-depen-
dent coordinates) is to take samples only from the surface of the gamut in
medium-dependent terms. For a given number of samples, this will give a
finer sampling of the gamut’s surface. A necessary condition for this to result

CRT Display

Figure 10.3 (See color insert following page 430) One thousand samples taken from
the CRT’s gamut.
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Colour Laser Printer

Figure 10.4 (See color insert) One thousand samples taken from the color laser
print’s gamut.

Figure 10.5 (See color insert) One thousand ninety-one samples taken from the
original image’s gamut.
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in a good representation of the gamut boundary in color appearance space
is a monotonic relationship between medium-dependent and color appear-
ance representations.

Note that Figures 10.3 through 10.5 contain views of the colors (shown
as spheres that have colors corresponding to their centers’ coordinates in
color space) sampled from the image and media. Furthermore, each of the
five views shown in each figure is the result of what is seen when the various
axes of the CIECAM97s JCh color space are orthogonal to what is seen. In
fact, the axes shown in red and green are the positive and negative parts,
respectively, of the 

 

a

 

 axis. Those shown in yellow and blue are the positive
and negative parts of the  b  axis. The 

 

J

 

 axis is shown in gray, and each of
these axes (or, more precisely, pairs of half-axes for 

 

a

 

 and 

 

b

 

) is 100 units in
length. Note also that  a 

 

and 

 

b 

 

are not defined in the CIECAM97s model, and
they are simply the orthogonal equivalents corresponding to 

 

C 

 

and 

 

h

 

. They
are calculated as 

 

a 

 

= 

 

C

 

*cos(

 

h ) and 

 

b  = 

 

C *sin(h). Whenever there is mention
of the Jab space in this chapter, what is meant is this orthogonal equivalent
of the CIECAM97s JCh space.

The sampling of the images’ colors was done in terms of their Jab coor-
dinates, and the following method was used: 

1. Choose the first color in the image as one of the samples. 
2. For each subsequent color, check whether it is closer to any of the

samples than a given threshold (6 Jab units was used here); if it is
not, add it to the set of chosen samples.

3. Using this method, 1091 colors were sampled (Figure 10.5) and, as
follows from the sampling technique used, no color in the image is
farther from a sampled color than 6 Jab units.

10.3.2.2 Methods for describing color gamut boundaries
As mentioned previously, the gamuts of sets of three dimensional color
coordinates can be described in a number of ways, and these can be generic,
medium specific, or image specific. 

10.3.2.2.1 Medium-specific methods. To begin with, medium-specific
methods are either based on extracting a gamut boundary descriptor (GBD)
directly from a specific medium characterization model or they exploit some
other aspect of the fact that the set of colors whose gamut is to be described
is all the colors a given medium can achieve. Examples of the first type of
medium-specific gamut boundary description algorithms are the method
developed by Engeldrum13 for calculating GBDs from the Kubelka–Munk
equations and Mahy’s method35 for doing this from the Neugebauer equa-
tions. The second type of approach includes the solution by Inui22 based on
using partial differential equations to find the surface in color space beyond
which changes to the inputs of a characterization model no longer result in
three-dimensional changes in a color appearance space. Another example of
this kind of approach is Herzog’s gamulyt method,15 which exploits the fact
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that the gamuts of most media have the shape of a distorted cube — the
vertices being black, white, red, green, blue, cyan, magenta, and yellow
(Figure 10.6a). However, a feature of all these methods is that they are only
suitable for calculating the gamuts of very specific sets of colors, and none
of them can be used for calculating image gamut boundaries. That is, these
approaches make assumptions about the set of colors whose gamut they can
describe that are not applicable to the colors of images; e.g., some of them
expect the set to be convex or to have a cube-like shape.

10.3.2.2.2 Generic methods. The development of generic GBD methods
was aimed at overcoming the previously described inherent limitation of
medium-specific solutions. Such methods include Kress and Stevens’s
proposal61 to use convex hulls for the description of gamut boundaries and
Cholewo and Love’s suggestion62 to use alpha-spheres for this purpose.
Braun and Fairchild2 then developed the mountain range method, which uses
gridding and interpolation to arrive at a data structure consisting of a uni-
form grid in terms of lightness and hue and stores the gamut’s most extreme
chroma values for each of the grid points (Figure 10.6b). Finally, the segment
maxima method45 is based on dividing color space evenly in terms of spher-
ical angles and storing the point with the largest radius for each segment.
As this is the method that will be used in our scenario, it will be introduced
in detail next.

Using the segment maxima method, the gamut boundary of a color
reproduction medium (or an image from it) is described by a matrix con-
taining the most extreme colors for each segment of color space. This seg-
mentation can be carried out either in terms of J, C, and h or spherical
coordinates whereby spherical coordinates can be calculated from orthogo-
nal Jab coordinates using the following formulæ: 

r = [(J – JE)2 + (a – aE)2 + (b – bE)2]1/2 (10.1)

(a) (b)

Figure 10.6 Gamut boundary calculation methods: (a) gamulyt cube and (b) moun-
tain range grid.
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α = tan–1((b – bE)/(a – aE)) (10.2)

θ = tan–1[(J – JE)/((a – aE)2 + (b – bE)2)1/2] (10.3)

E is defined as the center of the gamut to be described and can be obtained
by averaging the coordinates of the points that will be used for obtaining
the GBD (alternatively, the point having Jab coordinates of [50, 0, 0] can be
used in most cases, as it is a good approximation of the center from the point
of view of this method), r is the distance of a color from the center, α is an
angle in the ab plane having a range of 360°, and θ is the angle in a plane of
constant α having a range of 180° (Figure 10.7a). Note that the coordinates
of E can be different for different gamuts and that, even though the method
is described here in terms of CIECAM97s, it can easily be adapted for use
in other color spaces.

The GBD matrix is calculated by first dividing color space into n × n
segments (e.g., n = 16 was used in a previous study43 and will also be used
for the example scenario here) according to either α and θ (Figure 10.7b) or
J and h. Hence, the data are stored in each segment either in terms of α, θ,
and r, or h, J, and C, respectively. The number of segments to be chosen
depends on the accuracy needed, where accuracy increases with n given that
a sufficient number of samples is available from the gamut to be described.
If only smaller numbers of samples are available, increasing n will not
increase accuracy and can in fact result in artefacts. To calculate a GBD for
a set of colors (either sampled from an imaging medium or an image) in
terms of spherical angle segmentation, the following procedure can be used:

1. Set up an empty GBD.
2. Transform each of the set of Jab values from which we calculate a

GBD into spherical coordinates using Equations 10.1 through 10.3.

E a

b

J

r

α
θ

b

a

E

J

(a) (b)

Figure 10.7 Overview of segment maxima GBD in CIECAM97s: (a) spherical coor-
dinates and (b) sphere segmented in terms of α and θ (only 6 × 6 segments — of
which one is highlighted — are shown for the sake of clarity).
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3. For each of the spherical coordinates from Step 2 do the following:
a. If the segment is empty, store the current color.
b. Otherwise, if the radius of the current color is larger than the

radius of the color stored for the segment, then store the current
color for that segment. Note that it is not only r that is stored for
a given segment but spherical angles as well.

c. Otherwise, ignore the current color.
4. Check whether any segment is left empty. If so, interpolate a value

for it based on neighboring occupied segments (this is very rare for
color imaging media but can often be the case when image gamuts
are calculated).

An important advantage of this method is that the GBD points obtained
using it are actual colors from the gamut boundary of the set of samples
used, and inaccuracies in the descriptor are due only to the number of
segments chosen. Note that the segment maxima method will be used
throughout the remainder of this chapter and that Figure 10.8 shows the
gamut boundaries calculated using it for the media in the example scenario.

Given a segment maxima GBD, it is also straightforward to calculate the
volume of a color gamut, and this can be done by summing up the volumes
of all the distinct tetrahedra having E and sets of three neighboring points
from the GBD as their vertices. For three points from a GBD to be neighbors,
they need to be stored in members of the GBD matrix that are next to each
other horizontally, vertically, or diagonally (e.g., points with GBD matrix

(a) (b)

Figure 10.8 (See color insert) Gamuts of (a) CRT and (b) color laser print from
example scenario.
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indices [i, j], [i + 1,j], [i, j + 1] are a valid choice, but [i – 1, j], [i, j], [i + 1, j]
are not, as [i – 1, j] and [i + 1, j] are not neighbors). Also bear in mind that
α is circular and that, when data is organized such that the columns relate
to α and the rows to θ, the last column of the matrix is a neighbor of the
first column.

10.3.2.2.3 Image-specific issues. As far as the description of image
gamut boundaries is concerned, a number of additional concerns apply
compared to when medium gamuts are considered. While the calculation of
the gamut of all the colors in an image is a straightforward task, and one
that can be achieved using the generic methods discussed above, it is another
matter altogether to calculate the perceived gamut of an image — in other
words, a gamut that describes the range of colors that an image is perceived
to have rather than simply the gamut of all of its pixels.48 This distinction
needs to be made, as images can contain pixels whose individual colors will
either not be perceived (e.g., if they are below the human visual system’s
spatial acuity threshold) or will not fully contribute to the image’s perceived
gamut (e.g., if they are very infrequent in an image). Imagine, for example,
a large mid-gray image that contains one pixel each with the following colors
from a medium’s gamut boundary: black, white, red, green, and blue. Look-
ing at the image, these pixels might not even be distinguishable from the
gray ones, but computing all of the image pixels’ gamut would suggest that
it is as large as that of the medium on which it is shown.

While there are no established methods for reliably determining the
perceived gamuts of images, a number of approaches have been suggested
by Morovic and Sun,48 and they all consist of excluding some of an image’s
pixels when calculating that image’s gamut. The first of these is to exclude
colors in an image that occur only rarely, i.e., whose frequency is below a
certain threshold. Pixels in high spatial frequency areas should also be
excluded, as they play a lesser part in how the image’s color range is per-
ceived. However, further research is needed for developing a robust and
experimentally justified image gamut description method.

10.3.2.3 Visualizing gamut boundaries
An important part of developing and implementing a cross-media color
reproduction system (and therefore a gamut mapping solution) is to visualize
the gamuts as well as individual colors used for testing it. While this can be
done by producing plots of the data as projected onto or intersected by
planes, it is often more useful to have a way of visualizing the data in a
manner that allows for easy interaction with it. To do this, a very simple
solution is to generate virtual reality mark-up language (VRML) models;
indeed, that is how most of the gamut plots were obtained for this chapter.
While VRML is a complex and extensive language, the visualization of
gamuts and colors in color space requires only relatively few shape types to
be used. Furthermore, VRML files are nothing but text files, and they can be
viewed using freely available plug-ins for web browsers. 
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To generate VRML files containing some simple shapes all that is needed
is to have “#VRML V2.0 utf8” as the first line of a text file, after which, for
example, the box and sphere shapes can be used. For example, to have a box
with its center at [XYZ] = [50, 0, 0], [width, depth, height] = [100, 2, 2] and
[R, G, B] = [100%, 0%, 0%], the following text needs to appear in the VRML file:

Transform {
translation 50 0 0
children [

Shape{
appearance Appearance {material Material {diffuseColor 1 0 0}}
geometry Box {size 100 2 2}

}
]

}

A sphere with its center at [XYZ]=[0, 100, 0], a radius of 2 and [R, G, B] =
[0%, 100%, 0%] can then be had by including the following in the VRML file:

Transform {
translation 0 100 0
children [

Shape{
appearance Appearance {material Material {diffuseColor 0 1 0}}
geometry Sphere {radius 2}

}
]

}

Having more shapes present in a given scene is accomplished simply by
adding more of the above kind of code to the VRML file. In fact, Figures
10.3 through 10.5 were generated using only the box and sphere shapes in
VRML whereby the centers of the spheres there had [X, Y, Z] = [a, b, J]
coordinates and colors calculated from the Jab values using the inverse color
appearance model, and then a CRT’s characterization model that resulted in
the RGB values specified in the diffuseColor part of the code. To obtain colored
solids and meshes, the IndexedFaceSet and IndexedLineSet VRML shapes,
respectively, can be used. Details of how to do this can be found in any
textbook on VRML or the language’s specification.

Before we can proceed to the discussion of gamut mapping itself, we
still need to cover one more issue related to gamuts themselves: methods
for calculating where a given line intersects a gamut boundary.

10.3.3 Line gamut boundary algorithms

Given gamut boundary descriptors of the original and reproduction, a
gamut mapping algorithm will try to make changes to the original image
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so as to ensure that all its colors end up inside the reproduction gamut. To
do this, algorithms often intend to change colors along straight lines in
color space on the basis of where the original color and the original and
reproduction gamut boundaries are on such a line. Therefore, it is necessary
to devise some methods for determining where a given gamut boundary
intersects a given line. Such intersections are referred to as line gamut bound-
aries (LGBs).

In some cases, GBD algorithms have implicit methods for calculating
LGBs along lines of certain properties. For example, Braun and Fairchild’s
mountain range method2 allows for an easy calculation of LGBs for lines of
constant hue and lightness, as do Herzog’s gamulyt method15 and the segment
maxima method45 when using cylindrical segmentation (i.e., segmentation in
lightness and hue).

To obtain the intersection of a gamut boundary and other lines, it is
possible to use some iterative interpolation techniques with the above meth-
ods implicit in GBD algorithms, or the flexible sequential line gamut boundary
(FSLGB) algorithm introduced by Morovic and Luo45 can be used to ana-
lytically obtain the intersection of any line of constant hue angle and a
gamut boundary described using the segment maxima method. As this is the
method that will be used in our example scenario, it will be described in
detail next.

As FSLGB is intended for lines of constant hue angle, it first finds the
two-dimensional gamut boundary at the hue angle in which the mapping
is to be carried out (Figure 10.9). For a given color (C), this is done in the
following way:

1. Calculate equation of constant hue angle plane (ϕ) having hue angle
of C (αC).

2. For each θ level in the n × n segment maxima GBD, find the pair of
neighboring points from the GBD matrix of which one has a larger
and one a smaller hue angle than αC.

3. For each pair, calculate the intersection of the line connecting the two
GBD points with ϕ.

4. In addition to these n points, calculate the points on the J axis where
the surface defined by the GBD matrix intersects it. 

For the top of the lightness axis, this can be done by considering only
the n GBD points from segments having the largest θ values. Triangles are
then formed between the point with the largest J and neighboring pairs of
the other points. The intersection of each of these triangles and the lightness
axis is calculated, and if it is within the triangle, then it is the LGB point. An
analogous procedure is used for finding the intersection of the gamut bound-
ary with the bottom of the lightness axis.

The resulting set of n + 2 points form a polygon (Figure 10.9c) describing
the gamut boundary for a given hue angle. The intersection of a given line
(l) and this polygon can then be found using the following procedure:
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1. For each pair of neighboring points in the polygon, calculate the
equation of the line determined by them.

2. For each of these 

 

n 

 

+ 2 lines, calculate their intersection with 

 

l

 

 and,
if it lies between the two points from the polygon, then it is an LGB
point.

Depending on the shape of the gamut boundary, this procedure can result
in varying numbers of LGB points for a given line, all of which constitute
the LGB along that given line. It is up to the gamut mapping algorithm to
deal with cases in which a larger number of LGB points than expected is
calculated. Normally, the algorithm results in two points per line — the
maximum and minimum along it (e.g., points b

 

1

 

 and b

 

2

 

 in Figure 10.9c).
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Figure 10.9 Overview of FSLGB algorithm in CIECAM97s: (a, b) gamut boundary
of CRT and a plane of constant hue angle j, and (c) their intersection and the
intersection of the resulting two-dimensional boundary polygon with a pair of lines.
Source: J. Morovic, and Luo, M. R., Color Res. and Appl., 25, 394-401, 2000.
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10.3.4 The magnitude of gamut mismatch

Now that we have a means of calculating the gamut boundaries of sets of
colors, it is useful to get a clearer idea of how big gamut differences can be
between various media, and of how serious they are in our example scenario. 

10.3.4.1 Imaging medium gamuts
To understand the first issue better, Figure 10.10 shows the color gamuts of
a range of media when seen in isolation under a number of levels of ambient
illumination, and Figure 10.11 shows their gamut volumes. Note that the
change of ambient illumination also affects surround conditions for self-
luminous media and thereby also alters the state of a viewer’s adaptation.

The gamuts shown in Figure 10.10 and 10.11 are those of a set of media
viewed under a range of levels of ambient illumination whereby these are
designated by the luminance of a near-perfect diffuser as measured under
those conditions. The observer from whose point of view this is computed
is the CIE standard colorimetric observer,7 and the color space is the Jab space
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of the CAM97s2 model. For details of this how these data were obtained,
see Morovic et al.50 and also note that this color appearance model is virtually
the same as CIECAM97s, so these figures can be directly compared with the
other gamut plots of this chapter. Furthermore, the first row of plots in Figure
10.10 are projections of the gamuts onto the ab plane, and the second row of
plots are the intersections of the plane having a constant b value of zero with
the gamut boundary, obtained using the FSLGB method discussed above.
Overall, it can be seen from these gamuts that they vary dramatically and
that gamut mapping is necessary for reproducing images between any pair
of them.

10.3.4.2 Gamut mismatch in example scenario
The differences between the original and reproduction medium gamuts of
our scenario are readily visible from Figure 10.8. Figure 10.12 shows the
difference between the original image and reproduction medium gamuts
more clearly. Note that the original medium (the CRT display) is seen in a
dark room alongside the printed reproduction medium, which is viewed in
a viewing booth that has a level of illumination such that the luminances of
the white points of the two media are similar.

Figure 10.12 Gamuts of the original image (mesh) and the reproduction medium
(solid color).
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It can be seen from Figure 10.12 that significant parts of the original
image’s gamut are in parts of color space that are unachievable by the
reproduction medium. It is also useful to understand what proportion of the
image’s pixels are affected by the gamut mismatch, and, in the case of our
scenario, it is 78.8% (Figure 10.13). In other words, more than three quarters
of the original image’s pixels have appearances that cannot be reproduced
by the color laser printer in our scenario. The use of a GMA is therefore
essential.

This extent of gamut mismatch was determined using the GBD and LGB
methods discussed above, by having the GBD for the reproduction medium
and then calculating LGBs for lines determined by a center E with Jab values
of [50, 0, 0] and each of the image’s pixels in turn. A pixel was then judged
to be out of gamut if it was farther from E than the reproduction gamut
boundary along the line determined by that pixel.

10.4 Gamut mapping algorithms
Now that we have (a) covered the preliminary issues of rendering intent and
gamut mapping color spaces, (b) had a careful look at calculating the gamuts
of images as well as imaging media, and (c) obtained a clear idea of how
serious gamut mismatches can be, we can finally proceed to discussing
gamut mapping itself. The reason why gamut mapping can be done only
after these issues (and the issues of medium/device characterization mod-
eling and color appearance modeling, which are covered elsewhere) are
satisfactorily resolved, is because it is at the heart of the cross-media color
reproduction chain and is impossible to look at in isolation. This means both
that significant effort needs to be invested in solving other tasks before one
can turn to gamut mapping as well as that gamut mapping cannot be eval-
uated on its own—it is invariably part of a larger system.

Figure 10.13 Out-of-gamut pixels in original image (shown as gray).
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This is also why the example scenario was introduced in this chapter,
as it will allow a more concrete look at various gamut mapping solutions.
However, it also means that the observations made here about their perfor-
mance might not apply in other scenarios. This is because, whenever our
original image is reproduced between other media and/or when other
images are used, the context in which a gamut mapping algorithm (GMA)
is executed changes. Because of this, the present section will include both a
detailed account of how a number of algorithms perform in our scenario
and a more general discussion of what might happen under other conditions.

Before proceeding, a more rigorous definition of gamut mapping will
be provided. In this chapter, gamut mapping will be understood as “a
method for assigning colors from the reproduction medium to colors from
the original medium or image (i.e., a mapping in color space).”46 In other
words, after an image has passed through the medium characterization and
appearance modeling stages, and color space values are available for each
of its pixels, a GMA is executed so as to ensure that each of the color space
values in an original image end up being achievable in the reproduction
medium; i.e., that they end up inside its gamut. This means that gamut
mapping algorithms have the color space values representing an original
image as the inputs, and they result in corresponding color space coordinates
for the reproduction image that are inside the reproduction medium’s gamut
boundary. 

The remainder of this chapter describes how to get from these inputs to
outputs that satisfy the chosen rendering intent. In line with the vast majority
of existing research, the algorithms discussed in the following sections trans-
form image pixels on a one-by-one basis, whereby the transformation
depends only on the pixel’s color. Furthermore, GMAs will be assessed from
the point of view of the accurate rendering intent. Departures from this
general trend will be dealt with later. Notice also that the intent is to present
some basic algorithms in sufficient detail for the reader to be able to imple-
ment them and to describe more advanced approaches only briefly. The
reader can then follow up in the references relating to these algorithms to
obtain more details.

10.4.1 Gamut clipping

The most obvious and simplest kind of approach is to modify only those
colors in an original image that are outside the reproduction gamut and to
leave those that are already inside it untouched. This type of approach is
referred to as gamut clipping, and there are a number of ways of doing it.

10.4.1.1 Minimum ∆E clipping algorithms
First, one can perform this mapping so that each original color is transformed
to that color in the reproduction gamut that has the smallest color difference
from it. This kind of gamut clipping is referred to as minimum ∆E, as it
minimizes the color-by-color differences between original and reproduction
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images with the intention of accurately reproducing the original. As this
algorithm intends to minimize color differences, there are a number of fla-
vours of it for all the various equations that can be used for quantifying color
difference. The simplest of these are Euclidean distance metrics computed
in various color spaces (e.g., 
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 clipping that keeps the hue predictors of original colors unchanged).
Weighted color difference formulae give different weights to differences in
the individual dimensions of a color space.
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image’s pixels is input to it and treated in the following way: 

• The pixel’s color is evaluated in terms of whether it is inside the
reproduction gamut, for example, using the technique described in
Section 10.3.4.2.
a. If it is inside the reproduction gamut, then the output of the GMA
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10.4.1.1.1 Minimum Euclidean distance gamut clipping. Using this ap-
proach, an out-of-gamut color is replaced by the color that has the smallest
Euclidean distance to it on the reproduction gamut boundary. One way of
implementing this algorithm, if the segment maxima GBD method is used,
is to do the following for each given color:49

1. For all the triangles whose vertices are neighboring points from the
GBD matrix (for a definition of neighboring points, see Section
10.3.2.2.2), do the following:
a. Calculate the plane determined by the triangle and also calculate

the normal of the plane. 
b. Calculate the intersection of the plane and the line determined by

the plane’s normal and the given point.
c. If the intersection is inside the triangle, consider it as a candidate

output for the algorithm.

2. For all the pairs of GBD points that are from either horizontally or
vertically neighboring segments, do the following:
a. Calculate the line determined by the pair of points, and also

calculate a pair of vectors specifying a plane orthogonal to the
line.

b. Calculate the intersection of the line and the plane determined by
the vectors from 2a and the given color.

c. If the intersection is from the line segment determined by the pair
of GBD points, consider it as a candidate output.

3. Calculate the Euclidean distance between the given color and all the
GBD points.

4. From among the candidates from 1c and 2c and all the points con-
sidered in 3, choose the one that has the smallest Euclidean distance
from the given color.

Looking at the above algorithm, it can be seen that various sets of original
colors will be mapped onto single reproduction colors. More specifically, a
given reproduction color from step 1 would be chosen for all the original
colors that are along the line that is orthogonal to the plane of the triangle
in which that reproduction color is located. Hence, a one-dimensional region
of color space is mapped onto a zero-dimensional one. Reproduction color
candidates considered in step 2 each correspond to two-dimensional regions
of the original gamut, and three-dimensional parts of the original gamut are
mapped onto the colors from step 3. What also follows from this is that
different parts of color space will be subjected to different degrees of loss of
variation (Figure 10.14).

To see the effect of this algorithm when applied in CIECAM97s or
CIELAB, see Figure 10.15. Before making any comments about the perfor-
mance of the algorithm, it is important to be aware of the fact that it is by
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definition impossible to maintain all the properties of the original image in
the reproduction medium precisely, due to the more limited range of colors
available there. Hence, for example, the lightness range will necessarily be
more limited, as will the range of chromas and the maximum possible
contrast. As a result, it is also impossible to judge whether a GMA has or
has not overcome gamut differences well, as the weaknesses in the repro-
duction could be due either to the GMA’s inadequacy or to the limits of the
reproduction medium. Making a judgment about the GMA becomes easier
when reproductions using other algorithms are available, as it will then be
possible to see whether a particular problem is exhibited by only one of the
GMA’s reproductions (and hence is a limitation of that GMA) or by all
reproductions (in which case it could, but does not have to, be due to the
limitations of the medium).

Given the above caveats, we can now turn to the gamut-clipped repro-
duction (Figure 10.15) and see what its characteristics are. What can be seen
here is that detail in some parts of the original is not preserved in the

GB
triangles

region mapped
onto traingle

region mapped
onto line

region mapped
onto point

Figure 10.14 Types of variation loss due to minimum ∆E gamut clipping.

(a) (b)

Figure 10.15 Effect of minimum ∆E gamut clipping: (a) clipping in CIECAM97s and
(b) clipping in CIELAB. Note that not all aspects of the gamut mapped images can
be seen in their present printed form, but their digital versions can be accessed at
http://color.derby.ac.uk/~jan/gm/.
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reproduction (e.g., the variation in the grass as well as the dark leaves is lost
or at least reduced), that some parts of the image change significantly (e.g.,
the blue top), and that the reproductions have an overall reduction in contrast.

10.4.1.1.2 Hue-preserving minimum ∆E gamut clipping. The hue-pre-
serving version of minimum ∆E clipping is a frequently used alternative to
the previous algorithm. It has the advantage of maintaining all of the original
pixels’ hue angle predictor values, which in some cases can be considered
more important than the absolute minimization of color difference. One way
of implementing this algorithm is to use Euclidean distance in planes of
constant CIECAM97s h and to process an original image by carrying out the
following for each pixel in turn, as described below:

1. Calculate the intersection between the reproduction gamut boundary
and the plane of constant hue angle having the given pixel’s hue using
the FSLGB algorithm.

2. For each of the n + 2 line segments of the two-dimensional reproduc-
tion gamut boundary, do the following:
a. Compute the line segment’s normal and the line l determined by

it and the given color (these lines are shown as dashed gray lines
in Figure 10.16).

b. Compute the intersection between l and the line segment (shown
as black triangle outlines in Figure 10.16).

c. If the intersection is within the line segment, compute the distance
between the intersection and the given color, as that intersection
is a candidate output for the GMA (shown as white triangles with
gray borders in Figure 10.16).

3. For each of the n + 2 vertices of the two-dimensional reproduction
gamut boundary, calculate the distances between it and the given color.
The vertex with the smallest distance is a candidate output value. 

(a) (b)

Figure 10.16 Schematic view of hue-preserving minimum ∆E gamut clipping.
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4. The final output becomes the candidate from steps 2 and 3 that has
the smallest distance from the given color.

The reason why we have to perform step 3 regardless of whether step two
results in any candidates is shown in Figure 10.16b. There is a candidate
after step 2, but it is not the nearest color on the reproduction gamut. As can
be seen from Figure 10.16, whole areas of color space are mapped onto either
GB line segments or GB vertices. Using this algorithm, the result of repro-
ducing the original in our scenario is shown in Figure 10.17.

The most significant limitation of this algorithm is that it results in the
variation that was present in some parts of the original being lost in the
reproduction. Enlarged examples are shown in Figure 10.17b. Notice that
the parts of the image where this problem arises are the same as those that,
in Figure 10.13, were shown to be outside the reproduction gamut. The
reason for this artefact, which all gamut clipping algorithms share in different
ways, is that gamut clipping results in whole subvolumes of color space
from the original being mapped onto surfaces in the reproduction’s color
space. This also implies that colors along certain lines through color space
from the original are mapped onto a single color in the reproduction; there-
fore, their differences are lost.

Before moving onto the next algorithm, it is also useful to understand
the key role that the gamut mapping color space plays. To help with this,
Figure 10.18 shows the result of using CIELAB (Figure 10.18b) instead of
CIECAM97s (Figure 10.18a). There, it can be seen that, while the in-gamut
parts of the image are the same (as expected), the other areas are reproduced
differently when mapping in the two color spaces. For example, the CIELAB
reproduction preserves more variation in the blue area, while the
CIECAM97s image shows more detail in green and low-lightness regions.

10.4.1.2 Other clipping algorithms
In terms of algorithms that intend to use solely gamut clipping, no other
strategies have been tried apart from the two types of approaches discussed

(a)                                              (b)                                               (c)

Figure 10.17 (See color insert) Using hue-preserving minimum ∆E gamut clipping:
(a) original image, (b) enlarged details, and (c) gamut-mapped reproduction.
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above, i.e., minimum ∆E or hue-preserving minimum ∆E. The reason for
there being no lightness-preserving or chroma-preserving clipping algo-
rithms is that imposing a constant lightness or chroma constraint would, in
many cases, result in no solution being found. Doing this for hue, however,
is possible, as all color reproduction media in ordinary use allow for some
colors to be reproduced for every hue.

As an alternative to constrained minimum ∆E clipping, another
approach would be to clip colors along other kinds of vectors that, from a
given original color, point toward a point on the reproduction gamut bound-
ary. This could be done by having all the vectors point toward the center of
the reproduction gamut or toward a different point, depending on the orig-
inal color. To illustrate this kind of approach, Figure 10.19 shows the result
of clipping along lines that have constant hue angle and go toward a center
of gravity (E) with Jab = [50, 0, 0]. Comparing this reproduction with Figure
10.18a shows that this kind of clipping preserves more variation but at the
expense of making the colors in the image more different from the original
than was the case with hue-preserving minimum ∆E. Hence, it can be seen
that there are conflicting demands made on a GMA when we want both
individual colors to be close to the original and also want to preserve dif-
ferences between colors (and therefore detail).

If we simply consider a monochromatic (one-dimensional) case in which
we have two original lightness values of J1 = 10 and J2 = 15, and we have to
reproduce them on a medium with a lightness range starting at 20, then we
have two kinds of options. The first is to reproduce both J1’ = J2’ = 20, whereby
we have the smallest difference on a color-by-color basis. The second is
reproducing J1’ as 20 and making J2’ greater than 20 (for example, 25). In this
manner, we preserve the difference exactly. In essence, all gamut mapping
algorithms try to find the best balance between these two poles of individual
accuracy and preservation of differences. This section has addressed the first

(a) (b)

Figure 10.18 Hue-preserving minimum ∆E gamut clipping: (a) image gamut
mapped in CIECAM97s and (b) image gamut-mapped in CIELAB.
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of these approaches. The following section provides information about the
second.

10.4.2 Simple gamut-compression algorithms

As indicated above, gamut-compression algorithms are primarily focused
on preserving variation, and they do this by being applied to all original
colors rather than only the out-of-gamut ones (as was the case with gamut
clipping). In general, gamut-compression algorithms work by changing the
position of a color along specific lines. Before the gamut mapping, some
colors along that line are out of gamut; after the gamut mapping, all colors
end up being inside the reproduction gamut (Figure 10.20).

Algorithms then either compress individual dimensions of a color space
separately (i.e., they are sequential in that they deal with lightness first and
then with chroma); or compress along lines that alter more than one dimen-
sion (i.e., they are simultaneous). In addition to considering the lines along
which compression is carried out, the center of gravity toward which colors
are compressed and the type of compression employed need to be decided

(a)

(d)

(b) (c)

original GB

gamut mapping
lines & direction

reproduction GB

repro. color

original colorlig
ht

ne
ss

chroma

E

Figure 10.19 (a) Hue-preserving minimum ∆E clipping, (b) original, (c) clipping
toward Jab = [50, 0, 0], and (d) schematic view of clipping toward E.
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as well. In terms of compression types, the most important ones are linear,
piece-wise linear, and various kinds of nonlinear mapping. Also note that
the vast majority of compression algorithms preserve a color’s hue and,
unless specified otherwise, this will also be true for the algorithms intro-
duced in the following sections. In fact, as algorithms are implemented in
color spaces, all they can do is preserve a particular space’s hue predictor
(as was mentioned above).

To compress colors along a given line in a linear way, the following
equation can be used:

CR = CO  × GR/GO (10.5)

where all four variables are distances along the line from the center of
gravity; E and O and R represent the original and reproduction, respectively;
and C and G represent the given color and gamut boundary.

10.4.2.1 Simultaneous compression algorithms
The simplest form of gamut compression consists of specifying a single rule
for determining the line along which to map colors and then to apply some
kind of compression along that line. For example, linear compression can be
carried out according to Equation 10.5 along the lines along which clipping
was done in Figure 10.19 (i.e., lines toward a center of gravity (E) with Jab
= [50, 0, 0]). In addition, distances in Equation 10.5 will be distances from
E. (This algorithm was used previously by Morovic and Luo;44 in this article,
it was referred to as SLIN.) The result of using SLIN can be seen in Figure
10.21a, and Figure 10.21b shows the result of changing E in a hue angle
dependent way whereby it is set to the point on the lightness axis having
the lightness of the cusp at that hue angle. (The cusp at a given hue angle
is the color with the largest chroma.) This second approach will be referred
to as CUSP, and it is a mapping direction that is used in some of the composite
GMAs that will be introduced later. A point to note from Figure 10.21 is also
that changes to the algorithm sometimes have a very small impact on the
result, as both the reproductions obtained from SLIN and CUSP look very
similar there. One needs, however, to bear in mind that the algorithms

original GB

gamut mapping
line & direction

reproduction GB

repro. color s

original color s

chroma
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ht

ne
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after gamut compression
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Figure 10.20 Gamut compression along a line toward the center of gravity (E).
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discussed in this chapter are illustrated using a single image reproduced
between a single pair of media and that the performance of various algo-
rithms in this scenario cannot be taken as an indication of how they will
perform in other contexts.

Another algorithm that has a simple structure and that belongs to this
category is TOPO, which has recently been introduced by MacDonald et al.33

It works by first setting up a core gamut boundary, which is a compressed
version of the reproduction boundary and which delimits a region in color
space that will be left unaltered. Then, lines of compression are determined
in planes of constant hue angle, based on linking points on the original and
core boundaries that have the same relative distance along the boundary.
Colors are then mapped along these lines in a piece-wise linear way so that
there is no change in the core region, and then linear compression occurs
between the original and reproduction gamuts outside it. The result of apply-
ing TOPO in the scenario, as well as a schematic view of it, can be seen in
Figure 10.22. Further details of it can be found in Reference 33.

(a) (b)

Figure 10.21 (a) SLIN reproduction and (b) CUSP reproduction.
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(a) (b)

Figure 10.22 (a) Reproduction obtained using TOPO and (b) schematic view of TOPO.
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In terms of other GMAs based on a single guiding principle, the
approach proposed by Katoh and Ito54 is of particular interest, as it sets forth
a way of performing gamut compression along lines determined by smallest
color difference.

10.4.2.2 Sequential compression algorithms
An alternative to gamut compression is to deal with the dimensions of a
color space one by one. The most common strategy here is to leave hue angle
unchanged and then to compress lightness before chroma.24 Such a GMA
first compresses the lightness of a color based on the lightness ranges of the
original and reproduction gamuts and then compresses chroma based on
the chroma ranges of the two gamuts at the color’s compressed lightness.
To implement this approach, lightness can be compressed in the following
way so as to map the original range onto the reproduction range:

JR = JRmin + (JO – JOmin) × (JRmax – JRmin)/(JOmax – JOmin) (10.6)

where J is CIECAM97s’ lightness predictor, min and max are the minimum
and maximum J of a gamut, and O and R refer to original and reproduction,
respectively. Chroma could then be compressed using Equation 10.5 whereby
the center of gravity for a particular color would be the point on the lightness
axis with the same lightness as that color. As a result, the distances in
Equation 10.5 would simply be the chroma values of the four points referred
to there. To then gamut map a color with this algorithm, the following
procedure could be used (this algorithm is referred to as LLIN in Reference
44):

1. Compute original and reproduction gamut boundaries.
2. Compress the original gamut boundary according to Equation 10.6.
3. Compress the given color’s lightness according to Equation 10.6.
4. Compress the given color’s chroma according to Equation 10.5, and

use the result of step 2 as the original gamut boundary.

The result of using this algorithm is shown in Figure 10.23 and, as can be
seen, this reproduction does indeed preserve more of the variation of the
original than was the case for the GMAs examined so far. However, it can
also be seen that the pixel-by-pixel differences between original and repro-
duction are now greater (e.g., the flowers are less chromatic than before, and
even parts of the image that were in-gamut to begin with have been
changed).

10.4.2.3 Choosing the original gamut
Unlike gamut clipping, which uses only information about the original color
and the reproduction gamut boundary, gamut-compression algorithms also
change their behavior on the basis of the original gamut boundary, from
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which they determine the degree of compression that is applied. As a result,
an additional question needs to be answered when using a gamut compres-
sion algorithms — that of whether to use the original image gamut boundary
or the original medium gamut boundary.

The argument for using the original image boundary is that, in this way,
compression will be done only to the extent required by a given image, and
it has been shown in a number of studies14,39,53,59 that this does indeed result
in more accurate reproductions. Using medium gamuts, on the other hand,
has the advantage of allowing for the transformation between a pair of media
to be computed only once and then applied to a large number of images.
Furthermore, it will result in a given original color always being reproduced
by the same color in the reproduction medium. This can be of importance
if an important object is present in a number of images, as using the original
medium gamut will ensure that it will always be reproduced in the same way.

In terms of our scenario, the difference between the two gamuts is shown
in Figure 10.24, and it can be seen there that, while the difference is not
significant in some parts of color space, it is dramatic in others. The effect
of using the image gamut boundary instead of the original gamut boundary
(which is what was used for all the previous examples) can be seen in Figure
10.25. What is most noticeable is that many parts of the image are more
colorful when the image gamut boundary is used. This is because, when
compressing according to the medium gamut, the image was reduced in
chroma so as to accommodate all the possible colors from the original
medium.

10.4.3 Composite gamut mapping algorithms

While the GMAs discussed in Sections 10.4.1 and 10.4.2 were all simple in
principle, and sufficient detail was provided for their implementation, the
gamut mapping solutions discussed here are more complex, and the reader

(a) (b)

Figure 10.23 (a) Original and (b) LLIN compressed reproduction.

-ColorBook  Page 673  Wednesday, November 13, 2002  10:55 AM



674 Digital Color Imaging Handbook

Figure 10.24 Original image gamut (solid) and original medium gamut (mesh).

(a) (b)

Figure 10.25 LLIN reproductions using (a) the original medium gamut or (b) the
original image gamut.
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will be referred to their original authors for detail. The reason behind the
development of these solutions is that, among the simple algorithms
described in the previous sections (with the exception of TOPO, which is a
recent addition to them), some performed well in one part of color space
and others in another. As a result, attempts have been made to combine these
different kinds of behavior so as to produce a solution that works well
universally.

An early attempt to do this is the GCUSP algorithm proposed by Morovic
and Luo,43 which was developed following an experimental evaluation of
some of the simple approaches covered in the previous section (Figure
10.26a). From there, it was found that the CUSP algorithm worked best for
colors with large chroma values, whereas the LLIN algorithm performed
best for near-neutral colors. As a result, GCUSP consists of a chroma-depen-
dent lightness compression followed by the CUSP algorithm. The chroma-
dependent lightness compression results in full linear lightness compression

(a) (b)

(c) (d)

Figure 10.26 (See color insert) Reproductions made with (a) CGUSP, (b) sigmoidal
GMA, (c) SGCK, and (d) CARISMA algorithms.
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being applied to achromatic colors, virtually no compression being applied
to colors with chromas above around 70 units, and the level of compression
changing smoothly between these. Having this kind of chroma-dependent
compression means that, around the neutral axis, there is LLIN-type behav-
ior whereas, at high chromas, GCUSP gives results like the CUSP algorithm.
In addition to this being done on an experimental basis, there is further
justification for this approach in preserving more lightness for colors that
have primarily lightness information, and preserving more chroma for colors
where chromatic content is significant. For implementation details, see
Morovic and Luo.44

The algorithm developed by Braun and Fairchild3 also belongs to this
category, and it consists of a sigmoidal lightness compression followed by
piece-wise linear compression toward the lightness of the cusp on the
lightness axis (Figure 10.26b). Furthermore, the authors of this algorithm
also introduce a way of making the shape of the lightness compressing
function dependent on the lightness histogram of a given original image
so as to preserve more variation in the part of the lightness range, where
most of an image’s colors are. For details on implementing this algorithm,
see Reference 3.

The two above-mentioned algorithms were then combined by the CIE’s
Technical Committee 8-03 on Gamut Mapping into a single solution that
is then recommended as a reference algorithm as part of the TC’s guidelines
for evaluating gamut mapping algorithms.42 This algorithm (SGCK) con-
sists of chroma-dependent sigmoidal lightness compression followed by
piece-wise linear compression toward the lightness of the cusp on the
lightness axis (Figure 10.26c). Details of its implementation can be found
in Morovic.41

In addition to these GMAs, a number of other solutions belong to this
category and are of interest. Among these, the CARISMA algorithm is par-
ticularly important, as it is based on analyzing the results of how professional
scanner operators reproduce images from transparency to print. The algo-
rithm starts with overall linear lightness compression, changes hue based
on the primary hues of the original and reproduction media, and, finally,
performs compression along different lines of constant hue angle depending
on the different relationships between the two gamuts at various hues (Fig-
ure 10.26d). For details of implementation see Morovic and Luo.44 Other
algorithms of interest are the ones proposed by Herzog and Büring,16 Braun
et al.,4 and Motomura.51

10.4.4 Other algorithms for mapping into a smaller gamut

In addition to the gamut mapping approaches discussed in the previous
sections, there are also solutions that either are intended to improve gamut
mapping performance for certain types of images or take into account spatial
relationships in the original image. These GMAs will be discussed in the
following sections.
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10.4.4.1 Image-type specific GMAs
While the vast majority of gamut mapping research is aimed at developing
solutions that can be used for images of any kind, some work has also been
aimed at developing better solutions for specific types of images. The most
notable effort here is the work by Braun et al.,5 who have developed a
solution specifically for the reproduction of business graphics. Having rec-
ognized the fact that, in reproducing business graphics, a key issue is the
“clean” reproduction of primary colors, they have proposed a GMA that
ensures the mapping of the original medium’s primaries onto those of the
reproduction medium and thereby providing a solution tailored to those
who need to reproduce this kind of image.

10.4.4.2 Spatial GMAs
As mentioned at the beginning of Section 10.4, the vast majority of GMAs
treat each color in isolation, and a given original color is therefore always
reproduced in the same way, regardless of what image it is in and of what
colors surround it in the original. There are, however, a number of proposed
solutions that take into account spatial factors and that will result in a given
color being treated differently, depending on its surrounding colors in an
image. 

The earliest one of these is described in the paper by Meyer and Barth,38

where lightness compression is done in a manner that takes into account
spatial characteristics. To this end, lightness at a given point [x, y] in the
image is expressed as F(x, y) = I(x, y) × R(x, y), where I is the spatially slowly
varying contents in an image (depending on the illuminant), and R is a
spatially rapidly varying function containing the image detail itself. As it is,
the I component, which controls the lightness range, is compressed similarly
to the method of Equation 10.6. Chroma is then dealt with in a conventional
way.

Nakauchi et al.52 also propose an approach that, in effect, takes spatial
properties into account as they look at gamut mapping as an optimization
problem of finding an image that satisfies the following criteria:

1. It is perceptually closest to the original.
2. All of its pixels are within the reproduction gamut. 

The perceptual difference between the reproduction and the original is then
defined by applying bandpass filters to the images and obtaining their dif-
ference in a way that takes into account human contrast sensitivity. A method
for calculating an image that minimizes perceptual difference and remains
in gamut is given in the paper.

Another approach, taken by McCann,37 uses the Retinex theory28 to pro-
pose gamut mapping that aims to preserve the ratios between the colors that
are present in an original. Finally, the most recent of these methods is the
one proposed by Balasubramanian et al.,1 which aims to preserve spatial
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luminance or lightness variation in a way similar to Meyer and Barth’s
method.

10.4.5 Gamut expansion algorithms

Little work has been published in this area to date, as the issue involves
considerable complexity in terms of specifying both what the mapping
should take as parameters and what the resulting image’s ideal characteris-
tics should be. To some extent, the development of gamut expansion algo-
rithms is also linked with a better understanding of preferred color repro-
duction, which itself has not been researched a great deal in recent times.
The kind of applications that would benefit from gamut expansion are those
in which images from more limited media are rendered on media with larger
gamuts. For example, printed images rendered on a television display could
benefit from making use of parts of color space that were not available to
the original, and a digital camera image taken under lower levels of illumi-
nation could be enhanced by enlarging its gamut. The principal difficulty
here is that, while some scenes might benefit from gamut expansion, others
might deteriorate. An example of where gamut expansion might produce
negative results is for images with skin tones, which after expansion might
appear too colorful. Objects that include pastel colors could also suffer from
this kind of change. To find out more about the work done so far on gamut
expansion, refer to Hoshino17,18 and Kang et al.25

10.5 Factors affecting gamut mapping algorithms
Now that a wide range of gamut mapping algorithms have been introduced
and illustrated in the context of our scenario, it is important to discuss once
again the fact that all these illustrations only provide information about how
a given algorithm performs in our scenario. If a different media pair or
different images were used, the result might well be quite different from the
ones shown here. Therefore, the next two sections describe the impact media
and images can have on the performance of gamut mapping algorithms.
This discussion is based on Reference 41.

10.5.1 Media

The nature and magnitude of the differences between an original and a
reproduction medium play an important role in determining whether a given
algorithm is suitable for mapping images between the pair of media. Where
there are relatively small differences between the two media, the method for
overcoming them is less important than in a case where the differences are
large. This is so because the potential of difference between various gamut
mapping solutions is smaller in the former than in the latter cases. To illus-
trate this, Figure 10.27 shows the result of using hue-preserving minimum
∆E clipping and the LLIN algorithm when mapping the image in our
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scenario, as well as when mapping it to an inkjet printer with a significantly
larger gamut than the laser printer of our scenario.

In fact, existing literature seems to support this conjecture, as it shows
that, when medium differences are small, clipping algorithms perform better
than compression algorithms39,48 and that the opposite is true for large gamut
differences.43 Hence, when gamut mapping between a pair of printed media,
clipping might be the best solution whereas, when mapping between a
transparency projected in a dark room and a CRT seen in an office environ-
ment, compression might be a better approach.

In addition to the medium differences, another important issue is to
ensure that the gamut boundary information used by the GMA represents
the viewing conditions for which the mapping is carried out. The importance
of calculating GB information under the conditions used for viewing both
the original and reproduction was discussed by Morovic et al.,50 and the
following discussion is based on that paper. For example, a CRT display’s
gamut could be calculated on the basis of colorimetric measurements taken
in a dark room, and a print’s gamut could be calculated using spectropho-
tometric measurements relating to the print being viewed under a standard
illuminant (e.g., D50). If the system is then used to match images between
the CRT and a print under office lighting conditions, then any mismatch
would, to a great extent, be caused by the difference between the conditions
under which the media were characterized and the conditions under which
they are used. To illustrate this point, Figure 10.28 shows the gamuts of a
CRT and a print when viewed simultaneously in a room under a range of
ambient illumination levels. As can be seen in this figure, the relative shapes

Reproduction gamuts
laser (solid) and inkjet (mesh)

minimum ∆E LLIN
m

apped to laser gam
ut

m
apped to inkjet gam

ut

Figure 10.27 Reproducing the original on a small-gamut laser printer and a large-
gamut inkjet printer.
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of the gamuts of these two media change dramatically with changes of
ambient illumination level, and it is therefore crucial to have correct gamut
boundary data when performing the gamut mapping. Part of the reason for
the opposite direction in the two gamuts’ changes is that increasing the level
of ambient illumination results in flare being added to the output of the CRT,
whereas it boosts the intensity of the printed colors. The effect of flare on
displays is also discussed by Sharma.55

10.5.2 Images
In the same way that the original and reproduction media are important
factors influencing GMA performance, the image that is being reproduced
plays a key role. While the importance of images has long been known,3,32,43,58

a systematic study of why one image needs to be reproduced differently
from another image has only recently commenced.47 In previous studies it
has been conjectured that it is the image type (in the sense in which an image
can be a business graphic, a portrait, or an outdoor scene) that needs to be
analyzed to decide how to reproduce it, but this claim is made without
substantial evidence. The results of the above-mentioned systematic study
show that it is not an image’s gamut48 or its lightness, chroma, or combined
lightness and chroma histograms,56 but the full 3-D image color histogram57

that influences how an image will be reproduced by different gamut map-
ping algorithms. As such, image characteristics have been shown to be of
importance in cross-media reproduction, and they are a factor to be consid-
ered whenever gamut mapping is carried out. 

What is most important to bear in mind, in relation to the role of images
in gamut mapping, is that a given algorithm is very likely to perform dif-
ferently for different images. Therefore, whether a GMA will work well for
reproducing a particular image depends not only on that GMA or the media

Figure 10.28 Color gamuts of CRT and print under different illumination levels.
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between which the reproduction is to be made, but also on the image itself.
To illustrate this, Figure 10.29 shows what happens when three images are
reproduced between the media from our scenario using two different GMAs. 

What can be seen here is that the two GMAs perform differently for the
three images and also that the difference between the GMAs is greater for
some images than others (i.e., their difference seems smallest for the middle
image and greater for the top and bottom ones). Also noticeable is the fact
that, while LLIN performs better for the bottom image, hue-preserving min-
imum ∆E does better for the top image and that the two are similar for the
middle image. Even if the reader disagrees with the judgments about which
algorithm does better for which image, it is clear from Figure 10.29 that the
difference between the performance of algorithms depends on image as well
as medium.

10.6 Summary
This chapter provides an overview of gamut mapping from the point of view
of what happens to an image when it is reproduced between a pair of media.

original hue preserving minimum ˘E LLIN

Figure 10.29 (See color insert) Impact of image characteristics on GMA performance.
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Before defining gamut mapping, we introduced issues related to rendering
intents, input and output data, and color spaces, and we considered in detail
the implications of what a color gamut is. Various factors of calculating color
gamut boundary descriptors were then reviewed, a detailed description was
given of the segment maxima method, and image-specific issues were
addressed. After covering these preliminary areas, we then turned to a
discussion of gamut mapping algorithms themselves, wherein the focus was
to describe some basic clipping and compression algorithms with sufficient
detail for implementation by the reader. Also introduced were some more
advanced and complex solutions, and the areas of image type specific and
spatial algorithms as well as gamut expansion were briefly mentioned.
Finally, we discussed the importance of the media on which images are
reproduced as well as the importance of the images themselves. Further-
more, the majority of algorithms discussed in this chapter were also illus-
trated in the context of a cross-media color reproduction scenario, which
was referred to throughout the chapter.

It is also worth noting that no recommendations were made herein as
to what algorithm to use. This is because the topic of gamut mapping is one
that is still in a stage of rapid development and is one for which we still do
not have a thorough understanding of what determines the proper approach.
Hence, this chapter intended to illustrate the complexities of the gamut
mapping problem and present a number of existing solutions as equals rather
than making any hasty recommendations. The reader who is interested in
following up on comparisons made between existing gamut mapping algo-
rithms as well as the progress of gamut mapping research in general is
advised to refer to existing and future issues of the Journal of Electronic
Imaging, Color Research and Application, and in particular the proceedings of
the IS&T/SID Color and Imaging Conference, held annually in Scottsdale,
Arizona.

To conclude, I would like to paraphrase Samuel Butler (II) in saying that
gamut mapping of all kinds is like painting — a compromise with impossi-
bilities.
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11.1 Introduction
In many instances along the imaging path, images need their colors trans-
formed. For example, images received in a device-dependent color space
must be transformed to a device-independent color space. In many cases,
these transformations are complex nonlinear functions, thus making it
impractical to process large images in real time. A simple solution would be
to precompute the transform for all possible digital inputs and store the
corresponding outputs in a lookup table (LUT). This approach results in a
perfectly accurate transformation (within limits of numerical computation),
and the computational processing is relatively simple (i.e., only multidimen-
sional lookups). However, the storage requirements quickly become prohib-
itive. For example, 8-bit RGB input requires a LUT of size 224 = 16 M; 8-bit
CMYK input requires a LUT size of 232 = 4 G entries. For CMYK output,
each entry is at least 32 bits, or 4 bytes. If the price of this quantity of memory
is not an issue, the time to access it may be, as it is unlikely that the portions
of interest will remain in the processor cache.

An alternative is to build a LUT with a sparser node sampling and to
use multidimensional interpolation for input points that do not coincide with
the LUT nodes. Constructing such a LUT involves first defining a lattice of
nodes that partition the input color space into a set of smaller subvolumes.
The desired color transformation is evaluated at these nodes, and the result-
ing output values are stored at the node locations. Algorithms for LUT
construction are described in Chapter 5, so we will not elaborate on that
aspect here. We will focus instead on LUT interpolation techniques. Given
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an input point for which the color transformation is to be evaluated, multi-
dimensional interpolation involves the following steps: 
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1. Find the subvolume to which the input color belongs.
2. Retrieve the nodes that define the subvolume.
3. Interpolate among the output values at these nodes to obtain the final

output color.

The data may need additional processing before and after these three steps.
Examples will be given in the following sections.

LUT interpolation involves a three-way trade-off among (a) LUT approx-
imation accuracy, (b) storage and memory requirements, and (c) computa-
tional complexity. In the following sections, a number of LUT interpolation
techniques are presented and compared in terms of the trade-offs among
these three variables. The best technique and trade-off depends on the
requirements and constraints of a given application. In the following discus-
sions, we will use two-dimensional and three-dimensional input spaces for
illustrative purposes, bearing in mind that extension to more dimensions is
usually straightforward.

Sections 11.2 through 11.4 describe the basic LUT transformation and
variants thereof. Sections 11.5 through 11.9 describe algorithms for efficiently
processing large amounts of image data through a LUT transformation.

11.2 Interpolation on regular lattices

11.2.1 Regular lattice structures

Define li to be a set of real-valued levels along the ith color dimension. A
regular lattice Lm in m-dimensional color space is defined as the set of all
points x = [x1,…,xm]t whose ith component xi belongs to the set li. Mathemat-
ically, the lattice can be expressed as

(11.1)

where the second expression is a Cartesian product. If si is the number of levels
in li, the size of the lattice is the product s1s2…sm. A regular three-dimensional
lattice is shown in Figure 11.1. It partitions the three-dimensional input space
into rectangular subvolumes. In the simplest form, the lattice levels li are
spaced uniformly along the ith dimension, and s1 = s2 = … = sm = s, resulting
in a lattice size of sm. However, the lattice size and spacing of levels along each
dimension can be varied to suit the characteristics of the function being
approximated. Typical tables have from 8 ¥ 8 ¥ 8 to 33 ¥ 33 ¥ 33 nodes, with
si being either a power of 2 or one greater than a power of 2. Chapter 5 contains
experimental data that compares LUT accuracy for different lattice sizes.

Lm {x Rm xi li� ,i� 1,º,m}=     or    Lm li

i 1=

m

�=
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The main advantage of a regular lattice is that the step of finding the
subvolume to which an input color belongs is very simple and accomplished
as follows. Assume a color [x, y, z] in a three-dimensional space represented
by n bits, and thus values ranging from 0 to Cmax = 2n – 1. This color is to be
transformed using a LUT of size m ¥ m ¥ m. First, a nearby LUT node is
located with indices [X][Y][Z], given by

X = Îxsû, Y = Îysû, Z = Îzsû; s = m/Cmax (11.2)

where Î û denotes the rounding down operation. (Throughout this section,
C-style indices are used, i.e., the first index of the table runs from 0 to m – 1.)
If the color [x, y, z] coincides with node [X][Y][Z], the output values stored
at this node are simply looked up. Otherwise, the desired output is obtained
by interpolating with the seven neighboring nodes, which have one or more
of the LUT indices [X][Y][Z] increased by one. These eight nodes form the
rectangular subvolume enclosing the input point. The highest numbered
nodes (index m – 1), when used, never require interpolation. One must either
test to avoid interpolating with the next set, ensure that a set of dummy
values (which will be multiplied by 0) are allocated beyond the last value,
or risk reading beyond the end of allocated memory.

Example. Given an 8-bit, three-separation input space and a 17 ¥ 17 ¥
17 uniform lattice, we have s = 17/255 = 1/15. An input color [23, 36, 190]
will locate LUT indices [1][2][12]. The output is obtained by interpolating
among the nodes at [1][2][12], [1][2][13], [1][3][12], [1][3][13], [2][2][12],
[2][2][13], [2][3][12], and [2][3][13]. Any given input color not on a node
[X][Y][Z] is a fraction t, u, and v of the way to the next node in the x, y, and
z directions, respectively. The fraction 1/s gives the distance between nodes.
The fractional distance of x between nodes at X and X + 1/s is t = xs – X.

11.2.1.1 Lattice dimensions: power of two or one greater?
There is a long-standing debate over whether the lattice dimensions should
be a power of two or one greater. This is largely a question of efficiency. As
we shall see, the difference is very small if both are implemented as efficiently
as possible. For concreteness, we shall compare 163 with 173; however, any

Figure 11.1 A regular lattice in three dimensions.
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such pairing follows the same argument — and one may leave the vicinity
of a power of two altogether without paying the imagined penalty.
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The key advantage of 163 is in addressing the (i, j, k) entry using the (C
language) expression

base + (((i << 4) + j) << 4) + k,

rather than the expression needed for the 173 case,

base +(((i * 17) + j) * 17) + k,

which involves two multiplications, normally slower than the shifts. Thus,
once the values of i, j, and k are known, indexing is faster using 163. However,
these quantities are derived from color separation values, and obtaining
them and the interpolation parameters (t, u, and v) is more difficult for a
power-of-two LUT.

From the geometry of the table, it clearly contains nodes at 0 and max,
with others uniformly spaced in between. Interpolation is between pairs of
adjacent nodes, and along any axis, the number of pairs of adjacent nodes
is a power of two. If the table size is 173, the index of the lower node is found
in the high-order bits of the input color separations, and the interpolation
parameters are the low-order bits of the same input color separations. Thus,
to obtain i and a fixed point value of t, one computes

i = x >> 4

t = x & 0xf;

whereas, for a table size n that is not a power-of-two-plus-one, 

i = x / (n – 1), 

t = x – (n – 1) i. 

So it appears that the debate is more about choosing where the multiplica-
tions and divisions occur than how many of them there are. As it happens,
none of these calculations is necessarily optimal. The number of possible
values of x is small (somewhere in the 256 to 4096 range), and so the values
of i and t may be obtained by a simple LUT from the value of x, eliminating
the division and multiplication in the power-of-two-plus-one case. Note,
however, that it is not really the value of i that is needed, but the quantity
n * m * i, which could just as easily be stored in the lookup table as i. The
addressing arithmetic is equivalently

base + i * n * m + j * m + k,

so the table indexed by x can contain the appropriate values of t as well as
the values of i * n * m, while the table indexed by y contains the values of u
and j * m, with the table indexed by z containing k and v.

Thus, both table address calculation and parameter calculation are
obtained through a single lookup operation (returning a two-element struc-
ture), independent of the table size. With this approach, there is no advantage
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putational cost. There is one potential advantage to having an odd-sized
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table, and that is for input color spaces with a neutral-axis aligned dimension
(such as L*a*b* or YCrCb), one may arrange to have the neutral axis exactly
represented along one column of nodes while maintaining node symmetry
about this axis. 

11.2.1.2 Anamorphic lattice structures
Balasubramanian has proposed using an anamorphic lattice, a variation of
the regular lattice structure that offers a more efficient sampling of nodes.1
The idea is based on the observation that interpolating from an m-dimen-
sional input space to an n-dimensional output space consists of n indepen-
dent interpolations from m-dimensional input to one-dimensional output.
Consider, for example, a LUT transform from display RGB to printer CMY.
The output cyan value is calculated by interpolating the cyan values at the
surrounding nodes. Similarly, the magenta and yellow outputs are indepen-
dently calculated by interpolating the nearby magenta and yellow node
values, respectively. This being the case, there is no reason to use the same
lattice to interpolate the C, M, and Y. For example, one might expect that C
has a strong dependence on its complementary input R and a weak depen-
dence on G and B. Likewise, M may show stronger dependence on input G
than on R and B. Hence, a suitable lattice for interpolating C would have a
dense sampling along R and coarse sampling along G and B. Equivalently,
the M signal requires a finer sampling along G than along R and B. The idea
is demonstrated in Figure 11.2 for a 2-D transform from R-G to C-M. Exper-
imental results have shown that the average DE*94 LUT error is reduced from
2.1 using a standard lattice to 1.1 using an anamorphic lattice of the same
size. Thus, an anamorphic lattice improves the size-accuracy trade-off. Note,
however, that the anamorphic lattice requires finding the enclosing subvol-
ume for each output separation, thus incurring a small computational over-
head.

11.2.2 Two-dimensional interpolation geometries

Given a rectangular subvolume and its vertex nodes that surround the input
point, the interpolation geometry specifies which subset of those nodes is
used to calculate the final color. The two-dimensional geometries of bilinear
and triangular interpolation will be described first, as these are used as
building blocks for the three-dimensional geometries commonly used in
color transformations. 

Bilinear interpolation is the natural extension of linear interpolation to
two dimensions. It is based on the assumption that the function being approx-
imated is “close enough” to linear between two nodes. That is, it has constant
derivative between those nodes. If the values at nodes n0 and n1 are p0 and p1,
respectively, then the value at a location that is a fraction t of the way from
n0 to n1 is given by p0 + (p1 – p0)t. To compute an interpolant a fraction t of the
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way along a first dimension of a square and a fraction u of the way along a
second dimension of the square, begin by computing two intermediate points,
a fraction t along the edges that traverse the first dimension. Then compute
the interpolant a fraction u of the way from the first to the second of those
intermediate points. Either dimension may be interpolated first with identical
results, as shown below. 

t first:
p0 = p00 + t(p01 - p00)
p1 = p10 + t(p11 - p10)
p = p0 + u(p1 - p0) = p00 + t(p01 - p00) + u(p10 + t(p11 - p10) - (p00 + t(p01 - p00)))

= p00 + t(p01 - p00) + u(p10 - p00) + tu(p11 - p10 - p01 + p00)

u first:
p¢0 = p00 + t(p10 - p00)
p¢1 = p01 + u(p11 - p01)

p = p¢0 + t(p¢1 - p¢0) = p00 + u(p10 - p00) + t(p01 + u(p11 - p01) - (p00 + u(p10 - p00)))
= p00 + t(p01 - p00) + u(p10 - p00) + tu(p11 - p10 - p01 + p00)

Figure 11.3 shows this operation for the case where the t interpolation is
done first. 

Triangular interpolation, applied to right triangles with two axis-
aligned edges, employs the additional assumption that the function being

Magenta
values

G

R

Cyan
values

R

Figure 11.2 An anamorphic lattice in two dimensions.
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approximated has zero cross derivatives. That is, the derivative with respect
to u is the same irrespective of the value of t. With reference to Figure 11.4,
given nodes n00, n01 and n11 with values p00, p01 and p11 corresponding to t =
u = 0; t = 0, u = 1; and t = u = 1, respectively, begin with p00, add (p01 – p00)u,
to find a value corresponding to u of the way from p00 to p01. Then add
(p11 – p01)t to find a value corresponding to t of the way from there to the line
containing p11. If both of the assumptions — linear function with zero cross
derivatives — hold, the result of triangular interpolation is the same as that
of bilinear.

p0 = p00 + t(p01 - p00) ∫ p00 + t(p11 - p01)
p1 = p10 + t(p11 - p01)
p = p0 + u(p1 - p0) = p00 + t(p11 - p01) + u(p10 + t(p11 - p01) - (p00 + t(p11 - p01)))

= p00 + t(p11 - p01) + u(p01 - p00)

11.2.3 Three-dimensional interpolation geometries

Three-dimensional interpolation geometries include trilinear (all nodes),
prism, pyramidal, and tetrahedral, in order of decreasing numbers of nodes
used. The vertices of the interpolation solids for the various geometries are
given in Table 11.1, with the labeling convention used in Figure 11.5. In all
of these geometries, the facets of the solids within which interpolation is
performed are either squares or triangles, hence the reliance on bilinear and
triangular interpolation. From a computational standpoint, interpolating
within a square is more expensive than interpolating within a triangle; this

nn

n
u 1 - u

00 01

0

1-t

t

n1

Figure 11.3 Bilinear interpolation.
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is one of the motivations of the various geometries. At the same time, the
fewer cutting planes subdivide the cube, the fewer tests are required to select
the interpolation solid. From a qualitative standpoint, geometries that use
more nodes will perform stronger local averaging of the function being
approximated, while geometries with fewer nodes will more closely follow
the curvature of the function. The relative performance of the geometries
will thus depend on the nature of the function and noise characteristics. The
two most commonly used geometries are trilinear and tetrahedral — the

nn00 01

1-t

t

u 1 - u

Figure 11.4 Triangular interpolation.
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Figure 11.5 Rectangular volume showing vertex labels used in Table 11.1.
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three-dimensional analogies of bilinear and triangular — representing the
two extremes. Each of the geometries is described in detail below.

11.2.3.1 Trilinear interpolation
Trilinear interpolation uses all eight nodes and is the natural extension of
linear interpolation to three dimensions. This is shown in Figure 11.6. To
compute the interpolant at fractions t, u, and v along three respective dimen-
sions, first compute four intermediate points (n00, n01, n10, and n11) that are t
of the way along the edges varying in the first dimension. Then use those
four points to define a square and perform bilinear interpolation as described
in the previous section. From the square, two more points are computed (n0

and n1); these are used to compute the final point n.
Using the notation Ln(x1…xn) to refer to linear interpolation in n dimen-

sions, L3(t, u, v) then denotes trilinear interpolation. It may be expressed
recursively in terms of lower-order interpolation as:

According to Figure 11.5

Trilinear Prism Pyramidal Tetrahedral

All n000, n001, n010, n011, n100, n101 n000, n011, n100, n101, n111 n000, n010, n100, n101

n010, n011, n100, n101, n110, n111 n000, n001, n010, n011, n101 n000, n001, n010, n101

n010, n011, n101, n110, n111 n001, n010, n011, n101

n010, n100, n101, n110

n010, n101, n110, n111

n010, n011, n101, n111

n110
n111

n010

n011

n100

n000

n001

n101

t

u

v

n10

n00

n01

n11

n1

n0
n

Figure 11.6 Trilinear interpolation.
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L3(t, u, v) = L2
0 (t, u) + (L2

1(t, u) – L2
0 (t, u)) v
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= L1
00 (t) + (L1

01(t) – L1
00(t))u + {L1

10 (t) + (L1
11 (t) – L1

10(t)) u 

– [L1
00 (t) + (L1

01 (t) – L1
00(t))u]} v

= p000 + (p001 – p000) t + (p010 + (p011 - p010) t – (p000 + 
(p001 – p000) t)) u + {p100 + (p101 – p100) t + (p110 + 
(p111 – p110) t – (p100 + (p101 – p100) t)) u – [p000 + (p001 – p000) t 
+ (p010 + (p011 – p010) t – (p000 + (p001 – p000) t)) u]} v (11.3)

Computationally,

L3(t, u, v) = p000 + Dt
00 t + duv

0 u + (Dv + Dtv
0 t + d uv

1 u) v

Dt
00 = p001 – p000; Dt

01 = p011 – p010; Dt
10 = p101 – p100; Dt

11 = p111 – p110; 
Du

0 = p010 – p000; Du
1 = p110 – p100; Dv = p100 – p000; Dtu

0 = Dt
01 – Dt

00; 
Dtu

1 = Dt
11 – Dt

10. Dtv
0 = Dt

10 – Dt
00. Duv

0 = Du
1 – Du

0.  Dtuv = Dtu
1 – Dtu

0,

duv
0 = Du

0 + Dtu
0 t. duv

1 = Duv
0 + Dtuv t (11.4)

This requires seven multiplications and seven additions, with twelve pre-
computed coefficients stored at each node.

11.2.3.2 Prism interpolation
Prism interpolation splits the cube in half along a face-diagonal, as shown
in Figure 11.7. When interpolating in RGB or like color spaces, the cutting
plane should be chosen to contain the neutral (R = G = B) axis so that

n000

n111

n011

n100

n001

n101n0

n1

n

Figure 11.7 Prism interpolation.
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interpolation along this axis can be carefully controlled. An initial test is
required to determine in which prism the point lies, and then interpolation
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is performed using only six, rather than all eight, points of the cube. As
shown in Figure 11.7, the point is first projected onto each of the two
triangular faces, and triangular interpolation is performed within these
faces using fractional distances t and u. The resulting two points are inter-
polated linearly using the fractional distance v. These two steps can be
combined as

P3
t<u(t, u, v) = p000 + (p011 – p001) u + (p001 – p000) t + [p100 + 

(p111 – p101) u + (p101 – p100) t – (p000 + (p011 – p001) u 
+ (p001 – p000) t)] v (11.5)

Computationally,

P3
t<u(t, u, v) = s5 + [p100 + s2+ s4 – s5] v (11.6)

where

s1 = (p011 – p001) u = D1u s2 = (p111 – p101) u = D2u s3 = (p001 – p000) t = D3t
s4 = (p101 – p100) t = D4t s5 = p000 + s1 + s3

Prism interpolation requires five multiplications and six additions with nine
coefficients stored at each node. The reduced multiplications come at the
expense of a single test.

11.2.3.3 Pyramidal interpolation
Figure 11.8 shows the geometry of pyramid interpolation. It uses one corner
(which for RGB-like spaces should be either the node [X][Y][Z] or
[X+1][Y+1][Z+1]) as the apex of three pyramids, the bases being the three
faces that share the diagonally opposite vertex. Two tests are required to
determine in which pyramid the point lies, and then interpolation is per-
formed using five points of the cube.

P3
t<u,t<v(t, u, v) = p000 + s1 u + s2 t + (s3 + s4 u) v (11.7)

where s1 = p010 – p000, s2 = p111 – p110, s3 = p100 – p000, s4 = p110 – p100 – p010 + p000

P3
u>v,t≥v(t, u, v) = p000 + s1 v + s2 u + (s3 + s4 v) t (11.8)

where s1 = p100 – p000, s2 = p111 – p101, s3 = p001 – p000, s4 = p101 – p001 – p100 + p000

P3
u>v,t≥v(t, u, v) = p000 + s1 t + s2 v + (s3 + s4 t) u (11.9)

where s1 = p001 – p000, s2 = p111 – p011, s3 = p010 – p000, s4 = p011 – p010 – p001 + p000
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Pyramidal interpolation requires four multiplications, with five values stored
at each node.

11.2.3.4 Tetrahedral interpolation
Due to its computational simplicity, tetrahedral interpolation is a very pop-
ular choice for three-dimensional color transformations.2 The most common
form divides the two prisms of prism interpolation into three tetrahedra
each, as shown in Figure 11.9. All six tetrahedra share one common edge:
the main diagonal of the cube. In the case of RGB spaces, the diagonal axis
should coincide with the neutral (R = G = B) axis. The remaining edges of
the tetrahedra join the neutral vertices to vertices diagonally opposite them
on shared faces. Tetrahedral interpolation requires, on average, 2.5 compar-
ison tests (i.e., 2 tests or 3 tests, both with 50% probability) to find the
enclosing tetrahedron. The code structure is given below:

If t < u // lower front prism
If t > v

Interpolate within tetrahedron 1
Else

If u < v 
Interpolate within tetrahedron 2

Else
Interpolate within tetrahedron 3

Figure 11.8 Pyramidal interpolation.



700 Digital Color Imaging Handbook

11  Page 700  Tuesday, November 19, 2002  9:04 AM
Else // upper, back prism
If t < v

Interpolate within tetrahedron 4
Else

If u < v
Interpolate within tetrahedron 5

Else
Interpolate within tetrahedron 6.

The case where t < u, t > v (i.e., tetrahedron 1) is shown in Figure 11.10.
Interpolation among the four points within the enclosing tetrahedron is
given by

P3(t, u, v) = p000 + st t + su u + svv (11.10)

The interpolation weights st, su, sv depend on which tetrahedron contains the
input point, and they are determined by comparing the magnitudes of t, u,
and v, as shown above and in Table 11.2. Table 11.3 gives the differences Di

used in Table 11.2 (and hence the values of st, su, and sv). The 12 differences
correspond to the 12 edges of the cube. Assuming the differences are all
precomputed, tetrahedral interpolation requires 3 additions and 3 multipli-
cations, with 13 values stored at each node. It is essentially three triangular
interpolations: one per dimension. On most processors, memory fetch times
dominate in tetrahedral interpolation.

Other variants of tetrahedral interpolation exist; for example, it is pos-
sible to partition the rectangular volume into only five tetrahedra. Details
are given Kang’s book.3 

Figure 11.9 Tetrahedral interpolation.
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11.3 Interpolation on irregular lattices

In the most general case where the lattice comprises an arbitrary set of points
in three-dimensional space, it is possible to construct a tetrahedral partition
of the space with these points using the DeLaunay tetrahedralization algo-
rithm.4 This generalizes for arbitrary dimensions as well. The advantage of
this approach is the flexibility with which the lattice nodes can be positioned

Table 11.2 Tetrahedral Interpolation: The Various 
Tests and Corresponding Interpolation Weights

Case st su sv

t < u t > v D1 D5 D2

t < u t £ v u < v D9 D8 D4

t < u t £ v u ≥ v D9 D5 D11

t ≥ u t < v D3 D7 D4

t ≥ u t ≥ v u < v D10 D6 D2

t ≥ u t ≥ v u ≥ v D10 D7 D12

Table 11.3 Difference Quantities Used in Tetrahedral Interpolation

D1 = p110 – p010, D2 = p111 – p110, D3 = p101 – p001, D4 = p001 – p000;
D5 = p010 – p000, D6 = p110 – p100, D7 = p111 – p101, D8 = p011 – p001;
D9 = p111 – p011, D10 = p100 – p000, D11 = p011 – p010, D12 = p101 – p100.

n000

stt
svv

suu n101

n001

t>v

t<v

u>vu<v

t=u=v

Figure 11.10 Sequential linear interpolation in two dimensions.
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in color space. However, the step of retrieving the enclosing tetrahedron
becomes far more complex than in the case of regular lattices. Furthermore,
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the interpolation step is also more complex, involving tetrahedral inversion
(see Chapter 5, Section 5.4.5). For this reason, the DeLaunay partition is rarely
used in applications that require efficient real-time mapping through LUTs,
and it will not be discussed further.

A special case of an irregular lattice is the sequential lattice, a structure
that offers more flexibility than a regular lattice but at a modest increase in
computational cost. The general sequential interpolation architecture is
described in detail in Chapter 5 and will not be presented again here. We
instead focus on the particular example of sequential linear interpolation
(SLI).5 The SLI lattice is shown in two dimensions in Figure 11.11. Along the
first dimension c1 are node levels c1,1,…, c1,N. At each such node level, a set
of nodes is positioned along c2. The interesting feature of SLI is that the node
separation along c2 can vary depending on the location along c1. With refer-
ence to the diagram on the right in Figure 11.11, interpolation for an arbitrary
input point P is performed as follows:

• Project P onto the c1 axis and locate the two neighboring levels c1,i,
c1,i+1. 

• Project P onto the line c1,i and perform linear interpolation between
points D1 and D2, resulting in intermediate value Da.

• Project P onto c1,i+1 and perform linear interpolation between D3 and
D4, resulting in Da. 

• Perform 1-D interpolation between Da and Db to obtain the final
output. 

Note that this process is very similar to bilinear interpolation, described in
Section 11.2.2. Indeed, if the node placements along c2 are independent of
c1, the SLI lattice reduces to the standard regular lattice, and the algorithm
reduces to bilinear interpolation. The more general and interesting case

x

C2

C1,1 .  .  . C1,N

C2

C1 C1

D2

D1

D3

D4

C1,i C1,i+1

Da Db

P

Figure 11.11 Sequential linear interpolation in two dimensions.
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where interpolation along c2 depends on both c2 and c1 enables a more
efficient placement of nodes in those regions where the function being
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approximated exhibits greatest curvature. Optimal design of an SLI lattice
to suit the characteristics of the underlying transformation is described in
detail by Chang et al.6 and Agar et al.7

The algorithm just described extends readily to an arbitrary number of
dimensions, with node level placement along the ith dimension depending
on the input values along the previous i – 1 dimensions. In the common case
of three dimensions, SLI requires seven multiplications and seven additions
and is hence computationally equivalent to trilinear interpolation. However,
SLI requires prestoring more fractional quantities. This is because two of the
quantities t, u, v in Equations 11.3 and 11.4 vary depending on the position
of the input point in the 3-D table. Normally, these are precomputed as
described in Section 11.4. The chief advantage of SLI lies in its more efficient
use of table space, allowing a table of a given number of nodes to more
accurately follow the curvature of the function being approximated.

11.4 Acceleration techniques
Lookup table interpolation is much faster than inverting measured data or
evaluating a printer model. However, applying the techniques below may
speed it up further. Not all acceleration techniques are applicable to all
applications; some are architecture dependent, while the advantage of others
depends on the nature of the input. Each should be evaluated in the context
of the intended application.

11.4.1 Caching node values

For some machines, three-dimensional lookup is expensive, and if 13 values
are stored at a node, pulling in these values from memory only adds to the
expense. In such cases, a small cache of node values may be beneficial.
Typical images contain long runs (tens or even hundreds of pixels) of colors
similar enough to be within a node of each other. A cache containing seven
nodes is generally sufficient for such purposes. In such an implementation,
the cache is checked before the full three-dimensional lookup is performed.
On most modern architectures, these values will be cached in the hardware
cache. Artificially checking a cache may result in reduced performance in
the presence of a hardware cache. One might consider reducing the precision
of the values stored at the nodes if the hardware cache is too small to hold
seven nodes.

11.4.2 Caching output values

For most machines, the computations, even for tetrahedral interpolation, are
more expensive than simple caching schemes. The challenge lies in making
the amortized cost of cached interpolation less expensive than reinterpola-
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tion. Some number nc of input–output pairs is stored in a table, with a simple
hashing scheme determining the location in the table at which the color pair
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containing input color ci is stored. 
To convert a new color, apply the hash function h(nc, ci) to obtain an

address in the table. If the color pair containing ci is in that location, return
the output color of that pair. Otherwise, perform the normal interpolation
function, and store the input and output colors in a color pair at the com-
puted location.

The value of caching output values depends on colors repeating before
they are overwritten in the table. Only large/high-resolution images are
important to the discussion of efficiency. These images typically have many
regions at least 0.1% of their size containing nearly constant colors. Even
highly textured regions typically vary only along a single line in color space.
In a 300-dpi scan of a 4 ¥ 5 inch image, a region of 0.1% of the image is 1800
pixels. Due to film grain, scanner noise, and other sources of noise, even a
region of apparently constant color will not have exactly constant colors
throughout such a region. However, it is not uncommon to find regions of
this size containing fewer than 300 distinct colors.

The size of the table used for caching should typically be at least large
enough to hold a scanline or two of the typical image. The chance of reusing
a color increases substantially if the reuse may happen anywhere in a multi-
scanline region rather than in a single scanline. Very large tables have two
disadvantages: besides requiring a large quantity of memory, successively
needed values are unlikely to be in the hardware cache because, by design,
similar values are scattered throughout the table.

11.4.3 Hashing

Hashing is discussed at length in Aho, Sethi, and Ullman.8 Conventionally,
collisions (when a second value maps to an already-used location) are han-
dled using linked lists or secondary hash schemes. For caching color con-
versions, it is more efficient simply to replace the old value with the newly
computed one, as described above. An ideal hash function will map all the
distinct colors found in a few scanlines of an image to different locations in
the table. Designing such a perfect function requires knowledge of the colors
in the image. However, a few guiding principles can be used to design good
enough hash functions.

• Use only additions, shifts, and logical operations.
• Assume that the few high-order bits of each separation will be con-

stant (hence, they contribute no new information).
• Assume that variation is primarily in luminance (RGB variations are

correlated; L*a*b* variations decorrelated).

A simple hash function based on a mapping hashpjw given in Aho et al.8 for
8-bit RGB color is h(nc, ci) = ((((ri << 4) + gi) << 4) + bi) % nc.
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11.4.4 Precomputing fixed-point quantities
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To compute any of Equations 11.2 through 11.10 requires computing values
of t, u, and v, normally in floating point, and multiplying them by the
appropriate differences. For example, 

X = Îxsû, t = xs – X (11.11)

The value of s is a constant for a given lookup table size; a table of Cmax

entries will give the values of X and t in Equation 11.11. This sacrifices no
precision, as the subsequent operations may still use floating point.

The basic operation of linear interpolation involves multiplying a dif-
ference by a parameter in the [0, 1) range and then adding it to a base value.
Essentially the same operations appear throughout Equations 11.2 through
11.10.

Lerp(a, b, t) = a + (b – a) t (11.12)

Values a and b may be viewed as being fixed-point numbers with n bits
fraction. In this representation, they range from 0 to 1 – 1/Cmax. Converting
Equation 11.12 from floating point to fixed point with Z fraction bits,

Lerp(a, B, T) = a + ((D T + (1 << (Z – 1))) >> Z) (11.13)

with D= (b – a), T = Ît(1<<Z) + 0.5û .
All of the variables in Equation 11.12 are originally retrieved from lookup

tables. Hence, replacing the lookup table entries with the corresponding
values in Equation 11.13 eliminates all of the floating to fixed point conver-
sions from the interpolation. On typical machines, conversions to and from
floating point are expensive, so this is a significant savings. All of the fixed
point values in Equation 11.12 have known ranges: 0 £ a <1, –1 + 1/Cmax £
b – a £ 1 – 1/Cmax, 0 £ t < 1. With Cmax = 28, a value of Z = 23 will not cause
overflow on a 32-bit machine in the expression (D T) >> Z.

11.4.5 Eliminating multiplications

It is possible to eliminate all of the multiplications at the expense of an extra
table lookup. Whether this speeds up the interpolation will depend on the
machine architecture. On a typical RISC machine, multiplications are imple-
mented as multiple instruction microcode subroutines, making them more
expensive than table lookups. On a machine with relatively slow memory
and a fast multiply instruction, leaving in the multiplications may be faster.

In Equation 11.13, D takes one of 2 Cmax – 1 possible values. It is multiplied
by T, which takes on one of Cmax values. T itself and D are retrieved from
lookup tables; there is no reason why the value in the table from which T
was retrieved should not, instead, contain a pointer to a multiplication table,
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or an index into a table of multiplication tables. Assuming n = 8 bits, there
would be 256 tables of 511 entries, for a total of just under 128k entries. The
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entries themselves could be either short words (to save space) or full words
(for faster computation).

The expression then becomes

Lerp(a, D, T) = a + ((M[D, T] + (1 << (Z – 1))) >> Z) (11.14)

with M[j, k] = j k, and with the precomputed values of D offset by Cmax so
that the table indices are always positive. The rounding and final shift can
also be folded into the table; however, for tetrahedral interpolation, there
are three differences multiplied by three parameters and added to a node
value. In that case, (1 << (Z – 1), should be added only once, as in

Tetra(a, B, C, D, T, U, V) = a + ((M[B, T] + M[C, U] + M’[D, V]) >> Z) 
(11.15)

with M’[j, k] = M[j, k] + (1 << (Z – 1)).

11.4.6 Eliminating tests

On modern machines, frequent branches are expensive because they require
the instruction pipeline to be flushed. Some machines have a large enough
instruction cache so that instructions may be fetched for both sides of a
branch, up to two or even three branches, in which case the penalty is
negligible until the number of branches without intervening computation
reaches three or four. Thus, it is sometimes, but not always, advisable to
eliminate tests. For tetrahedral interpolation, recall from Section 11.2.3.4 that
tests are required to determine one of six enclosing tetrahedra.

In all six cases, the expression to be evaluated is the same; only the
operands st, su, and sv differ. These are taken from a set of 12, depending on
the case. If a node is defined as containing the value of p00 and an array
containing the 12 edge-differences, the case analysis selects which of the 12
array indices are used to obtain st, su, and sv. Each of the tests in the case
analysis is decided on the basis of the sign of the difference between two of
t, u, and v. Therefore, the case analysis may be replaced by 

Dtu = t – u; Dtv = t – v; Duv = u – v (11.16)

Selector = ((Dtu >> s) & 1)|((Dtv >> (s – 1)) & 2)|((Duv >> (s – 2)) & 4)

where s is the number of bits in the machine word holding Dtu, Dtv, and
Duv. An eight-entry lookup table of three-tuples will give the indices of st,
su, and sv . This completely replaces the tests with straight-line code, making
the code smaller and possibly faster. Whether the code is faster depends on
whether the extra shifts and ors of values likely to be in registers is more or
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less expensive than the average 2.5 tests. The shift and mask combination
can also be incorporated into a LUT, which may help as well. This depends

11  Page 707  Tuesday, November 19, 2002  9:04 AM
on the trade-off between two ALU operations and a memory fetch. Fully
optimized, the version with 2.5 tests ran in approximately 71 ns per color
on a 500-MHz PowerPC G3; the best version without tests took about 79 ns,
10% slower.

11.4.7 Data Formats

The format of the data in the table may make as much difference as many
of the other acceleration techniques. Most of the processing involved in
transforming large images is memory-bound. That is, the time required
on current architectures tends to be dominated by the number of memory
accesses. Typical processors have 32- or 64-bit memory buses, which means
that a 32-bit (or 64-bit) memory fetch costs no more than a single-byte
fetch. With this in mind, an image stored as packed pixels will generally
be more efficient to process than one with separately stored channels.
Similarly, a multidimensional LUT containing all of the data for a color at
each node enables more efficient processing than one table per output
separation.

Many processors penalize conversion to and from floating point.
Lookup tables are typically computed in floating point, but color images
are most commonly stored as arrays of fixed-point integers. Output devices
invariably require integer-valued pixels. Hence, the LUT should be con-
verted to fixed point once and then all pixel operations carried out in fixed
point.

Besides memory access time, packed pixels provide acceleration oppor-
tunities, as multiple additions or averaging operations may be carried out
in parallel across separations. Specialized media processing instructions (VIS
instructions on the SPARC processor, MMX on Intel, AltiVec on PowerPC)
often permit the operations for a linear interpolate (LERP, above) to be
computed in parallel on two or four sets of operands (with the same value
of the parameter) in the time normally required to do one such operation,
provided the operands are formatted appropriately.

11.5 Color transforming palettized images
A palettized image is one in which pixel colors are limited to a relatively
small palette of colors. A common palette size is 256, used in 8-bit displays.
The process of designing the optimal palette and assigning image pixels to
the most appropriate palette color is commonly referred to as color quantiza-
tion and is covered in detail in another chapter. The most efficient way to
apply a color transformation to a palettized image is to apply the transfor-
mation a priori to the palette colors and store the palette in the new trans-
formed color coordinates. The color transformation problem is thus trans-
lated to one of color quantization. 
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11.6 Subsampled color correction
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11.6.1 Introduction

Some applications use luminance/chrominance-aligned color spaces. For
example, YCrCb allows color/brightness/saturation adjustments at the user
interface, and the color fax standard uses L*a*b*, which is also lumi-
nance/chrominance based. To avoid ambiguity with yellow, assume that the
input is a luminance/chrominance space, denoted LCrCb, a surrogate for
other luminance/chrominance spaces.

It is well known that the visual system’s spatial resolution for chromi-
nance information is less than its resolution for luminance information. This
fact is exploited both in TV transmission (where Cr and Cb are transmitted
with half the bandwidth of L) and in JPEG/ADCT compression. Good
quality color conversion may be had, therefore, by selecting one pixel from
every 2 ¥ 2 block for full conversion through the 3-D LUT, and attempting
to approximately preserve only the luminance channel for the remaining
pixels.

In the case where the output space is RGB (or CMY), this consists of the
following steps:

• From the input block {(L00, Cr00, Cb00), (L01, Cr01, Cb01), (L10,
Cr10, Cb10), (L11, Cr11, Cb11)}, select one pixel, (Lm, Crm, Cbm) as the
master pixel. 

• Convert this pixel using full 3-D LUT interpolation to (Rm, Gm, Bm).
• For each pixel Pij in the block, assign

Rij = (Rm/Lm)Lij; Gij = (Gm/Lm)Lij; Bij = (Bm/Lm)Lij. (11.17)

For efficiency, the loop need only be iterated over the remaining three pixels;
however, there may be advantages in hardware to performing it in parallel
on all four.

Note that the ratios in Equation 11.17 are invariant over pixel and need
only be computed once per block. Alternatively, the ratio Lij/Lm is invariant
over separation and need only be computed once per pixel. The multiplica-
tions and divisions in Equation 11.17 can be sped up by computing in log
space.

(11.18)

The difference logaRm – logaLm is invariant within the block and should be
computed only once. Both the exponentiation and logarithms can be per-
formed by one-dimensional table lookup. The loss of precision that results
from computing in eight-bit log space should not be a problem because the

Rij a
logaRm logaLm� logaLij+

=
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space is density-like and mimics the logarithmic behavior of the visual
system.
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The simplest and probably most reliable choice of the master pixel is the
one with maximum luminance. Then, all of the ratios in Equation 11.17 are
between 0 and 1. One can conceive of an analogous rule for converting to
CMYK. However, four-colorant rendering typically involves some type of
undercolor removal (UCR) and gray component replacement (GCR) strategy,
establishing the relative proportions of CMY and K used to produce a given
color. UCR/GCR can be very different from printer to printer; hence, a simple
application of the above method may not always work. For the case where
there is very little CMY subtraction, the following may be used:

• Convert one pixel from (Lm, Crm, Cbm) to (Cm, Mm, Ym, Km) using the
full three-dimensional lookup table approach. 

• For the remaining pixels, Pij, set

Cij = 1 – ((1 – Cm)/Lm)Lij (11.19)

with analogous expressions for Mij and Yij. 
• The same rule should not be used for Kij because this would result

in a situation where K is introduced at an edge between two colors,
neither of which contains K. Instead one might simply assign Kij = Km.

Because Lm is the maximum L, the ratio is always in the 0, 1 range, so all of
the colors are between 0 and their original values.

At the expense of six more additions per block (and two shifts in soft-
ware), Crm and Cbm for the master pixel can be computed as the mean values
of Crij and Cbij, providing substantial improvements in color image quality
and reducing the tendency of the method to erode color against white edges.
In the JPEG architecture, the chrominance channels are subsampled after
filtering; hence, Cr and Cb are already averaged, and this step is not needed.

11.6.2 Results

Subsampled color correction was compared to conventional color correction,
both in terms of computational cost and image quality. For the simulation,
subsampled color conversion was performed from LCrCb to CMY using the
six previously described steps, with no chroma averaging. This was followed
by UCR/GCR and tone reproduction curve (TRC) correction applied to the full
resolution image. The standard used was conventional color conversion from
LCrCb to CMYK using three-dimensional lookup and tetrahedral interpolation.
Table 11.4 summarizes the computational requirements per pixel. Clearly, sub-
sampled color correction yields substantial savings in multiplications, addi-
tions, and shifts, with moderate savings in lookups — and an extra comparison
operation. When full resolution and subsampled color correction are compared
on 400-dpi prints, the two images are visually almost indistinguishable.
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Table 11.4 Computational Savings from Subsampled Color Correction
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11.7 Color transforming JPEG compressed images
Many high-end printing systems store and/or transmit compressed images
to save bandwidth, memory, and disk space. Prior to printing, the system
will decompress and then color correct the image to compensate for the
characteristics of a particular printer. In the conventional architecture, the
decompression step converts the image from some encoded format (e.g.,
JPEG with Huffman encoding) into the spatial domain. In this domain, the
color image may be stored in some standard device-independent color space
such as IJG/CCIR YCrCb, SMPTE RGB, or Kodak Photo Ycc. The ensuing
color correction transforms colors from this space to device coordinates. It
is more efficient, however, to perform the color space conversion in the
compressed domain.9 As with subsampled color correction, this approach
involves parsing color correction into two processes, applying an expensive
process to a low-resolution version of the image before decompression and
an inexpensive operation to the entire image after decompression. The ratio
of resolutions controls the trade-off between quality and speed. 

In this section, we focus on color transforming JPEG compressed images.
JPEG compression is described in detail in Chapter 8 and therefore is not
presented here.

11.7.1 Correcting for RGB devices

RGB devices include monitors (cathode-ray tube based and liquid crystal
display based), film recorders, and some printers that present an RGB inter-
face. To perform fast color correction on compressed images, separate the
color correction problem into two phases as shown in Figure 11.12a. First,
account for any mismatch between the image and device primaries, and
interactions among the device primaries. Second, linearize the individual
primaries to some measured standard. (In Chapter 5, these two phases are
denoted characterization and calibration, respectively.) The first phase converts
device-independent data to device-dependent linearized data, and it requires
at least a 3 ¥ 3 matrix multiplication, and possibly a full three-dimensional
table lookup with interpolation. The second phase involves using tone repro-
duction curves (TRCs) to linearize the device. The TRCs are implemented
as one-dimensional table lookups and are therefore cheaper than the first
phase. Normally, if the first phase involves a three-dimensional table lookup

Method Multiples Adds Compares
1-D table 
lookups

Binary 
shifts

Conventional 12 14 2.5 19 2
Subsampled 2.25 9.75 3.63 17.1 0.5
Percent savings 81 30 –45 11 75
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Colorimetric RGB
Phase I

(3-D lookup + interpolation)
Phase II

( linearization TRCs)

Linearized
device RGB

Raw device RGB
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with interpolation, the second phase can be combined into the same table
lookup, yielding the entire result. When converting compressed images, it
is advantageous to keep the two phases separate.

For reasons that will become apparent shortly, it is important that the first
phase preserves the sense of the color space. That is, if the input image data is
in a device-independent RGB space (e.g., sRGB), this will be converted to a
device-dependent RGB space. Similarly, if the input is in a device independent
luminance-chrominance form (e.g., YCbCr), it will be converted to a device-
dependent luminance chrominance space, Y´C1´C2´. Note that the relation
between YCbCr and RGB need not be kept between Y´C1´C2´ and the device-
dependent RGB space (i.e., R´G´B´). The advantage of choosing a suitable lumi-
nance-chrominance space Y´C1´C2´ is to reduce operations when converting
data to R´G´B´, as compared to the standard conversion from YCbCr to RGB.
The disadvantage is the possibility of having data in different color spaces for
the same DCT block (to be discussed later). The device luminance-chrominance
space is defined by a simple transformation from device RGB (or CMY),

Y´ = 3 R´/8 + G´/2 + B´/8

C1´ = B´ – Y´

C2´ = R´ – Y´ (11.20)

The inverse transform from device Y´C1´C2´ to device RGB is simply 

R´ = C2´ + Y 

G´ = Y – 3 C2´/ 4 – C1´/ 4 

= Y – C2´ + (C2´– C1´) / 4 

B´ = C1´ + Y (11.21)

which involves a total of five additions and one shift. Linearization TRCs
are then applied to the device RGB values prior to output. 

(a)

Colorimetric RGB
Phase I

(3-D lookup + interpolation)
Phase II

(UCR, GCR, linearization TRCs)

Linearized
device RGB

Raw device CMYK

(b)

Figure 11.12 The two phases of color correction for (a) RGB and (b) CMYK devices.
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11.7.2 Correcting for CMYK Devices
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For four-colorant printers, color correction comprises a transformation from
a device-independent three-tuple to printer CMYK. Again, the transforma-
tion can be divided into two phases. The first phase converts the device-
independent three-tuple (e.g., colorimetric RGB) into a device-dependent
three-tuple with the same color coordinate orientation (e.g., printer RGB).
This transformation is invariably implemented by a three-dimensional LUT
and is the more computationally intensive phase. As before, the second
phase comprises one-dimensional linearization TRCs. Additionally, four-
colorant printers require undercolor removal (UCR) and gray component
replacement (GCR), converting printer RGB to printer CMYK. (See Chapter
5 for details on UCR and GCR.) Figure 11.12b summarizes the two phases.
Often, both phases are combined into a single LUT that maps the device-
independent three-tuple directly to CMYK. 

11.7.3 Color correction in the JPEG compressed domain

In conventional applications, the image is first decompressed, and then the
color correction transform is applied, as shown in Figure 11.13. It is often
faster to combine the decompression and color correction. We will describe
the CMYK case; the RGB is simpler and easy to derive from the description
of the CMYK case. We assume that images are stored in colorimetric (device-
independent) RGB space and JPEG compressed format. We exploit the fact
that the human visual system is most sensitive to errors at low spatial
frequencies. (This is especially true of chromatic errors.) We thus propose an
efficient color correction scheme that performs the more expensive (Phase I)
correction on only a sub-image corresponding to the first few low-order DCT
coefficients. The simpler (Phase II) color correction is then performed on the
entire image. The steps are summarized below:

• Obtain the N ¥ N sub-block of low-order DCT components, N < 8.
• Perform the N ¥ N inverse DCT, and obtain a reduced block of an

RGB image of reduced resolution.
• Apply Phase I color correction to the pixels of the N ¥ N reduced

block by three-dimensional lookup and interpolation, yielding an
image in printer RGB coordinates.

• Perform a forward N ¥ N DCT on the reduced block, and place the
resulting DCT components into their respective positions in the orig-
inal 8 ¥ 8 DCT block.

Compressed Image
(Device Independent RGB)

Output ImageHuffman Decoder IDCT (8x8) Color Correction
(Phases I and II)

Figure 11.13 Standard approach of color correcting JPEG compressed images.
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• Apply Phase II color correction to all image pixels of the resulting
image.

These steps are summarized in Figure 11.14. Note that because the N ¥ N
sub-block of partially corrected pixels is reinserted into the 8 ¥ 8 block in
the fourth step, it is important that Phase I correction preserve the orientation
of color space (i.e., colorimetric RGB to device RGB, colorimetric YC1C2 to
device YC1C2, etc.).

In the luminance/chrominance case, we use colorimetric YCbCr and
device YC1C2. As YC1C2 is just a simplification of YCbCr, we expect the two
color orientations to be very close. The DCT block right before inverse DCT
contains low-frequency components from device YC1C2 but high-frequency
components from colorimetric YCbCr. As the difference between colorimetric
and device YC1C2 (or YCbCr) is generally more significant than the differ-
ences between colorimetric YC1C2 and colorimetric YCbCr, the slightly dif-
ferent high-frequency components (whenever they are present) do not affect
the quality of the color reproduction. Because the lowest frequency term
(DC) is always converted using the full process, every block has the correct
color on average.

11.7.4 Results

Results indicate significant computational savings over the conventional
approach (i.e., full decompression, followed by RGB to CMYK by three-
dimensional LUT and interpolation for all image pixels), with little loss in
image quality. The quality/cost trade-off clearly depends on the number of
low-order DCT coefficients (i.e., N) to which Phase I color correction is
applied. Experiments were carried out for N = 1, 2, 3. When N = 1, the
computational savings are a factor of 64, and the image quality may be
acceptable for some applications. When N = 3, there is some computation
savings, and the image quality is very close to that achieved with conven-
tional decompression and color correction. The computational savings for
different values of N are summarized in Table 11.5.

11.8 Color transforming multiresolution images
The previous section exploited the reduced sensitivity of the human visual
system in high spatial frequencies to develop an efficient color transforma-

Output Image
Compressed Image

(Device Independent RGB) Huffman Decoder

Extract NxN
sub-block IDCT (NxN) Phase I

Color Correction DCT (NxN)

Phase II
Color Correction

Merge into
8x8 block IDCT (8x8)

Figure 11.14 Efficient approach of combining color correction with JPEG decom-
pression.
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tion algorithm for JPEG imagery. The technique presented in this section is
similarly motivated but applied to images represented in a multiresolution
format.10 In many applications, images undergo a multiresolution decompo-
sition (e.g., discrete wavelet transform) for the purpose of image compression
or other processing. After the image is reconstructed from its multiresolution
representation, it typically must be color corrected for rendering to a specific
device. As in the previous section, the color correction process is divided
into two phases: (1) a complex multidimensional transform (Phase 1), and
(2) a series of essentially one-dimensional transforms (Phase 2). Phase 1
correction is then moved within the multiresolution reconstruction process
in such a way that a small subset of the image samples undergoes the
multidimensional correction. Phase 2 correction is then applied to all image
samples after the image is reconstructed to its full resolution.

To illustrate the idea, a particular example is considered wherein a
discrete wavelet transform (DWT)11 is used to represent the image in a
multiresolution format for an application such as compression12 or inverse

Table 11.5 Percentage Savings in Employing 
Efficient Correction of JPEG Compressed 
Images vs. the Standard Approach

Operation N = 1 N = 2 N = 3

Lookups 40.9 37.2 29.7
Comparisons 18.8 13.8 6.3
Additions 48.8 43.3 33.6
Multiplications 98.8 95.3 89.5
Shifts 46.9 37.5 34.4

Figure 11.15 Wavelet representation of an image.
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halftoning.13 A four-colorant (CMYK) printer is used as the output device
to which the final image is rendered. This technique uses the multiresolution
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image representation to perform accurate color correction on a low-resolu-
tion image and then to perform a partial correction to the full resolution
image prior to printing. The prime advantage is reduced computational
cost required by the color correction. Another potential advantage is to
reduce the effect of high-frequency noise in the color correction. This tech-
nique differs from that described in the previous section in that it is not
restricted to the JPEG framework, but it addresses a more general architec-
ture wherein multiple resolutions of an image (equivalently a frequency
band decomposition of the image) are available at some point in the image
processing path.

11.8.1 Wavelet representation

Numerous methods exist to decompose images into multiple resolutions.
We use the wavelet transform11 as an example of a multiresolution technique,
as this is a powerful and general framework that has shown considerable
promise in several applications such as compression. The wavelet transform,
assumed to operate independently on each of the color separations, is
applied using a cascade of two-channel filter banks. These filter banks are
composed of decimators (i.e., downsampling operators) and lowpass and
highpass filters. At a given level, the image is split into four sub-bands
(lowpass and highpass in each direction). The wavelet transform is obtained
by repeating, at each level, the downsampling and filtering process over the
lowpass sub-band of the previous level. This is shown in a pictorial example
in Figure 11.15 for four levels. The image is then processed or analyzed in
the wavelet domain for the given application and is finally submitted to an
inverse wavelet transform so as to reconstruct the spatial domain represen-
tation. Note that since each downsampling or upsampling operation is
accompanied by a filtering operation, the multiresolution representation can
also be conceptualized as a decomposition of the image into a series of
frequency bands, i.e., a sub-band decomposition. Such a decomposition
trades frequency resolution for spatial resolution. The reader is referred to
Chapter 8 for further details on the wavelet transform. The DWT is assumed
to already be a part of the system for a given application such as compression
(see Figure 11.16); we simply take advantage of its availability for efficient
color correction.

11.8.2 Combining multiresolution analysis and color correction

The technique is implemented by moving Phase 1 color correction inside the
inverse wavelet (i.e., image reconstruction) transform as shown in Figure
11.17. The image is partly reconstructed in the device-independent color
space. Phase 1 color correction is then applied to convert the subsampled
image to a device color space, and the remaining wavelet reconstruction is
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applied in this device space. Finally, Phase 2 correction is applied to the fully
reconstructed (i.e., full resolution) image.

As with the JPEG case described above, the input color space to the
Phase 1 transform must have the same sense and orientation as the output
color space (e.g., colorimetric RGB to device R’G’B’). This is because the
frequency bands that have gone through Phase 1 color correction are now
combined with the remaining frequency bands that have not been color
corrected, and such combinations make sense only if the image data in all
the bands are of the same color sense.

Note that, when performing N stages on the forward transform over an
image of P ¥ P pixels and only N – M stages in the inverse transform, the
result is a subsampled image with dimensions P’ ¥ P’, where P = 2MP’. Hence,
Phase 1 color correction is applied to only a small fraction (1/22M) of the
samples, thus drastically reducing the computational cost. If C1 and C2 rep-
resent the computational cost per pixel of Phase 1 and Phase 2 color correc-
tions, respectively, the overall cost for the proposed system is

C = C1 2–2M + C2 (11.22)

This is to be compared with the complexity of the standard color correction,
which is on the order of 4C1/3 (since three-dimensional interpolation has to
be performed for each of C, M, Y, K as opposed to three color separations
in the proposed method). The wavelet transform is not included in the cost
because it is assumed to be needed for other reasons.

Table 11.6 shows the computational cost per sample necessary to color
correct the image using the low-cost and conventional approaches for M =

CIE
Color
(YCC)

DWT
+Processing

+Inverse DWT

Phase I
Color

Correction
YCC

Printer
YCC

Printer
CMYK

Phase 2
Color

Correction

Figure 11.16 Standard approach of color correcting an image in the wavelet
representation.

CIE
Color

N-levels wavelet
transform

N-M levels of
the inverse

wavelet transform

Processing in
wavelet domain

Phase 2
Color Correction

Remaining
M levels of the
inverse wavelet

transforms

CMYK
Phase 1

Color Correction
over low-pass

Figure 11.17 Efficient approach of performing color correction of a wavelet
representation.
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Table 11.6 Comparison of Computational Cost per Image Sample Using 
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1, 2, 3 (i.e., Phase 1 applied to 1/4, 1/16, and 1/64 of the samples, respec-
tively). The savings provided by the proposed method is significant, partic-
ularly for multiplications, additions, and table lookups. 

The parameter M offers the trade-off between computational cost and
image quality. Higher values of M result in more computational savings but
greater image degradation. Since the degradation is introduced at high spa-
tial frequencies, where the HVS has reduced sensitivity, an acceptable qual-
ity/cost trade-off should be achievable with this technique. 

Furthermore, because the color correction process itself is derived from
measurements of targets of uniform patches, it is based on a low-frequency
characterization of the device. Hence, there seems to be some consistency in
applying the color correction to a low-frequency (i.e., locally averaged) ver-
sion of the image. The high-frequency information must somehow be added
back to the image to preserve texture and edges. However, because there is
no explicit color characterization of the device at these frequencies, a simple
approximation can be used to add the information in these bands, exploiting
again the frequency response of the HVS.

11.8.3 Results

Balasubramanian et al.10 have examined the cost/benefit trade-off for wave-
let-based color correction. For this experiment, no application-dependent
processing (e.g., compression, segmentation, etc.) in the wavelet domain was
included. That is, the wavelet transform was computed up to a given stage
M (where M = 0 represents the original image at full resolution); Phase 1
color correction was performed on the lowpass channel at that stage; the
inverse wavelet transform was performed; and finally, Phase 2 color correc-
tion was applied on the entire image. A 16-tap QMF (Johnston) filter bank11

was used for the wavelet analysis. The images were processed through the
standard and wavelet-based techniques and reproduced on a Xerox 5760
CMYK xerographic printer at 400 dpi.

For M = 1 or M = 2, pictorial images corrected with the proposed
algorithm result in quality that is very close to, if not indistinguishable from,

Standard and Proposed Multiresolution Color Correction Approaches

Operation Standard M = 1 M = 2 M = 3

Lookups 19 14.75 11.94 11.23

Comparisons 2.5 2.63 2.15 2.04

Additions 14 9.75 7.67 7.17

Multiplications 12 2.25 0.56 0.14

Shifts 2 1.25 1.06 1.02
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that of the standard approach. For M = 3, artifacts start to appear in the form
of beating or oscillations in reasonably flat areas of the image. These artifacts
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are mainly noticeable in the luminance component of the image, so similar
effects might also appear if one would apply the same concept for TRC
adjustments of monochrome images. They result from the printing process’s
highly nonlinear nature and from mixing corrected and uncorrected fre-
quency bands.

The algorithm’s resulting image quality was also measured quantita-
tively. To provide a visually meaningful representation, the CMYK images
were transformed into CIELAB space using a printer characterization func-
tion. To maintain consistency throughout the system, the same characteriza-
tion function was used to derive the color correction transforms. However,
while the colors are now in a perceptually meaningful representation, the
CIELAB coordinate system suffers from the drawback that it is intended
only for comparison of large, uniform patches and does not account for the
sensitivity of the HVS to different spatial frequencies. This limits the utility
of the CIELAB space for evaluating differences between reproductions of
natural scenes. Since the algorithm exploits frequency characteristics of the
HVS, an error metric should also be spatial frequency dependent. To this
end, the spatial CIELAB (sCIELAB) model14 was used. This model uses the
luminance and chrominance spatial contrast sensitivity functions, as well as
the traditional CIELAB color space, to derive a color difference metric that
accounts for both spatial frequency characteristics and color difference sen-
sitivity of the HVS. For the color difference term, the original sCIELAB model
uses CIELAB 1976 DE. In this work, we used the CIE 1994 color difference
equations as a superior metric for perceived color difference. The final
sCIELAB error metric is in the form of an error image that represents the
perceived difference between two images. An aggregate error criterion was
selected as 

(11.23)

where S is the number of image pixels, and DEij are the individual sCIELAB
DE errors for each pixel. Tests were carried out for M = 1, M = 2, and M =
3, for three images with varying pictorial content. A viewing distance of
14 in. and a 400 dpi resolution were assumed. The average DE across the
three images is shown as a function of M in Table 11.7. In general, DE < 1 is
considered to be below the visual detectability threshold. Noise, printer
instability, and other imperfections in the system can easily give rise to
reproduction errors between DE = 1 and DE = 3. Given this margin, and the
qualitative observations, M = 2 appears to provide substantial savings with
acceptable image quality. We remark, finally, that to make the evaluation
more realistic, the effect of wavelet processing for the given application (e.g.,
compression, descreening, etc.) must also be considered.

DErms
1
S
--- DEij

2

ij
Â=
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Table 11.7 sCIELAB DE Error between Proposed 
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11.9 Color transformations using multilevel chrominance 
halftoning

11.9.1 Introduction

As with the previous two approaches, this technique is based on the obser-
vation that the HVS is less sensitive to errors in chrominance than errors in
luminance at high spatial frequencies. This fact may be exploited for efficient
LUT interpolation in the case where the input to the LUT is a luminance-
chrominance color space. Consider the example of a printer color correction
LUT from L*a*b* to CMYK. The aforementioned property of the HVS sug-
gests that it is possible to introduce high-frequency distortions in the a* and
b* channels in a manner that is not objectionable to a human observer. One
such distortion is multilevel halftoning15 along each of the a* and b* axes.
Multilevel halftoning in three-dimensional LUTs has been described by
Spaulding et al.16 and Love et al.17 In both cases, the authors apply halftoning
to all three dimensions of the input signal, eliminating interpolation alto-
gether. Here, we consider the special case of luminance-chrominance input
and apply halftoning only to chrominance. By introducing high-frequency
distortions only in the chrominance channels and preserving high accuracy
in luminance, this technique offers image quality superior to that achieved
by three-dimensional halftoning, at a modest computational cost. 

Numerous multilevel halftoning techniques exist, e.g., screening, scalar
error diffusion, vector error diffusion, etc. (These are covered in detail in
Chapter 6.) Of these, multilevel screening is the least computationally inten-
sive. The cost savings is achieved by choosing the halftone levels to coincide
with the LUT node locations along a* and b*, as shown in Figure 11.18a. In
this figure, the gray circle represents an input point in CIELAB space. First,
multilevel halftoning is performed along the a* dimension by comparing the
input a* value to a threshold in a spatial, periodically repeating halftone
screen. If the input value exceeds the screen threshold, the former is mapped
to the next larger level a*2 in the LUT; otherwise, it is mapped to the next
smaller level a*1. This process is repeated for the b* dimension. Thus, after
the chrominance halftoning step, the input color maps to one of the four
neighboring LUT nodes in the a*-b* plane (denoted by black circles in Figure

Multiresolution Color Correction Scheme and the Standard 
Approach (M = 0)

M 0 1 2 3

sCEILAB DEavg 0 1.29 1.84 3.19

Note: Printed image resolution is 400 dpi, and the assumed viewing
distance is 14 in. Results are averaged over three images.
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11.18a). Calculating the output CMYK now requires only a one-dimensional
interpolation along the L* dimension between the neighboring levels L*1 and
L*2, as shown in Figure 11.18b.

The choice of halftone screen is an important consideration. For Bala-
subramanian’s experiment,1 an 8 ¥ 8 Bayer screen was used whose threshold
values are shown in Table 11.8. (The threshold values as well as the input
values are normalized to the range [0–1] prior to halftoning.) The consider-

Table 11.8 Threshold Values in Bayer Dot Screen Used for Multilevel 
Chrominance Halftoning

0 16 4 20 1 17 5 21
24 8 28 12 25 9 29 13
6 22 2 18 7 23 3 19
30 14 26 10 31 15 27 11
1 17 5 21 0 16 4 20
25 9 29 13 24 8 28 12
7 23 3 19 6 22 2 19
31 15 27 11 30 14 26 10

Note: Each of the values is divided by 31 before comparing with the input signal, assumed
to be normalized to the range [0, 1].

b*

b*

b*

a*a*

1

2

1 2

input
color

halftoning
in b*

halftoning in a*

(a)

b*

a*

(b)

L*

L*

L*1

2

input
color 1D interpolation

Figure 11.18 (a) Two-dimensional multilevel halftoning in the chrominance plane,
followed by (b) 1-D interpolation in luminance.
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able variation in threshold values between adjacent halftone cells gives the
Bayer dot its ability to effectively contain the halftone signature within high
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spatial frequencies. Other screens, e.g., stochastic screens, can also be used. The
same screen was used at the same spatial orientation for both a* and b* chan-
nels. It is conceivable that an improvement in image quality could be gained
by using different screens or screen orientations for the a* and b* channels.

11.9.2 Results

To evaluate the quality of this technique, four test images of natural scenes
were processed. These images, shown in grayscale in Figure 11.19, represent
a variety of image content, including several smooth gradations, which are
particularly challenging to multilevel halftoning. These images, specified in
CIELAB, were transformed to CMYK with a three-dimensional LUT using
the standard and halftone-based interpolation techniques. The LUT was
constructed for a Xerox 5795 laser printer and comprised 16 uniformly
spaced nodes along each of the three axes. Table 11.9 provides a comparison
of the computational complexity of the novel chrominance halftoning tech-
nique with standard trilinear and tetrahedral interpolation. Recall that the
latter is the fastest known three-dimensional interpolation algorithm. The
table breaks down the computational cost in terms of multiplication, addi-
tion, comparison, and shift operations per pixel. The last column in the table
shows actual execution times on a Sparc20 workstation. To account for vari-
ations from trial to trial, the timing data was derived by processing each of
the four images through 10 trials and averaging the results across all the
trials. Also, to make the comparison realistic, standard speed-up techniques
such as caching were used with the trilinear and tetrahedral interpolation
for the timing tests (these were not included in the computational cost
measures). The data in Table 11.9 show that the cost savings are significant.

As in the previous sections, sCIELAB was used in conjunction with
the CIE 1994 color difference metric to assess image quality objectively.
The experiment was performed as follows. A three-dimensional LUT from
L*a*b* to offset press CMYK was constructed using a standard printer

Table 11.9 Cost Analysis for Trilinear, Tetrahedral, and Chrominance Halftoning 
Methods, for N output Signals

Interpolation algorithm M A C S T

1. Trilinear 7N 7N + 2 0 2 18.0
2. Tetrahedral 3N 3N + 2 2.5 2 12.0
3. Chrominance halftoning + luminance 
interpolation

N N + 4 0 2 5.9

4. Percent savings from (2) to (3) 67 43 100 0 51

Note: M, A., C, and S denote multiplications, additions, comparisons, and shift operations,
respectively. T denotes the real execution time in µs to perform the interpolation for
each pixel on a Sparc20 workstation.
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characterization technique (see Chapter 5 for exemplary methods). The
input L*a*b* image was transformed to printer CMYK with this three-
dimensional LUT, using both the new technique and tetrahedral interpola-
tion. The two CMYK images were then converted back to CIELAB using a
printer characterization function for the offset printer and a visual difference
image computed using sCIELAB. The mean and 95th percentile values from
the difference image are reported in Table 11.10 for the four test images.
Recall as a point of reference that, for an image consisting of a single color

Figure 11.19 Images used in evaluating multilevel chrominance halftoning (clock-
wise from top left): Jill, Fruit, Carousel, Painted girl. “Painted girl” was obtained
from the Kodak Photo Sampler (photographer: Steve Kelly).
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Average and 95th Percentile sCIELAB Errors for Images 
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(i.e., only the zero frequency component), the sCIELAB error reduces to CIE
DE94. In our experience, the errors shown in Table 11.10 are within typical
page-to-page and day-to-day print variations, which lie between 3 and 5 DE
units for many printers. If LUT size is not a critical issue, a denser node
sampling along a* and b* will further reduce the visibility of the chromi-
nance halftoning.

Visually, it is usually difficult to distinguish the difference between
chrominance halftoning and standard tetrahedral interpolation at normal
viewing distances. Close examination sometimes reveals minor artifacts aris-
ing from the chrominance halftoning, particularly in smoothly varying image
regions. On the whole, experimentation shows that the new technique works
well for a wide variety of imagery, including computer generated graphics
content. For printers with low spatial resolution, e.g., low-cost inkjet printers,
the minor artifacts introduced by the chrominance halftoning are often
masked by the final binary halftoning applied to each of the C, M, Y, K
separations.

11.10 Conclusions
In this chapter, a number of techniques have been introduced to facilitate
efficient color transformations. Since multidimensional LUTs pose the great-
est challenges in terms of computational and storage costs, these have been
the primary focus. The chapter began with an introduction to basic three-
dimensional LUT interpolation geometries on regular lattices, including tri-
linear, prism, pyramidal, and tetrahedral. This was followed by a discussion
of interpolation on irregular lattices, a special case being sequential interpo-
lation. A set of practical techniques to accelerate interpolation operations
was then described. Finally, various techniques were presented for reducing
the computational cost of processing large images through three-dimen-
sional LUTs. These techniques all exploit the human visual system’s reduced
sensitivity to luminance errors at high spatial frequencies. The most suitable
technique is determined by the trade-offs between cost and accuracy relevant
to a given application. High-speed printing systems, for example, may call

in Figure 11.19, Error Calculated between Reproductions Produced by 
Tetrahedral Interpolation vs. Chrominance Halftoning

sCEILAB error

Images Average
95th 

percentile

Jill 2.59 4.4
Painted girl 3.38 6.0
Fruit 3.48 6.4
Carousel 4.0 8.1
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for techniques that reduce computation, while low-cost devices with limited
built-in memory are likely to benefit from techniques that compress LUT

                                   

11  Page 724  Tuesday, November 19, 2002  2:30 PM
size with minimal impact on quality. Hardware assistance can also be used
to complement the techniques proposed in this chapter. Finally, conceivably,
these techniques can be combined with each other to form even more effec-
tive approaches. 
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12.1 Introduction

 

Color digital cameras are used by a growing number of consumers and
professional photographers. These cameras use one or more CCD or CMOS
image sensors to capture color records of the scene, and they digitally process
the color records to produce color image files. Digital cameras are normally
just one part of an imaging system or imaging chain.

 

1

 

The system typically includes an image-capable computer, which allows
the digital camera images to be stored, edited, enhanced, printed, or trans-
mitted to other locations.

Digital cameras are used in many diverse applications having varying
requirements. These cameras include a wide range of designs, from “toy”
PC peripherals used by children to color infrared cameras used in specialized
scientific applications. Of these, two important classes of cameras can be
compared: megapixel consumer cameras, which fully process or 

 

render

 

 the
color image data and then store images in a standard JPEG-based image
format, and professional cameras, which store a much higher quality 

 

unren-
dered

 

 representation of the color image data from the sensor. The consumer
cameras produce “finished” JPEG standard image files that can be directly
used by most imaging devices and software. The professional cameras store
unrendered image data, which later will be processed using proprietary
software running on a separate host computer to complete the camera image
processing. This provides the highest possible quality and control of the color
image. 

Both types of cameras use a range of digital storage media, including
several types of flash EPROM memory cards as well as magnetic and optical
storage media. Professional cameras typically leverage conventional film
camera bodies and removable lenses, and they use a large optical format
CCD sensor.

 

2 

 

Consumer cameras normally use a nonremovable zoom or
fixed focal length lens designed to work with a small optical format sensor.

 

3

 

12.2 Digital camera architecture

 

The capabilities and performance of a digital camera depend on both the
camera’s hardware architecture and its image processing algorithms, often
provided by firmware. As a result, two cameras that share a common
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hardware architecture and use identical image sensors can provide very
different color image data if different image processing algorithms are used.

 

12.2.1 Digital camera hardware

 

Figure 12.1 is a generic block diagram of the hardware components used in
a typical digital camera.

 

4

 

 The camera has an adjustable focal length lens,
controlled by zoom and focus motors. The zoom motor also controls an
optical viewfinder. The lens assembly includes an infrared (IR) blocking filter
and an optical anti-aliasing filter.

 

5

 

The camera lens focuses light from the scene onto a single color image
sensor, typically a charge-coupled device (CCD). The analog signal from the
CCD is amplified and converted to digital form, normally using a 10- or 12-
bit analog-to-digital (A/D) converter.

 

6

 

The digital data are processed by a camera application-specific inte-
grated circuit (ASIC) digital image processor

 

7

 

 or by a high-performance
microprocessor. Depending on the camera design, the camera image pro-
cessing may be performed almost entirely in the camera ASIC or, alterna-
tively, by a microprocessor incorporating a digital signal processor (DSP)
designed to provide rapid image processing. In many cameras, the data from
the A/D are temporarily stored in a DRAM buffer memory, and processing
is performed on blocks of pixels. The DRAM buffer holds several unproc-
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& Shutter

IR blocking &
anti-aliasing

filter

Optical
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Imager

Status LCD
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Figure 12.1 Block diagram of the hardware components used in a typical digital
camera.
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essed images, allowing 

 

bursts

 

 of images to be captured. The microprocessor
is controlled by firmware stored in nonvolatile memory. In some cameras,
the firmware is stored in flash EPROM and can be updated in the field to
provide improved performance and new features. 

The processed images are normally stored on a removable memory card,
although some low-cost cameras use internal flash EPROM memory instead.
There are several different memory card formats, including PC cards, Com-
pactFlash cards, SmartMedia cards, Memory stick, SD (Secure Digital) cards,
and multimedia cards (MMCs). Instead of flash EPROM cards, the removable
memory can use magnetic hard drives, magnetic floppy disks, recordable
optical discs, and magneto-optical discs. The removable media allow the
images to be transferred to any computer or reader having the appropriate
interface. The images can also be downloaded from the camera using a USB,
IEEE 1394, or other common PC interface.

When the user presses the shutter button halfway, the camera performs
automatic exposure and automatic focus processing to prepare to take the
final still image. When the user fully depresses the shutter button, an image
is captured and stored in DRAM. A subsampled image is processed to create
a 

 

thumbnail

 

 size image for display on the LCD. This allows the user to
immediately review the image and to capture a new image if the existing
photo is unsatisfactory. The ability to view captured photos immediately is
one of the most attractive features of digital cameras.

 

12.2.2 Color separation methods

 

There are several methods for capturing color images using a solid-state
sensor, as shown in Figure 12.2 and described below.

•

 

Color filter arrays (CFAs)

 

.  Most digital cameras use a single image
sensor overlaid with a mosaic pattern of colors, known as a 

 

color filter
array

 

 or 

 

CFA

 

.

 

8 

 

Each photodetector is sensitive to only one color spec-
tral band. As a result, 

 

de-mosaicing

 

 must be used to produce a full-
color image. There are a variety of color filter patterns and de-mosa-
icing algorithms.

•

 

Color sequential.

 

 In this method, the color image is produced by
taking three successive exposures while switching in optical filters
having the desired RGB transmission characteristics. The resulting
color image is formed by combining the three-color separation im-
ages. The filters may be dichroic or absorptive RGB filters mounted
in a color wheel or a tunable LCD filter. A few companies have
developed professional color sequential digital cameras for studio
use. These cameras are primarily used for still-life subjects, because
any subject or camera motion will result in colored edges in the
captured image.

•

 

Multi-sensor color.

 

 This method uses a beam splitter, which is typ-
ically a dichroic prism, to separate the light into red, green, and blue
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components. These are focused onto three separate monochrome
image sensors.

 

9

 

A small number of professional cameras use this method. Cameras with
a combined red/blue imager,

 

10

 

 and one or two green imagers, have also been
developed. The disadvantages of the multi-sensor approach include the high
cost of the sensors and the beam splitter and the difficulties of maintaining
image registration.

R

G
B

Prism

Figure 12.2 (See color insert following page 430) Capturing color images using a
solid-state sensor.
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12.2.3 Rendered camera processing

 

To provide interoperability, most consumer digital cameras produce stan-
dard “rendered” image files that can be immediately used by most software
applications. Figure 12.3 shows an example of the final still image processing
flow in a typical consumer camera. An exposure and focus determination
process provides the exposure time and the lens f/number and focus dis-
tance settings. The image is captured using these settings. The CFA data
from the sensor is interpolated or “de-mosaiced” to reconstruct the “missing”
color pixel values. White balance corrects for the scene illuminant, and a
tone scale/color processing operation is used to compensate for the camera
spectral sensitivities and render the image data. The rendered image data
are sharpened, JPEG compressed, and stored using internal flash memory
or a removable memory card. The images are stored using the Exif/JPEG
format,

 

11

 

 which requires that the images be represented as 24-bit RGB data
and includes metadata indicating that the image code values should be
interpreted as sRGB encoded color data.

 

12 

 

This provides interoperability, but
it limits the gamut and dynamic range of the stored images.

 

12.2.4 Unrendered camera processing

 

Digital cameras also have been developed for professional photographers,
whose livelihood depends on taking high-quality color pictures. To pro-
vide the highest possible image quality, and to provide the flexibility
needed to enable workflows appropriate for professional photography, the
image processing can be divided between the camera and a separate host
computer.

One example of a professional camera workflow is shown in Figure 12.4.
The camera exposure/focus determination process provides the lens settings
used to capture the color still image. The camera stores the image data
captured by the sensor. To reduce the file size, an initial “rough” white
balance can be used, followed by lossless image compression. The com-
pressed sensor image data are formatted into a TIFF/EP image file

 

13
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Figure 12.3 Example final still image processing flow in a consumer camera.
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includes metadata describing the camera characteristics, including the cam-
era model and the sensor color filter pattern. The stored data are unrendered
color sensor pixel values, typically called a 

 

raw  or 

 

unfinished  image file.
The images are downloaded to a host computer, which decompresses

the image file to recover the image sensor color data. The de-mosaicing,
white balance, and tone scale/color processing then can be performed. This
can be done as part of an ICC color-managed workflow. Alternatively, the
camera may provide some of these processing steps, such as de-mosaicing,
before storing the unrendered image files.

The same digital camera hardware can provide both the rendered image
processing shown in Figure 12.2 and the unrendered image processing work-
flow shown in Figure 12.3. For example, the KODAK PROFESSIONAL DCS
760 Digital Camera, a portable 6.3-megapixel camera, provides both types
of processing. This camera uses a Nikon F5 35-mm format single-lens reflex
(SLR) camera body and interchangeable lenses. The JPEG/Exif processing
is typically used by photojournalists to immediately obtain finished images
that can be transmitted via news agencies. The unrendered workflow is
typically used by studio photographers to provide precise, high-quality color
images with maximum flexibility. 

12.3 Color image sensors

 

The core of a digital camera is a sensor array that converts light into
electrical signals representing a color image. There are many different image
sensor architectures

 

14

 

 that can be used in digital cameras, including full-
frame CCD sensors,

 

15  frame transfer (FT) devices, 16  interline (IL) devices, 17

 

frame–interline transfer (FIT) devices, 18

 

 MOS x-y addressed devices,

 

19

 

 and
CMOS sensors.

 

20

 

The primary difference among these sensor architectures is the method
used to read the signal produced by the two-dimensional array of photode-
tectors so as to provide a sensor output signal. However, the type of photo-
detector used, rather than the charge readout architecture, is the most impor-
tant color reproduction consideration, as determines the sensor’s spectral
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Figure 12.4 Example professional camera workflow.
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sensitivity. There are two classes of photodetectors (photodiodes and photo-
capacitors), each of which has different spectral response characteristics. 

 

12.3.1 Full-frame CCDs

 

Many professional digital cameras use a full-frame CCD,

 

21

 

 shown in Figure
12.5. This architecture consists of a two-dimensional array of cells, each
having a light-sensitive photocapacitor. The photocapacitors are arranged as
parallel, vertical charge-coupled device (CCD) shift registers. This enables
the charge collected by the photocapacitors to be shifted into an opaque
serial, 

 

horizontal

 

 CCD register at the bottom of the array and then serially
transferred to an output amplifier. When the camera’s mechanical shutter is
opened, the camera lens focuses the image onto the photocapacitor array. A
positive bias voltage is applied to form a depletion layer in the silicon
beneath some of the polysilicon or indium tin oxide (ITO) gates of the
photocapacitors, creating potential energy wells in each cell of the array. The
incident light generates electron-hole pairs, and the electrons accumulate in
the wells. Because the number of electrons collected is proportional to the
incident illumination level, the sensor has a linear response curve, unlike
photographic film. This means that the digital code value representing each
pixel from the A/D converter, corresponding to each photosite on the CCD,
is linearly related to the number of electrons collected by the photosite. 
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CCD
output
signal

Output
amp Horizontal Readout

Register

Full-frame CCD cell
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Indium Tin Oxide
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Figure 12.5 Full-frame CCD.
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In very bright areas of an image (e.g., specular reflections), the number
of electrons generated in a particular photodetector may exceed the charge
capacity of the potential well. These excess electrons must be eliminated, or
they will migrate to nearby wells, causing 

 

blooming

 

, wherein the specular
reflection grows into a blob or a streak. Image sensors used in digital cameras
normally include an  anti-blooming 

 

overflow drain to direct the excess charge
into the sensor substrate and prevent it from spilling into neighboring cells.
Nevertheless, setting the proper camera exposure level is critical, as overex-
posure will clip the image highlights. Underexposures can be corrected by
digitally adjusting the code values of the final image, but this will also
increase the noise.

At the end of the exposure time, the mechanical shutter closes to block
the light, and the charge collected in each potential well is transported to
the output amplifier. Clocking signals are used to repetitively cycle the
voltages of adjacent electrodes in the array. The electrons are first shifted
vertically, as a complete array, so that a row of electrons is transferred to the
horizontal readout register. The electrodes in the horizontal readout register
are rapidly clocked to transfer the electron charge packets, one at a time,
onto a charge-to-voltage converter and output amplifier, which provides the
sensor output signal. 

The full-frame CCDs used in most professional digital cameras have cell
sizes ranging from about 6 

 

×

 

 6 microns up to 16 

 

×  16 microns. A larger cell
size provides higher dynamic range and lower noise, enabling the camera
to operate at a higher ISO speed. However, the larger cell size also makes
the sensor physically larger and more costly, and the camera lens is likewise
more bulky and expensive.

 

12.3.2 Interline CCDs 

Most consumer megapixel cameras use an interline (IL) sensor architecture,
also shown in Figure 12.5. Because they have a design similar to the sensors
used in high-volume consumer camcorders, these CCDs can be manufac-
tured at relatively low cost. The size of each cell is typically between 2.5 

 

×

 

2.5 and 5 

 

×

 

 5 microns, so the sensor size is very small as compared to the
size of sensors used in professional cameras. In most IL sensors, photodiodes
located adjacent to each opaque CCD readout register are used as the light
detectors. Whereas the photodiode uses only a small fraction of the cell area,
a microlenticular array

 

22

 

 is normally fabricated on top of the CCD to improve
sensitivity. A microlens centered above each photodiode gathers much of
the light that would otherwise fall on the opaque shift registers, and it directs
the light into the photodiodes. 

In most modern IL CCD sensors with small pixels, an interlaced readout
method is employed, as the polysilicon gates of the vertical shift register
cannot be made small enough. In this case, a vertical shift register cell is
shared with two photodiodes. The odd and even rows of the photodiode
array are read out separately. When IL sensors with interlaced readout are
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used in a digital camera, a mechanical shutter is used to prevent additional
accumulation of electrons in one set of photodiodes while the other set is
being read out.

 

12.3.3 CMOS image sensors

 

Unlike CCDs, CMOS sensors can be fabricated using the same process tech-
nology used to make standard microprocessor and memory ICs. CMOS
devices can integrate more functions — detection, readout control, and A/D
conversion — onto a single integrated circuit. They consume far less power
because of their higher level of integration. 

In a typical CMOS sensor, each photosensitive cell contains a photodiode
that converts light to electrons, a charge-to-voltage conversion section, a reset
and select transistor, and an amplifier section. Overlaying the entire image-
sensing array is a grid of metal interconnects to apply timing and readout
signals, and output signal interconnects for each column. The column output
signal is connected to a set of decode and readout electronics located outside
of the light-sensitive array. This architecture allows the signals from the entire
array, or from a subset of the array, to be read out by a simple addressing
technique. This flexible readout, which allows a low-resolution image to be
output quickly for camera exposure control and focusing, is not available
with a CCD. 

One of the biggest issues with CMOS sensors is the pixel-to-pixel and
column-to-column fixed pattern noise caused by variability in the gain and
offset of the readout transistors and per-column amplifiers. This noise limits
the types of digital cameras that can use CMOS sensors. Whereas CCDs have
lower noise levels than CMOS imagers, they can capture a larger scene
dynamic range, i.e., the ratio between the darkest and brightest illumination
levels that can be detected. 

CMOS sensors were first used in two very different types of digital
cameras. The first type is miniature, low-resolution cameras, such as cameras
built into cellular telephones, which offer limited image quality. In this
application, the low cost, low power consumption, and high level of inte-
gration offered by CMOS are very attractive. The second type is a profes-
sional digital camera for studio use. In this case, three large sensors are used
in conjunction with significant digital image processing so as to compensate
for the sensitivity and noise disadvantages of CMOS sensors.

 

12.3.4 Color filter array patterns

 

To provide a color image, each cell of the sensor array is covered with a
transmissive filter of a particular color to form a color filter array (CFA).
Although many different CFA patterns have been developed, the most pop-
ular patterns are the two shown in Figure 12.6. The RGB Bayer pattern has
50% green cells arranged in a checkerboard and alternating lines of red and
blue cells. The complementary mosaic pattern

 

24

 

 has equal proportions of
magenta (M)-, green (G)-, yellow (Y)-, and cyan (C)-sensitive photosites
arranged in magenta–green and yellow–cyan rows. The position of the
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green–magenta columns is staggered by one pixel on alternate
green–magenta rows. 

The color cells on the image sensor sample the color spectral bands of
the scene at different spatial locations. As a result, high-spatial-frequency
luminance information in the scene can be 

 

aliased

 

 by the color sensor sam-
pling to produce low-spatial-frequency color artifacts. These artifacts can be
extremely objectionable for certain types of scene details, such as regular
patterns in architecture and certain textures in clothing. To minimize these
aliasing artifacts, most digital cameras use some type of optical anti-aliasing,
or 

 

blur,

 

 filter positioned in front of the sensor.

 

25

 

People are more sensitive to high spatial frequencies in luminance than
in chrominance, and luminance is composed primarily of green light. There-
fore, the Bayer CFA improves the perceived sharpness of the digital image
by allocating more spatial samples to the green image record. The checker-
board arrangement of the green cells in the Bayer CFA results in a diamond-
shaped Nyquist domain for green, and smaller rectangular-shaped Nyquist
domains for red and blue.

 

26

 

The RGB Nyquist domains are vertically and horizontally symmetric if
the photosite pitch is 

 

square

 

 so that the limiting resolution due to the sensor
sampling is the same in the vertical and horizontal directions. 

The complementary pattern provides a higher sensor output signal level,
because the cyan and yellow color filters absorb less than half the light of
blue and red filters, for example. This provides an improved image signal-
to-noise ratio at low illumination levels relative to RGB patterns, as the sensor
output signal level is much higher. However, the RGB patterns normally
provide a better image signal-to-noise ratio at higher illumination levels,
when the sensor can operate at the full signal level, because the signal levels
are equal, and the color correction processing required for complementary
patterns increases the noise level.

 

27

 

12.3.5 Sensor spectral response

 

Silicon semiconductors have an inherent sensitivity to light in the visible
and the near-infrared regions of the spectrum. The quantum efficiency of a
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Figure 12.6 (See color insert) Popular CFA patterns.
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typical photodiode used in an IL CCD is shown in Figure 12.7a. This is the
response of a monochrome sensor having a microlens but no color filter
array. The spectral response decreases above 500 nm because of the vertical
overflow drain used to provide antiblooming protection. The long-wave-
length photons penetrate deeper into the silicon before they are absorbed;
therefore, the electrons they free have a higher probability of migrating to
the antiblooming drain rather than to the potential well of the photodiode,
as compared to shorter wavelength photons. Nevertheless, the IL CCD has
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Figure 12.7 (a) Quantum efficiency of a typical photodiode and (b) color sensitivity
of the output of a color IL image sensor.
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significant sensitivity in the near-infrared region. Therefore, color digital
cameras normally use an IR blocking filter to prevent color reproduction
problems caused by IR light. 

The color sensitivity of the output of a color IL image sensor in a typical
digital camera is shown in Figure 12.7b. This figure shows the quantum
efficiency of a typical IL sensor overlaid with an RGB pigment color filter
array, cascaded with a typical camera lens and IR blocking filter. This color
sensitivity will be compensated for by the camera’s digital image processing,
to produce a standard color response. Each camera can have a slightly
different response because of the manufacturing tolerances of the sensor,
filters, etc. In some cases, the compensation is determined specifically for
each camera as it is manufactured so as to achieve the best results. 

 

12.4 Color de-mosaicing in single-sensor cameras

 

To produce a high-quality color image, the color samples from a single-sensor
color imager must be processed to provide red, green, and blue values (or
luminance and chrominance values) at each pixel location, because each cell
of the array captures only one spectral band. The process of filling in the
missing color values has been referred to as color sensor  de-mosaicing, CFA
interpolation,  and  color reconstruction.  A range of different types of algorithms,
having various levels of complexity, can be used for different CFA patterns. 27 

Simple de-mosaicing algorithms use nonadaptive, bilinear interpolation.
The missing color values are calculated using the average of the nearest
samples of the appropriate color. For example, the missing green values (e.g.,
the green values at red and blue sensor cell locations) of the Bayer pattern
are calculated by averaging the four values from the vertically and horizon-
tally adjacent green cells. This approach is simple to implement but reduces
the sharpness of the image while increasing the visibility of false color
artifacts due to aliasing of high-spatial-frequency luminance patterns in the
scene. Figure 12.8 shows an example of an edge-sensing de-mosaicing algo-
rithm for calculating the missing green values.

 

28

 

In this example, the missing green value, G5, is classified into one of
three types: a uniform area, a horizontal edge, or a vertical edge. The clas-
sifier compares the absolute values of the differences of the vertically adja-
cent green pixels, G4

 

−

 

G6, and the horizontally adjacent green pixels, G2–G8,
with a threshold value T. If both values are below the threshold, G5 is
classified as being in a relatively uniform area and is set equal to the average
of the four adjacent green values. This is equivalent to bilinear interpolation
in uniform areas. If both values are not below the threshold, the absolute
value of the difference between the horizontally adjacent green pixels,
G4–G6, is compared with the threshold. If it exceeds the threshold, G5 is
classified as a horizontal edge pixel and is set equal to the average of the
two vertically adjacent green pixels. If not, G5 is a vertical edge pixel and
is set to the average of the horizontally adjacent green values. This provides
an adaptive algorithm, which interpolates 

 

along the edge

 

 to preserve edge
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sharpness and minimize 

 

zipper

 

 artifacts that occur with simple bilinear
interpolation. 

Once the missing green values have been calculated, the luminance-like
green record is complete, and the chrominance-like R/G and B/G records
can be calculated. For example, whereas the values of B1/G1, G2, and B3/G3
are now known, the value of B2 is calculated by setting B2/G2 equal to the
average of B1/G1 and B3/G3. In other words, the R/G and B/G values
(rather than the R and B values) are calculated using bilinear interpolation.
This approach calculates the missing red and blue values by effectively
adding high-frequency luminance details from the green record into the
sparsely sampled red and blue records.

More sophisticated de-mosaicing algorithms can provide sharper images,
with reduced artifacts, by using a more complex classifiers

 

29

 

 and by using a
larger finite impulse response (FIR) filter

 

30

 

 to calculate the missing green
values. The de-mosaicing may instead use a pattern recognition approach
(for example, by classifying the missing color pixels into edge, stripe, and
corner patterns

 

31

 

) or a gradient-based approach

 

32

 

 to adaptively interpolate
the missing color pixel values. It can also be approached as an estimation
problem that exploits knowledge of image spatial/spectral correlations.

 

33

 

The color pixel reconstruction method used with the complementary
mosaic pattern in Figure 12.6 normally recovers luminance (Y) and color
difference signals R–Y and B–Y. Luminance can be obtained by lowpass
filtering the color pixel values, because the magenta, green, yellow, and cyan
filters have a luminance-like color spectral weighting. The color difference
signals can be decoded by bandpass filtering the CCD output signal. This
method reduces the sharpness of the luminance because of the lowpass
filtering and can create false color artifacts. More elaborate algorithms exploit
the correlation between the luminance and color difference signals to provide
a sharper image with reduced false color artifacts.

 

24
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Figure 12.8 Example of an edge-sensing de-mosaicing algorithm for calculating the
missing green values.
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12.5 Exposure and white balance determination 

 

Digital cameras must include an exposure determination system to properly
expose the image sensor. Some digital cameras also adjust the effective
exposure level of the captured digital image

 

34  (to compensate for sensor
exposure errors) before storing the digital image file. The exposure of the
image sensor depends on the lens f/number, sensor exposure time, scene
illumination level, and scene reflectance, as well as many other secondary
factors. Standard methods have been developed to measure the ISO speed
rating of digital cameras to determine the optimal camera exposure. 35 

12.5.1 Exposure determination

 

Scenes contain a wide range of luminance values. To obtain an acceptable
image, the sensor exposure for important areas of the captured scene must
be less than the saturation level of the image sensor. If the sensor exposure
level in a highlight area is too great, this portion of the digital image will be
clipped. On the other hand, the sensor exposure should be large enough that
the signal level in darker areas of the scene still provides an adequate signal-
to-noise ratio. 

The simplest camera exposure controls use a single photosensor to mea-
sure the average luminance in the lower center portion of the scene. The
lower center weighting is used to reduce underexposure problems with
many outdoor scenes that have bright sky in the top portion of the scene.
The scene brightness value is read as the user begins to press the shutter
button to take a picture. The brightness value determines the appropriate
aperture and exposure time settings and, in some cases, the amount of signal
amplification provided when reading out the image sensor. 

More sophisticated methods use a multisegment light meter, or use the
image sensor itself, to provide exposure control data. In the latter case,
several images are taken in rapid succession, at different exposure levels,
when the user depresses the camera shutter button halfway down.

 

36

The resulting digital images can be divided into various segments, which
are analyzed to determine the proper exposure level for the final still image,
which is captured when the user fully depresses the shutter button.

12.5.2 Dynamic range

The proper exposure for a scene depends on the scene content and dynamic
range. Figure 12.9 shows two images generated from a high-dynamic-range
scene. The image on the left shows a rendering of the scene where the
foreground information is properly exposed, and the image on the right
shows a rendering of the scene where the background information is prop-
erly exposed. In the first case, much of the highlight information was clipped.
Likewise, in the second case, much of the shadow information was lost. Also
shown is a histogram of the scene luminance data for this image. A scene
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luminance range of about 6 stops (1.8 log luminance units) can be reproduced
within the dynamic range of a typical output medium. It can be seen that
only a portion of the total scene information is reproduced in either of the
images. As a result, it is critical that the original exposure level be chosen
correctly so as to capture the information for the important part of the scene.
Professional cameras that store the unrendered image data can typically retain
a larger dynamic range than can be represented in a final rendered image.
In this case, it is possible to make some adjustments in the exposure level
when the image is processed on the host computer.
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Figure 12.9 (See color insert) Images generated from a high-dynamic-range scene.
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12.5.3 White balance determination

As a first step in providing good color reproduction, most digital cameras
include a white balance operation. White balance requires adjusting the RGB
signal levels provided by the image sensor to correct for the color tempera-
ture of the light source used to illuminate the scene. The amounts of red and
blue light in daylight sources are approximately equal. However, many
artificial light sources, such as tungsten light bulbs, provide a much higher
proportion of red light than blue light. Images taken using these illuminants
must have the blue signal amplified to prevent white objects from appearing
unnaturally yellow in the reproduced image. This signal adjustment can
occur in three different ways:

1. Using an optical color correction filter to equalize the sensor exposure
levels 

2. Increasing the analog gain when the low signal color values are read
out of the sensor 

3. Adjusting the digital code values of the captured image

Most digital cameras use the third method.
The difficult part of the white balance operation is determining which

portions of the scene should be reproduced as neutral. The foolproof way
to set the white balance is to have the camera user capture a white or gray
card held at the scene, or to select a neutral object in the captured scene.
This is appropriate for professional cameras but, for consumer applications,
an automatic method for determining the illuminant color temperature is
necessary. 

One such method uses a set of photodiodes covered by RGB filters on
the front or top of the camera, aimed upward toward the light source.37

However, this approach can give incorrect results because of reflections from
walls or other colored objects. It also requires separate components, which
add cost.

Better results are normally obtained by estimating the proper white
balance setting from the image sensor data. The captured color image is
divided into segments, typically between 20 and several hundred, by aver-
aging pixel values to create RGB values for each segment. The segment
values are converted to color difference signals and analyzed to determine
whether the segment is in the same region of the color difference space as a
common illuminant, such as daylight, tungsten, and fluorescent regions.38

Figure 12.10 shows an example of a color difference space and the regions
corresponding to various illuminants. The color difference values for the
segments are analyzed, along with the absolute scene light level, to deter-
mine the likely scene illuminant. In some cameras, the averages of various
segments are instead analyzed using fuzzy logic rules to determine the
deviation from the white balance point.39 Once the likely scene illuminant
or the deviation from the white point is known, the correct separate RGB
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amplification factors can be applied to correct the white balance of the
captured image.

12.6 Tone scale/color processing
The captured camera RGB image signals must be transformed to an output
color encoding appropriate for display or printing on a selected output
device. At a conceptual level, this process can be broken into three basic
steps: a capture colorimetry model, a tone scale/color rendering step, and
an output device model step. These steps are shown in Figure 12.11. While
all digital cameras accomplish these operations either explicitly or implicitly,
in many cases, there are no distinct boundaries between the steps. The
purpose of each step will now be described in more detail.

12.6.1 Capture colorimetry model

The capture colorimetry model step relates the sensor RGB code values (after
sensor de-mosaicing, in the case of a single-sensor camera) to an estimate of
the colorimetry of the original scene. Generally, this model will be different
for each different type of digital camera, reflecting the differences in the
sensor’s spectral sensitivities as well as any nonlinear function used to
encode the sensor signal values. In some cases, it may even be desirable to

Fluorescent Region

R-B

G-(R+B)/2

Daylight RegionTunsten Region

Figure 12.10 Example of a color difference space and the regions corresponding to
various illuminants.

Sensor
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Output
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Figure 12.11 RGB image signal transformation process.
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use a capture colorimetry model that is determined specifically for each
individual camera.40

Generally, the capture colorimetry model will also be a function of the
spectral characteristics of the scene illuminant. Because digital cameras are
used to capture images under a variety of different illuminants, a different
capture colorimetry model should ideally be used in each case. In most
digital cameras, the only provision for compensating for different scene
illuminants is the application of different channel-dependent gain values as
part of the white-balance process, as described earlier. While this approach
can be used to bring neutral scene objects back to the expected position, it
cannot fully correct for other scene colors. It is possible for digital cameras
to implement more complex changes in the camera model as a function of
the scene illuminant.41 In such cases, the appropriate camera model for the
specific scene illumination conditions may be selected based on the results
of the white balance determination described earlier.

Because color appearance is very much a function of the viewing con-
ditions, the color appearance associated with the scene colorimetry can be
known only when the conditions under which it is viewed are specified.
Therefore, the estimated scene color values produced by the capture colo-
rimetry model must be associated with a particular viewing environment to
unambiguously represent a desired color appearance. In many cases, it is
desirable to define a reference-viewing environment to which all images are
referenced. This does not imply that the images need to be captured in that
reference environment but rather that the camera model needs to correlate
the camera signals to the color value with the desired color appearance in
that reference-viewing environment. In practice, one way to specify the
“desired appearance” is to define it as the appearance of the scene had it
been viewed in the reference-viewing environment. Therefore, the capture
colorimetry model can be built by capturing an image of a set of color patches
under the expected actual illumination conditions and determining a trans-
form to relate these values to the measured color values for the color patches
in the reference-viewing environment. However, in other cases, it may be
desirable for the color model to preserve the original look of the actual scene-
viewing environment. For example, a photographer may desire that a pho-
tograph of a candlelit scene preserve the warm, desaturated look of the
original scene rather than the look that the scene would have had under
bright daylight illumination.

The output of the capture colorimetry model is an estimate of the scene
colorimetry. However, there are many ways by which these scene color
values could be encoded. For example, the color values could be represented
using device-independent color spaces such as CIE XYZ tristimulus values
or CIE L*a*b* (CIELAB) color values. Another alternative would be to use
a scene-referred color encoding such as reference input medium metric RGB
(RIMM RGB).42

This color encoding represents the scene colors in terms of a set of
imaginary wide-gamut additive primaries. As will be described later, the
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use of this color encoding has the advantage that desirable tone scale/color
reproduction characteristics can be accomplished in the tone scale/color
rendering step using simple one-dimensional lookup tables (LUTs).

The level of complexity used in the computations for the capture colo-
rimetry model can vary widely from relatively simple matrix-based models
to more sophisticated models requiring the use of complex transformations
such as three-dimensional LUTs. Figure 12.12 shows one simple type of
model that uses a LUT–matrix–LUT processing chain to compute RIMM
RGB scene color values. The first set of one-dimensional LUTs is used to
undo any nonlinearity that may have been applied to the sensor signals
during the capture process. The output of these LUTs provides linear camera
exposure values.

Next, a camera color-correction matrix is used to relate the camera expo-
sure values to the scene tristimulus values. In theory, it can be shown that a
3 × 3 matrix operation can perfectly model this relationship, subject to the
constraint that the sensor spectral sensitivities are expressible as linear com-
binations of the human visual system color matching functions. In practice,
this condition is never exactly met, but a color-correction matrix can still be
used as an approximate solution. Although an optimal color-correction matrix
can be computed from the spectral sensitivities of the sensors, it is usually
more convenient and more accurate to determine the matrix by applying a
least-squares fitting technique to measured data for a set of color patches.

The following matrix can be used to compute the linear RIMM RGB
values from the scene tristimulus values:

(12.1)
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Figure 12.12 Model that uses a LUT–matrix–LUT processing chain to compute
RIMM RGB scene color values.
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(Note that this assumes that the camera color-correction matrix produces
scene tristimulus values with respect to a D50 white point. If some other
white point was assumed, a chromatic adaptation step would be required
before applying this matrix.) Generally, the two matrix operations shown in
Figure 12.12 can be combined into a single matrix multiplication for imple-
mentation purposes.

Finally, the linear RIMM RGB values are converted to an integer repre-
sentation by applying the RIMM RGB nonlinearity.

(12.2)

where C = R, G, or B
Imax = maximum integer value used for the nonlinear encoding 
Eclip = 2.0 is the exposure level that is mapped to Imax, and 

(12.3)

12.6.2 Tone scale/color rendering 
The next step shown in Figure 12.11 is tone scale/color rendering. This step
is used to specify the desired relationship between the original scene colors
and the rendered image colors. Many people would naively expect that the
colorimetry of a pleasing rendered image would be an exact match of the
colorimetry of the corresponding scene and that, therefore, this step should
be a null operation. However, this is almost never the case. Among other
things, the tone scale/color reproduction process that renders the colors of
a scene to the desired colors of the output image must compensate for
differences between the scene and rendered image viewing conditions.43,44

For example, rendered images generally are viewed at luminance levels
much lower than those of typical outdoor scenes. Consequently, an increase
in the overall contrast of the rendered image usually is required to compen-
sate for perceived losses in reproduced luminance and chrominance contrast.
Additional contrast increases in the darker regions of the image also are
needed to compensate for viewing flare associated with rendered-image
viewing conditions.

Psychological factors such as color memory and color preference also
should be considered in image rendering. For example, observers generally
remember colors as being of higher purity than they really were, and they
typically prefer skies and grass to be more colorful than they were in the
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original scene. The tone scale/color reproduction aims of well-designed
imaging systems will account for such factors.

Finally, the tone scale/color reproduction process also must account for
the fact that the dynamic range of a rendered image usually is substantially
less than that of an original scene. It is, therefore, typically necessary to
discard or compress some of the highlight and shadow information of the
scene to fit within the dynamic range of the rendered image.

As with the scene-referred image encoding discussed earlier, there are
many different color encodings that could be used to specify the desired
color of the rendered image. For example, it could be represented by con-
ventional CIE colorimetry or using the International Color Consortium Pro-
file Connection Space (ICC PCS). (The ICC PCS is designed to serve as the
connection between input profiles and output profiles for color management
systems.) Another option is to use the reference output medium metric RGB
(ROMM RGB) color encoding,42 which is a companion color space to RIMM
RGB. This color encoding uses the same set of wide gamut primaries as
RIMM RGB but uses a different nonlinear encoding appropriate for the
dynamic range of rendered images.

The complexity of the tone scale/color rendering transform can vary
significantly, depending on the desired aims and implementation constraints.
In some cases, complex tone scale/color reproduction aims may require the
use of a three-dimensional LUT to independently control the color reproduc-
tion in different parts of color space. For many applications, generally desir-
able tone scale/color rendering characteristics can be achieved simply by
applying a nonlinear tone scale LUT to the individual channels of the RIMM
RGB image to form a rendered image in the ROMM RGB color encoding. (In
fact, this was one of the design criteria that went into the definition of the
RIMM RGB color encoding.42) A typical tone scale LUT of this type is shown
in Figure 12.13.
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Figure 12.13 Typical ROMM RGB tone scale LUT.
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12.6.3 Output model

The final operation shown in Figure 12.11 is the output device model. This
step is used to determine the output code values necessary to produce the
desired color on a given output device. For many workflows, the expected
result is a video RGB image that is ready for direct display on a computer
CRT. One particular video RGB color encoding, known as sRGB, has been
adopted as an international standard12 and is the default output color space
for many digital cameras. One disadvantage to storing digital camera images
in sRGB is that the color gamut of the image will be clipped to the gamut
of the standard CRT. For some consumer applications, this will not be an
important restriction. However, for color-critical, high-end applications, it is
desirable to color manage images directly to an intended output device
rather than going through an intermediate sRGB color encoding. This
enables the highest possible image quality for those applications.

An example of an output model that can be used to convert a rendered
image in ROMM RGB color encoding to sRGB is shown in Figure 12.14. First,
linear ROMM RGB values are computed by applying the inverse nonlinear-
ity,

(12.4)

where CROMM and  = nonlinear and linear ROMM RGB values, 
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Figure 12.14 Example output model for converting an image in ROMM RGB color
encoding to sRGB.
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Next, the linear ROMM RGB values can be converted to D50 XYZPCS

tristimulus values by applying the following matrix:

(12.5)

Whereas sRGB is defined using a D65 white point, a D50-to-D65 chro-
matic adaptation step must be applied before computing the sRGB color
values. This can be accomplished using a simple von Kries transformation
as follows:

(12.6)

(The Hunt–Pointer–Estevez cone primaries45 were used to derive this chro-
matic adaptation transform. Alternatively, other cone primaries or chromatic
adaptation transforms could be used.)

The conversion from XYZD65 tristimulus values to the linear RGB values
associated with the sRGB primaries is given by the following inverse phos-
phor matrix:

(12.7)

Finally, the desired sRGB code values can be computed by applying the
appropriate nonlinearity and quantization:

(12.8)

where C = R, G, or B.
For implementation, the three sequential matrix operations given in

Equations 12.5 through 12.7 can be combined by cascading the matrices
together to form the following single matrix:
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(12.9)

Thus, the transformation from ROMM RGB to sRGB can be implemented
with a simple LUT–matrix–LUT chain.

12.6.4 Processing configurations

The tone scale/color processing chain shown in Figure 12.11 is defined in
terms of a sequence of modular operations. This provides significant flexi-
bility in configuring the processing applied in a particular application. For
example, different tone scale/color rendering modules can be used to
achieve different looks according to different customer preferences, or dif-
ferent output models can be used according to the desired output device.
There is additional flexibility as to when and where each of the processing
steps is applied. For example, in the professional camera image processing
workflow shown in Figure 12.4, the tone scale/color rendering and the
output model steps are delayed so that the user can specify a preferred look
and intended output device using a host-based image processing application.
In other applications, such as the consumer camera image processing work-
flow in Figure 12.3, the final sRGB images are created and stored right in
the camera. In part, this is because the current JPEG-based image format
does not support alternative color spaces. 

In many cases, it is desirable to cascade the various steps in the tone
scale/color processing chain together to maximize computation efficiency.
This is particularly true for the image processing workflow in Figure 12.3,
where fast image processing is a primary consideration. For example, con-
sider the processing steps shown in Figure 12.14. Because sequential matrix
operations can easily be combined to form a single matrix, and, likewise,
sequential LUT operations can be combined to form a single LUT, this entire
processing chain can be implemented using a LUT–matrix–LUT–matrix–
LUT operation.

To further reduce the complexity of the tone scale/color processing
operations, the tone scale function can be moved to a position in the imaging
chain following the sRGB conversion matrix. This effectively means that the
tone scale is applied in video RGB primary space, rather than the wide-
gamut primaries associated with the RIMM RGB space. This will result in
some changes in the color reproduction characteristics of the image. The
most significant changes will be in the hues of some saturated colors. For
many applications, these differences will not be objectionable. After moving
the tone scale LUT, several of the other LUTs and matrices cancel out, leaving
the configuration shown in Figure 12.15. (It should be noted that the tone
scale LUT shown in this figure is not the same one as that shown in Figure
12.13, because the input is now a linear exposure signal rather than encoded
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RIMM RGB as before. However, the same tone reproduction can be achieved
by populating the LUT appropriately.) Because the groups of LUTs and
matrices can be cascaded together, it can be seen that this imaging chain
reduces to a simple LUT–matrix–LUT sequence. This is about as simple as
the tone scale/color processing can get, and it is representative of the pro-
cessing used in many consumer digital cameras.

12.7 Noise reduction and sharpening
The camera digital image processing can include several other types of
processing, such as noise reduction and sharpening. Noise reduction can be
performed at several different stages in the image processing chain. While
sharpening is often performed immediately after tone scale and color pro-
cessing, it can also be performed at an earlier stage of the image processing
chain; for example, as part of the CFA de-mosaicing processing. 

12.7.1 Noise reduction

While there are many sources of noise in a digital camera, the most significant
is often the dark current variability of the image sensor. This noise is caused
by minute imperfections or impurities in the sensor structure that generate
a spatially and temporally varying number of “noise” electrons in each
sensor cell, independent of the sensor illumination level. The signal from
each cell includes electrons resulting from incident photons of light and
electrons caused by dark current. The number of dark current electrons is
proportional to the photosite integration and readout time and is an expo-
nential function of the sensor temperature. Therefore, some professional
cameras have used thermoelectric coolers to reduce the sensor temperature
so as to reduce the dark current noise level. 
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In most digital cameras, the average dark current level is compensated
by using “optical black” masked photodetectors at the edges of the image
sensor. The average signal level of these black cells is determined and sub-
tracted from each image pixel value. This ensures that the signal level of dark
objects does not change with varying sensor temperatures or drifting dc
circuit levels. In some professional digital cameras, the dark level and sensi-
tivity variations of each pixel are determined as part of the camera manufac-
turing process and stored in the camera firmware. These pixel-by-pixel cor-
rections are then performed on the digital image before de-mosaicing.

The color correction step can increase the amount of noise in an image.
As a result, the correction factors may be modified to reduce the noise in the
final image, at some sacrifice in color reproduction. Alternatively, the color
correction can be performed for only the low-frequency image content.

12.7.2 Edge sharpening

The processing used in digital cameras often includes edge sharpening. This
is done to compensate for the image blurring caused by the lens, optical anti-
aliasing filter, and CCD aperture and to provide a subjectively sharper image.
The appropriate amount of sharpening depends on the size and distance at
which the final image is viewed. An image that appears “crisp” when printed
at a small size may appear over-enhanced and artificial when enlarged. 

Edge enhancement can be implemented using a two-dimensional con-
volution filter kernel, for example,

In this case, the filter kernel output equals the present luminance or pixel
value minus the average of the four vertically and horizontally adjacent
values. The filter output is zero in uniform areas of the image but non-zero
for edges. More elaborate filter kernels can be used to tailor the frequency
response. The filter output may be cored by setting small output values to
zero, as these small values are often the result of noise. The signal is amplified
and added back to the original luminance signal — or to the red, green, and
blue signals — to increase the image sharpness. 

Conventional wisdom would indicate that it is best to perform sharp-
ening operations in a color space that is linear with exposure. This is because
many of the sharpness degradations, such as optical blur, occur in linear
space. However, in many cases, it has been found to be preferable to apply
sharpening operations in a color space that is uniform with human percep-
tion so that the amount of sharpening is approximately independent of the
color value. For example, a gamma-space encoding is much more visually
uniform than a linear intensity space. 
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12.7.3 Chroma subsampling

Prior to image compression, the sRGB image signals are normally converted
to luminance (Y) and color difference (R–Y, B–Y) signals. The color difference
signals are often lowpass filtered and subsampled by a factor of 2:1 in both
the vertical and horizontal direction (to create a 4:1:1 format image with four
Y samples for each R–Y and each B–Y sample) or only in the horizontal
direction (to create a 4:2:2 format image with four Y samples for every two
R–Y and B–Y samples). To simplify the processing, the edge sharpening and
noise reduction processing is often performed using the Y and subsampled
R–Y and B–Y signals.

12.8 Image compression and file formats
Most digital cameras employ image compression to allow more images to
be stored in the camera’s digital memory. Consumer cameras normally use
standard JPEG image compression, which is described in more detail in
Chapter 8. Storing the JPEG compressed image data in a standard image file
format enables the image to be decompressed and used by standard com-
puter software applications such as Internet browsers and word processing
programs as well as by image editing programs. 

In professional cameras that require further host processing, it is possible
to use a compression algorithm that is optimized for data from one-chip
color sensors.46 This can provide more efficient compression, as it operates
on the sensor image data prior to de-mosaicing. Often, professional cameras
will provide a lossless compression option to provide the highest possible
quality at the cost of a larger file size.

12.8.1 Exif/JPEG image format

To transfer digital camera images to other digital devices, such as a computer,
appliance printer, or photo kiosk, a standard image data format must be
used so that the device can make sense of the data provided by the digital
camera. Thus, standard image formats are even more important than stan-
dards for the physical and electrical compatibility of the transfer media. 

Most megapixel consumer cameras use the Exif11 image format, which
is based on the JPEG standard.47 The Exif files are named and organized
into folders using the DCF standard.48 DCF requires that the color image be
interpreted as sRGB image data to ensure interoperability. In addition to the
JPEG compressed image data, the Exif file stores various metadata describing
the camera and picture-taking conditions.49 The metadata include the time
and date, camera zoom position and focus distance, illumination level,
camera calibration data, subject, and copyright owner. The metadata can be
used to simplify image retrieval and provide higher-quality prints from the
digital files.50 The Exif metadata include a thumbnail-size image at the
beginning of the JPEG file to allow groups of images to be rapidly viewed
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so that appropriate images can be quickly selected for viewing, copying, or
printing.

12.8.2 TIFF/EP image format

Some professional cameras use the TIFF/EP51 format, based on the TIFF
revision 6.0 specification. Unlike JPEG-based formats, this format allows
uncompressed or lossless compressed images to be stored. It also can be
used with a variety of scene-referred or rendered color encodings such as
RIMM RGB and ROMM RGB. However, to properly interpret the color data,
the meaning of the digital color values stored in the digital image file must
be identified and understood. This can be done by using an ICC color
profile52 to unambiguously define the RGB reference primaries, white point,
and optoelectronic conversion function. 

12.8.3 JPEG2000 image format 

In the near future, digital cameras are likely to use a new wavelet-based
compression standard known as JPEG2000, which has been approved as an
International Standard53 and is also described in Chapter 8. The JPEG2000
format provides the color space flexibility needed for future digital photog-
raphy systems as well as greatly improved metadata support as compared
with the old JPEG standard. 

Many of today’s digital cameras are capable of capturing color data with
a wider dynamic range and larger color gamut than sRGB provides, but they
have to discard the additional data to convert it into a JPEG file that is
compatible with equipment from other vendors. With JPEG2000, digital
cameras will be able to save an image using an extended gamut color RGB
encoding, such as RIMM RGB or ROMM RGB, along with a restricted ICC
profile that essentially provides instructions to allow the color image data
to be converted into sRGB if needed. The extended range image can be used
to create higher-quality prints and to allow exposure level and color adjust-
ments of the decompressed images.
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