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Preface

The field of color imaging deals with the capture, processing, communica-
tion, and reproduction of color images. The origins of color imaging can be
traced back to prehistoric times when cave dwellers created the first color
drawings depicting events in their lives, using primitive materials and tech-
niques available to them. Since then, color images have played an important
role in history, and color imaging has advanced hand in hand with progress
in science and technology. In the past 10 to 15 years, this field, like many
others, has been significantly transformed by the digital revolution.

Digital color imaging devices such as digital still and video cameras,
color scanners, displays, printers, DVD players, and cable/satellite set-top
boxes are now commonplace in both home and office environments. A vast
majority of color imagery is now captured digitally. An even larger fraction
is digital during some part of the image’s life cycle, so it is subject to com-
puter-based processing. Digital technology enables unprecedented function-
ality and flexibility in the capture, processing, exchange, and output of color
images. A knowledge of color science, color systems, appropriate processing
algorithms, and device characteristics is necessary to fully harness this func-
tionality and flexibility. As a result, the field of digital color imaging is a
highly interdisciplinary area involving elements of physics, visual science,
chemistry, psychophysics, computational algorithms, systems engineering,
and mathematical optimization. While excellent texts and reference material
exist in each of these areas, it has hitherto been the responsibility of research-
ers in the color imaging field to cull out relevant information. The goal of
this handbook is to present aspects of these diverse elements as they relate
to digital color imaging in a single and concise compilation. It is my hope
that the handbook’s assimilation of these different aspects and perspectives
will aid students who are starting out in this area, as well as practitioners
and researchers with expertise in specific domains who seek a better under-
standing of the rest of the system.

Chapters 1 through 3 are intended to cover the basics of color vision,
perception, and physics that underpin digital color imaging. The material in
these chapters will serve as useful background for those who are new to this
area and as a refresher and update for color engineers with significant expe-
rience in the field. The end-to-end aspects of control and management of
color in digital imaging systems are addressed in Chapter 4. Chapter 5 is
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concerned with device color characterization, whereby the responses of indi-
vidual color imaging devices (e.g., digital cameras, scanners, color printers,
and displays) are measured and suitably accounted for in the capture and
output of color images.

Chapters 6 and 7 address the important subject of digital halftoning,
which deals with the rendition of images on printers and display devices
that are capable of only bilevel reproduction or, more generally, of a limited
number of levels. Since the vast majority of printers used in the printing and
publishing industries are halftone printers, this topic is of significant interest
in color imaging. Chapter 8 describes the compression of color images, which
is a prerequisite for efficient use of network bandwidth and storage
resources. The chapter cannot, and is not intended to, span the vast field of
image compression. Instead, it focuses on aspects of image compression that
are specifically pertinent to color images, a topic that is often left unad-
dressed by a number of image compression techniques. Brief overviews of
the widely used JPEG and the emerging JPEG2000 image compression stan-
dards are included in the chapter.

Chapter 9 discusses color quantization or palettization of color images
for use in frame-buffer systems with limited memory. While typical desktop
displays today are “full-color” and typically do not require palettization, the
issue is regaining importance in smaller displays on hand-held mobile
devices, which are much more limited. Chapter 10 discusses techniques for
pictorial gamut mapping. These techniques address the fundamental trade-
offs encountered when printing or displaying color images on common
output devices that are capable of producing only a limited range of colors.
Computationally efficient transforms for digital color imaging are discussed
in Chapter 11. Finally, Chapter 12 covers color image processing in digital
cameras, a topic that has assumed great importance with the explosion in
the use of these devices for image capture.

Each chapter of the handbook is largely self-contained and can be read
in isolation, provided the reader is generally familiar with the area. Cross-
references among the chapters capture the important interrelationships in
the information presented in the individual chapters. Chapter 1 also includes
a broad overview of digital color imaging systems with references to, and
connections between, the material in the other chapters, which may not be
directly apparent. This is intended to facilitate the understanding of digital
color imaging from a systems perspective, which is becoming increasingly
important in today’s open, interconnected world. Additional material
related to the book will be made available on the publisher’s web site
www.crcpress.com. In particular, due to concerns of increased cost and the
limitations of color accuracy in the printing process, a number of images
that were originally in color have been included only as black-and-white
figures in the book; full-color electronic versions of these figures are avail-
able online.

I would like to take this opportunity to thank all the authors for their
excellent contributions. They have done an admirable job in writing for a
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fairly wide audience while still communicating their individual research
insights and accomplishments. The quality of the handbook can be directly
attributed to their diligence.

I would also like to thank the outstanding staff at CRC press for their
excellent support in the production and editing of this handbook. In partic-
ular, I would like to thank Nora Konopka for initiating this project, Helena
Redshaw for urging me and the contributors to stay on schedule and for
handling the submissions of all the materials, and Susan Fox for handling
the copy editing and final production. Without their dedicated assistance,
this project would have never been completed.

Gaurav Sharma
Xerox Corporation
Webster, NY
g.sharma@ieee.org
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1.1 Introduction

In our daily lives, color images surround us in print, television, computer
displays, photographs, and movies. While these color images are taken for
granted by a majority of readers and viewers, their production engages an
entire industry of scientists, engineers, and practitioners. A knowledge of
fundamental color principles is central to the work of this industry. The
purpose of this chapter is to provide a concise introduction to some of these
fundamentals of color science, colorimetry, color technology, and color sys-
tems. The presentation in the chapter is organized as a progressive introduc-
tion of principles from a logical rather than historical perspective. While
suitable references and background material are included, the purpose is not
to exhaustively document historical development of the principles or neces-
sarily trace concepts to primary originators.

The perception of color is the result of interaction between a physical
stimulus; receptors in the human eye that sense the stimulus; and the neural
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system and the brain; which are responsible for communicating and inter-
preting the signals sensed by the eye. This clearly involves several physical,
neural, and cognitive phenomena, which must be understood so as to com-
prehend color vision completely. While research continues in the integration
of all these aspects of color, significant success has been achieved in under-
standing the physical and (to a lesser extent) neural phenomena involved
in color sensation. The first part of this chapter attempts to summarize the
current understanding in these areas with particular emphasis on the aspects
that are of interest in color imaging applications.

The second part of the chapter is a brief overview of color recording and
reproduction devices, their underlying physical principles, and color char-
acteristics. Color measuring instrumentation, digital image recording
devices such as scanners and digital color cameras, and color reproduction
devices such as displays and printers are described. The spectral and color
characteristics of images are also briefly discussed. The third part of the
chapter describes the concepts of device-independent color and color man-
agement. The final section offers concluding remarks on the content covered
elsewhere in the chapter.

Where appropriate, each section begins with a description of general
principles and then briefly discusses their application in color imaging appli-
cations. Several of the topics covered here are discussed in significant detail
in later chapters, but the material here provides a broad system-wide over-
view and indicates the connections and interrelations that may otherwise
not be apparent.

1.2 Physical stimuli for color

The physical stimulus for color is electromagnetic radiation in the visible
region of the spectrum, which is commonly referred to as light. In air or a
vacuum, the visible region of the electromagnetic spectrum is typically spec-
ified by the wavelength region between 1,,;,, = 360 nm and A,,,, = 830 nm.
Light stimulates retinal receptors in the eye, which ultimately causes the
phenomenon of vision and the perception of color.

Our current understanding about the nature of light and color can be
traced to the work of Sir Isaac Newton.?!> Newton’s careful experiments?!5216
with sunlight and a prism helped dispel existing misconceptions and led to
the realization that light can be decomposed into a spectrum of monochromatic
components that cannot be further decomposed. Accordingly, light is char-
acterized physically by its spectral composition. Typically, the characteriza-
tion takes the form of a spectral power distribution (SPD), which character-
izes light by the distribution of power (or energy per unit time) as a function
of wavelength.*

t Note that the selection of wavelength rather than frequency or wave number for the specifi-
cation of spectral power distribution of light is a rather arbitrary choice but has become a

commonly accepted convention in the photometry, color measurement, and imaging commu-
nities.
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Absolute spectral power distributions for light emitted or reflected off
a surface are specified typically in radiometric units of Watts per steradian
per square meter.?>>3 In practice, absolute SPDs are rarely (if ever) required
for the purposes of color measurement and specification, and relative SPDs,
where the scale/units are arbitrary, are commonly used. Figure 1.1 illustrates
the relative SPDs of typical daylight, cool white fluorescent office lighting,
and an incandescent lamp. The abscissa on the plot indicates the wavelength,
and the ordinate indicates the relative density of light power. The mathe-
matical interpretation of the spectral power distribution is as follows: if (1)
denotes the spectral power distribution, the power in an infinitesimal inter-
val dA centered about 2, is given by I(Aq)d\.

Light incident on the eye may originate in different ways. When viewing
self-luminous objects, the light directly originates from the object being
viewed. More commonly, the object being viewed is illuminated by an exter-
nal light source, such as daylight outdoors, or light from a lamp/overhead
fixture indoors. In such situations, the SPD of light entering the eye is the
product of the SPD of the light source and the spectral reflectance of the
object. If the SPD of the illuminating source is given by I(A), and the spectral
reflectance of the object is r(A), the SPD of the reflected light is given by the
product I(A)r(A). A similar relation is applicable to objects such a slides that
are viewed in transmission, where the spectral reflectance is replaced by the
spectral transmittance #(A). It is worth noting that the above mathematical
relation is based on an idealized model of illuminant-object interaction that
does not account for several geometry/surface effects such as the combina-

T T T T T T T T
—— Daylight
-—- Cool White Fluorescent

— _Incandescent

Relative Radiant Power

~ =

L L L L L L L
400 450 500 550 600 650 700 750
Wavelength (nm)

Figure 1.1 Measured relative spectral power distributions (SPDs) for daylight, cool
white fluorescent office lighting, and an incandescent lamp.
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tion of specular and body reflectance components.!®®p- 4345 The model is,
however, reasonably accurate for most imaging situations if care is taken to
measure using a light source and geometry similar to that used in final
viewing. Figure 1.2 illustrates a set of spectral reflectances for five different
objects. One can see that the spectral reflectances of objects can demonstrate
significant wavelength selectivity in that they reflect light of certain wave-
lengths with significantly more strength than light of other wavelengths.
This spectral selectivity is typically the main determinant of the color appear-
ance of the object.

1.2.1 The stimulus error

In discussing objects, it is common to say that they possess certain colors.
For instance, the sky may be described as blue, an apple as red, and grass
as green. In actuality, however, there is no color without an observer; there-
fore, attributing a color to an object is not strictly accurate. The attribution
of colors to objects/lights is a particular instance of what psychologists refer
to as the stimulus error?2% wherein a sensation experienced by an observer
is identified with the stimulus causing the sensation. Color scientists and
researchers have been aware of the stimulus error that pervades our common
usage of color terms. Newton himself demonstrated this awareness in his
quote, “The rays, to speak properly, are not colored; in them there is nothing
else than a certain power and disposition to stir up a sensation of this or
that color.” Thus, speaking precisely, the light from the sky is not blue but
evokes the sensation of blue when viewed by an observer.

0.9 ]

1)
@
T
L

Reflectance
o o o o o
w S S o ~

o
)

0.1

Wavelength (nm)

Figure 1.2 Measured spectral reflectance functions for five different natural objects.
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As with several other sensations, the stimulus error is firmly ingrained
in our usage of color terms, and one would have to go to great lengths and
use awkward, pedantic language to avoid it entirely. Consequently, we con-
tinue to use color terms in commonly used contexts and talk, for instance,
of cyan, magenta, and yellow colorants. It is, however, important to realize
that an accurate interpretation of such statements requires a discounting of
the stimulus error.

The stimulus error is often combined with other misuses of color termi-
nology. For instance, one often hears the statement that a prism decomposes
white light into its constituent colors. This statement is clearly inaccurate
and unacceptable in technical usage. The proper statement would be that a
prism decomposes light into its constituent spectral or wavelength compo-
nents. Spectral power distributions of light, spectral reflectance functions,
and spectral sensitivity functions are physical descriptions that are indepen-
dent of observed sensation, and describing these in terms of color sensations
is therefore incomplete and inaccurate. Errors of this type are therefore to
be consciously avoided in technical descriptions of color.

1.3 Human color perception and trichromacy

Figure 1.3 shows a rough schematic of the human eye. The incident light is
focused by the cornea and the eye’s lens to form an image of the object
being viewed onto the retina located at the back of the eyeball. The cornea
provides most of the refraction needed to bring the light to a focus on the
retina, and the primary purpose of the lens is to allow the eye to focus on
objects at different viewing distances by changing the shape of the lens
through the process of accommodation.’>- 19 Photoreceptors within the ret-
inal membrane are responsible for sensing the image and creating the neural
signals that are responsible for the sense of sight. There are two kinds of
photoreceptors: rods and cones. The rods are extremely sensitive to light and
primarily useful for vision under very low light levels, termed as scotopic
vision. In scotopic vision, only shades of gray can be perceived, and no color

Lens Retina

Cornea \ ‘/
.

Figure 1.3 Schematic of the human eye.
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is seen. This is the case, for instance, when objects are viewed under starlight.
Under typical light levels used in imaging applications, the rods become
saturated and do not contribute to vision; instead, the less-sensitive cones
are active. The term photopic vision is used to describe this domain. There
is a gradual change from photopic to scotopic vision as the illumination
level is lowered, and in the intermediate mesopic form of vision both rods
and cones are active. Typical light levels for these three domains of vision
are listed in Section 1.5.1.

The cones are responsible for color vision. Observers with normal color
vision' have three different types of cones, with photosensitive pigments
that differ in their spectral absorption characteristics and, consequently, in
their spectral sensitivities. The three types of cones are commonly called S,
M, and L cones, which are abbreviated forms of short, medium, and long
wavelength sensitive cones, respectively.t Under a fixed set of viewing con-
ditions, the response of these cones can be accurately modeled by a linear
system defined by the spectral sensitivities of the cones. If the spectral
distribution of light incident on the retina is given by f(A), where A repre-
sents wavelength (we are ignoring any spatial variations in the light for the
time being), the responses of the three cones can be modeled as a three vector
with components given by

max

s:(V) F(R)dA i=1,23 (1.1)

Ci

min

where s;(A) denotes the sensitivity of the ith type of cones, and A, Ayyux
denote the interval of wavelengths outside of which all these sensitivities
are zero. As indicated earlier, in air or vacuum, this visible region of the
electromagnetic spectrum is specified by the wavelength region between
Apmin = 360 nm and A,,,, = 830 nm. Estimates of the effective sensitivities
of the LMS cones (i.e., cone fundamentals?¢) are shown in Figure 1.4.

Mathematically, the expressions in Equation 1.1 correspond to inner
product operations® in the Hilbert space of square integrable functions
LZ([km in» Mnax]) - Hence, the cone response mechanism corresponds to a pro-
jection of the spectrum onto the space spanned by three sensitivity functions
{si(k)}le . This space is called the human visual subspace (HVSS).5556125,304310
The perception of color depends on further nonlinear processing of the
retinal responses. However, to a first order of approximation, under similar
conditions of adaptation, the sensation of color may be specified by the
responses of the cones. This is the basis of all colorimetry and will be implic-
itly assumed throughout this section. A discussion of perceptual uniformity
and appearance will be postponed until Sections 1.7 and 1.9.

t Around 8% of males and 0.5% of females are color deficient.

T Note that the common statement that the eye has three cones sensitive, respectively, to red,
green, and blue light is not only inappropriate and erroneous for reasons described in Section
2.1, but also creates a circular definition.

© 2003 by CRC Press LLC



=
N
212F 1
[}
1)
B
g 1f g
[
& s ~
2os} / \ 4

06l / \ J

/ \
0.4f / \ E
/ \
0.2f , \ g
g AN
— S~
0 ! = . . ) )
400 450 500 550 600 650 700

Wavelength (nm)

Figure 1.4 Estimated effective sensitivities of the L, M, S cones (cone fundamentals).

For computation, the spectral quantities in Equation 1.1 may be replaced
by their sampled counterparts to obtain summations as numerical approxi-
mations to the integrals. For most color spectra, a sampling rate of 10 nm
provides sufficient accuracy but, in applications involving fluorescent lamps
with sharp spectral peaks, a higher sampling rate or alternative approaches
may be required.!89.264302303 [f N uniformly spaced samples are used over the
visible range [A,,;,, Aaxl , Equation 1.1 can be written as

N-1
¢ = Y si(M)f(A)AL = s/ f i=123 (1.2)

i=0

In this equation, {A;}}_, are the uniformly spaced wavelengths covering
the visible region of the spectrum, A; = A, + iAX, with AA as the wavelength
sampling interval. The superscrlpt T denotes the transpose operation,
f=[f(Ao), fF(A), evns f(Ay_ D1 is the N x 1 vector of samples of f(A), and
s; = AA[s;(Ay), si(kl) ,5i(Ay_1)]1" is the N x 1 vector of samples of s;(A)
scaled by the sampling 1nterval AM . Note that, for notational simplicity, we
have absorbed the influence of the sampling interval as a scaling factor into
the cone sensitivity vectors {s;};_,. Equation 1.2 can be compactly written
using matrix-vector notation as

c=S"f (1.3)
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where ¢ = [c;, ¢, 63]T, S = [5,, 55, 53] = the N x 3 matrix with the cone sensitivity
vectors as its columns. The HVSS then corresponds to the column space of S.

In normal human observers, the spectral sensitivities of the three cones
are linearly independent. Furthermore, the differences between the spectral
sensitivities of color-normal observers are (relatively) small?”7(-34332833% and
arise primarily due to the difference in the spectral transmittance of the eye’s
lens and the optical medium ahead of the retina.”211,219220328

If a standardized set of cone responses is defined, color may be specified
using the three-vector ¢ in Equation 1.3, known as a tristimulus vector. Just
as several different coordinate systems may be used for specifying position
in three-dimensional space, any nonsingular, well-defined linear transfor-
mation of the tristimulus vector ¢ can also serve the purpose of color spec-
ification. Because the cone responses are difficult to measure directly, but
nonsingular linear transformations of the cone responses are readily deter-
mined through color-matching experiments, such a transformed coordinate
system is used for the measurement and specification of color.

1.4 Color matching

Two spectra, represented by N-vectors f and g, produce the same cone
responses and therefore represent the same color if

STf = S'g (1.4)

Because S is an N x 3 matrix with N > 3, the above system of equations has
multiple solutions. This implies that many different spectra match in color.

It is, in fact, possible to draw significantly stronger conclusions from
Equations 1.3 and 1.4. One of the characteristics of color vision that can be
deduced based on these equations is the phenomenon of trichromacy, which
states that it is possible to produce a color match for a given stimulus
(equivalently, identical cone responses under the same viewing conditions)
by using only combinations of light from three light sources.10>20020!1 Tp estab-
lish this, consider three color primaries, i.e., three colorimetrically independent
light sources py, p,, ps. The term colorimetrically independent will be used in
this chapter to denote a collection of spectra such that the color of any one
cannot be visually matched by any linear combination of the others. Math-
ematically, colorimetric independence of p,, p,, ps; is equivalent to the linear
independence of the three-vectors S"p,, S"p,, and S™p,. Hence, if P = [p,, p,,
ps), the 3 x 3 matrix S"P is nonsingular.

For any visible spectrum f the three-vector

def B
a(f) = (S'P)'S’¢
satisfies the relation
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STf = STP a(f) (1.5)

which is the relation for a color match. Hence, for any visible spectrum f,
there exists a linear combination of the primaries, P a(f), which matches the
color of f. This statement encapsulates the principle of trichromacy. It can
be further seen that a(f) specifies the unique linear combination of primaries
that matches f in color. This follows from the nonsingularity of STP, which
ensures that if Sf = STPv, = S"Pv,, then v, = v,. The elements of a(f) represent
the relative intensities or “strengths” of the primaries required to match the
color of f.

Some additional elaboration is necessary to establish the correspondence
between the above mathematical argument and a physical experiment in
which colors are matched using three primaries. In the mathematical com-
putation, it is possible that the obtained vector of primary intensities, a(f),
has negative components (in fact, it can be readily shown that, for any set
of physical primaries, there exist visible spectra for which this happens).
Because negative intensities of the primaries cannot be produced, the spec-
trum P a(f) is not realizable using the primaries. A physical realization
corresponding to the equations is, however, still possible by rearranging the
terms in Equation 1.5 and “subtracting” the primaries with negative inten-
sities from f. The double negation cancels out and corresponds to the addi-
tion of positive amounts of the appropriate primaries to f.

The setup for a typical color-matching experiment is shown schemati-
cally in Figure 1.5. The observer views a small circular field that is split into
two halves. The spectrum f is displayed on one half of a visual field. On the
other half of the visual field appears a linear combination of the primary
sources. The observer attempts to visually match the input spectrum by
adjusting the relative intensities of the primary sources. The vector a(f)
denotes the relative intensities of the three primaries when a match is
obtained. Physically, it may be impossible to match the input spectrum by
adjusting the intensities of the primaries. When this happens, the observer
is allowed to move one or two of the primaries so that they illuminate the
same field as input spectrum, f (see Figure 1.6). As noted earlier, this proce-
dure is mathematically equivalent to subtracting that amount of primary
from the primary field; i.e., the strengths in a(f) corresponding to the prima-
ries that were moved are negative. As demonstrated in the last paragraph,
all visible spectra can be matched using this method.

1.4.1 Color-matching functions

The linearity of color matching expressed in Equation 1.4 implies that, if the
color tristimulus values for a basis set of spectra are known, the color values
for all linear combinations of those spectra can be readily deduced. The unit
intensity monochromatic spectra, given by {e;},, where e, is an N-vector
having a one in the ith position and zeros elsewhere, form a orthonormal
basis in terms of which all spectra can be expressed. Hence, the color match-
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Figure 1.5 Color matching experiment.
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Figure 1.6 Color matching experiment with negative value for primary p;.
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ing properties of all spectra (with respect to a given set of primaries) can be
specified in terms of the color matching properties of these monochromatic
spectra.

Consider the color matching experiment of the last section for the mono-
chromatic spectra. Denoting the relative intensities of the three primaries
required for matching e; by a; = a(e;), the matches for all the monochromatic
spectra can be written as

S'e, = S'Pa, i=12..,N (1.6)
Combining the results of all N monochromatic spectra, we get
ST, = STPAT (1.7)

where I =[ey, e,,..., ey] is the N x N identity matrix, and A =[a;, a,,..., ay]”
is the color matching matrix corresponding to the primaries P.f The entries in
the kth column of A correspond to the relative amount of the kth primary
required to match {e;};_,, respectively. The columns of A are therefore
referred to as the color-matching functions (CMFs) (associated with the pri-
maries P).

Now, reconsider the matching of a general spectrum f = [f,, f,, ..., fy]”
in a color matching experiment using the primaries P. The stimulus can be
decomposed in terms of the unit intensity monochromatic stimuli {e; }-_ , as

N
f=1If = [elez---eN][flnya ---,fN]T = Zfiei (1.8)

i=1

Recall, a linear combination of the primaries with relative intensities speci-
fied by the tristimulus vector a; matches the monochromatic spectrum e;.
From the linearity of color matching and the above decomposition, it there-
fore follows that a linear combination of the primaries with relative intensi-
ties specified by the tristimulus vector

matches the spectrum f. Thus, the tristimulus vector ATf represents the
relative intensities of the primaries P that match the color of f.

t In defining A as the matrix whose ith row is al, we breach the common convention used
throughout the rest of the chapter according to which a bold lower case subscripted letter
denotes a column of the matrix denoted by the corresponding bold upper case letter.
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From Equation 1.7, it can be readily seen that the color-matching matrix
A = S(PTS)? (1.9)

Hence, the CMFs are a nonsingular linear transformation of the sensitivities
of the three cones in the eye. It also follows that the color of two spectra, f
and g, matches if and only if A”f = ATg. As mentioned earlier, color of a
visible spectrum, f, may be specified in terms of the tristimulus values, Af,
instead of STf. The fact that the color-matching matrix is readily determinable
using the procedure outlined above makes such a scheme for specifying
color considerably more attractive in comparison to one based on the actual
cone sensitivities. Note also that the HVSS which was defined as the column
space of S can alternately be defined as the column space of A. Using
Equation 1.9, we see that

AP = (S(P'S$))'P = (8'P) 'SP = 1, (1.10)

where I; is the 3 x 3 identity matrix. Equation 1.10 can also be obtained by
direct reasoning. Consider a color matching experiment in which the stim-
ulus to be matched by a combination of the primaries is one of the primaries
itself, say p;. The unique values of the relative intensities of the primaries
required to match p, are ATp,. Because p; = P[100]" clearly matches itself,
ATp, = [100]%. Similar relations hold for p, and p;, and Equation 1.10 is
obtained by concatenating the corresponding color match relations for all
three primaries.

1.4.2 Metamerism and black space

As stated in Equation 1.4, two spectra represented by N-vectors f and g
match in color if Sf = STg (or ATf = ATg). Because S (or equivalently A) is
an N x 3 matrix, with N > 3, it is clear that several different spectra appear
to be the same color to the observer. Two distinct spectra that appear the
same are called metamers, and such a color match is said to be a metameric
match (as opposed to a spectral match). Figure 1.7 shows plots of two
metameric SPDs. Note that the colorimetry corresponding to these distribu-
tions is identical, but the SPDs exhibit very significant differences. The spe-
cific SPDs plotted here correspond to the SPD for CIE standard illuminant
D65 (see Section 1.5.2) and a metameric match obtained to the corresponding
SPD using typical CRT primaries.

The vector space view of color matching outlined above was first pre-
sented in a cohesive mathematical framework by Cohen and Kaupauf.>>
Tutorial descriptions using current notation and terminology appear in Ref-
erences 125, 299, 300, and 304. This approach allows us to deduce a number
of interesting and useful properties of color vision. One such property is the
decomposition of the N-dimensional spectral space into the three-dimen-
sional HVSS and the (N - 3)-dimensional metameric black space, which was
first hypothesized by Wyszecki.?3>? Mathematically, this result states that any
visible spectrum, f, can be written as
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Figure 1.7 Example of a pair of metameric radiances.

f=Pf+Pyf (1.11)

where P, = A(ATA) A" is the orthogonal projector onto the column space
of A, i.e., the HVSS, and

Py = (Iy=Py)

is the orthogonal projector onto the black space, which is the orthogonal
complement of the HVSS. The projection, P,f, is called the fundamental
metamer of f, because all metamers of f are given by

L
{PAf+PAg | ge RN}

Spectra that match in color have identical projections onto the HVSS. Con-
versely, spectra having identical projections onto the HVSS match in color.
For a given spectrum f, the tristimulus value t = A’f and the corresponding
CMFs A can be used to compute the corresponding fundamental metamer as

A(ATA) 't = A(ATA) (ATf) = P,f (1.12)
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and, vice versa, the fundamental metamer P,f and CMFs A can be used to
compute the tristimulus,

t = ATP,f = ATA(ATA)ATf = ATf (1.13)

Equation 1.13 also illustrates the fact that the tristimulus values for a spec-
trum and its fundamental metamer are equivalent. Thus, the fundamental
metamer offers an alternate representation of exactly the same information
that is contained in the tristimulus values. The representation is, however,
an N-vector in a three-dimensional subspace of the N-dimensional spectral
space and therefore quite powerful and useful in the comparison of colors
and spectra.’ Tristimulus values are not ideally suited for the same task
because of the dimensional mismatch between three-dimensional tristimulus
values and N-dimensional spectra.

Another direct consequence of the above description of color matching
is the fact that the primaries in any color matching experiment are unique
only up to metamers. Because metamers are visually identical, the CMFs are
not changed if each of the three primaries are replaced by any of their
metamers.

The physical realization of metamers imposes additional constraints
over and above those predicated by the equations above. In particular, any
physically realizable spectrum needs to be non-negative, and hence it is
possible that the metamers described by the above mathematics may not be
realizable. In cases where a realizable metamer exists, set theoretic
approaches may be used to incorporate non-negativity and other con-
straints.261.2%

1.5 Colorimetry

It was mentioned in Section 1.4.1 that the color of a visible spectrum f can
be specified in terms of the tristimulus values, ATf, where A is a matrix of
CMFs. To have agreement between different measurements, it is necessary
to define a standard set of CMFs with respect to which the tristimulus values
are stated. A number of different standards have been defined for a variety
of applications, and it is worth reviewing some of these standards and the
historical reasons behind their development.

1.5.1 CIE standards

The Commission Internationale de ’Eclairage (International Commission on
INlumination, CIE) is the primary organization responsible for standardiza-
tion of color metrics and terminology. A colorimetry standard was first
defined by the CIE in 1931 and continues to form the basis of modern
colorimetry. The CIE 1931 recommendations define a standard colorimetric
observer by providing two different but equivalent set of CMFs. The first
set of CMFs are known as the CIE RGB CMFs, #(A), 3(A), b(A). These are
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associated with monochromatic primaries at wavelengths of 700.0, 546.1,
and 435.8 nm, respectively, with their radiant intensities adjusted so that the
tristimulus values of the equi-energy spectrum are all equal.¥’ The equi-
energy spectrum is the one whose SPD is constant (as a function of wave-
length). The CIE RGB CMFs are shown in Figure 1.8.

The second set of CMFs, known as the CIE XYZ CMFs, x(A), y(A), zZ(A),
are shown in Figure 1.9. They were recommended for reasons of more con-
venient application in colorimetry and are defined in terms of a linear trans-
formation of the CIE RGB CMFs.'® When these CMFs were first defined,
calculations were typically performed on desk calculators, and the repetitive
summing and differencing due to the negative lobes of the CIE RGB CMFs
were prone to errors. Hence, the transformation from the CIE RGB CMFs to
CIE XYZ CMFs was determined so as to avoid negative values at all wave-
lengths.'”” Because an infinite number of transformations can be defined to
meet this non-negativity requirement, additional criteria were used in the
choice of the CMFs.85153(- 33D Two of the important considerations were the
choice of y(A) coincident with the Iuminous efficiency function’*® and the
normalization of the three CMFs so as to yield equal tristimulus values for
the equi-energy spectrum. The luminous efficiency function gives the relative
sensitivity of the eye to the energy at each wavelength. From the discussion
of Section 1.4, it is readily seen that CMFs that are non-negative for all
wavelengths cannot be obtained with any physically realizable primaries.
Hence, any set of primaries corresponding to the CIE XYZ CMFs is not
physically realizable. Table 1.1 provides a listing of the CIE XYZ color match-
ing functions, sampled at 5-nm intervals in the range of 380 to 780 nm. Data
used in this table are also available at the CIE web site.*

-1
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Figure 1.8 CIE 7(A), 3(A), b(A) color matching functions.
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Figure 1.9 CIE x(L), #(A), Z(A) color matching functions.

The tristimulus values obtained with the CIE RGB CMFs are called the
CIE RGB tristimulus values, and those obtained with the CIE XYZ CMFs are
called the CIE XYZ tristimulus values. In most color imaging applications,
and in color research, CIE XYZ values are used, and the CIE RGB tristimulus
values are rarely used. The Y tristimulus value is usually called the luminance
and correlates with the perceived brightness of the radiant spectrum. The
luminance is described in units of candela per square meter (cd/m?). Typical
ambient luminance levels under sunlight, indoor lighting, moonlight, and
starlight are of the order of 105, 102, 107}, and 10-% cd/m?, respectively. The
scotopic, mesopic, and photopic domains of vision defined in Section 1.3
correspond roughly to luminance intervals 0.000001-0.034 c¢d/m?, 0.034-3.4
cd/m?, and over 3.4 cd/m?, respectively.

The two sets of CMFs described above are suitable for describing color-
matching when the angular subtense of the matching fields at the eye is
between one and four degrees.”3%®-131) When the inadequacy of these CMFs
for matching fields with larger angular subtense became apparent, the CIE
defined an alternate standard colorimetric observer in 1964 with different
sets of CMFs.#” Because imaging applications (unlike quality control appli-
cations in manufacturing) involve complex visual fields where the color-
homogeneous areas have small angular subtense, the CIE 1964 (10° observer)
CMFs will not be discussed here.

1.5.2  Colorimetry for reflective objects

The discussion in the last section was based on the assumption that f is the
spectral radiance of the light incident on the eye. Reflective objects are

© 2003 by CRC Press LLC



Table 1.1  CIE XYZ CMFs for the 2° 1931 CIE Standard Observer and SPDs for
Standard Illuminants D50, D65, and A Tabulated at 5-nm Wavelength Intervals
(Except for the D50 SPD, these data are available from the CIE web site.*”)

Wavelength _ B
A (nm) x(2) y(A) z(M) Ipso(A) Ipes(A) L,(A)

380 0.0014 0.0000 0.0065  24.4875 49.97550 9.795100

385 0.0022  0.0001  0.0105 27.1791 52.31180 10.899600
390 0.0042 0.0001 0.0201  29.8706 54.64820 12.085300
395 0.0076  0.0002 0.0362  39.5894 68.70150 13.354300
400 0.0143  0.0004 0.0679  49.3081 82.75490 14.708000
405 0.0232  0.0006  0.1102 52.9104 87.12040 16.148000
410 0.0435 0.0012 0.2074  56.5128 91.48600 17.675300
415 0.0776 ~ 0.0022 0.3713  58.2733 92.45890 19.290700
420 0.1344 0.0040 0.6456  60.0338 93.43180 20.995000
425 0.2148 0.0073  1.0391 58.9257 90.05700 22.788300
430 0.2839 0.0116 1.3856  57.8175 86.68230 24.670900
435 0.3285 0.0168 1.6230  66.3212 95.77360 26.642500
440 0.3483 0.0230 1.7471 74.8249 104.86500 28.702700
445 0.3481 0.0298 1.7826 81.0360 110.93600 30.850800
450 0.3362 0.0380 1.7721  87.2472 117.00800 33.085900
455 0.3187 0.0480 1.7441  88.9297 117.41000 35.406800
460 0.2908 0.0600 1.6692  90.6122 117.81200 37.812100
465 0.2511  0.0739  1.5281 90.9902 116.33600 40.300200
470 0.1954 0.0910 1.2876  91.3681 114.86100 42.869300
475 0.1421 0.1126  1.0419 93.2383 115.39200 45.517400
480 0.0956 0.1390 0.8130  95.1085 115.92300 48.242300
485 0.0580 0.1693 0.6162 93.5356 112.36700 51.041800
490 0.0320 0.2080 0.4652  91.9627 108.81100 53.913200
495 0.0147 0.2586 0.3533  93.8432 109.08200 56.853900
500 0.0049 0.3230 02720  95.7237 109.35400 59.861100

505 0.0024 04073 0.2123 96.1685 108.57800 62.932000
510 0.0093 0.5030 0.1582  96.6133 107.80200 66.063500
515 0.0291 0.6082 0.1117  96.8711 106.29600 69.252500
520 0.0633 0.7100 0.0782  97.1290 104.79000 72.495900
525 0.1096 0.7932  0.0573 99.6141 106.23900 75.790300
530 0.1655 0.8620 0.0422  102.0991  107.68900 79.132600
535 0.2257 09149 0.0298 101.4269  106.04700 82.519300
540 0.2904 09540 0.0203 100.7547  104.40500 85.947000
545 0.3597 09803 0.0134 101.5359 104.22500 89.412400
550 04334 0.9950 0.0087 102.3170  104.04600 92.912000
555 0.5121  1.0000 0.0057  101.1585  102.02300 96.442300
560 0.5945 0.9950 0.0039  100.0000  100.00000  100.000000
565 0.6784 09786  0.0027 98.8675 98.16710 103.582000
570 0.7621 09520  0.0021 97.7350 96.33420 107.184000
575 0.8425 09154 0.0018  98.3265 96.06110 110.803000
580 09163 0.8700 0.0017  98.9180 95.78800 114.436000
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Table 1.1  CIE XYZ CMFs for the 2° 1931 CIE Standard Observer and SPDs for
Standard Illuminants D50, D65, and A Tabulated at 5-nm Wavelength Intervals
(Except for the D50 SPD, these data are available from the CIE web site.*”)

Wavelength _ B
A (nm) x(2) y(A) z(M) Ipso(A) Ipes(A) L,(A)
585 09786 0.8163 0.0014  96.2084 92.23680 118.080000
590 1.0263 0.7570 0.0011  93.4988 88.68560 121.731000
595 1.0567 0.6949 0.0010  95.5933 89.34590 125.386000
600 1.0622  0.6310 0.0008  97.6878 90.00620 129.043000
605 1.0456 0.5668 0.0006  98.4784 89.80260 132.697000
610 1.0026 0.5030 0.0003  99.2691 89.59910 136.346000
615 0.9384 0.4412 0.0002  99.1553 88.64890 139.988000
620 0.8544 0.3810 0.0002  99.0415 87.69870 143.618000
625 0.7514 0.3210 0.0001  97.3817 85.49360 147.235000
630 0.6424 0.2650 0.0000  95.7218 83.28860 150.836000
635 0.5419 0.2170 0.0000  97.2895 83.49390 154.418000
640 0.4479 0.1750 0.0000  98.8572 83.69920 157.979000
645 0.3608 0.1382  0.0000  97.2622 81.86300 161.516000
650 0.2835 0.1070 0.0000  95.6672 80.02680 165.028000
655 0.2187 0.0816 0.0000  96.9285 80.12070 168.510000
660 0.1649 0.0610 0.0000  98.1898 80.21460 171.963000
665 0.1212  0.0446  0.0000  100.5966 81.24620 175.383000
670 0.0874 0.0320 0.0000  103.0034 82.27780 178.769000
675 0.0636  0.0232  0.0000  101.0682 80.28100 182.118000
680 0.0468 0.0170 0.0000  99.1330 78.28420 185.429000
685 0.0329  0.0119  0.0000  93.2570 74.00270 188.701000
690 0.0227  0.0082  0.0000  87.3809 69.72130 191.931000
695 0.0158  0.0057 0.0000  89.4922 70.66520 195.118000
700 0.0114 0.0041 0.0000  91.6035 71.60910 198.261000
705 0.0081 0.0029 0.0000  92.2460 72.97900 201.359000
710 0.0058 0.0021 0.0000  92.8886 74.34900 204.409000
715 0.0041 0.0015 0.0000  84.8715 67.97650 207.411000
720 0.0029 0.0010 0.0000  76.8544 61.60400 210.365000
725 0.0020  0.0007 0.0000  81.6828 65.74480 213.268000
730 0.0014 0.0005 0.0000  86.5112 69.88560 216.120000
735 0.0010  0.0004 0.0000  89.5455 72.48630 218.920000
740 0.0007  0.0002 0.0000  92.5798 75.08700 221.667000
745 0.0005 0.0002 0.0000  85.4048 69.33980 224.361000
750 0.0003 0.0001 0.0000  78.2299 63.59270 227.000000
755 0.0002  0.0001 0.0000  67.9609 55.00540 229.585000
760 0.0002 0.0001 0.0000  57.6918 46.41820 232.115000
765 0.0001  0.0000 0.0000  70.3074 56.61180 234.589000
770 0.0001  0.0000 0.0000  82.9230 66.80540 237.008000
775 0.0001  0.0000 0.0000  80.5985 65.09410 239.370000
780 0.0000  0.0000 0.0000  78.2740 63.38280 241.675000
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viewed under an illuminating light source and, accordingly, their colorimetry
is specified under a suitable illuminant. For the purposes of defining colo-
rimetry, a reflective object can be represented by the N-vector, r, of samples
of its spectral reflectance r(A). When the object is viewed under an illuminant
with SPD I()A), represented in sampled form by the N-vector 1, the resulting
SPD at the eye is the product I(A)r(A) of the illuminant SPD and the object
reflectance, which can be represented in sampled form as the N-vector Lr,
where L is the diagonal illuminant matrix with entries from 1 along the
diagonal. The CIE XYZ tristimulus values defining the color are therefore
given by

t=A"Lr= A[r (1.14)

where A is the matrix of CIE XYZ CMFs, and A; = LA. Color measurement
for transmissive objects can be similarly defined in terms of their spectral
transmittance. The color matching functions can be scaled by a common
scale factor so that the Y stimulus value corresponds to the luminance in
units of cd/m?2. However, as mentioned earlier, the absolute SPDs for the
illuminant are rarely known or required in applications of colorimetry of
reflective objects. In the colorimetry of reflective objects, it is therefore com-
mon to normalize the tristimulus values (or equivalently the CMFs) so that
the Y coordinate is 100 for a perfect reflector, whose spectral reflectance is
unity across all wavelengths. Because computation of CIE XYZ colorimetry
is a basic step commonly employed in color imaging, it is useful to list this
computation of CIE XYZ values explicitly:

N-1
X =k Z X(A)I(A)r(A)

i=0

N-1

Y =k 2 YADIA)T(Ny)

i=0

N-1
Z=k 2 Z(M)I(A)r ()
i=0 (1.15)
where {A;}}_, are the uniformly spaced wavelengths covering the visible
region of the spectrum A; = Ay +iAL, with AA as the wavelength sampling
interval, and the normalization factor k given by

100

N-1

> gk
i=0

k = (1.16)
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In addition to the CMFs, the CIE has defined a number of standard
illuminants for use in colorimetry of nonluminous reflecting objects. The
relative SPDs of a number of these standard illuminants are shown in Figure
1.10. The corresponding values are also tabulated in Table 1.1. To represent
different phases of daylight, a continuum of daylight illuminants has been
defined?¥ that are uniquely specified in terms of their correlated color temper-
ature (CCT). Because the temperature of a blackbody radiator describes its
complete spectral power distribution and thereby its color, it is commonly
referred to as the color temperature of the blackbody. For an arbitrary illu-
minant, the CCT is defined as the color temperature of the blackbody radiator
that is visually closest to the illuminant (in color).*® The D65 and D50
illuminant spectra shown in Figure 1.10 are two daylight illuminants com-
monly used in colorimetry and have CCTs of 6500 and 5000 K, respectively.
The CIE illuminant A represents a blackbody radiator at a temperature of
2856 K and closely approximates the spectra of incandescent lamps. Sources
with lower CCT tend to be more red, whereas those with higher temperatures
are bluer. Illuminants with similar CCT are assumed to be similar with regard
to their color rendering of illuminated objects. This is, however, true only
for illuminants whose spectra closely resemble that of a blackbody radiator,
and other spectra that have identical CCT can have very different distribu-
tions and color rendering properties.?”> An example of the problem with the
use of CCT for specifying the color-rendering properties of an illuminant is
shown in Figure 1.11, where two synthesized illuminants are shown along
with a reflectance spectrum measured from a cyan print sample. Though the
illuminants have the same luminance and an identical CCT of 5000K, the
color difference for the reflectance sample under the two illuminants is rather
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Figure 1.10 CIE standard illuminants.
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large, corresponding to 44.4 AEZ, units. (For the definition of AE%,, see
Section 1.7.2.)

The definition of metameric matches and metamers can be extended to
reflective objects. Two objects with (different) spectral reflectances r; and r,
are said to be metamers (or in metameric match) under an illuminant with
SPD 1 if

Alr, = Alr, (1.17)

In analogy with the HVSS, the column space of A, is defined as the Human
Visual Illuminant Subspace (HVISS).310 In a fashion similar to that described
in Section 1.4.2 for spectral radiances, the space of reflectances may also be
decomposed into two orthogonal components, one being the HVISS and the
other a black reflectance space, representing the absence of a visual stimulus.
Every reflectance spectrum can then be represented as the summation of two
orthogonal components, one in the three-dimensional HVISS and the other
in the black reflectance space. Reflective metamers under a specified viewing
illuminant have identical HVISS components, and their differences therefore
lie entirely in the black reflectance space.

Metamerism is both a boon and a curse in color applications. Most color
output systems (such as CRTs and color photography) exploit metamerism
to reproduce color. However, in the matching of reflective materials, a
metameric match under one viewing illuminant is usually insufficient to
establish a match under other viewing illuminants. A common manifestation
of this phenomenon is the color match of (different) fabrics under one illu-
mination and mismatch under another. This situation is referred to as illu-
minant metamerism. Figure 1.12 shows an example of illuminant metamerism.
The plots in this figure show the spectral reflectances of four different
metameric samples that have identical colorimetry under CIE illuminant
D50 but exhibit significant differences under other illuminants such as cool
white fluorescent or CIE illuminant A. The four reflectances used in this
example are spectral reflectances obtained with different color reproduction
processes, representing one each of a photographic, xerographic, inkjet, and
lithographic process. Details on how these metameric spectra were obtained
can be found in Reference 270.

1.5.3 Chromaticity coordinates and chromaticity diagrams

Because color is specified by tristimuli, different colors may be visualized as
vectors in three-dimensional space. However, such a visualization is difficult
to reproduce on two-dimensional media and therefore inconvenient. A use-
ful two-dimensional representation of colors is obtained if tristimuli are
normalized to lie in the unit plane, i.e., the plane over which the tristimulus
values sum up to unity. Such a normalization is convenient, as it destroys
only information about the “intensity” of the stimulus and preserves com-
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Figure 1.11 Correlated color temperature (CCT) counter-example with two illumi-
nants with CCT = 5000 K, and a spectral reflectance.
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Figure 1.12 Reflective metamers under CIE illuminant D50 corresponding to differ-
ent color reproduction processes.

plete information about the direction. The coordinates of the normalized
tristimulus vector are called chromaticity coordinates, and a plot of colors on
the unit plane using these coordinates is called a chromaticity diagram. Because
the three chromaticity coordinates sum up to unity, typical diagrams plot
only two chromaticity coordinates along mutually perpendicular axes.
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The most commonly used chromaticity diagram is the CIE xy chroma-
ticity diagram. The CIE xyz chromaticity coordinates can be obtained from
the X)Y, Z tristimulus values in CIE XYZ space as

. X
T X+Y+Z
_ Y

Y= xX3v+7

Z

Z= ——

X+Y+2Z

(1.18)

Figure 1.13 shows a plot of the curve corresponding to visible monochro-
matic spectra on the CIE xy chromaticity diagram. This shark-fin-shaped
curve, along which the wavelength (in nm) is indicated, is called the spec-
trum locus. From the linear relation between radiance spectra and the tris-
timulus values, it can readily be seen that the chromaticity coordinates of
any additive-combination of two spectra lie on the line segment joining
their chromaticity coordinates.’* From this observation, it follows that the
region of chromaticities of all realizable spectral stimuli is the convex hull
of the spectrum locus. In Figure 1.13, this region of physically realizable
chromaticities is the region inside the closed curve formed by the spectrum
locus and the broken line joining its two extremes, which is known as the
purple line.
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Figure 1.13 CIE xy chromaticity diagram.
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1.5.4 Transformation of primaries: NTSC, SMPTE, and CCIR
primaries

If a different set of primary sources, Q, is used in the color matching exper-
iment, a different set of CMFs, B, is obtained. Because all CMFs are non-
singular linear transformations of the human cone responses, the CMFs are
related by a linear transformation. The relation between the two sets of CMFs
can be obtained as follows. Using Equation 1.7 for the two sets of primaries
and corresponding CMFs, both can be related to the eye’s cone sensitivities
and to each other as

ST = S™I, = STPAT = STQB” (1.19)
Post-multiplying both sides by (STP)~! we have
(STP)IST = AT = (S"P)'STQBT (1.20)

Substituting the relation from the left side equality above into the right side
yields

AT= ATQBT (1.21)

Note that the columns of the 3 x 3 matrix ATQ are the tristimulus values of
the primaries Q with respect to the primaries P. From the colorimetric inde-
pendence of the primaries Q, it therefore follows that ATQ is non-singular,
and we have

BT = (ATQ) AT (1.22)

Note that the same transformation, (ATQ)™, is useful for the conversion of
tristimuli in the primary system P to tristimuli in the primary system Q.

Color television was one of the first consumer products exploiting the
phenomenon of trichromacy. The three light-emitting color phosphors in the
television cathode ray tube (CRT) form the three primaries in this “color
matching experiment.” In the United States, the National Television Systems
Committee (NTSC) recommendations for a receiver primary system based
on three phosphor primaries were adopted by the Federal Communications
Commission (FCC) in 1953 for use as a standard in color television (TV). The
FCC standard specified the CIE xy chromaticity coordinates for the
phosphors® as (0.670, 0.330) (red), (0.210, 0.710) (green), and (0.140, 0.080)
(blue).?! In addition, the tristimulus values (1, 1, 1) were assumed to corre-
spond to a “white color” typically specified as the illuminant D65. The
chromaticity coordinates along with the white balance condition define the
CIE XYZ tristimuli of the NTSC primaries, which determine the relation of
NTSC RGB tristimuli to CIE XYZ tristimuli as per Equation 1.22.
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In the early color TV system, the signal-origination colorimetry was
coupled with the colorimetry of displays, with the tacit assumption that
processing at the receiver involves only decoding, and no color processing
is performed. As display technology changed, manufacturers began using
more efficient phosphors and incorporated some changes in the decoding
as a compensation for the nonstandard phosphors.??® Similar changes took
place in the monitors used by broadcasters, but they were unaware of the
compensating mechanisms in the consumer TV sets. As a result, there was
considerable color variability in the broadcast TV system.®® To overcome this
problem, the chromaticities of a set of controlled phosphors was defined for
use in broadcast monitors, and it now forms the Society of Motion Picture
and Television Engineers (SMPTE) “C” phosphor specification.?”2%0 Current
commercial TV broadcasts in the U.S. are based on this specification.

With the development of newer display technologies that are not based
on CRTs (see Section 1.11.1.5), it is now recognized that signal-origination
colorimetry needs to be decoupled from the receiver colorimetry and that
color correction at the receiver should compensate for the difference. How-
ever, for compatibility reasons and to minimize noise in transformations, it
is still desirable to keep the reference primaries for broadcast colorimetry
close to the phosphor primaries. Toward this end, the International Radio
Consultative Committee (CCIR)' has defined a set of phosphor primaries
by the chromaticity coordinates (0.640, 0.330) (red), (0.300, 0.600) (green), and
(0.150, 0.060) (blue) for use in high-definition television (HDTV) systems.

Prior to transmission, tristimuli in SMPTE RGB and CCIR RGB spaces
are nonlinearly compressed (by raising them to a power of 0.45) and encoded
for reducing transmission bandwidth.3*140 The reasons for these operations
will be explained in Section 1.11.1.1. Note, however, that the encoding and
nonlinear operations must be reversed before the signals can be converted
to tristimuli spaces associated with other primaries. Transformations for the
conversion of color tristimulus values between various systems can be found
in References 234 (pp. 66-67), 142 (p. 71), and 231.

1.6 Alternative color specification systems

One of the limitations of the system of colorimetry outlined above is its non-
intuitiveness and lack of clear relation to commonly understood color per-
ception attributes such as hue, saturation, and lightness/brightness.” In
describing perceived colors, most individuals resort to the use of color names
such as white, black, red, green, yellow, blue, pink, etc. These terms, however,
have no inherent ordering and are therefore limited in their utility unless
they are conceptually organized into a color order system®® based on percep-
tual principles.

1 Readers are referred to Chapter 2 of this handbook or to References 132, 133, 135, and 335 (p.
487) for definitions of hue, chroma, saturation, lightness, brightness, and other color appearance
terminology. Common notions of these terms will, however, suffice for the purposes of this
chapter.
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An early color order system for the specification of color based on the
perceptual dimensions of hue, lightness, and chroma was developed by
Munsell as a teaching aid for art students.?® In the Munsell Color System,
the hue, lightness, and chroma dimensions are described by the Munsell
hue, Munsell value, and Munsell chroma, respectively.® A semi-numerical
specification of the color is obtained by classifying colors into ten principal
hues, with ten sub-hues for each hue, and a value between zero and ten. For
defined hue and value, a chroma specification was experimentally obtained
by selecting samples (with colors of the corresponding hue and value) of
increasing chroma with equal perceived differences between neighboring
samples. The step sizes for the perceptually equally spaced samples were
determined so as to be consistent across different hue and value coordinates.
A physical embodiment in the form of a color atlas?®® is an integral part of
the Munsell system. The Munsell Book of Color, as the atlas was called, contains
reflective samples that (when viewed under daylight) are spaced apart in
perceptually equal steps of these attributes.?*> Colors in the Munsell system
are specified by the combination of the Munsell hue, Munsell value, and
Munsell chroma classifications/numbers. The Munsell system has under-
gone significant extension and evolution and is still in use.?” In addition to
the Munsell system, several other color order systems are in existence. The
predominant among these are the Swedish Natural Color System?!23124147.275,289
and the Optical Society of America (OSA) Uniform Color Scales (OSA-UCS)
System.1’186’187

In the printing industry, it is common to create desired colors by using
specially formulated colorants or premixed inks. These are typically known
as spot colors. The colors are often communicated and specified by using
printed samples that are organized by colorant and given distinct designa-
tions. Designers may thus choose a color from the available samples and
communicate the color to printers using its designation, which specifies
which ink is to be used in the printing process. The Pantone Matching
System?* is the main example of such a colorant-based empirical color spec-
ification system. Clearly, such a system has several limitations, the primary
one being the variation in the specified “color” with a change in viewing
illumination. Nonetheless, the system is in widespread use in the design and
printing industries and has been extended to additional applications beyond
printing.

The color specification systems described above are convenient for the
specification of colors of uniform regions with reasonable spatial extent, such
as those encountered in paints, color plastics, and textiles. The systems are
therefore commonly used in the textiles and coloring industries. The color
order systems are also commonly used in color research because of their
desirable perceptual attributes. The Pantone Matching System is also com-
monly used for the specification of color in document imaging applications,
typically for regions of uniform color such as a background or a corporate
logo. These systems, however, they are not suited for the specification of
colors in images where the colors are spatially and typically continuously
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varying. A numerical system for color such as the CIE system is thus a
requirement for imaging applications. The color order systems, however,
play a significant role in the development and enhancement of the CIE
numerical system; in particular, in the determination of color spaces with
meaningful correlates of perceptual attributes and uniformity with respect
to perception.

1.7 Uniform color spaces and color differences

The standards for colorimetry defined in Section 1.5 provide a system for
specifying color in terms of tristimulus values that can be used to represent
colors unambiguously in a three-dimensional space. It is natural to consider
the relation of the distance between colors in this three-dimensional space
to the perceived difference between them. Before such a comparison can be
made, it is necessary to have some means for quantifying perceived color
differences. For widely different color stimuli, an observer’s assessment of
the magnitude of color difference is rather variable and subjective.335(- 489 At
the same time, there is little practical value in quantifying large differences
in color, and most research has concentrated on quantifying small color
differences. For this purpose, the notion of a just noticeably difference (JND)
in stimuli has been used extensively as a unit by color scientists.

Several researchers have examined the distribution of just noticeably
different colors in CIE xy chromaticity and CIE XYZ tristimuli spaces and
have found that it varies widely over the color space.3418532:33333 Hence, the
CIE XYZ space is perceptually nonuniform in that equal perceptual differ-
ences between colors do not correspond to equal distances in the tristimulus
space. Because perceptual uniformity is an extremely desirable feature for
defining tolerances in color reproduction systems, considerable research has
been directed toward the development of uniform color spaces. Traditionally,
the problem has been decomposed into two sub-problems: one of determin-
ing a uniform lightness scale and the other of determining a uniform chro-
maticity diagram for equi-lightness color stimuli. The two are then combined
with suitable scaling factors for the chromaticity scale and the lightness scale
to make their units correspond to the same factor of a JND.

The historical milestones in the search for uniform brightness and light-
ness scales are described in Wyszecki and Stiles.335(pp- 493-4%9) Typical experi-
ments determine these scales either by a process of repeated bisection of the
scale extremes or by moving up in increments of a JND. Details of these
standard psychophysical techniques can be found, for instance, in Gesc-
heider.!® A cube-root power law relation between brightness and luminance
provides a satisfactory fit for most experimental data and therefore has the
most widespread acceptance at present.3¥®- 44

The search for a uniform lightness scale was complemented by efforts
toward determination of a uniform chromaticity scale for constant lightness.
Two of these attempts are noteworthy. The first determined a linear trans-
formation of the tristimulus space that yielded a chromaticity diagram with
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just noticeably different colors being roughly equi-spaced.!®152 This was the
precursor of the CIE 1960 u,v diagram.3-55) The second was primarily
motivated by the Munsell system and used a nonlinear transformation of
the CIE XYZ tristimuli to obtain a chromatic-value diagram in which the
distances of Munsell colors of equal lightness would be in proportion to their
hue and chroma differences.* The form for the nonlinear transformation was
based on a color vision model proposed earlier by Adams,® and the diagram
is therefore referred to as Adams’ chromatic-value diagram.

Based on the aforementioned research, the CIE has recommended two
uniform color spaces for practical applications: the CIE 1976 L*u*v* (CIELUV)
space and the CIE 1976 L*a*b* (CIELAB) space.” These spaces are defined
in terms of transformations from CIE XYZ tristimuli into these spaces. Both
spaces employ a common lightness scale, L*, that depends only on the
luminance value Y. The lightness scale is combined with different uniform
chromaticity diagrams to obtain a three-dimensional uniform color space.
For the CIELUV space, a later version of the CIE 1960 u,v diagram is used,
whereas CIELAB uses a modification of Adams’ chromatic-value dia-
gram.3® 503 In either case, the transformations include a normalization
involving the tristimuli of a white stimulus, which provides a crude approx-
imation to the eye’s adaptation (see Section 1.9.1). Euclidean distances in
either space provide a color-difference formula for evaluating color differ-
ences in perceptually relevant units. Both spaces also include correlates for
the three perceptual attributes of lightness, chroma, and hue.

1.7.1 The CIE 1976 L*u*v* space

The L*, u*, v* values corresponding to a stimulus with CIE XYZ tristimulus
values X, Y, Z are given by¥

L* = 116f(Y1)—16 (1.23)
u* = 13L*(u" - u’,) (1.24)
v* = 13L*(v' -v7) (1.25)
where
1
3
Flx) = x y x> 0.008856 (1.26)

—_— <
7.787x + 116 x <0.008856
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4X

W = s (1.27)
v = X_H"?;Té—z (1.28)
uw, = % (1.29)
v, = }% (1.30)

and X,, Y,, Z, are the tristimuli of the white stimulus, which is typically the

brightest stimulus in the field of view (see the next chapter for a more
detailed discussion of adapting white, and also Section 1.9.1).
The Euclidean distance between two color stimuli in CIELUV space is

denoted by AE*, (delta E-uv) and is a measure of the total color difference
between them. On average, a AE%, value of around 2.9 corresponds to a
JND.1%2 As mentioned earlier, the value of L* serves as a correlate of lightness.
In the u*v; lane, the radial distance (A/(u*)2 + (v*)z) and angular position
(arctan(% ) serve as correlates of chroma and hue, respectively.

1.7.2  The CIE 1976 L*a*b* space

The L* coordinate of the CIELAB space is identical to the L* coordinate for
the CIELUV space, and the transformations for the a* and b* coordinates are

given by
o(1(x)-4(v.) 031

() (5) =

where f(:),X,, Y,, and Z, are as defined earlier.

Because CIELAB is used extensively in imaging, transforms to and from
CIELAB to other color spaces are commonly employed. For this reason, it is
useful to list the inverse of the above transform, which converts a CIELAB
value to a corresponding set of CIE XYZ values as follows:

AN
*
1l

b’(—

_L*+16
T (1.33)
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fx = £+ fy (1.34)
fz= fy—z% (1.35)
X =X, f(fx) (1.36)
Y =Y, f(fy) (1.37)
Z=2, f'(f2) (1.38)

where f,, fy, and f, are intermediate terms representing (Y /Y,), AX/X,), and
flZ/Z,), respectively, and f’l(-) denotes the inverse of the function f(-) in
Equation 1.26, given by

# t>0.206893
fﬁl(t) = 1 ; 16
7.787( 116

(1.39)
) 0<t<0.206893

In CIELAB, the radial distance in the a*b* plane

= @)+ (b (1.40)

serves as a correlate or measure of perceived chroma. The angular position
in the a*b* plane

*

h*, = arctan(Z—*) (1.41)

serves as a correlate of perceived hue. Euclidean distance between two color
stimuli in CIELAB space is denoted by AE%, (delta E-ab). For a sample color
with CIELAB values L%, a%, b% , the color difference from a standard color
with CIELAB values L%, a*, b* is given by

AE s = J(AL*) + (Aa*)’ + (Ab*) (1.42)
where AL* = L% —L* , Aa* = a% —a* , and Ab* = b% —b* are the dis-
tances of the sample from the standard along the L*, a*, and b* axes, respec-

tively. A AE%, value of around 2.3 corresponds to a JND.*? This correlation
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is, however, quite approximate, and there are significant variations in a visual
JND over color space.

The CIELAB space also incorporates an opponent-color encoding (see
Sections 1.9 and 1.9.2 for details). The opponent encoding and the L*, 4*, and
b* axes are illustrated in Figure 1.14. The a* axis corresponds to red—green
opponent hues, with distances along the positive a4* axis corresponding to a
measure of redness and distances along the negative a* axis corresponding
to a measure of greenness. Likewise, the b* axis corresponds to the yel-
low-blue opponent hues, with the distances along the positive b* axis rep-
resenting a measure of yellowness and distances along the negative b* axis
representing a measure of blueness. Thus, the CIELAB coordinates of a color
can also provide a rough description for the color’s perceptual attributes. A
color with CIELAB of 50, 0, 0 is a mid-gray color with no apparent hue —
commonly referred to as a neutral or achromatic color. A CIELAB value of 50,
0, 70 represents a mid-lightness saturated yellow color, and a CIELAB value
of 90, 10, -7 represents a pastel cyan (bluish-green) color.

1.7.3  Limitations of CIELAB and CIELUV spaces

The CIELAB color space is widely used in color imaging and printing indus-
tries, and CIELUV is commonly used in the display industry. Both spaces,
however, have several limitations. As may be expected, the CIELUV and
CIELAB color spaces are only approximately uniform and are often inade-
quate for specific applications. The uniformity of CIELAB and CIELUV is
about the same, but the largest departures from uniformity occur in different

L*
A White

b*
Gray Axis

i
K’ Yellowness

a

2

Greenness \
greenne
Redness
I

//Blueness
Black

Figure 1.14 Interpretation of CIELAB axes and opponent nature of the a* and b*
axes.
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regions of the color space.!63229245 Several other uniform color spaces and
color difference formulae have been proposed since acceptance of the CIE
standards. Because CIELAB has gained wide acceptance as a standard, most
of the difference formulae attempt to use alternate (non-Euclidean) distance
measures’ in the CIELAB space. Some of these are discussed in the following
section.

The CIELAB and CIELUYV spaces are also deficient with regard to the
correlates for hue. Figure 1.15 shows a plot of the a*~b* plane where the loci
of points corresponding to a constant perceived hue have been plotted. (The
tables used to generate this figure were provided by Braun® and are based
on visual data of Hung et al.!¥) The center of the figure corresponds to the
L" axis. Since the angular position

a*
arctan(b *)

in CIELAB is a correlate of hue, one expects colors of a single hue should
correspond to planes in CIELAB emanating radially outward from the
CIELAB axis. The loci of points corresponding to a constant perceived hue
in Figure 1.15 should therefore correspond to lines going radially outward
from the center of the figure. This is, however, not the case. Particularly, the

—b*

Figure 1.15 Loci of points corresponding to constant perceived hue in a*-b* plane
(interpolated data).

t Note that several of these distance measures are asymmetric and as such do not satisfy the
mathematical requirements for a metric.%®- )
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loci of points corresponding to constant perceived hues in the blue regions
(in the vicinity of the negative b* axis) show a very high curvature, indicating
that the CIELAB hue correlate in this region is in poor agreement with actual
perceived hue.

In several color processing operations, it is desirable to preserve a spec-
ified perceptual color attribute. A common example of this is the process of
gamut-mapping (described in significant detail in a subsequent chapter),
where it is often desirable to modify colors while preserving hue. Early
attempts at preserving hue in the process of gamut mapping were based on
the CIELAB space, where the gamut mapping was decomposed into indi-
vidual mappings in CIELAB hue planes, i.e., planes emanating outward from
the L* axis. While these mappings preserve the CIELAB correlate of hue, the
actual perceived hue is often poorly preserved due to the discrepancy
between CIELAB hue and perceived hue described above. Understandably,
the most significant artifacts are seen in the blue region, and the most com-
mon instantiation is the shift from blue to purple in the mapping of colors
in the vicinity of the CRT blue primary to a printer gamut. More recently,
the problem has been addressed by either warping the CIELAB space to
correct for the hue “nonlinearity” before the gamut mapping® or through
the use of alternate spaces, other than CIELAB, that provide better correlates
of hue. Details are included in the chapter on gamut mapping.

1.7.4  Alternative color difference formulae

As indicated earlier, the Euclidean distance in CIELAB does not provide a
very good agreement with the perceived magnitude of the color difference.
Several alternative color difference formulae have therefore been proposed.
Due to the widespread use of CIELAB, the most commonly used formulae
are based on the CIELAB space and differ from AE*%, in that the computation
of the distance between colors is not the Euclidean distance. Instead, the
color difference formulae commonly decompose the Euclidean distance in
CIELAB into components corresponding to differences in lightness, hue, and
chroma, and these components are weighted differently to define a new color
difference. Prominent among this class of uniform color difference formulae
are the CMC(L:ic) distance function,? the BFD(l:c) function,!82183 the CIE-94
color difference formula,* and the recently developed CIE-DE2000 color
difference formula.'”” The CMC(l:c) and the BFD(l:c) formulae have a long
history and have influenced the development of the newer color difference
formulae. These two color difference formulae are compared to AE*, and a
number of other uniform color spaces using perceptibility and acceptability
criteria in Reference 192. In image processing applications involving color,
the CIELAB and CIELUV spaces have been used extensively whereas, in
industrial color control applications, the CMC formulae have found wider
acceptance. In 1994, the CIE issued a new recommendation for the compu-
tation of color differences in CIELAB space that incorporates several of the
robust and attractive features of the CMC(l:c) distance function.** Additional
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features of the CMC and BFD color difference formulae have also been
incorporated into CIE-DE2000.17°

For the computation of the color difference of a sample color with
CIELAB values L%, a%, b% from a standard color with CIELAB values L*,
a*, b%, a generic class of formula representing several of these color differ-
ence formulae can be written as'”

_ [(AL*Y . (AC*\* . (AH* .
AE = /\/(ITSL) +(k_csc) +(k—HsH)+RT¢(AC AH?*) (1.43)

where k;, k., ky; = positive, real-valued scaling parameters chosen based on
the application where the formula is used
5., S¢, Sy = lightness-, chroma-, and hue-dependent scaling
functions, respectively
R; = an additional scaling function that depends on chroma
and hue

The terms AL*, AC*, AH* are referred to as the lightness, chroma, and hue
differences, respectively. These are defined in terms of the standard and
sample CIELAB values as*

AL* = L% —L* (1.44)
AC* = C’;b,z —C’;b,s (1.45)
AH* = J(AE*%,)* — ((AL*)* + (AC*)%)

= J(Aa*)} = (Ab*) + (AC*)

2(a3 b — ax by)

JC 2 C*y o +ahat +b% b*

(1.46)
The sample and standard chroma values C¥,, and C¥,, respectively, are
computed from the CIELAB coordinates as indicated in Equation 1.40, and
the terms AL*, Aa*, Ab*, and AE*, are as defined in Equation 1.42. The function
0(-) is a function of the product of chroma and hue differences. Typically, k;
=kc=ky=1are used as the default parameter values in imaging applications.

For the CMC and CIE-94 color difference formulae, the R; term in Equa-
tion 1.43 is absent, simplifying these formulae to

1t The CIE-DE2000 formula requires an additional chroma-dependent scaling of the a* axis
prior to computation of the lightness, chroma, and hue differences.
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AL*)? ACH\? AH*)?
AE = J(ﬁ) *(kcsc) *(kHsH) (147)

The weighting functions S;, S¢, and Sy, for the CMC formula are computed
from the CIELAB coordinates of the standard as*%22%

0.040975L% .
s >
=43 1+0.01765L% L7216 (1.48)

0.511 L*<16

CMC
51

e 0.0638C%,
= — @5 4, 14
S = Ty o0m3icy, . T 6% (1.49)

GEMC _ gEMC(TCMCECMC | 1 _ pCMCy (1.50)
. 4
reme _ (Cn.s) (1.51)

(C*,. ) +1900

ToMe _ { 0.56 +[0.2cos(h*, , +168°)|  164° <h*, , <345° (152)

0.36 +(0.4cos (h*;, , +35°) otherwise

where the CIELAB hue angle of the standard, /%, ;,is computed in the interval
[0, 360°] according to the definition in Equation 1.41. The parameter ky is
unity for the CMC color difference formula, and the parameters k; and k.
(defined by the user) weight the importance of lightness and chroma relative
to hue. The resulting color difference computed using the above scaling func-
tions in Equation 1.47 is referred to as the AEcycq, .k, color difference. Note
that the definitions of the lightness, hue, and chroma weighting functions in
terms of the CIELAB coordinates of the standard make the CMC color formula
asymmetric in that the distance between two samples is dependent on which
one is chosen as the standard and which one as the sample.

The complexity of the CMC formula makes it difficult to understand
intuitively based on equations alone. A graphical illustration of the CMC
difference is therefore presented in Figure 1.16. The figure represents the
CIELAB a*-b* plane, with the a* and b* axes as shown. The figure includes
plots of several elliptical closed curves that represent the loci of points whose
color difference with respect to a standard color at the “center” of the
“ellipse” is one AEcyc(;. 1, unit. The “center” representing the standard has
been excluded from the figure for clarity. Note that the figure is representa-
tive of a*-b* planes at all values of L*, because the S{M“ and SEM© weighting
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Figure 1.16 “Ellipses” corresponding to a color difference of AEcycqqy = 1.0 in the
a*-b* plane.

functions are independent of L*. The figure, however, does not illustrate the
effect of the weighting function S;"' . The predominant trend seen in Figure
1.16 is the elongation of the “ellipses” as one goes radially outward from the
center. A plot of similar “ellipses” for the AE%, color difference would result
in uniform circles of radius 1 throughout the plane. Thus, if the CMC formula
is considered accurate, i.e., in better agreement with perceived differences,
it indicates that the AE*, color difference overemphasizes hue and chroma
differences at higher chroma values. Visual color difference data verify that
this is indeed the dominant deficiency in the uniformity of CIELAB.

While the CMC formula corrects for this dominant nonuniformity in
CIELAB, because of its complexity and the number of terms, there are con-
cerns about its statistical validity and generalization to data and situations
beyond those for which it was originally derived.!® In 1994, the CIE proposed
a new color difference formula that incorporated only the more robust fea-
tures of the CMC formula. The CIE-94 color difference formula® is obtained
by using the following weighting functions in the difference equation of
Equation 1.47:

CIE9%4
Sc

1+0.045C*%, (1.53)

SSF* = 1+0.015C%, (1.54)
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The lightness weighting function S = 1.0, and, in typical imaging appli-
cations, the parametric factors k;, k-, and ky are all chosen to be unity.
Asymmetric and symmetric versions of the formula have been defined. For
the asymmetric formula, the chroma in Equations 1.53 and 1.54 corresponds
to the chroma of the standard color, i.e,, C%, = C%, . Just like the CMC
formula, this implies that the distance between two samples is dependent
on which one is chosen as the standard and which one as the sample. For
the symmetric version of the formula, the chroma for the weighting functions
in Equations 1.53 and 1.54 is defined as the geometric mean of the chromas
of the sample and standard colors, i.e., C%, = ,/(C%,; C%,,). This ensures
that the distance between two samples is independent of which one is chosen
as the standard. The color difference obtained using the above scaling func-
tions in Equation 1.47 is referred to as the AE%, color difference.

The CIE-94 color difference formula is significantly simpler than the
CMC formula. From the scaling functions of Equations 1.53 and 1.54, it is
clear that the CIE-94 color difference formula scales down hue and chroma
differences for higher chroma colors in comparison to CIELAB and thus
corrects for the predominant deficiency in CIELAB. Along the L* axis, the
scaling factors are all unity, which ensures that (asymmetric) AE%, color
differences about neutral colors that lie on the L* axis are identical to the
AE?%, Euclidean color difference. For chromatic colors, the weighting factors
in Equations 1.53 and 1.54 are greater than unity, and the AE%, is therefore
smaller than the AE%;, Euclidean color difference. A graphical visualization
of the AE%, color difference formula is shown in Figure 1.17, where several
elliptical closed curves are plotted in the a*-b* plane. These “ellipses” cor-
respond to the loci of points whose color difference with respect to a standard
color at the “center” of the “ellipse” is one AE%, unit (asymmetric formula).
Once again, the central points have been excluded for clarity of the figure.
The figure demonstrates trends similar to Figure 1.16, with “ellipses” elon-
gated along the radial direction as one goes radially outward from the L*
axis and increasing in size along both dimensions. Due to the lack of a hue-
dependent weighting term in the AE%, color difference formula, “ellipses”
at the same radial distance from the origin in Figure 1.17 are congruent,
unlike the corresponding “ellipses” in Figure 1.16. Through an integration
of the chroma weighting function for the CIE-94 color difference formula, it
is also possible to create an alternate color space in which the Euclidean
distance is in very good agreement with the AE%, color difference for-
mula.?#25 Such a space is useful for visualizing AE%, color differences, as
they correspond to the well-understood notion of Euclidean distance.

Recently, a new color difference formula that has been proposed for
adoption as a CIE standard!” is termed the CIE-DE2000 color difference
formula, and the corresponding color difference is denoted as AEy,. The
CIE-DE2000 color difference formula incorporates a hue-dependent weight-
ing function Sy similar to the CMC formula. It also includes an additional
term in the color difference that depends on the hue and chroma difference
product that is motivated by the BFD formula (the R; term in Equation 1.43).
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Figure 1.17 “Ellipses” corresponding to a color difference of AE%, = 1.0 in the a*-b*
plane.

The formula also includes a global rescaling of the a* axis prior to compu-
tation of the hue and chroma. The CIEDE2000 color difference formula is
designed to be symmetric by using averages of the standard and sample
color values in the weighting functions. The resulting formula is fairly com-
plex, and the reader is referred to Reference 179 for details. Figure 1.18
visually illustrates the behavior of the AE,, color difference formula in the
a*-b* plane. The closed curves plotted in this figure correspond to the loci
of points whose color difference, with respect to a standard color located
roughly in the center of the curve, is one AEy unit. The closed curves are
well behaved in most regions and shaped like ellipses. In the blue region
(around the negative b* axis), however, the closed curves become non-convex
and take on a very distorted shape. This is potentially problematic and
probably does not agree with any psychophysical color difference data, most
of which predict loci of visually equidistant color samples from a standard
as convex almost elliptical closed curves. It would therefore be prudent to
wait for a resolution of these issues before using the CIE-DE2000 color
difference formula. In addition to the issue illustrated in Figure 1.18, addi-
tional concerns remain with regard to the CIE-DE2000.1701% Because the
scaling functions have been derived from color difference datasets, there are
questions about differences in the conditions under which the data were
gathered and about the influence of the conditions on the scaling functions.
In particular, some of the data might be influenced by lightness and chroma
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Figure 1.18 “Ellipses” corresponding to a CIEDE2000 color difference of AEy, = 1.0
in the a*-b* plane.

crispening,t limiting the scenarios under which the formula is applicable.”
In imaging applications, colors are typically surrounded by other similar
colors, whereas visual datasets used for deriving the color difference formu-
lae are based on comparisons of colors on a fixed background — normally
mid-gray. For imaging applications, therefore, it is particularly important that
the local lightness/chroma crispening in the experimental visual data should
not influence the color difference formulae. In addition to the above concerns
with color difference formulae, there are several fundamental questions asso-
ciated with the CIELAB space itself.'” Research on improved uniform color
spaces and color difference formulae is therefore likely to continue.

1.8 Limitations of CIE colorimetry

CIE colorimetry as discussed above has several additional limitations
beyond the deficiency in uniformity of the CIELAB and CIELUYV color spaces
that was already addressed above. First, variations among observers’ color
matching characteristics are not comprehended by the CIE standard observer
and can result in a mismatch in colors for an actual color-normal observer,
even when a metameric match is predicted by the standard observer. This
is termed observer metamerism. While the extent of variation cannot be inher-
ently reduced, it is useful to quantify it, because it forms a basis for deciding

t A description of lightness crispening can be found in the next chapter.
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what color tolerances are allowable and the extent to which illumination has
to be controlled to avoid illuminant metamerism (discussed in Section 1.5.2).
Toward this end, the CIE has developed an additional concept of a standard
deviate observer,* which allows users to establish confidence limits represent-
ing observer variability. The standard deviate observer was derived based
on analysis of the variation in the original color matching data used to derive
the CIE 1964 10° observer.

There is also significant debate about the accuracy of the standard CIE
1931 CMFs, given that these were derived from experimental data gathered
almost a century ago, using equipment limited by the technology available
at that time. In particular, the data used to generate the 2° standard
observer!19328 cannot be entirely reconciled with the data gathered later and
used to generate the 10° standard observer.?®* Research has indicated some
small but systematic deviations from the original CMFs in the short-wave-
length regions.”#2782% It has been conjectured that these deviations may
partly explain some of the blue hue nonlinearity in CIELAB that was dis-
cussed earlier. The CIE is also involved in an effort to derive new cone
fundamentals (CMFs) for the 2° standard observer based on the more recent
10° observer data.?5*"” There are also fundamental questions about the con-
nection between photometry and colorimetry and whether it is indeed pos-
sible to define the photometric (luminance) response in terms of the colori-
metric response as one of the CMFs. Colorimetry therefore continues to be
an area of active research. In addition to issues with established standards
for color-normal observers, significant work is also required to better under-
stand the “color” vision characteristics of color-anomalous observers.

Despite the above limitations, it is worth noting that the CIE system for
colorimetry is a significant advance over methods for color specification
prevailing before its adoption. The CIE system of colorimetry provides a
methodology for the quantitative specification of colors (or at least, color
correspondences). In this regard, the perception of color is significantly
advantaged over other human senses such as touch and smell for which no
system for quantitative specification currently exists and none is under immi-
nent development.

1.9 Psychophysics of color

The human visual system as a whole displays considerable adaptation. It is
estimated that the total intensity range over which colors can be sensed is
around 108:1. While the cones themselves respond only over a 1000:1 inten-
sity range, the vast total operating range is achieved by adjustment of their
sensitivity to light as a function of the incident photon flux.?® This adjust-
ment is believed to be largely achieved through a feedback from the neuronal
layers that provide temporal lowpass filtering and adjust the cones’ output
as a function of average illumination. A small fraction of the adaptation
corresponding to a factor of around 8:1 is the result of a 4:1 change in the
diameter of the pupil that acts as the aperture of the eye.!%® 23
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Another fascinating aspect of human vision is the invariance of object
colors under lights with widely varying intensity levels and spectral distri-
butions. Thus, objects are often recognized as having approximately the same
color in phases of daylight having considerable difference in their spectral
power distribution and also under artificial illumination. This phenomenon
is called color constancy. The term chromatic adaptation is used to describe the
changes in the visual system that relate to this and other psychophysical
phenomena.

While colorimetry provides a representation of colors in terms of three
independent variables, it was realized early on that humans perceive color
as having four distinct hues corresponding to the perceptually unique sen-
sations of red, green, yellow, and blue. Thus, while yellow can be produced
by the additive combination of red and green, it is clearly perceived as being
qualitatively different from each of the two components. Hering!? had con-
siderable success in explaining color perception in terms of an opponent-
colors theory, which assumed the existence of neural signals of opposite
kinds, with the red—green hues forming one opponent pair and the yel-
low-blue hues constituting the other. Such a theory also satisfactorily
explains both the existence of some intermediate hues (such as red-yellow,
yellow-green, green-blue, and blue-red) and the absence of other interme-
diate hues (such as reddish-greens and yellowish-blues).

Initially, the trichromatic theory and the opponent-colors theory were
considered competitors for explaining color vision. However, neither one by
itself was capable of giving satisfactory explanations of several important
color vision phenomena. In more recent years, these competing theories have
been combined in the form of zone theories of color vision, which assume that
there are two separate but sequential zones in which these theories apply.
Thus, in these theories, it is postulated that the retinal color-sensing mech-
anism is trichromatic, but an opponent-color encoding is employed in the
neural pathways carrying the retinal responses to the brain. These theories
of color vision have formed the basis of a number of color appearance models
that attempt to explain psychophysical phenomena. Typically, in the interests
of simplicity, these models follow the theories only approximately and
involve empirically determined parameters. The simplicity, however, allows
their practical use in color reproduction applications involving different
media where a perceptual match is more desirable and relevant than a
colorimetric match.

A somewhat different but widely publicized color vision theory was the
retinex (from retina and cortex) theory of Edwin Land.#1” Through a series
of experiments, Land demonstrated that integrated broadband reflectances in
red, green, and blue channels show a much stronger correlation with per-
ceived color than the actual spectral composition of radiant light incident at
the eye, or corresponding integrated radiances. He further postulated that
the human visual system is able to infer the broadband reflectances from a
scene through a successive comparison of spatially neighboring areas, which
offers an alternate spatial form of adaptation similar to chromatic adaptation.
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The retinex computation is one of the few models of vision that attempts to
comprehend spatial interactions in color vision. Recent years have seen a
resurgence of interest in the retinex theory.?®® Computational versions of the
theory have recently been used, with some success, in the enhancement of
color images,#>1462% in illuminant estimation for digital camera images,”
gamut mapping of high dynamic range images,?! and other applications.

One may note here that some of the uniform color spaces include some
aspects of color constancy and color appearance in their definitions. In par-
ticular, both the CIELAB and CIELUV spaces employ an opponent color
encoding and use white-point normalizations that partly explain color con-
stancy. However, the notion of a color appearance model is distinct from
that of a uniform color space. Typical uniform color spaces are useful only
for comparing stimuli under similar conditions of adaptation and can yield
incorrect results if used for comparing stimuli under different adaptation
conditions. The CIE does not recommend the use of CIELAB and CIELUV
spaces in conditions where the illuminant is “too different from average
daylight.”# Even under these restricted conditions, it is apparent from the
discussion of Section 1.7.3 that, as appearance spaces, CIELAB and CIELUV
are rather crude approximations. Color appearance models and spaces are
the topic of the next chapter. A very brief outline is included here to provide
a broad overview and establish the connections with the basic colorimetry
and color difference formulae we have described here.

1.9.1 Chromatic adaptation and color constancy

Several mechanisms of chromatic adaptation have been proposed to explain
the phenomenon of color constancy. Perhaps the most widely used of these
in imaging applications is one proposed by von Kries.!” He hypothesized
that the chromatic adaptation is achieved through individual adaptive gain
control on each of the three cone responses. Thus, instead of Equation 1.3,
a more complete model represents the cone responses as

¢ =DS'f (1.55)

where D is a diagonal matrix corresponding to the gains of the three chan-
nels, and the other terms are as before. The gains of the three channels
depend on the state of adaptation of the eye, which is determined by pre-
exposed stimuli and the surround, but independent of the test stimulus f.
This is known as the von Kries coefficient rule.

The term asymmetric matching is used to describe matching of color
stimuli under different adaptation conditions. Using the von Kries coefficient
rule, two radiant spectra, f; and f,, viewed under adaptation conditions
specified by the diagonal matrices D, and D,, respectively, will match if

D,S™f, = D,S'f, (1.56)
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Thus, under the von Kries coefficient rule, chromatic adaptation can be
modeled as a diagonal transformation for tristimuli specified in terms of the
eye’s cone responses. Usually, tristimulus values are specified not relative to
the cone responses themselves but to CMFs that are linear transformations
of the cone responses. In this case, it can readily be seen®>F 42 that the
tristimuli of color stimuli that are in an asymmetric color match are related
by a similarity transformation!! of the diagonal matrix D7'D,.

A von Kries transformation is commonly used in color rendering appli-
cations because of its simplicity and is a part of several standards for dev1ce-
independent color imaging.®20 Typically, the diagonal matrix D;'D, is
determined by assuming that the cone responses on either side of Equation
1.56 are identical for white stimuli (usually a perfect reflector illuminated
by the illuminant under consideration). The white-point normalization in
CIELAB space was primarily motivated by such a model. Because the CIE
XYZ CMFs are not per se the cone responses of the eye, the diagonal trans-
formation representing the normalization is not a von Kries transformation
and was chosen more for convenience than accuracy.”

In actual practice, the von Kries transformation can explain results
obtained from psychophysical experiments only approximately.335(p- 433-451)
At the same time, the constancy of metameric matches under different adap-
tation conditions provides strong evidence for the fact that the cone response
curves vary only in scale while preserving the same shape.’31®- 15 It therefore
seems most likely that part of the adaptation lies in the nonlinear processing
of the cone responses in the neural pathways leading to the brain.

A number of alternatives to the von Kries adaptation rule have been
proposed to obtain better agreement with experimental observations. Most
of these are nonlinear and use additional information that is often unavail-
able in imaging applications. Several of these are discussed in the next
chapter, and additional information can be found in References 81 and 135
(pp- 81 and 217).

The phenomenon of color constancy suggests that the human visual
system transforms recorded stimuli into representations of the scene reflec-
tance that are (largely) independent of the viewing illuminant. Several
researchers have investigated algorithms for estimating illuminant-indepen-
dent descriptors of reflectance spectra from recorded tristimuli, which have
come to be known as “computational color constancy algorithms.”8-0931%
Several of these algorithms rely on low-dimensional linear models of object
and illuminant spectra, which will be discussed briefly in Section 1.11.5.1. A
discussion of how these algorithms relate to the von Kries transformation
rule and to human color vision can also be found in References 89, 90, and 322.

1.9.2  Opponent processes theory and color appearance models

The modeling of chromatic adaptation is just one part of the overall goal of
color appearance modeling. While color appearance models are empirically
determined, they are usually based on physiological models of color vision.
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Most modern color vision models are based on “wiring diagrams” of the
type shown in Figure 1.19. The front end of the model consists of L, M, and
S (long, medium, and short wavelength sensitive) cones. The cone responses
undergo nonlinear transformations and are combined into two opponent
color chromatic channels (R-G and Y-B) and one achromatic channel (A). A
positive signal in the R-G channel is an indication of redness, whereas a
negative signal indicates greenness. Similarly, yellowness and blueness are
opposed in the Y-B channel. The outputs of these channels combine to deter-
mine the perceptual attributes of hue, saturation, and brightness.

It is obvious that the above color-vision model is an oversimplification.
Actual color appearance models are considerably more intricate and involve
a much larger number of parameters, with mechanisms to account for spatial
effects of surround and the adaptation of the cone responses, which was
briefly discussed in the last section. Due to the immense practical importance
of color appearance modeling to color reproduction systems, there has been
considerable research in this area, and a standard color appearance model
has been developed by the CIE.5018 Additional details of the state of the
research in color appearance models can be found in the next chapter.

A common use of color appearance models in imaging applications is
in reproducing images that are to be viewed under different viewing condi-

g g

Saturation Brightness

Figure 1.19 Typical “wiring diagram” for human color vision models (adapted from
Reference 246).
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tions from the original. An example of this situation would be the reproduc-
tion of a bright daylight-lit outdoor scene in a photograph/printed image
that is to be viewed indoors under significantly lower light levels and illu-
mination with relative SPDs very different from daylight. Matching the
colorimetry of the outdoor scene under the indoor illumination is neither
feasible nor desirable due to the very different states of adaptation of the
eye under the differing conditions.!* Instead, it is desirable to match the
appearance as closely as possible. This is facilitated by color appearance
models.

Figure 1.20 illustrates the conceptual use of the color appearance model
in situations similar to those outlined above. For given colorimetry under
(specified) reference viewing conditions, a color appearance model predicts
the colorimetry required under the (specified) test viewing conditions for
producing the same color appearance. To take a concrete example, if you
view a reflective print under one illuminant and want to create a print that,
when viewed under a different illuminant, produces an identical appearance
(in your mind), the color appearance model gives you the colorimetry that
your desired print should have. Note that the appearance that you are trying
to match is that of the “original” print under the original viewing conditions
and not the appearance of the original print under the new viewing illumi-
nant. This is a common source of confusion in the use of color appearance
models and chromatic adaptation transforms: it is incorrectly assumed that
these models predict the color appearance of a physical color sample as it

_ - - Matching -~
7 Appearance AN
/ N\
/ \

7 \ 7 \
S \ | Transform Based S v
, Colorimetry on a Color Colorimetry \\
,’ XYZp " Appearance Model ,’ XYZy "
' Viewing : I I '\, Viewing
\
\\ConditionsVR, XT Conditions,'

N\ o Y 4 AN o Y 4

Figure 1.20 Use of a color appearance model to predict colorimetry under test
viewing conditions that will match appearance of reference colorimetry under cor-
responding viewing conditions.
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is moved across viewing illuminants. A color appearance model is not
intended to predict the color appearance of a physical object under a different
“test” viewing illuminant from its colorimetry under a “reference” viewing
illuminant. Clearly, if we have metameric samples that match under the
“reference illuminant,” a color appearance model will indicate that they
match under all test illuminants whereas, in practice, we know this is not
true. Color appearance models only model the adaptation process in the eye
— they cannot and do not model the physical changes in the viewing illu-
minant; these can be properly accounted for only by using spectral measure-
ments using spectrophotometers and spectroradiometers.

Despite the statements in the above paragraphs, arguments from color
constancy can be used to say that, for most objects, color appearance models
would provide a good approximation to the colorimetry of the original object
under the new illuminant. However, because color constancy holds only
approximately, so does this argument, and it is important to understand that
the failure of a color appearance model in predicting the change in appear-
ance of a physical object when it is moved from one viewing illuminant to
another is an instance of incorrect use of the model rather than a failure of
the model.

1.10 Spatial characteristics of color vision

The CIELAB color space and associated color difference formulae try to
account for the nonlinearities in the color sensing process for the comparison
of relatively large uniform color regions and do not account for any spatial
interactions in the eye. Because the eye acts as a spatial lowpass filter that
can average over high spatial-frequency differences in images, a point-by-
point computation of color differences in CIELAB color space is not appro-
priate for the comparison of images. Though the eye exhibits lowpass char-
acteristics for both luminance’ and chrominance spatial information, the
bandwidth for the chrominance channels is much lower than that of the
luminance channels. This fact has been exploited in numerous applications,
including color TV, where the transmission bandwidth allocated to the
chrominance channels is significantly lower than that for the luminance
channel.

Several researchers have modeled the spatial properties of the eye as a
linear filter and studied the frequency response of the eye for luminance and
chrominance spatial patterns.89>103164345 However, a complete model for
human vision that is perceptually uniform and incorporates the effects of
the spatial interactions is yet to be developed. While sophisticated models
that explain a large number of psychophysical effects have been developed
for luminance information,%'”8 their extensions and the development of
alternative models that are capable of handling color data are still an active

t Strictly speaking, the luminance response of the eye is believed to be the bandpass but, for
all practical purposes, the low-frequency attenuation can be ignored.
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area of research.! Several of the models in development are quite compli-
cated and incorporate features designed to explain a wide variety of psy-
chophysical effects.”334

While sophisticated models are necessary in some cases,*” in several
imaging applications significant improvements can be made by incorporat-
ing relatively simple spatial models of human color vision. Computational
simplicity is also a necessity in situations where the models are used in
iterative loops for the optimization of image processing algorithms. As a
consequence, several simplified models have been developed that model the
spatial characteristics of color vision as simple luminance/lightness and
chrominance contrast sensitivity functions. One of the popular models in
this class of simplified models is the spatial extension of the CIELAB (S-
CIELAB) model,**® which will be used here for illustration of some of the
features of these models.

The S-CIELAB model first transforms a color image into three opponent
color image planes, O,, O,, and O;, corresponding to black-white (luminance),
red—green, yellow-blue image components, respectively. These three color
coordinates are defines as a linear transformation of the CIE XYZ tristimulus
values as

O, = 0.279X +0.72Y - 0.107Z

0, = -0.449X +0.29Y - 0.077Z

0O; = 0.086X +0.59Y -0.501Z (1.57)

Each opponent-colors image is convolved with a kernel filtered by two-
dimensional separable spatial kernels consisting of mixed Gaussians

flx,y) = ijwa{(x, ) (1.58)
2 2

El(x,y) = k{exp[jj(c—;-);i——)J (1.59)
G

where f1(x,y), f2(x,y), and f3(x,y) are the kernels for O, O,, and O, respectively.
Variables x and y denote the spatial dimensions, and the standard deviation
o! determines the spatial spread of the corresponding Gaussian in the mix-
ture. In the discrete implementation, the scale factor k! is chosen so that
El(x, y) sums to 1 over the spatial extent along x and y. The scale factors &/
are chosen so that, for each color plane, its two-dimensional kernel fi(x,y)
sums to one. The parameters (w), 6!) for the three opponent-colors are listed
in Table 1.2, where o) are in degrees of visual angle.
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Table 1.2  Parameters for the s-CIELAB HVS Model

wj ol

Luminance O, (i = 3) 0.921 0.0283
0.105 0.133
-0.108 4.336

Red-green O, (i = 2) 0.531 0.0392
0.330 0.494

Blue-yellow O, (i = 2) 0.488 0.0536
0.371 0.386

In the S-CIELAB model, the opponent color images O;, O,, and O; are
spatially filtered through the corresponding spatial kernels f(x,y), fA(x,y), and
f(x,y) to obtain images O;, O,, and Oj, respectively.

O/(x,y) = (O, ) * fx,y)  j=123 (1.60)

where * denotes convolution. The filtered images O, O,, and O; are then
transformed back to CIE XYZ coordinates using the inverse of the transfor-
mation in Equation 1.57. The CIE XYZ coordinates are then transformed into
CIELAB using the transformation described earlier in Section 1.7.2. The
resulting image is the S-CIELAB representation of the original image. To
evaluate the differences between two images,' the images are converted into
their S-CIELAB representations, and pixel-wise color differences are com-
puted between them in the CIELAB space, producing a color difference
image. Typically, the CIE AE%, color difference formula has been used,
although the other difference formulae based on CIELAB described in Sec-
tion 1.7.4 could also be used. The color difference image obtained from this
process represents a spatial map of the visual difference or distortion
between the images.?*? The distortion map may be used directly to determine
regions where differences will be perceived, or the error over the image
pixels may be averaged to determine a single measure of the perceived
difference between the images.

The spatial filter kernels for S-CIELAB corresponding to the parameter
values of Table 1.2 are shown in Figure 1.21a, b, and c for the black-white,
red—green, and yellow-blue opponent channels, respectively. The shapes of
the kernels clearly indicate the greater detail resolution for the black-white
(luminance) channel in comparison to the red—green and yellow-blue chromi-
nance channels, which is designed to mimic the behavior of the human visual
system. Because the individual kernels sum to unity, filtering a large uniform
region does not change its values, and the color difference computation

t It is assumed that the two images are registered well with each other. The S-CIELAB metric
is not meaningful for misregistered images.
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Figure 1.21 Spatial convolution kernels for the S-CEILAB opponent color channels:
(@) fA(x,y), black-white; and (b) f*(x,y), red—green (continues).

reduces to the direct computation of color difference between the original
images in CIELAB. Thus, the S-CIELAB model agrees with CIELAB for large
uniform regions, which is desirable, as CIELAB is already a widely used
model for computing color differences between spatially uniform regions of
differing color.

© 2003 by CRC Press LLC



y (in degrees)

X (in degrees)

Figure 1.21 (continued) Spatial convolution kernels for the S-CEILAB opponent
color channels: (c) f(x,y), yellow-blue.

The S-CIELAB model is attractive because of its simplicity and close
association to the well-accepted CIELAB standard. It has therefore been used
recently in several different applications.!%%2-3 Several other models with
similar characteristics have also been employed successfully in color imaging
applications.®9103164 These models provide varying degrees of agreement
with psychophysical data and few, if any, comprehensive objective tests of
the different models exist. Research on improving the models and on the
development of new models is also continuing.

1.11 Color image reproduction and recording devices

In the physical world, color images exist as spatially varying spectral radi-
ance or reflectance distributions. To process these images digitally, the images
must be sampled both spatially and spectrally. The issues involved in spatial
sampling and reconstruction of images have been discussed at length in
signal processing literature and will not be repeated here. The aspects of
spectral sampling and color recording for images are also important, and
these are addressed here. The reproduction of color images works in the
opposite direction from the recording process. The physical realization of
color images from recorded information requires synthesis of spatially vary-
ing spectral radiance or reflectance distributions. This section provides an
overview of common color reproduction devices, the spectral characteristics
of natural images and images from these reproduction devices, and methods
for recording these images. Color reproduction devices are discussed first,
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because color recording systems may also be used to record color reproduc-
tions and may exploit the characteristics of the reproduction device.

1.11.1 Color output systems

Nature provides a variety of mechanisms by which color may be produced.
As many as 15 distinct physical mechanisms have been identified that are
responsible for color in nature.?! While only a fraction of these mechanisms
are suitable for technological exploitation, there is still considerable diversity
in available technologies and devices for displaying and printing color
images.

Color output devices can be classified broadly into two main types:
additive and subtractive. Additive color systems produce color on a dark
background through the combination of differently colored lights, known as
primaries. The qualifier additive is used to signify the fact that the final
spectrum is the sum (or average) of the spectra of the individual lights, as
was assumed in the discussion of color matching in Section 1.4. Typically,
the additive primaries are red, green, and blue (RGB). The additive mixing
of RGB primaries is illustrated in Figure 1.22. The combination of red and
green forms yellow, of red and blue forms magenta, and of blue and green
forms cyan. Combination of all three primaries at full intensities produces
white. Intermediate colors are obtained by varying the individual primary
intensities. Examples of additive color systems include color cathode ray
tube (CRT) displays and projection video systems.

Color in subtractive systems is produced through a process of removing
(subtracting) unwanted spectral components from “white” light. Typically,

Figure 1.22  (See color insert following page 430) Additive mixing of red, green, and
blue primaries.

© 2003 by CRC Press LLC



such systems produce color on transparent or reflective media, which are
illuminated by “white” light having spectral components distributed over
the visible spectrum. By overlaying these media with colorants that selec-
tively absorb light of certain wavelengths while transmitting other wave-
lengths, different colors are produced. Typical subtractive systems are based
on cyan, magenta, and yellow (CMY) colorants that absorb light in the red,
green, and blue spectral regions, respectively. The red, green, and blue spec-
tral regions are roughly defined as the intervals 600-700, 500-600, and
400-500 nm, respectively. Each colorant absorbs its complementary color and
transmits the rest of the visible range of the spectrum. The process is illus-
trated in Figure 1.23. The individual CMY colorants eliminate RGB spectral
regions, respectively. The combination (overlay) of cyan and magenta elim-
inates both red and green, producing blue; the combination of cyan and
yellow eliminates red and blue, producing green; and the combination of
magenta and yellow eliminates green and blue, producing red. The combi-
nation of the maximum amounts of all three produces black. Intermediate
colors are produced by varying the colorant amounts. Dye sublimation print-
ers, color photographic prints, color slides, and halftone color printers are
representatives of the subtractive process. Halftone color printing, which is
commonly used for lithographic/electro-photographic printing and in most
desktop inkjet color printers, may also be viewed as a hybrid system,?*® since
the colorants combine subtractively, but the perceived color is the average
of the differently colored regions over a small area.

Any practical output system is capable of producing only a limited range
of colors. The range of producible colors on a device is referred to as its
gamut. Red, green, and blue primaries are chosen for additive systems,

Figure1.23 (See colorinsert) Subtractive combinations of cyan, magenta, and yellow
colorants.
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because they offer the largest possible gamut; for the same reason, subtrac-
tive systems use cyan (C), magenta (M), and yellow (Y) colorants. In sub-
tractive systems, it is also common to use a fourth black (K) colorant that
absorbs light (almost) uniformly over the visible spectrum. This improves
the gamut by allowing darker colors to be produced and also allows better
reproduction of achromatic (gray) colors and lower cost through the replace-
ment of the more expensive CMY colorants with the K. An excellent descrip-
tion of additive and subtractive color reproduction and additional reasons
behind the choice of primaries can be found in Reference 341, Chapter 3.

The gamut of a device can be represented by a three-dimensional solid
in any color space such as CIEXYZ/CIELAB. Because two-dimensional rep-
resentations are more convenient for display, it is common to utilize a CIE
xy chromaticity diagram for this purpose. On the CIE xy chromaticity dia-
gram, the gamut of an additive system appears as a convex polygon with
the primaries representing the vertices. For the usual case of three red, green,
and blue primaries, the gamut is a triangle on the CIE xy chromaticity
diagram. Because most subtractive and hybrid systems are nonlinear, their
gamuts have irregular shape and are not characterized by such elegant
geometric constructs. The two-dimensional representation of the gamut on
the CIE xy diagram presents only an incomplete (and difficult-to-interpret)
picture, because it does not represent the full three-dimensional data. With
the increase in computing speeds and advances in computer graphics, visu-
alization techniques are now used to render three-dimensional views of the
gamuts.>#®! The ability to manipulate these views interactively is extremely
useful in understanding the capabilities and limitations of the different color
output devices. Three different views comparing the gamut of a CRT monitor
and the gamut of a dye-sublimation continuous tone color printer are shown
in Figure 1.24, and identical views for an inkjet halftone color printer are
shown in Figure 1.25. In both cases, the wire frames represent the gamut of
a CRT monitor, and the solids represent the gamuts of the printer." These
views demonstrate that the gamuts of these three output devices are fairly
different, with several colors that can be produced on one device and not
on another. Overall, the gamut of the monitor is the largest, followed by the
gamut of the continuous tone printer and then by the inkjet halftone printer,
which has a rather small gamut in comparison to the other devices. This
mismatch in the gamut between the devices poses significant challenges in
cross-media color reproduction and is discussed in some detail in Chapter
10, on gamut mapping.

To discuss colorimetric reproduction on color output devices, it is useful
to introduce some terminology. The term control values is used to denote
signals that drive a device. The operation of the device can be represented
as a multidimensional mapping from control values to colors specified in a
device-independent color space. This mapping is referred to as the (device)

1 The gamuts displayed here are computed assuming that no flare is present when viewing the
CRT display. Flare, i.e., ambient external room light reflected by the CRT display screen, can
cause a significant reduction in the effective gamut of a CRT display.?¢®
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(b)

Figure 1.24 (See color insert) Comparison of a CRT monitor gamut (shown as a wire
frame) and a continuous-tone dye-sublimation printer gamut (shown as a solid) in
CIELAB space: (a) top view along the L* axis, and (b) a perspective projection
(continues).
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Figure 1.24 (continued) (See color insert) Comparison of a CRT monitor gamut
(shown as a wire frame) and a continuous-tone dye-sublimation printer gamut
(shown as a solid) in CIELAB space: (c) another perspective projection.

forward device transform. interactively specified colors in a device-independent
color space must be mapped to device control values to obtain colorimetric
output, it is necessary to determine the inverse of the multidimensional
forward device transform. The determination of the forward device trans-
form and the inverse transform necessary for mapping device independent
colors to device control values is sometimes called device profiling.

If the device’s operation can be accurately represented by a parametric
model, the profiling is readily done by determining the model parameters
from a few measurements. If no useful model exists, a purely empirical
approach is necessary in which the forward device transform is directly
measured over a grid of device control values. The inversion may be per-
formed in a closed form if the characterization uses a device model that
allows this. If an empirical approach is employed in characterization, or if
the model used is noninvertible (often the case with nonlinear models), one
has to resort to numerical methods in the inversion step.

1.11.1.1 Cathode ray tubes

The most widely used display device for television and computer monitors
is the color CRT. The CRT produces visible light by bombardment of a thin
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Figure 1.25 (See color insert) Comparison of a CRT monitor gamut (shown as a wire
frame) and an inkjet printer gamut (shown as a solid) in CIELAB space: (a) top view
along the L* axis and (b) a perspective projection (continues).

layer of phosphor material by an energetic beam of electrons. The electron
beam causes the phosphor to fluoresce and emit light whose spectral char-
acteristics are governed by the chemical nature of the phosphor. The most
commonly used color CRT tubes are the shadow-mask type, in which a
mosaic of red, green, and blue light-emitting phosphors on a screen is
illuminated by three independent electron beams. The intensity of light
emitted by the phosphors is governed by the velocity and number of elec-
trons. The beam is scanned across the screen by electrostatic or electromag-
netic deflection mechanisms. The number of electrons is modulated in syn-
chronism with the scan to obtain spatial variations in the intensity of the
light emitted by the three phosphors. At normal viewing distances, the light
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Figure 1.25 (continued) (See color insert) Comparison of a CRT monitor gamut
(shown as a wire frame) and an inkjet printer gamut (shown as a solid) in CIELAB
space: (c) another perspective projection.

from the mosaic is spatially averaged by the eye, and the CRT thus forms
an additive color system.

There are several design choices in the manufacture of shadow mask
CRTs. Other competing designs offer improved resolution by utilizing a
layered phosphor instead of a mosaic. The reader is referred to References
37 and 323 for a description of the different technologies and involved trade-
offs. A detailed description of physical principles involved in the operation
of these devices is provided in Reference 272 (pp. 79-200).

Color in CRT displays is controlled through the application of different
voltages to the red, green, and blue guns. For a complete colorimetric char-
acterization of these devices, the CIE XYZ tristimulus values (or other tris-
timuli) must be specified as a spatially varying function of the voltages
applied to the three guns. A brute-force approach to this problem, using a
multidimensional lookup table, is not feasible because of the extremely large
number of measurements required. Hence, simplifying assumptions should
be made so as to make the problem tractable.

Assumptions of spatial uniformity, gun independence, and phosphor
constancy are commonly made to simplify CRT colorimetry.? Spatial uni-
formity implies that the color characterization of the CRT does not vary with
position. Gun independence refers to the assumption that the three phos-
phors and their driving mechanisms do not interact. This implies that the
incident intensity at the eye when the guns are operated simultaneously is
the sum of the intensities when the guns are operated individually. Phosphor
constancy refers to the assumption that the relative spectral power distribu-
tion of light emitted by the phosphors does not change with driving voltage
(i.e., at all driving voltages, the spectra emitted by a phosphor are scalar
multiples of a single spectrum).

With the above three assumptions, the problem of characterizing the
CRT reduces to a problem of relating the intensities of the individual red,
green, and blue channels to their corresponding gun voltages. The problem
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can be further simplified through the use of a parametric model for the
operation of the individual guns. Typically, these models are based on the
exponential relation between the beam current and grid voltage in vacuum
tubes.**17 For each gun, the spectrum of emitted light in response to a control
voltage, 7, is modeled by an expression of the form?3222

((1 N B)Yh(k) (1.61)

where v,, = maximum value of the voltage
h(\) = emitted phosphor spectrum at the maximum voltage
B = an offset
Y = the exponential parameter

For appropriate setup of the monitor offset and brightness controls,? the
offset term B = 0 and the relation simplifies to (v/v,,)"h(X). The exponent,
Y, is commonly referred to as the monitor gamma and is normally around 2.2
for most color monitors. Because the power-law parametric model is only
approximate, several modifications of it have been used by research-
ers.212364% In practice, the addition of the offset term as illustrated in Equa-
tion 1.61 offers a significant improvement, because it accounts for deviations
from the pure power-law behavior due to differences in the brightness con-
trol setting for the CRT.#%2% Using the parametric models, CRT monitors
can be readily characterized using a small number of measurements.

The CRT phosphors define a set of additive primaries. If the CMFs
corresponding to these primaries are used in color specification, they can be
directly used to drive the electron guns if the signals are precorrected for
the power-law nonlinearity mentioned above. The transformation from CIE
XYZ tristimulus values is given by a linear transformation, corresponding
to a transformation from the CIE primaries to the phosphor primaries, fol-
lowed by a one-dimensional transformation that is determined by the para-
metric model used to represent the operation of the individual electron
guns.? Typically, this operation involves exponentiation to the power of 1/
and is known as gamma correction. As mentioned in Section 1.5.4, TV signals
are normally gamma corrected before transmission. One may note here that
quantization of gamma corrected signals results in wider quantization inter-
vals at higher intensities where the sensitivity of the eye is also lower.
Therefore, just like speech companding, gamma correction of color tristimuli
prior to quantization in a digital system (or transmission in a limited band-
width system) reduces the perceptibility of errors and contours in compar-
ison to a scheme in which no gamma correction is used.!30(p- 393.163,166,227,252

For colors that the phosphors are capable of producing, fairly good color
reproduction can be obtained on a CRT using the models mentioned above.
Using only a few measurements of the individual channel responses, the
models provide a very good approximation to the actual display. Typical
color errors?®2% from the offset-gamma model described above are an aver-
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age AE%, under 1 and a maximum AE?%, around 2, and the corresponding
numbers in AE%, units are 0.5 and 1.6, respectively. In comparison to other
color reproduction devices, these color errors are extremely small. CRTs have
therefore been often used in color vision research where a very high color
accuracy is required. In practical color imaging applications, the limitations
in the CRT color gamut due to the phosphors used cause significant color
errors for colors that lie beyond the gamut. This is one of the primary sources
of color errors seen in broadcast TV.

The assumptions of gun independence and phosphor constancy have
been tested by several researchers and found to hold reasonably
well 21296465268 However, in most CRT monitors, for the same driving voltage,
the light intensity is brightest at the center and falls off toward the edges.
The change in luminance over the screen can be as high as 25%.19®1% There-
fore, the assumption of spatial uniformity does not strictly hold. Because the
eye’s sensitivity itself is not uniform over the entire field of view, and because
the eye adapts well to the smooth variation in intensity across the screen, the
spatial nonuniformity of CRTs is not too noticeable.! An algorithm for cor-
recting for spatial inhomogeneity is discussed in Reference 63.

1.11.1.2 LCD displays

Liquid crystal display (LCD) flat panels are becoming increasingly common
as computer color displays due to their compact size and low power con-
sumption. These displays are now available at increasingly higher spatial
resolutions and in larger screen sizes with image quality that meets or
exceeds that of typical cathode-ray-tube (CRT) displays.’”” While the market
for CRTs continues to grow at present, in the long run, flat panel displays
are expected to replace CRTs as the primary computer displays.3$32!

With widespread use, there is also an increased need for color manage-
ment for LCD displays, which enables accurate control of color in displayed
images. While the color characteristics of CRT displays and methods for
their color calibration have been extensively studied and reported, the color
characteristics of LCD displays and methods for calibration have come to
the forefront only in the last few years and have received only limited
attention in published literature. A recent comparison of the color charac-
teristics and gamut considerations for LCD displays vs. CRTs can be found
in Reference 263.

The most common LCD displays for computers are back-lit active matrix
LCDs (AMLCDs) of the “twisted nematic” type.!%¢- 72 These are manufac-
tured by deposition and patterning of (active) pixel electronics on a glass
substrate. Each pixel element consists of a pair of linear polarizers with liquid
crystal (LC) material sandwiched in between. Figure 1.26 graphically illus-
trates a pixel element. The two linear polarizers are orthogonally oriented;

1 The imperceptibility of the slow lightness variation over a CRT screen can also be explained
in terms of the bandpass nature of the eye’s lightness/luminance spatial response, which
severely attenuates the perceptual impact of this variation.
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Figure 1.26 Structure of an LCD display pixel.

light does not pass through the display except for actions of the LCs. The
surfaces adjacent to the LC molecules are typically designed so that (in the
absence of any electric field) the LC molecules align in a 90° twisted config-
uration, which rotates the plane of polarization of incident linearly polarized
light by a 90° angle.2%!pp- 429-430) The “input” polarizer on the backside polar-
izes the light coming from the lamp behind the display. This polarized light
encounters the LC molecules, which rotate its plane of polarization by 90°,
allowing it to pass through the output polarizer, resulting in an ON pixel.
The pixel is turned OFF by the application of an electric field. Due to their
dielectric anisotropy, the LC molecules tend to align with the electric field and
move away from their twisted state. In a strong enough electric field, the
molecules are almost completely aligned with the electric field. This causes
the pixel to be turned off, as the LC molecules no longer produce the 90°
rotation in the plane of polarization that is required for the output polarizer
to transmit the light.

Color displays are produced by laying a mosaic of red, green, and blue
colored filters on the substrate glass aligned with the pixel array. Quite often,
the individual RGB pixels are rectangular and arranged so that three hori-
zontally adjacent rectangular RGB pixels constitute a single square “color
pixel” (which is set farther away from other “color pixels” in comparison to
the spacing between the individual RGB pixels). The display thus appears
to be composed of stripes of rectangular RGB pixels going vertically across
the screen. The backlight is typically a fluorescent lamp with three prominent
peaks in the red, green, and blue regions of the spectrum.
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In most AMLCD color displays, the RGB pixels are driven and con-
trolled independently. The emitted light is combined and averaged in the
eye (just as for CRTs). Therefore, the three RGB channels combine through
simple addition of light, and one can expect channel independence to hold
for these displays. This allows a complete characterization of the display
from a per-channel characterization. Furthermore, if the switching mecha-
nism of the LCD pixel cell described above is spectrally nonselective (i.e.,
when a pixel is driven by applying a voltage the percent change in spectral
transmittance is the same across all wavelengths), the channel-chromaticity-
constancy assumption of also applies, further simplifying the characteriza-
tion to a determination of the individual channel intensity or tone response
curves. The tone-response curves for the individual channels then corre-
spond to what is commonly referred to as the electro-optic response, in LCD
terminology. The electro-optic response of an LCD pixel cell (for on-axis
viewing) tends to be an S-shaped curve (like sigmoidal functions).!®? This
response is quite different from the power-law relation for CRTs and cannot
readily be modeled by the parametric power-law relation of Equation 1.61.
Additional measurements are therefore typically required for the charac-
terization of LCD displays and alternate parametric relations have also been
proposed.!72

Because LCD displays were first deployed in an environment dominated
by CRTs, the color filters for these devices were designed to have the same
chromaticities as the CRT primaries. This allows the devices to be directly
driven by the same signals as those used for CRTs, with only one-dimen-
sional compensations for the per-channel tone-response curves. Often, dis-
plays incorporate built-in, switchable per-channel compensation curves that
could change the actual observed tone-response curves for the display. These
compensation curves are also typically set up to effectively mimic a power-
law relation® between the driving signals and the observed luminance.

Using the assumption of channel independence, LCD displays can be
color profiled with good accuracy. Average and maximum color errors in
AE?%, units are around 2.4 and 4.5 with corresponding numbers in AE¥, units
around 1 and 2, respectively.?3 This level of error is well below the acceptable
range for most imaging applications, although use in color science experi-
mentation would require greater accuracy.

A common problem with most AMLCD displays is one of limited
viewing angle. Due to the birefringent nature of liquid crystal (LC) mole-
cules, polarized light entering an LC material off axis is treated differently
from polarized light entering along the optical axis (0° angle of incidence
wrt to the normal). The LC molecules are less effective in performing the
proper rotation for polarized light that enters the LC material off axis. The
electro-optic transfer function of LCDs therefore tends to be angle depen-
dent. 1P 40 In addition, the LCs are dispersive and operate differently on
different wavelengths of light, especially when responding to off-axis inci-
dent light. Thus, as one moves off axis (either up or down or from side to
side), significant variations in hue and contrast occur with the change in
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viewing angle.’ As one moves far enough off axis, the contrast is dimin-
ished to the point that it limits the effective viewing angle.

A change in viewing angle of 30° for an AMCLD display can result in
average color shifts of over 5 AE%, units.?®® Figure 1.27 shows color shifts
observed in an experimental display for a change in viewing angle from 0
to 30° projected on the a*-b* plane. The lines in this plot represent the color
shifts with the “*” representing the color seen along a 30° viewing angle and
the other end representing the color seen along a 0° viewing angle. As the
viewing angle changes from 0 to 30°, the colors move toward the center of
the a* and b* plane. Thus, the color shifts are such that colors tend to desat-
urate as the viewing angle increases. The predominant effect seen in off-axis
viewing is a reduction in contrast and saturation. The large magnitude of
the differences indicates that such an LCD display should be used only for
a limited viewing angle if accurate color is desired.

Several innovative techniques have been developed to increase this use-
ful viewing-angle range.!1?151612%0 Recent commercial displays include alter-
native technologies such as in plane switching to provide an improved usable
angle of viewing.!?’

1.11.1.3 Contone printers

Continuous tone printers are subtractive color devices. They use different
concentrations of the cyan, magenta, and yellow colorants to control the
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Figure 1.27 Color shifts in a* and b* for the LCD display test patches for a change
in viewing angle from 0 to 30°.
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absorption in the red, green, and blue regions and thereby produce different
colors. The term continuous comes from the fact that, at each spatial location,
these printers vary the colorant concentrations or amounts over a continuous
range (in contrast with halftone printers, which are discussed next).

Most subtractive color reproduction systems are inherently nonlinear
and cannot be modeled as easily or accurately as additive systems. The
subtractive principle is schematically shown in Figure 1.28 for a transmissive
system. If the incident light spectrum is /(A), the spectrum of the light trans-
mitted through the three layers is given by g(A) = I(A)t;(A)t,(M)ts(A),
where t;(A) is the spectral transmittance of the ith layer. If the colorants are
transparent (i.e., do not scatter incident light), and their absorption coeffi-
cients are assumed to be proportional to their concentration (Bouguer—Beer
law), it can be shown that 19%(Chap-7) the optical density of the ith colorant layer,
which is defined as the negation of the logarithm (base 10) of its transmit-
tance, is given by

di(ci; M) = —logyoti(ci; A) = cidi(MN) (1.62)
where t;(c;; A) is the transmittance of the ith colorant layer, ¢; is the concen-

tration of the ith colorant (which varies between 0 and 1), and
d;(A) = d,(1; A) is the density at maximum concentration.

1(A)

I

Cyan Layer t l(?\.)

Lyt 3y

Magenta Layer tz(?\.)

1Mt M0

Yellow Layer t3(?\.)

1Mt Mt M) R)
1 2 3
Figure 1.28 Subtractive color reproduction.
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Using samples of the spectra involved, the spectrum of transmitted light
can be represented as3®

g = L[10™] (1.63)

where L = a diagonal matrix representing an illuminant spectrum
¢ = the vector of colorant concentrations
D = [d1d2d3]

The remaining boldface symbols represent sample vectors of the correspond-
ing spectral functions, and the exponentiation is computed component-wise.

For prints produced on paper, the transmitted light is reflected by the
paper surface and travels once again through the colorant layers. This pro-
cess is readily incorporated in the model of Equation 1.63 as an additional
diagonal matrix that represents the reflectance spectrum of the substrate
and a doubling of the densities {d,»(?\.)}?: 1 - Technically, for diffuse illumi-
nation the Kubelka—Munk model (see Reference 108, Chapter 7) should be
used with the scattering terms set to zero. The mathematical details are,
however, unaffected by this technicality, except for a change in the scaling
of densities. For simplicity, the substrate reflectance can be conceptually
included in the illuminant matrix L, and the same equations can be used
for reflective media. While the assumption of transparent layers with no
scattering and no interaction between layers is sometimes too simplistic (for
instance, for halftone prints and/or pigmented colorants), it is also fairly
accurate for a number of useful cases including typical photographic slides
and (to a lesser degree) photographic prints, and it has been successfully
used in these scenarios.?1262

An example of a photographic contone subtractive color reproduction
process is illustrated in Figures 1.29 and 1.30. The measurements used in
these figures correspond to a Kodak IT8 photographic target.?” Figure 1.29
illustrates the reflectances for white paper and for the maximum density
cyan, magenta, and yellow colorants on the target. Figure 1.30 shows the
estimated spectral densities for cyan, magenta, and yellow colorants (at
maximum concentrations) as determined from these measurements. In these
plots, the spectral regions corresponding to a high density value correspond
to spectral wavelengths where the colorants strongly absorb light and
regions of 0 density correspond to regions where the colorants transmit all
the light through with no absorption. Note that the colorants all have rela-
tively wide absorption bands with significant overlap between the absorp-
tion regions of the different colorants.

Even the simplified model of Equation 1.63 cannot be used for a closed-
form calibration of a subtractive system. Analytical models therefore often
assume that the three dyes have nonoverlapping rectangular-shaped absorp-
tion regions that cover the visible region of the spectrum. This is known as
the block-dye assumption. Using the block dye assumption, colorant concen-
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Figure 1.29 Spectral reflectances for white paper, cyan, magenta, and yellow from
the Kodak IT8 target.
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Figure 1.30 Spectral densities for cyan, magenta, and yellow from the Kodak IT8
target.

trations required to produce a given CIE tristimulus can be determined in
closed form.3 Under the assumption of nonoverlapping spectral absorption
bands for the colorants, the colorants’ interactions are eliminated, and the
system can be transformed into an equivalent additive system. Because real
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colorants deviate from this ideal desired behavior, the absorptions for a
colorant in the visible band but outside its primary absorption band are often
referred to as unwanted absorptions. Because unwanted absorptions are a hard
reality of actual colorants, the utility of the block-dye assumption is restricted
to educational illustrations of the subtractive process.

Most contone printers available currently use thermal dye diffusion
technology. The coloring dyes in such a system are transferred from a dis-
pensing film into the reproduction medium by means of heat-induced dif-
fusion. Often, a fourth black dye is used in addition to the cyan, magenta,
and yellow dyes to achieve greater contrast and better reproduction of
achromatic (gray) colors. A review of the physical processes involved in a
thermal dye diffusion printer can be found in References 113 and 114. Note
that conventional photography uses subtractive color reproduction; thus,
continuous tone printing is possible using photochemical methods that
mimic photography. For an overview of this method and for more details of
the dye diffusion printing process, the reader is referred to References 72
and 148.

In practice, the models for subtractive printers described above are appli-
cable to only a small set of printers. For several applications, the colorants
are not completely transparent; therefore, the Kubelka—Munk theory,6108.168
which accounts for scattering of light by the colorants, is more appropriate
than the Bouguer—Beer law. Because accurate determination of the model
parameters is fairly complicated, and there are interactions between the
media and the colorant layers that are not accounted for even in the
Kubelka-Munk theory, often purely empirical techniques are used to profile
color printers. The model in Equation 1.63, though somewhat restrictive, has
been successfully used to model and profile a thermal dye diffusion printer'”
and has also proven very useful in analytical simulations of printers and in
making design choices.!¥

Typical empirical approaches for color printer calibration begin by mea-
suring the color of test prints corresponding to a uniform grid of control
values. This provides a sampling of the mapping from device control values
to a device-independent color space. A variety of interpolation-based tech-
niques are then utilized to determine the required inverse transformation,
typically in the form of a lookup table over a uniform grid in a color
space.128218240 Interesting alternate approaches have also utilized neural
networks!®® and an iterated scheme that concentrates measurements in
regions of greatest impact.®°

1.11.1.4 Halftone printers

Contone printers require reliable and accurate spatial control of colorant
concentrations, which is difficult to achieve and control accurately. As a result,
contone printers are rather expensive. Most desktop printers are therefore
based on the simpler technique of halftoning, which has long been the color
reproduction method of choice in commercial lithographic printing. Like CRT
displays, halftoning exploits the spatial lowpass characteristics of the human
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visual system. Color halftone images are produced by placing a large number
of small, differently colored dots on paper. Due to the lowpass nature of the
eye’s spatial response, the effective spectrum seen by the eye is the average
of the spectra over a small angular subtense. Different colors are produced
by varying the relative areas of the differently colored dots. In contrast with
contone printing, the concentration of a colorant within a dot is not varied,
so halftone printers are considerably easier and less expensive to manufac-
ture. Special processing of images is necessary to determine the dot patterns
for the different colors prior to printing on a halftone printer. This processing
is the subject of Chapter 6, “Digital Color Halftones,” and only the halftone
printing mechanism will be briefly discussed in this chapter.

For reasons similar to those for contone processes, most three-ink half-
tone systems use cyan, magenta, and yellow colorants for printing the dots
(see Reference 341, Chapter 3). Just as in contone printers, a fourth black
colorant is often introduced to conserve the more expensive colorants, reduce
ink usage, and produce denser blacks (see Reference 341, p. 282).

A model for halftone printers was first suggested by Neugebauer,?'® who
observed that the overlap of CMY colorant halftone dots produces eight
primary colors: the paper (no-ink), each of the three colorants (cyan, magenta
and yellow), combinations of two colorants (red, green, blue), and combina-
tions of all three (black). The observation generalizes from the three-colorant
case to the case of four or any arbitrary number of colorants. The colorants
combine subtractively over the regions in which they overlap and, in general,
produce up to 2K different colors with K colorants. These distinct colors are
called the Neugebauer primaries. Neugebauer proposed that the tristimulus
values of the print can be expressed as the weighted average of the tristimuli
of the Neugebauer primaries with the weights equal to their fractional area
coverages. Due to the penetration and scattering of light in paper, known as
the Yule—Nielsen effectt (or, alternatively, as the optical dot gain),?3% the
simple Neugebauer model does not perform well in practice. As a result,
several empirical modifications have been suggested for the model.®
Recently, considerable success has been demonstrated in using a spectral
version of the Neugebauer model with empirical corrections for the
Yule-Nielsen effect,?11252308336 in which the reflectance of a CMYK halftone
print is modeled as

16 n
r(h; w) = (Z w,-r}/"(X)] (1.64)

i=1

where r;(A) and w; are, respectively, the spectral reflectance and the frac-
tional area of the ith primary (there are 16 primaries for a 4-colorant [CMYK]
system); and 7 is the empirical Yule-Nielsen correction factor. As a further

1 Note that in the printing of the original paper,* Nielsen’s name was misspelled as “Neilsen.”
Both spellings have therefore been used in existing literature.
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simplification, the reflectances of the Neugebauer primaries composed of
overprints of more than one colorant may be expressed in terms of the
transmittances of the different colorant layers as was done in the subtractive
model of Equation 1.63. However, because this assumption of additivity of
densities reduces accuracy, it is usually not invoked; instead, the primary
reflectances {r,v(k)},-1 ¢ , are directly measured from prints.

Normally, the fractional areas w; are themselves related to the fractional
areas c, m, y, k covered by the cyan, magenta, yellow, and black colorants,
respectively. The relations determining the w; from c, m, y, k depend on the
method used to generate the halftone images. Equations for these relations
were first derived by Demichel® by assuming independent random coverage
for the colorants. Rotated halftone screens®! that approximate this random
independent coverage assumption are often used for printing, because they
are robust to commonly occurring registration (alignment) errors between
the different colorants images (separations). Alternative halftone screens have
different characteristics and consequently different relationships between the
fractional colorant coverages and the primary areas.®2%

Prior to the work of Neugebauer, halftone color reproduction was often
confused with subtractive reproduction, and the Neugebauer model there-
fore offered very significant improvements.?*> However, the actual halftone
process is considerably more complicated. As a result, several empirical
modifications have been suggested for the model, such as the Yule—Nielsen
parameter n and the spectral version of the model with the Yule—Nielsen
modification. While these models have had some success, complete and
accurate physical models for the color halftone printing process and the
Yule-Nielsen effect continue to be elusive. Promising new directions are
therefore a subject of continuing research.””>! Additional details on the
research in this area can be found in Chapter 3.

One obstacle in the direct use of Neugebauer models in characterizing
a halftone printer is that the relationship between the control values and the
printing area of the different colorants is usually not known a priori. Hence,
an empirical component is normally required even for characterization
schemes using a model. This empirical component is in the form of one-
dimensional pretransformations of device control values, which often serve
the additional purpose of increasing characterization accuracy along the
achromatic or neutral gray axis, where the eye has significantly greater sensi-
tivity.2% Purely empirical schemes similar to those used for characterizing
contone printers can also be used for halftone printers. The models men-
tioned above are nonlinear and nonseparable in the device control values
and cannot be inverted analytically. Hence, for both model-based and empir-
ical schemes, the inversion of the characterization needs to be performed
numerically. In either case, the final mapping from required color tristimuli
to device control values is realized as a multidimensional lookup table. The
models, however, have an advantage over a purely empirical approach in
that they offer a significant reduction in the number of measurements
required. An interesting generalization of the Neugebauer model is dis-
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cussed in References 8, 9, and 252, where the model is interpreted as inter-
polating between a number of end points specified by the primaries. Accu-
racy is improved by using local interpolation over smaller cells, which in
turn implies more measurements. The generalization, known as the cellular
Neugebauer model, thus offers a graceful trade-off between accuracy and
the number of measurements required. Due to the large number of effects
ignored by most models, they can offer only limited accuracy. Therefore, in
graphics arts and printing industries, where there is greater emphasis on
quality, measurement-intensive empirical schemes are often preferred.?# A
comparison of some model-based and measurement-based empirical
schemes for electronic imaging applications can be found in Reference 157.

Halftone printers have been manufactured using very different technol-
ogies for printing dots on paper.!48®-4® The most promising current technol-
ogies utilize inkjet, thermal transfer, and electrophotography to produce the
halftone dots. Even a brief mention of the principles and technology of these
devices is beyond the scope of this chapter, and the interested reader is
referred to References 72, 148, 241, and 254 for details.

1.11.1.5 Recent advances in color displays and printing

The increasing use of portable computers and hand-held mobile devices has
fostered considerable research in a variety of display technologies. While the
LCD display is dominant in this class, a number of alternative technologies
are actively being developed. These include plasma displays, electrolumi-
nescent displays, and displays based on organic light-emitting diodes
(OLEDs). A description of the historical development, physical principles,
and relative merits and demerits of some of these technologies can be found
in References 37, 155, 199, and 272. Most of them are additive color systems
similar to a CRT and use a mosaic of red, green, and blue “dots” to produce
color, although some LCD devices are based on the subtractive principle!>>32!
or on spectrally selective reflection.!?”

A majority of the color display devices mentioned so far rely on the
spatial lowpass characteristics of the human eye to produce different colors
using a mosaic of differently colored regions. An alternative system for
producing color, known as field sequential color (FSC), is based on the temporal
lowpass nature of the eye’s response. In an FSC system, red, green, and blue
image frames are projected in rapid succession onto the viewing screen, and
the temporal averaging in the observer’s eye produces the illusion of a single
colored image. An FSC system was originally selected by the FCC for color
TV transmission but, before it could be commercialized, it was replaced by
the monochrome-compatible NTSC system in use today. The primary draw-
back in such a system was the high frame rate and bandwidth require-
ments.?’(- 218219 Recently, there has been a resurgence of interest in FSC
systems. An interesting example of a recent FSC system is Texas Instruments’
digital micromirror device (DMD)3 that utilizes an array of deformable
micromirrors. In the deformed state, each micromirror deflects light from an
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illuminating lamp onto a single picture element (pixel) on the viewing screen.
The duty cycles of the deformation of different mirrors are modulated to
produce image intensity variations on the screen. Color is produced by
placing a color filter wheel between the lamp and the micromirror device
and synchronizing the red, green, and blue frames with the color wheel.
Alternative configurations using three separate DMD devices or two devices
in a five-primary projection system have also been reported.®* From a color
imaging standpoint, DMD displays are rather interesting, as they are almost
linear and allow considerable flexibility in the choice of the primaries
through the use of different color filters in the filter wheel.

There have also been significant new advances in color printing in recent
years. Color halftone printers have continually improved in resolution,
speed, and cost. Some devices now incorporate limited contone capability
through a coarse variation in colorant concentrations/drop volumes. The
gamut of printers has also been enlarged by using improved colorants or,
more recently, by using more than three/four inks, which is referred to as
high-fidelity (hi-fi) printing.?610422 [t is also common in inkjet printers to use
dilute cyan and magenta colorants in addition to the regular cyan, magenta,
and yellow colorants. This is particularly beneficial, because the lower den-
sity colorants produce more spatially uniform and less visible halftone struc-
ture in light regions such as Caucasian skin tones and pale blue skies, which
are quite critical to the good reproduction of photographs.

The color profiling for several of the devices mentioned above is per-
formed using model-based or empirical techniques already in use for exist-
ing devices. Other devices are still in their infancy, and little information
if any is available on their color characterization and performance. As they
find increased acceptance, there will no doubt be a greater demand for
more accurate color characterization and for reasonable models of these
devices. This, therefore, will be an active area of color imaging research in
the future.

1.11.2 Image characteristics

The spectral radiance or reflectance of an image carries the most complete
color information. Most color spectra are fairly smooth, and a 10-nm wave-
length sampling is normally sufficient for representing these spectra.3® The
spectra of fluorescent gas-discharge lamps have sharp spectral peaks and
therefore require a higher sampling rate or alternative model-based
approaches.!8264302 A 10-nm sampling of spectra in the 400- to 700-nm region
provides N = 31 samples' for each spectrum. Thus, color spectra lie in a 31-
dimensional vector space. Color spectra are usually smooth, so they do not
really exhibit 31 degrees of freedom. A principal-component analysis of
common reflectance spectra reveals that a large fraction of the energy in

1 The 400- to 700-nm interval is chosen for illustration and the exact interval is not central to
the argument here. Typical color measurement instruments report spectra over this or a larger
wavelength. region.
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these spectra is contained in a few principal components.!#® Several research-
ers have investigated this problem and have estimated that color reflectance
spectra can be represented by using anywhere between 4 and 12 principal
components, depending on the accuracy desired.>* 194314319

The spectral reflectance characteristics discussed in the last paragraph
covered almost the entire range of naturally occurring reflective objects.
Because most color reproduction systems exploit trichromacy and have only
three additive/subtractive primaries, their spectra often have even fewer
degrees of freedom. Thus, the spectra from a CRT display lie in a three-
dimensional space defined by the spectra of the phosphor primaries. The
same is true of all additive systems that utilize three primaries. For subtrac-
tive and hybrid systems, although there often are only three primaries, they
are not confined to a three-dimensional linear space, due to the nonlinearities
in the subtractive process. Despite the nonlinearities, the presence of only
three degrees of freedom in the color production process may often be
exploited in imaging applications.?”

1.11.3 Computer-generated imager

The previous section focused on natural image scenes and hard-copy prints
of these images. In the area of multimedia applications, the computer is an
alternative, rapidly growing source of color images. Computer-generated
scenes and animations are now common in video games and movies.2
These applications strive for realistic images and therefore have to model
the interactions between lights and objects in the scene, using both geometric
optics and colorimetry to produce proper color, shading, and texture for the
surfaces involved.?Chap- 199 For these applications to be successful in multi-
media applications, it is necessary that the color information be recorded in
a form that permits accurate rendering of the image on multiple output
devices. This is particularly relevant for recording on movie film, which has
entirely different characteristics from the CRT.1”!

Color can also be used to effectively encode information for presentation
and visualization. Bar graphs and pie charts used in presentations are simple
examples of the use of colors to distinguish different regions. The capabilities
of color encoding are also exploited more fully in applications that use color
to meaningfully represent quantitative differences in the data. Examples of
such applications include visualization of multispectral/stereo data using
pseudo-color images, and the use of color to portray three-dimensional rela-
tionships in multidimensional databases. The proper use of color in these and
other multimedia applications greatly enhances their effectiveness.”(- 601,306
Usually, the color images are designed for viewing on a CRT monitor and
tend to exploit the full capabilities of the monitor. When printing these
images, it is necessary to preserve their information and effectiveness. This
is often a significant challenge, because the printer gamuts are significantly
smaller than monitor gamuts. Methods of compensating for this type of
gamut mismatch are discussed in Chapter 10.
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1.11.4 Color recording systems

Systems for recording color information include both color measurement
instrumentation useful for large uniform regions and color image capture
devices designed to capture spatially varying color information. Color mea-
surement instruments are used primarily for determining the color charac-
teristics of objects and of imaging input and output devices. They include
both spectral measuring devices such as spectroradiometers/spectropho-
tometers and filter-based instruments that directly measure colorimetry. The
correct color measurement instrument for a particular application depends
on several factors including the cost of the instrument, the accuracy desired,
the variety of viewing conditions for which a calibration is desired, and the
number and type of devices that must be calibrated. Color image capture
devices include conventional and digital color cameras, which record color
information from a scene of real world objects, and color scanners, which
record color information from a prior reproduction such as a printed color
image, slide, or negative.

1.11.4.1 Spectroradiometers and spectrophotometers

Sampling of the spectral distribution provides the most direct and complete
technique for recording color information. A spectroradiometer is a device that
measures the power of optical radiation as a function of wavelength. Figure
1.31 shows the schematic cross section of a spectroradiometer. The light is
collimated by the lens onto a dispersive element, which decomposes it into
its spectrum. The spectrum is then sampled and recorded using single or
multiple detectors. Typically, a diffraction grating is used as the dispersive
element, because it provides an almost linear relationship between wave-
length and displacement in the detector plane, as opposed to an optical
prism, for which the correspondence is highly nonlinear. The linear relation-
ship considerably simplifies calibration procedures.

Modern spectroradiometers use charge-coupled-device (CCD) arrays as
the detectors because of their linear characteristics. A sampling of the spec-
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Figure 1.31 Schematic cross section of a typical spectroradiometer.
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trum is achieved automatically through the placement of physically distinct
detectors in the measurement plane. Because the separation between the
detectors need not correspond directly to a convenient wavelength spacing,
the detector outputs are usually interpolated to obtain the final spectral
samples. Even though the CCDs are almost linear in their response at a given
wavelength, their spectral sensitivity is not uniform. Therefore, a gain com-
pensation procedure is usually necessary to obtain calibrated output from
the device.204(- 338)

The range and the sampling interval of spectroradiometers vary accord-
ing to their intended application. Spectroradiometers used for color typically
report measurements over the range of 380-780 nm and are capable of a
spectral resolution ranging from 1 to 10 nm. For most color work (including
that using fluorescent lamps as sources), 2-nm sampling is sufficient.>* How-
ever, because some light sources have monochromatic emission lines in their
spectra, a deconvolution of the spectroradiometer measurements may some-
times be necessary to obtain greater accuracy.?¢*

Spectroradiometers can be used to measure both self-luminous and
reflective objects. For the measurement of reflectance spectra, a spectrally
smooth (preferably, white) light source and a spectrally referenced sample
(preferably, white) are required. Comparison measurements between the
known sample and the sample under question are made under identical
conditions, allowing the determination of the unknown sample’s reflectance
spectrum, from which the color descriptor under any viewing illuminant
can be obtained. Normally, the exact spectrum of the illuminant used with
the spectroradiometer in the reflectance measurement is immaterial, pro-
vided it has sufficient power over the spectral range of interest. However,
for the measurement of fluorescent materials, the power in the ultraviolet
regions is also important, and the illuminant must closely approximate the
desired standard illuminant under which colors are to be computed.3¥

While spectroradiometers can measure both luminous and nonluminous
objects, they are expensive, larger, and less portable than the other instru-
ments, and they generally are more difficult to operate due to their multiple
operating modes. In particular, it can be difficult to set up a spectroradiom-
eter for measuring reflectance samples under controlled conditions. There
are automated systems for performing measurements on multiple samples
using an x-y stage and a single light source.

An interesting application of spectroradiometry that extends beyond the
visible spectrum is in multispectral scanners carried by remote sensing satel-
lites. These scanners disperse radiation into different spectral bands in much
the same way as the spectroradiometers discussed above. Early cameras in
these satellites used 5 to 12 spectral bands extending from the visible into the
infrared region.’¢?” The Airborne Visible Infrared Imaging Spectrometer
(AVIRIS),'% which samples the range of 400 to 2500 nm at 10-nm resolution,
is an example of more recent scanners that use a larger number of bands.

A spectrophotometer is a device for measuring the spectral reflectance of
an object. Unlike a spectroradiometer, a spectrophotometer does not measure
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self-luminous objects. Therefore, spectrophotometers are useful for the cali-
bration of printers and scanners but not of CRT displays. Spectrophotometers
have their own internal light source that illuminates the sample under mea-
surement. There are many geometries for the sensor/illuminant combina-
tion, and each may be optimal for different applications. For color imaging
applications, the sensor and illuminant in the device are often set up for a
45°/0° condition as shown in Figure 1.32. Some devices illuminate the sam-
ple diffusely and measure off axis, allowing an option to include or exclude
the specular component from the sample. Some devices contain an optical
grating, others contain a filter wheel, and yet others use spectrally different
light sources to illuminate the sample.

Spectrophotometers measure reflectance as the ratio of two (uncali-
brated) spectroradiometric measurements?® 37 using the same principle that
was described in the last section. This is shown schematically in Figure 1.33.
The light source is contained within the spectrophotometer and is used to
illuminate both a standard sample with known reflectance, r,(A), and the
test object whose reflectance, r,()), is to be measured. If I(A) denotes the
SPD of the light source, and the device makes K spectral measurements at
AL wavelength intervals in the region [Ag, Ao+ (K—1)AA], the reference
measurements can be represented as

m(k) = dl(hy + kAN, (Ao + kKAL), 0<k<(K-1)

where d, denotes the detector sensitivity at (A, + kAA) . Similarly, the object
measurements are given by

my(k) = dil(hg+ kAN T, (Mo + kKAL), 0<k<(K-1)

Detector and
Monochromator

lllumination

Sample

Figure 1.32 45-0° measurement geometry.
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Figure 1.33 Spectrophotometer measurement.

The object reflectance samples can therefore be determined as

ro(hg + kKAL) = %rs(xﬁmx), 0<k<(K-1)

Mathematically, it can be seen that the detector sensitivity, d,, and the illu-
minant, /(A), cancel out and have no impact on the measurement. However,
to obtain good performance in the presence of quantization and measure-
ment noise and errors due to the limited dynamic range of the detectors, it
is desirable that the product of these quantities be nearly constant as a
function of wavelength. For similar reasons, it is desirable that the reflectance
of the standard sample be close to unity at all wavelengths. To avoid unnec-
essary duplication of the optics and sensors, the measurements of the refer-
ence standard and the object are usually performed sequentially instead of
using the parallel scheme shown in Figure 1.33. In addition, for added
convenience and to save time, typical measurement devices make one mea-
surement of the standard that is stored and used for a number of successive
object measurements.

Because most real-world reflectances are relatively smooth functions of
wavelength®® and have low dimensionality as discussed in Section 1.11.2,
most spectrophotometers work with much larger sampling intervals than
spectroradiometers, typically reporting reflectance at 5-, 10-, or 20-nm inter-
vals. The built-in illumination in these devices is usually a filtered incandes-
cent or xenon arc lamp whose spectrum is smooth (unlike fluorescent lamps)
and therefore does not unduly amplify the measurement noise and quanti-
zation errors. Spectrophotometers used in color work usually sample the
spectrum in the 380- to 780-nm range, although the lower-wavelength end
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of the spectrum may be truncated or less accurate in some devices because
of the lower energy in incandescent lamps at the ultraviolet end. Owing to
the lower resolution requirement, and because of the less stringent calibra-
tion required (due to the normalization of illuminant and detector sensitiv-
ities), spectrophotometers are considerably less expensive than spectroradi-
ometers and are also more stable over time.

The design of spectroradiometers and spectrophotometers should
account for a large number of factors excluded from the simplistic descrip-
tion given above. Both devices suffer from systematic and nonsystematic
deviations from the ideal behavior described above and must be accurately
calibrated to known radiant and reflectance standards prior to use. In par-
ticular, stray light, detector nonlinearity, effects of polarization, variations
in illumination and measurement geometry, and unaccounted fluorescence
and thermochromism of samples are sources of systematic errors. Detector
noise and quantum fluctuations in photon flux are examples of random
errors encountered in measurements. The reader is referred to References
108 (Chapter 8) and 109 (Chapter 9) for a thorough, though somewhat dated,
account of the systematic errors in these devices and their calibration pro-
cedures. A more current, though brief, overview is also provided in Refer-
ences 16 (pp. 74-86) and 135 (Chapter 5). Detector noise models for older
instruments that used thermal detectors and vacuum tubes are described
in Reference 35, and a more recent account of noise models for semicon-
ductor detectors of radiation is provided in References 28, 70, 144, and 204.
Some methods for accounting and correcting some of the systematic errors
in spectrophotometers are discussed in Reference 24. The propagation of
spectrophotometric errors in colorimetry has also been analyzed in Refer-
ence 83.

Color recording devices that attempt to sample spectral information
suffer from a number of obvious drawbacks. First, because the total energy
in the spectrum is split into a number of spectral samples, a sizable mea-
surement aperture and/or long integration time will be required for reli-
able measurements of the spectra. In addition, the required optical com-
ponents make some of the spectral devices rather expensive and therefore
inappropriate for desktop use. Finally, measurement devices that exploit
trichromacy are less accurate but can offer acceptable color performance
and significant speed advantage at a fraction of the cost. Spectroradiome-
ters and spectrophotometers are therefore used primarily for color calibra-
tion, where the larger aperture and longer measurement times are not
prohibitive (in contrast with devices for recording complete spatially vary-
ing images).

1.11.4.2 Colorimeters and photometers
As suggested by its name, a colorimeter measures color tristimuli and reports
these as color values in CIE XYZ, CIELAB, or related color spaces. Some
colorimeters have an internal light source for the measurement of color of
reflective objects, whereas others measure only self-luminous or externally
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illuminated objects. For some devices, tristimulus values for the sample
under a few different illuminants are available. Most colorimeters are small
hand-held devices with no moving parts and a single light detector. They
achieve their spectral “separation” by way of color filters placed before the
detector or with spectrally different light sources used for illumination." To
accurately report CIE colorimetry, colorimeters must record information
from which the colorimetry can be derived. The sensitivities of these devices
are therefore often designed to match a set of color-matching functions. It is
common for filter-based colorimeters to use four independent filters, one
each to approximate the y(A), z(A), and two to approximate the two indi-
vidual humps of the () color matching functions.!¢(p-8)

Colorimeters are less expensive than spectrophotometers and spectrora-
diometers, but they do not provide the detailed spectral information that
allows the calibration of a printer for an arbitrary viewing illuminant. Those
that measure self-luminous sources are used in the calibration of CRTs.
Photometers are single-channel devices that provide a measurement of the
luminance of a self-luminous or externally illuminated object. They are inex-
pensive and find use primarily in the calibration of CRTs when the chroma-
ticity of the CRT phosphors is known.

1.11.4.3 Photographic film-based recording schemes

Photographic film is not a digital recording device; however, a brief discus-
sion of this medium is worthwhile, as it often forms the primary input to
many digital color imaging systems. Film used for color photography records
the color information in three spectral bands corresponding roughly to the
red, green, and blue regions of the spectrum.

The image to be recorded is focused by a lens onto the film. The film
contains three emulsion layers with silver halide crystals that act as the light
sensors and sensitizing dyes that make the crystals in the three layers
respond to different spectral regions. Typically, the top layer is blue sensitive;
this is followed by a yellow filter and green and red sensitive layers, respec-
tively. The yellow filter keeps blue light from getting to the lower layers that
are also sensitive to blue light. Light in each of the three spectral bands
initiates the formation of development centers in the corresponding film
layer. When the film is chemically processed, the silver halide crystals at the
development centers are converted into grains of silver, and unexposed
crystals are removed. The number of grains of silver in a given layer at a
particular location is determined by the incident light energy in the image
in the corresponding spectral band at that location. Thus, the spatial distri-
bution of silver grains in the three layers forms a record of the spatial
distribution of blue, green, and red energy in the image.

The relation between the density of silver grains and the incident light
spectrum is highly nonlinear. In addition, the formation of silver grains is
not deterministic, and the randomness in grain formation contributes to

t The latter configuration is disadvantaged in the measurement of fluorescent samples.!®-7%
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noise in the recording process, known as film grain noise. Film grain noise is
often modeled as a Poisson or Gaussian random process!43(pp- 619-622)258,259,294
and constitutes multiplicative noise in the recorded image intensity.2®- 342

An image record in the form of three layers of silver grains is obviously
of limited use. Therefore, further chemical processing of the film is necessary.
For the purposes of this discussion, it suffices to note that this processing
replaces the silver grains in the red, green, and blue layers with cyan,
magenta, and yellow dyes in accordance with the principles of subtractive
color reproduction, which were be discussed in Section 1.11.1.3. A more com-
plete description for color photography can be found in Reference 130, and
simplified mathematical models for the process are described in Reference
234 (pp. 335-339).

As an aside, one may note that, prior to the invention of spectrophotom-
eters and spectroradiometers, two techniques were developed to record the
spectral information of entire images on (monochromatic) film. In the micro-
dispersion method of color photography, the light from each small region
of image was split into its spectral components using dispersive elements,
and the corresponding spectra (of rather small spatial extent) were recorded
on film. The second method, known as Lippman photography, recorded the
color information in the form of a standing wave pattern by using a mercury
coating on the rear of the film as a mirror. Both methods required extremely
fine-grain film to achieve the high resolution required and long exposure
times to compensate for the low energy at each spectral wavelength. The
reader is referred to Reference 130 for a slightly more detailed account of
these techniques.

1.11.4.4 Digital dolor cameras and scanners

Digital color cameras and color scanners are color recording devices that
operate on similar principles, though their intended use is quite different
and often poses different challenges. Both of these devices record color
information by transmitting the image through a number of color filters
having different spectral transmittances and sampling the resulting “col-
ored” images using electronic sensors.

Digital color cameras are designed to capture color images of real-world
objects in much the same way as conventional cameras, with the difference
that the images are recorded electronically instead of using film. Because the
scenes may involve moving objects, they typically have two-dimensional
CCD arrays that capture the image in a single electronically controlled expo-
sure. Different schemes may be used to achieve the spatial sampling and
color filtering operations concurrently. One arrangement uses three CCD
arrays with red, green, and blue color filters, respectively. In such an arrange-
ment, precise mechanical and optical alignment is necessary to maintain
correspondence between the images from the different channels. Often, the
green channel is offset by one-half a pixel in the horizontal direction to
increase bandwidth beyond that achievable by individual CCDs.!'® For econ-
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omy and to avoid the problems of registering multiple images, another
common arrangement uses a color filter mosaic that is overlaid on the CCD
array during the semiconductor processing steps. Because the green region
of the spectrum is perceptually more significant, such mosaics are laid out
so as to have green, red, and blue recording pixels in the ratio 2:1:1 or 3:1:1.22¢
Image restoration techniques are then used to reconstruct the full images for
each of the channels.3032%.2%5.301 Recently, a novel camera design has been
developed that avoids the problems of both color filter arrays and of multiple
images by using a single sensor and effectively layering the red, green, and
blue filters by using the spectral selectivity of light penetration in silicon.*
One of the aspects of color capture that is more challenging for color cameras
than for scanners and colorimeters is the lack of control over scene illumi-
nation. While the eye adapts to the scene as described in Section 1.9.1,
producing a visual appearance that is largely independent of the scene
illumination, cameras do not incorporate these adapting mechanisms and
consequently produce images with severe color casts/shifts. Algorithms for
estimating the relevant scene illumination characteristics and correction of
the casts are therefore necessary. Details on the image processing for digital
color cameras can be found in Chapter 12.

Scanners are usually designed for scanning images reproduced on paper
or transparencies and include their own sources of illumination. Because the
objects are stationary, these devices do not need to capture the entire image
in a single exposure. Typical drum or flatbed moving stage scanners use a
single sensor per channel which is scanned across the image to provide
spatial sampling. The single sensor makes the characterization of the device
easier and more precise and also allows the use of more expensive and
accurate sensors. For desktop scanners, speed is of greater importance, and
they usually employ an array of three linear CCD sensors with red, green,
and blue color filters. The linear sensors extend across one dimension of the
scanned image. This allows three filtered channels of the image along a line
to be acquired simultaneously. To sample the entire image, the linear array
is moved optically or mechanically across the other dimension of the image.
In another variation of these devices, three different lamps are used in
conjunction with a single linear CCD array to obtain a three-band image
from three successive measurements.

Colorimeters, digital cameras, and scanners can be mathematically rep-
resented by very similar models. In the remainder of this section, a scanner
will be used for illustration of such a model. However, the same discussion
applies to colorimeters and cameras with trivial modifications that will be
pointed out where required.

The schematic of a typical desktop color scanner is shown in Figure 1.34.
The scanner lamp illuminates the image, and the light reflected off a small
area is imaged by the lens onto a beam splitter that splits the light into a
number of channels with filters having different spectral transmittances (the
typical case of three channels is shown in the figure). The filtered outputs
are integrated over the electromagnetic spectrum by optical detectors to
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Figure 1.34 Schematic of a color scanner.

obtain a scanner measurement vector. This process is repeated over the entire
image to obtain a “color” representation of the image. In actual scanners,
the scanner measurements of the small area corresponding to a sampling
unit are influenced by the color of the surrounding areas.?? Ideally, restora-
tion schemes should be used to remove the blur from the recorded image.
However, due to the computational requirements, this is rarely done, and
this aspect of the problem will be ignored in the subsequent discussion.
For sensors commonly used in electronic scanners, the response at a
single spatial location can be modeled in a manner similar to Equation 1.1 as

£ = [ FNdOrM)Ld +e;

= j m (M) r(M)I(A)dA + €,
- (1.65)
where K = number of scanner recording channels
{f ,»(7»)}11»(: 1 = the spectral transmittances of the color filters
d(\) = sensitivity of the detector used in the measurements
I, (L) = SPD of the illuminant
r(A) = spectral reflectance of the area being scanned

€; = measurement noise

m;(A) = f;(A)d(N) is the product of filter transmittance and
detector sensitivity

t; = the value obtained from the ith channel
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In a manner analogous to Equation 1.3, Equations 1.65 may be replaced by
their discrete approximations using matrix vector notation as

t,= M'Lr+e (1.66)

where t, = the K x 1 vector of scanner measurements
r = the N x 1 vector of reflectance samples
L, = an N x N diagonal matrix with samples of the radiant spectrum
of the scanner illuminant along the diagonal
M = an N x K matrix whose ith column, m;, is the vector of samples
of the product of the ith filter transmittance and the detector
sensitivity
€ = the K x 1 measurement noise vector

Note that, while these devices “sample” color spectra very coarsely, to assure
that the above model is accurate it is necessary to meet sampling restrictions
on the color spectra involved.3® Due to their higher efficiency and lower
heat dissipation, fluorescent lamps are often used in desktop scanners.
Because their spectra have sharp spectral peaks, the sampling rate require-
ments (with uniform sampling) in the model of Equation 1.66 can be pro-
hibitively high. A more efficient model for such a case is proposed in Refer-
ence 265, where a decomposition of the illuminant into the sum of a band-
limited (smooth) component and impulses (monochromatic emission lines)
is used to substantially reduce the dimensionality of the model while retain-
ing the mathematical form of Equation 1.66.

For colorimeters and color cameras, the stimulus is normally a luminous
object or an object illuminated by an illuminant external to the device. For
these devices, the product, L,r (or its equivalent), defines the spectral radi-
ance whose color is to be recorded. From the model in Equation 1.66, it can
be inferred that, in the absence of noise, exact CIE XYZ tristimulus values
can be obtained from the data recorded by colorimeters and color cameras
if there exists a transformation that transforms the sensor response matrix,
M, into the matrix of CIE XYZ color matching functions, A.3% This is equiv-
alent to the requirement that the HVSS be contained in the sensor visual space
defined as the column space of M.3!° For devices using three channels, this
reduces to the requirement that M be a nonsingular linear transformation
of A. This fact has been known for some time and is referred to as the
Luther-Ives condition.!3!18 Recent reiterations of this result can be found in
References 102 and 127. A device that satisfies (generalizations of) the
Luther-Ives condition will be said to be colorimetric.

For color scanners, the analysis is slightly more involved, because the
illuminant used in the scanner is usually different from the illuminant under
which the scanned object is viewed by an observer. Under these conditions,
it can be shown that the CIE XYZ tristimulus values of the scanned object
under the viewing illuminant can be determined exactly from the noiseless
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scanner measurements if the human visual (viewing) illuminant space
(HVISS) is contained in the scanner visual space (SVS) defined as the column
space of L M. Because the spectra of fluorescent lamps used in most scanners
is quite different from that of the daylight illuminants used in colorimetry,
this condition is rarely met in practice. In addition, color tristimuli under
multiple viewing illuminants often need to be estimated from a single scan
of the image, and the above criterion would require an inordinately large
number of detectors. In addition to the problems caused by fluorescent
lamps, actual colorimeters, cameras, and scanners are subject to a wide
variety of restrictions arising out of economic considerations and limitations
of the processes and materials for manufacturing filters, optical components,
and sensors. Techniques from signal processing are therefore useful for the
evaluation and design of these devices.

It is the filters, { fi(A) }f= 1, over which the designer has the most control.
A quality measure for evaluating single-color filters was first proposed by
Neugebauer.?* Recently, this was extended to provide a computationally
simple measure of goodness for multiple filters in terms of the principal
angles between the HVISS and the SVS.31° The measure was used for the
evaluation and design of color scanning filters.*!312 The same measure was
also successfully applied to the combinatorial problem of selecting an appro-
priate set of filters for a scanner from given off-the-shelf candidate filters.*®
A minimum-mean-squared-error approach, which requires more statistical
information than purely subspace-based approaches, was introduced in Ref-
erence 316, where numerical approaches for minimizing errors in uniform
color spaces were also considered. In Reference 317, noise was included in
the analysis, and References 324-326 emphasize the reduction of perceived
color errors in a hybrid device capable of measuring both reflective and
emissive objects through the use of linearized versions of CIELAB space.”
An alternate novel approach accounting for noise was proposed in Reference
76, where a filter-set was chosen from the multitude satisfying the
Luther-Ives condition so as to minimize the perceptual impact of noise. In
References 260 and 267, a unified treatment encompassing a number of these
approaches is presented, and their performances are compared. Recently, the
comprehensive figure of merit defined in References 260 and 267 has been
extended through the inclusion of a signal dependent noise model and has
been applied to the optimization of digital camera color sensitivities. 23523

It may be emphasized here that, for a rendition of the recorded reflec-
tance scene under multiple viewing illuminants, more than three channels
are usually necessary. A simple generalization of the Luther-Ives condition
would require three K channels for K different viewing illuminants. In prac-
tice, however, between four and seven optimally designed spectral channels
provide sufficient accuracy for common viewing illuminants.2683%

Note that, in recording color images digitally, both the spectrum and the
spatial dimensions need to be “sampled.” The different quality measures
mentioned above consider only the spectral sampling aspect of the above
problem. These are therefore suitable for evaluating the color recording fidel-
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ity for large patches of uniform color and do not represent the complete
performance for the image recording system. This is particularly true in CFA
camera devices where the spatial and spectral sampling are performed jointly.

In actual devices, it is possible to have systematic deviations from the
linear model of Equation 1.66. Sources of error include fluorescence of sam-
ples in scanners, stray light, inclusion of ultraviolet and infrared radiation
in the measurements (which is not accounted for if the visible region of the
spectrum is used in the model), and limited dynamic range of detectors.¢
However, if proper precautions are taken, these errors are small and can be
included in the noise process with minimal loss of functionality.8

It should also be noted here that the above discussion applies to a system
for recording color where the input spectra are not constrained to lie in a
restricted set. In recording color information from color reproductions that
exploit trichromacy and utilize three primaries, the requirements for obtain-
ing precise color information are much less stringent, and sensors with any
three linearly independent channels typically suffice. A proof of this result
for a system using three additive primaries (whose spectra vary only in
amplitude and not in spectral shape) appears in Reference 125. An example
of an application where this can be readily seen is the measurement of colors
produced on a cathode ray tube (CRT).!'”” Note, however, that the calibration
of these noncolorimetric recording systems is highly dependent on the pri-
maries used in creating the images. Thus, they yield large color errors with
images that are not produced with the primaries used in calibration.

For subtractive color reproduction systems (described in Section 1.11.1.3)
that use varying densities of cyan, magenta, and yellow dyes to reproduce
colors, one can conclude that any three sensors from whose measurements
the densities can be inferred will suffice. In fact, in such a restricted system,
not only is it possible to obtain colorimetric information about the original,
but it is also possible to reconstruct complete spectral information from the
three-channel record.?6!262270 The mathematical characterization of this
requirement requires assumptions on the spectra of the dyes and models for
the specific processes used, which are discussed in References 261 and 270.
In practical systems, it is sufficient to have any three reasonably narrow color
filters with peaks in the red, green, and blue regions.!30® 24249 Because this
is far less demanding as a design objective than the colorimetric criteria
discussed above, and because a large fraction of input images to scanners
are in the form of photographic prints that use subtractive reproduction,
most present-day scanners are designed to satisfy this requirement. The cost
levied by this design trade-off is greater user intervention, because distinct
calibrations of the scanner are required for accurately scanning reproduc-
tions produced with different subtractive primaries.!!> With the explosion in
the number of color reproduction systems, it is difficult to maintain a corre-
spondingly large number of calibration profiles and the color accuracy of
such scanners is likely to be further compromised.

If scanners are designed to be colorimetric, a linear transformation, inde-
pendent of the scanned object characteristics, can be used to accurately
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estimate the CIE XYZ tristimulus values from the scanner measurements.
However, due to the nonlinear relationship between density and tristimuli,
scanners designed to measure dye densities perform poorly with a linear
transformation. A number of heuristic nonlinear calibration schemes have
therefore been used in practice. Three-dimensional lookup tables,'?® least-
squares polynomial regression,'?!% and neural networks!®’ are examples of
these approaches. Note, however, that these approaches offer significant
gains over a simple linear transformation only when the characterization is
performed for a restricted class of inputs.!2

1.11.5 Multispectral recording and reproduction systems

A multispectral image is an image in which each pixel has multiple channels
that carry information about its spectral content. Multispectral images span
the domain of images from conventional three-channel color images to
hyperspectral imagery with hundreds of bands/channels used in remote
sensing applications. Multispectral scanners often utilize narrowband spec-
tral filters to record energy in different regions of the spectrum in a manner
very similar to the color recording devices mentioned in Section 1.11.4.4.
Traditionally, multiband sensors with more than three channels have been
used in remote sensing applications. A major difference between these and
the color recording devices arises from the fact that they are not attempting
to capture information so as to satisfy a human observer. Therefore, these
devices are not restricted to operating within the visible region of the elec-
tromagnetic spectrum and typically use infrared, visible, and microwave
regions of the spectrum.? For the same reason, while dimensionality reduc-
tion of recorded data is often done while processing (see Section 1.11.5.1),
there is no direct analog of trichromacy in remote sensing.

Traditionally, color imaging has worked with three channels, both for
capture and reproduction.t Recent years have, however, seen a significant
interest in multispectral image capture in the visible range of the spectrum
and reproduction of multispectral images using objectives beyond those of
simple color matching.

A variety of schemes have been proposed for multispectral image cap-
ture in the visible range. Devices in existence today are experimental, and
most of these perform image capture using a single-channel camera in front
of which are placed a number of spectrally selective filters that provide the
separation of the image into multiple bands. Proposed filtering options
include conventional absorption filters,®” electro-optic tunable filters,'> and
interference filters'?! that offer narrow bandwidths. While absorption filters
produce wider spectral bands than the electro-optic tunable filters and the
interference filters, they also exhibit significantly less variation in their spec-
tral transmittance with change in angular placement, which is often a source

1 While the use of four colorants is common in color printing, and additional colorants have
also been used in hi-fi color reproduction, the traditional approaches have chosen these in a
constrained fashion, with essentially only three independent channels.?7027!
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of error in these systems. Because the number of channels is large, color-
filter array type schemes that jointly sample the image spectrally and spa-
tially are not common, though the use of filters in conjunction with trichro-
matic cameras has been investigated.!® The large number of filters also
implies a longer time for the scene capture and, consequently, the current
devices are capable of capturing only static scenes with no motion, such as
paintings or still-life scenes. For document imaging applications, the original
to be captured is often a reproduction, and in these cases it is often feasible
to recover spectral information from a simple three-channel record and real-
ize the benefits of multispectral imaging 20262270

Multispectral capture offers several benefits over conventional three-
channel capture. All of these advantages stem from the fact that the addi-
tional spectral data represent the information in the original scene more
completely. The data can be used, for instance, to simulate changes of the
SPD of the scene illuminant,'® which may then be used for display or print
renderings of the original as it would have appeared under a desired illu-
minant.* The use of multispectral data for this purpose is similar to the use
of spectrophotometers in color characterization, where colorimetry is then
calculated from the spectral measurements by specifying a desired illumi-
nant.} The additional information in the multispectral capture also enables
analysis of characteristics of the original*»!*® that would not be captured by
conventional color capture. This is particularly valuable in the digitization
of art archives and provides a mechanism for preserving these digitally,
allowing better restoration and the ability to share them as more realistic
reproductions. Several academic and government institutions have, there-
fore, initiated research in this area.

Additional capabilities of captured multispectral data are realized in
conjunction with multispectral output systems that use more than three
channels for output and can incorporate additional criteria for reproduction.
The additional capabilities enabled by multichannel output devices can be
used to try to effect a spectral match between the reproduction and the
original that was (multispectrally) recorded. Such a reproduction would
eliminate illuminant metamerism and provide a color match between the
original and the reproduction across any viewing illuminant. The compli-
cated nature of color hardcopy reproduction and limited availability and
capability of colorant materials make this ideal goal extremely difficult to
realize.’#305 Some preliminary experimental results on spectral hardcopy
reproduction using six colorants have recently been reported.?? The large

t As already noted in Section 1.9.2, a color appearance model is not designed to address this
problem. However, from the arguments at the end of Section 1.9.2, it is also clear that the benefit
of multispectral capture for this application can be evaluated by comparing its efficacy over
the incorrect use of a color appearance model in this situation. Such an evaluation is offered in
Reference 116 using CIELAB as a crude appearance model.

T Note also that this application suffers from the same pitfalls as the color measurements in
that the effects of fluorescence, if any, can be comprehended only to the extent that the illuminant
being simulated is similar to the illuminant under which the scene is captured.
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dimensionality of the spectral space ensures that, for any reasonable number
of colorants, most spectra are outside the spectral gamut of the reproduction
system. Practical systems in the near future can only hope to provide approx-
imate spectral matching at best. One limitation with this approach is that
the differences between the spectra of the original and the reproduction
might be visible under common lighting conditions, and, even under a single
lighting condition, color differences could result that could be eliminated by
colorimetric matching. Thus, it is beneficial to consider alternative reproduc-
tion objectives for multispectral output. One straightforward extension is to
minimize color differences under multiple common illuminants. This
addresses illuminant metamerism for the standard observer but does not
address observer metamerism arising due to differences among observers.
An alternative objective is to consider the color variations among observers
and use the freedom offered by the additional channels to minimize the
impact of observer metamerism.!?! This is particularly meaningful for addi-
tive multiprimary displays and has been recently applied in that context.!21.3”

In addition to their use in color imaging applications outlined above,
multispectral data are also extremely useful as a research tool for the realistic
simulation of conventional imaging systems.?%* Such simulation and anal-
ysis can help direct improved design of these recording systems. The encod-
ing of multispectral images is thus far in experimental formats, but some
recent work has proposed mechanisms for exchange and an encoding format
that is compatible with colorimetry in that three of the channels are selected
to correspond to colorimetry.!6>

1.11.5.1 Principal-component recording

The color recording devices of Section 1.11.4.4 attempt to sample the spectra
of images while preserving visual information. A recording of the spectrum
itself provides greater information but is extremely slow and expensive.
Because spectral information of reflective images is extremely useful for
determining color under different illuminants, alternative schemes for
recording their spectral information are of interest.

Note that, in the absence of noise, the scanned image in Equation 1.66
can be directly used to determine the projection of the image spectra onto
the SVS. Hence, to obtain good reconstruction of reflectance spectra, the
sensors can be chosen so that a large fraction of the energy in reflectance
spectra lies in the SVS. In the absence of noise, the Karhunen-Loeve (KL)
transformation provides the mathematical solution to this problem in terms
of the statistics of the ensemble of reflectance spectra.!?* The best spectral
reconstruction of scanned spectra in a mean-squared error sense is obtained
from a K channel scanner when the SVS corresponds to the span of the K
principal components of the reflectance spectra, i.e., the eigenvectors associated
with the K largest eigenvalues of the spectral reflectance correlation matrix.

The reflectance spectra of most naturally occurring objects are smooth
functions of wavelength; the same is true of spectra produced using pho-
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tography, printing, or paints. As a result, these spectra can be accurately
represented by a few principal components. Various studies of reflectance
spectra have estimated that between three and seven principal components
(depending on application) provide satisfactory reconstruction of reflectance
spectra for most color work.>*12219314319 Note that this offers a significant
reduction in dimensionality in comparison with spectrophotometric mea-
surements using uniform sampling.

Linear models for object reflectance spectra based on the principal-
components idea have been used by many researchers for recovering illu-
minant and surface reflectance data from recorded images and for color
correction applications.#122315319 Most of this research used KL transform
on a spectrophotometrically recorded ensemble of reflectance spectra, and
the problem of designing spectral recording devices based inherently on the
principal-components approach has received little attention. There are, how-
ever, commercial color measuring devices that attempt to reconstruct spec-
tral data from sensor measurements.? In addition, the principal-components
approach has been used in analyzing multispectral satellite imagery, and
the idea of a recorder based on principal components has also been sug-
gested for acquiring satellite images.27(Chap-7)

One may note here that some naturally occurring reflectance spectra do
not adhere to the smoothness assumption. Examples of such spectra are
colors produced due to multiple film interference in certain minerals and
iridescent colors on some bird feathers and in shells containing calcium
carbonate.21%p- 260267 A principal-components scheme leads to relatively large
errors in such spectra. Hence, in imaging applications involving these
objects, the principal-components approach would be inappropriate for
approximation of their spectra.

1.11.6  Quantization and coding

Color images recorded with the different input devices described in the last
section need to be quantized for digital processing. Both scalar and vector
quantization techniques can be used in the quantization of color data. For
simplicity, most color devices do independent quantization of the RGB
channels with 8 to 12 bits per channel, with either uniform quantizers or
companded quantizers that perform a gamma correction before the quan-
tization. As mentioned earlier, the gamma correction significantly reduces
the perceptibility of quantization errors, particularly in the eight-bit devices.
For computer color displays based on a frame buffer architecture,®® often
only 8, 12, or 16 bits of video memory are allocated to each pixel, thereby
allowing simultaneous display of only 28 212, or 216 colors, respectively.
Vector quantization techniques have therefore been used extensively for
displaying images on these devices. Chapter 9 surveys and discusses these
techniques.

With the proliferation of digital color imagery, the problem of coding
color images for transmission and storage has gained increased importance.
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It was recognized early on that the highly correlated RGB spaces were not
suitable for independent coding.?** Consequently, most of the methods trans-
form the data into a luminance channel and two chrominance channels that
are then coded independently. A luminance-chrominance space also allows
coding schemes to exploit the properties of human vision by allocating
significantly fewer bits to the high-frequency chrominance components,
which are perceptually less significant.

The most prevalent compression scheme at present is the JPEG standard
for still images??® and the MPEG standard for video data.?” These standards
are both based on the discrete-cosine transform (DCT).> While these stan-
dards do not explicitly specify the color spaces to be used, in current imple-
mentations, it is common to use the YCrCb space,® with the Cr and Cb
components subsampled by a factor of two along both spatial dimensions.?!?
The YCrCb color space is a luminance-chrominance color space, based on
gamma-corrected RGB, that has been proposed for use as a standard in
HDTV. The Y component is a luminance channel similar to L*, and the Cr
and Cb are opponent chrominance channels similar to a* and b*, respectively.
The chapter on color image compression provides more details on the com-
pression of color images and the new JPEG-2000 standard.

1.11.7 Device color spaces

The measurements from color recording devices and the control values for
color output devices are the color representations of recorded images or the
images to be reproduced, respectively. Hence, it is common to say that these
values represent colors in the device’s color space. Thus, typically there are
RGB color spaces for scanners, cameras, and other input devices, and there
are CMY/CMYK color spaces for color printers. Unlike the CIE standard
color spaces discussed in Section 1.5.1, most of these color spaces are not
standard and cannot be directly used for the meaningful archival/commu-
nication of image data. However, if these device spaces are related to the
standard color spaces in a clear unambiguous way, these can also be poten-
tially used for the exchange of color information. An advantage of such a
scheme is that no transformations of the image data are required for display
if the data are specified in the native color space of the device. Because a
large fraction of the images on the World Wide Web are primarily targeted
for display on CRT monitors that have very similar characteristics, a new
standard color space, sRGB, has been proposed for use based on these
characteristics.® The sRGB color space is basically a gamma-corrected tris-
timulus space that uses the CRT phosphors as primaries for determining the
CMFs. In addition, the sSRGB standard includes provisions for specifying the
viewing conditions (white-point chromaticities, image surround, flare, etc.).
The sRGB space is tied to the characteristics of common CRT displays and
is therefore limited in some respects. In particular, there are colors that can
be produced on common printers but lie outside the range of colors that are
can be encoded in sRGB. These colors tend to be in the cyan and bright
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yellow regions. Recently, extensions to the space to remedy some of its
limitations with regard to gamut have been proposed.?* However, as dis-
plays evolve to newer technologies, the original motivation for using the
sRGB standard as a method for keeping data in a format that requires
minimal transformation is also no longer valid.

Standardized CMYK spaces have also been defined in the graphic arts
industry to allow color data to be supplied to printing press operators in a
form that can be unambiguously interpreted (unlike device CMYK specific
to a single press). The standards in this area vary by geography and include
SWOP?8 (North America), Euroscale (Europe), and Japan Color (Japan).
These standards often combine multiple independent specifications based
on the printing conditions (e.g., for coated vs. uncoated substrates).

1.12  Color management and calibration

For proper color reproduction, the input and output devices involved must
be calibrated. Historically, the systems used for color reproduction were
calibrated® in a closed-loop configuration. As shown in Figure 1.35, in a
closed-loop configuration, the complete system is calibrated from input
through output. Thus, for color photography, the film sensitivities, dye
absorptances, and developmental interactions were appropriately chosen so
as to result in acceptable reproduction. In offset printing, the scanner was
used to generate CMYK “separations” that were suitable for generating
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Figure 1.35 Closed-loop system calibration.

t Note that, in Chapter 5, the terms calibration and characterization have specific meanings as
per-channel corrections and the full three-dimensional color correction that apply to the “cali-
brated” device. In this chapter, we do not follow that convention strictly, because the terms
calibration and characterization are in common use with overloaded meanings. The use of these
terms in this chapter should be apparent from the context.
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halftone prints. With the increased use of digital computers and the evolution
of desktop printing, it became obvious that such an approach has severe
limitations. In particular, as the number of devices increases, calibrations for
each input-output device pair are difficult to construct and maintain. In
addition, because the calibrated data in a closed-loop calibration scheme are
specific to one output device, they are not suitable for archival purposes or
exchange with devices outside the system.

With the growth of networking and increased exchange of color image
data between geographically divided systems, it was recognized that several
of these problems can be solved by calibrating each device to a standard
device-independent (DVI) color space, which can then be used for the
exchange of data between different devices and for archival uses. As shown
in Figure 1.36, in these systems, the data from an input device are converted
to a device-independent color space and then transformed into the device-
space of the target device for reproduction.

To enable proper management of color, several components are required.
Color measurement instrumentation discussed earlier in Sections 1.11.4.1
and 1.11.4.2 is necessary for calibrating input and output systems. Standard
formats for the storage and communication of these device calibrations are
required so that different applications can make use of the calibrations. Also
necessary are systems and algorithms that use the calibrations effectively to
achieve desired results. These components are briefly outlined in the remain-
der of this section. As with other topics, several are discussed in detail in
subsequent chapters.

1.12.1 Calibration and profiles

Calibration of a color imaging device relates its input/output to DVI color
values. For an input device, calibration provides a mapping from device
measurement values (e.g., scanner RGB) to DVI color descriptors (e.g., CIE
XYZ, CIELAB etc.), and, for an output device, the calibration process yields
a mapping from DVI color descriptors to device control values (e.g.,, CMYK,
monitor RGB) which produce those color descriptors.

1.12.1.1 Input device calibration

To calibrate a scanner, the first step is to select a collection of color patches
that span the gamut of interest. Ideally, these colors should not be metameric
for the scanner or the eye (under the illuminant for which the calibration is
being produced). Metamerism is defined as the property in which different
spectra map to the same values under a set of sensitivity functions. These
patches are measured using a color measurement instrument, such as a
spectrophotometer or a colorimeter, which will provide the device-indepen-
dent color values {t;},.;, where M, denotes the number of patches. Any of
the (device-independent) color spaces such as CIE XYZ, CIELAB, etc. can be
used for this purpose. The use of CIELAB is common, as this space includes
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information on the viewing illuminant in the white point. The patches are
also Aﬁneasured with the scanner to obtain the scanner measurements
{uk}k z 1°

To determine the CIE values for an arbitrary measured patch, the col-
lected data are used to construct an interpolating function that maps from
the space of scanner measurement values to the chosen device-independent
color space. This function, F(-), can then be used to relate any of the scanner
RGB values to colorimetric XYZ values or LAB values, i.e., F(u) = t. Normally,
a parametric form is chosen for F(-), and the parameters are determined
through regression. Several different schemes have been used for this pur-
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pose, ranging from straightforward linear and polynomial regression to
neural networks.!¥(Chap- 1) Usually, F(-) is complicated and computationally
expensive. For this reason, F() is usually used to produce a finely sampled
lookup table (LUT) from which F(-) at arbitrary points is obtained by using
simple interpolation schemes.!5*(hap- 9

Calibration for digital cameras and video cameras is usually done in a
similar fashion by using a target of patches with known reflectances or color
values. Because the eye is very sensitive to deviations from the neutral
(achromatic) colors, sometimes an additional one-dimensional transform is
included on each of the RGB channels so that the R = G = B line corresponds
to neutral colors. This procedure is commonly referred to as gray/white bal-
ancing.

1.12.1.2 Output device calibration

For calibrating an output device, a transformation from DVI color values to
the space of device control values is required. This requires a two-step
procedure. In the first step, the printer characterization, which determines
the forward transformation from printer control values to DVI color values,
is determined. Then, this forward transform is used in the next step to
determine the inverse mapping from DVI color values to device control
values.

Because CRT monitors are represented well by the parametric models
described in Section 1.11.1.1, the forward characterization of these devices
is usually done by determining the model parameters from a few measure-
ments. It can also be readily seen that, due to their additive nature, the
inverse transformation from CIE XYZ (or other tristimulus) values to the
CRT control voltages can be computed by means of a simple matrix trans-
formation followed by a one-dimensional transform for the gamma correc-
tion. This scheme is used in all cases except those requiring the highest
accuracy, for which LUT-based schemes may be used, and additional cor-
rections may be made for the surface reflection (flare) from the monitor
screen. In addition, it may be necessary to correct for the significant spatial
nonuniformity over the CRT screen.®%266

For the forward characterization of printers, an empirical scheme sim-
ilar to that described for scanner cahbratlon is commonly used. By selecting
a set of printer control values {ck}k 1 covering the range of allowable
control values, measuring the corresponding DVI color values {Vk}k_l,
and using some interpolation scheme, the forward mapping, v = G(c) from
control values to DVI color values is determined. For halftone printers,
alternatively, the Neugebauer models mentioned in Section 1.11.1.4 have
also been used. Because even the models are nonlinear and not readily
invertible, for the inverse mapping G-!(:), an interpolating function invari-
ably is used to get a finely sampled LUT. Due to the four degrees of freedom
in the control values of CMYK printers, there exist multiple control values
that result in the same printed color. Because this poses a challenge in
obtaining a smooth inverse mapping, the inverse often determines the
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amounts of three virtual CMY colorants from which the CMYK control
values are obtained by some functional relation. This process is viewed as
the incorporation of black ink and removal of underlying CMY inks and
is commonly referred to as undercolor removal (UCR). Typically, the UCR
mapping from the virtual CMY values to actual CMYK control values is
designed so as to better render achromatic colors, reduce total colorant
amounts (for faster drying/better adhesion to paper), and (in some cases)
reduce the use of the expensive CMY colorants.

1.12.1.3 Device profiles

To make the calibration transformations available to different applications
that wish to use them, the calibration transformation for each device is stored
in a device profile. In the early days of color management, different manu-
facturers used their own proprietary formats for the storage of these profiles,
which were therefore useful only for applications from the same manufac-
turer. To realize the full benefits from the DVI calibration of devices, the
desktop publishing industry is increasingly moving toward open systems.
A standard format for the storage of device profiles has been defined and is
being widely adopted.®? This International Color Consortium (ICC) profile
format specifies a wide variety of input and output device profiles suitable
for efficiently representing the color calibration information. The use of a
standardized format allows the profiles to be used by different applications
from different manufacturers. Limitations of the profiles in some respects
have resulted in some nonstandard implementations that have compromised
compatibility, but these are being addressed by the ICC with input from
member corporations.

1.12.2 Color management systems

A color management system (CMS) is responsible for interpreting the device
profiles and performing the appropriate transformations to and from the
device-independent space. The goal of a CMS is to provide predictable and
consistent color without requiring specialized skills from the user. Thus,
CMSs tie together device profiles with color matching modules that use these
device profiles to transform device-dependent image data to DVI color
spaces or to the device color spaces of target output devices on which the
images are to be displayed. In addition, the CMS provides the user with
flexibility to choose different rendering intents for different images. Thus,
for instance, in reproducing a company logo, a perfect colorimetric match
is usually desired; in producing bar graphs and pie charts for presentation,
it is desirable that the colors be highly saturated for maximal impact; and
in reproducing pictorial images, it is desirable that the closest perceptual
match be obtained (which will depend on viewing conditions). Color man-
agement functions can be performed at several different phases of the
imaging process — in the devices (e.g., Adobe’s Postscript level 2/3 for
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printers), in device drivers (e.g., Cannon Colorgear), applications (e.g.,
Adobe’s Photoshop/Acrobat), or in the operating system (e.g., Apple’s
ColorSync/Microsoft Windows 2000/XP). A description of some of the
practical aspects of color management in printing applications and a listing
of vendors of color management software and solutions can be found in
Reference 137. The notion of embedding color management in the operating
system has the potential of making the process transparent to the end user.
The system, however, also introduces limitations that can result in unex-
pected behavior when users are unaware of the color management or have
incompatible components. As a result, even though several vendors of
operating systems for desktop and workstation computers have incorpo-
rated CMSs into their products, these are not extensively utilized at present.

Ideally, with color management, one could accurately transfer color
information from one medium (e.g., a CRT) to another (e.g., print). Unfor-
tunately, this is an extremely difficult task for two reasons:

1. There are significant differences in gamuts of different devices (this
was mentioned and demonstrated in Section 1.11.1).

2. The difference in typical viewing conditions for different media im-
plies that a simple colorimetric match does not give an appearance
match.

There is therefore significant interest in gamut mapping algorithms that map
the colors in an image to suitable colors that can be reproduced on the target
device. Methods that model the adaptations of the eye and allow the com-
putation of appearance matched images under different viewing conditions
are also an active area of research.

1.12.3 Gamut mapping

Gamut mapping is the process of mapping the displayable colors from one
media to those of another media. As defined earlier, the ideal goal for color
matching depends on the type of image and the intent of the user. The
problem is probably most acute for pictorial images for which, ideally, one
would like to map the colors so as to obtain the best possible appearance
match between the images on the different media.2%%¢ The strategy for
gamut mapping could be either image dependent or image independent.
Because image-dependent methods can use different strategies for different
images, they often produce better results. However, they are also signifi-
cantly slower than image-independent techniques, because they require a
fresh computation for each image and are therefore seldom used in automatic
gamut-mapping schemes. Several color applications, however, indicate out-
of-gamut colors in an image via a key color or a flashing highlight (on a
CRT). This allows the user to perform a transformation such that these colors
are mapped satisfactorily. Such an approach, however, requires considerable
operator skill to obtain satisfactory results.
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The simplest technique of gamut mapping (particularly for CRT moni-
tors) is clipping in the space of device control values. Because the space of
control values is not a UCS, clipping of control values does not yield the
closest printable color (as perceived by an observer). To remedy this problem,
a simple extension would be to map out-of-gamut colors to the nearest in-
gamut color in a UCS. While this approach offers significantly better results
than the device space clipping,” it can often result in unacceptable hue shifts
that are perceptually very objectionable. An additional limitation of this and
the clipping approach is that smoothly varying regions beyond the device
gamut can potentially be mapped to a single color, creating undesirable
abrupt edges in the previously smooth regions and causing loss of significant
information (such as shape from shading).

Another approach used for gamut mapping is a gamut compression algo-
rithm that compresses all the colors in the image in a manner that reduces the
colorimetric dynamic range in the image while ensuring that the colors can
be reproduced. For example, one could move all the colors in the image toward
one point, such as a mid-gray, until all the colors in the image are within the
device gamut. Unlike the clipping approach, this method will retain some of
the variation in smoothly varying image regions that are beyond the device
gamut. In addition to UCSs, notions of hue, chroma, and saturation/value are
extremely useful in gamut mapping research, as these can be directly related
to viewers’ objections to artifacts produced by gamut mapping algorithms
and can be used in appropriately choosing the clipping and compression. In
Section 1.7, it was pointed out that, in addition to being a UCS, the CIELAB
space allows the computation of correlates of lightness, hue, and chroma. As
a result, CIELAB has been used extensively in gamut mapping research. In
the process, some limitations of CIELAB have also been discovered and have
been addressed through empirical modifications. The “blue hue nonlinearity”
was one such limitation that was discussed in Section 1.7.3.

The transformations to and from the perceptual spaces are usually non-
linear, and speed is often an issue.®’ For this reason, some CMSs may use a
high-resolution LUT along with a linear interpolator to perform the trans-
formation. Performing multiple transforms on the data can result in a loss
of fidelity and introduce visually noticeable errors due to the accumulation
of errors associated with finite precision arithmetic. Some CMSs can cache
input and output transformations, concatenate them, and perform these in
a single operation when the final image is desired. This not only saves time
but also improves accuracy. Some of these powerful techniques are discussed
in Chapter 11.

1.12.4 Appearance matching

Section 1.9 briefly discussed the adaptation in the eye in response to change
in viewing conditions. Since different color reproduction media have differ-
ent viewing conditions, in reproducing images across these different media,
an appearance match instead of a pure colorimetric match is usually desired.
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The simplest instance of appearance matching is the white-point matching
method based on the von Kries transformation as mentioned in Section 1.7.
This transformation converts tristimuli into a space of cone responses and
applies a diagonal correction matrix that equates the white points under the
two viewing conditions.335®- 432 White-point matching is often used in color
imaging applications, and there is support for it in several color management
applications and packages such as PostScript.

In addition to white-point adaptation, there are several well character-
ized psychophysical effects that change with change in viewing conditions.
In particular, it is well documented that the apparent contrast (perceived
intensity gradient) of an image decreases in a dark surround in comparison
to a bright surround.!34®p- 9957 Often, this change in contrast is modeled by
relating the luminance to the perceived lightness as a power-law relation,
similar to that for CIELAB in Equation 1.32, with the exponent increasing
as the surround gets brighter.80134pp-56-57) Thus, gamma correction has also been
used extensively to compensate for these effects, in addition to correction
for monitor nonlinearity.

There has been considerable research in defining color appearance mod-
els that account for chromatic adaptation, influence of surround, and other
psychophysical phenomena that affect the perception of images.8! These
models hold tremendous potential for use in cross-media color reproduction.
The CIE is involved in an ongoing attempt to define a standard appearance
model for use in imaging applications. An interim version of the model is
available as a standard.®® The model has also been recently refined in Refer-
ences 82 and 176. More details on the status of color appearance research
can be found in Chapter 2, which is devoted to this topic.

1.13 Summary

This chapter provides an introduction to the fundamentals of color science
and technology as applied to color digital imaging. It also attempts to pro-
vide a systems view of color imaging systems, where the interactions
between image capture devices, image and color processing operations,
image display and printing systems, inherent characteristics of natural and
man-made images, and the human observer are outlined. Given the breadth
of subject matter covered in the chapter, the presentation of several aspects
is quite terse and abbreviated. A much more detailed view of several of the
individual “components” within this system is presented in the remaining
chapters of this book.
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2.1 Introduction

What is color appearance, and how does it relate to digital color imaging?
Color appearance is, as the name suggests, the study of how a given color
stimulus is perceived by a human observer. While seemingly straightforward
at first glance, color appearance is governed by the extraordinarily complex
human visual system. How a stimulus appears is a function of many vari-
ables, ultimately including the spectral properties of the stimulus and the
light source in which it is viewed; the size, shape, and spatial properties;
and relationships of the stimulus, the background and surround, observer
experience, and the adapted state of the observer.

Consider a relatively simple color imaging system that consists of a CRT
computer display and a color printer. The desired goal of the system might
be to have color images displayed on the CRT monitor that match the hard
copy color images printed. It might be thought that using standard CIE
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tristimulus colorimetry to assure that the XYZ values displayed by the mon-
itor are exactly the same as those on the printed paper would be enough to
assure a visual match. As it turns out, this tristimulus match between the
monitor and paper would look very different to a human observer. This is
because CIE colorimetry was designed with a very specific goal — that two
simple stimuli that have identical tristimulus values match, for an average
observer, under a single specified viewing condition. The above-mentioned
color imaging system violates the assumptions that basic colorimetry
requires. The two stimuli, in this case the CRT and print images, are complex
stimuli viewed in wildly disparate conditions.

What is needed in the above situation is a method for ensuring that the
appearance of the two images is identical. To do this, we first must understand
what governs the appearance of a stimulus. This chapter focuses on just that
problem. To fully understand how colors are perceived, it is important to
understand the tools used to study color appearance.

In this chapter, we examine the terminology of color and color appear-
ance. This includes appearance attributes such as hue, chroma, lightness,
brightness, and saturation, as well as viewing condition attributes such as
surround and background. We also examine several of the factors that influ-
ence color appearance and how they might cause basic tristimulus colorim-
etry to fail. Because color is ultimately the result of human perception, it is
important to understand the tools used to quantify perception. Examples of
these tools and techniques, known as visual psychophysics, are described.

Ultimately, we would like to be able to describe and predict the color
appearance of complex stimuli under various viewing conditions. Toward
this goal, there is the formulation of chromatic adaptation models and,
ultimately, color appearance models. Several of these models and their his-
torical formulation are described.

The study of color appearance is truly complex. This chapter barely
scratches the surface of such a large and diverse field. The interested reader
is encouraged to look at Fairchild’s! more in-depth text on color appearance
as well as the other references presented here. In addition, this topic can still
be considered one of active research.

2.2 Terminology

In any field of study, it is important to have a common vocabulary so that
knowledge and insight might be communicated accurately and precisely. In
the study of color and color appearance, this vocabulary is often muddled,
as terms such as lightness and brightness are often confused and casually
interchanged by the average user. Why might this be more the case when
discussing color as opposed to other subjects? Perhaps it is the very nature
of color itself. Almost every person has experienced and discussed color,
often at a very early age, though the means of discussion are often varied.
Even in education, treatment of color is inconsistent. To the grade-school
child, color might be made up of three primaries: red, blue, and yellow. The
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printer is taught that the three primaries are cyan, magenta, and yellow,
while the television engineer is taught that color is made up of red, green,
and blue. In yet another manner, the physicist might be taught that color is
made up of a certain portion of the electromagnetic spectrum. While all of
these can be considered correct, they also can be considered incorrect.

In the field of color appearance, the de facto standard for vocabulary
comes from the International Lighting Vocabulary, published by the CIE.2 Hunt
provides very useful insight into the need for a standardized vocabulary
and also describes the work that led to publication of the CIE document.3
To add to this mixture, there is also a relevant American Society for Testing
and Materials (ASTM) document that describes appearance.’ The definitions
of terms presented below come directly from these important works.

2.2.1 Color

Perhaps some of the confusion in the field of color appearance stems from
the very nature and definition of color itself. Few people, when asked, can
give a precise definition of what exactly color is. It is almost impossible to
do without using an example, as evident from the CIE definition.

Color.  Attribute of visual perception consisting of any combina-
tion of chromatic and achromatic content. This attribute can be
described by chromatic color names such as yellow, orange, brown,
red, pink, green, blue, purple, etc., or by achromatic color names such
as white, gray, black, etc., and qualified by bright, dim, light, dark, etc.,
or by combinations of such names.

This definition provides little satisfaction to the casual reader. To comfort
those readers, it also provides little satisfaction to the scientists who study
color. That the definition of color contains the word color makes for a circu-
larity that can be confusing. The authors of this definition were well aware
of this confusion and added a note that sums up the need for the study of
color appearance.

Note. Perceived color depends on the spectral distribution of the
color stimulus, on the size, shape, structure, and surround of the stim-
ulus area, on the state of adaptation of the observer’s visual system,
and on the observer’s experience of the prevailing and similar situation
of observations.

Many of the aspects described in this note will be discussed in much further
detail later in this chapter.

Perhaps the most important information that is encompassed in this
definition of color is the first sentence. Color is an attribute of visual percep-
tion. All terminology discussed in this section is similarly based on attributes
of perception. That is to say, without the observer, there can be no discussion
of color. The study of color appearance and color appearance models is an
attempt to generate physically realizable measurements that correlate with
these perceptual attributes.
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2.2.2 Related and unrelated colors

The definition of color is further enhanced with the notion of related and
unrelated colors. Though simple enough, these definitions are critical to
gaining a full understanding of color appearance.

Related color. Color perceived to belong to an area of object seen
in relation to other colors.

Unrelated color. Color perceived to belong to an area of object seen
in isolation from other colors.

These definitions are rather straightforward. Related colors are viewed in
relation to other color stimuli, while unrelated colors are viewed in isolation.
Color stimuli are rarely viewed in complete isolation, so most color appear-
ance models are designed to predict related colors. However, many color
vision experiments that have been used to gain an understanding of the
human visual system have been performed using simple unrelated color
stimuli. It is important to understand the differences between these stimuli
when trying to utilize models designed to predict one specific type of color.

Many color perceptions exist only for related or unrelated colors. One
very interesting case is of the perceptions of colors such as brown and gray.
These colors exist only as related colors. It is impossible to find an isolated
brown or gray stimulus, as evidenced by the lack of a brown or gray light
source. These lights would appear either orange or white when viewed in
isolation. Likewise, all of the “relative” perceptions defined below only exist
for related colors.

2.2.3 Hue

Hue is perhaps the easiest of the color terms to understand. Still, it is almost
impossible to define hue without using examples. The CIE recognized this
in its definition.

Hue. Attribute of a visual sensation according to which an area
appears to be similar to one of the perceived colors: red, yellow, green,
and blue, or to a combination of two of them.

Achromatic Color. Perceived color devoid of hue.
Chromatic Color. Perceived color possessing a hue.

Hue is often described with a “hue circle,” as shown in Figure 2.1. One
important note of this description, and the definition given by the CIE, is
the notion of unique hues; that is, red, yellow, green, and blue. These hues
follow the opponent color theory first postulated by Hering in 1920.° Hering
noted that certain hues were never perceived together. That is to say, there
is no perception of a reddish-green, or a yellowish-blue. This formulated the
fundamental notion that human color vision is encoded into red—green and
blue-yellow channels. The interested reader is encouraged to read more
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Figure 2.1 Example of a psychometric function.

thorough explanations as found in Kaiser and Boynton, Wandell, and Hur-
vich.””

The inclusion of the definitions for achromatic and chromatic colors is
also important. Though often described as an interval hue circle, there is no
natural meaning for a hue of “zero.” Achromatic colors describe colors that
are devoid of any hue information, but this definition does not extend to a
meaningful interval hue scale. The meaning of different numerical scales
will be described later in this chapter.

2.2.4 Brightness and lightness

The attributes of brightness and lightness are very often interchanged,
despite the fact that they have very different definitions.

Brightness. Attribute of a visual sensation according to which an
area appears to emit more or less light.

Lightness. The brightness of an area judged relative to the bright-
ness of a similarly illuminated area that appears to be white or highly
transmitting.

Note:  Only related colors exhibit lightness.

Brightness refers to the absolute perception of the amount of light of a
stimulus, while lightness can be thought of as the relative brightness. The
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human visual system generally behaves as a lightness detector, which can
perhaps be better described with an example.

A very simple example can be seen with a typical newspaper. This paper,
when read indoors, would have a certain brightness and lightness. When
viewed side by side with standard office paper, the newspaper often looks
slightly gray, while the office paper appears white. When the newspaper and
office paper are brought outdoors on a sunny summer day, they would then
have much higher brightnesses. Yet the newspaper still appears darker than
the office paper, as it has a lower lightness. The physical amount of light
reflected from the newspaper might be more than a hundred times greater
than the office paper was indoors, yet the relative amount of light reflected
has not changed. Thus, the relative appearance between the two papers has
not changed.

The above definitions include a note stating that only relative colors can
exhibit lightness. This is the reason why there cannot be a gray light source.
When viewed in isolation, the light source would be the brightest stimulus
in the field of view and would thus appear white.

Further on in this chapter will be a discussion of color appearance
models, which attempt to predict these appearance attributes. The various
color appearance terms can get easily confused. Often, it is convenient to
represent the relative terms with simple equations so as to gain a better
understanding. Equation 2.1 shows the simple mathematical construct for
lightness.

Brightness
Brightness (white)

Lightness = (2.1)

2.2.5  Colorfulness and chroma

The definitions of colorfulness and chroma are very similar to those of
brightness and lightness, in the fact that colorfulness is an absolute percep-
tion, while chroma is relative.

Colorfulness. Attribute of a visual sensation according to which
the perceived color of an area appears to be more or less chromatic.

Note. For a color stimulus of a given chromaticity and, in the case
of related colors, of a given luminance factor, this attribute usually
increases as the luminance is raised, except when the brightness is very
high.

Chroma. Colorfulness of an area judged as a proportion of the
brightness of a similarly illuminated area that appears white or highly
transmitting.

Note. For given viewing conditions and at luminance levels
within the range of photopic vision, a color stimulus perceived as a
related color, of a given chromaticity, and from a surface having a given
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luminance factor, exhibits approximately constant chroma for all levels
of luminance except when the brightness is very high. In the same
circumstances, at a given level of illuminance, if the luminance factor
increases, the chroma usually increases.

Essentially, colorfulness describes the amount or intensity of the hue of
a color stimulus. Similarly, chroma is to colorfulness as lightness is to bright-
ness. This is also shown in Equation 2.2. Similarly to lightness, the human
visual system generally behaves as a chroma detector. It is interesting that
the appended notes attached to the above definitions are much longer than
the definitions themselves. When the luminance of the viewing conditions
increases, the chroma tends to remain constant as the brightness of a white
stimulus is increasing as well. However, in this same situation, the colorful-
ness generally increases. This can be visualized by thinking of an outdoor
scene. On a sunny day, everything looks very colorful, while on a cloudy
day everything appears less colorful.

Colorfulness

Chroma = Brightness (white)

(2.2)

2.2.6 Saturation

Saturation is often confused with colorfulness and chroma, though it has its
own unique definition.

Saturation. Colorfulness of an area judged in proportion to its
brightness.

Note: For given viewing conditions and at luminance levels
within the range of photopic vision, a color stimulus of a given chro-
maticity exhibits approximately constant saturation for all luminance
levels, except when brightness is very high.

Whereas chroma is defined as the colorfulness of an area relative to the
brightness of a similarly illuminated white stimulus, saturation is colorful-
ness relative to the brightness of itself. So, while only a related color can
exhibit chroma, both related and unrelated colors can exhibit saturation.
The standard definition of saturation, as given above, can be seen in
Equation 2.5. This definition can be supplemented with an alternate definition,
which is used in some color appearance models. This definition says that
saturation is the ratio of chroma and lightness. This is shown in Equation 2.3.

. Chroma
Saturation = m (2.3)

By substituting the above definitions of lightness and chroma (Equations 2.1
and 2.2, respectively), we get Equation 2.4.
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Colorfulness Brightness (white)

Brightness (white) Brightness 4)

Saturation =

This equation can be simplified to the standard definition of saturation, as
shown in Equation 2.5. It is important to note that, for unrelated colors, the
ratio of chroma and lightness cannot be used to describe saturation, as those
terms are only valid for related colors. When dealing with unrelated colors,
Equation 2.5 must be used.

. Colorfulness
Saturation = W (2.5)

2.2.7 Digital color reproduction: brightness—colorfulness or
lightness—chroma

When dealing with color reproduction, often it is sufficient to represent color
as trichromatic, as witnessed with the success of the CIE-based colorimetry.
Colorimetry is valid only when dealing with color matches in identical
viewing conditions. If the viewing conditions change, as when going from
a CRT monitor to a print, colorimetry becomes insufficient. When this is the
case, it becomes necessary to specify the actual color appearance. Complete
specification requires five perceptual dimensions: brightness, lightness, col-
orfulness, chroma, and hue. It should be noted that the specification of
saturation is not necessary. Saturation is redundant and can be inferred from
the other percepts.

Many times, when designing imaging systems, it might appear that
specifying all five color appearance attributes is also redundant. This is not
the case, however, as was described by Nayatani et al.l In this article,
Nayatani et al. describe the distinction between brightness—colorfulness
(absolute) matches and lightness—chroma matches. For most imaging appli-
cations, it is often sufficient to attempt for a lightness—chroma match rather
than the absolute brightness—colorfulness match. This can be illustrated by
visualizing a common imaging system, such as consumer photography.
Often, people photograph an outdoor scene in bright sunlight. The photo-
graph is then printed and viewed in an indoor environment, at much lower
luminance levels. In this case, it is physically impossible to achieve an abso-
lute brightness—colorfulness match so that the measured energy coming off
the print is the same as the original outdoor environment. This same situation
can be easily reversed: if the original photograph was taken indoors and
then reproduced and viewed outdoors. In this situation, while physically
possible to reproduce the absolute attributes, it is undesirable. The repro-
duction would have to be unreasonably dark to match the absolute attributes
of the indoor scene. For these cases, and for most general imaging applica-
tions, it is desirable to create a lightness—chroma match for these reproduc-
tions so that the relationship between objects in the scene is held constant.
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2.3 Visual psychophysics

To gain an understanding of color, one of the foremost requirements is to
have a basic understanding of the human visual system. Traditionally, the
study of the human visual system generally falls into two categories: phys-
iology and psychophysics. The study of the physiology of the human visual
system involves examining the functionality of the receptors and neurons of
the eye and the brain. This study is beyond the scope of this chapter, though
there are several excellent texts on the subject.”” Visual psychophysics is a
technique for examining the relationship between physical measurements
of a stimulus with the perception of that stimulus. More details of the
experimental methods described in this chapter can be found in various
texts, notably by Fairchild,! Bartleson and Grum,!' Gescheider,!? Torgeson,'?
Thurstone,* and Engeldrum.’

Physiology and psychophysics are not the only means used to study the
human visual system. To fully understand the complicated nature of vision,
one must combine the effort of many disciplines. This includes, but is not
limited to, physics, optics, chemistry, genetics, biology, and anatomy. The
remainder of this chapter, however, will focus on the use of psychophysics
to study color appearance.

2.3.1 Definition of psychophysics

Psychophysics is the scientific study of the relationships between physically
measured stimuli and the sensations and perceptions of those stimuli. Psy-
chophysics can also be defined as the methodology used to study the above-
mentioned stimulus-sensation relationship. An example of this study might
be the relationship between physical amounts of light (stimulus) and per-
ceived brightness (perception). Psychophysics can be used to generate quan-
titative measurements of color sensation and perception, though those are
often thought of as being very subjective. These measurements of perception,
when produced from a carefully designed experiment, are just as objective
as any other physical measurement (such as temperature). The difference
between physical and psychophysical measurements tends to lie in the
uncertainty of those measurements. Whereas a physical measuring device
tends to have relatively small amounts of uncertainty, psychophysical exper-
iments might have higher uncertainties. Care must be taken to understand
and consider these uncertainties.

2.3.2  Psychophysical techniques

Many different experimental techniques can be used to measure perceptions
of stimuli. For visual experiments studying images and color appearance,
these tend to fall into two broad classes: threshold and scaling experiments.
Many other types of experiments can be used, including categorization,
recognition, and reaction time, though those will not be discussed here.
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Threshold techniques include detection, discrimination, and matching
experiments. They are designed to measure visual sensitivity to small
changes in stimuli, or perceptual equality. An example of a detection or
discrimination technique used in imaging science is for developing and
testing image compression algorithms. An original image might be viewed
with a compressed image to determine if the difference can be detected. An
example of matching would be to have a person adjust the amount of
compression of an image until it appears to match the original.

Scaling techniques are designed to produce a relationship between phys-
ical and perceptual magnitudes. The above-mentioned relationship between
physical amounts of light and perceived brightness falls into this category.
Another example might be the relationship between perceived image sharp-
ness with measured spatial frequency information in the image.

2.3.3 Hierarchy of scales

When creating a scalar relationship between physical and perceptual mag-
nitudes, it is important to consider the nature and properties of that scale.
Various psychophysical techniques might produce different types of scales,
each with different mathematical properties and utilities. It is very important
to understand what mathematical operations are permitted, or vast misin-
terpretations can result. Four types of measurement scales will be defined,
each with varying mathematical complexity and power. These scales are
nominal, ordinal, interval, and ratio.

Nominal scales. These are the simplest form of numerical scales. Num-
bers are used as names for objects. An example of this type of scale would
be the numbers on players on a sports team. The values of the numbers have
no meaning other than to identify the different players. Any mathematical
operation performed on this type of scale is arbitrary (for example, doubling
every player’s number has no meaning). In color appearance, a nominal
scale can be given to color names, such as reds, greens, yellows, and blues.
This scale can then be used for determining the category of a given color
stimulus.

Ordinal scales. These scales have magnitudes of order associated with
them. Objects can be ranked in ascending or descending order based on the
magnitude of a certain trait. An example of this type of scale would be the
Olympic medals, where gold, silver, and bronze medals are given out for
first, second, and third place, respectively. It is easy to determine the order
of the contestants, but any other relationship between them is unknown. For
instance, did the gold medal long jumper jump twice as far as the silver
medal jumper? Or was the difference between the gold and silver jump the
same as the difference between the silver and bronze? A color appearance
example of this type of scale might be the sorting of a series of paint chips
in order of lightness. The resulting scale would reveal only that one paint
chip was lighter than others, and there would be no information as to how
much lighter. The only mathematical operation that is valid for an ordinal
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scale is the greater-than/less-than operator. Any other operation should be
considered arbitrary.

Interval scales. An interval scale is any scale that has equally spaced
units, or intervals. For example, in this type of scale, if one sample is judged
to be one unit away from an anchor, and a second sample is judged to also
be one unit away, though in a different direction, the differences between
the anchor and the first or second sample is still said to be perceptually
equal. There is no meaningful zero in an interval scale, meaning the value
of zero is arbitrary. A real-world example of this would be the Fahrenheit
and Celsius temperature scales. The zero value in the Celsius scale is arbi-
trarily defined to be the freezing point of water, while in the Fahrenheit scale
it is said to be 32° below the freezing point of water. Because the zero is
arbitrary, it is impossible to perform multiplication and division on an inter-
val scale. For example, we cannot say that 64°F is twice as warm as 32°. We
can say that the temperature difference between 32° and 42° is the same as
that between 52° and 62°. All of the mathematical operators that are valid
for nominal and ordinal scales are also valid for interval scales. Interval
scales, however, also allow for addition and subtraction.

Ratio scales. Ratio scales hold the most mathematical power of all the
scales. They have all the properties of the previous three scales, with the
addition of a meaningful zero point. The meaningful zero adds the ability
to equate valid ratios. A real-world example of a ratio scale would be the
meter scale for height and length. It should be obvious that zero means there
is no magnitude of height. In this case, 8 m is indeed twice as long as 4 m
and half as long as 16 m. Ratio scales also allow for the multiplication of
constants without losing the meaning of the scale. An example of this would
be converting between meters and centimeters, or meters and feet. In color
imaging, it is often desired, yet impossible, to calculate a meaningful ratio
scale. A hue scale is an excellent example of this. While it is relatively easy
to calculate an interval scale of hue, it is difficult to determine the meaning
of zero hue. Thus, zero hue is often arbitrarily assigned a location on the
scale (e.g., red).

2.3.4 Threshold and scaling: a historical perspective on Weber,
Fechner, and Stevens

To properly study the psychophysical techniques used in color imaging
applications, it is often beneficial to begin with some history of the technique.
Three pioneers of psychophysics who still are making their mark in color
science today are Weber, Fechner, and S. Stevens.!6'7

Weber began his work in the early nineteenth century, studying the
perception of lifted weights. He asked subjects to lift a given weight and
then added weight until the subjects were able to notice a difference between
the new weight and the original. This experiment was repeated with many
different starting weights. Weber noted that, as the starting weight increased,
the amount of added weight necessary to produce a noticeable change also
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increased. His experiments tended to show that, for a given starting weight,
I, the change in weight necessary to elicit a perceptual difference, Al, followed
a constant ratio AlI/I. This stimulus change is often referred to as a just
noticeable difference, or a JND.

This simple relationship was found to hold approximately true for many
different stimuli and has since become known as Weber’s law. These findings
turn out to be rather intuitive and are quite common in everyday life. For
instance, often times when in a crowded places with loud music, people are
forced to yell to be heard by others. When the music suddenly stops, the
person yelling is instantly heard by everyone. The sound level coming from
the person’s mouth does not change but, because the background stimulus
suddenly drops, the change necessary to be heard becomes much smaller.
Other examples include the inability to see a candle in sunlight, though the
candle appears bright when placed in a darkened room. This is an example
of light adaptation and will be discussed further in this chapter. Weber’s law
helps explain these phenomena.

Later in the nineteenth century, Fechner proposed a method for extend-
ing Weber’s law to create a scale of sensation.!® Fechner theorized that a JND
was a unit of sensation, and thus he could integrate JNDs to create an
appropriate scale of sensation. Fechner attempted to create a transformation
from a physical intensity scale (such as measured weight) to a perceived
sensation scale (perceived heaviness) where each JND was of equal size for
all perceptual magnitudes. Fechner adapted Weber’s law and assumed that
the ratio Al/I was held constant in the limit. By integrating over that equation,
for all stimuli , it is possible to calculate a metric that equates equal ratios
on the physical scale with equal increments on the perceptual scale. This
solution ends up being a simple logarithmic relationship, S = k log (I), where
S is the perceived sensation, k is some constant, and I is the measured
physical intensity. This solution became known as Fechner’s law.

The logarithm expressed by Fechner’s law represents a compressive
nonlinear relationship between the input stimulus intensity and the corre-
sponding perceptual sensation. The compressive nature essentially means
that, as the stimulus intensity increases, the perceived sensitivity to the
stimulus decreases. Going back to the person shouting in the loud room,
because the intensity of the background is so high, the sensitivity to the
sound decreases, and the person must shout to be heard. When the music
suddenly stops, the sensitivity increases, and the person shouting can sud-
denly be heard by everyone.

Fechner’s law relies on several fundamental assumptions. First, it
assumes that Weber’s law is indeed valid for all stimulus intensity (in the
limit, Al/I is a constant). His other assumption is that JNDs are indeed a valid
unit of sensation and that JNDs can be integrated to form a magnitude scale.
While the general compressive trends described by Fechner’s law are often
valid for many perceptions, they often do not follow the exact logarithmic
shape. Perhaps, because the two main assumptions often break down in real-
world situations, so Fechner’s law is not always accurate. Nevertheless, his
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contributions to the field psychophysics and vision science are quite sub-
stantial.

Nearly 100 years later, S. Stevens performed a series of experiments
testing the limits of Fechner’s law. He used magnitude estimation experi-
ments to derive relationships for over 30 different physical stimuli with their
resulting sensations. It was found that most of the relationships formed
straight lines when plotted on a log-sensation/log-intensity plot, rather than
the logarithmic relation predicted by Fechner’s law. The different perceptions
did not all form lines of the same slope. When plotted in log-log space,
straight lines indicate power functions in a linear space, where the slope
indicates the exponent of the power function. From these plots, Stevens
suggested that the relationships between physical stimuli and their corre-
sponding perceptual scales could be defined as power functions, where the
exponents vary for different perceptions. The general form of this is shown
below.

S = kI' (2.6)

where S =perception
k = experimental constant
Y = exponential power value

An exponent greater than 1 results in an expansive relationship; as the
physical stimulus increases, the perception increases at a greater rate. This
is often the case when the stimulus might result in danger, such as the
perception of pain. An exponent less than 1 results in a compressive rela-
tionship such as that described by Fechner’s law.

The power function relationship between physical and perceptual scales
has become known as Stevens” power law. It has been used to model many
perceptions in color imaging, such as the prediction of lightness in the
CIELAB color space. Details on that will be explained later in the chapter.

Weber, Fechner, and Stevens formed the basis for many of the psycho-
physical techniques still used to develop and test color and appearance
today. It is important to note the specific differences between Weber's goals
and Fechner and Stevens’ goals. In determining the amount of weight nec-
essary to elicit a noticeable change in perceived weight, Weber was deter-
mining the threshold of detecting a change, or a just noticeable difference.
Fechner and Stevens extended this to determine a scale of perceptual differ-
ences. These two techniques represent the main areas of psychophysical
study for general color appearance.

2.3.5 Psychophysical methods: threshold techniques

Weber’s weight experiment was a classical psychophysical threshold exper-
iment. Threshold experiments are designed to determine the perceptible
limits to a change in a stimulus, or the just noticeable differences (JND). Two
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differing types of threshold JNDs can be calculated: absolute and difference.
An absolute threshold determines the minimum amount of stimulus neces-
sary to be detected. An example of this type of threshold might involve an
observer in a blackened room trying to detect a small flashing light. The
threshold would be determined from no stimulus (the blackened room) to
some stimulus (the flashing light). Difference thresholds determine the small-
est change detectable from a given stimulus. Weber calculated a difference
threshold when he added more weight to an already existing amount of
weight.

Three classical types of psychophysical techniques are used for deter-
mining thresholds. Over the years, many different experiments have been
developed based on these types. One of the overall goals of any visual
experiment should be simplicity. Simplicity often comes at a price, however.
The three techniques will be presented here in order of simplicity, with their
corresponding advantages and disadvantages also presented. The tech-
niques are:

* Method of adjustment
e Method of limits
e Method of constant stimuli

2.3.,5.1 Method of adjustment

The method of adjustment is the most straightforward method for determin-
ing observer thresholds for a given stimulus. It this technique, the observer
has control over the magnitude of the stimulus itself. The observer must
adjust the magnitude of the stimulus to reach a desired goal, or criterion.
Example criterion might include adjusting a stimulus until it is just barely
perceptible (for an absolute JND) or adjusting a stimulus until it is different
from another (for a difference JND). The threshold is then determined by
taking the average adjustment across several trials as well as across several
observers. The standard deviation between a single observer and across
several observers can also be taken, and it provides an indication of the
variance and precision.

An example method of adjustment experiment for color imaging might
be determining the level of image compression that can be applied before
the observer notices a difference. For this type of experiment, an observer
might sit at a computer screen that has two images on it, an original and a
compressed image. The observer might have a slider that can be moved to
increase and decrease the amount of compression on the image. The task
would be to adjust the compression on the image until the subject just notices
a difference between the original and the compressed version. This would
be performed several times, and the average would be the compression
threshold for that given observer and image. The threshold might be different
depending on the starting value of the compressed image. If the image starts
out uncompressed, and the observer must increase the compression until
noticing a difference, you might get one value. If the image starts out very

© 2003 by CRC Press LLC



obviously compressed, and the observer must decrease the compression until
it is just barely noticeable it, you would probably get a different value.

The method of adjustment technique is advantageous in that it is fast
and very easy to implement. It is also easy to calculate a threshold from the
data it produces. There are several problems with this technique, though, as
illustrated above by the different thresholds determined from the different
starting points. This tends to show up as a bias, whereby if the observer
starts from above the threshold (obvious compression), the threshold may
be higher than if the observer starts from below (no compression). This bias
might result from a change in observer criterion from one trial to another,
or from adaptation to the starting stimulus. The criteria must be carefully
explained and understood at the beginning of the experiment, yet it still
might vary across different sessions or even across different trials. This
results in less precise threshold data than obtained with other methods. Due
to this lack of precision and ease of implementation of this technique, the
method of adjustment is often used as a pilot experiment to generate starting
values for some of the more complicated methods described below.

2.3.,5.2  Method of limits

The method of limits provides more precise threshold data than the method
of adjustment, with a slight increase in complexity. In this technique, the
experimenter rather than the observer controls the presentation of the stim-
uli. The experimenter presents the stimuli at predefined discrete magni-
tudes. These magnitudes are presented in either a descending or ascending
series. For a descending series, the stimulus is first presented well above
threshold. The observer then must report, either verbally or through a
response-recording device, whether the stimulus is detected. If the observer
sees the stimulus (responds “yes”), then a new stimulus with a decreased
intensity is presented. This is repeated until the observer can no longer see
the stimulus.

For an ascending series, the first stimulus is presented such that it is
definitely not detectable. The observer is asked to respond “yes” if the
stimulus is seen, or “no” if not. If the observer responds “no,” the stimulus
intensity is increased. This is repeated until the observer can see the stimulus.

The threshold is determined to be the average of when the observer first
detects the stimulus in the ascending series or does not detect the stimulus
in a descending series. It is not uncommon for the two series to produce
different thresholds. This might be caused by adaptation to the presenting
stimulus or from expectation errors. Running both ascending and descend-
ing series for a given observer is a way to compensate for these errors. To
further reduce the errors, it is possible to simultaneously run interleaved
ascending and descending series.

Another issue with the method of limits is determining the discrete levels
of stimulus intensity to present in the series. Because this is a threshold
experiment, the only information comes from the “transitions,” or where the
stimulus is first detected or undetected. Essentially, all of the other stimuli
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provide no information. Often, the method of adjustment is used to get a
rough idea as to where the transition point occurs so as to minimize the
“wasted” trials. There is also the same possibility of a change in observer
criterion as there is in the method of adjustment. Because the observer
ultimately must respond yes or no as to whether the stimulus is detected,
the criterion can be changed for any given trial.

2.3.,5.3 Method of constant stimuli

The method of constant stimuli attempts to overcome the observer variability
by locking the observer criterion. This results in a more precise threshold
number. In this method, the experimenter chooses a fixed number of stimuli
at various intensity levels around threshold. The number of stimuli can vary,
but it is typically between 5 and 7. The stimuli are then presented to the
observer repeatedly, in a random order. For each trial, the observer must
respond as to whether the stimulus is perceived. Over the course of the
experiment, the frequency with which each stimulus level is detected is
recorded. From these data, a “frequency of detection” function can be
derived. This is often referred to as a psychometric function, which relates the
probability of detection with stimulus intensity level. An example of the
psychometric function is shown in Figure 2.1. From this function, it is pos-
sible to determine the threshold of detection as well as the uncertainty.
Typically, the threshold is chosen to be the stimulus level that has a 50%
probability of detection. The psychometric function can be determined indi-
vidually for each observer, through multiple repetitions of the trials, as well
as for a population of observers.

Generally, two types of constant stimuli experiments are run: yes—no
and forced-choice. In yes—no experiments, observers are simply asked to
respond yes if they detect a given stimulus or no if they do not. The psycho-
metric function is then fit to the percentage of yes responses for each discrete
stimulus level. An intensity that corresponds to 50% yes responses is taken
to be the threshold point. This method can be extended to a pass—fail tech-
nique for determining visual tolerances. In this situation, a reference stimulus
is presented, and observers either “pass” a stimulus that is less than the
reference or “fail” one that is greater. This technique has been used to develop
color difference equations, which will be described later in the chapter. For
that case, the reference stimulus was a color pair of known difference, and
the observers were asked to pass color pairs that had less of a difference and
fail pairs that had a greater difference. These techniques can still suffer from
changing observer criteria between trials.

A forced-choice experiment eliminates the observer criterion from the
overall results. This is accomplished by presenting the observer with either
spatial or temporal alternatives. For example, when attempting to determine
the threshold of image compression, a pair of images is presented on a screen.
The observer is then “forced” to choose which side of the screen displayed
the compressed image. This is known as two-alternative forced-choice. Alter-
natively, the images could be presented in one of two time intervals. The
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observer is then forced to choose in which interval the compressed image
was presented. A psychometric function is then plotted using the percentage
of correct responses against the stimulus intensity level. In a two-alternative
forced-choice experiment, the psychometric function ranges between 50 and
100%, rather than 0 and 100% as in a yes—no experiment. That is due to the
“forced” response nature of the experiment, whereby each observer must
always choose an interval or location. If the stimulus intensity is too low to
be detected, then the observer must make a guess. When two alternatives
are available, the guessing rate is 50%. A threshold level is typically taken
to be 75% correct. By forcing the observer to choose, the observer’s criteria
cannot influence the results.

The increased precision available from the method of constant stimuli
comes at a price of complicated experimental design. Ideally, the discrete
intensity levels need to be chosen so that the threshold falls in the middle
of the range of intensities, and so that the lowest and highest levels fall close
to 0% detected and 100% detected, respectively. To maximize this range, a
pilot study is often necessary. This can be done using a small number of
pilot subjects with a larger number of samples or by using another method
such as the method of adjustment. To obtain an accurate psychometric func-
tion, it is also necessary to have many trials for each given intensity level.
This can be accomplished by having a smaller number of observers do a
large number of trials, or by having a larger number of observers perform
fewer trials. Given the amount of time necessary to perform these experi-
ments, it is often more desirable to have a larger number of observers.
Another consideration is the seemingly arbitrary nature of selecting the
threshold level. It has been suggested here to choose the 50% value of the
psychometric function for a yes—no experiment and a 75% level for a forced-
choice experiment. This threshold level can be calculated more precisely, but
at the expense of losing the actual psychometric function itself. These tech-
niques are known as up—down staircase procedures.

Staircase procedures combine a modified method of limits with a forced-
choice experiment. They are designed to adaptively measure the threshold
point on the psychometric function. An experiment begins with a stimulus
of a given magnitude presented to an observer. This can be either a forced-
choice presentation or a method of limits presentation. The observer is asked
to respond to the presentation. A “yes” response, or a correct decision, will
cause the magnitude of the next stimulus to be decreased. A “no” response,
or an incorrect decision, will cause the magnitude of the next stimulus to be
increased. In this manner, the staircase narrows in on the transition threshold.
There are many variations and rules that can be used with these techniques.
These rules determine the overall precision of the threshold. Further details
can be found in psychophysical texts.!-1?

2.3.5.4 Matching techniques
Matching techniques are generally similar to the method of adjustment, with
only the goal being different. Whereas the method of adjustment is used to
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determine the threshold level of a just noticeable difference, a matching
experiment is used to determine when two stimuli are not perceptibly dif-
ferent. This technique has been used extensively in the color imaging com-
munity and is the technique used to generate the CIE XYZ system of colo-
rimetry. In that situation, observers controlled the mixture of three light
sources to match a separate monochromatic light source. An example of this
is shown in Figure 2.2.

Matching techniques have also been used in the study of chromatic
adaptation and color appearance. These techniques include asymmetric
matching, where the stimuli are presented separately in disparate viewing
conditions. An example of this would be viewing a reference color under
daylight illumination and then attempting to match the color under incan-
descent illumination.

2.3.6  Psychophysical methods: scaling techniques

Threshold data can be useful when attempting to determine information
such as color tolerances, or compression limits. Oftentimes the goal is to
generate a scale of perception, rather than a single threshold. Scaling exper-
iments are used to derive relationships between sensations and physical

i Viono-
Light Chromatic
2 Light

Light
3

Figure 2.2 Example of a typical color matching experiment. The observer adjusts
the three light sources on the left to match the single source on the right.
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measurements of stimuli. Examples of scaling techniques were described
briefly above in the discussion of Fechner’s and Stevens” works. Several
scaling techniques are used to generate these relationships. Depending on
the dimensionality of the scale, different techniques are available. One-
dimensional scaling is used when both the perceptual attribute and the
physical measurement are one dimensional. Examples of this include scaling
of lightness with luminance, where lightness is the perceptual attribute and
luminance is the physical measurement. It is possible that an attribute being
scaled actually consists of several distinct attributes, such as in the case of
image preference. Image preference might result from several distinct vari-
ables, such as color fidelity, sharpness, and contrast. As long as the same
criteria are used for each trial, one-dimensional scaling techniques can be
used. Often, it is difficult to control the criteria, so more robust multidimen-
sional scaling techniques should be used.

One-dimensional scaling techniques come in a variety of flavors. Some
of the most common techniques for color imaging application are as follows:

¢ Rank order experiments

¢ Rating and category scales

¢ Partition scaling

¢ Magnitude and ratio estimation
* Paired comparison

Rank order experiments are generally simple to implement and perform. A
series of stimuli are presented to an observer, who is asked to arrange the
series in order of increasing or decreasing magnitudes. The magnitudes lie
on the one-dimensional attribute that is being scaled. With enough observa-
tions, the data can be used to easily derive an ordinal scale of that particular
attribute. Remember, the only mathematical operations that are valid for an
ordinal scale are greater-than and less-than. Thus, the spacing between indi-
vidual samples might not be equal. With enough samples and trials, it is
possible to calculate an interval scale based on the law of comparative
judgment, which will be described in more detail below. This involves many
assumptions and simplifications and does not always produce accurate
results. Interval scales should be generated at your own risk.

Rating and category scaling experiments allow for relatively simple deter-
mination of both ordinal and interval scales. Perhaps the simplest technique
is the graphical rating scale. Observers are presented with a stimulus as well
as a graphical scale with well-defined endpoints. The endpoints can be
numerical, adjectival, or actual physical stimuli. For example, when attempt-
ing to scale chroma, the endpoints might say “no chroma” and “highest
chroma imaginable,” or simply 0 and 100. Observers are then asked to
graphically mark where on the scale the current stimulus lies. The interval
scale is then measured from the graphical scale. An example of scaling
colorfulness using actual physical stimuli along with a graphical scale is
shown in Figure 2.3.
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Current Trial

Least Colorful Most Colorful

Figure 2.3 Scaling experiment using physical stimuli as endpoints.

Rating can also be performed without the benefit of the graphical scale,
as an observer might be told the numerical endpoints verbally. When pre-
sented with a stimulus, the observer would then rate the perception by assign-
ing a number between the endpoints. Another similar technique is called
category scaling, or adjectival rating. This technique is useful when dealing with
a large number of samples. An observer views a large sample population and
is asked to separate the samples into predetermined categories, or adjectives.
An oft-used example of categorical scaling is for sorting various hues into
color names. An observer might be asked to place the samples into distinct
color names categories such as red, green, yellow, blue, pink, orange, brown,
black, gray, and white. This would result in a nominal scale of hue. More
powerful scales are possible, such as an ordinal scale, if care is taken to select
categories that can be considered equal intervals along the attribute being
scaled. While this might be difficult when scaling hue, consider scaling col-
orfulness. The categories, or adjectives, given there might be “no colorful-
ness,” “mildly colorful,” “medium colorful,” “very colorful,” and “most col-
orful imaginable.” If these categories are proximate enough that the categories
into which the stimuli are placed are not the same for every person or obser-
vation, it is possible to generate an interval scale. This involves further sta-
tistical assumptions and the use of the law of categorical judgments.!314

Partition scaling and fraction scaling are relatively straightforward exper-
iments for the calculation of interval or ratio scales through a method of
bisection. For example, in a partition scale experiment for image compression
algorithms, an observer would be shown two images of different compres-
sion — images A and B. The observer would be asked to select a third image
such that the difference between the third image and image A is the same
as the difference between the third image and image B. Through successive
bisection, as described above, a complete interval scale could be calculated.
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When there is a distinct meaningful zero along the magnitude that is being
scaled, it is possible to generate a ratio scale using these techniques. For
instance, when scaling brightness, an observer might be presented with two
spots of light and told to choose, or adjust, a third spot to be halfway between
the first two spots. Alternatively, the subject might be flashed a spot of light
and told to set a spot that is half as bright. Because there is a meaningful
zero for brightness, no perceived light at all, this technique, through enough
bisection, can create a ratio scale of brightness.

The above-mentioned fractional scaling can also be considered a form of
ratio estimation. The easiest ratio estimation experiments are magnitude esti-
mation or production. In a magnitude estimation experiment, an observer
would be shown a stimulus and asked to assign a numerical value to that
stimulus based on the magnitude of the sensation being scaled. In magnitude
production, the observers are given a magnitude number, and they must
adjust the stimulus so that it represents that perceptual magnitude. More
complicated ratio experiments include the fractional brightness experiment
described above, wherein an observer is asked to generate a stimulus that is
half as bright as the previous stimulus. Another ratio estimation technique,
given two or more stimuli, would be to have an observer state the perceived
ratios between all the stimuli. For color imaging applications, where there is
often no known meaningful zero, ratio estimation often proves too difficult.

Although it is often difficult to generate ratio scales in color imaging
applications, interval scales can be generated with great success. A powerful
technique for generating interval scales is paired comparison. Observers are
presented with two stimuli and are asked to make ordinal judgments based
on the pair. For example, given a pair of compressed images, an observer
might be asked which image appears more compressed. This is valid only
if the observers understand image compression and how compression arti-
facts might be manifested. It might be more desirable to have the observers
choose which image is of higher quality, thus scaling quality as a function
of compression. Alternatively, an observer might be presented with an orig-
inal reference image and then asked which of the two compressed images
looks most like the standard. This will create an interval scale of similarity,
with regard to the image compression. Paired comparison experiments work
well for a smaller number of samples and a well-defined ordinal criterion.
To create an interval scale from these ordinal data, every possible pair of
stimuli must be presented. That is, every stimulus must be compared with
every other stimulus. For n stimuli, this leads to n(n — 1)/2 experimental
trials. Thus, the total number of trials increases very rapidly as the number
of stimuli increases. Thurstone’s laws of comparative judgment can then be
applied to generate interval scales.* The law of comparative judgment has
several underlying assumptions, among them that the perception of any
stimulus results in a discriminal value on some psychological continuum
and that, due to internal fluctuations, these discriminal processes result in a
normal distribution of values. Assuming this normal distribution, then the
average and standard deviation of the values relate directly with the average
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and standard deviation of the perception itself. Thus, it is possible to convert
the ordinal data derived from the paired comparison, using the power of
the normal distribution, to a meaningful interval scale. The normal distribu-
tion also allows for the computation of statistically meaningful scales of
similarity and differences between any given stimuli. There are several other
simplifications and assumptions that can be made regarding the analysis
using Thurstone’s law. Bartleson and Grum!! and Torgeson'® give excellent
details of all of these assumptions as well as worked-through examples.

2.4 Viewing condition terminology

Along with the standard color terminology given above, it is also important
to have a sound understanding of the vocabulary used to describe the scene
in which a stimulus is viewed. This scene is known as the viewing field, or
more commonly as the viewing conditions. As you will see below, the viewing
conditions can have a profound affect on the color perceptions. This section
will define the common elements of a simplified viewing field, as shown in
Figure 2.4. These elements are divided into four distinct components: stim-
ulus, proximal field, background, and surround.

24.1 Stimulus

The stimulus is the color element of interest. In standard colorimetry, the
stimulus is typically a small uniform color patch that subtends 2° of visual

Surround

Background

A
2 degrees
v

Stimulus

Proximal Field

B——— 10degrees —=

Figure 2.4 Specifications of the typical viewing field.
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angle. The CIE has a separate system of colorimetry designed to handle
larger color patches — the CIE 1964 supplemental standard observer. Most
color appearance research has been performed using similar-sized uniform
color patches. Ideally, the stimulus would be described by the full spectral
representation. Often, this is difficult to do, if not impossible. When the
spectral power distribution is unavailable, the stimulus is usually described
using a standard device-independent space, such as CIE XYZ tristimulus
values, or LMS cone responsivities.

For color imaging, the definition of the stimulus is somewhat blurred.
Is the stimulus a single pixel, a region of pixels, or the entire image? While
often more convenient to assume that the entire image is the stimulus, that
might be an oversimplification. Currently, there is no universally correct
definition of the stimulus for complex scenes. Therefore, when using images
for research, care should be taken to fully describe the manner in which they
are being used.

2.4.2 Proximal field

The proximal field is considered to be the immediate environment extending
from the stimulus for about 2° in all directions. The proximal field can be
useful for measuring local contrast phenomena such as spreading and crisp-
ening. These phenomena are described in detail later in this chapter. Ideally,
the proximal field would also be described both spatially and with a full
spectral power distribution. The question of defining the spatial proximal
field becomes very difficult when dealing with digital color images. Should
the proximal field for any given pixel be considered all of the neighboring
pixels? In most real world applications, the proximal field is just assumed
to be the same as the background.

2.4.3 Background

The background is defined to be the environment extending from the prox-
imal field for approximately 10° in all directions. If there is no proximal field
defined, then the background extends from the stimulus itself. Specification
of the background is very important in color appearance, as it is necessary
to model color appearance phenomena such as simultaneous contrast. Spec-
ifying the background with color patches is relatively straightforward. Spec-
ifying the background with color images suffers from the same problems as
specifying the stimulus and the proximal field. For any given image pixel,
the background actually consists of many of the neighboring pixels.
Researchers generally use two different assumptions when determining the
background for color imaging applications. The first is to assume that the
entire image is the stimulus, so that the background is the area extending
10° from the image edge. Another assumption is that the background is
constant and of some medium chromaticity and luminance, e.g., a neutral
gray. Alternatively, the mean color of the image itself can be used as the
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background. Because most imaging applications strive to reproduce images
of constant spatial structure and size, many of these concerns disappear.
Care must be taken when calculating color appearances across changes in
image sizes, though. Braun and Fairchild describe the impact on some of
these background decisions.!8

2.4.4 Surround

The surround is considered to be anything outside of the background. For
most practical applications, the surround is considered to be the entire room
inhabited by the observer. Color appearance models tend to simplify the
surround into a few distinct categories: dark, dim, and average. For instance,
movie theaters are usually a dark surround, while televisions are viewed in
a dim surround. More detailed discussion on the effect of the surround is
given below.

2.4.5 Modes of viewing

Any changes in the above-mentioned viewing fields might result in a change
in the color appearance of a stimulus. The following sections on color appear-
ance phenomena explain some of these changes in detail. Other factors that
cannot be readily explained by the simplified viewing field also have an
effect on the perceived appearance of a stimulus. The perception of color is
not adequately explained by the physics of light alone, as the human
observer is the critical factor ultimately responsible for any sensation. The
human visual system relies both upon sensory mechanisms, governed by
biological and physical processes, as well as cognitive interpretations. These
cognitive mechanisms are not fully understood, though we are able to rec-
ognize some behaviors. Perhaps one of the most important cognitive affects
on color appearance is termed the mode of appearance. The mode of color
appearance is a difficult concept to grasp at first and might be best described
with an example.

Picture taking a walk outside on a clear winter night with only the full
moon providing light. The snow on the ground probably will look very
white, despite the fact that it is being illuminated almost entirely by the blue
night sky. If you were to come across a house in the distance, the windows
of the house might look bright orange. This orange light would be from the
incandescent light bulbs found in most houses. If you were inside the same
house, the light would not look nearly as orange and would most likely
appear white. At the same time, the snow outside the window might look
particularly blue. These are examples of changing modes of viewing, from
object mode to aperture mode.

There are five modes of viewing that affect color appearance: illuminant,
illumination, surface, volume, and film. These modes of viewing are
described briefly below, though a more complete description can be found
in The Science of Color, published by the Optical Society of America.?
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The Illuminant mode of appearance is color appearance based on the
perception of a self-luminous source of light. Because illuminant-color per-
ceptions generally involve actual light sources, they are often the brightest
perceptible color in the field of view. Examples of this are looking at a traffic
light or an actual desktop light bulb. The immediate assumption that the
brightest objects are actual light sources can lead to some interesting phe-
nomena when non-illuminant objects in a scene appear much brighter than
the surrounding scene. These objects might actually be perceived in an
illuminant mode and are often described as glowing. Examples of an object
appearing to glow might be when fluorescent objects are involved. Fluores-
cence is found in an object that absorbs energy (light) at one wavelength and
emits the light at much longer wavelengths. Fluorescent objects are often
referred to as “day-glow” objects, because they absorb light from nonvisible
portions of the spectrum and emit light in the visible portions, thus appear-
ing much brighter than the surrounding scene.

The illumination mode of appearance is similar to the illuminant mode,
except that perceived color appearance is thought to be as a result of the
illumination rather than properties of the objects themselves. Consider the
traffic light example given above. Clearly, when looking at a traffic signal,
there is no doubt that the red, yellow, or green color is being emitted from
the light itself. Thus, the light is viewed in illuminant mode. Any pedestrians
waiting for the light to turn might be bathed in red light and look quite red
themselves. Generally, people do not assume that the pedestrians are very
sick because of their red color. Instead, they recognize that the pedestrians
are red because they are illuminated by the red traffic signal. The perceived
color is a result of the prevailing illumination reflecting off the pedestrians’
skin. Many clues are available to a typical observer of a scene when deter-
mining whether the color is a result of illumination. These clues include the
color of the shadows, the color of the entire scene, as well as the color of the
observer.

The perceived color of an observer or a pedestrian as described above
is an example of the surface mode of appearance. In this mode, the color of
a surface is perceived as belonging to the object itself. In the case of the
pedestrians, the observer “knows” that the color of their skin and clothes
belongs to them, and an observer is able to partly discount the color of the
red traffic light. This is an example of “discounting the illuminant,” which
is described in further detail below. Any recognizable object provides an
example of the surface mode of appearance. It requires both a physical
surface and an illuminating light source.

The volume mode of appearance is similar to the surface mode, except
the color is perceived to be “belonging” to a bulk or volume of a transparent
substance. An example of volume mode appearance can be found in the
perceived color of liquids, such as beer. The color of beer is not thought to
be just on the surface but rather throughout the entire glass. As the beer is
shaken up, forming a thick head, the air bubbles cause light to scatter,
increasing the perceived lightness while decreasing the transparency. This
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is an example of a volume color changing into a surface color. Volume color
requires transparency as well as a three-dimensional shape and structure
(the shape and structure of a glass of beer, for example).

The final mode of appearances, the aperture or film mode, encompasses
all remaining modes of appearance. In the film mode, color is perceived as
an aperture that has no connection with any object. In the moonlit walk
example above, the orange window was perceived in an aperture mode of
viewing. The observer did not believe that the window was glowing or that
it was an actual light source. Rather, the window was perceived as an aper-
ture. Any object can switch from surface mode to aperture mode if there is
a switch in focus from the surface itself. This can be accomplished purposely
by using an aperture screen or a lens system.

2.5 Color appearance phenomena

This section deals with examples of stimuli that do not follow the predictions
of basic colorimetry. The CIE system of colorimetry was developed using a
color-matching experiment that was similar to the magnitude adjustment
experiments described above. Essentially, colorimetry states that, if two stim-
uli have identical tristimulus values, then those two stimuli will match each
other for a given viewing condition. Colorimetry does not attempt to predict
whether the colors will match if any aspect of the viewing condition changes.
This section will illustrate several examples of where the color matches will
indeed break down as various elements of the viewing conditions described
in the previous section are changed. Among the changes in viewing condi-
tion are changes in illumination level, illumination color, surround, back-
ground, and viewing mode. The examples shown here illustrate the limita-
tions of basic colorimetry and the need for advanced colorimetry, often called
color appearance modeling. The foundations of most color appearance models
stem from the study of these phenomena, so it is important to briefly review
them here. The recognition and understanding of these color appearance
phenomena are also important for a color imaging system designer, as many
of these examples show up in everyday imaging applications. This section
will describe several distinct forms of color appearance phenomena, includ-
ing spatially structured, luminance, illuminant color, and surround effects.

2.5.1 Spatially structured phenomena

Perhaps the most easily recognized color appearance phenomenon is that of
simultaneous contrast. Figure 2.5 illustrates an example of simultaneous con-
trast. The four small, gray patches are the same throughout the image. The
two patches on the solid gray background look identical, while the patches
on the white and black background look distinctly different. The patch on
the white background looks darker, while the patch on the black background
looks lighter. Simultaneous contrast causes the color of a stimulus to shift
in color appearance when the color of the background changes. The change
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Figure 2.5 Example of simultaneous contrast. The four small, gray patches are
identical.

in color of the stimulus tends to follow the opponent color theory of vision.
That is why, in Figure 2.5, the patch on the white square looks darker, and
the patch on the black square looks lighter. Simultaneous contrast can also
be found with chromatic samples as well as achromatic. In those cases,
following the opponent theory, a red background would tend to induce a
green color shift, green would induce red, blue induces yellow, and yellow
induces blue. Texts by Albers,? Fairchild,! Hurvich,’ and Kaiser and
Boynton” go into further detail regarding this phenomenon.

Figure 2.6 illustrates the complex spatial nature of simultaneous contrast.
The centered ring in each of the circles is identical, as is the local contrast.
The simultaneous contrast is shown to be much more apparent in the second
circle pair. This suggests that spatial structure has a strong influence on
simultaneous contrast. Robertson?! and Shevell?? present interesting exam-
ples as well as some models of this spatial relationship. As the spatial fre-
quency of the stimulus increases, the contrast effect actually ceases and, in
some cases, reverses.

At a sufficiently high spatial frequency, simultaneous contrast is replaced
with spreading. With spreading, the color of a stimulus actually mixes with
the color of the background. Recall that, with simultaneous contrast, the
color of a stimulus took on the opposite color of the background. Often, it
is hypothesized that spreading is caused by blurring of the light coming
from the background with the light coming from the stimulus. While this
might be true for very high-frequency stimuli, such as halftone dots, it does
not fully explain the spreading phenomenon. Spreading can occur when the
stimuli are very distinct from the background. An example of this can be
seen in Figure 2.7.

Research is ongoing to understand the transition point between simul-
taneous contrast, spreading, and the overall effects of spatial frequency on
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Figure 2.6 (See color insert following page 430) A spatially complex example of
simultaneous contrast. The small inner rings are identical in size and color. The effect
of the simultaneous contrast should be greater in the bottom pair (B).

Figure 2.7 (See color insert) An example of spreading. There are only red and black
lines, though a faint pink circle should be evident. (Adapted from Kuehni, R. G,,
Color: An Introduction to Practice and Principles, John Wiley & Sons, New York, 1997.)

color appearance.?? Related, though more complex, phenomena include neon
spreading and the watercolor effect. Neon spreading combines spreading
with the perceptual attribute of transparency and is illustrated in Figure 2.8.
Bressan? gives an excellent review of neon spreading. The watercolor effect,
as seen in Figure 2.9, can also create strong spreading illusions.?
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Figure 2.8 (See color insert) An example of neon spreading. There appears to be a
transparent pink circle in the center of the figure.

Figure 2.9 (See color insert) An example of the watercolor effect, where there ap-
pears to be surface colors caused by thin colored lines. Reproduced from Pinna et al.®

Simultaneous contrast can also give rise to an increase in perceived color
difference between color stimuli. This effect is known as crispening and can
be seen in Figure 2.10. Crispening causes an increase in perceived color
difference when the background of the stimuli is close to the color of the
stimuli. In Figure 2.11, the differences between the small gray patches are
the same for all three backgrounds, but the difference looks greatest on the
gray background. Similar effects can be seen for color patches as well. More
details can be found in papers from Semmelroth? and, more recently, Mor-
oney.”

2.5.2  Luminance phenomena

The above color appearance phenomena deal with color changes as a func-
tion of spatial structure and background. Profound color changes can also
occur when the illumination stimuli are viewed under changes. This can
include luminance level changes (dark to bright) or when the color of the
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Figure 2.10 An example of lightness crispening. The color difference for the pairs
of small squares are identical for each background, though they appear greatest on
the gray background.

Figure 2.11 (See color insert) An example of chroma crispening. The color difference
of the small pairs are identical but should look greatest on the background of most
similar chroma (far right).

illumination changes. Luminance changes are very common in everyday life.
The classic example is to think about a bright sunny day and a dark overcast
day. Objects tend to appear very bright and colorful on sunny day and
somewhat subdued on an overcast day. These occurrences can be well
described by both the Hunt effect and the Stevens effect.
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The Hunt effect states that, as the luminance of a given color increases,
its perceived colorfulness also increases. This effect was first identified in a
study by Hunt on the effects of light and dark adaptation on the perception
of color.?® Using a variation of a matching experiment called haploscopic match-
ing, observers were given one viewing condition in their left eye and another
in their right eye. Observers then used a method of adjustment technique to
create matches on stimuli viewed in each eye. It was determined that, when
one eye had a very low luminance level, it took much more colorimetric
purity to match a stimulus viewed at a very high luminance level. This
indicates that colorfulness is not independent of luminance level. Going back
to the sunny day analogy, that partially explains why objects appear much
more vivid, or colorful, when viewed in bright sunny environment. Scenes
also appear much more contrasty when viewed in a bright environment.

This increase in contrast has been examined closely in a classic study by
Stevens and Stevens.? This study showed that, as the luminance level
increases, so too does the brightness contrast. This effect has been coined
the Stevens effect. In this study, observers performed magnitude estimation
experiments on brightness stimuli across many different luminance adapting
conditions. This experiment has been described above in the discussion on
Fechner’s and Stevens’ laws. The results showed that brightness tended to
follow a power law relationship with luminance, thus forming the basis for
Stevens’ power law. However, this study also showed that the exponent of
the power function changed as a function of adapting luminance level.
Essentially, as the adapting luminance level increased, bright colors tended
to look brighter, and darker colors tended to look darker. So, as the adapting
luminance level increases, the rate of change between the brightness of the
dark and light colors increases. This rate of change is often considered to be
the contrast of the scene.

While the Stevens effect illustrates the change in brightness contrast with
luminance level, what happens when there is a color change as well? Bright-
ness is often erroneously assumed to be a function of luminance level alone.
This is not the case, as is well illustrated by the Helmholtz—Kohlrausch effect.
The Helmholtz—Kohlrausch effect shows that brightness also changes as a
function of saturation. That is to say, as a stimulus becomes more saturated
at constant luminance, its perceived brightness also increases. Another way
to describe this effect is to say that a chromatic stimulus will appear brighter
than an achromatic stimulus at the same luminance. If brightness were truly
independent of chromaticity, then this effect would not exist. It is important
to note that the Helmholtz—Kohlrausch effect is a function of hue angle as
well. It is less noticeable for yellows than for purples, for instance. Essentially,
this means that perceived brightness is actually a function of saturation and
hue, and not just luminance. Fairchild and Pirrotta published a general
review of the Helmholtz-Kohlrausch effect as well as some models for pre-
dicting the effect.®

Another interesting relationship between luminance level and chromatic
colors is the Bezold—Briicke hue shift. This phenomenon relates the perceived
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hue of monochromatic light sources with luminance level. It is often assumed
that the hue of monochromatic light can be described completely by its
wavelength. This is not the case, as the hue of a monochromatic light will
shift as the luminance of the light changes. The amount of hue shift also
changes, both in direction and magnitude as a function of hue. Experimental
results regarding the Bezold-Briicke hue shift can be found in work pub-
lished by Purdy.®® One important consideration for these hue shifts is that
all the experimental data were obtained using unrelated colors. Recall that
unrelated colors are stimuli viewed in complete isolation. Unrelated colors
occur very rarely in everyday life. Hunt published a report indicating that
the Bezold-Briicke hue shift disappears for related colors.®? This must be
taken into consideration when creating a model to predict color appearance.

2.5.3 Hue phenomena

We have seen above how luminance changes can cause large shifts in the
appearance of colored stimuli. This section examines two phenomena that
result from changing the hue of the viewing conditions. These hue changes
are less common than luminance changes, and they often are not very per-
ceptible. They are included here because many models of color appearance
models are capable of compensating for these effects.

The Bezold-Briicke hue shift illustrated that the wavelength of mono-
chromatic light sources is not a good indicator of perceived hue. As lumi-
nance levels change, the perceived hue can also change. Another similar
effect is the Abney effect. The Abney effect simply states that adding “white”
light to a monochromatic light does not preserve constant hue. Another way
of expressing this is to say that straight lines in a chromaticity diagram,
radiating from the chromaticity of the white point to the spectral locus, are
not lines of constant hue. Unlike the Bezold-Briicke hue shift, this effect is
valid for related colors as well as unrelated colors.

Another interesting, though difficult to reproduce, phenomenon involv-
ing monochromatic illumination is the Helson—Judd effect.® This effect
describes that nonselective (gray) stimuli viewed under highly chromatic
illumination take on the hue of the light source if they are lighter than the
background, and they take on the complementary hue if they are darker
than the background. So, a dark gray sample viewed on a medium gray
background under red illumination will look somewhat green, while a light
gray sample would appear pinkish. This effect almost never occurs in com-
mon practice and is very difficult to reproduce in a laboratory setting. Nev-
ertheless, some color appearance models take this into account. More details
on this effect can be found in Fairchild! and Mori et al.*

2.5.4  Surround phenomena

The Stevens effect demonstrated that contrast for simple patches increased
as a function of adapting luminance. Around the same time, Bartleson and
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Breneman were studying the effects of luminance level and surround on
complex stimuli, namely images.**> They were able to generate results similar
to those of Stevens and Stevens in regard to changes in luminance level.
More interestingly, they noticed interesting results regarding the change in
the relative luminance of the image surround. Recall that the surround is
considered to be the field outside of the background or, in practical situations,
the entire viewing room. Bartleson and Breneman determined that perceived
contrast in images increased as the luminance of the surround increased.
That is to say, when an image is viewed in a dark surround, the black colors
look lighter while the light colors remain relatively constant. As the surround
luminance increases, the blacks begin to look darker, causing overall image
contrast to increase.

These results modeled phenomena that were already taken into account
in the photographic world. Traditionally, for optimal tone reproduction,
photographic transparencies designed for viewing in a darkened room were
reproduced with a much higher contrast than those designed for viewing as
a print in a bright room. Hunt*® and Fairchild®” provide more in-depth
analysis of the history and prediction of optimal tone reproduction for com-
plex images. In their original publication, Bartleson and Breneman published
equations that predicted their results well. These equations were simplified
later to create equations for calculating optimal tone reproduction.® Such
equations have been adapted and are included in many models of color
appearance.!

Surround compensation can play a key part in the design and imple-
mentation of a color imaging system. For instance, in designing a scanner
to convert movie film into video for display on a television, one must under-
stand the effects that surround will have on the final output image. Television
is typically viewed in a lighter surround than a darkened movie theater. If
the scanner does not take this change in surround into account, it is possible
for the video to appear to have a much higher perceived contrast than the
original film.

2.5.5 Color constancy and discounting the illuminant

Ilumination can vary dramatically throughout many different environ-
ments. This includes both the physical amount of illumination and the color
of the illumination. Several of the examples above illustrate how these
changes in illumination can cause the appearance of colors to change dras-
tically. At the same time, most people will readily acknowledge that the
colors of objects do not change when moving from one viewing condition
to another. A red apple will look red when viewed under bright outdoor
illumination as well as when viewed inside at relatively dark incandescent
illumination. This is the effect known as color constancy. One of the mecha-
nisms for color constancy is chromatic adaptation, which is described in
much further detail below. Suffice it for now to know that chromatic adap-
tation is a result of sensory adaptation as well as cognitive behavior. The
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cognitive ability of an observer to interpret the color of an object based on
the illuminated viewing environment is known as discounting the illuminant.
Essentially, this is the mechanism that allows for observers to “know” that
the red apple is still red, despite potentially large changes in the color of the
illuminant. Color constancy is an area of active research. The publications
by Jameson and Hurvich® as well as Fairchild! provide good starting points
for the researcher interested in the study of color constancy.

2.6 Chromatic adaptation

The human visual system is capable of functioning across vast changes in
viewing conditions while providing relatively stable perceptions. The mech-
anism that allows the visual system to do this is known as adaptation. Adap-
tation allows the general sensitivity to any given stimulus to change based
on the conditions of the stimulus itself. Three types of adaptation are impor-
tant for modeling vision and color imaging: light, dark, and chromatic. Light
and dark adaptation describe the human visual system’s capability of func-
tioning across large changes in luminance levels. These changes need to be
considered when building color imaging systems that are designed to work
across wide luminance ranges, though those types of situations are relatively
rare. Chromatic adaptation is the ability of the human visual system to adjust
to changes in the color of illumination.

The previous section described many color appearance phenomena, or
examples where basic tristimulus colorimetry fails. Several of these examples
represent changes in luminance level, such as the Hunt and Stevens effects.
Many of the other phenomena described above can be considered second-
order effects, as the situations in which they occur happen relatively infre-
quently. Chromatic adaptation, and the similar concept of color constancy,
are perhaps the most important of the color appearance phenomena. This
section discusses the theory of chromatic adaptation and some of the mech-
anisms that enable adaptation. This section also describes some computa-
tional models of chromatic adaptation and how those models can be used
to calculate color appearance matches across different viewing conditions.
These matches are important when designing color imaging systems that
are capable of reproducing colors for view in various conditions.

2.6.1 Light and dark adaptation

Light adaptation is the decrease in visual sensitivity as a function of the
overall amount of illumination. Essentially, the more light illuminating a
scene, the less sensitive the human visual system becomes to light. This is a
very common occurrence. Imagine going to an afternoon cinema matinee.
When leaving the darkened theatre into the sunny afternoon light, your
visual system is often shocked — sometimes even to the point of physical
pain. It is very difficult to see anything for a few moments, and then your
visual system adjusts so that you can see objects normally. Dark adaptation
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is the opposite; the human visual system becomes more sensitive to light as
the overall amount of illumination decreases. This can be thought of as
walking from the sunny afternoon light into a darkened theatre and strug-
gling to find your seat. After several minutes, objects become recognizable
as your visual system adapts.

Light and dark adaptation, though very similar, function at different
speeds. The speed of adaptation is often referred to as the time-course for full
adaptation. Light adaptation works at a much faster rate than dark adaptation.
Consider the movie theatre discussion above. When leaving the theatre to
go outside, it is somewhat painful for several seconds, and then vision
returns to normal. Dark adaptation can take several minutes before objects
become noticeable. This indicates the mechanisms of dark adaptation are
much more gradual than those of light adaptation.

So what are the physiological mechanisms that enable light and dark
adaptation? One mechanism has been reproduced almost identically in pho-
tographic camera systems. This is the dilation and constriction of the pupil
in the eye. For many years, cameras have had an aperture control that enables
the photographer to adjust the amount of light that enters the lens. The
human eye works in a similar manner. In ordinary viewing situations, the
pupil can range in diameter from about 3 to 7 mm. From these different
diameters, we can conclude that the pupil can account for up to a 5x change
in luminance level. Considering that the range in luminance levels from
sunlight to starlight can differ upwards of 10 orders of magnitude, clearly,
the pupil dilation and contraction cannot be the only mechanism of adapta-
tion. Other mechanisms include the transition from cones to rods, and vice-
versa. In the human retina, there are two distinct types of photoreceptors:
rods and cones. Rods are more sensitive to light and are responsible for
vision at low luminance levels. Cones are less sensitive to light and are
responsible for color vision at higher luminance levels. The transition from
cones to rods can account for additional levels of adaptation. Additionally,
this transition can explain the difference in the time-course of adaptation
between light- and dark-adaptation mechanisms. The cones respond rela-
tively quickly to increased levels of illumination, while the rods respond
more slowly to decreased levels. Other mechanisms can account for light
and dark adaptation, including receptor gain control, where the photorecep-
tors themselves become less sensitive to light at increased luminance levels.
Receptor gain control is perhaps the most important sensory mechanism for
chromatic adaptation, and it will be revisited.

2.6.2  Chromatic adaptation

Chromatic adaptation refers to the human visual system’s ability to adjust to
the color of overall illumination rather than the absolute levels of the illu-
mination. This is perhaps best explained with a common example. Consider
a white object such as a piece of paper. This paper can be viewed under a
variety of light sources such as daylight, incandescent, and fluorescent.
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Despite the large change in the color of these sources (ranging from blue to
orange), the paper will always retain an approximate white appearance.
Chromatic adaptation is often thought to be a result of independent gain
control mechanisms on the three types of cone photoreceptors, as illustrated
in Figure 2.12. This is similar to the receptor gain control functions of light
and dark adaptation, though those can also be explained with a single gain
control function for all photoreceptors.

While this is certainly a valid hypothesis, there is no evidence that the
gain control mechanisms do not also occur at other stages of visual process-
ing. The theory of independent photoreceptor gain control was first pub-
lished 100 years ago in a seminal paper by von Kries.##! In that paper,
translated by MacAdam, he wrote:

...the individual components present in the organ of vision are
completely independent of one another, and each is fatigued or adapted
exclusively according to its own function.04!

This insight, though now we know it is not entirely correct, provided an
excellent starting point on the theory of chromatic adaptation.

The receptor gain control idea of chromatic adaptation is very similar in
principle to an automatic white balance in a digital camera or camcorder.
Those devices adjust the sensitivities of their detectors such that the “bright-
est” object in the scene appears white. This is accomplished by normalizing
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Figure 2.12 Iconic concept of independent cone gain control.
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all the detectors with the strongest detector signal. This type of adaptation
is classified as a sensory mechanism. A sensory mechanism is a mechanism
that responds automatically to the stimulus energy. If chromatic adaptation
were entirely a sensory mechanism, it would be much easier to understand
and model. Unfortunately (at least from a modeling standpoint), chromatic
adaptation is a combination of sensory and cognitive mechanisms. A cogni-
tive mechanism responds to a stimulus based on an observer’s knowledge
of scene content.

Some cognitive mechanisms have been discussed in previous sections.
Examples include discounting the illuminant and color constancy. Another inter-
esting cognitive mechanism is memory color. Memory color is the phenome-
non that recognizable objects often have a “known” color associated with
them. Typical memory colors might be green grass, blue sky, skin tones, and
the red apple example given above. Figure 2.13 illustrates the idea of cog-
nitive mechanisms, and perhaps memory color, for a yellow banana. The
image on the left of Figure 2.13 has a green filter placed over the entire image,
while the image on the right has the filter only on the banana. The banana
retains its yellow color when the entire image is filtered, while the identically
colored banana looks greenish when it is the only object filtered.

When asked to produce memory colors in an experiment, using tech-
niques such as the method of adjustment, observers are generally able to
perform that task with relative ease. An interesting note is that memory
colors often are remembered differently with respect to the actual object. For
instance, when asked to produce a grass green, observers typically make a
green that is much more saturated than actual grass.?? Perhaps this is an
indication of observer preference blending into memory color. Cognitive
mechanisms of color appearance are discussed in much greater detail in
works by Evans,* Jameson and Hurvich,® Davidoff,* and Fairchild.!

Image With Green Filter Filter Only on Banana

Figure 2.13 (See color insert) An example of cognitive mechanisms of chromatic
adaptation. The image on the left is covered with a green filter. The image on the
right has the same green filter placed only on the banana. The color of the banana
is the same for both images, though it retains its yellow appearance in the left image
and looks green in the right.
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2.6.3 Chromatic adaptation models

Models of chromatic adaptation are the first step toward the creation of a color
appearance model. Chromatic adaptation models extend the function of basic
tristimulus colorimetry. Basic colorimetry was designed to predict appearance
matches between stimuli within a single, constant viewing condition. The
color appearance phenomena described in the sections above illustrated areas
where basic colorimetry fails. Chromatic adaptation enables visual matches
to persist through wide ranges of viewing conditions. Two stimuli that are
viewed in different conditions, yet appear to match, are called corresponding
colors. For example, one stimulus might be viewed under daylight simulators,
while another is viewed under a tungsten light bulb. The two stimuli might
have different XYZ tristimulus values but, because of chromatic adaptation
to the illuminating light sources, they might appear to match.

Basic colorimetry is not designed to predict matches across different
viewing conditions. To predict these matches, we need a model of chromatic
adaptation. The general form of a chromatic adaptation was first described
by von Kiries, as discussed above.?’ He described a simple hypothesis for a
model of chromatic adaptation based on cone photoreceptor normalization.
There are two general misconceptions regarding von Kries” ideas for chro-
matic adaptation. Although many chromatic adaptation models claim to
utilize a von Kries transformation, often called a von Kries coefficient or
proportionality law, the equations used in these types of models were never
actually proposed by von Kries. Rather, he simply proposed his idea for
independent cone adaptation. This idea was meant to serve as an interim
solution or a stepping stone for more advanced research. Little did he know
that, 100 years later, his simple hypothesis would still be in widespread use.

2.6.4 wvon Kries model

Although von Kries himself did not formulate equations for chromatic adap-
tation, his hypothesis has been used to create a simple chromatic adaptation
model. Many chromatic adaptation models are designed to work in conjunc-
tion with CIE colorimetry. The hypothesis laid out by von Kries suggested
that the cone photoreceptors adapted independently of one another. To
model this in a meaningful physiological manner, it is necessary to transform
from CIE XYZ tristimulus values into LMS cone responses (sometimes
referred to as RGB or pyp responses). The LMS cone responses can be calcu-
lated fairly accurately using a linear transform of CIE tristimulus values. An
example transformation, referred to as the Hunt-Pointer-Estevez transfor-
mation (normalized to illuminant D65), is described in Equation 2.7.4°

L 0.4002 0.7076 —0.0808| |X
M| = |-0.2263 1.1653 0.0457 | - | Y (2.7)
S 0.0 00 09182 |z
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These LMS cone responsivities are then used in a modern interpretation of
a chromatic adaptation model, known as a coefficient model. This interpre-
tation is shown in Equations 2.8 through 2.10.

Ludapted =4ag- L (28)
Madupted =daym- M (29)
Sudapted = ag- S (210)

In these equations, L, M, and S represent the initial cone responses to a given
stimulus, and LMS,,., are the post-adaptation cone signals. To obtain the
adapted cone signals, each LMS response is scaled using the independent
gain control coefficients: ¢, o, and o;. How these gain control coefficients
are calculated is the key aspect to most chromatic adaptation models. For
the typical von Kries model, those coefficients are described to be the inverse
of the maximum LMS response in the scene. The maximum LMS response
is typically the scene white, so a von Kries adaptation is often referred to as
a white-point normalization. Equations 2.11 through 2.13 illustrate the idea of
a white-point adaptation.

ap = 1 /Lmux or ap = 1 /Lwhite (211)
apy = 1 /Mmax or dy = 1 /Mwhite (212)
as = 1/Smux or dag = 1 /Swhite (213)

Often, it is convenient to express the chromatic adaptation model as a linear
matrix transform. This is especially useful for concatenating transforms as
well as when programming models. The above interpretation of the von
Kries type of chromatic adaptation model is shown in Equation 2.14.

Lﬂdupted 1/Lwhite 0.0 0.0 L
Magaprea] = | 00 1/Mypye 00 |* M (2.14)
Sadapted 0.0 0.0  1/Supiee] LS

By expressing the chromatic adaptation transform as a matrix transforma-
tion, we can generate adapted CIE XYZ tristimulus values with a single
3 x 3 transformation. This is shown in Equation 2.15.

Xadapted 1/Lwhitg 0.0 0.0 X

-1
Yoapedl =M | 00  1/My 00 |-M-ly (2.15)
Zgapted 0.0 0.0  1/Suuire Z
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M and M represent the Hunt-Pointer-Estevez transformation and
inverse transformation, respectively, as illustrated in Equation 2.7. While it
is useful to obtain the adapted CIE XYZ tristimulus values for a given
stimulus, it is often more useful to obtain corresponding colors data. Recall
that corresponding colors are two stimuli that appear to match when viewed
under disparate conditions. A model that can calculate the tristimulus values
necessary to obtain this perceptual match across different viewing conditions
is known as a chromatic adaptation transform, or CAT.

2.6.5 won Kries tmnsform

Once a chromatic adaptation model is available, it is very easy to extend it
with the ability to “transform” CIE XYZ tristimulus values from one viewing
condition to another. The general form of this transformation is shown in
Equations 2.16 through 2.18.

Lz = ZLl/LwhiteZ (2'16)
Mz = (Ml /Mwhite) : Mwhitez (2'17)
Sz = (Sl/swhite) ) Swhitez (2-18)

L,, M,, and S, are the predicted cone responses of the perceptual match for
the original LMS responses, though under the second viewing conditions.
Lpiter Mipirer and S, are the cone responses of the white point in the original
viewing condition, while L0, Myt and S, are cone responses of the
white point in the new viewing conditions. These equations are essentially
calculating the post-adaptation signals from the first viewing condition,
designated LMS, and setting those signals equal to the post-adaptation signal
from the second viewing condition. The chromatic adaptation model is then
inverted to calculate the pre-adaptation response necessary to elicit that
equal signal. The corresponding CIE XYZ tristimulus values can be found
by concatenating Equation 2.15 with Equations 2.16 through 2.18. This is
illustrated in Equation 2.19.

XZ Lwhitez 1/Lwhite 0.0 0.0 X
Yo =M Mt |00 1/Myu 00 |-M-|y| (219)
ZZ SwhiteZ 0.0 0.0 1/Swhite Z

2.6.6 Nayatani’s model

The von Kries model of chromatic adaptation is a relatively straightforward
linear scaling of fundamental cone responsivities. This model was enhanced
by Nayatani et al. to include a nonlinear term in addition to the linear gain
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control.#47 The nonlinear model was extended from a nonlinear model first
proposed by MacAdam.*® The Nayatani model is essentially a von Kries type
of gain adjustment, followed by a power function that has a variable exponent.
The exponent of the power function is determined by the overall luminance
of the adapting field. In addition to the power function, the Nayatani model
adds a noise term and a coefficient for forcing complete color constancy of
nonselective (gray) samples of the same luminance as the adapting field. The
power function enables the Nayatani model of chromatic adaptation to predict
luminance appearance phenomena, such as the Hunt and Stevens effect. The
noise term aids in the prediction of threshold data. Equations 2.20 through
2.22 show the generalized expressions of this nonlinear model.

L+L, \

Lodoptea = ar- (ﬁ) (2.20)
white n
M+ M, \Pm

Muames = o (57577 22D

white n
S+S, \Ps

Sadapted = ds - (Sh—+5) (2.22)
white n

where Ligoptatr Magaptedr Sadapred = @dapted cone response signals
L, M, S =input cone response signals
Lopiter Mupiter Swnire = cone responses of the adapting condition
L, M,, S, = additive noise terms
B., Ba Bs = exponent terms for the power function and
are based on the adapting luminance level

n’/

In addition to these terms, g4;, a,, and ag are coefficients determined to
produce color constancy for medium gray stimuli.

The Nayatani model illustrates that a simple extension of a von Kries
type of chromatic adaptation model was capable of predicting many com-
plicated color appearance phenomena. This model has served as the basis
for many of the other chromatic adaptation and color appearance models
that were to follow. More information on this chromatic adaptation model
and several of its enhancements can be found in publications by Nayatani
et al.¥ and Fairchild.!

2.6.7 Fairchild model

The original nonlinear Nayatani model suffered slightly from overpredicting
the degree of adaptation. That is to say, it predicted more complete adapta-
tion than was witnessed experimentally. Despite many claims that the
human visual system is “color constant,” often there are situations where
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chromatic adaptation is less than 100% complete.®® This prompted a series
of experiments attempting to measure the degree of adaptation for many
different forms of adapting stimuli, including both hard and soft copy.*!
These experiments helped derive a linear chromatic adaptation model that
accounted for luminance effects, discounting the illuminant, and incomplete
adaptation.®>

This model, like the von Kries and Nayatani models before it, is based
on a relatively simple extension of basic CIE colorimetry. The general form
of this model is similar to the von Kries model, as shown in Equation 2.23.

Lﬂdapted ar, 0.0 0.0 L
Mgdaptgd = 00 IZM 00 : M (223)
Sudapted 0.0 0.0 as| |S

where a,, a,,, a5 are adapting gain control coefficients.

These gain control coefficients are calculated in a slightly more complex
manner than the typical von Kries method. Equations 2.24 through 2.26
illustrate the calculations for the L cone coefficients. The M and S cone
coefficients are calculated in a similar form.

a, = ILiL (2.24)
1+Y,)° +1
p= AN +lo) (2.25)
1+Y,"+1/1p)

e = L,/Li+M,/S,/S;

While daunting at first, these equations really are essentially a modified von
Kries transformation. The Y, term refers to the adapting luminance in cd/m?.
Any term with an n subscript refers to the adapting stimulus, while terms
with an E subscript refer to the equal-energy illuminant. Equation 2.24 sim-
plifies to a complete von Kries adaptation term as p approaches 1. On the
other hand, Equation 2.24 can also simplify to zero adaptation as p
approaches the adapting cone response value. Any value in between repre-
sents a degree of incomplete adaptation. The amount of adaptation is a
function of both overall luminance level as well as deviation from the equal-
energy illuminant. Essentially, as the luminance level increases, so too does
the degree of adaptation, and the farther the adapting illuminant is from the
equal-energy illuminant, the less adaptation.
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The original Fairchild model also included a luminance-dependent inter-
action among the three cone types. This was subsequently removed, when
it was determined to produce an overall increase in lightness predictions.>
Corresponding color data can be calculated using this model by cascading
Equation 2.23 with the Hunt-Pointer-Estevez primaries. The cascaded equa-
tion reduces to a simple 3 x 3 matrix multiplication, allowing for quick
calculations for large datasets. For this reason, the Fairchild chromatic adap-
tation transform, and the color appearance model that was based on it, are
useful for processing image data.

2.6.8 Spectrally sharpened chromatic adaptation models

Much chromatic adaptation research focus of late has been on the topic of
“spectrally sharpened” cone fundamentals.’>-%8 The research has been a con-
vergence of two rather distinct fields: color science and computational color
constancy. The first chromatic adaptation transform to use spectral sharp-
ened cone fundamentals was the Bradford transform.® The Bradford trans-
form is also a modified von Kries gain control model, with a nonlinear term
similar to Nayatani’s model on the short wavelength cone signal. The cal-
culations in this model begin with a transform from CIE XYZ tristimulus
values into normalized cone responses. These calculations are shown in
Equations 2.27 and 2.28.

R X/Y
G| =M-|ysy (2.27)
B Z/Y

0.8951 0.2664 —0.16614
~0.7502 1.7135 0.0367 (2.28)
0.0389 —-0.0685 1.0296

<
I

There are several interesting features of this transform. The XYZ tristimulus
values are all normalized by dividing by the Y. This is in effect luminance
normalization, as all stimuli with identical chromaticity coordinates will
have identical “cone” responses. The cone responses, RGB, do not represent
physiologically plausible cone responses. Instead, they represent spectrally
sharpened cone responses. What that means is that “cones” themselves have
narrower support as well as negative responsivity at some wavelengths.
Figure 2.14 illustrates the principle of sharpened sensors. The sharpened
responsivities tend to preserve saturation as well as color constancy. The
Bradford responsivities are not the only spectrally sharpened cones that can
be used in a chromatic adaptation transform. More details can be found in
publications by Finlayson® and Calabria.?®
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Figure 2.14 A comparison of spectrally sharpened cone responses (solid lines) and
physiological cone responses (dashed lines).

The remainder of the Bradford transform is relatively straightforward.
With the addition of terms for incomplete adaptation, this is the chromatic
adaptation model used in the CIECAM97s color appearance model, so fur-
ther details are given below.

2.7 Color appearance models

CIE tristimulus colorimetry was designed with a single purpose, for which
it has enjoyed good success. This purpose is to predict when two simple
stimuli will match, for the average observer, under a single viewing condi-
tion. We have already seen the limitations of basic colorimetry with some of
the color appearance phenomena described above. Chromatic adaptation
transforms, as described in the previous section, extend basic colorimetry so
that it is possible to predict matches across disparate viewing conditions.
Chromatic adaptation transforms are still limited, in that they do not help
describe the actual color appearance of a stimulus.

To accurately describe the color appearance of a stimulus, we must use
the color terminology described in an earlier section. These terms include
the relative terms of lightness, hue, saturation, and chroma as well as the
absolute terms of brightness, colorfulness, and hue (again). Even with a
chromatic adaptation transform, CIE tristimulus colorimetry is not able to
describe any of these appearance terms. To do that, it is necessary to use a
color appearance model.

So what is a color appearance model, exactly? The CIE Technical Com-
mittee TC1-34, Testing Colour Appearance Models, came up with a definition
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of what constitutes a color appearance model.”® The definition agreed upon
is as follows: “A color appearance model is any model that includes predic-
tors of at least the relative color-appearance attributes of lightness, chroma,
and hue.” This is a relatively lenient definition of what constitutes a color
appearance model, though it does require some form of a chromatic adap-
tation transform at the very least. More complicated models are capable of
predicting absolute attributes, such as brightness and colorfulness, as well
as luminance-dependent effects, such as the Hunt and Stevens effects. Spa-
tially structured phenomena, such as crispening and simultaneous contrast,
require both models of spatial vision as well as color appearance.

Many color appearance models are available, each designed with specific
goals in mind. Among those models are CIELAB, Hunt, Nayatani, ATD,
RLAB, LLAB, ZLAB, and CIECAM97s. This section will describe CIELAB
as a rudimentary color appearance model, as well as CIECAM97s, which is
the CIE recommended model. Fairchild! has presented a very thorough
review of all of these models.

2.7.1 CIELAB as a color appearance model

Although designed as a uniform color space for expressing color differences,
rather than a color appearance model, CIELAB does have predictors of
lightness, chroma, and hue. These predictors allow CIELAB to be labeled as
a color appearance model. We will use it here as a simple model to illustrate
the design of more complicated color appearance models.

CIELAB calculations require a pair of CIE XYZ tristimulus values, those
of the stimulus itself, as well as those of the reference white point. The
reference white point values are used in a von Kries type of chromatic
adaptation transform. The adaptation transform is followed by a compres-
sive cube-root nonlinearity and an opponent-color transformation. The exact
calculations are shown in Equations 2.29 through 2.32.

L* = 116f(Y/Y,) 16 (2.29)
a* = 5000 F(X/X,)~ F(Y/Y,)] (2.30)
b* = 2000f(Y/Y,)~ f(Z/Z,)] (2.31)
1/3 .
) = { (x) if > 0.008856 } 2.32)
7.787(x) + 16/116 if <0.008856

X, Y, and Z are the tristimulus values of the stimulus, while X,, Y,, and
Z, are the tristimulus values of the adapting white. Several points need
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to be emphasized. The white-point normalization, or chromatic adapta-
tion, is not performed in a physiological cone space. Rather, it is performed
in XYZ tristimulus space. This transform is sometimes referred to as a
“wrong von Kries” chromatic adaptation transform.®® The effects of per-
forming the chromatic adaptation in XYZ tristimulus space, rather than
cone space, are most noticeable in the hue predictions, often causing
inaccurate hue shifts.

The cube root power functions attempt to model the compressive rela-
tionship between physical measurements and psychological perceptions.
These compressive results were first discussed above in regard to Fechner’s
and Stevens’ laws. The cube root function is replaced by a linear function
for very dark stimuli as shown in Equation 2.32.

The CIELAB L* coordinate, as expressed in Equation 2.29, is a correlate
to perceived lightness. It can range between 0.0, for absolute black stimuli,
and 100.0, for diffuse white stimuli. The a* and b* coordinates approximate,
respectively, the red—green and yellow—blue of an opponent color space. A
positive a* value approximates red, while a negative value approximates
green. Similarly, a positive b* correlates to yellow, while negative values
correlate to blue. Achromatic stimuli, such as whites, grays, and blacks, have
values of 0.0 for both a* and b*.

The definition of a color appearance model requires a minimum of
predictions for lightness, chroma, and hue. CIELAB L* provides a lightness
prediction, but a* and b* do not fully predict correlates of chroma and hue.
These correlates can be calculated by transforming the Cartesian coordinates
of a* and b* into cylindrical coordinates of C%, and h,, where C%, represents
chroma, and h,, represents hue angle. Equations 2.33 and 2.34 illustrate those
transformations.

Cop = (@7 +b7) (2.33)
h,, = tan (b /a) (2.34)

With the cylindrical coordinates of chroma and hue angle, we now have
enough information to predict the color appearance of a stimulus, with
several caveats, however. The wrong von Kries transform is clearly a source
of color appearance errors. CIELAB is also incapable of predicting many of
the color appearance phenomena described above. These include all lumi-
nance, surround, background, and discounting-the-illuminant effects.
CIELAB also assumes 100% adaptation to the white point. Since CIELAB
was designed to predict only small color differences between similar objects
under a single viewing condition, it is impressive that it can be used as a
color appearance model at all. The CIELAB space is also known to have
hue nonuniformities, especially in the blue region.®*-% This becomes impor-
tant in certain image processing techniques, such as gamut mapping, where

© 2003 by CRC Press LLC



it is desirable to follow lines of constant perceptual hue. Clearly, it is impor-
tant to have a color appearance model that was designed specifically for
the use.

2.7.2  The genesis of color appearance models

Color appearance research over the course of many years has resulted in
the formulation of many different color appearance models, each with
different goals and methods. Until recently, it was often difficult to decide
which model to use for any given task. This changed in 1997, with formu-
lation of the CIE-recommended CIECAMO97s color appearance model.” The
CIECAMY97s model was designed to work as least as well as, if not better
than, all of the previous models for the color appearance phenomena it
predicts. Thus, it is essentially a hybrid of the best parts of many different
models. It is important to understand the pedigree of CIECAM97s so as to
understand why it takes the form it does. This pedigree stems from the
Hunt, Nayatani, RLAB, and LLAB models.” The interested reader is encour-
aged to delve into this rich history of color appearance research. The texts
by Hunt* and Fairchild! provide many references to the development of
these models.

The Hunt model is very sophisticated and designed to predict many
color appearance phenomena. It has undergone relentless development
over the course of more than two decades.® The high degree of sophistica-
tion in the model comes at the price of a high degree of complexity. Perhaps
the model is better described as a model of the human visual system
response. This model was designed to predict a wide range of appearance
phenomena, including changes in background, surround, luminance level,
and viewing modes. Many of the features, including the underlying color
space, found in CIECAMY97s are direct descendents of the Hunt model of
color appearance.

The Nayatani model of color appearance is another model capable of
predicting a wide range of appearance phenomena. The Nayatani model
evolved directly from the nonlinear chromatic adaptation transform dis-
cussed in the previous section. This model has also undergone many revi-
sions over the years. The most recent revisions, as well as a thorough sum-
mary, were described by Nayatani et al. in 1995.% This model was originally
designed as a model for predicting the appearance of objects under various
illuminants from an illumination engineering perspective. The ultimate goal
of predicting the color rendering properties of light sources is quite different
from some of the other color appearance models; therefore, the Nayatani
model predicts some phenomena differently than other models, such as those
designed with a goal of accurate color image reproduction.

One model designed with color image reproduction in mind is the RLAB
color appearance model.®® The RLAB model was developed as a simple color
appearance model designed for practical applications. It is based on the
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Fairchild incomplete chromatic adaptation transform and is thus capable of
predicting many significant color appearance phenomena. The RLAB model
was specifically targeted at cross-media image reproduction, such as a CRT
to print system, and was built to extend upon CIE colorimetry. Because of
its simplicity in design, it is incapable of predicting certain appearance
correlates such as brightness and lightness. It is also not designed for use
across wide luminance levels and does not predict luminance effects such
as the Hunt and Stevens effects.

Another similarly designed model is the LLAB color appearance model.®
This model was designed as a model of color appearance specification, color
difference calculation, and color match prediction. Like RLAB, it is designed
to extend CIE colorimetry and CIELAB. Built on the Bradford chromatic
adaptation, the LLAB model calculates predictions of lightness, chroma,
colorfulness, saturation, and hue. It is capable of predicting many appear-
ance phenomena, such as surround and background changes, discounting
the illuminant, and the Hunt effect. This model also has a specified color
difference equation. It is incapable of predicting the Stevens effect or incom-
plete chromatic adaptation. The LLAB model is relatively simple, lying
between RLAB and the Hunt model in complexity.

2.7.3 CIECAMY7s

The existence of many different color appearance models, each derived with
different goals and techniques, has led to confusion in both industry and
research. Traditionally, it has been difficult to choose which model to use for
any given situation, and thus industry acceptance of color appearance mod-
els was tenuous at best. The CIE recognized this problem and created TC1-
34 with the task of creating a single color appearance model. The goal was
to create uniformity of practice with compatibility with modern color imag-
ing systems in mind.” TC1-34 was successful in their task with the formu-
lation of the CIE 1997 Interim Color Appearance Model (simple version),
CIECAMY97s. CIECAMY97s is the amalgamation of the research efforts of
many people over many years.>

The CIECAM97s model requires certain input data. These data include
the luminance of the adapting field, expressed in cd/m?. This is normally
taken to be 20% of the luminance of white in the adapting filed and is
designated L, The CIE tristimulus values of the stimulus in the source
conditions, designated X, Y, and Z, as well as the source itself, X, Y,,, and
Z,,, are also necessary. Additional inputs include the relative luminance of
the source background, designated, Y, also in the source conditions.

In addition to the above model inputs, several constants need to be
selected. These constants include the impact of surround, ¢; a chromatic
induction factor, N,; a lightness contrast factor, F;;; and a factor determining
the degree of chromatic adaptation, F. These constants can be selected using
the following chart:
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Viewing Condition c N. F, F

Average surround, samples subtending > 4°  0.69 1.0 00 1.0

Average surround 0.69 1.0 10 1.0
Dim surround 0.59 1.1 1.0 09
Dark surround 0525 08 10 09

Cut-sheet transparencies (on a viewing box) 041 08 1.0 09

2.7.3.1 Chromatic adaptation

The first step is to transform the stimulus from the source viewing conditions
into the conditions of the equal-energy illuminant. This chromatic adaptation
transform uses the spectrally sharpened cone responses, RGB, of the Brad-
ford transform given above. Equations 2.35 and 2.36 illustrate the transfor-
mation into the cone primaries as well as the inverse transform.

R X/Y
G|l =M-|y/y (2.35)
B Z/Y
0.8951 0.2664 —0.1614 0.9870 —0.1471 0.1600
M; = |_0.7502 1.7135 0.0367 | M5 = | 04323 05184 0.0493
0.0389 —-0.0685 1.0296 —0.0085 0.0400 0.9685

(2.36)

The chromatic adaptation transform itself is a modified von Kries type of
transformation, with a nonlinear power function on the short wavelength.
The degree of adaptation is determined using the variable D. The degree of
adaptation is set to 1.0 for complete adaptation or complete discounting the
illuminant, as is generally the case for reflecting materials. D is set to 0.0 for
no adaptation and can take on intermediate values for various other degrees
of adaptation. These values can be manually determined against existing
data or can be calculated using Equation 2.41. This calculation is based on
luminance levels as well as surround equations.

R, = [D)1.0/R,+1-DIR (2.37)
G. = [D(1.0/G,)+1-DIG (2.38)
B. = [D(1.0/B") +1-D]|B" (2:39)
p = (B,/1.0)""™ (2.40)
D = F—F/[1+2(LY* +(L%)/300] (2.41)
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If B happens to be negative, then B, also must be set to be negative. The
above calculations must also be performed for the source white, as they are
required in later calculations. Before further calculations can be performed,
various other factors must be determined. These factors include the back-
ground induction factor, 1, the brightness and chromatic induction factors,
Ny, and N, and the base exponential linearity, z. These factors are calculated
using Equations 2.42 through 2.46.

k=1/(5Ly+1) (2.42)
F, = 02k*5L,) +0.1(1 - k") (5L,)"" (2.43)
n=Y,/Y, (2.44)
N,, = N,, = 0.725(1/n)" (2.45)

2

z=1+F,n" (2.46)

The post-adapted signals for both the sample and the source white point must
then be transformed back from the sharpened cone responses into physiolog-
ical cone responses. This is accomplished using the inverse of the Bradford
transform, Mj , given in Equation 2.36, and the Hunt-Pointer—Estevez trans-
formation. The complete transformation is given in Equations 2.47 and 2.48.

R R.Y
G| = MyM;' |Gy (2.47)
B B.Y
0.38971 0.68898 —0.07868 1.9102 ~1.1121 0.2019
My = |-0.22981 1.18340 0.04641 | M = [0.3710 0.6291 0.00
0.00 000  1.00 0.00 000 1.00

(2.48)

The signals are then processed through a nonlinear response compression
to get post-adaptation cone responses. This is done for both the stimulus
and the adapting white. Equations 2.49 through 2.51 illustrate this calcula-
tion.

R - 40(F,R'/100)"”
" (F,R/100)*” +2]

(2.49)
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, 0.73
G = 40(F,G'/ 1(3(7)3) +1 (2.50)
[(F.G'/100)" + 2]

, 0.73
B, - 40(F,B'/ 1(3(7)3) +1 (2.51)
[(F.B'/100)™" + 2]

2.7.3.2 Appearance correlates
The adapted cone responses are then used to determine correlates of appear-
ance. The first step is to calculate preliminary red—green and yellow-blue
opponent dimensions. This is accomplished using Equations 2.52 and 2.53.

AN
I

R,-12G,/11+B',/11 (2.52)

<
Il

(1/9)(R,+G',~2B',) (2.53)

The hue angle, £, is calculated in a similar manner as the CIELAB hue angle.
This calculation is done using Equation 2.54.

h = tan '(b/a) (2.54)

Often, it is desirable to have the hue correlates for the four unique hues (red,
green, yellow, and blue) lie opposite each other in a color space. This is
known as the hue quadrature. Each of the unique hues has different weights
in regard to the perceptual colorization of neutral colors, and this is known
as the hue’s eccentricity factor. Hue quadrature, H, and eccentricity factors, e,
are calculated from the following unique hue data via linear interpolation
between the following values for the unique hues:

Red h=20.14 e=0.8 H =0 or400
Yellow h =90.00 e=07 H =100
Green h =164.25 e=1.0 H =200
Blue h =237.53 e=12 H =300

An example of the linear interpolation used to calculate hue quadrature and
eccentricity values for any given hue angle is shown using Equations 2.55
and 2.56.

= e +(ey—e))(h—hy)/(h,—hy) (2.55)

oY
|

oo g 100Ci=hy)/e,

Y (h=hy) /e + (hy—h)/e, (2.56)
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The achromatic response is then calculated using Equation 2.57. This
response is used to calculate brightness and lightness, so the calculations
must be performed for both the stimulus and the adapting white.

A = [2R, +G',+(1/20)(B, - 2.05)IN,, (2.57)

Lightness, ], is then calculated from the achromatic response to both the
stimulus and the adapting white. This is shown in Equation 2.58.

J = 100(A/A,)" (2.58)

Brightness is calculated using the lightness value and the achromatic
response for the adapting white. Brightness is designated Q and is calculated
using Equation 2.59.

Q = (1.24/¢)(J/100)* (A, + 3)” (2.59)

Thus, we now have correlates of hue, brightness, and lightness. From these
values, we can calculate correlates of saturation, chroma, and colorfulness,
designated s, C, and M, respectively. Equations 2.60 through 2.62 illustrate
these calculations.

2,172

2
5 = 90 +'b) '1006(10/13)'N6Nd, (2.60)
R,+G, +(21/20)B,
C = 2.445*%(J/100)*°"(1.64 — 0.29™) (2.61)
M = CE™® (2.62)

2.7.3.3 Using the model

As can be seen, the CIECAM97s model is rather complicated. In addition to
the complexity of the equations themselves, several constants need to be
determined prior to utilizing this model. All these choices can be quite
daunting to the casual user. To help alleviate these situations, Moroney has
provided usage guideline for CIECAM97s.5”

Often, it is necessary to invert a color appearance model to predict how
a stimulus in one viewing condition might appear when viewed in a different
situation. To calculate these colors, it is necessary to invert the model. The
nonlinearities in the chromatic adaptation transform mean that CIECAM97s
can only be inverted using analytical models. Details on this inversion pro-
cess can be found in the CIE publication® or in the text by Fairchild.!
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2.7.4 Future directions

The CIE-designated name for CIECAM97s has great significance, as it is
called the Interim color appearance model. While it is considered the best of
what was available at the time of formulation, this does not mean that further
development has ceased altogether. Already, the CIE has formulated another
technical committee, TC8-01, that is charged with considering potential revi-
sions to CIECAMY7s. Fairchild has published a list of proposed changes as
well as their implementation details.’®® These changes are designed to sim-
plify the model, fix errors, and add accuracy. Among the proposed changes
are:

Linearize the chromatic adaptation transform, to facilitate inversion.
Fix surround compensation errors.

Fix lightness of perfect black.

Fix chroma scale expansion for low chroma colors.

Add continuously variable surround compensation.

SN

It is expected that a new color appearance model incorporating these and
other changes will be approved for testing by the CIE in 2002.

Research on color appearance models will not end with the work of TC8-
01, either. Already, research is being conducted on the next generation of
color appearance models. Models of spatial and color vision are already
appearing, such as the spatial extensions of CIELAB proposed by Zhang and
Wandell® as well as Johnson and Fairchild.”? Spatial models of vision and
color appearance, such as the multiscale model proposed by Pattanaik et
al.” will allow for the prediction of the spatially structured appearance
phenomena described above. Spatial information is thought to be crucial
when dealing with the appearance of digital color images. The future is
indeed bright for color appearance research.
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3.1 Introduction

Numerous physical phenomena influence color: the light source, surface
reflection, light absorption, light scattering, reflection on the substrate, mul-
tiple-internal reflections at the ink-air interface, and the combination of
several light-absorbing and light-scattering substances. In the particular case
of halftone prints, additional effects, such as the optical dot gain (also called
Yule—Nielsen effect), must also be taken into account. This makes accurate
color prediction very difficult. Until recently, the physical phenomena
involved were described separately by several classical models: Lambert’s
law for diffuse light sources, the Fresnel reflection law, Beer’s absorption
law, the Saunderson correction for multiple internal reflections, and the
Kubelka-Munk model for absorbing and scattering media. The colors of
halftone prints were predicted using other theories: the Murray-Davis
model, the Neugebauer model, the Yule-Nielsen model, and the Clap-
per—Yule model for optical dot gain.

This chapter is based, however, on a new global approach that incorpo-
rates all the physical contributing phenomena listed above into a single model
using a mathematical framework based on matrices. Classical results (for
example, the Murray-Davis equation, the Clapper-Yule relation, or the
Kubelka-Munk model) correspond to particular cases of this model. Further-
more, the model we present here predicts accurately the spectra of printed
color samples (uniform or halftoned), and it can be used for any inks or
colorants, including the standard Cyan, Magenta, Yellow, and Black (CMYK)
that are usually used in printing devices or any other nonstandard inks.

Throughout this chapter we will consider the entities T(A), R(A),
D(\), ... as spectra (transmission spectrum, reflection spectrum, density
spectrum, etc.). But, when the wavelength notation (A) is omitted, we will
consider them as coefficients (transmission coefficient, reflection coefficient,
density, etc.). We will consider these terms interchangeably as synonyms
according to our best convenience.

We start our presentation with a few useful definitions from radiometry
given in Section 3.2. Sections 3.3, 3.4, and 3.5 introduce the basic physical
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laws of light reflection, light absorption, and light scattering, respectively.
The complex interaction between light and matter forces us to use phenom-
enological models, which are presented in Section 3.6. The particular case
of fluorescent media is discussed in Section 3.7. Traditional models used to
predict the color of halftone prints are presented in Section 3.8. Finally, we
explain in Section 3.9 how all these models can be incorporated into a single
model for the prediction of halftones.

3.2 A few results from radiometry

Let us start with the definition of a few radiometric quantities and terms.!

A surface element of area da receiving a light flux d¢, is said to be
under an irradiance E (unit W - m? )-

E = 9% (3.1)

A surface element of area da emitting a light flux d¢, has an exitance
M (unit W-m™2).

_ 4o,
M= = (3.2)

A surface element of area da is said to be of radiance L (unit
W.sr. m’z) if it emits a flux dzq)g in a solid angle dw making an
angle 6 with the normal to the surface.

49,
~ cosOdwda 53
The intensity I (unit W -sr™") of a light flux d¢ in a solid angle do
is defined by

1= 4 (3.4)

A light source whose radiance L is constant in all space directions
is said to be Lambertian. The exitance M of such a source is M = nL
(see Reference 2).

A diffuse reflector of constant radiance L is said to be a Lambert
surface® or a Lambertian reflector. The exitance M of such a surface
equals its irradiance E, so L = E/n and we have

4’0, E

cosbdoda = (3:5)
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This formula is called Lambert’s cosine law. Note that, in the literature,* Lam-
bert’s cosine law is often presented in terms of intensity,

o, E

1(0) = To - EACOSG = I,cosO (3.6)

where A is the area of the surface.

Equation 3.6 implies that the radiation pattern of such a surface (i.e., the
locus of the extremities of the intensity vectors, also called indicatrix) is a
circle (see Figure 3.1). Another useful result is Lambert’s cosine law for a
conical light beam. The flux emitted in the direction given by the angle 6
can be computed by considering the solid angle dw = 2rnsin0d6 (see
Figure 3.2). By replacing do in Equation 3.6, we deduce that a surface A
that receives from the upper hemisphere a total flux ¢, = _[s Eds emits a
diffuse flux ¢, whose angular distribution is given by’

1 99, . .
596 - 2sinBcosH = sin20 (3.7)

Natural light has a rather diffuse behavior in which rays do not have a
privileged orientation. Therefore, it is useful to define the term diffuse irra-
diation.

* Let A be an opening in an opaque plane (see Figure 3.3). The opening

is said to be under a diffuse irradiation from the upper hemisphere if
A is a Lambertian source in the lower hemisphere. From the point

do, E
1(0) = o - EAcose

A

Figure 3.1 According to Lambert’s cosine law, the intensity I of the light emitted by
a diffuse reflector of area A depends only on the cosine of the angle 6 of observation
(note that the radiation pattern of such a reflector is a circle).
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do = 27tsin0d6

da

Figure 3.2 Solid angle that must be used when considering a conical light beam
emitted by a Lambertian source or reflector.

Ny

di
‘ 1(9) = i)e = EACOSQ
dw b

Figure 3.3 Surface element A under diffuse illumination. If A is an opening in an
opaque plane that separates the upper and the lower hemispheres, the surface ele-
ment A is a Lambertian source in the lower hemisphere.

of view of the upper hemisphere, the surface A is said to be a
Lambertian receiver; its reception pattern or indicatrix is a circle.

Finally, light sources are classified by the way they produce light. Incan-
descent sources produce light by thermal blackbody or near-blackbody radi-
ation. All nonthermal light production is called luminescence. Hence, a lumi-
nescent medium is a medium that produces light by any means except thermal
excitation. A common kind of luminescence is photoluminescence, which
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includes fluorescence and phosphorescence. A photoluminescent medium
produces light when excited with photons. An extended list of forms of
luminescence is given in Reference 6.

3.3 Reflection and refraction

The term reflection refers to all interaction processes of light with matter in
which the photons are sent back into the hemisphere of the incident light.
We distinguish between two types of reflection: specular reflection, which
occurs on smooth surfaces (where the irregularities are small compared to
the wavelength of the incident light), and diffuse reflection, which occurs on
rough surfaces. A beam of light incident on a smooth surface is re-emitted
as a well-defined beam, whereas, on a rough surface, it is re-emitted as a
multitude of rays emerging in different directions. We define the reflectance
spectrum (or reflection coefficient) R(\) as the ratio of the reflected light flux
to the incident light flux for a given wavelength A .

The term refraction refers to the change of direction of a light beam when
entering a medium in which the speed of light is different. Therefore, we
define the refractive index n of a given medium as the ratio of the speed of
light in empty space to the speed of light in the medium. For example, the
refractive index is n = 1.33 for water, n = 1.52 for crown glass, and
n = 2.907 for rutile (TiO, ).” A medium that also attenuates electromagnetic
waves has a complex refractive index 71 = n(1 +ix), where x is the attenu-
ation index. For example, the complex refractive index is 71 = 1.44 +i5.23 for
aluminium, # = 1.51+i1.63 for iron, and # = 2.63 +i3.54 for platinum.®
Note that, in a metal, light is so intensely attenuated that it can penetrate to
a depth of only a few hundred atoms.

3.3.1 Basic laws

Let us recall the basic laws of light refraction and light reflection. A light
beam that, with an incidence angle 6, , hits a refractive surface that separates
two media of refractive indices n; and n, is partially reflected into the first
medium and partially refracted into the second medium (see Figure 3.4).
The incident beam, the reflected beam, and the refracted beam lie in the
same plane, called the plane of incidence. The reflected beam makes with the
normal to the surface the same angle 0, as the incident beam, whereas the

0

Figure 3.4 Reflection and refraction of a light beam at a refractive surface.
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refracted beam makes with the normal an angle 6,, which is related to 6,
by Snell’s law.

n,sin(0;) = n,sin(0,) (3.8)

Note that, for n, >n,, there is a critical angle 6,,,, = asin(n,/n;) above
which the incident beam is totally reflected.

The intensity of the reflected beam is calculated by considering two
polarized electromagnetic waves. One is polarized in parallel to the plane
of incidence, and the other is polarized perpendicularly. It can be shown’
that the reflection coefficient r, for the parallel polarized wave and the
reflection coefficient r, for the perpendicularly polarized wave are given by

1,080, —11;c050,)? 1,080, —11,c050,)2
L = and 71, = (3.9)
n,co0s0; + n,cos0, n,co0s0; + n,cos0,
where 0; = angle of incidence
0,

angle of refraction according to Snell’s law (see Equation 3.8
and Figure 3.4)

In the literature, these relations are known as the Fresnel relations. We denote
by 7, .,(81) the reflection coefficient of a beam propagating in a medium of
refractive index n,, which has an incidence angle 6, with the refractive
surface delimiting a medium of index n,. Because natural light can be
considered as an equal mixture of both types of waves, its reflection coeffi-
cient is the mean value of r, and r,,

r,+71,

rnl, nz(el) = >

(3.10)

Note that Snell’s law is also valid for complex refractive indices 7, such
as the refractive indices of metals. In the particular case of a light beam
having normal incidence on a medium of complex refractive index 7, the
reflection coefficient is!?

n—1J?

r1,40) = = (3.11)

For non-normal incidence (0, #0), the angle 8, is complex, meaning
that a phase change occurs on reflection. For example, a linearly polarized
light is reflected as elliptically polarized light. The generalized Fresnel’s
formulas for complex refractive indices are beyond the scope of this book,
but a detailed presentation can be found in the literature.!®
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3.3.2 Interface reflection under diffuse light

Let us now compute an average reflection coefficient ;Tnz for diffuse light
arriving on a plane refractive surface. Such an average is calculated by
integrating, over all directions, the product of the angular distribution of
diffuse irradiation given by Equation 3.7 and the reflection coefficient of a
natural light beam given by Equation 3.10.

kg

Tuow, = f (7, 1 (6) - 5IN26)d6 (3.12)
0

This calculation was done by Judd" in 1942 for a large number of refractive
indices. A typical result is the particular case of the surface reflection r,
between air (whose refractive index is #n; = 1) and a medium of refractive
index n.

r, = Jj(rl,n(e) - 5in26)d0 (3.13)

In the particular case of a plastic medium, we have n = 1.5. The com-
putation of Equation 3.13 leads in this case to r, = 0.0918. This value
expresses the average reflection coefficient under a perfect diffuse illumina-
tion. When diffuse light crosses the refractive surface in the other direction,
from a medium of refractive index n to the air, the reflection occurs within
the material medium, and it is therefore called the internal reflection r;.

ro= j; (r,.1(0) - sin20)do (3.14)

The numerical result of the computation for n = 1.5 is, in this case,
r; = 0.5963 . The numerical results for other refractive indices are given in
Table 3.1.

Note that for diffuse light, internal reflection values are always much
higher than surface reflection values. When the first medium has a higher
refractive index than the second, there is a critical incidence angle, according
to Snell’s law, above which light is totally reflected. This total reflection is
responsible for the high values of r, , when n,>n,.

3.4 Light absorption

The term light absorption refers to all processes that reduce the intensity of a
light beam when interacting with matter. We must distinguish between true
absorption, where radiative energy is transformed into another kind of energy
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Table 3.1 Reflection Coefficient at Normal Incidence r;,(0), Surface Reflection
Coefficient r,, and Internal Reflection Coefficient r, for Various Refractive Indices n

n rl, n(O) T i n rl, n(O) T t;

1.0 0.0000 0 0 1.3 0.0170 0.0611 0.4445
1.01 0.0000 0.0031 0.0228 1.31 0.0180 0.0627 0.4538
1.02 0.0001 0.0061 0.0446 1.32 0.0190 0.0643 0.4630
1.03 0.0002 0.0088 0.0657 1.33 0.0201 0.0659 0.4719
1.04 0.0004 0.0114 0.0860 1.34 0.0211 0.0675 0.4807
1.05 0.0006 0.0139 0.1056 1.35 0.0222 0.0691 0.4892
1.06 0.0008 0.0163 0.1245 1.36 0.0233 0.0706 0.4975
1.07 0.0011 0.0186 0.1428 1.37 0.0244 0.0722 0.5057
1.08 0.0015 0.0208 0.1605 1.38 0.0255 0.0737 0.5136
1.09 0.0019 0.0230 0.1777 1.39 0.0266 0.0753 0.5214
1.1 0.0023 0.0252 0.1943 1.4 0.0278 0.0768 0.5290
1.11 0.0027 0.0272 0.2105 141 0.0289 0.0783 0.5364
1.12 0.0032 0.0293 0.2261 1.42 0.0301 0.0799 0.5437
1.13 0.0037 0.0313 0.2413 1.43 0.0313 0.0814 0.5508
1.14 0.0043 0.0332 0.2561 1.44 0.0325 0.0829 0.5577
1.15 0.0049 0.0351 0.2704 1.45 0.0337 0.0844 0.5645
1.16 0.0055 0.0370 0.2843 1.46 0.0350 0.0859 0.5711
1.17 0.0061 0.0389 0.2979 1.47 0.0362 0.0873 0.5777
1.18 0.0068 0.0407 0.3110 1.48 0.0375 0.0888 0.5840
1.19 0.0075 0.0425 0.3238 1.49 0.0387 0.0903 0.5902
1.2 0.0083 0.0443 0.3363 1.5 0.0400 0.0918 0.5963
1.21 0.0090 0.0460 0.3484 1.51 0.0413 0.0932 0.6023
1.22 0.0098 0.0478 0.3602 1.52 0.0426 0.0947 0.6082
1.23 0.0106 0.0495 0.3717 1.53 0.0439 0.0962 0.6139
1.24 0.0115 0.0512 0.3829 1.54 0.0452 0.0976 0.6195
1.25 0.0123 0.0529 0.3939 1.55 0.0465 0.0991 0.6250
1.26 0.0132 0.0546 0.4045 1.56 0.0479 0.1005 0.6304
1.27 0.0141 0.0562 0.4149 1.57 0.0492 0.1020 0.6357
1.28 0.0151 0.0579 0.4250 1.58 0.0505 0.1034 0.6408
1.29 0.0160 0.0595 0.4348 1.59 0.0519 0.1048 0.6459

(thermal agitation energy, ionization energy, etc.), and apparent absorption,
which is due to light scattering (see Section 3.5). To avoid confusion, we will
use the word extinction for all light intensity reducing processes and reserve
the word absorption for true absorption.

The absorption mechanisms are different in gases, liquids, and solids.
For gases and liquids, there are two main mechanisms. The first mechanism
is a quantified change of the energy state of the molecules or the atoms,
producing line spectra. The second mechanism is the dissociation of
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molecules or ionization of atoms, which produces continuous spectra with an
energy threshold. In solids, the behavior depends on the arrangement of the
atoms.!? The absorption of photons in isolators and ionic crystals induces
quantified changes of state that produce narrow band spectra. In semiconduc-
tors, the electrons require a small amount of energy to jump over the energy
gap between the valence and the conduction band. Therefore, photons are
absorbed only if their energy is higher than the band gap. Such materials
have a continuous absorption spectrum with a threshold. In metals, the
electrons belonging to the conduction band move almost freely in the whole
volume, acting as a free electron gas. The absorption of photons is so strong
over the whole spectrum that light is reflected. The reason is that incident
light is an electromagnetic wave that induces an alternating electrical current
in the conducting material. According to Maxwell’s theory, this current re-
emits light out of the metal. As far as alloys are concerned, there is no general
rule. Their behavior depends on their crystal structures.

The most widely known classical model for the absorption of light is the
Beer—Lambert—Bouguer law (which is also called, by abuse of language, Beer’s
law).® This model describes the intensity variation of a collimated light beam
crossing a medium that contains identical light-absorbing particles at a con-
centration c. Let us consider an infinitely thin slice of thickness dx of this
medium (see Figure 3.5). The model relies on the assumption that the absorb-
ing particles are independent. According to the Beer-Lambert-Bouguer law,
the intensity variation d¢ of the light flux that crosses this slice is propor-
tional to the concentration c, to the flux intensity ¢ of the light beam, and
to the thickness dx of the slice. Hence, the flux of a collimated light beam
that crosses the infinitely thin layer varies as follows:

dd = —e\)cdIn(10)dx (3.15)

where A =the light wavelength, and the proportionality coefficient
€(A) = the molar decadic absorption coefficient (or, in short, absorption
coefficient) of the absorbing particle (unit: m*- mol ™)

¢ ° o +do

Figure 3.5 Absorption of light by an infinitely thin layer containing light-absorbing
particles at a concentration c.
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The absorption coefficient €(A) can be interpreted as the absorption cross-
section area of a mole of particles. For particles of radius 7, we have

80\4) = g r Xabso\') (316)

ln(lO)

where N, = 6.022-10” = the Avogadro number
Xavs(A) = the absorption efficiency factor of the particle

Relation 3.15 is a linear differential equation of the first order whose
solution is given by an exponential function. This kind of function will play
a central role in our discussion. The integration of Equation 3.15 through a
layer of thickness X leads to

0(X) = exp[-Xce(W)In10]- 6(0) = 1075V ¢(0) (3.17)

The transmittance spectrum (or in short transmittance) T(A) is then defined as
the ratio between the outcoming flux ¢(X) and the incoming flux ¢(0).

TOY = "q’)%)) = exp[-XceW)In10] = 107! (3.18)

The value T(A) = 1 corresponds to a transparent medium, whereas the value
T(A) = 0 means that no light is transmitted, in which case the medium is
said to be opaque. Beer’s law is often expressed in a logarithmic form,

D) = -log,T(A) = X -c-e(A) (3.19)

where D()A) is the (optical) density spectrum (or absorption spectrum), which
corresponds to the transmittance T(A). In the density scale, D(A) = 0 cor-
responds to a transparent medium, and the values of D(A) increase loga-
rithmically when the transparency decreases. The extreme case of a totally
opaque medium corresponds to an infinite density, D(A) = e-. The trans-
mission spectra and the corresponding density spectra of cyan, magenta,
and yellow inks at various concentrations are given in Figures 3.6, 3.7, and
Figure 3.8, respectively.

In a mixture of several different absorbing substances that do not inter-
act, the density of the mixture equals the sum of the densities of the indi-
vidual substances.

DM = Y D) (3.20)
j
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Figure 3.6 Transmission and density spectra of a cyan ink at various concentrations c.

This equation can also be written using the transmittances of the individual
substances. The total transmittance equals the product of all transmittances.

T = [JT,0 (3.21)
j

In practice, Equation 3.21 allows us to compute the transmittance of the
mixture of purely light-absorbing inks.

Finally, let us calculate the average density D(A) of an infinitely thin
slice of an absorbing medium under diffuse illumination (see Figure 3.9). We
know the angular distribution of the diffuse light flux from Equation 3.7,
and Beer’s law gives the absorption in the direction 6, which equals

dx
cos0 el - c
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Figure 3.7 Transmission and density spectra of a magenta ink at various concentra-

tions c.

Hence, the average density D(A) can be computed by integrating over all

directions.

B\ = jg(di e sinZG)dG (3.22)

0

2

cos0

(2-dx-e(\) - c)F sin0do
0

~dx-e\)-c

This shows that the optical density under diffuse illumination is twice the
density observed for a collimated light beam. This fundamental result gives
us a generalization of Beer’s law for diffuse light.

dp = —2e(\)cdIn10 - dx (3.23)
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Figure 3.8 Transmission and density spectra of a yellow ink at various concentra-
tions c.

3.5 Light scattering

The term light scattering refers to all physical processes that move photons
apart in different directions. This phenomenon is often caused by local vari-
ations of the refractive index within a heterogeneous medium. Other scat-
tering processes, as for instance the Raman effect and the Brillouin scattering,
also change the wavelength (i.e., the energy) of the incident photon, but
these phenomena are rare in nature.

In this chapter, we will be interested in scattering caused by small par-
ticles that are dispersed in a homogeneous medium. Let us consider a thin
slice of thickness dx of this scattering medium (see Figure 3.10). The varia-
tion d¢ of the collimated light flux that crosses this slice is proportional to
the flux intensity ¢ of the light beam and to the thickness dx of the slice.

do = —BL)odx (3.24)
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cos6
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Figure 3.9 The average absorption of an infinitely thin slice under diffuse illumina-
tion is related to the average path of the light in the medium.

— |
BN

Figure 3.10 Light scattered by an infinitely thin layer containing light-scattering
particles at a concentration c.

where A = light wavelength

B(X) = scattering coefficient of the medium

By analogy with the absorption phenomenon (see Section 3.4), we introduce
the molar decadic scattermg extmctzon coefficient (or, in short, scattering coeffi-
cient) o(A) (unit, m”- mol™), which can be interpreted as the scattering
cross-section area of a mole of particles of radius r.

B = o(Wcln(10) (3.25)

o) = Ay (M) (3.26)

In (10)
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where ¢ = concentration of the particles

N, = 6.022-10” = Avogadro number
Xs«(A) = scattering efficiency factor of the particle

Note that the total extinction coefficient (1) of a particle that has both
a scattering and an absorbing behavior corresponds to the sum of the scat-
tering and absorbing cross-section areas (Equations 3.16 and 3.26).

erM) = &) +0(N) = [TV + Ty (M) - (3.27)

ln( 10)
Remark: Sections 3.5.1 and 3.5.2 can be skipped or browsed rapidly for a first
reading and revisited later as required.

3.5.1 Rayleigh scattering

The Rayleigh scattering theory applies to independent scattering of particles
that are about ten times smaller than the wavelength of the incident light.
In 1871, Lord Rayleigh established the following equation, which gives I,
the intensity of the light scattered in a direction having an angle 6 with the
direction of the incident light beam:

T of 1+ cos'®
I, = (Lzeﬁxf;)Na( : )10 (3.28)

where | = intensity of the incident collimated light beam

Ao = its wavelength in empty space
g, = 8.842 10" = permittivity of empty space (unit, F-m™")
L = distance at which the intensity I, is measured

o = polarizability of the medium

N = c- N, = number of particles per unit volume

The scattering is rotationally symmetrical about the incident light beam. The
detailed calculation can be found in the literature.!4

The polarizability o of a medium of permittivity €, = 15¢, containing
particles of refractive index n and of volume v is given by'®

2 2
o =3¢, — "y (3.29)
n°+2n,,

The scattering coefficient B(A) is calculated by integrating Equation 3.28
over a sphere of radius L = 1.
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1 (8’ 1 > 241 n*—n )

Using Equation 3.26, we can also deduce the scattering efficiency factor

XseA) -

2 2)?
8 [(n"-m, | (2nr)!
%) = g'(n2+2n3') () (3.31)

wavelength in the medium of refractive index n,,

where A,

XSC(X)

scattering efficiency factor of the particle

Note that B(A) is proportional to 7»;?, which means that blue light is
more strongly scattered than red light. Sunlight scattered in the atmosphere
is mostly blue, which explains why the sky is blue. At sunrise and at sunset,
the light from the sun has to traverse a thicker atmospheric layer than at
noon, so most of the blue light is scattered, and the remaining unscattered
light is mostly red.

3.5.2  Mie scattering

The Mie scattering theory!¢ is a generalization of the Rayleigh theory, which
predicts the scattering behavior of a medium of refractive index n,, contain-
ing particles of radius r and of refractive index #i = n(1 +ix). This theory
assumes the absence of multiple scattering. In practice, this means that the
distance between two particles is greater than 3r. The Mie scattering is also
rotationally symmetrical about the incident light beam. The intensity I4 of
the light scattered in the direction making an angle 6 with the direction of
the incident light beam, as derived from Maxwell’s equations, is given by’

_ N 7\’m : ‘51‘24_‘52‘2
I, = L_2(2_n) (f) I, (3.32)

where 2, = wavelength of the incident light in the medium of refractive
index n,,
N = number of particles per unit of volume

L = distance at which the intensity I, is measured
The coefficients S; and S, are defined by the following series:
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z 121 1 [a;- T (cos®) + b, - T,(cos0)]

(I+1)
(3.33)
2[+1
Zl(l n 1)[al -1,(cosB) + b, - m(cos0)]
The angular functions m; and 7, are defined by recurrence as follows:
m,(cosB) = 21~ 1cosG T (cose)— ! ——T;_,(cos0)
1 - l 1 -1 1 1-2 (3.34)
T/(cosB) = lcose~n,(cose)—(l+1)1t,,l(cose)
where the first functions are
my(cosB) = 0 m,(cosB) =1 m,(cosB®) = 3cos6 (3.35)
T,(cos0) = cosH T,(cosB) = 3cos26 ’

The coefficients 4, and b, are combinations of Bessel and Hankel func-
tions. To simplify their mathematical expressions, let us introduce the fol-
lowing variables:

m= ni’ Y= and & = my (3.36)

4
7\‘1’?1

Furthermore, let us define the functions ¥ and &, .

Hx) = A/?JH%(X)
1

where | 1= Bessel function of the first kind
2

(3.37)
3169

Y1+ 1 = Bessel function of the second kind
2

Hﬁ)l = a Hankel function

The properties of the Legendre polynomial, of the Bessel functions, and of
the Hankel function can be found in most handbooks of mathematics.!® Using
Equations 3.36 and 3.37, the coefficients 4, and b, can be written as follows:
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_ HOW'®) - mH () ()
EMNY'Q) - mHQ)E ')

p = MHOH'®) - HEOH W)
T mE MY E) -HOE M)

(3.38)

Note that S; and S, are complex if the particles attenuate electromagnetic
waves (k#0).

For small (y <0.8) and nonattenuating particles (« = 0), the series S;
and S, can be limited to the terms a,, a,, and b;.

2(m> =13 1 m*=1\5 1 - 5
m=3l—5—, a==——, bh=-zm-1)y

) el B

m+2 502m?+3 (3.39)

Note that 4, corresponds to the contribution of the Rayleigh scattering. If
we neglect all terms beyond a; in Equation 3.33, we obtain the Rayleigh
scattering Equation 3.28.

The scattering coefficient 6(A) and the absorption coefficient €(A) are
obtained by integrating Equation 3.32 over a sphere of radius L = 1. This
calculation is tedious, as the coefficients 4, and b, are very complex. There-
fore, the scattering efficiency factor x,(A) and the absorption efficiency
factor y,;,,(A) for many different values of m and y have been calculated
in the past, and they can be found in tables listed in the literature.!” Using
the approximation for small and nonabsorbing particles (taking into
account the terms a,, a,, and b, ), the scattering efficiency factor x,.(A) of
the particle is

AscA) = %3 ( +D {1+§(Z§—;;)yz+..} (3.40)

Note that the first term in this series corresponds to the efficiency factor of
the Rayleigh scattering that we have already seen in Equation 3.31. For larger
particles, further terms in the series S; and S, must be taken into account.
Nowadays, computers allow us to calculate all coefficients numerically.

It is found that scattering is proportional to A, in the Rayleigh region
(v «1) and that, with further increase of v, it tends to become proportional
to A,,, i.e., wavelength independent. Therefore, the light scattered by large
particles (e.g., smoke particles) is white. Furthermore, the forward scattering
becomes greater than the backward scattering with increasing v. Figure 3.11
shows the scattering diagram of spherical gold particles for different radii.
The Mie theory successfully predicts the spectra of colloidal suspensions,
metallic suspensions, and atmospheric dust.
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Figure 3.11 Scattering diagram according to Mie for spherical gold particles
(A, = 550nm, n, = 1.33, # = 0.57 +i2.45) with radii (a) r = 40 nm (y «1 Ray-
leigh region), (b) ¥ = 80 nm (y=1), and (c) r = 120 nm (y>1). The unit of the
axes is (A,,/(27))>.

3.5.3 Multiple scattering

In the framework of the Rayleigh and the Mie theory, we assumed that the
scattering particles are independent; i.e., the light scattered by one particle
does not interact with other particles. With diminishing distance between
the particles or increasing thickness of the medium, this assumption no
longer holds, and single scattering gives way to multiple scattering. It can
be shown that, for a sufficient number of particles, regardless of the scattering
law used, an isotropic distribution ultimately arises.?’ With multiple scatter-
ing, the characteristic properties of single scattering disappear more or less
rapidly according to the given conditions.
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3.6 Phenomenological models

There is no general quantitative solution to the problem of multiple scatter-
ing for large particles (2rnr/A,, > 1) that are tightly packed. In such cases,
phase relations and interferences arise among the scattered beams. Therefore,
new approaches based on phenomenological theories had to be developed.
Throughout Section 3.6, the wavelength designation (A) is dropped to sim-
plify the notation, but I, p, 7,1, j, K, S, p;, R, and R are functions of
wavelength.

3.6.1 Radiative transfer

The astronomer S. Chandrasekhar established in 1947 the radiative transfer
equation,? which corresponds to an energy balance. This equation describes
the intensity change dI of a light beam of given wavelength along a path
of length ds within a medium of density p and total extinction coefficient
Er.

% = —In(10)erpl + pj (3.41)

where j/(In(10)e;) corresponds to the source function characterizing a light
source. In the particular case of a nonluminescent medium, j is a scattering
function defined as

. _ In(10)er n O N IO s O A ot
j©, ) = Tﬂf} p(6, ¢;6', )1(0', ¢')sin0'd0'de (3.42)

The function p(6, ¢:0', ¢") is called the phase function. It gives the amount of
intensity that is scattered into a solid angle dw of direction (6, ¢) if a beam
of radiation in the solid angle do' = sin8'd0'dg' strikes a mass element of
the medium (see Figure 3.12). Note that the phase function is normalized as
follows:

%ﬁ j jp(e, 0:0', ¢)sin8d0de = B, <1 (3.43)

where ®, = fraction of light lost from an incident beam due to scattering

Term @, is the albedo of the medium. The simplest example of phase func-
tion is p(6, 9:0', @) = 1 in the case of isotropic scattering. Another case of
interest is Rayleigh’s phase function, which corresponds to the angular term
of Equation 3.28.
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Figure 3.12 The phase function gives the amount of intensity that is scattered into
a solid angle do of direction (0, ¢) if a beam of radiation in the solid angle
do' = sin0'd0'dg’ strikes a mass element of the medium.

1+ COSZQ)

p(cos®) = %( > (3.44)

where © is the angle between the direction of the incident radiation in do'
and the direction of the solid angle dw. In general, the phase function can
be expanded as a series in Legendre polynomials of the form

p(cos®) = ®,P(cosO) (3.45)

=0

where P, = the Legendre polynomial of degree [

®,; = a constant

Combining Equations 3.41 and 3.42 leads to an integro-differential equa-
tion that is difficult to solve. Nevertheless, solutions could be calculated in
a few particular cases, such as for isotropic scattering in a medium made of
parallel planes.”!

The radiative transfer equation is very powerful, but it requires a tedious
mathematical treatment. Therefore, simplified versions of this theory are
used in practice, e.g., the Kubelka-Munk model and the multichannel model,
which are presented in the following sections.

3.6.2  Kubelka—Munk model (two-flux model)

Let us consider a reflector made of a reflecting substrate of reflectance p, in
optical contact with a light-absorbing and light-scattering medium of thick-
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ness X (see Figure 3.13). The scattering is assumed to have an isotropic
distribution, as it results from multiple scattering (see Section 3.5.3). In 1931,
Kubelka and Munk? proposed a reflection model based on two diffuse light
fluxes: i(x) oriented downward and j(x) oriented upward.

Let us analyze the variation of these fluxes when they cross a layer of
infinitesimal thickness dx. The x axis is oriented upward, and the origin is
set at the top of the substrate. Let K be the phenomenological absorption
coefficient corresponding to the fraction of the light flux absorbed by the
infinitesimal layer. Let S be the phenomenological scattering coefficient
corresponding to the fraction of the light flux that is scattered backward by
the infinitesimal layer.

We first analyze the variation of j(x) when it crosses the layer. The flux
j(x) is reduced due to absorption within the infinitesimal layer by an amount
Kj(x)dx, and the backscattering further reduces the flux by an amount
Sj(x)dx . However, the flux j(x) is increased by the light that is backscattered
when the flux i(x) crosses the same layer: Si(x) dx. Putting these elements
together leads to the following equation:

‘% = —(K+8)j(x) + Si(x) (3.46)

The same analysis performed for the flux i(x) leads to a similar relation
(notice the orientations along the vertical x -axis).

M = (K+5)i(x)-Sj(x) (3.47)

Note that, in a transparent medium, S equals 0, and differential Equations
3.46 and 3.47 lead to Beer’s law for diffuse light (Equation 3.23).

/ 7

\ yo
/ 1 X dx

\ e \

Substrate of reflectance Py

Figure 3.13 Light-absorbing and light-scattering medium of thickness X that is in
optical contact with a substrate of reflectance p,. The medium is divided into parallel
layers of infinitesimal thickness dx. Note that two fluxes are considered: i(x), which
is oriented downward, and j(x), which is oriented upward.
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Equations 3.46 and 3.47 together form a system of linear differential
equations that describes the variation of i(x) and j(x) when they cross an
infinitesimal layer of thickness dx.

di(x) _ .oy
e (K+5)i(x)-Sj(x)

| (3.48)
‘% = — (K +8)j(x) + Si(x)

Kubelka and Munk solved Equation 3.48 using a traditional calculation
method.?> Here, we propose a more modern approach based on matrix
algebra. The system in Equation 3.48 can be written in matrix form as follows:

dx | _ |K+S§ =S Cli(x) (3.49)
dj(x) S —(K+S)| |ix)
dx

This kind of matrix differential equation has a well-known solution, which
is given by the exponential of the matrix.?® By integrating the equation
between x = 0 and x = X, we obtain

i(X)J = exp {K *S 5 J(X-O) : i(O)} (350)
(X) S —(K+595) (0)
_ {t u] z‘(())}
v w i(0)
where t, u, v, w = elements of the matrix exponential

i(0), j(0) = intensities of the fluxes i and jatx =0

Note that the exponential of a matrix M is defined by the following power
series:

hed 1
exp(M) = z(l@ (3.51)
=0

From Equation 3.50 and the boundary condition j(0) = p,-i(0), we can
derive by algebraic manipulations®*% all the well-known results of the
Kubelka-Munk theory that are listed in the literature.?® The most important
result is the hyperbolic solution of the Kubelka-Munk model,
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_j&X) _v+pgw _ 1-p,-(a-b- coth(bSX))
P T t+p-u  a—pg+b-coth(bSX)

(3.52)

wherea = (§+K)/S and b = ./a?—1.Theratio p = j(X)/i(X) is called the
body (or true) reflectance® of the analyzed sample. To characterize the medium
alone, practitioners use the reflectance p.. = j(X..)/i(X..) of a medium that
is so thick that further increase in thickness fails to change its reflectance. In
other words, if an additional layer of thickness X is put on top of such a
medium, we have p.. = j(X + X..)/i(X + X..). According to Equation 3.50,
we have

iX+X.)| _ {t u] i(X.)
JX+X.) vwl |j(X.)
(3.53)
N
pol v w p..

From a mathematical point of view, this means that the vector [1, p..] is
an eigenvector?® of the matrix given in Equation 3.50, and that
o = i(X + X.)/i(X.) is the corresponding eigenvalue. This observation per-
mits us to obtain p.. by calculating the eigenvectors of this matrix. By
solving the characteristic polynomial of the matrix,” it can be shown that
this matrix has two eigenvalues,

2
= (w+t)—A/(§u—t) +4uv - _JKZ+2KS

o
(3.54)
A/72
o, = (w+t)+ (;u—t) +4uv - JK*+2KS

that are associated with the following eigenvectors, respectively:

1 1
Vislwon-Jw-tieam| V2" @b+ Jw—t7+dus| O

21/[ 2Ll

Being a reflectance value, p.. must be in the range between 0 and 1. But
because the second component of V; is outside the range [0, 1], the solution
given by V; must be discarded, and p.. is simply the second component of
the eigenvector V,.

© 2003 by CRC Press LLC



_(w—t)+A/(w—t)2+4uv_ K Iiz K
P = 5 =1+ S 52+ZS (3.56)

This result is often presented in a more compact form known as the
Kubelka—Munk function.

2

K _(1-p.)
L= (3.57)

2p..

Other important results are the reflectance p, of a layer with ideal black
background (p, = 0), and the reflectance p; of a layer with ideal white
background (p, = 1).

_ v _ 1
Po = § = I3 beoth(bSX) (3.58)

v+w _ 1-(a-bcoth(bSX))
t+u ~ a+bcoth(bSX)

p1 = (3.59)

Traditionally, py, p;, and the thickness X of the medium are used to
determine the coefficients K and S. In a first step, we extract a from Equa-
tions 3.58 and 3.59.

1( pl_l)
a=z1- 3.60

Once a is known, b = ./a?-1 is obtained immediately. In a second step, we
extract S from Equation 3.58.

_ 1 1-ap,
S = ﬁ(acoth 5oy (3.61)
Finally, from the definition of a,
K =S5@@a-1) (3.62)

Note that the phenomenological coefficients K and S can be related to
the fundamental optical properties introduced previously. In Section 3.4, we
generalized Beer’s law for diffuse light (see Equation 3.23), which is equiv-
alent to d¢ = —K¢dx . Therefore, we have (see Equation 3.16)

K =2In10-eQ)-c = 2N4-c- T - XupeA) (3.63)
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A similar calculation allows us to relate S to the scattering coefficient o(A) .
Because the scattering in the medium is assumed to have an isotropic dis-
tribution, the scattering coefficient must be divided by two, because S
accounts only for backward-scattered light. Hence, we obtain from Equations
3.25 and 3.26,

S = 2In10- c=Ny-c- nr <Y se(N) (3.64)

3.6.3 Surface phenomena and Saunderson correction

In the Kubelka-Munk theory, the diffuse reflector is modeled by a light-
absorbing and light-scattering medium in optical contact with a substrate
that is supposed to be a Lambertian® reflector of reflectance p, . In a medium
having a refractive index n different from that of air, surface reflection and
multiple internal reflections occur® as shown in Figure 3.14. As a conse-
quence, the reflectances prevailing in a medium of refractive index n can
differ greatly from the reflectances measured at its surface. Traditionally, this
is taken into account by applying the Saunderson correction® to the com-
puted spectrum. In this section, we write the Saunderson correction in matrix
form, to be applied to Equation 3.50.

Let us denote by i the incident flux on the external surface of the paper
and by j the flux emerging from the paper. Let 7, be the fraction of diffuse
light reflected by the air-medium interface (external surface of the reflector),
and let r; be the fraction of diffuse light reflected internally by the
air-medium interface (internal surface of the medium); see Figure 3.15.
According to Equations 3.13 and 3.14, the values of #, and r; depend only
on the refractive index n of the medium. Judd! has computed their numer-
ical values for a large number of refractive indices (see Table 3.1).

The balance of the fluxes at the air-medium interface, as shown in
Figure 3.15, leads to the following system of equations for i(X), the incident
flux below the air-medium interface, and for j, the emerging flux above the
air-medium interface:

Air

Medium of
refractive index n /

Substrate:
Diffuse reflector

Figure 3.14 Surface reflection and multiple internal reflections caused by the inter-
face between the air and the medium.
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Air P (I=rp)jX)

]

Interface

(1=ryi r; J(X)
Medium of
refractive [ — JX)
index n

i(X)

Figure 3.15 External and internal reflections of the upward and downward fluxes
on the air-medium interface.

{i(X) = (1-r)i+rjX) (3.65)

J=ri+v(1-r)jX)

Assuming that the refractive index of the medium is constant over the
whole visible range of wavelengths, r, and r; are also constant. Hence,
Equation 3.65 can be written in the following matrix form:

O i - IR
] rs rsri
r-ni2)

_rs

We call the matrix in Equation 3.66 the Saunderson correction matrix. Note
that this correction matrix can be generalized for any interface between a
medium of refractive index n; and a medium of refractive index n, . Accord-
ing to Section 3.3.2, the values of 7, and r; are then given by

r, = Jlj(rnl’ ,,(8) - 5in20)d6 and r, = J‘j(r,,r,,l(e) - $in20)do (3.67)

The Saunderson correction is obtained by combining Equations 3.66 and 3.50.

o
(0)

(3.68)

1 —=1;

il _|1-m, 1-r, - exp K+S =5 |[x|. [ _ |t ],
' r, (1 o I ) S —(K+98) )] |0 w
—r- L

-7
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We denote the elements of the product matrix by ', u', v', and w'. These
coefficients and the boundary condition j(0) = p, - i(0) allow the calculation
of the reflectance R.

v+ pg W

Trp, @ (3.69)

R=1=
i

This equation allows us to compute the reflectance under diffuse light
illumination of a light-absorbing and light-scattering medium in optical
contact with a substrate of known reflectance p, . If we develop the product
in Equation 3.68 algebraically, we obtain the famous Saunderson corrected
reflection formula.®

_ (1-r)(1-r)p
R =7 g (3.70)

where p= j(X)/i(X) = the body reflectance given by the Kubelka-Munk
model

Figure 3.16 shows the reflectance and the body reflectance of a cyan sample.

In the graphic arts, most measuring instruments use a 45°/0° measuring
geometry wherein the incident light beam is collimated with an incidence
of 45°, and the detector is placed at an angle of 0° (see Figure 3.17). This set-
up prevents the light reflected specularly from entering the detector, hence
ts = 0. Furthermore, in the particular case of a nonscattering medium
(S = 0), the refracted light beam, with the normal to the surface, forms an
angle of o = asin[1/ (mfZ)] , where n is the refractive index of the medium.
The entering collimated light beam follows within the medium a path of
length X/(cosa), which is shorter than the average path of length 2X
followed by diffuse light (see Section 3.4). Because the detector is at an angle
of 0°, only the light emerging with an angle of 0° is detected. This emerging
light beam follows in the medium a path of length X, which is also shorter

0.8

II \\ ,l
0.6 / ™ - +
0.4 / ’/
02 - ~
s \—)/

450 500 550 600 650 700

nm

Figure 3.16 Body reflection spectrum (dashed line) and reflection spectrum (contin-
uous line) of a cyan sample.

© 2003 by CRC Press LLC



Collimated Detector

light source | y
Air 42
| >
Medium é\i = 1 X
\
1 1

Diffuse
reflector | |

Figure 3.17 Path followed in the medium by the collimated light beam produced
by a measuring instrument having a 45°/0° measuring geometry.

than the average path length of 2X followed by diffuse light. Because the
total path length of the light beam within the medium is shorter, the absorp-
tion of the light beam within the medium is not the same as for diffuse light.
Therefore, the Saunderson correction matrix in Equation 3.66 must be mod-
ified as follows so as to take the 45°/0° geometry into account:3*

0 (I-7)exp [I%( X),

m _ |7 [(2 coso. 1) ' KX} eP [(2 coso. 1)} KX} B(X)} (3.71)

Considering the particular case of a medium with refractive index n = 1.5,
we have (1/(2cosa)—1) = —0.44. The modified Saunderson correction
matrix leads, after developing Equation 3.69, to the Williams—Clapper equa-
tion,3®

_ (I-r)p.exp[-1.06KX]

R 1-ripexp[-2KX]

(3.72)

Note that p, is the reflectance of the substrate within the medium of
refractive index 7. The surface phenomena do not allow us to measure p,
directly. Let R, be the reflectance of the substrate measured in air without
the medium on top of it. If the substrate has the same refractive index n as
the medium, p, is deduced from R, by deriving the following formula from
Equation 3.70:

1
Pe = —Tra—n) (3.73)
P —t U
Ry -7,

In practice, the substrate is not always available without the coating
medium on top of it. This happens, for example, in the case of the high-
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quality paper used in graphic arts, where the fiber substrate is coated with
an ink-absorbing layer of refractive index n. Assuming that the coating is
transparent, we can deduce p, from Equation 3.73 by replacing R, with the
measured reflectance of the paper.

Note that the matrix formulation of Equation 3.68 gives a better overview
of the modeled system. Instead of using several functions nested within each
other, the analyzed sample is simply modeled by the product of two matrices.

3.6.4 Multichannel model

The two-flux model proposed by Kubelka and Munk corresponds to a sig-
nificant simplification of the radiative transfer equation (see Section 3.6.1).
To improve the quality of the prediction, Mudget and Richards in 1971
proposed an intermediate model by considering a larger number of light
fluxes.?® Each flux propagates in a different fraction of space called a channel
(see Figure 3.18). Therefore, this theory is called the multichannel model or the
multiple flux theory. In this context, the radiative transfer equation corre-
sponds to a model that considers an infinite number of fluxes.

The multichannel model considers 2m fluxes; m fluxes denoted j, are
oriented upward, and m fluxes denoted i, are oriented downward. Let us
denote K, as the absorption coefficient in the p th channel, and S, as the
scattering coefficient from the pth channel into the /th channel. The scattering
coefficients S, ; are computed by using a scattering model, as for instance
the Mie model presented in Section 3.5.2.

As in the Kubelka-Munk model, we analyze the variation of each flux
when it is traversing an infinitesimal layer of thickness dx. This gives us
2m linear differential equations of the first order with 2m variables. These
equations can be written in matrix form as follows:

Figure 3.18 In the multichannel model the whole space is subdivided into 2m chan-
nels where the Ith channel corresponds to the space between the cone of angle 6,_;
and the cone of angle ;.
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A i (3.74)

dx ]m+1
]Zm
(K1+251,1) =S =Swi11 ~Sam1
I#1
_Sl,m (Km+ zsm,l) _Sm+l,m _SZm,m
- I#m
Sl,m+1 Sm,m+1 _(Km+l+ 2 Snl+l,l) SZm,nH—l
l#m+1
Sl,Zm Sm,Zm Sm+1,2m _(K2m+ z SZm.l)
L 1#2m i
i
I
]m+1
*]2171#

The sign inversion in the first m rows occurs because the x axis is
oriented upward. The pth element on the diagonal of the matrix corresponds
to the attenuation of the pth light flux. This attenuation is caused by the light
absorption K, in the pth channel and by the scattering of light from the pth
channel into all other channels,

ZS,,,,

l#p

The off-diagonal element S, ; corresponds to the light received by the flux
I from the channel p.

The solution of Equation 3.74 is also given by the exponential of the
matrix. As in the Kubelka-Munk model, the boundary conditions at the
surface of the substrate define the relations between the fluxes j,(0) and the
fluxes 7,(0). An extended Saunderson correction matrix that allows us to
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predict the reflectance with a higher accuracy can be also defined. The
complete treatment is beyond the scope of this chapter, but the mathematical
procedure is the same as presented in the Sections 3.6.2 and 3.6.3. Note that
practitioners in the paint industry normally use the four-flux theory.?”

3.7 The fluorescence phenomenon

Let us first recall the basic principles of molecular fluorescence.3® We consider
a theoretical molecule having two electronic energy states, E, (ground state)
and E; (excited state). Each electronic state has several vibrational states
(see Figure 3.19). Incident polychromatic light (photons) excites the mole-
cules that are in state E, and makes them temporarily populate the excited
vibrational states of E; (Figure 3.19a).

A vibrational excited state has an average lifetime of only 10" s. The
molecule rapidly loses its vibrational energy and goes down to the electronic
energy state E; . This relaxation process is nonradiative, and it is caused by
the collisions with other molecules to which the vibrational energy is trans-
ferred. This induces a slight increase of the temperature of the medium. The
excited state E, has a lifetime varying between 10 and 10~ s. Now, there
are two ways for the molecule to give up its excess energy. One of them is
called internal conversion, a nonradiative relaxation for which the mechanism
is not fully understood. The transition occurs between E; and the upper
vibrational state of E, (Figure 3.19b), and the lost energy raises the temper-
ature of the medium. The other possible relaxation process is fluorescence.
It takes place by emitting a photon of energy corresponding to the transition
between E; and a vibrational state of E, (Figure 3.19c). The remaining excess
energy with respect to E, is lost by vibrational relaxation. To quantify the
number of photons emitted by fluorescence, the quantum yield is introduced
as the rate of absorbed photons that are released by radiative relaxation.

(a) Absorption (b) Nonradjative (c) Fluorescence
relaxation

es]
oW
les]
(=L NI
es]
o—w

O—=o W
[l SR8

L3
2
=]
E 0 E

EO 0 0
Resonance

Line

Figure 3.19 The energy level diagram of (a) absorption, (b) nonradiative relaxation,
and (c) fluorescent emission.
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The wavelength band of absorbed radiation that is responsible for the
excitation of the molecules is called the excitation spectrum. This spectrum
consists of lines whose wavelengths correspond to the energy differences
between excited vibrational states of E; and the ground electronic state E,
(according to the energy difference AE produced by the absorption of a
photon of wavelength A: AE = (hc)/A, where h is Planck’s constant and
c is the speed of light). The fluorescence emission spectrum (or fluorescence
spectrum), on its part, consists of lines that correspond to the energy differ-
ences between the electronic level E; and the vibrational states of E,. The
multitude of lines in both spectra is difficult to resolve and makes them look
like continuous spectra. Note that the fluorescence spectrum is made up of
lines of lower energy than the absorption spectrum. This wavelength shift
between the absorption band and the fluorescence band is called the Stokes
shift. A particular case in which the absorbed photon has the same energy
as the one re-emitted by fluorescence is called the resonance line.

The shape of the fluorescence emission spectrum does not depend on
the spectrum of the absorbed light, but on the probability of the transition
between the excited state E; and the vibrational states of E,. Often, the
fluorescence spectrum looks like a mirror image of the excitation spectrum
(Figure 3.25);% this is due to the fact that the differences between vibrational
states are about the same in ground and excited states.

Experience shows that fluorescence is favored in rigid molecules that
contain aromatic rings.*’ This can easily be understood, as a rigid molecule
has a lower possibility of relaxing by a nonradiative process. In fact, the
lower the probability of nonradiative relaxation, the higher the quantum
yield. Hence, a rise in the medium’s viscosity induces a higher fluorescence.
In the particular case of inks, the liquid substance fluoresces less than the
dried-up printed ink, whose molecules have less degrees of freedom. On the
other hand, a rise of the ambient temperature implies a higher probability
of nonradiative relaxation due to collisions with other molecules, and a drop
in fluorescence is observed.

The fluorescence spectrum is measured with a fluorescence spectrome-
ter.#! A sample of the unknown fluorescent substance is excited with a mono-
chromatic light beam whose wavelength is within the excitation band of the
molecule. The emitted light is analyzed, and the resulting spectrum is the
fluorescence spectrum. Its amplitude is maximal when the wavelength of
the incident light corresponds to the maximum absorption of the fluorescent
molecule. We denote by f(A) the normalized fluorescence spectrum whose
integral equals 1. A method for determining the quantum yield is described
in Section 3.7 .4.

At high concentrations, the behavior of the fluorescent substance is no
longer linear. The absorption is too large, and no light can pass through to
cause excitation. Temperature, dissolved oxygen, and impurities reduce the
quantum yield; therefore, they also reduce the fluorescence. This phenome-
non is called quenching. In our model, we will suppose that no quenching
occurs.
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3.7.1 Fluorescence: transparent layer

To establish a mathematical formula that predicts the behavior of a trans-
parent medium containing fluorescent molecules, we consider a slice of
thickness dx . We denote by €(A) the absorption coefficient of the fluorescent
molecules, by ¢ their concentration, and by Q their quantum yield in this
medium. In the model for transparent media,*> only the positive direction
of propagation is taken into account (see Figure 3.20).

The intensity variation d¢ of the light emerging in the positive direction
has two components. The first, d¢,(A), is due to the light that has been
absorbed. As we have already seen in Equation 3.23, for diffuse light, this
absorption is twice*® the value given by Beer’s law.

do,(A, x) = -2In10 ce(M)O(A, x)dx (3.75)

The second component, d,(A, x), is the light emitted by fluorescence.
The fluorescent molecules emit a fraction Q of the photons absorbed in the
excitation band A and spread them over the whole emission band defined
by the normalized fluorescence spectrum f(A). Due to the fact that fluores-
cent emission is made in all directions of space, only one-half of the photons
go into the positive direction. Hence, the quantum yield must be divided by
two. The second component d¢,(A, x) is therefore given by

46,00, %) = 2In10 c% - f(x)U WO, x)du}dx (3.76)
A

The integral between square brackets multiplied by dx equals the
amount of absorbed energy. Equation 3.76 leads to the following differential
form, which is an extension of Beer’s law for diffuse light and fluorescent
media:

0 N 0+ do

Positive direction
D —————

Figure 3.20 Absorption and emission in an infinitely thin fluorescent layer which
is irradiated by a diffuse light flux ¢.
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dd(A, x) = —2In10 ce(A) (A, x)dx (3.77)

+21n10 c% : f(x)De(u)q)(u, x)du}dx
A

This can be simplified due to the fact that we work with a finite number of
wavelength bands whose widths are AA, so the integral is replaced by a
finite sum. The new relation is given in Equation 3.78, where the index i
runs through the wavelength bands.

do(h;, g) = -2In10 c e P(A;, x)dx (3.78)

+2In10 ¢ % : f(li)[z e)0(\, x)Ak}dx

jeA

Writing Equation 3.78 for each of the bands leads to a system of linear
differential equations with constant coefficients that can be put into matrix
form. If we denote F; ; = €();) f(A)ALQ/2, we obtain Equation 3.79.

[do(n,, x)|
dx

do (ks x) (3.79)
dx

d(D(}\'Y’U x)
dx

O kq)(?\’la x)ﬁ

= -2¢cIn10

’ ¢(}\’/9 x)

g 9(7\'71’ x)4
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The fact that the emitted photon has less energy than the absorbed one
implies that F; ; = 0 for A;>;; hence the matrix is triangular.

The solution of equations such as Equation 3.79 has already been inves-
tigated by mathematicians.? Systems of differential equations whose general
expression is d®/dx = —cM - ® (where M is the constant square matrix of
Equation 3.79 and @ is the column vector containing ¢(A;, x), ..., ¢(A,, x))
admit as a solution, when x is integrated between 0 and X,

D(X) = exp(-McX) - D(0) (3.80)

The vector ®(0) is the spectrum of the incident light (light source), and
®(X) is the spectrum of the light emerging from a slice of thickness X of
the fluorescent medium. The exponential of the matrix -McX is defined as
follows:

exp(-McX) = Z( MCX) (3.81)
where
.
M =2m10|_F, . -F, ey : (3.82)
. . . 0
F.. . =F., . . . .F e

We will call M the fluorescence density matrix. The transmission spec-
trum T(A) resulting from the combined action of fluorescence and absorp-
tion can be computed for each wavelength A using the expression T(A) =
oA, X)/d(A, 0), where o(A, X) and o(A, 0) are, respectively, components of
®d(X) and ®(0) . Note that an accurate prediction requires measuring ®(0),
which can be significantly different from a standard illuminant (see
Figure 3.21).

The solution given by Equation 3.80 is a generalization of Beer’s law;
for a purely absorbing substance when no fluorescence is present, the matrix
M consists of the terms 2In10 - €(A;) on the diagonal and of zeros anywhere
else. This simplification of Equation 3.80 leads to Equation 3.23, the absorp-
tion equation for diffuse light.*3
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450 500 550 600 650 700

Figure 3.21 Relative radiance spectrum of the tungsten light source of a spectro-
photometer. It was measured by mounting the radiometer at the position of the
sample holder. Note that this spectrum is significantly different from the standard
illuminant A.

This approach can be extended to cases involving two or more fluores-
cent substances but, for this end, we must distinguish between several pos-
sible cases. Let A and B be two different substances whose fluorescence
density matrices are M, and My and whose respective concentrations are
¢, and cg. Hence,

* Iflight goes first through a layer of thickness X, of substance A and
then through a layer of thickness X; of substance B, we have,

q)(A, B) = eXp (_MBCBXB) . eXp(—MACAXA) . q)(O) (3.83)

e If light goes first through a layer of thickness Xg of substance B and
then through a layer of thickness X, of substance A, we have,

D(B, A) = exp(-MucaX,) - exp(-MpcgXp) - ©(0) (3.84)

e If light goes through a layer of thickness X consisting of a mixture
of the substances A and B, we have,

DA, B) = exp(-X(Mc, + Mycp)) - ©(0) (3.85)

If either substance A or B is fluorescent, the matrices M, and Mg do not
necessarily commute, so the resulting transmittance spectrum may be dif-
ferent in each of these three cases. As an example, let us consider the case
consisting of a yellow filter and of a fluorescent yellow filter that absorbs
blue light between 400 and 500 nm and emits green light between 500 and
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600 nm (see Figure 3.22). If white light goes first through the yellow filter
and then through the fluorescent yellow filter (see Figure 3.22A), the blue
light is absorbed by the yellow filter, and it cannot cause fluorescence in the
fluorescent yellow filter. But, if white light goes first through the fluorescent
yellow filter and then through the yellow filter (see Figure 3.22B), green light
is produced by fluorescence in the first filter. This green light is not absorbed
by the second filter, hence the resulting spectrum is different from that of
the first case.

3.7.2  From a one-flux to a two-flux model for a reflective substrate

In the present fluorescence model,* we consider a fluorescent medium in
optical contact with a substrate that is a diffuse reflector (see Figure 3.23).
This reflector is supposed to be Lambertian.3® Like in the Kubelka-Munk
analysis, we consider an upward flux j and a downward flux i going
through an infinitely thin layer of the medium, which contains a fluorescent
substance at concentration ¢ (see Figure 3.24). The positive direction of the
variable x is oriented upward, and its origin is at the bottom of the fluores-
cent medium. To simplify the equations used in this section, let us introduce
the column vector j, whose components are the intensities of the upward
flux at various wavelength, and the column vector i, whose components are
the intensities of the downward flux.

White light source Yellow filter Fluorescent yellow filter

® —[ —
A

1 1

Spectrum
of the light
400 500 600 700 nm 400 500 600 700 nm 400 500 600 700 nm
(A)
White light source Fluorescent yellow filter Yellow filter

® | =

Fluoreqcence Fluoreﬂcence
1
Spectrum
of the light
400 500 600 700 “nm 400 500 600 7()0 “nm 400 500 600 700 “nm
®)

Figure 3.22 The noncommutativity of a yellow filter and a fluorescent yellow filter.
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Diffuse light fluxes

i’ * j Air
X Interface
* Fluorescent
Medium
Substrate:

Diffuse
Reflector

Figure 3.23 Model of a fluorescent reflector made of a fluorescent medium in optical
contact with a diffuse reflector. This model describes well a high-quality paper made
of an ink-absorbing layer in optical contact with a diffuse white reflector. The arrows
represent diffuse light fluxes (light is coming from all directions of one hemisphere
with an angular distribution corresponding to that of a Lambert surface).

i j+dj

i+di j

Figure 3.24 Absorption and emission in an infinitely thin layer of the transparent
medium containing a fluorescent substance.

jM) i(A)

(A) i(A,)

We also write the fluorescence density matrix M of the ink as the difference
between a diagonal matrix A representing the absorption and a strictly
lower triangular matrix F representing the fluorescent emission.

M=A-F

e(h) 0 0 0
= 2In10 " - ’

0 e(\,) Fi; 0
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e(l) 0
= 2In10

e (3.86)

Considering first the vector of upward flux j, its variation (d/dx)j(x)
has two components. The first one is the absorption and fluorescent emission
caused by the upward flux which is, according to the results of Section 3.7.1,
—cMj(x) . The second component is the fluorescence caused by the down-
ward flux i, which is emitted in the upward direction, cFi(x). Hence, the
change of j is

1 d. . _ .. :
=@ = Fi)-Mj@) (3.87)

The same reasoning is applied to the downward flux and leads to a
similar equation. Note that the downward orientation of i introduces a
change of sign. By combining the equations obtained for j and i, we get a
system of differential equations whose matrix form is

1.4 i(x)} - {M —FJ . {i(x)} (3.88)
¢ dxfjx) F-M| [j&x)

Equation 3.88 is a linear differential equation of the first order with
constant coefficients. When x is integrated between 0 and X, it admits a
solution® that is given by the matrix exponential

E(X)} _ eprM —FJ CXJ. E(O)} (3.89)
j(X) F - j(0)

where i(X) and j(X) are, respectively, the spectra of the downward and of
the upward flux at vertical location X . The matrix exponential is defined as
follows:

(3.90)

© 2003 by CRC Press LLC



At the bottom of the fluorescent medium, the spectrum of the upward
flux j(0) is linked with the spectrum of the downward flux i(0) by the
relation

j(0) = R,-i(0) (3.91)

where R, is the reflection matrix of the substrate.®> For pure reflectors, this
matrix is diagonal, and the coefficients on the diagonal are the body reflec-
tances of the different wavelength bands. If the reflecting substrate contains
fluorescent substances (as, for instance, optical brighteners), the matrix R,
is triangular. Note that commercial bispectral spectrofluorimeters can be
used to measure the matrix R, (see Section 3.7.4).

3.7.3  Spectral prediction for reflective fluorescent material

The reflective fluorescent material made of a diffusely reflecting substrate
with a fluorescent coating is modeled by means of three matrices: the Saun-
derson correction matrix (Equation 3.66); the matrix exponential (Equation
3.89), which models the fluorescent medium; and the reflection matrix R,
of the substrate (Equation 3.91).

By multiplying the Saunderson correction matrix with the matrix expo-
nential, we obtain the following relation:

I 1
I PN S (il S S R A
i r. 1(1—r.—l)1 F -M i(0) vV W[ [i0)
]

(3.92)

where T, U, V, W = matrices
I = the identity matrix

Thanks to Equation 3.91, it is possible to express the vector j as a function
of i.

j=(V+W-R) (T+U-Ry"-i (3.93)

Because the multiplication of matrices is not commutative, the order of
the terms in Equation 3.93 must be respected. This corresponds to the fact
that superposed fluorescent layers do not commute, as we have already seen
in Section 3.7.1.

If the fluorescent material is illuminated by a diffuse light source of spec-
trum i, the spectrum of the diffuse reflected light is j. The reflectance spec-
trum is computed by dividing the components of j by the components of i.
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RO = % (3.94)

Figure 3.25 shows the absorption spectrum, the fluorescence spectrum,
and the reflectance spectrum of a fluorescent yellow ink printed on paper.

As in Section 7.1, this approach can be extended to cases involving two
or more fluorescent substances. Once again, we must distinguish among
several possible cases. Suppose A and B are two different substances whose

D Absorption Spectrum

vel
| VAR
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0.1

N
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2f§1 00  Fluorescence Spectrum
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0.5

nm
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14
1.2
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Figure 3.25 Absorption spectrum D(A) = 2 c &(A), normalized fluorescence spec-
trum f()A), and reflection spectrum R(A) of a fluorescent yellow ink printed on paper.
In this particular case, the excitation spectrum and the absorption spectrum are
identical. The quantum yield of the yellow ink is Q = 0.7. The paper consists of a
transparent coating of refractive index n = 1.5 in optical contact with a diffusely
reflecting substrate without optical brighteners. The spectrum of the light source of
the measuring instrument is given in Figure 3.21. The measured reflection spectrum
(continuous line) is well predicted by the model (dotted line). The dashed line shows
the prediction result when only absorption is taken into account.
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fluorescence density matrices are M, = A, -F, and My = Az-F;, and
whose respective concentrations are c, and cy. As a result,

e If a layer of thickness X, of substance A is on top of a layer of

thickness Xy of substance B, we have,
cBXB]‘ E(O)} (3.95)
0)

-l ) (i
j(X) Fy -My Fp —Mg

e If a layer of thickness Xy of substance B is on top of a layer of
thickness X, of substance A, we have,
chA]- E(O)} (3.96)
()

R R R ¢
j(X) Fg Mg Fy -My

e If light goes through a layer of thickness X consisting of a mixture

of the substances A and B, we have,
CB)X)~ L%(O)} (3.97)
0)

o ==

If one of the substances A or B is fluorescent, the matrices M, and Mg
do not necessarily commute, so the resulting reflectance spectrum may be
different in each of these three cases. As an example, let us consider the
case consisting of a yellow filter and of a fluorescent yellow filter that
absorbs blue light between 400 and 500 nm and emits green light between
500 and 600 nm (see Figure 3.26). If the yellow filter is superposed on top
of the fluorescent yellow filter (see Figure 3.26A), the blue light is absorbed
by the yellow filter, and it cannot cause fluorescence in the resulting spec-
trum. But if the fluorescent yellow filter is superposed on top of the yellow
filter (see Figure 3.26B), green light is produced by fluorescence in the
resulting spectrum.

Fy -My Fy -Mjy

M, —FA} - {MB ~F,

3.7.4  Measuring the parameters of the fluorescence model

To compute the fluorescence density matrix M, four elements have to be
determined: the excitation spectrum, the absorption coefficient (1), the
normalized fluorescence function f(A), and the quantum yield Q. (Note
that M contains discrete values of the functions €(A) and f(A).)

Because the dye concentration ¢ is unknown, it is impossible to deter-
mine the absorption coefficient €(A) . However, according to Equation 3.19,
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Figure 3.26 The noncommutativity of a superposition of a yellow filter and a fluo-
rescent yellow filter covering a diffuse reflector.

the density spectrum D()) and the absorption coefficient e(A) are propor-
tional and the proportionality factor is the dye surface density g = ¢X . Note
that each non-zero element of the fluorescence density matrix M contains a
factor e(A;) (see Equation 3.79). Because, in Equation 3.80, M is multiplied
by g, each occurrence of €(A;) is multiplied by g, and this product equals the
density D(A;) . Hence, for a given sample of density D(A;), we do not need
the actual values of g and of &(A,), and we can work relatively to the density
spectrum D'(A;) of a reference sample so that

D) = qen) = g'D'(L) (3.98)

where ¢' is the proportionality factor between D'(A;) and D(A)).

The excitation spectrum is determined in a two-step procedure. To avoid
deviations due to self-absorption, the fluorescence measurement must be
performed on a sample whose maximal density is smaller than 0.1 over the
whole spectrum (D(A) < 0.1). This means that light emitted by fluorescence
is not reabsorbed by another molecule of the sample. At first, the whole
density spectrum D(A) of our sample is measured with a spectrophotom-
eter. This instrument uses a monochromatic collimated light beam that goes
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through the transparent sample before reaching a light detector. Because
only a small fraction of the fluoresced light passes through the entrance slit
of the detector, the deviation induced by the fluorescent emission can be
neglected.

In the second step, the location of the excitation spectrum within the
density spectrum is determined. This can be done once we have an a priori
knowledge of the approximate position of the fluorescence spectrum (for
example, by a preliminary measurement using a fluorescence spectrome-
ter).4! This device has two monochromators; the first one is used to generate
a monochromatic light beam that excites the sample, and the second mono-
chromator is used to analyze the light emitted by the sample. In our present
measurement, the second monochromator is set to a fixed wavelength that
is supposed to be within the fluorescence spectrum (the a priori knowledge).
The first monochromator sweeps the whole spectrum, and the intensity of
the emitted light is recorded. This provides the excitation spectrum and its
location.

To determine the normalized fluorescence function, a fluorescence spec-
trometer is needed. The sample is excited with a monochromatic light beam
whose wavelength corresponds to the maximum absorption in the excitation
spectrum. Because the shape of the fluorescence emission spectrum does not
depend on the excitation wavelength (see Section 3.7), the normalized fluo-
rescence function is easy to compute by dividing the measured fluorescence
spectrum by its integral value, which is proportional to the number of flu-
oresced photons.

Once the excitation spectrum and the fluorescence function have been
measured, the quantum yield is determined using a method described in
the literature.*® This method is based on a measurement made relatively to
a standard fluorescent substance of known quantum yield. To be reliable,
the location of the excitation spectrum and the location of the fluorescence
spectrum of the standard substance must correspond to those of our sample.
Based on these criteria, the standard substance is chosen from tables given
in the literature.*”

The quantum yield of the unknown substance is given by*

_AFn’

Qu '
Aquné

Q, (3.99)

In this equation, the subscript u stands for unknown and the subscript s for
standard. A is the absorption at the excitation wavelength, and Q is the
quantum yield. The refractive indices of the solvent of the standard fluo-
rescent substance (n,) and of the medium of the unknown fluorescent
substance (1) are also taken into account. The variable F is proportional
to the total number of photons emitted by fluorescence. This value is com-
puted by integrating the spectrum emitted by fluorescence during the
experiment.
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Within the excitation spectrum, we must select a single wavelength that
gives the highest possible fluorescence in both the standard substance and
our sample. These two substances are excited using the same fluorescence
spectrometer at the selected wavelength, and the spectrum of the fluoresced
light is measured. By integrating the fluorescence spectra of the standard
substance and of our unknown sample, we get the respective number of
photons, F, and F,, emitted by fluorescence. Because the excitation spectra
of both substances are known, we have the respective absorption factors A
and A, at the selected excitation wavelength. Finally, the quantum yield Q,
of our sample is calculated using Equation 3.99. Note that three values must
be found in the literature: the quantum yield Q, of the standard substance,*
the refraction index n, of the medium containing it, and the refraction index
n of our sample’s medium.

This experimental determination of the quantum yield is rather difficult
to perform. Therefore, it is often preferred to estimate the quantum yield by
using a best-fit method applied on a test sample. This is an iterative process.
First we give Q a start value, then we compute the reflectance spectrum of
the test sample and compare the result with the measured spectrum. If the
fluorescence is underestimated, we increase Q; otherwise, we decrease it.
The computation is then redone with the new value of Q. This iterative
process stops when the square of the difference between the computed and
the measured spectra is minimal. Note that this estimation method reduces
the number of experiments to be performed, but it no longer guarantees that
the real physical quantum yield is used.

Because the refractive index n of the fluorescent medium is known from
the literature,* the internal and external reflection r; and r, can be computed
using Judd’s method (see Equations 3.13 and 3.14 in Section 3.3.2). The
reflection matrix of the substrate R, is measured using the two monochro-
mator method described by Donaldson,*® using barium sulfate (BaSO, ) as
the white reference. Note that this measurement must be performed on an
identical sample without the fluorescent coating. Sometimes, only the coated
substrate without fluorescent substances in the coating is available, e.g., in
the case of coated paper. In this particular case, the measured reflection
matrix R corresponds to the matrix product.

7 Tt 1 7; -1
R = (1_r51+(1—ri—1_r)~Rg)-(1_rsl—1_rs~Rg) (3.100)

S

This relation can be solved for the matrix R, as follows:
-1
R, = [(A-ri=r)l+r(1-r )R] - (R~7I) (3.101)

Note that the multiplication of matrices is not commutative, so the order of
the terms in Equation 3.101 must be respected.
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3.8 Models for halftoned samples

Most printing devices are only bilevel, meaning that they are capable of
printing ink only at a certain fixed density or leaving the substrate unprinted,
but they cannot produce intermediate ink densities. In such devices, the
visual impression of intermediate tone levels is usually obtained by means
of the halftoning technique, i.e., by breaking the original continuous-tone
image into small dots whose area coverage varies depending on the tone
level. Halftoning is also used for most color printing devices, where each of
the inks [usually cyan (C), magenta (M), yellow (Y), and often black (K)] is
only bilevel. This gives to the eye, when looking from a sufficient distance,
an illusion of a full range of intermediate color levels, although the printing
device is only bilevel. In this section, we focus our discussion on predicting
the reflectance of halftoned samples, where dyes (or pigments) are no longer
uniformly distributed over the entire surface.

3.8.1 The Murray—Davis equation

Let us consider a surface of unit area, and let R,(A) be the reflectance spec-
trum of a solid sample, i.e., a sample whose surface is fully covered with an
ink layer of constant density. The reflectance spectrum of the bare substrate
is denoted R (). The total reflectance spectrum R(A) of a halftoned sample
having a fraction a of area covered with ink (0<a<1) is given by the
following weighted sum (see Figure 3.27):

0.8 b -

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 3.27 Reflectance R(A =550 nm) of halftoned samples having a fraction a of
area covered with black ink (continuous line). The Murray-Davis model assumes a
linear behavior (dotted line), whereas the Clapper—Yule equation predicts a nonlinear
behavior caused by the light scattering in the substrate (dashed line).
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RO = (1-a)R,M) +aR,(h) (3.102)

This relation is often written in a different way using the reflection density
spectrum D(A) = —log1,R(A) . In this case, Equation 3.102 is called the Mur-
ray-Davis equation,*

D) = —logul(1-a)10 ¥ + 210"

1 (3.103)
This equation is sometimes given in an alternative form that is useful for
converting densities into area coverage.

-D(V)-D,(M)

= 1-10 !

- -D()-D,%)
1-10 f

(3.104)

3.8.2  The classical Neugebauer theory

In 1937, Neugebauer proposed a method for predicting the spectra of half-
toned color prints produced by the superposition of cyan, magenta, and
yellow dot-screens.™ In traditional printing, a dot-screen is a regular lattice
of dots that are ordered in parallel rows along two perpendicular axes. The
dots have variable sizes so as to produce the correct halftone levels. Further-
more, the cyan, magenta, and yellow screens are mutually rotated by 30° or
60° to avoid moiré patterns.5! Neugebauer observed, under the microscope,
that such a halftone print was in fact a mosaic of eight colors, which corre-
spond to the 2° possible overlaps of the cyan, magenta, and yellow inks:
white (= no ink), cyan, magenta, yellow, red, green, blue, and black (see Table
3.2). These colors are called Neugebauer primaries. Neugebauer based his
model on the assumption that the dots in the different screens are almost
independent of each other. This assumption, attributed to Demichel,* is,
however, only approximately true in traditional color printing.5

To explain Neugebauer’s method, let ¢, m, and y be the fractions of area
covered by the cyan ink, the magenta ink, and the yellow ink, respectively.
From a statistical point of view, ¢, m, and y can also be interpreted as the
probabilities for a given point to be covered by one of the three inks. Hence,
the probability for a given point to be white, i.e., not covered by any ink,
equals 1-c (no cyan ink) times 1-m (no magenta ink) times 1-y (no
yellow ink). By a similar reasoning, we deduce the fraction of area occupied
by the eight Neugebauer primaries as shown in Table 3.2. The reflectance
spectrum of the halftoned color print is then given by the following Neuge-
bauer equation:

8
RO = Za,-Rj(m (3.105)
j=1

© 2003 by CRC Press LLC



Table 3.2 Fraction of Area Occupied by the Eight Primaries of the Neugebauer
Model

Primary Ink Combination Reflectance Fraction of Area
White ~— — Ry(M) a; = (1-c)(1-m)(1-vy)
Cyan Cyan Ry(M) a, = c(1-m)(1-y)
Magenta Magenta R5(M) a; = (1-cym(1-y)
Yellow  Yellow Ry a, = (1-c)(1-m)y

Red Magenta, yellow Rs(L) as = (1-c)my

Green Cyan, yellow R, ag = c(1-m)y

Blue Cyan, magenta Ry (M) a;, = cm(1l-y)

Black Cyan, magenta, yellow Rs(\) ag = cmy

This is a simple extension of Equation 3.102. Note that Equation 3.105 is a
polynomial of degree three for the dot area triplet (c, m, y).

The classical Neugebauer equation leads to color prediction errors of
about AE = 10 in CIELAB. Several attempts have been made to improve
the Neugebauer model.>* One of the most important improvements is the
cellular Neugebauer method proposed in 1992 by Heuberger et al.® The
CMY color space is subdivided into rectangular cells. The reflectance spectra
R(A) of the samples corresponding to the corners of the cells are measured.
By means of Equation 3.105, the new reflectance spectra Rj(A) (1<j<8) of
eight equivalent primaries according to Table 3.2 are computed for each cell.
The reflectance spectrum R'(A) of a new given color defined by the dot area
triplet (c¢', m',y") is now computed in a two-step process. First, we find the
cell of the CMY color space to which it belongs; then, we assign the dot area
triplet (', m', y') into the traditional Neugebauer equation with the equiva-
lent reflectances R/(A) that we have computed for the cell.** Note that this
corresponds to a polynomial interpolation of degree three within each cell.
Using this improved model, the average prediction error drops to AE = 3
in CIELAB when the color space is subdivided into 4° = 64 cells; however,
this requires measuring 5° = 125 samples. The main drawback of this cel-
lular method lies, indeed, in the large number of samples that must be
measured.

3.8.3 Extended Neugebauer theory

In some printing processes, the number of inks k is greater than three, and
each ink may have m density levels (m =2 ). The Neugebauer theory can be
easily generalized to such cases by considering each of the m" possible ink
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superpositions as a Neugebauer primary. The generalized Neugebauer equa-
tion thus obtained is:

j=1 j

where R;(A) = reflectance of the Neugebauer primary j

a; = fraction of area it occupies

Note that, if the superposed layers are not independent of each other, the
parameters a; cannot be calculated as in the classical Neugebauer model.

3.8.4 The Yule—Nielsen equation

Yule and Nielsen pointed out that light does not emerge from the substrate
at the point where it entered. This is a consequence of the light scattering in
the substrate. Therefore, a photon that penetrates the substrate in an area
without ink may emerge in an inked area, and vice versa. As a consequence
of this exchange of photons, the fraction of area a obtained from Equation
3.104 (the Murray-Davis equation) is greater than the real area covered by
ink. This phenomenon is called optical dot gain or the Yule—Nielsen effect.

To improve the prediction of the reflection density D(A) of a halftoned
print, in 1951, Yule and Nielsen suggested the following correction to Equa-
tion 3.103:

DM D

D) = -nlog, [ (1-a)10 " +a10 " (3.107)

where D,(A) = reflectance density of the substrate

a = fraction of area covered by the ink whose solid reflectance
density is D(A)

n = an empirical correction factor called the Yule—Nielsen factor

Factor n must be determined experimentally and depends on the optical
properties of the substrate. In the literature, Equation 3.107 is called the
Yule—Nielsen equation.’”8 Note that, in the particular case of n = 1, Equation
3.107 gives the Murray—-Davis equation (Equation 3.103). The generalization
of Equation 3.107 for m" Neugebauer primaries was suggested by Vig-
giano.” In the literature, this generalization is called the n-modified Neuge-
bauer equation, and it can be written as follows:
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1 m* 1

[RV]" = Y a,[RM]" (3.108)

j=1

3.8.5 The Clapper—Yule equation

After formulating the Yule-Nielsen equation, Yule worked with Clapper to
develop an accurate model for halftone prints, based on a theoretical analysis
taking into account surface-reflection, multiple-scattering, internal-reflec-
tion, and ink transmission.®’ In this model, light is reflected many times
internally by the air-medium interface and by the substrate. A fraction of
light emerges at each reflection cycle, and the total reflectance is the sum of
all those fractions.

Let us denote r, as the surface reflection, r; as the internal reflection,
p, as the body reflectance of the substrate, and T(A) as the transmittance
spectrum of the ink under diffuse light. A light beam that strikes the surface
of a halftone print is partially reflected and partially transmitted into the
medium (see Figure 3.28). The reflected fraction is given by the surface
reflection r,. The transmitted fraction has two components. The first com-
ponent (1-7r,)(1-a) enters the medium through the unprinted area; the
second component (1-r,)aT(A) enters the medium through the ink of
transmittance T(A) . Therefore, the irradiance in the substrate resulting from
the entering light is Ty = (1-r,)(1 —a+aT(A)). The light is assumed to be
totally scattered within the substrate of body reflectance p,. The emerging
light emerging is again attenuated by a factor (1-a+aT(X)) as a result of
the ink pattern, and by a factor (1-r;) because of the internal reflection.
The first emergence of light is given by (1 -r,)(1-7;)[1-a+ aT(k)]sz. The

g TopW(l=r)aT(h)
A //
Air TopW-r)(1-a)
Ink
Substrate

T{ ' (1-r)aT(h) \ Ty pW(L-a)r,

\
(1-r)(1-a) T, pWaT M,

W= [r(1-a+al’Mp,l"""

Figure 3.28 In the Clapper—Yule model, fractions of light emerge at each reflection
cycle.
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internally reflected light suffers one further change. The fraction that
attempted to emerge through an inked area must pass through the ink a
second time, so its intensity must be multiplied by T(A). The light that re-
enters the substrate after the internal reflection is then given by
(IT-r)l(1—a)+aTM)]pglr(1-a+ lsz(}L))] . This sequence of events contin-
ues until the remaining light is negligible. The emerging fractions of light
are as follows (see Figure 3.28):

e Surface reflection,

First emergence,

(1-r)A-r)[1-a+aTM)]’p,

Second emergence,

(1-r)(1=r)[1-a+aTM1’p,lri(l—a+aT’(L)p,]

Third emergence,
(1-r)(1=r)[1—a+aTWplri(l—a+aT’W)p,l’

e ...nth emergence,

(1=r)(A=rp[1—a+aTAWplri(l—a+aT’W)p,l"

The sum of this geometrical series is the reflectance of the halftone print (see
Figure 3.27). This leads to the following Clapper—Yule equation, which was
published in 1953:%

P =r)(A-r)(1—a+aTQ)’
1-p,ri(l—a+aT’))

RO = 1, (3.109)

3.8.6 Advanced models

The Yule-Nielsen effect has a large impact on the color produced by halftone
prints. Intensive investigations have been made so as to relate the empirical
parameter n of the Yule-Nielsen equation to physical quantities. The result-
ing theories model the light scattering in the substrate by a point spread
function (PSF) P(x, y), which expresses the density of probability for a pho-
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ton entering the substrate at location (0, 0) to emerge at the location (x, y).
The light reflected at location (x, y) of a halftone print is then given by:

R, y) = ro+ (1-r)T(x, y)Px, y)*T(x, y)p, (3.110)
=r,+(1-r)T(x, y)pg“P(x -x,y—-y)T(x', yHdx'dy'
where * = convolution operator
p, = body reflectance of the substrate

r, = surface reflection

T(x,y) = transmittance at location (x, )

If there is ink in this location, then T(x, y) = T(A); otherwise, T(x,y) = 1.
The wavelength designation (A) is dropped to simplify the notation, but
P(x,y), T(x,y), and R(x,y) are functions of wavelength. The reflectance
R(\) of the whole halftone print is the spatial average of R(x, y). Note that
the multiple internal reflections are accounted by the PSF P(x, y).

In 1978, Ruckdeschel and Hauser derived the empirical Yule-Nielsen
factor n from the PSF and the period of the halftone screen.! They assumed
a Gaussian PSF,

Px,y) = Tciczexp [—(xz;y zﬂ (3.111)

where ¢ is a characteristic scattering length of the photon in the substrate.
According to their calculations, the Yule-Nielsen factor is given by the
following relation:

n=2—-exp (—n%) (3.112)

where L = period of the screen

Note that the value of n approaches 1 as the substrate approaches a specular
surface (6 = 0, Murray-Davis model; see Section 3.8.1) and approaches 2
as the substrate becomes a perfect diffuser (¢ = o, Clapper—Yule model,
see Section 3.8.5). In 1997, Rogers showed that the characteristic scattering
length o is related to two physical parameters:®? the absorption in the sub-
strate and the optical thickness of the substrate. If there is no absorption in
the substrate, ¢ increases without bound as the optical thickness of the
substrate tends to infinity. If absorption occurs, however, the scattering
length ¢ reaches a limit.
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Further investigations made by Rogers showed that the PSF is a series
of convolutions whose terms are the contributions of the multiple internal
reflections occurring in the substrate.®®

P(x,y) = (L+T)[(p(x, y) + p(x, Y (T2 (x, )p(x, 1)) (pgr)

+ PO AT PP PP (TCEPE YT + 1 (3913

where r; = internal reflection

p(x,y) =internal point spread function (internal PSF), which does not
take multiple internal reflections into account

Note that, for substrates having a low internal reflection r;, we have
P(x, y) = p(x, y) . On a macroscopic scale, the PSF P(x, y) shown in Equation
3.113 induces Yule-Nielsen factors n that are greater than 2. Such
Yule-Nielsen factors are often found in practice, and they are not explained
by the simple PSF given by Equation 3.111.

The internal PSF derives from the radiative transfer equation (see Section
3.6.1), but its analytical form, which is a series in MacDonald functions (also
called modified Bessel functions), is cumbersome.®? According to Gustav-
son’s studies,* the internal PSF is closely approximated by a function p(r)
that has a circular symmetry (r = J/x2+y?) and a strong radial decay.

1 r
p(r) = mexp[—ﬂ (3.114)

where d controls the radial extent of the internal PSF. In practice, d is
computed from the light profile measured across an optically sharp edge
between an inked and a non-inked area.®5

In 1997, Arney proposed a probabilistic approach that is less complex
than the PSF convolution.®”® He introduced the scattering probability &, ;
for a photon that enters the substrate through a region covered by the
Neugebauer primary j of transmittance T;, to emerge through a region
covered by the Neugebauer primary i of transmittance T;. The reflectance
R(A) of a halftone print is then given by

R\ = RgZ(aiTiZQjTjS,-Y j) (3.115)
i j

where R, = reflectance of the substrate

a; = fraction of area covered by the Neugebauer primary i
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In the particular case of traditional halftone screens, Arney showed that the
scattering probabilities §, ; are given by the following empirical relations:

>
I

1-(1-a)[l-(1-a)“+(1-a?)]

a;
Si,j = (1—6]’])(m)

]

(3.116)

where w = an empirical parameter.

Arney suggested that w is related to the characteristic scattering distance
6 and the period L of the screenby w = 1-exp[-o(c/L)], where o is an
experimentally determined proportionality coefficient. Note that the scatter-
ing probabilities J; ; can also be computed from the PSF convolution.

3.8.7 The Monte-Carlo method

The reflectance of a medium that is inhomogeneous or anisotropic (e.g.,
biological tissue) can be computed by a Monte-Carlo simulation.® The
medium is subdivided into volume elements called voxels. Each voxel is
associated with an absorption coefficient and a scattering phase function (see
Section 3.6.1).

The computer casts a virtual ray of unit intensity on the voxels. When
this ray enters a new voxel, its new intensity is computed from the absorption
coefficient of the voxel, and a random number is generated to decide, accord-
ing to the scattering phase function, in which direction the ray should be
scattered. The process is iterated until the ray leaves the voxels or until the
intensity of the ray drops below some predefined threshold. The reflectance
of the medium is deduced from the results of a large number of simulations.

3.9 New mathematical framework
for color prediction of halftones

The Kubelka-Munk model presented in the Section 3.6.2 assumes that the
coating medium is uniform, i.e., that the same amount of dye is everywhere.
In halftoned prints, this is no longer true, because ink is not applied uni-
formly over the whole surface. A photon can penetrate the printed media
through an inked region and leave the printed media through a non-inked
region, or vice versa (see the Yule—Nielsen effect in Section 3.8.4).

In this section, we generalize the models presented in Sections 3.6, 3.7,
and 3.8, and we incorporate them into a new mathematical framework based
on matrices.” For the sake of simplicity, we consider only two Neugebauer
primaries: inked and non-inked. In case of colored samples, more primaries
must be considered. Furthermore, because the ink layer is very thin (less than
10 pm), we assume that the exchange of photons between inked and non-
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inked areas takes place only in the substrate. We also assume that the ink
layer behaves according to the Kubelka-Munk model described previously.

Let us now consider such a surface having only two different inking
levels. As in the Kubelka-Munk model, we define for each inking level two
light fluxes: i,, which is oriented downward, and j;, which is oriented
upward. The index k takes the value 0 for the non-inked region and 1 for
the inked region (see Figure 3.29). Note that we drop the wavelength desig-
nation () to simplify the notation, but T, p,, as well as iy, ji, Sx, and K,
are all functions of wavelength.

The matrix Equation 3.49 can be extended to take several inking levels
into account. Let us denote My,, as this extended block matrix. For two
inking levels, the equation can be written as follows:

io(x) io(x) Ko+ S =Sp 0 0 io(x)
d Jo(x) = Mgy - Jolx) _ Sy —(Ky+Sy) 0 0 o) (3.117)
dx i1(x) iy(x) 0 0 Ki+5, -5, i3(x)

j1(x%) 71(%) 0 0 S —(Ki+Sy)| [jix)

where K, Sy, K;, and S, are, respectively, the absorption and scattering
coefficients of the non-inked medium and the inked medium. By integrating
Equation 3.117 between x = 0 and x = X, we get

i(X) io(0)
10O~ exp (Mg - X) - [10O (3.118)
i1(X) i1(0)
j1(X) j1(0)

The definition of the matrix exponential is given in Equation 3.51.

Air

3 . Interface

S » Infinitely
) 2 thin layer

' : Substrate:
diffuse
reflector

Figure 3.29 A schematic model of the printed surface. On top of the substrate, each
surface element is considered to be a uniform layer which behaves according to the
Kubelka-Munk model.
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To take into consideration the multiple internal reflections, the Saunder-
son correction must also be applied here. Note that, in our case, the ink is
inside the medium and not on top of it. Hence, the interface between the air
and the ink-absorbing medium is the same in non-inked regions as in inked
regions. Therefore, from Equation 3.66, we can directly derive the resulting
Saunderson correction matrix Mg .

I 1 _rl |

1-r, 1-r, 0 0
1'0 1'0( ) 7, (1_7[ rsrl) 0 0 1-0( )
Jol = My, - [Of 2 |17 1=, X (3.119)
i ih(X) 0 0 1 —7; i(X)
ji j1(X) e 1)

rS rsrl
L ’ 0 1- Ts (1 - - rs)

The key to our model lies in the way optical dot gain is expressed
mathematically. Because we assume that the exchange of photons takes place
only in the substrate, the optical dot gain affects only the boundary condi-
tions at x = 0. This implies that the upward-oriented fluxes j,(0) and j;(0)
depend on both downward-oriented fluxes iy(0), i;(0) and the body reflec-
tance p, of the substrate. This can be written in a general way in matrix

form as follows:
{]0(0)} - pg . {80,0 6(),1} . {10(0)} (3120)
71(0) 81,0 61,1 i1(0)

where the coefficient §, , represents the overall probability of a photon
entering through a surface element having the inking level v to emerge from
a surface element having the inking level u. Note that the probability is taken
throughout the full sample area. This probabilistic approach was introduced
by Arney (see Section 3.8.6). Because we deal with probabilities, the sum of
the coefficients 9, , belonging to the same line of the matrix in Equation
3.120 must equal 1. The computation of the scattering probabilities 5, , will
be addressed in Section 3.9.2.

Now we can put all elements together and write the matrix equation of
our new prediction model. By combining Equations 3.118 through 3.120 we
obtain

: 10 0 o] [0

Jo| — Mgc - exp(Mgy, - X) - 0 B0 0 Boaf  |Pylo(0) (3.121)
i 0 0o 1 0 i1(0)

].1 0 81’0 0 81, 1 pgll(o)
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The first matrix of Equation 3.121 represents the Saunderson correction,
the second matrix corresponds to the Kubelka-Munk modeling of the ink-
absorbing layer, and the third matrix models the light scattering in the
substrate.

Computing the emerging fluxes j, and j; as functions of the incident
fluxes i, and i; requires rearranging the lines and columns of the matrices.
To keep the block structure of the matrices, we introduce a change of basis
matrix as shown in Equation 3.122. Note that this particular change of basis
matrix is its own inverse. Furthermore, the last vector of Equation 3.121 is
written in Equation 3.122 as the product of a 4 X 2 matrix by a two-dimen-
sional vector.

il (10 00
l,l = 0010 “Mgc - exp(Mgy, - X)
il lo1 00
il oo o1

-1

1000 [100 of [10
,0010.0100_01[1'0(0)}
0100 0 0 8,9 0,1 py O i,(0)
100 01] 008,006, [0p

(3.122)

After computing the matrix products in Equation 3.122, we get a 4 x 2
matrix that can be split into two 2 x 2 matrices. The first matrix relates the
vector [igi;] to [iy(0),i1(0)], and the second matrix relates [fyj;] to
[i5(0),i1(0)] . By multiplying the second matrix by the inverse of the first
matrix, we derive a relation that expresses the emerging fluxes j, and j; as
linear functions of the incident fluxes i, and i, .

Because the incident light has the same intensity on inked and non-inked
regions, we have iy = i; = i. Let 4, be the inked fraction of area and
ay = 1—a, be the non-inked fraction of area. As in the Neugebauer model
(see Equation 3.106), the reflectance spectrum R(A) of the whole surface is
given by the weighted sum of the emerging light divided by the incident
light, where the weights are the area coverages of the various primaries.
Hence, the final result is given by

Jo
a, aq| - |,
[O J LJ _ (1-ay)j,+aqj,

T

RO = (3.123)
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3.9.1 Some particular cases of interest

Let us consider the particular case in which the average lateral light scatter-
ing distance is large compared to the size of the halftoning element. This is
the assumption of complete scattering. In this case, for any inking level v,
the probability d, , equals the fraction of area a4, occupied by the inking
level u,

80’0 = 81,0 = ao = 1—a1 al’ld 80’1 = 61,1 = {11 (3.124)

By introducing the relations of Equation 3.124 in Equation 3.122 and
assuming that S = 0, S; = 0, K, = 0, we obtain from Equation 3.123 the
well-known Clapper—Yule relation (see Equation 3.109),

L P=r)(A-r)(-a, +a,TQ)’

R(A) = 7, >
1-peril—a;+a,T° (V)

(3.125)

where T = exp[-K;X]. Note that this derivation requires the help of a
mathematics software package.

In another particular case, lateral light scattering can be neglected.
Hence, the probability of a photon being scattered in a region with a different
inking level equals 0. This implies that §,,, = 1 and 8, , = 0 for uzv.In
other words, the second to last matrix of Equation 3.122 is an identity matrix.
In this case, assuming S, = 0,5, =0, Ky, =0, r, =0, r, = 0 leads to the
Murray—Davis relation (see Equation 3.102),

R = Ry[(1-ay) +a,T%] (3.126)

where T = exp[-K;X]. Note that R, = p, because r; = 0 and r, = 0.

In the case of a fluorescent ink or of a fluorescent substrate, each element
of the matrices in Equation 3.122 must be replaced by a matrix. Let us denote
M as the fluorescence density matrix of the fluorescent ink as defined in
Equation 3.86, and Rg as the reflection matrix. Furthermore, let us denote 1
as the identity matrix, which has the same dimension as the fluorescence
density matrix M and the reflection matrix R,.

In the Kubelka-Munk matrix Mg,,, the sum K, + S; has to be replaced
by M, and S; has to be replaced by the matrix F defined in Equation 3.86.
In the same way, K, + S, and S, must be replaced by matrices. If the ink-
absorbing medium is nonfluorescent, the scalar values K, + S, and S, are
multiplied by the identity matrix I. The body reflectance p, is replaced by
the reflection matrix R, introduced in Section 3.7.2. In the Saunderson cor-
rection matrix M, each element is replaced by its scalar value multiplied
by I. The same kind of substitution must be done in the change of basis
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matrix, its inverse matrix, and the matrix containing the scattering probabil-
ities 9, ,. Note that i, j, i,(0), and i,(0) are replaced by vectors whose
number of components equals the number of columns of the matrix M.
Hence, the vector i, = i; = i equals the spectrum of the incident light
source, and (1 —a,)j, +4,j, equals the spectrum of the reflected light.

3.9.2  Computing the area fractions and the scattering probabilities

The area fractions 4, and the scattering probabilities §, , are computed by
a numerical simulation.”” High-resolution grids model the printed surface,
one grid being used for each ink. The value of a grid point corresponds to
the local amount of a given dye (see Figure 3.30C). In the particular case of
inkjet printing, the density profile of an isolated ink impact, which was
measured under the microscope, can be approximated by a parabolic func-
tion.”* A single dot is modeled as a stamp (see Figure 3.30B).

Digital printing systems use halftoning or dithering algorithms to deter-
mine whether a given location on the printed surface must be covered by a
dot. To simulate accurately a given printing system, the same halftoning or
dithering algorithm must be used to provide the locations of all printed dots
(Figure 3.30A). Wherever a dot is printed, the model is stamped at the cor-
responding location on the high-resolution grid. In the particular case of
inkjet printing, stamp overlapping is additive.

In a color print using k inks, k halftoned ink layers are used. The ink
combination covering a surface element at position (x, y) is given by the set
of k values of the grid points (x,y) in the k superposed high-resolution
grids. The area covered by a given combination of k inks is estimated by
counting the number of grid points having the same set of k values. The
fraction of area a, is determined by counting the number of grid points that
belong to the same inking level u.

The light-scattering process can be seen as an exchange of photons
between a grid point and its neighbors. As we saw in Section 3.8.6, it can be
modeled by an internal point spread function p(x,y) that expresses the
density of probability for a photon entering at location (0, 0) to emerge at
location (x,y). The discrete form of the internal PSF gives the probability
for an entering photon to emerge from another grid point. The function
suggested by Gustavson® is a good approximation of the internal PSF (see
Equation 3.114). The scattering probability §, , equals the weighted sum
over the whole grid of points having the inking level u with a neighbor
having an inking level v. The weights of the neighbors are given by our
discrete internal PSF.

3.10 Concluding remarks

By using a global approach, all classical color prediction models were unified
within a mathematical framework based on matrices. This matrix framework
provides a new insight into color prediction by modeling a reflective surface
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(A) Locations of printed ink drops (B) Printed surface simulated (C) Stamp of a single dot
on a high resolution grid

Figure 3.30 A high-resolution grid used for modeling the printed surface. The value of a grid point corresponds to the local amount of dye.
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by three matrices: the Saunderson correction matrix, the Kubelka—Munk
matrix, and the light-scattering matrix. This approach also allows us to
predict colors with a higher accuracy because a larger number of physical
phenomena are taken into account.

However, this generalized approach does not provide the ultimate
answer to all color prediction needs. Several important physical phenomena
are not yet taken into account; and, effects induced by the surface roughness,
metallic pigments, or pearlescent pigments cannot be predicted. Neverthe-
less, the unified framework is more powerful than a collection of separate
classical models put side by side, because it also provides solutions for
difficult cases such as, for example, halftones printed with fluorescent inks
or printing with a large number of nonstandard inks. In most cases, solutions
are found by considering larger matrices. The difficulty is simply turned into
more work for the computer.
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4.1 Introduction

All successful color imaging systems employ some form of color management.
Color management can be defined as a means for predicting, controlling,
and adjusting color information throughout the system — from the initial
color capture to the formation and display of output images. In chemical
and other analog-based imaging systems, color management may be imple-
mented in various ways, including equipment calibration, chemical process
control, and operator-controlled or automated color-printing adjustments.
In digital imaging systems, color management is generally implemented
using software designed specifically for that purpose. The principal function
of that software is to process (transform) image signals derived from an input
device to make them appropriate for a given output device. Digital color
management can be relatively simple when applied to imaging systems that
are restricted to only certain types of inputs and outputs, but, when applied
to systems having a variety of different types of input and output devices
and media, color management can become quite complex.

The successful implementation of digital color management depends on
a number of factors, including the use of appropriate device characterization
methods and suitable mathematical techniques for forming and applying
image-processing transformations. More fundamental to the success of the
color management, however, are the selection of an appropriate color man-
agement paradigm and the use of a correspondingly appropriate method for
color encoding, i.e., a method for representing color in digital form throughout
the imaging process.

4.2 Color management paradigms

Underlying every color management approach is an implicitly or explicitly
defined paradigm — an underlying conceptual model that ultimately deter-
mines how an imaging system using that color management will behave.
The paradigm describes the expected relationships among the input images,
encoded images, and output images of the system. Although various types
of color imaging systems might behave quite differently, virtually all can be
described in terms of just three fundamental types of color management
paradigms. These paradigms will be referred to as Types A, B, and C.!
Color imaging systems based on a Type A color management paradigm
are “input driven.” Their color encoding represents the colors of the input
images, and the colors produced by their outputs match (as much as possi-
ble) the input image colors. Color copiers, for example, operate according
to a Type A paradigm; the normal expectation is that an output image
produced by the copier will match the image input for copying. If an inter-
mediary image (such as a video preview) is provided, it too would be
expected to match the input and output images. This generally is the para-
digm that first comes to people’s minds when they think about color man-
agement. In fact, because the paradigm specifies that colors will match
throughout an imaging system, the paradigm might seem to be the only one
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that is needed. However, in many ways, the basic concept of the Type A
paradigm is quite limited, which is why many commercial systems instead
are based on Type B or Type C paradigms.

Systems based on a Type B color management paradigm are “encoding
driven.” Their color encoding is based on a unifying color encoding concept
that tends to reduce or eliminate the colorimetric differences inherent in the
system inputs. For example, some electronic prepress systems encode color
in terms of the colorimetric characteristics of a reference reflection-print
medium. Colors scanned from actual reflection prints are encoded essentially
in terms of their measured colorimetry. But colors scanned from photo-
graphic transparency films are re-rendered, i.e., their measured colorimetric
values are altered such that they correspond more closely to those that
typically would be measured from the reference reflection-print medium.
The current International Color Consortium (ICC) color management system
is also based on a Type B paradigm in that all input images must be re-
rendered to correspond to the properties of a reference imaging medium. As
in a Type A paradigm system, the colors produced by the outputs of a Type
B paradigm system are expected to visually match the colors represented by
the color encoding. However, unlike a Type A paradigm system, the colors
produced by a Type B paradigm system’s outputs do not necessarily match
the input image colors.

Systems based on a Type C color management paradigm are “output
driven.” Like Type B systems, they are based on a unifying color encoding
concept. However, their output colors do not necessarily match the colors
represented by this encoding, because additional re-rendering is performed,
subsequent to encoding, as part of the output signal processing. This delib-
erate additional re-rendering might be done for simulation, i.e., to make one
output produce images that imitate the appearance of images normally
produced by another type of output. Re-rendering also might be done to
enhance output images by taking advantage of the particular capabilities of
each output device or medium. For example, when an output medium
having a large color gamut is used, the output signal processing might
include some expansion of the gamut of the encoded colors so as to use the
full capabilities of that particular medium. This paradigm is often used in
digital photofinishing systems where the objective is for each output to
produce the best image possible from the encoded data. As a consequence
of the output-specific re-renderings and color enhancements that might be
performed, images produced on different types of output devices and media
generally will not (by design) match each other.

These three paradigms are sufficient for describing the basic functional-
ity of all existing types of color-managed imaging systems. Each paradigm
is widely used, and each is technically valid. Yet each produces very different
color results. The most appropriate paradigm for a given system will depend
on the specific application for which that system will be used. It is also
possible to design systems that function according to a Universal Paradigm,
in which various input and output signal processing options are provided.!
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Through the selection of appropriate options, such systems can be made to
operate according to any of the described paradigms.

4.3 Digital color encoding

In addition to the selection of a color management paradigm appropriate
for a given application, the successful implementation of digital color man-
agement requires the use of an appropriate method for digitally encoding
color. The basic function of the digital color encoding is to provide a digital
representation of colors for image processing, storage, and interchange
among systems. Within a given color imaging system, the encoding provides
a digital link between the system’s inputs and outputs.

In a simple system, having just one type of input and one type of output,
color encoding can be performed prior to any signal processing. The encod-
ing is therefore a direct representation of the color values measured by the
input device. In more complex systems supporting multiple types of inputs
and outputs, such an arrangement is impractical, because each combination
of input and output would require a separate signal-processing transform.
For example, a single-output system requires two different transforms to
process color values measured by two different input devices. The number
of required system transforms in this arrangement equals the product of the
number of inputs and outputs. Thirty-two signal-processing transforms are
required, for example, in a system having four inputs and eight outputs.

A much more efficient system results if the color signal processing is
split into two parts — input signal processing and output signal processing.
In this arrangement, each input and each output has its own associated
transform. Each input signal processing transform converts input color-
signal values to values for a defined color encoding specification, and each
output transform converts values from the color encoding specification to
values appropriate for the particular output. In this arrangement, the number
of system transforms equals just the sum, rather than the product, of the
number of inputs and outputs. For example, only 12 signal-processing trans-
forms are required in a system having 4 inputs and 8 outputs.

The success of this approach depends on the use of an appropriate color
encoding specification. The specification must allow for color information
to be represented unambiguously and in a way that does not limit the desired
functionality of the system. A complete color encoding specification must
define two principal attributes of the color representation: a color encoding
method and a color encoding data metric. The color encoding method deter-
mines the actual meaning of the encoded data, while the color encoding data
metric defines the color space and the numerical units in which encoded
data are expressed. Some considerations involved in the design of a color
encoding data metric will be discussed later.

The selection of the encoding method for a given system must be based
on some color property — a particular aspect of color — that all of the inputs
of that system have in common. It is that aspect of color that must be

© 2003 by CRC Press LLC



measured and digitally encoded so as to represent color completely and
unambiguously in the encoding specification. Three fundamental types of
measurement and encoding methods are discussed in the following section.

4.4 Color encoding methods

Densitometric color encoding is based on input-image color measurements
made according to defined sets of spectral responsivities that are not equivalent
to any set of visual color-matching functions. The responsivities can be those
of a particular type of densitometric instrument, such as an ISO Status A or
Status M densitometer>* The responsivities also can be those of an actual
scanner or of some hypothetical reference scanner. Encoded colors can be
expressed in terms of red, green, and blue (RGB) densities, transmittances,
or reflectances; cyan, magenta, and yellow (CMY) or cyan, magenta, yellow,
and black (CMYK) colorant amounts; or other values associated with the
densitometric measurements. The principal advantage of this type of encod-
ing is that it corresponds quite directly to physical measurements of input
images. Therefore, transformations from scanner RGB values to densitomet-
ric values, and transformations from densitometric values to output device
RGB values, generally are quite simple. That simplicity can translate into
optimum signal-processing accuracy and speed. However, the use of densi-
tometric color encoding generally is limited to situations where all system
input data are derived from essentially the same input medium. This often
is the case in graphic arts and motion picture applications.

Colorimetric color encoding is similar to densitometric color encoding,
except that it is derived from measurements made according to the spectral
responsivities of a human observer. One of the principal advantages of this
method is that it is based on well-established CIE recommendations for color
measurement. At first glance, colorimetric encoding would seem to offer the
perfect “device-independent” method for encoding color; in practice, colo-
rimetric encoding sometimes can be used successfully where methods based
on other forms of measurements will not work. Consider, for example, a
system that supports input from an assortment of reflection media with
image-forming colorants — printing inks, photographic dyes, thermal-trans-
fer dyes, etc. — having different spectral absorption characteristics. A color
encoding method based on RGB densitometric measurements alone would
not provide a meaningful representation of color in this system. For example,
a pair of colors on two different media might look identical, but they might
produce quite different RGB densitometric values. Conversely, a pair of
colors on two different media might appear quite different from one another,
but they might happen to produce the same RGB densitometric values. These
inconsistencies occur because the spectral absorption characteristics of the
colorants used in the two media are different. Visual matches therefore will
be metameric, not spectral. This makes colorimetric measurement a logical
choice for color encoding. By definition, metameric pairs of color stimuli will
have equal colorimetric values.
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It is important to remember, however, that metameric matching is view-
ing-illuminant dependent. So, areas of color on different media that match
when viewed under one illuminant might not match when viewed under
another. This means that color encoding based on standard CIE colorimetric
measurements can be used to encode color from multiple reflection media,
but only if two conditions are realized. First, a single reference illuminant
used for metameric matching must be specified, and, second, the encoded
colorimetric values must be determined according to the spectral power
distribution of that reference illuminant.

A further limitation of color encoding based on standard colorimetry
alone is that it will not work for images input from media designed to be
viewed under different conditions. For example, reflection prints generally
are designed to be viewed under typical indoor conditions, while photo-
graphic slides are designed to be projected and viewed in a darkened room.
Because an observer’s perceptions will be affected by the differences in these
respective viewing conditions, the colorimetric properties of reflection-print
and projection-slide media must be fundamentally different. The colorimet-
ric values measured from one type of medium will not be appropriate for
use on the other. For example, if the colorimetry of a slide is measured and
reproduced exactly on a reflection print, that print will appear too dark, too
high in luminance contrast, and too cyan-blue in color balance. The use of
colorimetric encoding therefore must be limited to media designed for one
set of viewing conditions.

This is a serious problem, because three fundamentally different types
of viewing environments are involved in the color imaging process, and
there are limitless possible sets of viewing conditions for each of those types.
On the input side of an imaging system, there are original-scene environments,
i.e., the environments in which live original scenes are viewed and captured.
Also, on the input side, there are input-image environments, where hardcopy
and soft-copy images that are to be input to a color imaging system are
viewed. Finally, there are output-image environments, where hardcopy and
soft-copy images produced by a color imaging system eventually are viewed.

One means for dealing with the effects of various viewing conditions is
color appearance encoding. In this technique, colorimetric values associated
with one set of viewing conditions are transformed to determine a visually
corresponding set of colorimetric values associated with another set of view-
ing conditions. The transformations, which are based on models of the
human visual system, can account for differences in factors such as absolute
image luminance level, image surround, and the observer’s state of chro-
matic adaptation. Such transformations can be used, for example, to deter-
mine the colorimetric values required for a slide projected in a darkened
room to visually match a reflection print viewed in a graphic arts viewing
booth. Although transformations based on a color appearance model could
be used quite directly in this particular example, other types of transforma-
tions are needed when an image is to be transformed from one image state
to another, as described in the next section.
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4.5 Image states

In a digital color imaging system, images can exist in several fundamentally
different states. The image state is a function of how an image was captured,
as well as any processing that may have been applied to the image. Although
the concept of an image state can be applied to all attributes of an image,
such as sharpness or noise, the aspect of image state that is of importance
for the current discussion relates to the interpretation of the color values of
the image. For example, the color values (digital code values) of an image
could correspond to the sensor RGB values from a digital camera, the CIELAB
values of a reflection print, or the ISO Status M RGB density values of a
photographic negative. These image examples vary in two respects. First,
they each use a different color space to encode the image (sensor RGB, CIELAB,
and ISO Status M densities). However, just as importantly, each of these
image encodings corresponds to a distinctly different image state (an original
scene, a reflection print, and a photographic negative). Even if the same color
space, CIELAB for example, were used to encode all of these images, it would
still not be possible (or at least not optimal) to treat the images identically.
Obviously, something quite different would have to be done with the CIELAB
values of a color negative relative to the CIELAB values of a print. As will
be discussed in more detail later, the same also would be true for the CIELAB
values of an original scene relative to those of a print.

Most digital images can be broadly categorized into two types of image
states: unrendered and rendered. Images in an unrendered image state are
directly related to the colorimetry of real or hypothetical original scenes.
Such images are sometimes called scene-referred images. Images in this cate-
gory would include raw digital camera captures and images stored in the
Kodak PhotoYCC color interchange space.* Images in a rendered image state are
representations of the colorimetry of output images (such as a print, a slide,
or a CRT display) and are sometimes called output-referred images. Many
common color encodings, such as sSRGB® and SWOP CMYKy/ fall into this
category. A third category of image state applies to the encoding of photo-
graphic color negatives. Unprocessed images captured by photographic
color negative film scanners are in this image state, although it typically is
a temporary state prior to forming a rendered image or determining a cor-
responding scene-referred image.

To enable the optimal use of digital images, it is important to distinguish
images in an output-referred image state from those in a scene-referred
image state. It is well known that the colorimetry of a pleasing rendered
image generally does not match the colorimetry of the corresponding scene.
Among other things, the tone/color reproduction process that “renders” the
colors of a scene to the desired colors of the output image must compensate
for differences between the scene and rendered image viewing conditions.!”
For example, rendered images generally are viewed at luminance levels
much lower than those of typical outdoor scenes. Consequently, an increase
in the overall contrast of the rendered image usually is required to compen-
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sate for perceived losses in reproduced luminance and chrominance contrast.
Additional contrast increases in the shadow regions of the rendered image
also are needed to compensate for the viewing flare associated with ren-
dered-image viewing conditions.

Psychological factors, such as color memory and color preference, also
must be considered in image rendering. For example, observers generally
remember colors as being of higher purity than they originally were, and
they typically prefer the reproductions of skies and grasses to be more
colorful than they were in the original scene. The tone/color reproduction
aims of well-designed imaging systems will account for such factors.'”

Finally, the tone/color reproduction process also must account for the
fact that the dynamic range of an output device or medium usually is
substantially less than that of an original scene. It is therefore typically
necessary to discard and/or compress some of the highlight and shadow
information of the scene to fit within the dynamic range of the rendered
output image. This is shown in Figure 4.1, which illustrates a typical backlit
scene. In this example, the approximate scene colorimetry was determined
from a scan of a color negative. The image on the left shows a rendering of
the scene appropriate for the foreground information, and the image on the
right shows a rendering of the scene appropriate for the background infor-

e ‘%6‘

(b)

Figure 4.1 (See color insert on page 430) Rendering of large dynamic range scene
optimized for (a) foreground, and (b) background.
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mation. In the first case, much of the highlight information was clipped by
the rendering process. Likewise, in the second case, much of the shadow
information was lost. This is illustrated further in Figure 4.2, which shows
a histogram of the scene luminance data for the image shown in Figure 4.1.
A conventional reflection print of this scene can reproduce only about six
stops (1.8 log luminance units) of scene information within the dynamic
range of the output medium. The indicated ranges show the subsets of the
scene luminance information corresponding to the two images in Figure 4.1.
It can be seen that only a portion of the total scene information is reproduced
in either of the rendered images.

Because the colorimetry of scenes and their corresponding rendered
images are intentionally and necessarily different, it would be ambiguous
to represent images in both image states using the same color encoding
specification. For example, if one were to send the CIELAB values for a
particular image, with no information about whether the color values were
original-scene color values or rendered-image color values, the recipient
would not know what to do with the image values so as to make a good
output image. If the CIELAB values were rendered color values appropriate
for the output viewing environment, it simply would be necessary to deter-
mine the device code values needed to produce the specified colorimetry.
However, if the color values corresponded to original-scene color values, it
would be necessary to modify the image colorimetry by applying an appro-
priate tone/color reproduction transformation before producing the output
image. Directly reproducing the scene colorimetry on an output image gen-
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Figure 4.2 Histogram of relative log scene luminance values for the scene shown
in Figure 4.1. A scene luminance range of about 1.8 log units can be reproduced on
a typical output reflection print. Because the dynamic range of the original scene is
substantially larger than this, a subset of the image data must be selected during the
rendering process. Different results are obtained depending on whether the fore-
ground or background region of the image is selected.
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erally would produce results that would be judged inferior. For example,
Figure 4.3 shows a pair of images generated from the same scene. Image (a)
approximately matches the colorimetry of the original scene, whereas an
appropriate tone/color reproduction transformation has been used to mod-
ify the colorimetry of image (b) to produce an image that generally would
be judged to have improved color reproduction.

One of the advantages of encoding images in a scene-referred image
state is that such encoding provides the capability of retaining the maximum
amount of image information. As was illustrated in Figure 4.1, once an image
is committed to a rendered output-referred image state appropriate for print-
ing or display, any extended dynamic range information is permanently lost.

Figure 4.3 (See color insert) Two different renderings of a scene. In image (a), the
colorimetry of the rendered image closely matches that of the original scene. In image
(b), the rendered image is not colorimetrically accurate, but the resulting image
generally would be judged to have improved color reproduction.
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Retaining the scene-referred image data preserves the maximum flexibility
for the potential uses of an image. This allows for the correction of image-
capture exposure errors and enables multiple renditions to be made from a
given image. For example, a photographer could decide at the time an image
is printed whether to optimally render the foreground information or the
background information from a backlit scene. It is valuable to preserve this
option because there often will not be a single “best” choice that can be made
when the image is captured. For the image shown in Figure 4.1, the final
decision would depend on whether the photographer was most interested
in the boys in the foreground or the scenic Alps in the background. Retaining
the extended dynamic-range scene information also enables other options,
such as employing advanced image processing techniques to produce a print
wherein both the foreground and the background are well rendered, as
shown in Figure 4.4. Comparable results could not be attained starting from
one of the conventionally rendered images shown in Figure 4.1.

4.6 Standard image-state color encoding specifications

The fact that images exist in many different image states and are expressed
in terms of numerous color spaces significantly complicates the development

Figure 4.4 (See color insert) In this rendering of the image shown in Figure 4.1, a
digital “dodge-and-burn” operation has been used to produce a print in which both
the foreground and the background are properly rendered.
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of software applications that use and manipulate images. For example, an
image-processing algorithm that works in one color space might not have the
expected behavior when used in another color space. To reduce complexity
of imaging system design, it is desirable to define standard color encodings
for each of the main classes of image states. This provides for the unambiguous
communication of color information and allows the development of standard
image-manipulation algorithms and standard color-processing paths.

Attempts to standardize color encodings typically have involved the
specification of a particular output-device-dependent color space that is
central to the workflow for a certain market segment. Examples of such color
spaces include sRGB and SWOP CMYK. Although such standardizations
can work well within the limited scope of a particular application, significant
compromises are necessary to use them in other applications. For example,
hardcopy media and CRT displays typically have very different color gam-
uts. Therefore, using sRGB (which is based on a particular CRT model) as a
standard color encoding necessarily involves clipping many colors that could
have been produced on a given hardcopy medium. This would be unaccept-
able in many hardcopy-based market segments, such as consumer photo
finishing and graphic arts.

The International Color Consortium (ICC) has defined a Profile Connec-
tion Space (PCS)? that comprises a color encoding specification that can be
used to explicitly specify the color of an output-referred image with respect
to a reference viewing environment. It could be argued that the PCS could
serve as the standard color encoding specification for rendered images. How-
ever, it never was intended that the PCS be used to store or manipulate
images directly. Rather, it was intended to be a color space where device
profiles could be joined to form complete input-to-output color transforms.
Neither the CIELAB nor the CIE XYZ color encodings supported for the PCS
is particularly well suited for many common types of image manipulations.
Additionally, quantization errors introduced by encoding images in PCS
would be significantly larger than necessary, because a large percentage of
code value combinations correspond to unrealizable colors.

Given the limitations of the existing solutions, Eastman Kodak Company
has developed a family of color encoding specifications for use in the devel-
opment of its digital imaging products.”!® These specifications are being
offered for use by other companies, and they also have been proposed for
international standardization. The following detailed discussion of the prop-
erties of these color encoding specifications will help to clarify several topics
previously discussed, including color encoding methods, color encoding
data metrics, and image states.

The first of these specifications, Reference Input Medium Metric RGB
(RIMM RGB), is ideal for the manipulation, storage, and interchange of images
from sources such as digital cameras that naturally capture scene-referred image
data. A companion specification, Reference Output Medium Metric RGB
(ROMM RGB), serves a similar purpose for images from sources such as print
scanners and other devices that produce images in a rendered output-referred
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image state. Figure 4.5 illustrates how these standard color encoding specifi-
cations can be used as the basis for a general imaging system architecture.
Before images can be sent to an output device, such as a printer, it
generally will be necessary to convert scene-state images to rendered-state
images using a tone/color rendering operation. However, in the same way
that a negative is much more versatile than a print, an image in a scene-
referred state will be much more versatile than one in a rendered-image
state. Therefore, it is desirable in many imaging systems to delay any con-
version to a rendered-image state until such time that an output image is to
be generated. This provides the maximum flexibility for the imaging system.

4.6.1 Criteria for selection of RIMM/ROMM
RGB color encoding specifications

It was desirable that the RIMM RGB and ROMM RGB color encoding spec-
ifications be defined such that they are as similar as possible to one another.
Doing so simplifies the development of image-manipulation algorithms
across the two color encodings. It also simplifies the rendering process in
which a rendered ROMM RGB image is created from an original-scene image
encoded in RIMM RGB. This desired similarity is best achieved by basing
the data metrics of the two encoding specifications on the same color space.
A number of criteria were used to select this color space. Specifically, the
space should have the following properties:

¢ A direct relationship to the color appearance of the scene/image

* A color gamut large enough to encompass most real-world surface
colors using non-negative tristimulus values

* An efficient encoding of the color information to minimize quanti-
zation artifacts

¢ A simple transformation to/from ICC PCS

Slide Print
Scanner Scanner

Standard
Rendered
Encoding

(ROMM RGB)

Printer

Digital
Camera
Video
Camera

Standard Scene
Encoding
(RIMM RGB)

Negative
Scanner

Figure 4.5 Image state diagram showing standard color encodings.
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¢ A simple transformation to/from video RGB (e.g., SRGB)

¢ Be well suited for application of common image manipulations such
as tone scale modifications, color-balance adjustments, sharpening,
etc.

* Be compatible with established imaging workflows

All of these criteria can be achieved by the use of an additive RGB color
space with an appropriately selected set of wide-gamut primaries. When
images are encoded using a set of RGB primaries, there is a direct and simple
relationship to scene/image colorimetry, because such primaries are linear
transformations of the CIE XYZ primaries. RGB color spaces have the addi-
tional advantage that simple transformations based on a one-dimensional
lookup table (LUT), a matrix, and another LUT can be used to convert
to/from additive color spaces such as PCS XYZ, video RGB (sRGB), and
digital camera RGB.

However, two of the criteria that affect the selection of the particular
RGB primaries are somewhat conflicting. First, the chromaticities of the
primaries should define a gamut sufficiently large to encompass colors likely
to be found in real scenes and images. Such colors will then be defined by
non-negative tristimulus values, which generally simplifies subsequent sig-
nal processing such as tone scale modifications. At the same time, their use
should result in efficient digital encodings that minimize quantization errors.

Increasing the gamut to encompass more colors only can be achieved
by trading off against correspondingly larger quantization errors (given a
fixed bit depth). If the chromaticities of the primaries are chosen to include
the maximum possible color gamut (for example, choosing the XYZ prima-
ries would encompass the entire spectrum locus), a significant fraction of
the color space would correspond to imaginary colors and to colors that
would not commonly be encountered in real images. Therefore, in any encod-
ing using such a color space, there would be large numbers of code value
combinations that never would be used in practice. This would lead to larger
quantization errors in the usable part of the color space than would be
obtained with different primaries defining a smaller chromaticity gamut. It
is, therefore, desirable to choose primaries with a gamut that is sufficiently
large, but not larger than necessary.

Figure 4.6 shows the primaries selected for RIMM/ROMM RGB. These
primaries encompass the gamut of real-world surface colors, without devot-
ing a lot of space to non-realizable colors outside the spectrum locus. Also
shown for comparison are the SRGB primaries. It can be seen that the area
defined by the sRGB chromaticity boundaries is inadequate to cover signif-
icant portions of the real-world surface color gamut. In particular, it excludes
many important high-chroma colors near the yellow-to-red boundary of the
spectrum locus.

Another important requirement for the RIMM RGB and ROMM RGB
color encoding specifications is that they be well suited for the application
of common image manipulations. Many types of image manipulations
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Figure 4.6 Comparison of ROMM RGB and sRGB primaries in x-y chromaticity
coordinates.

include the step of applying nonlinear transformations to each of the chan-
nels of an RGB image (e.g., tone scale modifications, color balance adjust-
ments, etc.). The process of forming a rendered image from a scene is one
important application of this type. One way to accomplish the rendering
operation is by the application of a nonlinear tone scale transformation to
the individual channels of an RGB image in a scene-referred image state. A
well-designed transformation of this type will have the desirable effects of
increasing the luminance and color contrast in the mid-tones, compressing
the contrast of the highlights and shadows, increasing the chroma of in-
gamut colors, and gamut mapping out-of-gamut colors in a simple but
visually pleasing way. If an input scene is represented using the RIMM RGB
color encoding, the result of applying such rendering transforms will be a
rendered image in the ROMM RGB color encoding.

Nonlinear channel-independent transforms will, in general, modify the
ratios of the red, green, and blue channel data. This can lead to unwanted
hue shifts, particularly for high-chroma colors. Hue shifts are particularly
problematic in reproductions of natural chroma gradients having constant
hue and saturation. Such gradients occur when rounded surfaces are illu-
minated by a moderately directional light source. In these situations, chroma
increases with increasing distance from the specular highlight and then
decreases again as the shadows deepen.

The induction of hue shifts by the application of the nonlinear channel-
independent transforms can never be completely eliminated. One objective
for optimizing the location of the primaries was to eliminate or minimize
objectionable hue shifts, sometimes at the expense of less noticeable or less
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likely hue shifts. Hue shifts for a particular color can be eliminated when
the color lies on one of the straight lines passing through the primaries and
the white point on a chromaticity diagram.

The effects of nonlinear transforms on hue shifts were studied using a
chroma series for eight color patches from the Macbeth Color Checker. These
patches included red, yellow, green, cyan, blue, magenta, light skin, and dark
skin. Hue shifts in skin tones and yellows, particularly in the direction of
green, are considered the most objectionable. These hue shifts are most
strongly affected by the location of the blue primary. Other colors that were
considered particularly important during the optimization process were
blues and reds.

There is a trade-off between the color gamut of the primaries, quantiza-
tion artifacts, and the extent of the hue shifts that occur during rendering.
If the primaries are moved out to increase the color gamut, quantization
artifacts will increase, and the hue shifts introduced during the application
of a nonlinear transformation generally will decrease. This results from the
fact that the RGB values in real images will be distributed over a smaller
range, thereby reducing the impact of nonlinear transformations. If the color
gamut is decreased by moving the primaries closer together, quantization
artifacts diminish, but hue shifts are generally larger, and color gamut is
sacrificed.

Finally, a basic requirement for any commercially useful color encoding
is that it be compatible with typical commercial imaging workflows. In many
cases, Adobe Photoshop software is an important component in such imag-
ing chains. Conveniently, Adobe Photoshop versions 5.0 and higher have
incorporated the concept of a “working color space,” which is different from
the monitor preview color space. This is consistent with the concept of
storing/manipulating images in an extended color gamut space. Adobe has
placed a constraint on the definition of valid working color spaces that
requires the primaries to have all-positive x, y, and z chromaticity values.
This condition is satisfied for the ROMM RGB primaries.t (Because Adobe
Photoshop software operates within a rendered-image paradigm, it is inap-
propriate to use RIMM RGB as a Photoshop software working color space.)

During the selection of the RIMM/ROMM RGB primaries, an extensive
optimization process was used to determine the best overall solution to
satisfy all of these criteria. The CIELAB hue shifts associated with the selected
RIMM/ROMM RGB primaries are shown in Figure 4.7. This plot shows a
series of line segments connecting corresponding pairs of CIELAB a* b*
values, before and after a nonlinear tone scale transformation was applied
to a chroma series in each of eight color directions. It can be seen that only
relatively small hue shifts are introduced for the highest chroma colors in
the blue and cyan directions, and the hue shifts elsewhere are virtually
negligible. Overall, these hue shifts are very small compared to those

1 For more information about using ROMM RGB as a Photoshop software working space, see
the white paper posted at www.kodak.com (search on “ROMM”).
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Figure 4.7 Hue shifts resulting from a typical nonlinear rendering transform for
(a) the RIMM/ROMM RGB primaries, and (b) an alternate set of wide-gamut prima-
ries. The hue shifts for the most important colors are visually negligible for the
RIMM/ROMM RGB color encoding.

associated with most other sets of additive primaries. Similar results were
obtained when this hue-shift analysis was carried out using several other
color spaces, including CIECAM97s,"! IPT,'2 and the OSA_UCS color space.’

4.6.2 ROMM RGB color encoding specification

Reference Output Medium Metric RGB (ROMM RGB) is designed to be an
extended-gamut color encoding specification for representing the color
appearance of an output-referred image. In addition to specifying the image
state and color space, it is also necessary to specify an intended viewing
environment to define unambiguously an encoding of color appearance. One
of the requirements for ROMM RGB is that it be tightly coupled to the ICC
Profile Connection Space (PCS). Color values in the PCS represent the CIE
colorimetry of a defined reference medium that will produce the desired
color appearance when viewed in a reference viewing environment. The
reference viewing environment for ROMM RGB was based on that defined
in the latest ICC draft specification!* and is specified to have the following
characteristics:

—_

The luminance level for the observer adaptive white is 160 cd/m?.

2. The observer adaptive white has the chromaticity values of CIE Stan-
dard Illuminant Ds; (x = 0.3457, y = 0.3585).

3. The viewing surround is average, i.e., the overall luminance level
and chromaticity of the surround are assumed to be similar to be that
of the image.

4. There is 0.75% viewing flare, referenced to the observer adaptive

white.
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5. The image color values are assumed to be encoded using flareless
(or flare-corrected) colorimetric measurements based on the CIE 1931
Standard Colorimetric Observer.

The ROMM RGB color encoding is defined in the context of a reference
imaging medium associated with a hypothetical additive color device having
the following characteristics:

1. Reference primaries defined by the CIE chromaticities given in Table
41

2. Equal amounts of the reference primaries producing a neutral with
the chromaticity of D5, (x = 0.3457, y = 0.3585)

3. The capability of producing a white with a luminance factor of Fy, =
0.89 and a black with a luminance factor of Fy = 0.0030911

Table 41  Primaries/White Point for
Reference Imaging Medium

Color x y

Red 0.7347 0.2653
Green 0.1596 0.8404
Blue 0.0366 0.0001
White 0.3457 0.3585

Images intended to be viewed in other viewing environments, or on a
medium different from the reference medium, can be encoded in ROMM
RGB by first determining the corresponding tristimulus values that would
produce the intended color appearance on the reference medium when
viewed in the reference viewing environment. The corresponding tristimulus
values can be determined by using appropriate color appearance transfor-
mations to account for the differences between the actual and reference
viewing conditions. Additionally, it may be necessary to account for differ-
ences in the media characteristics.

The conversion of the PCS XYZ tristimulus values to ROMM RGB values
can be performed by a matrix operation followed by a set of one-dimensional
functions. This is equivalent to the operations associated with a basic monitor
profile, which means that ROMM RGB can be incorporated in a system
employing ICC profiles simply by using an appropriately designed display
profile.

Most current implementations of the ICC PCS incorporate the concept
of a reference medium wherein the black point of the reference medium is
mapped to Y, = 0, and the white point of the reference medium is mapped
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to Ypes = 1.0.15 Therefore, to relate actual CIE image colorimetry to PCS XYZ
values, an appropriate normalizing transformation is required as follows:

(Z-Zx) Zw

ZPCS = o o NVv
(ZW_ZK)YW (41)

where X, Y, Z = CIE image tristimulus values
Xpess Ypes, Zpes = PCS tristimulus values

Xw Yy Zyy = tristimulus values of the reference medium white
point (X}, = FyX, = 85.81, Yy, = F,Y, = 89.00, and
Zw=FuZ,=73.42, where X, =96.42, Y,=100.00,
and Z, = 82.49)

Xy, Yx, Zg = tristimulus values of the reference medium black
point (Xg=F¢X, =0.2980, Y= FY, =0.3091, and
Zy=FyZ, =0.2550)

4.6.2.1 ROMM RGB conversion matrix

Given the defined primaries shown in Table 4.1, the following matrix can be
derived to compute the linear ROMM RGB values from the PCS image
tristimulus values:

Rromm 1.3460 -0.2556 —0.0511] | Xpcs
Gromm| = |-0.5446 1.5082 0.0205 ||Ypcs (4.2)
Bromm 0.0000 0.0000 1.2123 ||Z,cs

As required by the definition of ROMM RGB, this matrix will map image
tristimulus values with the chromaticity of Dy, to equal ROMM RGB values.
A neutral with a Y;5 value of 1.0, corresponding to the reference medium
white point, will map to linear ROMM RGB values of 1.0. Likewise, the
reference medium black point will map to linear ROMM RGB values of 0.0.

4.6.2.2 Nonlinear encoding of ROMM RGB

A nonlinear quantization function is used to store the ROMM RGB values
in integer form. A simple gamma function nonlinearity incorporating a slope
limit at the dark end of the intensity scale is defined for this purpose.
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O/ CROMM < 00

16C I.., 00<C E
Clromm = ROI\f[\fg max rROMM < E¢ 43)
Cromm ~ Lnaws  Ei<Cromm<1.0

Imax; CROMM 21.0

where C is R, G, or B; I, = the maximum integer value used for the
nonlinear encoding; and

E, = 16" = 0.001953 (4.4)

For the baseline 8-bit configuration, I, is equal to 255. The linear
segment of the nonlinearity is used to impose a slope limit to eliminate
reversibility problems that otherwise would result from the infinite slope of
the gamma function at the zero point. Twelve-bit and 16-bit versions of
ROMM RGB are also defined. The only difference is that the value of I,
is set to 4095 or 65535, respectively. In cases where it is necessary to identify
a specific precision level, the notations ROMMS8 RGB, ROMM12 RGB, and
ROMM16 RGB are used. Table 4.2 shows some sample encodings for a series
of neutral patches of specified Ypcs.

Table 4.2 Sample Neutral Patch Encodings

Ypcs ROMMS8 RGB  ROMM12 RGB  ROMM16 RGB

0.00 0 0 0
0.001 4 66 1049
0.01 20 317 5074
0.10 71 1139 18236
0.18 98 1579 25278
0.35 142 2285 36574
0.50 174 2786 44590
0.75 217 2490 55855
1.00 255 4095 65535

4.6.3 RIMM RGB color encoding specification

Reference Input Medium Metric RGB (RIMM RGB) is a companion color
encoding specification to ROMM RGB that can be used to encode the col-
orimetry of an unrendered scene. Both encodings utilize the same wide-
gamut color space defined by the primaries and white point given in
Table 4.1. The reference viewing conditions used to encode scene color
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values for RIMM RGB are typical of outdoor environments and are defined
as follows:

* The luminance level for the observer adaptive white is 15,000 cd/m?.

® The observer adaptive white has the chromaticity values of CIE Stan-
dard Iluminant Dj, (x = 0.3457, y = 0.3585).

¢ Viewing surround is average, i.e., the overall luminance level and
chrominance of the surround is assumed similar to that of the scene.

® There is no viewing flare for the scene other than that already includ-
ed in the scene colorimetric values.

® The scene color values are assumed to be encoded using flareless (or
flare corrected) colorimetric measurements based on the CIE 1931
Standard Colorimetric Observer.

Scenes captured under conditions different from those of the reference
viewing environment can be encoded in RIMM RGB by first determining
the corresponding tristimulus values that would produce the intended color
appearance in the reference viewing environment. For some applications,
the intended color appearance may be an estimate of the appearance of the
original scene if it had been captured in the reference viewing environment.
For other applications, it may be desirable to encode the color appearance
of the scene in its particular capture viewing environment. In this case,
corresponding tristimulus values can be determined by using appropriate
color appearance transformations to account for the differences between the
actual and reference viewing conditions.

4.6.3.1 RIMM RGB conversion matrix

Because ROMM RGB and RIMM RGB use a common color space, the con-
version from scene tristimulus values to corresponding linear RIMM RGB
values can be accomplished using the same conversion matrix that was given
in Equation 4.2, except that the input tristimulus values are scene XYZ values
rather than PCS XYZ values.

Rrimm 1.3460 —0.2556 —0.0511| | Xpso
Grivm| = |-0.5446 1.5082 0.0205 || Y pso (4.5)
Brivim 0.0000 0.0000 1.2123 ||Z s,

Note: The scene XYZ values are normalized such that the luminance of a
correctly exposed perfect white diffuser in the scene will have a value of
Ypso= 1.0.

4.6.3.2 Nonlinear encoding of RIMM RGB

Because the dynamic range of unrendered scenes is generally larger than
that of the medium specified for ROMM RGB, a different nonlinear encoding
must be used. The RIMM RGB nonlinearity is based on that specified by
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Recommendation ITU-R BT.709' (formerly known as CCIR 709). This is the
same nonlinearity used in the Kodak PhotoYCC color interchange space encod-
ing implemented in the Kodak Photo CD system* and is given by

0; Crivm <0.0
%4-5CR1MM; O.OSCRIMM<O-018
C'RIMM — : clip (4:6)
2951099yt —0.099;  0.018 < Cjping < Eciy
clip
Linas; Crivm = Eciip

where C is either R, G, or B; I, is the maximum integer value used for the
nonlinear encoding; E

=2.0 is the normalized scene luminance level that
is mapped to I,,,; and

max’

clip

Vi = 1.099E,;,"* ~0.099 = 1.402 (4.7)

For the baseline 8-bit/channel RIMM RGB configuration, I,,,, is 255. In some
applications, it may be desirable to use a higher-bit-precision version of
RIMM RGB to minimize any quantization errors. Twelve-bit and 16-bit per
channel versions of RIMM RGB are also defined. The only difference is that
the value of I, is set to 4095 or 65535, respectively. In cases in which it is
necessary to identify a specific precision level, the notations RIMMS8 RGB,
RIMM12 RGB, and RIMM16 RGB are used.

4.6.4 ERIMM RGB color encoding specification

The RIMM RGB color space is defined to have an extended luminance
dynamic range that can encode information up to 200% of the luminance
value associated with a normally exposed perfect (100%) diffuse white
reflector in the scene. This should be adequate for many input sources, such
as digital cameras, which themselves have a somewhat limited dynamic
range. However, for some inputs, most notably scanned photographic neg-
atives, a greater luminance dynamic range is required to encode the full
range of captured scene information. For example, consider the histogram
of scene luminance data previously shown in Figure 4.2. The RIMM RGB
encoding would only retain scene information up to a log relative scene
luminance value of 0.3. A significant portion of the scene information would
be lost with a RIMM RGB encoding in this case. To provide an encoding
that can retain the full range of captured scene information, a variation of
the RIMM RGB color space, Extended Reference Input Medium Metric RGB
(ERIMM RGB), is defined.
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As with RIMM RGB, ERIMM RGB is related directly to the colorimetry
of an original scene. The nonlinear encoding function is the only encoding
operation that is different. For ERIMM RGBS, it is desirable to increase both
the maximum scene luminance value that can be represented as well as to
reduce the quantization interval size. The size of the quantization interval
is directly related to the minimum scene luminance value that can be accu-
rately represented. To satisfy both the extended luminance dynamic range
and reduced quantization interval requirements simultaneously, it is neces-
sary to use a greater bit precision for ERIMM RGB. A minimum of 12 bits
per color channel is recommended.

4.6.4.1 Nonlinear encoding for ERIMM RGB

A modified logarithmic encoding is used for ERIMM RGB. A linear segment
is included for the very lowest luminance values to eliminate the non-
invertibility of a strictly logarithmic encoding at the dark end of the scale.
The encoding was defined such that the linear and logarithmic segments
match in both value and derivative at the boundary. In equation form, this
encoding is represented by

O, Crimm <0
0.0789626
( ) Crivnt Imax; 0 < Croum < E¢
C'ERIMM - 1 C 3.0 (4'8)
( og RIMM + )Imax; E; < Crimm < Eqip
Lo Crivm > Eciip

where Cis R, G, or B; I, is the maximum integer value used for the nonlinear
encoding; E.;,= 10> =316.23 = the upper scene luminance limit that gets
mapped to I,,,; and

E, = ¢/1000 = 0.00271828 (4.9)

is the break point between the linear and logarithmic segments, e being the
base of the natural logarithm. For a 12-bit encoding, I, is 4095, and for a
16-bit encoding, I, is 65535. In cases in which it is necessary to identify a
specific precision level, the respective notations ERIMMI12 RGB and
ERIMM16 RGB are used.

To compute ERIMM RGB values, Equation 4.8 should be used in place
of Equation 4.6 in the previously described procedure for determining
RIMM RGB values. Examples of RIMM RGB and ERIMM RGB encodings for
neutral patches at different scene relative luminance levels are shown in
Table 4.3. It can be seen that the range of relative luminances that can be
represented in ERIMM RGB is greatly extended from that of RIMM RGB.
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Table 4.3  Sample Scene Luminance Encodings

Relative Relative Log RIMMS RIMM12 ERIMM12

Luminance  Luminance RGB RGB RGB
0.001 -3.00 1 13 119
0.01 -2.00 8 131 745
0.10 -1.00 53 849 1489
0.18 -0.75 74 1194 1679
1.00 0.00 182 2920 2234
2.00 0.30 255 4095 2458
8.00 0.90 NA NA 2906

32.00 1.50 NA NA 3354
316.23 2.50 NA NA 4095

4.7 Image states in a color managed architecture

The use of color management systems, such as that developed by the ICC,
is becoming increasingly common in a variety of digital imaging applica-
tions. Color management systems typically are based on an architecture in
which the color response of an input device is characterized using an input
profile, which describes the relationship between the device code values and
color values in some profile connection space (PCS). Similarly, the color
response of an output device is characterized using an output profile, which
describes the relationship between the PCS color values and the correspond-
ing device code values needed to produce colors having those values. The
PCS used in the ICC color management architecture, and the color encodings
used in virtually every other color management system, are defined to be in
a rendered output-referred image state. This type of PCS, generally based
on reflection-print media viewed in indoor viewing environments, greatly
complicates the use of a color management architecture based on the image-
states paradigm. For example, a traditional input profile cannot be used for
an input device that captures scene-referred data if it is desired to convert
the image data to the standard scene-referred color encoding (i.e., (E)RIMM
RGB). This is because the output of such a profile would be PCS color values
in a rendered-image state. As discussed previously, the process of rendering
an image from a scene-image state to a rendered-image state typically will
involve an irreversible loss of information. Thus, transforming an image into
RIMM RGB by combining a device-to-PCS profile with a PCS-to-RIMM RGB
profile would seriously compromise the quality of the resulting image.
However, this does not mean that traditional color management archi-
tectures must be discarded altogether to build an imaging system around
the image-state paradigm previously shown in Figure 4.5. Rather, it simply
means that conventional input/output profiles cannot be used in the imaging
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chain until the point at which the image is ready to be committed to a final
output rendering. Fortunately, most color management systems provide for
the concept of a device link profile that can be used to bypass the PCS and go
directly from an input color space to an output color space. (Typically, such
device link profiles would be created by cascading an input profile with an
output profile, but this is not a requirement.)

Figure 4.8 illustrates this approach in more detail. Device link profiles
are used to transform scene-referred input images into RIMM RGB. Input-
image sources might include digital cameras (when unrendered sensor RGB
values are available), as well as color negative film scanners (when special
transformations are used to extract scene colorimetry from scanned densit-
ometric values). In this case, not only is RIMM RGB used as a stopping point
where images can be stored or edited, but it also becomes the output color
space for the device profiles, effectively serving the role of a “scene-referred
profile connection space.” At the point when it is finally desired to produce
an image on an output device such as a printer or CRT, a conventional input
profile can be used to render the RIMM RGB image to the PCS. This profile
would include the desired system tone/color reproduction characteristics.
A conventional output profile then can be used to transform the PCS image
to the appropriate output device code values.

Conventional input profiles can be used for input devices, such as
print/slide scanners and CRTs, where the input images already are in a
rendered image state. These input profiles can be combined directly with
output profiles to produce an image for a particular output device. Alterna-
tively, the input profile can be combined with a ROMM RGB profile to
convert the image to ROMM RGB for the purposes of storage, interchange,
or editing. Because ROMM RGB is a simple LUT/matrix away from ICC
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Figure 4.8 Image state architecture using color management.
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PCS XYZ values, it falls within the class of color encodings that can be
represented with a simple display profile.

It should be noted that the input profiles used for rendered images
intended to be viewed in environments significantly different from the ref-
erence viewing environment defined for the PCS must also include appro-
priate viewing environment transformations. For example, photographic
slides are typically intended to be viewed in a darkened room. The colori-
metric characteristics of slide films are designed with a higher luminance
contrast so as to produce pleasing images in that viewing environment.
Therefore, an input profile for a slide scanner must not only account for the
colorimetric characteristics of the scanner; it must also include an appropriate
transformation that will determine the visually equivalent colorimetry for
the PCS reference viewing environment. It may also be necessary for the
profile to perform some amount of re-rendering of the image to map the
extended dynamic range of the slide film into the reflection-print-like
dynamic range of the PCS reference medium.

During the process of working with images that are stored in the
RIMM/ROMM RGB color encodings, it frequently will be desirable to pre-
view the image on a video display. In a color-managed system, this can be
accomplished by combining the appropriate RIMM RGB or ROMM RGB
profile with a display profile for the particular video display. Because
RIMM/ROMM RGB are based on a simple additive color space, a simple
display-type profile using only a LUT followed by a matrix generally can
be used to get to PCS XYZ. Likewise, the output profile for the video display
would comprise a matrix followed by a gamma-function nonlinearity. For
cases where processing speed is a critical concern, these operations can be
combined, yielding a simple LUT-matrix-LUT processing chain that can be
implemented directly and optimized for speed.

An example of an imaging chain for a representative system utilizing
the standard image state architecture is shown in Figure 4.9. The input device
for this example is a color negative film scanner. A device link profile is used
to convert the raw film scanner image to a corresponding ERIMM RGB
image. This profile accounts for the characteristics of the scanner as well as
the characteristics of the film used to capture the image. Once the image is
in ERIMM RGB, many different types of algorithms can be used to operate
on the image. For example, a scene balance algorithm can be used to automat-
ically color balance the image to correct for any variations in capture illumi-
nation and/or film processing, or an advanced tone scale algorithm could
be used to properly darken the background of a backlit scene. ERIMM RGB
is an appropriate color encoding for applying many types of image-process-
ing algorithms, but it is especially important that algorithms utilizing the
extended dynamic range scene information of the encoding be applied in
ERIMM RGB before the image is rendered to an output-referred state.

After all scene-state image manipulations have been applied, the image
can be rendered to produce a corresponding rendered-state image. In this
example, the image is converted to a ROMM RGB representation where
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Figure 4.9 Imaging chain example using standard color encodings and color man-
agement.

further operations will be applied. This conversion can be applied by com-
bining an ERIMM RGB input profile with a ROMM RGB profile. The
ERIMM RGB input profile is used to impart the system tone/color repro-
duction aims relating the scene color values to the corresponding rendered
image color values. These aims may be application dependent. For example,
consumer photographers generally prefer higher contrast and higher satu-
ration images than those preferred by professional portrait photographers.
In many cases, acceptable tone/color reproduction characteristics can be
achieved by applying a simple tone reproduction curve to the ERIMM RGB
scene-exposure values. In this case, the ERIMM RGB to ROMM RGB trans-
formation will involve only a simple one-dimensional LUT.

Once the image is in ROMM RGB, additional rendered-state image oper-
ations can be applied. For example, text annotations and a creative border
could be added to the image, or the image could be composited with an
image from a print scanner, etc. The final ROMM RGB image can then be
printed by applying a ROMM RGB profile and an output profile for the
particular output device.

4.8 Digital color management with JPEG 2000

Historically, many desktop imaging applications have been designed based
on the assumption that the digital image stored in a file is ready to display
directly on a CRT. This assumption has caused significant interoperability
problems for applications that have attempted to store images with other
color encodings. For example, if an application were to open a ROMM RGB
image and send the color values directly to a video display, the image would
appear very desaturated, because the image was encoded using a set of high-
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chroma primaries rather than video primaries. Special software must be used
to open and/or color manage images stored in various color spaces, and, as
a result, images stored in spaces other than video RGB cannot be used by a
large number of applications. The overall situation has effectively made it
impractical to use color spaces other than video RGB for most consumer
applications.

JPEG 2000 is a new file storage format that has been recently standard-
ized. One of the requirements that have been built into the format specifi-
cation is that all JPEG 2000 compliant file readers must be able to properly
decode an image stored in any color encoding specification that can be
defined using a restricted class of ICC profiles. In particular, the supported
ICC profile formats include any display-type profile that utilizes a LUT-
matrix transformation to get to PCS XYZ. Both the (E)RIMM RGB and the
ROMM RGB color encoding specifications can be represented using profiles
that fall within this definition. As a result, images can be stored using these
color encoding specifications without sacrificing interoperability. Applica-
tions designed to manipulate images in the color spaces of these encodings
will be able to do so. Other applications can simply use the attached ICC
profile to convert the image to a video RGB color space (e.g., sSRGB) or to
some other color space for which the application was designed.

4.9 Summary

In digital imaging systems, the principal role of color management is to
transform image signals derived from one or more input devices to signals
that are appropriate for a given output device. Digital color management
can be relatively straightforward when applied to simpler systems, but it
becomes quite complex when applied to systems having a variety of different
input and output types.

The successful implementation of digital color management depends on
a number of factors, including the use of appropriate device characterization
methods and suitable mathematical techniques for forming and applying
image-processing transformations. In addition, an appropriate color man-
agement paradigm must be determined for the particular system being
developed. Virtually all current color-managed imaging systems are based
on one of three basic paradigms. A “universal” paradigm, in which various
input and output signal processing options are supported, has also been
defined. Through the selection of appropriate options, systems based on this
all-inclusive paradigm can be made to operate according to any of the three
basic paradigms.

Successful color management also requires the use of an appropriate
method for encoding color. Three basic color encoding methods were
described in this chapter. Densitometric color encoding is based on input-
image color measurements made according to any of various defined sets
of spectral responsivities. Colorimetric color encoding is derived from mea-
surements made according to the spectral responsivities of a standard human

© 2003 by CRC Press LLC



observer. Color appearance encoding is an extension of basic colorimetric
encoding. In this method, colorimetric values associated with one set of
viewing conditions are transformed to determine a visually corresponding
set of colorimetric values associated with another set of viewing conditions.
The transformations account for differences in a number of factors — includ-
ing absolute image luminance level, image surround, and the observer’s
state of chromatic adaptation — that influence an observer’s perception of
color.

In addition to an appropriate color encoding method, a properly
designed data metric must also be used. A data metric defines the color space
and numerical units in which encoded data are expressed. The combination
of a color encoding method and data metric forms a complete color encoding
specification. The selected color encoding specification must be consistent
with the state of the image to be encoded. The image state is a function of
how an image was captured and subsequently signal processed. Most digital
images can be categorized into two types of image states: unrendered and
rendered. Images in an unrendered state are directly related to the colorim-
etry of real or hypothetical original scenes. Images in a rendered state are
encoded representations of the colorimetry of output images. Transforma-
tions beyond those based on color appearance alone are needed when an
image is to be transformed from one image state to another. Image-state
transformations are greatly facilitated by the use of appropriate color encod-
ing specifications.

Eastman Kodak Company has developed a family of such specifications
for use in the development of its digital imaging products. These specifica-
tions have been proposed for international standardization. Reference Input
Medium Metric RGB (RIMM RGB) is designed for the manipulation, storage,
and interchange of images from sources that naturally capture scene-
referred (unrendered) image data. Reference Output Medium Metric RGB
(ROMM RGB) serves a similar purpose for images from sources that produce
images in an output-referred (rendered) image state. Images encoded in
terms of RIMM RGB or ROMM RGB are fully compliant with the JPEG 2000
file storage format.
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5.1 Introduction

Achieving consistent and high-quality color reproduction in a color imaging
system necessitates a comprehensive understanding of the color character-
istics of the various devices in the system. This understanding is achieved
through a process of device characterization. One approach for doing this is
known as closed-loop characterization, where a specific input device is opti-
mized for rendering images to a specific output device. A common example
of closed-loop systems is found in offset press printing, where a drum scan-
ner is often tuned to output CMYK signals for optimum reproduction on a
particular offset press. The tuning is often carried out manually by skilled
press operators. Another example of a closed-loop system is traditional
photography, where the characteristics of the photographic dyes, film, devel-
opment, and printing processes are co-optimized (again, often manually) for
proper reproduction. While the closed-loop paradigm works well in the
aforementioned examples, it is not an efficient means of managing color in
open digital color imaging systems where color can be exchanged among a
large and variable number of color devices. For example, a system compris-
ing three scanners and four printers would require 3 x4 = 12 closed-loop
transformations. Clearly, as more devices are added to the system, it becomes
difficult to derive and maintain characterizations for all the various combi-
nations of devices.

An alternative approach that is increasingly embraced by the digital
color imaging community is the device-independent paradigm, where trans-
lations among different device color representations are accomplished via
an intermediary device-independent color representation. This approach is
more efficient and easily managed than the closed-loop model. Taking the
same example of three scanners and four printers now requires only 3 + 4
= 7 transformations. The device-independent color space is usually based
on a colorimetric standard such as CIE XYZ or CIELAB. Hence, the visual
system is explicitly introduced into the color imaging path. The closed-loop
and device-independent approaches are compared in Figure 5.1.

The characterization techniques discussed in this chapter subscribe to
the device-independent paradigm and, as such, involve deriving transfor-
mations between device-dependent and colorimetric representations.
Indeed, a plethora of device characterization techniques have been reported
in the literature. The optimal approach depends on several factors, including
the physical color characteristics of the device, the desired quality of the
characterization, and the cost and effort that one is willing to bear to perform
the characterization. There are, however, some fundamental concepts that
are common to all these approaches. We begin this chapter with a description
of these concepts and then provide a more detailed exposition of character-
ization techniques for commonly encountered input and output devices. To
keep the chapter to a manageable size, an exhaustive treatment is given to
only a few topics. The chapter is complemented by an extensive set of
references for a more in-depth study of the remaining topics.
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Figure 5.1 Closed-loop vs. device-independent color management.

5.2 Basic concepts

It is useful to partition the transformation between device-dependent and
device-independent space into a calibration and a characterization function,
as shown in Figure 5.2.

5.2.1 Device calibration

Device calibration is the process of maintaining the device with a fixed
known characteristic color response and is a precursor to characterization.
Calibration can involve simply ensuring that the controls internal to the
device are kept at fixed nominal settings (as is often the case with scanners
and digital cameras). Often, if a specific color characteristic is desired, this
typically requires making color measurements and deriving correction func-
tions to ensure that the device maintains that desired characteristic. Some-
times the desired characteristic is defined individually for each of the device
signals; e.g., for a CRT display, each of the R, G, B channels is often linearized
with respect to luminance. This linearization can be implemented with a set
of one-dimensional tone reproduction curves (TRCs) for each of the R, G, B
signals. Sometimes, the desired characteristic is defined in terms of mixtures
of device signals. The most common form of this is gray-balanced calibration,
whereby equal amounts of device color signals (e.g, R=G=BorC=M =
Y) correspond to device-independent measurements that are neutral or gray
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Figure 5.2 Calibration and characterization for input and output devices.

(e.g., a*=b*= 0 in CIELAB coordinates). Gray-balancing of a device can also
be accomplished with a set of TRCs.

It is important to bear mind that calibration with one-dimensional TRCs
can control the characteristic response of the device only in a limited region
of color space. For example, TRCs that ensure a certain tone response along
each of the R, G, B axes do not necessarily ensure control of the gray axis,
and vice versa. However, it is hoped that this limited control is sufficient to
maintain, within a reasonable tolerance, a characteristic response within the
entire color gamut; indeed, this is true in many cases.

5.2.2 Device characterization

The characterization process derives the relationship between device-depen-
dent and device-independent color representations for a calibrated device.
For input devices, the captured device signal is first processed through a
calibration function (see Figure 5.2) while output devices are addressed
through a final calibration function. In typical color management workflows,
device characterization is a painstaking process that is done infrequently,
while the simpler calibration process is carried out relatively frequently to
compensate for temporal changes in the device’s response and maintain it
in a fixed known state. It is thus assumed that a calibrated device maintains
the validity of the characterization function at all times. Note that calibration
and characterization form a pair, so that if a new calibration alters the
characteristic color response of the device, the characterization must also be
re-derived.
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The characterization function can be defined in two directions. The for-
ward characterization transform defines the response of the device to a
known input, thus describing the color characteristics of the device. The
inverse characterization transform compensates for these characteristics and
determines the input to the device that is required to obtain a desired
response. The inverse function is used in the final imaging path to perform
color correction to images.

The sense of the forward function is different for input and output
devices. For input devices, the forward function is a mapping from a device-
independent color stimulus to the resulting device signals recorded when
the device is exposed to that stimulus. For output devices, this is a mapping
from device-dependent colors driving the device to the resulting rendered
color, in device-independent coordinates. In either case, the sense of the
inverse function is the opposite to that of the forward function.

There are two approaches to deriving the forward characterization func-
tion. One approach uses a model that describes the physical process by which
the device captures or renders color. The parameters of the model are usually
derived with a relatively small number of color samples. The second
approach is empirical, using a relatively large set of color samples in con-
junction with some type of mathematical fitting or interpolation technique
to derive the characterization function. Derivation of the inverse function
calls for an empirical or mathematical technique for inverting the forward
function. (Note that the inversion does not require additional color samples;
it is purely a computational step.)

A primary advantage to model-based approaches is that they require
fewer measurements and are thus less laborious and time consuming than
empirical methods. To some extent, a physical model can be generalized for
different image capture or rendering conditions, whereas an empirical tech-
nique is typically optimized for a restrictive set of conditions and must be re-
derived as the conditions change. Model-based approaches generate relatively
smooth characterization functions, whereas empirical techniques are subject
to additional noise from measurements and often require additional smooth-
ing on the data. However, the quality of a model-based characterization is
determined by the extent to which the model reflects the real behavior of the
device. Certain types of devices are not readily amenable to tractable physical
models; thus, one must resort to empirical approaches in these cases. Also,
most model-based approaches require access to the raw device, while empir-
ical techniques can often be applied in addition to simple calibration and
characterization functions already built into the device. Finally, hybrid tech-
niques can be employed that borrow strengths from both model-based and
empirical approaches. Examples of these will be presented later in the chapter.

The output of the calibration and characterization process is a set of
mappings between device-independent and -dependent color descriptions;
these are usually implemented as some combination of power-law mapping,
3 x 3 matrix conversion, white-point normalization, and one-dimensional
and multidimensional lookup tables. This information can be stored in a
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variety of formats, of which the most widely adopted industry standard is
the International Color Consortium (ICC) profile (www.color.org). For print-
ers, the Adobe Postscript language (Level 2 and higher) also contains oper-
ators for storing characterization information.!

It is important to bear in mind that device calibration and characteriza-
tion, as described in this chapter, are functions that depend on color signals
alone and are not functions of time or the spatial location of the captured or
rendered image. The overall accuracy of a characterization is thus limited
by the ability of the device to exhibit spatial uniformity and temporal sta-
bility. Indeed, in reality, the color characteristics of any device will vary to
some degree over its spatial footprint and over time. It is generally good
practice to gather an understanding of these variances prior to or during the
characterization process. This may be accomplished by exercising the device
response with multiple sets of stimuli in different spatial orientations and
over a period of time. The variation in the device’s response to the same
stimulus across time and space is then observed. A simple way to reduce
the effects of nonuniformity and instability during the characterization pro-
cess is to average the data at different points in space and time that corre-
spond to the same input stimulus.

Another caution to keep in mind is that many devices have color-cor-
rection algorithms already built into them. This is particularly true of low-
cost devices targeted for consumers. These algorithms are based in part on
calibration and characterization done by the device manufacturer. In some
devices, particularly digital cameras, the algorithms use spatial context and
image-dependent information to perform the correction. As indicated in the
preceding paragraph, calibration or characterization by the user is best per-
formed if these built-in algorithms can be deactivated or are known to the
extent that they can be inverted. (This is especially true of the model-based
approaches.) Reverse engineering of built-in correction functions is not
always an easy task. One can also argue that, in many instances, the built-
in algorithms provide satisfactory quality for the intended market, hence not
requiring additional correction. Device calibration and characterization is
therefore recommended only when it is necessary and possible to fully
control the color characteristics of the device.

5.2.3 Input device calibration and characterization

There are two main types of digital color input devices: scanners, which
capture light reflected from or transmitted through a medium, and digital
cameras, which directly capture light from a scene. The captured light passes
through a set of color filters (most commonly, red, green, blue) and is then
sensed by an array of charge-coupled devices (CCDs). The basic model that
describes the response of an image capture device with M filters is given by

D, = j SVG (AN uM)or+n,i = 1,...,M (5.1)

reV
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where D, =sensor response
S(A) = input spectral radiance
7,(A) = spectral sensitivity of the ith sensor
u(A) = detector sensitivity
n; = measurement noise in the ith channel
V = spectral regime outside which the device sensitivity is
negligible

Digital still cameras often include an infrared (IR) filter; this would be incor-
porated into the u(A) term. Invariably, M = 3 sensors are employed with
filters sensitive to the red, green, and blue portions of the spectrum. The
spectral sensitivities of a typical set of scanner filters are shown in Figure
5.3. Scanners also contain an internal light source that illuminates the reflec-
tive or transmissive material being scanned. Figure 5.4 shows the spectral
radiance of a fluorescent scanner illuminant. Note the sharp spikes that
typify fluorescent sources. The light incident upon the detector is given by

SOV = LOVR(A) (5.2)

where R(A) = spectral reflectance (or transmittance) function of the input
stimulus
I,(A) = scanner illuminant
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Figure 5.3 Typical scanner filter sensitivities.
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Figure 5.4 Spectral radiance of typical scanner illuminant.

From the introductory chapter on colorimetry, we know that spectral radi-
ance is related to colorimetric signals by

C, = K, j S(AM)c;(Mor,i = 1,2,3 (5.3)

reV

where  C; = colorimetric signals
ci(A) = corresponding color matching functions
K; = normalizing constants

Again, if a reflective sample is viewed under an illuminant I (A), the input
spectral radiance is given by

S(\) = L(JR(\) (5.4)

Equations 5.1 through 5.4 together establish a relationship between
device-dependent and device-independent signals for an input device. To
further explore this relationship, let us represent a spectral signal by a dis-
crete L-vector comprising samples at wavelengths 2, ..., A;. Equation 5.1
can be rewritten as
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d=Als+e (5.5)

where d = M-vector of device signals
s = L-vector describing the input spectral signal

A, = L x M matrix whose columns are the input device sensor
responses
€ = noise term

If the input stimulus is reflective or transmissive, then the illuminant term

I,(A) can be combined with either the input signal vector s or the sensitivity
matrix A, In a similar fashion, Equation 5.3 can be rewritten as

c=As (5.6)

where ¢ = colorimetric three-vector

>
I

. = L x 3 matrix whose columns contain the color-matching
functions ¢,(A)

If the stimulus being viewed is a reflection print, then the viewing illuminant
I(M) can be incorporated into either s or A..

It is easily seen from Equations 5.5 and 5.6 that, in the absence of noise,
a unique mapping exists between device-dependent signals d and device-
independent signals c if there exists a transformation from the device sensor
response matrix A, to the matrix of color matching functions A_.2In the case
of three device channels, this translates to the condition that A; must be a
linear nonsingular transformation of A .3* Devices that fulfill this so-called
Luther—Ives condition are referred to as colorimetric devices.

Unfortunately, practical considerations make it difficult to design sensors
that meet this condition. For one thing, the assumption of a noise-free system
is unrealistic. It has been shown that, in the presence of noise, the Luther-Ives
condition is not optimal in general, and it guarantees colorimetric capture
only under a single viewing illuminant I,.> Furthermore, to maximize the
efficiency, or signal-to-noise ratio (SNR), most filter sets are designed to have
narrowband characteristics, as opposed to the relatively broadband color
matching functions. For scanners, the peaks of the R, G, B filter responses
are usually designed to coincide with the peaks of the spectral absorption
functions of the C, M, Y colorants that constitute the stimuli being scanned.
Such scanners are sometimes referred to as densitometric scanners. Because
photography is probably the most common source for scanned material,
scanner manufacturers often design their filters to suit the spectral charac-
teristics of photographic dyes. Similar observations hold for digital still
cameras, where filters are designed to be narrowband, equally spaced, and
independent so as to maximize efficiency and enable acceptable shutter
speeds. A potential outcome of this is scanner metamerism, where two
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stimuli that appear identical to the visual system may result in distinct
scanner responses, and vice versa.

The spectral characteristics of the sensors have profound implications
on input device characterization. The narrowband sensor characteristics
result in a relationship between XYZ and device RGB that is typically more
complex than a 3 x 3 matrix, and furthermore changes as a function of
properties of the input stimulus (i.e., medium, colorants, illuminant). A
colorimetric filter set, on the other hand, results in a simple linear charac-
terization function that is media independent and that does not suffer from
metamerism. For these reasons, there has been considerable interest in
designing filters that approach colorimetric characteristics, subject to prac-
tical constraints that motivate the densitometric characteristics.® An alterna-
tive approach is to employ more than three filters to better approximate the
spectral content of the input stimulus.” These efforts are largely in the
research phase; most input devices in the market today still employ three
narrowband filters. Hence, the most accurate characterization is a nonlinear
function that varies with the input medium.

Model-based characterization techniques use the basic form of Equation
5.1 to predict device signals D; given the radiance S(A) of an arbitrary input
medium and illuminant, and the device spectral sensitivities. The latter can
sometimes be directly acquired from the manufacturer. However, due to
temporal changes in device characteristics and variations from device to
device, a more reliable method is to estimate the sensitivities from measure-
ments of suitable targets. Model-based approaches may be used in situations
where there is no way of determining a priori the characteristics of the specific
stimulus being scanned. However, the accuracy of the characterization is
directly related to the accuracy of the model and its estimated parameters.
The result is usually an M x 3 matrix that maps M (typically three) device
signals to three colorimetric signals such as XYZ.

Empirical techniques, on the other hand, directly correlate colorimetric
measurements of a color target with corresponding device values that result
when the device is exposed to the target. Empirical techniques are suitable
when the physical nature of the input stimulus is known beforehand, and a
color target with the same physical traits is available for characterizing the
input device. An example is the use of a photographic target to characterize
a scanner that is expected to scan photographic prints. The characterization
can be a complex nonlinear function chosen to achieve the desired level of
accuracy, and it is obtained through an empirical data-fitting or interpolation
procedure.

Modeling techniques are often used by researchers and device manufac-
turers to better understand and optimize device characteristics. In end user
applications, empirical approaches are often adopted, as these provide a
more accurate characterization than model-based approaches for a specific
set of image capture conditions. This is particularly true for the case of
scanners, where it is possible to classify a priori a few commonly encountered
media (e.g., photography, lithography, xerography, inkjet) and generate
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empirical characterizations for each class. In the case of digital cameras, it
is not always easy to define or classify the type of stimuli to be encountered
in a real scene. In this case, it may be necessary to revert to model-based
approaches that assume generic scene characteristics. More details will be
presented in following sections.

A generic workflow for input device characterization is shown in Figure
5.5. First, the device is calibrated, usually by ensuring that various internal
settings are in a fixed nominal state. For scanners, calibration minimally
involves normalizing the RGB responses to the measurement of a built-in
white tile, a process that is usually transparent to the user. In addition, it
may be desirable to linearize and gray-balance the device response by scan-
ning a suitable premeasured target. Next, the characterization is performed
using a target comprising a set of color patches that spans the gamut of the
input medium. Often, the same target is used for both linearization and
characterization. Industry standard targets designed for scanners are the Q60
and IT8. Device-independent color measurements are made of each patch
in the target using a spectroradiometer, spectrophotometer, or colorimeter.
Additional data processing may be necessary to extract raw colorimetric data
from the measurements generated by the instrument. Next, the input device
records an image of the target. If characterization is being performed as a
separate step after calibration, then the captured image must be processed
through the calibration functions derived in a previous step. The device-
dependent (typically RGB) coordinates for each patch on the target must
then be extracted from the image. This involves correctly identifying the
spatial extent of each patch within the scanned image. To facilitate this, it is
desirable to include reference fiducial marks at each corner of the target and
supply target layout information (e.g., number of rows, columns) to the
image-processing software. Also, it is recommended that a subset of pixels
near the center of each patch is averaged, so as to reduce the effect of spatial
noise in the device response. Once extracted, the device-dependent values
are correlated with the corresponding device-independent values to obtain
the characterization for the device.

The forward characterization is a model of how the device responds to
a known device-independent input; i.e., it is a function that maps device-
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Figure 5.5 Input device characterization workflow.
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independent measurements to the resulting device signals. The inverse func-
tion compensates for the device characteristics and maps device signals to
corresponding device-independent values. Model-based techniques esti-
mate the forward function, which is then inverted using analytic or numer-
ical approaches. Empirical techniques derive both the forward and inverse
functions.

Figure 5.6 describes how the accuracy of the resulting characterization
can be evaluated. A test target containing colors that are preferably different
from those in the initial characterization target is presented to the image-
capture device. The target should be made with the same colorants and
media as used for the characterization target. The resulting captured elec-
tronic image is mapped through the same image-processing functions per-
formed when the characterization was derived (see Figure 5.5). It is then
converted to a device-independent color space using the inverse character-
ization function. The device-independent color values of the patches are then
extracted and compared with measurements of these patches using an appro-
priate color difference formula such as AE,, or AE,, (described in more
detail in Section 5.5). To avoid redundant processing, the same target can be
used for both deriving and testing the characterization, with different por-
tions of the target being used for the two purposes.

5.2.4  Output device calibration and characterization

Output color devices can be broadly categorized into emissive display
devices and devices that produce reflective prints or transparencies. Emissive
devices produce colors via additive mixing of red, green, and blue (RGB)
lights. Examples are cathode ray tube (CRT) displays, liquid crystal displays
(LCDs), organic light emitting diodes (OLEDs), plasma displays, projection
displays, etc. The spectral radiance emitted by a display device is a function
of the input digital RGB values and is denoted Sggs(A). Two important
assumptions are usually made that greatly simplify display characterization.

e Channel independence. Each of the R, G, B channels to the display
operates independently of the others. This assumption allows us to
separate the contribution of spectral radiance from the three channels.

Measurement Data

Instrument [ Processing
Test Target {c}
- Error
Metric L AE
—s  Calculation
Inverse {ci}
\ Input ] Image —1 Characterization

Device Processing

Transform

Figure 5.6 Testing of input device characterization.
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SRGB(X) = SR(A‘) + SG(A‘) + 53(7\‘) (57)

o Chromaticity constancy. The spectral radiance due to a given channel
has the same basic shape and is only scaled as a function of the device
signal driving the display. This assumption further simplifies Equa-
tion 5.7 to

SreeM) = fr (D) Sgyuex™) + f6 (D) SguaxM) + f5 (Dp) Sppn(X) - (5.8)

where Sg,..(A) = the spectral radiance emitted when the red channel is at
its maximum intensity
Dy, = the digital input to the display
fr() = a linearization function (discussed further in Section 5.8)

The terms for green and blue are similarly defined. Note that a constant
scaling of a spectral radiance function does not change its chromaticity (x-v)
coordinates, hence the term “chromaticity constancy.”

These assumptions hold fairly well for many display technologies and
result in a simple linear characterization function. Figure 5.7 shows the
spectral radiance functions for a typical CRT phosphor set. Sections 5.8 and
5.9 contain more details on CRT and LCD characterization, respectively.
Recent research has shown that OLEDs can also be accurately characterized
with techniques similar to those described in these sections.?
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Figure 5.7 Spectral radiance of typical CRT phosphors.
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Printing devices produce color via subtractive color mixing in which a
base medium for the colorants (usually paper or transparency) reflects or
transmits most of the light at all visible wavelengths, and different spectral
distributions are produced by combining cyan, magenta, and yellow (CMY)
colorants to selectively remove energy from the red, green, and blue portions
of the electromagnetic spectrum of a light source. Often, a black colorant (K)
is used both to increase the capability to produce dark colors and to reduce
the use of expensive color inks. Photographic prints and transparencies and
offset, laser, and inkjet printing use subtractive color.

Printers can be broadly classified as being continuous-tone or halftone
devices. A continuous-tone process generates uniform colorant layers and
modulates the concentration of each colorant to produce different intensity
levels. A halftone process generates dots at a small fixed number of concen-
tration levels and modulates the size, shape, and frequency of the dots to
produces different intensity levels. (Color halftoning is covered in detail in
another chapter.) Both types of processes exhibit complex nonlinear color
characteristics, making them more challenging to model and characterize.
For one thing, the spectral absorption characteristics of printed colorants do
not fulfill the ideal “block dye” assumption, which states that the C, M, Y
colorants absorb light in nonoverlapping bands in the long, medium, and
short wavelengths, respectively. Such an ideal behavior would result in a
simple linear characterization function. Instead, in reality, each of these col-
orants exhibits unwanted absorptions in other bands, as shown in Figure
5.8, giving rise to complex intercolorant interactions and nonlinear charac-
terization functions. Halftoning introduces additional optical and spatial
interactions and thus lends complexity to the characterization function. Nev-
ertheless, much effort has been devoted toward the modeling of continuous
and halftone printers as well as toward empirical techniques. A few of these
techniques will be explored in further detail in Section 5.10.

A generic workflow for output device calibration and characterization
is given in Figure 5.9. A digital target of color patches with known device
values is sent to the device. The resulting displayed or printed colors are
measured in device-independent (or colorimetric) color coordinates, and a
relationship is established between device-dependent and device-
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Figure 5.8 Spectral absorption functions of typical C, M, Y colorants.

© 2003 by CRC Press LLC



Device dependent Target Image Output Measurement
data Generation Processing Device and Data Processing

Device-independent data

{d;} {c;}

Device calibration,
characterization

Profile

Figure 5.9 Output device characterization workflow.

independent color representations. This can be used to generate both cali-
bration and characterization functions, in that order. For characterization,
we once again derive a forward and an inverse function. The forward func-
tion describes the colorimetric response of the (calibrated) device to a certain
device-dependent input. The inverse characterization function determines
the device-dependent values that should be presented to a (calibrated) device
to reproduce a certain colorimetric input.

As with input devices, the calibration and characterization should then
be evaluated with an independent test target. The flow diagram for doing this
is shown in Figure 5.10. The test target comprises a set of patches with known
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Figure 5.10 Testing of (a) forward and (b) inverse output device characterization.
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device-independent coordinates. If calibration is being tested, this target is
processed through the calibration functions and rendered to the device. If
characterization is being evaluated, the target is processed through both the
characterization and calibration function and rendered to the device. The
resulting output is measured in device-independent coordinates and com-
pared with the original target values. Once again, the comparison is to be
carried out with an appropriate color difference formula such as AE a » or AE ;4.

An important component of the color characteristics of an output device
is its color gamut, namely the volume of colors in three-dimensional colori-
metric space that is physically achievable by the device. Of particular impor-
tance is the gamut surface, as this is used in gamut mapping algorithms.
This information can easily be derived from the characterization process.
Details of gamut surface calculation are provided in the chapter on gamut

mapping.

5.3 Characterization targets and measurement techniques

The generation and measurement of color targets is an important component
of device characterization. Hence, a separate section is devoted to this topic.

5.3.1 Color target design

The design of a color target involves several factors. First is the set of colo-
rants and underlying medium of the target. In the case of input devices, the
characterization target is created offline (i.e., it is not part of the character-
ization process) with colorants and media that are representative of what
the device is likely to capture. For example, for scanner characterization,
photographic and offset lithographic processes are commonly used to create
targets on reflective or transmissive media. In the case of output devices,
target generation is part of the characterization process and should be carried
out using the same colorants and media that will be used for final color
rendition.

The second factor is the choice of color patches. Typically, the patches
are chosen to span the desired range of the colors to be captured (in the
case of input devices) or rendered (in the case of output devices). Often,
critical memory colors are included, such as flesh tones and neutrals. The
optimal choice of patches is logically a function of the particular algorithm
or model that will be used to generate the calibration or characterization
function. Nevertheless, a few targets have been adopted as industry stan-
dards, and they accommodate a variety of characterization techniques. For
input device characterization, these include the CGATS/ANSI IT8.7/1 and
IT8.7/2 targets for transmission and reflection media respectively
(http:/ /webstore.ansi.org/ansidocstore); the Kodak photographic Q60 tar-
get, which is based on the IT8 standards and is made with Ektachrome dyes
on Ektacolor paper (www.kodak.com); the GretagMacbeth ColorChecker
chart (www.munsell.com); and ColorChecker DC version for digital cam-
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eras (www.gretagmacbeth.com). For output device characterization, the
common standard is the IT8.7/3 CMYK target (http://webstore.ansi.org/
ansidocstore). The Q60 and IT8.7/3 targets are shown in Plates 5A and 5B.
A third factor is the spatial layout of the patches. If a device is known
to exhibit spatial nonuniformity, it may be desirable to generate targets with
the same set of color patches but rendered in different spatial layouts. The
measurements from the multiple targets are then averaged to reduce the
effect of the nonuniformity. In general, this approach is advised so as to
reduce the overall effect of various imperfections and noise in the character-
ization process. In the case of input devices, target creation is often not within
the practitioner’s control; rather, the targets are supplied by a third-party
vendor such as Eastman Kodak or Fuji Film. Generally, however, these
vendors do use similar principles to generate reliable measurement data.
Another motivation for a specific spatial layout is visual inspection of
the target. The Kodak Q60 target, for example, is designed with a gray ramp
at the bottom and neutral colors all collected in one area. This allows for
convenient visual inspection of these colors, to which we are more sensitive.

5.3.2  Color measurement techniques

5.3.2.1 Visual approaches

Most visual approaches rely on observers making color matching judgments.
Typically, a varying stimulus produced by a given device is compared against
a reference stimulus of known measurement. When a visual match is
reported, this effectively provides a measurement for the varying stimulus
and can be correlated with the device value that produced the stimulus. The
major advantage of a visual approach is that it does not require expensive
measurement instrumentation. Proponents also argue that the best color
measurement device is the human visual system, because, after all, this is
the basis for colorimetry. However, these approaches have their limitations.
First, to achieve reliable results, the visual task must be easy to execute. This
imposes severe limits on the number and nature of measurements that can
be made. Second, observer-to-observer variation will produce measurements
and a characterization that may not be satisfactory to all observers. Never-
theless, visual techniques are appealing in cases where the characterization
can be described by a simple model and thus derived with a few simple
measurements. The most common application of visual approaches is thus
found in CRT characterization, discussed further in Section 5.8.3.

5.3.2.2 Instrument-based approaches

Color measurement instruments fall into two general categories, broadband
and narrowband. A broadband measurement instrument reports up to three
color signals obtained by optically processing the input light through broad-
band filters. Photometers are the simplest example, providing a measure-
ment only of the luminance of a stimulus. Their primary use is in determin-
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Figure 5A (See color insert following page 430) Q60 input characterization target.
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Figure 5B (See color insert) IT87/3 output characterization target.
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ing the nonlinear calibration function of displays (discussed in Section 5.8).
Densitometers are an example of broadband instruments that measure opti-
cal density of light filtered through red, green, and blue filters. Colorimeters
are another example of broadband instruments that directly report tristim-
ulus (XYZ) values and their derivatives such as CIELAB. In the narrowband
category fall instruments that report spectral data of dimensionality signif-
icantly larger than three. Spectrophotometers and spectroradiometers are
examples of narrowband instruments. These instruments typically record
spectral reflectance and radiance, respectively, within the visible spectrum
in increments ranging from 1 to 10 nm, resulting in 30 to 300 channels. They
also have the ability to internally calculate and report tristimulus coordinates
from the narrowband spectral data. Spectroradiometers can measure both
emissive and reflective stimuli, while spectrophotometers can measure only
reflective stimuli.

The main advantages of broadband instruments such as densitometers
and colorimeters are that they are inexpensive and can read out data at very
high rates. However, the resulting measurement is only an approximation
of the true tristimulus signal, and the quality of this approximation varies
widely, depending on the nature of the stimulus being measured. Accurate
colorimetric measurement of arbitrary stimuli under arbitrary illumination
and viewing conditions requires spectral measurements afforded by the
more expensive narrowband instruments. Traditionally, the printing indus-
try has satisfactorily relied on densitometers to make color measurements
of prints made by offset ink. However, given the larger variety of colorants,
printing technologies, and viewing conditions likely to be encountered in
today’s digital color imaging business, the use of spectral measurement
instruments is strongly recommended for device characterization. Fortu-
nately, the steadily declining cost of spectral instrumentation makes this a
realistic prospect.

Instruments measuring reflective or transmissive samples possess an
internal light source that illuminates the sample. Common choices for
sources are tungsten-halogen bulbs as well as xenon and pulsed-xenon
sources. An important consideration in reflective color measurement is the
optical geometry used to illuminate the sample and capture the reflected
light. A common choice is the 45/0 geometry, shown in Figure 5.11. (The
two numbers are the angles with respect to the surface normal of the incident
illumination and detector respectively.) This geometry is intended to mini-
mize the effect of specular reflection and is also fairly representative of the
conditions under which reflection prints are viewed. Another consideration
is the measurement aperture, typically set between 3 and 5 mm. Another
feature, usually offered at extra cost with the spectrophotometer, is a filter
that blocks out ultraviolet (UV) light emanated by the internal source. The
filter serves to reduce the amount of fluorescence in the prints that is caused
by the UV light. Before using such a filter, however, it must be remembered
that common viewing environments are illuminated by light sources (e.g.,
sunlight, fluorescent lamps) that also exhibit a significant amount of UV
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Figure 5.11 45/0 measurement geometry.

energy. Hence, blocking out UV energy may provide color measurements
that are less germane to realistic viewing conditions.

For reflective targets, another important factor to consider is the color
of the backing surface on which the target is placed for measurement. The
two common options are black and white backing, both of which have
advantages and disadvantages. A black backing will reduce the effect of
show-through from the image on the backside of a duplex print. However,
it will also expose variations in substrate transmittance, thus resulting in
noisier measurements. A white backing, on the other hand, is not as effective
at attenuating show-through; however, the resulting measurements are less
noisy, because the effect of substrate variations is reduced. Generally, a white
backing is recommended if the target is not duplex (which is typically the
case.) Further details are provided by Rich.’

Color measurement instruments must themselves be calibrated to output
reliable and repeatable data. Instrument calibration entails understanding
and specifying many of the aforementioned parameters and, in some cases,
needs to be carried out frequently. Details are provided by Zwinkel .1

Because color measurement can be a labor-intensive task, much has been
done in the color management industry to automate this process. The Gretag
Spectrolino™ product enables the target to be placed on a stage and auto-
matically measured by the instrument. These measurements are then stored
on a computer to be retrieved for deriving the characterization. In a similar
vein, X-Rite Corporation has developed the DTP-41 scanning spectropho-
tometer. The target is placed within a slot in the “strip reader” and is auto-
matically moved through the device as color measurements are made of each
patch.

5.3.3 Absolute and relative colorimetry

An important concept that underlies device calibration and characterization
is normalization of the measurement data by a reference white point. Recall
from an earlier chapter that the computation of tristimulus XYZ values from
spectral radiance data is given by
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where X(A), y(x),E(X) = color matching functions
V = set of visible wavelengths
K = a normalization constant

In absolute colorimetry, K is a constant, expressed in terms of the maximum
efficacy of radiant power, equal to 683 lumens/W. In relative colorimetry, K
is chosen such that Y = 100 for a chosen reference white point.

_ 100
[ SuMp(1)on

AV

K (5.10)

where S, (A) = the spectral radiance of the reference white stimulus.

For reflective stimuli, radiance S,(A) is a product of incident illumination
I(A) and spectral reflectance R,(A) of a white sample. The latter is usually
chosen to be a perfect diffuse reflector (i.e., R,(A) = 1) so that S,,(A) = I(A) in
Equation 5.10.

There is an additional white-point normalization to be considered. The
conversion from tristimulus values to appearance coordinates such as
CIELAB or CIELUV requires the measurement of a reference white stimulus
and an appropriate scaling of all tristimulus values by this white point. In
the case of emissive display devices, the white point is the measurement of
the light emanated by the display device when the driving RGB signals are
at their maximal values (e.g., Dy = D = Dy = 255 for 8-bit input). In the case
of reflective samples, the white point is obtained by measuring the light
emanating from a reference white sample illuminated by a specified light
source. If an ideal diffuse reflector is used as the white sample, we refer to
the measurements as being in media absolute colorimetric coordinates. If a par-
ticular medium (e.g., paper) is used as the stimulus, we refer to the mea-
surements as being in media relative colorimetric coordinates. Conversions
between media absolute and relative colorimetry are achieved with a white-
point normalization model such as the von Kries formula.

To get an intuitive understanding of the effect of media absolute vs.
relative colorimetry, consider an example of scan-to-print reproduction of a
color image. Suppose the image being scanned is a photograph whose
medium typically exhibits a yellowish cast. This image is to be printed on
a xerographic printer, which typically uses a paper with fluorescent whit-
eners and is thus lighter and bluer than the photographic medium. The
image is scanned, processed through both scanner and printer characteriza-
tion functions, and printed. If the characterizations are built using media
absolute colorimetry, the yellowish cast of the photographic medium is
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preserved in the xerographic reproduction. On the other hand, with media
relative colorimetry, the “yellowish white” of the photographic medium
maps directly to the “bluish white” of the xerographic medium under the
premise that the human visual system adapts and perceives each medium
as “white” when viewed in isolation. Arguments can be made for both
modes, depending on the application. Side-by-side comparisons of original
and reproduction may call for media absolute characterization. If the repro-
duction is to be viewed in isolation, it is probably preferable to exploit visual
white-point adaptation and employ relative colorimetry. To this end, the
ICC specification supports both media absolute and media relative modes
in its characterization tables.

Finally, we remark that, while a wide variety of standard illuminants
can be selected for deriving the device characterization function, the most
common choices are CIE daylight illuminants D5000 (typically used for
reflection prints) and D6500 (typically used for the white point of displays).

5.4 Multidimensional data fitting and interpolation

Another critical component underlying device characterization is multidi-
mensional data fitting and interpolation. This topic is treated in general
mathematical terms in this section. Application to specific devices will be
discussed in ensuing sections.

Generally, the data samples generated by the characterization process in
both device-dependent and device-independent spaces will constitute only
a small subset of all possible digital values that could be encountered in
either space. One reason for this is that the total number of possible samples
in a color space is usually prohibitively large for direct measurement of the
characterization function. As an example, for R, G, B signals represented
with 8-bit precision, the total number of possible colors is 22 = 16,777,216;
clearly an unreasonable amount of data to be acquired manually. However,
because the final characterization function will be used for transforming
arbitrary image data, it needs to be defined for all possible inputs within
some expected domain. To accomplish this, some form of data fitting or
interpolation must be performed on the characterization samples. In model-
based characterization, the underlying physical model serves to perform the
fitting or interpolation for the forward characterization function. With empir-
ical approaches, mathematical techniques may be used to perform data
fitting or interpolation. Some of the common mathematical approaches are
discussed in this section.

The fitting or interpolation concept can be formalized as follows. Define
a set of T m-dimensional device-dependent color samples {d;} € R", i =1,
..., T generated by the characterization process. Define the corresponding
set of n-dimensional device-independent samples {¢;} € R*, i =1, ..., T. For
the majority of characterization functions, n = 3, and m = 3 or 4. We will
often refer to the pair ({d;}, {c;}) as the set of training samples. From this set,
we wish to evaluate one or both of the following functions:
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* f F e R"— R", mapping device-dependent data within a domain F
to device-independent color space

* ¢:G e R"— R", mapping device-independent data within a domain
G to device-dependent color space

In interpolation schemes, the error of the functional approximation is
identically zero at all the training samples, i.e., fld) = ¢, and g(c) = d;, i =
1,...,T.

In fitting schemes, this condition need not hold. Rather, the fitting func-
tion is designed to minimize an error criterion between the training samples
and the functional approximations at these samples. Formally,

)5 Sopt = argminE,(|d;,g(¢;)|;-q,
g (5.11)

fopt = argm}nEl(\Ci,f(df)‘izl

where E, and E, are suitably chosen error criteria.
A common approach is to pick a parametric form for f (or g) and mini-
mize the mean squared error metric, given by

T 2
Eo= 7Y le-fd)] (5.12)
i=1

An analogous expression holds for E,. The minimization is performed with
respect to the parameters of the function f or g.

Unfortunately, most of the data fitting and interpolation approaches to
be discussed shortly are too computationally expensive for the processing of
large amounts of image pixel data in real time. The most common way to
address this problem is to first evaluate the complex fitting or interpolation
functions at a regular lattice of points in the input space and build a multi-
dimensional lookup table (LUT). A fast interpolation technique such as tri-
linear or tetrahedral interpolation is then used to transform image data using
this LUT. The subject of fast LUT interpolation on regular lattices is treated
in a later chapter. Here, we will focus on the fitting and interpolation methods
used to initially approximate the characterization function and build the LUT.

Often, it is necessary to evaluate the functions f and g within domains F
and G that are outside of the volumes spanned by the training data {d;} and
{c;}. An example is shown in Figure 5.12 for printer characterization mapping
CIELAB to CMY. A two-dimensional projection of CIELAB space is shown,
with a set of training samples {c;} indicated by “x.” Device-dependent CMY
values {d,} are known at each of these points. The shaded area enclosed by
these samples is the range of colors achievable by the printer, namely its color
gamut. From these data, the inverse printer characterization function from
CIELAB to CMY is to be evaluated at each of the lattice points lying on the
three-dimensional lookup table grid (projected as a two-dimensional grid in
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Figure 5.12 Multidimensional lattice in CIELAB, overlaying printer gamut.

Figure 5.12). Hence, the domain G in this case is the entire CIELAB cube.
Observe that a fraction of these lattice points lie within the printer gamut
(shown as black circles). Interpolation or data fitting of these points is usually
well defined and mathematically robust, since a sufficient amount of training
data is available in the vicinity of each lattice point. However, a substantial
fraction of lattice points also lie outside the gamut, and there are no training
samples in the vicinity of these points. One of two approaches can be used
to determine the characterization function at these points.

1. Apply a preprocessing step that first maps all out-of-gamut colors to
the gamut, then perform data fitting or interpolation to estimate
output values.

2. Extrapolate the fitting or interpolation function to these out-of-gamut
regions.

Some of the techniques described herewith allow for data extrapolation. The
latter will invariably generate output data that lie outside the allowable range
in the output space. Hence, some additional processing is needed to limit
the data to this range. Often, a hard-limiting or clipping function is employed
to each of the components of the output data.

Two additional comments are noteworthy. First, while the techniques
described in this section focus on fitting and interpolation of multidimen-
sional data, most of them apply in a straightforward manner to one-dimen-
sional data typically encountered in device calibration. Linear and polyno-
mial regression and splines are especially popular choices for fitting one-
dimensional data. Lattice-based interpolation reduces trivially to piecewise
linear interpolation, and it can be used when the data are well behaved and
exhibit low noise. Secondly, the reader is strongly encouraged, where pos-
sible, to plot the raw data along with the fitting or interpolation function to
obtain insight on both the characteristics of the data and the functional
approximation. Often, data fitting involves a delicate balance between accu-
rately approximating the function and smoothing out the noise. This balance
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is difficult to achieve by examining only a single numerical error metric and
is significantly aided by visualizing the entire dataset in combination with
the fitting functions.

5.4.1 Linear least-squares regression

This very common data fitting approach is used widely in color imaging,
particularly in device characterization and modeling. The problem is formu-
lated as follows. Denote d and c¢ to be the input and output color vectors,
respectively, for a characterization function. Specifically, d is a 1 x m vector,
and cis a 1 x n vector. We wish to approximate the characterization function
by the linear relationship ¢ = d - A.

The matrix A is of dimension m x n and is derived by minimizing the
mean squared error of the linear fit to a set of training samples, {d; ¢}, i =
1, ..., T. Mathematically, the optimal A is given by

T 2
!
At = argzm{j—ﬂ z le;—d;Al }
=1 (5.13)

To continue the formulation, it is convenient to collect the samples {c;} into
a T x nmatrix C = [¢y, ..., ¢;], and {d;} into a T x m matrix D = [d,, ..., d;].
The linear relationship is given by C = D - A. The optimal A is given by A
= Dt C, where Dt is the generalized inverse (sometimes known as the
Moore-Penrose pseudo-inverse) of D. In the case where D'D is invertible,
the optimum A is given by

A = (D'D)' D'C (5.14)

See Appendix 5.A for the derivation and numerical computation of this
least-squares solution. It is important to understand the conditions for which
the solution to Equation 5.14 exists. If T < m, we have an underdetermined
system of equations with no unique solution. The mathematical consequence
of this is that the matrix D'D is of insufficient rank and is thus not invertible.
Thus, we need at least as many samples as the dimensionality of the input
data. If T = m, we have an exact solution for A that results in the squared
error metric being identically zero. If T > m (the preferred case), Equation
5.14 provides a least-squares solution to an overdetermined system of equa-
tions. Note that linear regression affords a natural means of extrapolation
for input data d lying outside the domain of the training samples. As men-
tioned earlier, some form of clipping will be needed to limit such extrapo-
lated outputs to their allowable range.

5.4.2  Weighted least-squares regression

The standard least-squares regression can be extended to minimize a
weighted error criterion,
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T
A, = argmin{%Zwici—diAz} (5.15)

i=1

where w, = positive-valued weights that indicate the relative importance
of the ith data point, {d; c;}.

Adopting the notation in Section 5.4.1, a straightforward extension of Appen-
dix 5.A results in the following optimum solution:

A = (D'WD)~' D! WC (5.16)

where W is a T x T diagonal matrix with diagonal entries w;.

The resulting fit will be biased toward achieving greater accuracy at the
more heavily weighted samples. This can be a useful feature in device char-
acterization when, for example, we wish to assign greater importance to
colors in certain regions of color space (e.g., neutrals, fleshtones, etc.). As
another example, in spectral regression, it may be desirable to assign greater
importance to certain wavelengths than others.

5.4.3 Polynomial regression

This is a special form of least-squares fitting wherein the characterization
function is approximated by a polynomial. We will describe the formulation
using, as an example, a scanner characterization mapping device RGB space
to XYZ tristimulus space. The formulation is conceptually identical for input
and output devices and for the forward and inverse functions.

The third-order polynomial approximation for a transformation from
RGB to XYZ space is given by

3 3

3 3 3 3
Y Y we RGBS Y =YY Y w, RGB;

i=0j=0k=0 i=0j=0k=0

>
I

3 3 3
z=Y%Yw,, RGB

i=0j=0k=0 (5.17)

where wy, etc. = polynomial weights
I = a unique index for each combination of i, j, k

In practice, several of the terms in Equation 5.17 are eliminated (i.e., the weights

w are set to zero) so as to control the number of degrees of freedom in the
polynomial. Two common examples, a linear and third-order approximation,

© 2003 by CRC Press LLC



are given below. For brevity, only the X term is defined; analogous definitions
hold for Y and Z.

X = wy R + wy ;G + wy,B (5.18a)

X =wyo + Wy R + Wy ,G + wy ;B + wy RG + wy ;GB
+ Wy RB + Wy ;R? + wy sG? + wy oB? + wy ;(RGB (5.18b)

In matrix-vector notation, Equation 5.17 can be written as

Wx,0 Wy, Wzpo

xvz = [1 RG..RG Bﬂ Wxa Wra Was (5.19)

Wx,63 Wy,e3 Wz,63
or more compactly,
c=p-A (5.20)

where ¢ = output XYZ vector
p = 1 x Q vector of Q polynomial terms derived from the input RGB
vector d
A = Q x 3 matrix of polynomial weights to be optimized

In the complete form, Q = 64. However, with the more common simplified
approximations in Equation 5.18, this number is significantly smaller; i.e., Q
=3 and Q = 11, respectively.

Note from Equation 5.20 that the polynomial regression problem has
been cast into a linear least-squares problem with suitable preprocessing of
the input data d into the polynomial vector p. The optimal A is now given by

T
)1
Aapt = argmjin{fzci_piAz}
=1 (5.21)

Collecting the samples {¢;} into a T x 3 matrix C = [¢, ..., ¢7], and {p;} into
a T x Q matrix P = [p;, ..., py], we have the relationship C =P - A. Following
the formulation in Section 5.4.1, the optimal solution for A is given by

A = (P'P)1PIC (5.22)
For the Q x Q matrix (P'P) to be invertible, we now require that T > Q.
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Polynomial regression can be summarized as follows:

1. Select a set of T training samples, where T > Q, the number of terms
in the polynomial approximation. It is recommended that the sam-
ples adequately span the input color space.

2. Use the assumed polynomial model to generate the polynomial terms
p; from the input data d;. Collect ¢; and p; into matrices C and P,
respectively.

3. Use Equation (5.22 to derive the optimal A.

4. For a given input color d, use the same polynomial model to generate
the polynomial terms p.

5. Use Equation 5.20 to compute the output color c.

Figure 5.13 is a graphical one-dimensional example of different polynomial
approximations to a set of training samples. The straight line is a linear fit
(Q = 3) and is clearly inadequate for the given data. The solid curve is a
second-order polynomial function (Q = 7) and offers a much superior fit.
The dash—dot curve closely following the solid curve is a third-order poly-
nomial approximation (Q = 11). Clearly, this offers no significant advantage
over the second-order polynomial. In general, we recommend using the
smallest number of polynomial terms that adequately fits the curvature of
the function while still smoothing out the noise. This choice is dependent
on the particular device characteristics and is obtained by experimentation,
intuition, and experience. Finally, it is noted that polynomial regression
affords a natural means of extrapolation for input data lying outside the
domain of the training samples.

250 * raw data
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—— quadratic fit
200p N — - cubicfit | ]
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Figure 5.13 One-dimensional example of different polynomial approximations.
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5.4.4 Distance-weighted techniques

The previous section described the use of a global polynomial function that
results in the best overall fit to the training samples. In this section, we
describe a class of techniques that also employ simple parametric functions;
however, the parameters vary across color space to best fit the local charac-
teristics of the training samples.

5.4.4.1 Shepard’s interpolation

This is a technique that can be applied to cases in which the input and output
spaces of the characterization function are of the same dimensionality. First,
a crude approximation of the characterization function is defined: ¢ =
fapprox(d). The main purpose of f,,,,() is to bring the input data into the
orientation of the output color space. (By “orientation,” it is meant that all
RGB spaces are of the same orientation, as are all luminance—chrominance
spaces, etc.) If both color spaces are already of the same orientation, e.g.,
printer RGB and sRGB, we can simply let f,,,..() be an identity function so
that ¢ = d. If, for example, the input and output spaces are scanner RGB
and CIELAB, an analytic transformation from any colorimetric RGB (e.g.,
sRGB) to CIELAB could serve as the crude approximation.

Next, given the training samples {d;} and {c;} in the input and output
space, respectively, we define error vectors between the crude approximation
and true output values of these samples: ¢; = ¢;—¢; =1, ...,T. Shepard’s
interpolation for an arbitrary input color vector d is then given by

T
c=c+K,Y w(d-d)e (5.23)

i=1

where w() = weights
K, = a normalizing factor that ensures that these weights sum to
unity as follows:

K, = — 1 (5.24)

-
Yy w(d-d)
i=1

The second term in Equation 5.23 is a correction for the residual error
between c and c, and it is given by a weighted average of the error vectors
e; at the training samples. The weighting function w() is chosen to be
inversely proportional to the Euclidean distance between d and d; so that
training samples that are nearer the input point exhibit a stronger influence
than those that are further away. There are numerous candidates for w().
One form that has been successfully used for printer and scanner character-
ization is given by!?
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1
wd-d) = —— (5.25)
ld-d" +e

where ||d —d,| denotes Euclidean distance between vectors d and d;, and p
and € are parameters that dictate the relative influence of the training samples
as a function of their distance from the input point. As p increases, the
influence of a training sample decays more rapidly as a function of its
distance from the input point. As € increases, the weights become less sen-
sitive to distance, and the approach migrates from a local to a global approx-
imation.

Note that, in the special case where € = 0, the function in Equation 5.25
has a singularity at d = d;. This can be accommodated by adding a special
condition to Equation 5.23.

T
c+K,Y w(d-d)e, if(|[d-dj =t
i=1

c ifld-d <t

(5.26)

where w() = given by Equation 5.25 with € = 0
t = asuitably chosen distance threshold that avoids the singularity

Other choices of w() include the Gaussian and exponential functions."! Note
that, depending on how the weights are chosen, Shepard’s algorithm can be
used for both data fitting (i.e., Equation 5.23 and Equation 5.25 with € > 0),
and data interpolation, wherein the characterization function coincides
exactly at the training samples (i.e., Equation 5.26). Note also that this tech-
nique allows for data extrapolation. As one moves farther away from the
volume spanned by the training samples, the distances ||d — d,| and hence
the weights w() approach a constant. In the limit, the overall error correction
in Equation 5.23 is an unweighted average of the error vectors e;.

5.4.4.2 Local linear regression

In this approach, the form of the characterization function that maps input
colors d to output colors c is given by

c=d-A, (5.27)

This looks very similar to the standard linear transformation, the important
difference being that the matrix A, now varies as a function of the input
color d (hence the term local linear regression). The optimal A, is obtained by
a distance-weighted least-squares regression,
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T
opt . 1 2
AV = argmm{Tgc,»— d;A | w(d - di)} (5.28)

As with Shepard’s interpolation, the weighting function w() is inversely
proportional to the Euclidean distance |d —d| , so training samples d; that
are farther away from the input point d are assigned a smaller weight than
nearby points. A form such as Equation 5.25 may be used.!? The solution is
given by Equation 5.16 in Section 4.2, where the weights w(d — d;) constitute
the diagonal terms of W. Note that because w() is a function of the input
vector d, Equation 5.16 must be recalculated for every input vector d. Hence,
this is a computationally intensive algorithm. Fortunately, as noted earlier,
this type of data fitting is not applied to image pixels in real time. Instead,
it is used offline to create a multidimensional lookup table.

Figure 5.14 is a one-dimensional example of the locally linear transform
using the inverse-distance weighting function, Equation 5.25. As with Shep-
ard’s interpolation, p and ¢ affect the relative influence of the training sam-
ples as a function of distance. The plots in Figure 5.14 were generated with
p =4 and compare two values of €. For € = 0.001, the function closely follows
the data. As € increases to 0.01, the fit averages the fine detail while preserv-
ing the gross curvature. In the limit as € increases, w() in Equation 5.25
approaches a constant, the technique approaches global linear regression,
and the fit approaches a straight line. Similar trends hold for p. These param-
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Figure 5.14 Local linear regression for different values of €.
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eters thus offer direct control on the amount of curvature and smoothing
that occurs in the data fitting process and should be chosen based on a priori
knowledge about the device and noise characteristics.

As with Shepard’s algorithm, this approach also allows for data extrap-
olation. As the input point moves farther away from the volume spanned
by the training samples, the weights w() approach a constant, and we are
again in the regime of global linear extrapolation.

5.4.5 Lattice-based interpolation

In this class of techniques, the training samples are assumed to lie on a
regular lattice in either the input or output space of the characterization
function. Define /; to be a set of real-valued levels along the ith color dimen-
sion. A regular lattice L™ in m-dimensional color space is defined as the set
of all points x = [x;, ..., x,,J' whose ith component x; belongs to the set I..
Mathematically, the lattice can be expressed as

L" = {xe R"|x;e l,,i=1,...,m} or, equivalently, L" = Hli (5.29)

i=1

where the second expression is a Cartesian product. If s; is the number of
levels in [;, the size of the lattice is the product s, x s, x ... X s,,. Commonly,
all the /; are identical sets of size s, resulting in a lattice of size s™.

In one dimension, a lattice is simply a set of levels {x;} in the input space.
Associated with these levels are values {y;} in the output space. Evaluation of
the one-dimensional function for an intermediate value of x is then performed
by finding the interval [x; x,,] that encloses x and performing piecewise
interpolation using either linear or nonlinear functions. If sufficient samples
exist and exhibit low noise, linear interpolation can be used as follows:

X—-X

Y= yj+(x——-—j+l_;j)(yj+1—yj) (5.30)

If only a sparse sampling is available, nonlinear functions such as splines
may be a better choice (see Section 5.4.8).

Let us turn to the more interesting multidimensional case. A three-dimen-
sional lattice in CMY space is shown in Figure 5.15, along with the corre-
sponding lattice in CIELAB space. The lines indicate the levels I; along each
dimension, and the intersections of these lines are the lattice points. The lattice
size in this example is 5 X 5 x 5 = 125. A lattice partitions a color space into
a set of smaller subvolumes. The characterization transform is executed in
two steps: (1) Locate the subvolume to which an input color belongs, and (2)
perform some form of interpolation, effectively a distance-weighted average,
among the neighboring lattice points. By definition, the characterization func-
tion will coincide with the training samples at the lattice points.
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Figure 5.15 Three-dimensional lattice in CMY and CIELAB space.

Note from Figure 5.15 that, while the lattice is regular in one space, it
need not be regular in the other space. In the case of the forward character-
ization function for an output device, the regular lattice exists in the input
domain of the function. Efficient interpolation techniques exist for regular
lattices, including trilinear, tetrahedral, prism, and pyramidal interpolation.
These are described in detail in Chapter 11 and thus will not be discussed
here. The more challenging case is evaluation of the inverse transform,
whereby the lattice that partitions the input domain of the function is irreg-
ular. We will describe a solution to this problem known as tetrahedral inver-
sion.!® Let us assume that the dimensionality of both input and output color
spaces are equal and assume, without less of generality, that the data are
three-dimensional. A regular lattice in three-dimensional space provides a
partitioning into a set of sub-cubes. Each sub-cube can be further partitioned
into several tetrahedra, as shown in Figure 5.16. A tetrahedron is a volume
bounded by four vertices and four planar surfaces. There are several ways
to split a cube into tetrahedra, the most common form being a partitioning

v

/I =4
4

subcube 6 tetrahedra

ANN

Figure 5.16 Partitioning of color space into cubes, further subdivided into tetrahe-
dra.
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into six tetrahedra that share a common diagonal of the cube. An association
is now established between each quadruplet of vertices that constitute a
tetrahedron on the regular lattice in device space and the corresponding
quadruplet of vertices on the irregular lattice in device-independent space,
as shown in Figure 5.17. The inverse characterization function g() is then
modeled as one that maps each tetrahedral volume in device-independent
space to a corresponding tetrahedral volume in device space.

Specifically, referring to Figure 5.17, let {d;, d,, d;, d,} be four vertices of
a tetrahedron T, in device space, and {c;, ¢, ¢; c,} be the corresponding
vertices forming a tetrahedron T, in device-independent space. Here, d; and
¢; are 3 x 1 vectors. Given a point ¢ lying within T, the corresponding point
d in T, is given by

d=g(c)=A;- A" (c—-¢) +d, (5.31)

where Ay and A are 3 x 3 matrices given by
Ay =[dy-dy d3-d; dy-di]; A= [c—¢; ¢3—¢; ¢4—¢q] (5.32)

Equation 5.31 tells us that g() is being modeled as a piecewise affine
function. It can be shown that c is included within a tetrahedron T, if all the
elements of the vector A (c — ¢;) are nonnegative and their sum lies between
0and 1.8

Tetrahedral inversion may be summarized as follows:

e Partition the regular lattice of training samples into a set of tetrahe-
dra.

e Establish a correspondence between tetrahedra on the regular lattice
in the one space and tetrahedra on the possibly irregular lattice in
the other space.

e Given an input point ¢, find the tetrahedron T, to which the point
belongs, using the aforementioned membership test.

M

Figure 5.17 Tetrahedral mapping from device CMY space to colorimetric CIELAB
space.
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* Use Equations 5.31 and 5.32 to evaluate the characterization function
d = g(c).

Because tetrahedral inversion requires membership in a tetrahedron, it does
not allow extrapolation to points ¢ that lie outside the lattice defined by the
training samples. Hence, such points must first be mapped to the lattice
volume before carrying out the inversion algorithm. Also, it is worth noting
that tetrahedral interpolation on a regular lattice can be implemented with
a highly simplified form of Equation 5.31. These equations will be included
in the chapter on efficient color transformations.

In the context of deriving a characterization function, regular lattices of
training data can occur only for the case of output devices, as the patches
in the color target can be designed to lie on a regular lattice in device space.
With input device characterization, neither the captured device values nor
the measured device-independent values of the color target can be guaran-
teed to lie on a regular lattice.

5.4.6 Sequential interpolation

A primary advantage of a regular lattice is that it facilitates simple interpo-
lation techniques. However, it limits the freedom in the placement of control
points in multidimensional color space. Referring to Figure 5.12, one would
expect considerable curvature of the characterization function in certain
regions within the device gamut, while large regions outside the gamut
would never be used for interpolation calculations. It would be desirable,
therefore, to finely sample regions within the gamut, and coarsely sample
regions far away from the gamut. As shown in the figure, the regular lattice
does not permit this. A simple extension of regular lattice interpolation,
which we term sequential interpolation (SI), brings additional flexibility at a
modest increase in computational cost.

In general terms, SI can be thought of as a two-stage interpolation pro-
cess. Consider a decomposition of the space R™ into two subspaces of dimen-
sions p and g, i.e., R" = R X R, m = p + q. The m-dimensional lattice L™ can
also be decomposed into two sub-lattices L¥ and L. Let s be the size of L.
We can think of L™ as being a family of s p-dimensional lattices. In a conven-
tional regular lattice each p-dimensional lattice is identical, and we have L™
=[x 1. In sequential interpolation, we let the p-dimensional lattice structure
vary as a function of the remaining 4 dimensions.

To crystallize this concept, consider the three-dimensional lattice in Figure
5.18 used to implement a characterization function from device RGB to
CIELAB. This lattice can be conceived as a family of two-dimensional RG
lattices, corresponding to different levels of the third-dimension B. In Figure
5.18a, the RG lattices are identical as a function of B, which corresponds to a
regular lattice in RGB space. In this case, interpolation of an input RGB point
is accomplished by selecting a subset of the eight vertices V,, ..., V; that
enclose the point and performing a weighted average of the output values at
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Figure 5.18 Comparison of (a) conventional and (b) sequential interpolation lattices.

these vertices. In Figure 5.18b, a sequential structure is shown where the RG
lattice structure is allowed to change as a function of B. The interpolation
calculation is accomplished by first projecting an input RGB point onto the
B dimension and selecting the neighboring levels B;and Bj,;. These correspond
to two lattices in RG space. The input RGB point is then projected onto RG
space, and two-dimensional interpolation is performed within each of these
lattices, yielding two output colors ¢, c;,;. Finally, one-dimensional interpo-
lation is performed in the B dimension to produce the final output color. In
this example, SI would be advantageous if the characterization function is
known to exhibit different degrees of curvature for different values of B. If,
for example, the function curvature is high for small values of B, SI permits
a finer lattice sampling in these regions (as shown in Figure 5.18). Thus, with
more efficient node placement, SI enables a given level of accuracy to be
achieved with fewer lattice nodes than can be achieved with a regular lattice.
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Figure 5.19 is a flow diagram showing the general case of SI in m-
dimensions. Application of SI to CMYK printer characterization will be
described in Section 5.10.3. Another special case of SI is sequential linear
interpolation (SLI)." In SLI, we decompose the m-dimensional space into
(m — 1) dimensional and one-dimensional subspaces, then decompose the
former into (m — 2) and one-dimensional subspaces, and so on until we have
a sequence of one-dimensional interpolations. SLI is described in more detail
in Chapter 11.

5.4.7 Neural networks

Neural networks have taken inspiration from natural computational pro-
cesses such as the brains and nervous systems of humans and animals. This
class of techniques has received much attention in color imaging in recent
years. In this section, we briefly describe the use of neural nets in device
characterization, referring the reader to Masters!®> for excellent overviews,
algorithms, and further reading on the subject.

A neural network is an interconnected assembly of simple processing
units called neurons whose functionality is loosely based on the biological
neuron. The processing ability of the network is stored in the inter-neuron
connection strengths, or weights, obtained by a process of adaptation to, or
learning from, a set of training patterns. In the most common configuration,
the neurons are arranged into two or more layers, with inputs to neurons in
a given layer depending exclusively on the outputs of neurons in previous
layers. An example of such a multilayer feed-forward neural network is
shown in Figure 5.20. This network has three inputs, three outputs, and one
hidden layer of four neurons. The inputs are obtained from an external
source (e.g., in our application, color data from the characterization process),
and the outputs are the neural network’s approximation of the response to
these inputs. Let SEL) be the ith neuron in the Lth layer, i = 1, ..., N;. The
output from unit s{" is given by

c
s Perform K > Perform '2_
P"°|;°pt in p-dimensional [ | g-dimensional [~ _
interpolations | ¢ interpolation §_
- =
£ o
o
Q-—
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£
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q . - - q >
R lattice points in R weights

Figure 5.19 Block diagram of sequential interpolation.
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Figure 5.20 Three-layer (3—4-3) neural network.

N1
s = h( S w,.jsj.“)J (5.33)

j=1

where w; = a synaptic weight that determines the relative

strength of the contribution of neuron sELil) to

(L
neuron s;

function () = a nonlinear function, such as a step function or
sigmoidal (S-shaped) function

Examples of sigmoidal functions are the logistic function, cumulative Gaus-
sian, and hyperbolic tangent.’®> Depending on the particular architecture
being implemented, constraints such as monotonicity and differentiability
are often imposed on h(). The functionality of the overall neural net is
determined by the number of layers and number of neurons per layer, the
interconnecting links, the choice of k(), and the weights w;. Note from Equa-
tion 5.33 that each layer feeds only to the immediately following layer; this
is the most typical configuration.

A popular method for neural network optimization is back-propagation,
where all parameters except the synaptic weights w; are chosen beforehand,
preferably based on some a priori knowledge about the nature of the function
being approximated. The w; are then derived during a learning process in
which a set of training samples in both input and output spaces is presented
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to the network. An error metric such as the mean squared error in Equation
5.12 is minimized at the training samples with respect to w;. Because the
overall neural network is a complex nonlinear function of wy, iterative error
minimization approaches are called for. An example is the gradient descent
algorithm, where a weight wf]k) at iteration k is given by

k) (k=1) OE

Here, E is the error metric being minimized, and R is a parameter known as
the learning rate. The iteration continues until some convergence criterion
is met with respect to the magnitude or the rate of change of E. The parameter
R dictates the speed and stability of convergence. A major shortcoming of
the gradient descent algorithm is that convergence is often unacceptably
slow. An alternative search technique favored for significantly faster conver-
gence is the conjugate gradient algorithm. As with all iterative algorithms,
rate of convergence also depends on the choice of initial estimates, i.e., wfjo) .
Linear regression can be used to generate good initial estimates. Details are
given in the book by Masters.!>

The application to color characterization should be evident. A neural
network can be used to approximate either the forward or inverse charac-
terization functions. The training samples are the device-dependent and
device-independent colors {c; d;} obtained in the characterization process.
After the neural net is trained, arbitrary color inputs can now be processed
through the network. The architecture of the network is chosen based on the
expected complexity of the characterization function. As with polynomials,
increased complexity can result in a better fit up to a certain point, beyond
which the network will begin to track the noise in the data.

Typically, the iterative training can be a highly computationally intensive
process. Fortunately, this is not a major concern, as this step is carried out
offline. Neural networks are also usually too computationally intensive for
real-time processing of image pixels. They can, however, be approximated
by multidimensional LUTs, which are more computationally efficient.

5.4.8 Spline fitting

Spline interpolation constitutes a rich and flexible framework for approxi-
mating free-form shapes. One-dimensional splines can be used very effec-
tively for the calibration step, whereas the multidimensional versions are
applicable for characterization. The most common spline functions comprise
a set of piecewise polynomial functions defined over a partition of segments
in the input space, as shown for the one-dimensional case in Figure 5.21.
The behavior of the spline is dictated by control points, known as knots, at
the segment boundaries. The parameters of the polynomials are determined
so that the function passes through all the knots while maintaining certain
degrees of continuity across the segment boundaries.
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Figure 5.21 Spline function used for (a) interpolation and (b) fitting.

Splines can be used for both interpolation and fitting. In the case of
interpolation, shown in Figure 5.21a, the knots coincide with the data points.
This approach is desirable when very few accurate data points are available.
In the case of fitting, shown in Figure 5.21b, the control points do not nec-
essarily coincide with the data and are actually free parameters chosen to
minimize an error criterion between the data points and the spline fit. This
approach is preferred when ample data is available but expected to be noisy
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and therefore requiring some smoothing. The number and location of the
knots used for spline fitting are critical. Too few knots could result in an
excessively “stiff” spline that is unable to follow the curvature of the func-
tion, but too many knots could result in overshoots that follow the noise. A
general guideline is to use fewer knots than data points and to space them
approximately uniformly except in regions known to exhibit high curvature,
where a denser sampling of knots can be used. As advised earlier, it is highly
instructive to first plot and visualize the raw data so as to choose the knots
appropriately.

The major advantage of splines over straightforward polynomial
approximation is that the complexity of a spline can be tailored to suit the
local characteristics of the function. Equivalently, a local change in a calibra-
tion or characterization function can be accurately approximated with a
change in one local segment of a spline curve. Piecewise cubic and B-splines
are popular choices for data fitting applications. Figure 5.22 is a comparison
of cubic spline interpolation with the third-order polynomial approximation
using the same data as in Figure 5.13. Clearly, the spline is capable of fol-
lowing the data more closely.

Space constraints do not permit a detailed treatment of splines in this
chapter. The reader is referred to the book by Farin!® for a comprehensive
tutorial on the subject. C programs for cubic spline interpolation can be
found in Numerical Recipes in C.'7 Users of Matlab can find an extensive set
of spline functions in the spline toolbox (go to www.mathworks.com for
details). As with other data-fitting techniques, the most suitable choice of
spline function requires knowledge of the nature of the characterization data.
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200 ........... .......... .......... .......... _
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Figure 5.22 Comparison of spline and polynomial fitting.

© 2003 by CRC Press LLC


www.mathworks.com 

5.5 Metrics for evaluating device characterization

Many of the mathematical techniques described in the previous section
minimize quantitative error metrics. The resulting error from the fitting or
interpolation is one indicator of the overall accuracy of characterization.
However, this information is not sufficient, for several reasons:

1. The error is available only for the training samples.

2. The error is not always calculated in a visually meaningful color
space.

3. Noise and other imperfections that can occur with multiple uses of
the device are implicitly ignored.

To address the first concern, the notion of evaluating the characterization
with independent test targets was introduced in Section 5.2. To address the
second issue, evaluation of errors with visually relevant metrics is strongly
recommended. While color difference formulae are described in detail in an
earlier chapter, two of them, AE,, and AE,, are restated here, as they are
used extensively in this chapter. Given two CIELAB colors, and their com-
ponent-wise differences, AL*, Aa*, Ab* (equivalently, AL*, AC*, AH*), the AEZb
color difference formula is simply the Euclidean distance between the two
points in CIELAB space,

AES, = J(ALY + (Ad) + (AD) = J(ALY +(AC)Y +(AH)®  (5.35)

It is important to bear in mind that AH* is not a component-wise hue differ-
ence but rather is given by

x 2 2 2
AH* = A/(AEH;,) — (AL*)" = (AC*) (5.36)

The AE,, formula is an extension of AE,, that applies different weights to
the various components as follows:

. ALY (AC YV (AH' Y
AE = J(ﬁ) +(rs) () (5:37)

where S, =1
Sc=1+0.045C*
Sy=1+0.015C*

The parameters k;, k., and k;; account for the effect of viewing conditions.
Under a set of nominal viewing conditions, these parameters are set to 1,
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and the overall effect is dictated solely by S. and S;;, which reduce the
perceived color difference as chroma increases.

Another metric used widely in the textile industry is the CMC color
difference formula. This formula is similar in form to the AE,, equation and
has parameters tailored for perceptibility vs. acceptability of color differ-
ences. Finally, an extension of the AE,, formula has been recently developed,
known as the CIEDE2000 metric.®® This metric accounts for interactions
between the C* and H* terms and is expected to be adopted as an industry
standard until further developments arise. The reader is referred to Chapter 1
for details.

The next question to consider is what error statistics to report. Common
aggregate statistics cited in the literature are the mean, standard deviation,
minimum, and maximum of the AEs for a set of test samples. Often, a
cumulative statistic such as the 95th percentile of AE values (i.e., the value
below which 95% of the AE values in the test data lie) is calculated. For a
complete statistical description, histograms of AE can also be reported.

Having chosen an error metric, how does one determine that the char-
acterization error is satisfactorily small? First, recall that characterization
accuracy is limited by the inherent stability and uniformity of a given device.
If the errors are close to this lower bound, we know that we cannot do much
better for the given device. In the following sections, we will provide the
reader with some idea of the characterization accuracy achievable by state-
of-the-art techniques. It must be kept in mind, however, that “satisfactory
accuracy” depends strongly on the application and the needs and expecta-
tions of a user. A graphic arts color proofing application will likely place
stringent demands on color accuracy, while inexpensive consumer products
will typically play in a market with wider color tolerances.

Another aspect that further confounds evaluation of color accuracy is
that the end user ultimately views not test targets with color patches but
images with complex color and spatial characteristics. Unfortunately, quan-
titative analysis of patches is not always a reliable indicator of perceived
color quality in complex images. (The latter is a subject of active research.'?)
The reader is thus advised to exercise appropriate caution when interpreting
individual results or those cited in the literature, and to always augment
quantitative evaluation of color accuracy with a qualitative evaluation
involving images and individuals that represent the intended market and
application.

A special class of error metrics for input devices evaluates how accu-
rately the information recorded by the input device can be transformed into
the signals sensed by the human visual system for input stimuli with given
spectral statistics. Such error metrics do not directly evaluate the accuracy
of a characterization but rather the ability of the device to act as a visual
colorimeter. Hence, these metrics are relevant for filter design optimization
and can also suggest the most appropriate characterization technique for a
given input device. The reader is referred to papers by Sharma et al.?® and
Quan et al.?! for further details.
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5.6 Scanners

All scanners employ one of two primary types of sensing technology. Drum
scanners use photomultiplier tubes (PMTs), whereas the less expensive flat-
bed scanners employ charge-coupled devices (CCDs). Both of these technol-
ogies sense and convert light input into analog voltage. Drum scanners
consist of a removable transparent cylinder on which a print, which is reflec-
tive, transparent, or a photographic negative, can be mounted. A light source
illuminates the image in a single pass as the drum spins at a high speed.
The light reflected off or transmitted through the print is passed through
red, green, and blue filters then sent through the PMTs, which relay voltages
proportional to the input light intensity. The PMT is extremely sensitive, thus
providing drum scanners a large dynamic range. The drum scanners used
in offset printing applications contain built-in computers that are capable of
direct conversion of the RGB scan to CMYK output and are used to generate
color separations at very high spatial resolution. A limitation of this scanning
technology is that the original must be flexible so that it can physically be
mounted on the drum.

All flatbed scanners utilize CCD technology, which is simpler, more
stable, and less costly than PMT technology. These scanners have widely
varying sensitivity and resolution and, at the highest end, approach the
performance of drum scanners. Transparent or reflective prints are placed
on a glass platen and evenly illuminated from above the glass for transpar-
encies, and from beneath for reflective. As the light source moves across the
image, individual lines of the image are sensed by a CCD array, which relays
voltages that are proportional to the input light intensity. An integrating
cavity is usually employed to focus light from the scanner illuminant onto
the print. An undesirable outcome of this is that light reflected from a given
spatial location on the print can be captured by the cavity and returned to
the print at neighboring locations. Hence, the scanner measurement at a pixel
depends not only on the reflectance at that pixel but also on the reflectances
of neighboring pixels. A model and correction algorithm for this so-called
integrating cavity effect is given by Knox.??

Following the sensing step, an analog-to-digital (A /D) converter is used
to quantize the analog voltage signal to a digital signal represented by
between 8 and 16 bits per each of R, G, B channels. These raw digital values
are usually linear with respect to the luminance of the stimulus being
scanned. Additional image acquisition software often allows the raw data
to be processed through tone reproduction curves so that a power-law (or
gamma) relationship exists between digital value and luminance. This oper-
ation is carried out before the A/D conversion. One reason for doing this is
that quantization of nonlinear gamma-corrected signals is less visually dis-
turbing than quantization of data that is linear in luminance. (This is dis-
cussed in more detail in the section on display characterization.) A second
reason is to prepare the scanned data for direct display on a CRT, which
exhibits approximately a square law (gamma = 2) relationship.
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5.6.1 Calibration

Scanner calibration involves first establishing various settings internal to the
scanner, or in the scanner driver. To calibrate the white point, a reflective
white sample shipped with the scanner is scanned, and the gain factor on
each of the R, G, B signals is adjusted so that R = G = B = 1 for this sample.
As mentioned earlier, additional scanner software can offer selections for the
digital precision of the RGB output and transformations between analog and
digital representations (e.g., power-law functions). Once set, these parame-
ters must not be altered during subsequent characterization or scanning
operations.

In addition, it is usually desirable to linearize and gray-balance the
scanner response. The result of this step is that an input ramp of gray stimuli
in equal increments in luminance will result in equal increments in R = G =
B scanner values. To achieve this, the scanner is exposed to a ramp of gray
patches of known luminance values (e.g., as found at the bottom of the Q60
target); the scanner RGB values are extracted for each patch, and a TRC is
constructed. A hypothetical example is given in Figure 5.23 to illustrate the
process. The TRC is constructed so that a triplet of raw RGB values corre-
sponding to a gray patch will map to the corresponding measured luminance
value (within a scaling factor). The measurements generally provide only a
subset of the data points in the TRC, the rest being determined with some

Scanner Measured Scaled
RGB Luminance Luminance
(0-255)
10 20 30 4 10
15 25 35 8 20
[100 104 109] 45 1115]
210 206 209 94 240
Output
115

Input

Figure 5.23 Illustration of gray-balance calibration for scanners.
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form of data fitting or interpolation technique. Because the data are likely
to contain some noise from the scanning and measuring process, it is pref-
erable that the fitting technique incorporate some form of smoothing. Kang?
reports that linear regression provides sufficiently accurate results for scan-
ner gray balance, while nonlinear curve fitting offers only a modest improve-
ment. In any event, polynomial and spline techniques are viable alternatives
for scanners that exhibit significant nonlinearity.

5.6.2 Model-based characterization

Model-based scanner characterization attempts to establish the relationship
between calibrated device-dependent data and colorimetric representations
via explicit modeling of the device spectral sensitivities. Adopting the nota-
tion in previous sections, consider a training set of T spectral reflectance
samples {s;}, which can be collected into a matrix S = [s;, ..., s;]'. The spectral
data is related to device data D = [d;, ..., d;]* and colorimetric data C =
[c), ..., cr]' by Equations 5.1 and 5.2, respectively. In matrix notation, we thus
have

C=SA, ;D=S8A, (5.38)

The column vectors of matrix A_are a product of the color matching functions
and the viewing illuminant I, and similarly A, is formed from a product of
the scanner spectral sensitivities and the scanner illuminant I,. The classic
model-based approach is to compute the linear 3 x 3 matrix transformation
M that best fits the colorimetric data to device-dependent data in the least-
squared error sense. The linear approximation is expressed as

C=D-M (5.39)
and from Section 5.4.1, the optimal M is the least-squares solution,
M = (D'D)' D'C (5.40)
Plugging Equation 5.38 into Equation 5.40, we have
M = (A/S' SA)? A/S! SA, (5.41)

Equation 5.41 tells us that the scanner characterization function is deter-
mined by

Color matching functions

Viewing and scanning illuminants I, and I,

Spectral autocorrelation matrix S'S of the training samples
Scanner spectral sensitivities

Ll N
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Note that Equation 5.40 can be directly used to estimate M from a set of
training samples {d, ¢;} without explicit knowledge of the spectral sensitiv-
ities. However, for accurate results, this empirical procedure would have to
be repeated for each different combination of input reflectances S and view-
ing illuminants I,. The model-based formulation, Equation 5.41, allows pre-
diction of the scanner response for arbitrary input reflectances and illumi-
nants given the scanner sensitivities A; and illuminant L. The optimal M
can be computed using Equation 5.41 without having to make repeated
measurements for every combination of input media and illuminants.

Each of the quantities of interest in Equation 5.41 will now be discussed.
Because the color matching functions A, are known functions, they are not
included in the discussion.

Viewing illuminant. In general, it is difficult to ascertain a priori the
illuminant under which a given stimulus will be viewed. A common de facto
assumption for viewing reflective prints is the Daylight 5000 (D50) illumi-
nant. However, if it is known that images are to be viewed under a certain
type of lighting, e.g., cool-white fluorescence or an incandescent lamp, then
the corresponding spectral radiance should be used.

Scanning illuminant. Scanners typically employ a fluorescent source,
hence the spectral radiance function will contain sharp peaks as shown in
Figure 5.4. The spectral radiance function I (A) can be obtained from the
scanner manufacturer or can be estimated from the training data. However,
the peaks found in fluorescent sources can lead to unreliable estimates unless
these are explicitly modeled.* Hence, it is generally preferable that this
quantity be directly measured.

Scanner spectral sensitivities. Deriving the scanner sensitivities is the
most challenging aspect of model-based characterization. Some scanner
manufacturers supply such data with their products. However, the informa-
tion may not be accurate, as filter characteristics often change with time and
vary from one scanner to another. Direct measurement of the scanner sen-
sitivities may be achieved by recording the scanner response to narrowband
reflectance data. However, this is a difficult and expensive process and
therefore impractical in most applications. The most viable alternative is to
estimate the sensitivities from a training set of samples of known spectral
reflectance. Several approaches exist for this and are briefly described below,
along with references for further reading.

The most straightforward technique is to use least-squares regression to
obtain the device sensitivity matrix A, The objective is to find A, that
minimizes ||D—SA,|*. From the linear regression formulation in Section
5.4.2, we have

A,=(8'S)'SD (5.42)
The problem with this approach is that, although the spectral reflectance

data is L-dimensional, with L being typically between 31 and 36, the true
dimensionality of the spectra of samples found in nature is significantly less.
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(Studies have shown that the samples in the Macbeth chart can be accurately
represented with as few as three basis functions.”) Alternatively phrased,
the system of Equations 5.42 contains only a small number of significant
eigenvalues. This results in the spectral autocorrelation matrix S'S being ill
conditioned, in turn yielding unstable, noise-sensitive estimates of the sen-
sitivity functions A,. One approach to mitigate this problem is to use only
the eigenvectors corresponding to the few most significant eigenvalues of
S'S in the solution of Equation 5.42. This so-called “principal eigenvector”
(PE) method results in a solution that is far less noise sensitive than that
obtained from Equation 5.42. The reader is referred to Sharma? for more
details.

One problem with PE is that it does not exploit a priori information
about the nature of the spectral sensitivity functions. We know, for example,
that the spectral sensitivities are positive-valued and usually single-lobed
functions. In the case where A only contains the passive filter and detector
responses (i.e., the illuminant is not included), we also know that the func-
tions are smooth. There are a number of ways to use these constraints to
generate estimates of A, that are superior to those achieved by PE. One
approach is to define the aforementioned constraints as a set of linear ine-
qualities and formulate the least-squares minimization as a quadratic pro-
gramming problem. The latter can be solved using standard packages such
as Matlab. The reader is referred to Finlayson et al.?® for more details.
Another approach is to use a set theoretical formulation to express the
constraints as convex sets and to use an iterative technique known as pro-
jection onto convex sets (POCS) to generate the sensitivity functions.?* One
potential problem with the POCS technique is that the solution is not unique
and is often sensitive to the initial estimate used to seed the iterative process.
Despite this caveat, this technique has been shown to produce very good
results. 4%

Input spectral data.  As alluded to in Section 5.2, the spectral reflectance
data S should be measured from media that are representative of the stimuli
to be scanned. If a single scanner characterization is to be derived for all
possible input media, it is advisable to measure the data from a wide range
of media, e.g., photography, offset, laser, inkjet, etc. An interesting case occurs
if S is constructed by drawing samples at random from the interval [-1, 1]
with equal likelihood. With this “maximum ignorance” assumption, the
spectral data are uncorrelated; therefore, the autocorrelation S'S is an identity
matrix, and Equation 5.41 reduces to

M = (A/A)" A/A, (5.43)

Note that the characterization transform now no longer depends on mea-
sured data. Observe, too, that Equation 5.43 is also the least-squares solution
to the linear transformation that relates the color matching functions A, to
the device sensitivities A,;
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A =AM (5.44)

Comparing Equations 5.39 and 5.44, we see that the optimal linear trans-
form that maps the color matching functions to the scanner sensitivities is
the same as the transform that optimally maps scanner RGB to XYZ under
the maximum ignorance assumption. As a corollary, if the scanner is perfectly
colorimetric, then Equations 5.39 and 5.44 become equalities, and the matrix
that relates the color matching functions to scanner sensitivities is precisely
the matrix that maps scanner RGB to XYZ for all media and illuminants.

One problem with the maximum ignorance assumption is that it includes
negative values, which can never occur with physical spectra. Finlayson et
al.®® show that a positivity constraint on the preceding formulation results
in the correlation S'S being a constant (but not identity) matrix, which results
in a more accurate estimate of M.

Another class of model-based techniques, somewhat distinct from the
preceding framework, derives scanner characterization for a specific
medium by first characterizing the medium itself and using models for both
the medium and scanner to generate the characterization. The additional
step of modeling the medium imposes physically based constraints on the
possible spectra S and can lend further insight into the interaction between
the medium and the scanner. Furthermore, a priori modeling of the input
medium may simplify the in situ color measurement process. Berns and
Shyu? postulate that scanner filters are designed to align closely with the
peaks of the spectral absorptivity functions of typical photographic dyes.
The relationship between scanner RGB and C, M, Y dye concentrations is
thus modeled by simple polynomial functions. The Beer-Bouguer and
Kubelka—-Munk theories (discussed in Section 5.10.2) are then used to relate
dye concentrations to reflectance spectra for photographic media. Sharma3
models the color formation process on photographic media using the
Beer-Bouguer model. From this model, and using a small number of mea-
surements on the actual sample being scanned, the set S,,,,;,,, of all reflectance
spectra reproducible by the given medium is estimated. For a given scanner
RGB triplet, the set S,,,,.. of all reflectance spectra that can generate this
triplet is derived with knowledge of the scanner spectral sensitivities, A.
The actual input reflectance spectrum lies in the intersection S,,,.4i.m N Sscanner
and is derived using POCS. Note that both these approaches generate spec-
tral characterizations, i.e., mappings from scanner RGB to spectral reflec-
tance. From this, colorimetric characterizations can readily be generated for
arbitrary viewing illuminants.

5.6.3 Empirical characterization

Empirical approaches derive the characterization function by correlating
measured CIE data from a target such as the Q60 to scanned RGB data
from the target. Most of the data-fitting techniques described in Section 5.4
can be used (with the exception of lattice-based approaches, as scanner
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characterization data cannot be designed to lie on a regular grid). Kang?
describes the use of polynomial regression to fit gray-balanced RGB data to
CIEXYZ measurements. He compares 3 x 3,3 x 6,3 x 9,3 x 11, and 3 x 14
polynomial matrices derived using least-squares regression as described in
Section 5.4.3. Several targets, including the MacBeth ColorChecker and
Kodak Q60, are used. The paper concludes that a 3 X 6 polynomial offers
acceptable accuracy and that increasing the order of the polynomial may
improve the fit to training data but may worsen the performance on inde-
pendent test data. This is because, as noted in Section 5.4, higher-order
approximations begin to track the noise in the data. The paper also explores
media dependence and concludes that the optimal 3 x 3 matrix does not
vary considerably across media, whereas the optimal polynomial transform
is indeed media dependent and will generally offer greater accuracy for any
given medium.

Kang and Anderson® describe the use of neural networks for scanner
characterization. They use a 3-4-3 network, trained by cascaded feed-for-
ward correlation. A cumulative Gaussian function is used for the nonlinear-
ity at each unit in the network (see Section 5.4.7). In comparison with poly-
nomial regression, the neural network reports superior fits to training data
but inferior performance for independent test data. Furthermore, the neural
network is reported as being fairly sensitive to the choice of training data.
Hence, while neural networks offer powerful capabilities for data fitting,
much care must be exercised in their design and optimization to suit the
nature of the particular device characteristics.

5.7 Digital still cameras

Digital still cameras (DSCs) are becoming a common source for digital imag-
ery. Their characterization is complicated by two factors.

1. The conditions under which images are captured are often uncon-
trolled and can vary widely.

2. To compensate for this, DSC manufacturers build automatic image-
processing algorithms into the devices to control and correct for flare,
exposure, color balance, etc.

DSC characterization is probably unnecessary in most consumer applications
and is called for only in specialized cases that require controlled, high-quality
color capture. In such cases, it is imperative that the automatic processing
be disabled or known to the extent that the raw DSC signals can be recovered
from the processed data.

A few precautions are in order for proper digital capture of calibration
and characterization targets. First, it must be ensured that the illumination
on the target is uniform. A viewing/illuminating geometry of 0/45 is rec-
ommended so as to be consistent with the geometry of measurement devices
and typical visual viewing of hardcopy prints. Next, the lenses in most digital
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cameras do not transmit light uniformly across the lens area, so, for a fixed
input radiance, pixels near the center report higher signal levels than those
in the periphery. The ideal solution to this problem is to expose the camera
to a constant color (e.g., gray) target and digitally compensate for any spatial
uniformity in the camera response. (Such compensation may be built into
some camera models.) The effect can also be somewhat reduced by choosing
the distance between camera and target so that the target does not occupy
the full camera frame. Finally, it is recommended that any nonvisible radi-
ation to which the DSC is sensitive be blocked so that output RGB values
are not affected. Many DSCs respond to IR radiation, hence IR blocking filters
should be used.

Figure 5.24 shows the color calibration and characterization path for a
DSC. Much of the theoretical framework for image capture is common
between DSCs and scanners; hence, we will frequently refer to the formula-
tion developed in Section 5.6 for scanners while focusing here on DSC-
specific issues. For additional procedural details on DSC characterization,
the reader is referred to the ISO 17321 standard.*

5.7.1 Calibration

It must be ensured that camera settings such as aperture size and exposure
time are in a known fixed state, and that all automatic color processing is
disabled. The main task in DSC calibration is to determine the relationship
between input scene radiance and camera response, typically for a range of
gray input stimuli. Determination of this function, known as the opto-elec-
tronic conversion function (OECF), is conceptually similar to the gray-bal-
ancing operation for a scanner (see Section 5.6.1). A target comprising gray
patches of known spectral reflectance measurements is illuminated with a
known reference illuminant. From the reflectance and illuminant data, the
luminance Y of each patch is calculated (see Equation 5.9). An image of the
target is captured with the DSC. The correspondence between input lumi-
nance Y and output RGB is used to generate an inverse OECF function as
described in Section 5.6.1 for scanners. This is a TRC that maps raw device

Scene illuminant scene white reference white
estimation
Opto-electronic Inverse Xyz scene i i
D, Dy D, conversion characterization Chron:?;:::s?grarstatlon " XYZ cterence
function
Gray Spectral sensitivities or
measurements empirical data

Figure 5.24 Block diagram of digital camera calibration, characterization, and chro-
matic adaptation transforms.
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RGB to R'G’B’ such that R” = G” = B” = Y for the neutral patches. The raw
captured image is then always processed through this TRC to obtain a
linearized and gray-balanced image prior to subsequent processing. Further
details on specifications and experimental procedures for OECF determina-
tion are given in the ISO 14524 standard.®

5.7.2  Model-based characterization

The goal is to obtain the optimal 3 x 3 matrix M that relates the DSC RGB
data to a colorimetric (e.g., XYZ) representation. As with scanners, derivation
of M is given by Equation 5.41 and requires knowledge of the color matching
functions, correlation statistics of scene data, and device spectral sensitivities.
Color matching functions are known and require no further discussion.
Scene correlation statistics should be used where possible. However, given
the diversity of scene content likely to be encountered by a DSC, the maxi-
mum ignorance assumption is often invoked, and scene statistics are elimi-
nated from the formulation. Derivation of M thus reduces to Equation 5.43
and requires only estimation of the DSC spectral sensitivities.

The techniques described in Section 5.6.2 for estimating device sensitiv-
ities indirectly from the characterization data can be applied for DSCs. One
can also adopt a more direct approach of recording the device’s response to
incident monochromatic light at different wavelengths. The latter can be
generated by illuminating a diffuse reflecting surface with light filtered
through a monochromator. From Equation 5.1, the camera response to mono-
chromatic light at wavelength A is given by

DiA) = L,(MRy(M)g:(h) = S(Mq:(L) (5.45)

where i=R,G,B
I,(A) = the monochromator illumination
R,(A) = the reflectance of the diffuse surface
S(M) = L,(MR,(M) is the radiance incident to the DSC

For simplicity, the detector sensitivity u(A) in Equation 5.1 is folded into the
term g,(A) in Equation 5.45, and the noise term is assumed to be negligible.
The radiance S(A) is measured independently with a spectroradiometer. The
spectral sensitivities g,(A) are then obtained by dividing the camera response
D,(A) by the input radiance S(A). In the case where the DSC response is tied
to a specific reference illuminant I,,(}), the products g,(A)I,,(A) can be stored.
More details are found in ISO 17321.%2

The reader is reminded that, due to practical considerations, DSC sen-
sitivities are not linearly related to color matching functions, and that the
3 x 3 matrix being derived is only an approximation. However, this approx-
imation is sufficient for many applications. The accuracy of M for critical
colors can be further improved by imposing constraints on preservation of
white and neutral colors.?
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5.7.3 Empirical characterization

As with scanners, empirical DSC characterization is accomplished by directly
relating measured colorimetric data from a target and corresponding DSC
RGB data obtained from a photographed image of the target. This approach
is recommended in the case where the DSC spectral sensitivities are
unknown, or when the target and illumination conditions used for charac-
terization are expected to closely match those encountered during actual
image capture.

Hubel et al.® compare several techniques for computing the optimal
3 X 3 matrix M. One of these is a model-based approach that uses a white
point preserving maximum ignorance assumption, while the remaining tech-
niques are empirical, using linear regression on training samples. They report
an extensive set of results for different illumination conditions. Average
AE (¢ values range from approximately 2.5 to 6.5, depending on the tech-
nique and illumination used. The model-based technique was often outper-
formed by an empirical technique for a given medium and illuminant. How-
ever, the model-based strategy, being oblivious to scene statistics, was
generally robust across different illumination conditions.

An empirically derived characterization need not be restricted to a linear
transformation. Hong et al.* explore a polynomial technique to characterize
a low-performance Canon PowerShot Pro70 camera for photographic input.
A second-order polynomial was employed with 11 terms given by [D, D,,
D, D,D,, D,D, D,D, D?, D¢, D¢, D,D,D,, 1]. The average characterization
error for 264 training samples from an IT8.7/2 target was AEqycqq) = 2.2. A
similar technique® was used to characterize a high-performance Agfa digital
StudioCam resulting in an average AEqycq,) = 1.07. Note that these errors
are significantly lower than those reported by Hubel et al. This is not sur-
prising, because polynomials can be expected to outperform linear approx-
imations under a given set of controlled characterization conditions. The
other findings from these two studies are as follows:

¢ Correction for the OECF significantly improves overall characteriza-
tion accuracy.

* For polynomial fitting, 40 to 60 training samples seem adequate;
beyond this, there is little to be gained in characterization accuracy.

¢ The polynomial correction is highly dependent on the medium/col-
orant combination.

¢ For a single medium/colorant combination, increasing the order of
the polynomial up to 11 improves the characterization accuracy, with
some terms (notably D,D,D, and the constant term) being more im-
portant than others. With the high-performance camera, a 3 x 11
polynomial results in an average error of approximately 1 AEqycq.q)-
The low-performance camera results in AEqycq.q) = 2.2.

¢ For cross-media reproduction, increasing the order of the polyno-
mials is not of significant benefit. Typical accuracy with a 3 x 11
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correction lies between 2 and 4 AE(yc,,) Wwhen characterization and
test media are not the same.

5.7.4  White-point estimation and chromatic adaptation transform

The characterization step described in Sections 5.7.2 and 5.7.3 yields a
transformation between DSC data and colorimetric values corresponding
to the input viewing conditions. One must be able to convert this colori-
metric data to a standard color space (e.g., sSRGB), which is based on a
different set of reference viewing conditions. This calls for a color appear-
ance model to account for the differences between input and reference
viewing conditions. The most important parameters pertaining to the view-
ing conditions are the input scene and reference white points. The appear-
ance model can thus be reduced to a chromatic adaptation transform (CAT)
between the two white points.

In general, the scene white is unknown and must be indirectly estimated
from the image data. A recent technique, known as color by correlation, has
shown promise as a simple and reliable method of estimating white point.
The idea is to acquire a priori sets of DSC training data corresponding to
different known illuminants. Data from a given image are then compared
with each training set, and the illuminant is chosen that maximizes the
correlation between the image and training data. If the DSC spectral sensi-
tivities are known, the training samples can be acquired via simulation;
otherwise, they must be gathered by photographing samples under different
illuminants. See Chapter 5 of Reference 7 for details of this approach.

There has been considerable research in finding the optimal color space
for the CAT. An excellent survey is given in Chapter 5 of Reference 7. Ideally,
the CAT should mimic visual adaptation mechanisms, suggesting that it
should be performed in an LMS cone fundamental space. Finlayson et al.®
use the added argument that orthogonal visual channels maximize efficiency
to orthogonalize the LMS space, forming their so-called sharp color space.
(The term “sharp” comes from the fact that the associated color matching
functions are relatively narrowband.) Psychophysical validation has shown
that the sharp space is among the best spaces for performing the CAT. A
physically realizable variant of this space is being proposed as an ISO stan-
dard for DSC characterization.® This ISO-RGB space is a linear transforma-
tion of XYZ, and is given by

X 0.4339 0.3762 0.1899| R R|]3.0799 -1.5369 -0.5432| | X
Y| =10.2126 0.7152 0.0721| |G|; |G| |-0.9209 1.8756 0.0454 ||Y|~
Z

0.0177 0.1095 0.8728| |G B|| 0.0531 -0.2041 1.1510 | |Z (5.46)

The procedure for applying the CAT in ISO-RGB space given the input and
reference white points is summarized as follows:
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1. Use the calibration and characterization transforms to convert DSC
device data to XYZ,, corresponding to input viewing conditions.

2. Convert the input and reference white points from XYZ to ISO-RGB

using Equation 5.46.

Convert XYZ,, to ISO-RGB;, using Equation 5.46.

4. Perform von Kries chromatic adaptation by multiplying ISO-RGB,,
by the diagonal matrix,

@

I white 1

Rref
RT.Uh”F

Gwllite

0 % 647
in

Bw’hife

0 0 4

Bwhire
in |

white white

where C,s *, C;, , (C=R, G, B) are the white points under reference
and input viewing conditions, respectively. (The reader is referred to
an earlier chapter for details on von Kries adaptation.) This step
generates ISO-RGB data under reference viewing conditions, denot-
ed ISO-RGB,,;.

5. Convert ISO-RGB,¢ to XYZ, using Equation 5.46. This provides a
colorimetric representation under reference viewing conditions and
can be transformed to other standard color spaces.

Note that the matrices in the last three steps can be concatenated into a single
3 x 3 matrix for efficient processing.

5.8 CRT displays

The cathode-ray tube (CRT) is the most common type of display used in
computers and television. Color is produced on a CRT display by applying
modulated voltages to three electron guns, which in turn strike red, green,
and blue phosphors with electrons. The excited phosphors emit an additive
mixture of red, green, and blue lights. The assumptions mentioned in Section
5.2.4 on channel independence and chromaticity constancy, in addition to
the usual assumptions on spatial uniformity and temporal stability, result in
a fairly simple process for CRT calibration and characterization.

5.8.1 Calibration

Cathode-ray tube (CRT) calibration involves setting brightness and contrast
controls on the display to a fixed nominal value. In addition, the relationship
between the R, G, B input digital values driving the three gun voltages and
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the resulting displayed luminance must be established and corrected. This
relationship is usually modeled based on the power-law relationship between
the driving voltage and the beam-current for a vacuum tube, and is given by*

Dy =D, \%
Y R offset .
% R = f + KR(Dmax — Doffset) Zf DR > DfoSEt (548)
RnI(IX .
f lf DR < Daffset

where Dy = input digital value to the red gun
Yy = resulting luminance from the red channel

Y = luminance of the red channel at full intensity

D, = largest digital count for which there is no detectable
luminance from the screen
D,,.. = maximum digital count (e.g., in an 8-bit system, D,,,, = 255)
f = flare that arises mostly from ambient illumination
Ky = a gain factor
Yz = nonlinear power law factor

Analogous expressions hold for the green and blue terms. Generally, the
calibration is done with all room lights turned off; hence, the flare term is
assumed to be negligible. In addition, with proper brightness and contrast
settings, the following simplifying assumptions are often made: K = K; =K}
=1, Dy = 0. This reduces Equation 5.48 to

D Y
Yl,:R _ (D_R ) ! (5.49)

max

with analogous expressions for Y; and Y. The parameters for the calibration
model are obtained by making measurements of a series of stepwedges from
each primary color to black using a spectroradiometer or colorimeter and
fitting these measurements to the model given by Equations 5.48 or 5.49
using regression. If Equation 5.49 is adopted, a simple approach is to take
logarithms of both sides of this equation to produce a linear relationship
between log(Y;) and log(Dg/D,,.,). This can then be solved for y; via the linear
regression technique described in Section 5.4.1. Berns et al.* provide detailed
descriptions of other regression techniques. Values of Y, v; ¥z for typical
CRTs lie between 1.8 and 2.4.

Once the model is derived, a correction function that inverts the model
is applied to each of the digital R, G, B inputs. If Equation 5.49 is assumed,
the correction is given by

D}{ l/yR
DR - Dmax(D_)

max

(5.50)

© 2003 by CRC Press LLC



with similar expressions for G and B. Here Dy, Dy, Dj are linear in lumi-
nance, and Dy, D¢, Dy are the raw signals that drive the gun voltages. The
calibration function, Equation 5.50, is often referred to as gamma correction
and is usually implemented as a set of three one-dimensional lookup tables
that are loaded directly into the video path. Plots of Equations 5.49 and 5.50
for y = 1.8 are shown in Figure 5.25.

It is worth noting that digital quantization of the gamma-corrected signal
Dy, D¢, Dy in Equation 5.50 results in smaller quantization intervals at lower
luminance values where the eye is more sensitive to errors, and larger inter-
vals at high luminances where the eye is less sensitive. The idea of applying
nonlinear preprocessing functions to reduce the visual perceptibility of quan-
tization errors (often known as companding) is widely employed in many
digital signal processing applications. In our case, gamma correction applied
prior to conversion to the digital domain not only calibrates the CRT, it also
fortuitously reduces perceived quantization error in color images intended
for CRT display.

The CRT with the gamma correction Equation 5.50 incorporated in the
video path exhibits a tone reproduction characteristic that is linear in lumi-
nance. That is,
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Figure 5.25 Gamma function for y = 1.8.
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(2

RMax

with similar expressions for G and B. Some CRT calibration packages allow
the user to specify an overall system gamma, Y, so that Equation 5.51
becomes

D’ ’Ysysh’m
YYR - (D R ) (5.52)
R max

max

This provides some control on the effective tone reproduction characteristic
of the CRT. To achieve this overall system response, the gamma correction
function Equation 5.50 is modified as

(ysystem)
TR

Dy = D(DD—) (5.53)

5.8.2 Characterization

We assume henceforth that the aforementioned calibration has been derived
so that Equation 5.51 holds. Recall that, with the assumptions on channel
independence and chromaticity constancy, Equation 5.8 describes the rela-
tionship between input device RGB values and output spectral radiance.
Spectral radiance is then converted to tristimulus XYZ values according to
Equation 5.9. Substituting the expression for Sp;(A) in Equation 5.8 into
Equation 5.9., the relationship between the inputs D%, Di;, D3 to alinearized
CRT and resulting tristimulus values is given by

X X Xg Xg| |Dr
Y| = [ Yy Ye Y3 | Dy (5.54)
Z ZR ZG ZB D’B

where Xg, Yg, Zg = tristimulus values of the red channel at its maximum
intensity, and likewise for green and blue

In matrix-vector notation, Equation 5.54 becomes

c=Apd; d' =Axn'c (5.55)
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The columns of Ay are the tristimulus coordinates of R, G, B at maximum
intensity and can be obtained by direct tristimulus measurement. A more
robust approach would be to include additional tristimulus measurements
of other color mixtures and to solve for Aq;r using least-squares regression
as described in Section 5.4.1. Note that A, assumes flare-free viewing
conditions. If flare is present, this can be captured in the d” vector by using
calibration function Equation 5.48 with an appropriate value for f.

The quality of the characterization can be evaluated by converting a test
set of color patches specified in XYZ to display RGB through the inverse
characterization mapping (i.e., the second part of Equation 5.55) and mea-
suring the displayed colors (see Figure 5.10). The original and measured
values are then converted to CIELAB coordinates, and the error is derived
using a suitable metric such as AE,, or AE,, . Berns et al.® report excellent
results using this simple model, with average AE,, less than 1. Factors that
can contribute to additional errors include internal flare within the CRT,
cross-channel interactions not accounted for in the aforementioned model,
and spatial nonuniformity across the display.

Most CRTs exhibit fairly similar color characteristics, because the power-
law relationship, Equation 5.48, is a fundamental characteristic of vacuum
tube technology; furthermore, CRT manufacturers use very similar, if not
identical, phosphor sets. For this reason, and because CRTs are such a prev-
alent medium for the display and manipulation of color, there have been
several efforts to standardize on CRT RGB color spaces. The most notable
recent example is the sSRGB standard (available at www.srgb.com). If one’s
CRT has not been characterized, one of the standard models can be adopted
as a reasonable approximation. Minimally, these RGB spaces are defined by
a gamma (assumed to be equal for all channels) and matrix Az;. Sometimes,
instead of directly specifying A, the x-iy chromaticity coordinates of the red,
green, and blue primaries are provided along with the XYZ values of the
white point. Ay is easily derived from these quantities (see Appendix 5.B).

5.8.3 Visual techniques

Because CRTs can be accurately characterized with simple models, a class
of techniques has emerged that obviates the need for color measurements
and relies upon visual judgments to directly estimate model parameters such
as gamma and offset.?*#2 The basic idea is to display a series of targets on
the screen and provide the user with some control to adjust certain colors
until they match given reference stimuli. Based on the settings selected by
the user, an algorithm computes the model parameters. An example is shown
in Figure 5.26 for visually determining y in Equation 5.49. The bottom half
of the target is a fine checkerboard pattern of alternating black and white
dots. The top half is a series of patches at different gray levels. The user is
asked to select the gray patch whose luminance matches the average lumi-
nance of the checkerboard. The assumption is that the average checkerboard
luminance Y j, oo 1S approximately halfway between the luminances of
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www.srgb.com). 
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Figure 5.26 Target for visual determination of v for displays.

black and white. Reasonable a priori assumptions can be made for the latter
(e.g., Yy = 0 and Y ;. = 100, respectively), and hence for the checkerboard
(.8 Y eckersoara = 50). A user who selects the gray patch to match the check-
erboard is effectively selecting the digital count D,),,,;, corresponding to lumi-
nance Y jocermonra- 1his provides enough information to calculate y by rear-

ranging Equation 5.49 as follows:

108 ( Ycheckerboard / Ywhite)
= 5.56
log(Dmutch/Dmux) ( )

In this example, the same y value is assumed for the R, G, and B channels.
The technique is easily extended to estimate 7y for each individual channel
by displaying checkerboard patterns that alternate between black and each
respective primary. A demonstration of visual CRT calibration can be found
in the recent article by Balasubramanian et al.#* Visual determination of the
color of the primaries and white point (i.e., Aczr) requires more sophisticated
techniques* and is an active area of research.

5.9 Liquid crystal displays

Liquid crystal displays are becoming an increasingly popular medium for
color display. Their compactness and low power consumption, combined
with steadily increasing spatial resolution and dynamic range, have made
these devices increasingly prevalent in both consumer and professional mar-
kets. Consequently, color management for LCDs has received greater atten-
tion in recent years.

The type of LCD most commonly used for computer display is the back-
lit active-matrix LCD (AMLCD) employing twisted nematic technology. In
this technology, each pixel comprises a pair of linear polarizers and a liquid
crystal substrate sandwiched between them. The polarizations are oriented
orthogonally to each other. Light from a source behind the display surface
passes through the first polarizer and is then reoriented by the liquid crystal
substrate before it is passed through the second polarizer. The light then
passes through one of red, green, or blue filters, arranged in a spatial mosaic.
The extent of optical reorientation by the liquid crystal, and thus the intensity

© 2003 by CRC Press LLC



of light finally emanated, is determined by an electric field applied to the
liquid crystal substrate. This field is determined by an applied voltage, which
in turn is driven by the digital input to the device.

From the viewpoint of color characterization, twisted nematic technol-
ogy can pose several shortcomings: the strong dependence of perceived color
on viewing angle, poor gray balance for R = G = B input, and lack of
chromaticity constancy. Recent developments such as in-plane switching
technology* overcome these problems to some extent.

5.9.1 Calibration

A major difference between CRT and LCD characteristics is the nonlinear
function that relates input digital values to output luminance, shown in
Figure 5.27. Unlike vacuum tubes that exhibit a power-law relationship, LCD
technology results in a native electro-optic response that is often better
modeled as a sigmoidal S-shaped function.?® However, many LCD manu-
facturers build correction tables into the video card that result in the LCD
response mimicking that of a CRT (i.e., a power-law response with y = 1.8
or 2.2). Hence, it is recommended that some initial analysis be performed
before a particular function is chosen and that, if possible, built-in corrections
be deactivated so as to reliably calibrate the raw display response. As with
CRTs, the calibration function is derived by making color measurements of
a series of stepwedges in each of R, G, B. If a model-based approach is
adopted, the model parameters are fitted to the measurements via regression.
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Figure 5.27 Typical opto-electronic conversion function for liquid crystal displays.
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Alternatively, if the LCD response does not appear to subscribe to a simple
parametric model, an empirical approach may be adopted wherein the mea-
sured data are directly interpolated or fitted using, for example, piecewise
linear, polynomial, or spline functions.

As mentioned earlier, some LCDs do not adhere to the chromaticity
constancy assumption. This is largely due to the non-smooth spectral char-
acteristics of the backlight and its interaction with the color filters.*> Kwak
et al.¥ compensate for the lack of chromaticity constancy by introducing
cross terms in the nonlinear calibration functions to capture interactions
among R, G, and B. They claim a significant improvement in overall accuracy
as a result of this extension.

5.9.2 Characterization

Most of the assumptions made with CRTs (i.e., uniformity, stability, pixel
independence, and channel independence) hold to a reasonable degree with
AMLCDs as well. Hence, the characterization function can be modeled with
a 3 x 3 matrix as in Equation 5.54, and the procedure described in Section
5.8 for deriving CRT characterization can be used for AMLCDs in the same
manner. As mentioned earlier, an important caution for AMLCD:s is that the
radiance of the emanated light can be a strong function of the viewing angle.
The only practical recommendation to mitigate this problem is that the
measurements should be taken of light emanating perpendicular to the plane
of the screen. The same geometry should be used for viewing images. For
further details on LCD characterization, the reader is referred to the works
by Marcu,* Sharma,* and Kwak.¥

5.10 Printers

Printer characterization continues to be a challenging problem due to the
complex nonlinear color characteristics of these devices. Space consider-
ations do not permit a description of the physics of the numerous digital
printing technologies. Instead, we will offer general techniques that apply
to broad categories of devices (e.g., halftone vs. continuous tone; CMY vs.
CMYK, etc.).

Recall the basic calibration and characterization workflow in Figure 5.9.
The techniques for target generation and calibration and characterization
vary widely, offering a range of trade-offs between cost and accuracy. A
selection of common techniques will be presented in this section.

5.10.1 Calibration

Two common approaches are channel-independent and gray-balanced
calibration.
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5.10.1.1 Channel-independent calibration
In this type of calibration, each channel i (i = cyan, magenta, yellow, etc.) is
independently linearized to a defined metric M,. An example of such a metric
is the AE,, color difference between the ith channel and medium white,
defined as

Ml(d) = Hcmedium - Ci(d)HZI i= C,M,Y,O < d < dmnx (557)
where d = input digital level
Creaivm = CIELAB measurement of the medium

¢,(d) = CIELAB measurement of the ith colorant generated at digital
level d

Note that, by definition, M;(0)=0 . Linearizing with respect to this metric
will result in an approximately visually linear printer response along each
of its primary channels.

The calibration is accomplished with the following steps:

* Generate stepwedges of pure C, M, Y patches at a few selected digital
levels d;. The number and spacing of levels required depend on the
characteristics of the printer. As a general guideline, between 15 and
20 patches per channel is sufficient for most printers, and a finer
sampling is recommended in the region of small d values to accu-
rately capture the printer response at the highlights. Also ensure that
the solid patch (ie., d = d,,,) is included.

¢ Make CIELAB measurements of the stepwedges and of the bare
medium. Media relative colorimetry is recommended for the CIELAB
calculations.

* Evaluate M(d)) at the measured digital levels d; using Equation 5.57.

® Scale the data by a multiplicative factor so that M,d,,.) = d,,.,. This
is accomplished by multiplying the function M;(d) by the constant
[dmux/ Mz' (dmax) ] .

¢ Invert the scaled functions M;(d) to obtain M, by interchanging the
dependent and independent variables. Use some form of fitting or
interpolation to evaluate M;! for the entire domain [0, d,,,]. If the
printer response is smooth, linear interpolation suffices; otherwise,
more sophisticated fitting techniques such as polynomials or splines
are called for (see Section 5.4.). The result is the calibration function,
which can be implemented as a set of one-dimensional TRCs for
efficient processing of images.

* Test the calibration by running a stepwedge of uniformly spaced
digital values of a single colorant through the TRC, printing and
measuring the resulting patches, and computing M;. A linear rela-
tionship should be achieved between the digital input to the TRC
and the resulting M;. Repeat this step for each colorant.
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An example of the response M,(d) for a Xerox DocuColor 12 xerographic
printer is shown in Figure 5.28a for 16 digital levels. The scaled M(d) are
shown in Figure 5.28b. The inverse function is shown in Figure 5.29 and is
the final calibration TRC for the DC12. Note that the calibration is essentially
a reflection of the printer response M,(d) about the 45° line. To test the
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Figure 5.28 Raw device response, M;(d) defined as AE%, from paper, for Xerox
DocuColor 12 printer: (a) unscaled and (b) scaled to 4

max*

© 2003 by CRC Press LLC



250 S — - cyan

— magenta |- : %
T : : 22
200F - e T Y AR -
: : : 2 :
: 27
e

: : o= : ;
.._.150 ........... SRR /// R R .

=} Ry
© : A7 : : :
100F- - - -+ - - / /N e -
L7 : : : :

R
Ve _/
2y : : : :
ya . . . . .
50 ....... / ........................ e e e e e e e e e :_
4 : : : :
o/
0 ; ; ; ; ;
0 50 100 150 200 250
Input

Figure 5.29 Calibration curves correcting for response of Fig 5.28.

calibration, the same C, M, Y stepwedge data were processed through the
calibration TRCs, printed, and measured, and M; was evaluated using Equa-
tion 5.57 and plotted in Figure 5.30. The calibrated response is now linear
with respect to the desired metric M,.

Other metrics can be used instead of Equation 5.57, e.g., optical density,
or luminance.* The calibration procedure is identical.

5.10.1.2  Gray-balanced calibration

An alternative approach to calibration is to gray balance the printer so that
equal amounts of C, M, Y processed through the calibration result in a neutral
(i.e., a* = b* = 0) response. There are two main motivations for this approach.
First, the human visual system is particularly sensitive to color differences
near neutrals; hence, it makes sense to carefully control the state of the printer
in this region. Second, gray balancing considers, to a first order, interactions
between C, M, and Y that are not taken into account in channel-independent
calibration. However, gray balancing is more complicated than channel-
independent linearization and generally demands a larger number of patch
measurements.

In addition to determining the relative proportions of C, M, Y that
generate neutral colors, gray balancing can also achieve a specified tone
response along the neutral axis (e.g., linear in neutral luminance or lightness).
The following procedure can be used to gray balance and linearize the printer
to neutral lightness L*:

© 2003 by CRC Press LLC



110 T T T T T

. . —e— cyan . .

100 ........... .......... . magenta P ........ -
: D —— vell

90f SERERRERRE e

8oF - .......... .......... .......... S A _

70k .......... .......... ......... -
N SO e

Mi(d)

sob S Al O A ]
ol o g i o
sol R e,
sol S . e P
1ok L SR . ]

0 50 100 150 200 250
Digital level (d)

Figure 5.30 Response M;(d) of calibrated device.

1. Generate a training set of device-dependent (CMY) data in the vicin-
ity of neutrals across the dynamic range of the printer. One exemplary
approach is to vary C and M for fixed Y, repeating for different levels
of Y across the printer range. The number and spacing of steps for
C, M, and Y should be chosen so as to bracket the neutral a* = b* =
0 axis. Therefore, these parameters depend on printer characteristics,
and their selection will require some trial and error.

2. Generate device-independent (CIELAB) data corresponding to these
patches. This can be accomplished either via direct measurement of
a target containing these patches or by processing the CMY data
through a printer model that predicts the colorimetric response of
the printer. (Printer models are discussed in a subsequent section.)
Media-relative colorimetry is recommended for the CIELAB calcula-
tions. If the CIELAB measurements do not bracket the neutral axis,
it may be necessary to iterate between this and the previous step,
refining the choice of CMY points at a given iteration based on the
CIELAB measurements from the previous iteration.

3. Given the training CMY and CIELAB data, obtain CMY values that
yield neutral measurements, i.e., a* = b* = 0, at a set of lightness levels
L: ,i1=1, ..., T, spanning the range of the printer. A sufficiently fine
sampling of measurements may allow the neutral points to be direct-
ly selected; however, in all likelihood, some form of fitting or inter-
polation will be required to estimate neutral points. A possible can-
didate is the distance-weighted linear regression function from
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Section 5.4.4.2. The regression is supplied with the training data as
well as a set of input neutral CIELAB points (L;, 0, 0). The output
from the regression is a set of weighted least-squares estimates (C,
M, Y;) that would produce (L, ,0,0). Ahypothetical example is shown
in Figure 5.31a. Typically, 6 to 10 L* levels are sufficient to determine
gray-balance throughout the printer’s dynamic range.

To generate a monotonically increasing calibration function from
Figure 5.31a, invert the sense of the lightness values L; to obtain
neutral “darkness” values, denoted DZ , scaled to the maximum dig-
ital count d,,,.. The formula is given by

max*

* dmax *
D! = (100)(100-@) (5.58)

Group the data into three sets of pairs {D:, Cl, {D:, My}, {D:-, Y},
and from this generate three functions, C(D*), M(D*), Y(D*) using a
one-dimensional fitting or interpolation algorithm. The use of splines
is recommended, as these have the flexibility to fit data from a wide
variety of printers and also possess the ability to smooth out noise
in the data. These functions are plotted in Figure 5.31b for the same
hypothetical example. Note that, above a certain darknesstmgmy ,
it is not possible to achieve neutral colors, because one of the colo-
rants (cyan in this example) has reached its maximum digital value.
Hence, there are no real calibration data points in the input domain
[D,,,Mgmy , ax]- One approach to complete the functions is to pad the
calibration data with extra values in this region so that the spline

Neutral L* Digital count

L*y
L*,

L

*
mingray

D3 D%, e e o D% D*

maxgray

Digital count Neutral D*

(@) (b)

Figure 5.31 Illustration of gray-balance calibration for printers: (a) L* vs. digital
count for neutral samples, and (b) corresponding TRC.
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fitting will smoothly extrapolate to the endpoint, d,,,,. Figure 5.31b
shows schematically the extrapolation with dashed lines. To achieve
smooth calibration functions, it may be necessary to sacrifice gray
balance for some darkness values less than D,mgmy In the case of
CMYK printers, the trade-off can be somewhat mitigated by using
the K channel in combination with C, M, Y to achieve gray balance.
Trade-offs between smoothness and colorimetric accuracy are fre-
quently encountered in printer calibration and characterization. Un-
fortunately, there is no universal solution to such issues; instead,
knowledge of the particular printer and user requirements is used to
heuristically guide the trade-offs.

6. Test the calibration by processing a stepwedge of samples C =M =
Y =d through the TRCs, and printing and measuring CIELAB values.
As before, it is convenient to assess the outcome by plotting L*, a*,
b* as a function of the input digital count d. For most of the range
0<d <D, the calibration should yield a linear response with respect
to L¥, and a*, b* = 0. If the deviation from this ideal aim is within
the inherent Variability of the system (e.g., the stability and unifor-
mity of the printer), the calibration is of satisfactory accuracy. Recall
that, for gray levels darker than D,.., a linear gray-balanced re-
sponse is no longer achievable; instead, the printer response should
smoothly approach the color of the CMY solid overprint.

7. An additional test, highly recommended for gray-balance calibration,
is to generate a target of continuous ramps of C = M =Y, process
through the calibration, print, and visually inspect the output to en-
sure a smooth neutral response. The prints must be viewed under the
same illuminant used for the CIELAB calculations in the calibration.

A recent study by the author has shown that visual tolerance for gray in
reflection prints is not symmetric about the 4* = b* = 0 point.’ In fact, people’s
memory of and preference for gray occurs in the quadrant corresponding to
a* <0, b* < 0. In regions corresponding to positive a* or b*, a dominant hue
is more readily perceived; hence, tolerances for gray reproduction in these
regions are small. Colloquially phrased, people prefer “cooler” (blu-
ish/greenish) grays to “warmer” (reddish/yellowish) grays. This observa-
tion can exploited to improve the robustness of gray balancing for printers.
The device could be balanced toward preferred gray (a* b* < 0) rather than
colorimetric gray (a* = b* = 0) with the same procedure described above.
The expected advantage is that, by setting the calibration aim-point in a
region with large visual tolerance, the errors inevitably introduced by the
calibration are less likely to be visually objectionable.

5.10.2  Model-based printer characterization

Several physics-based models have been developed to predict the colorimet-
ric response of a printer. Some of the common models will be described in
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this section. Some overlap exists between this section and an earlier chapter
on the physics of color. That chapter focuses on modeling the interaction
between light, colorants, and medium at the microscopic level. The emphasis
here is in modeling the printer at a macroscopic level, with the goal of
deriving the forward characterization mapping from device colorant values
to device-independent coordinates such as spectral reflectance or CIEXYZ.
Derivation of the inverse characterization function is generally independent
of the forward model and is thus discussed in a separate section.

To set a framework for the models to follow, it is instructive to examine
different ways in which light passes through a uniform colorant layer. These
are depicted in Figure 5.32. In Figure 5.32a, light passes though the colorant
layer in only one direction. Some of the light is absorbed, and the remaining
is transmitted. The absorption and transmission are functions of wavelength,
hence the perception that the layer is colored. This layer is said to be trans-
parent and occurs when the colorant particles are completely dissolved in
the medium. The dyes in a dye-diffusion printer can be reasonably well
approximated by this model. In Figure 5.32b, some of the light is transmitted
and some absorbed as in Figure 5.32a. However, due to the presence of
discrete particles, some of the light is also scattered. This layer is said to be
translucent. Xerographic and certain inkjet printers subscribe to this model.
In Figure 5.32¢, a much higher presence of discrete particles results in all of
the light being either absorbed or scattered. This layer is said to be opaque,
and it applies to paints and some inkjet processes. In all cases, transmission,
absorption, and scattering are functions of wavelength. We will see shortly
that models for predicting the color of uniform colorant layers are based on
one of these three scenarios. More details are given in Chapter 3, which
focuses on the physics of color.

In the ensuing discussions, we will assume the exemplary case of a three-
colorant (CMY) printer. Extension to an arbitrary number of colorants is
usually straightforward.

5.10.2.1 Beer—Bouguer model

The Beer-Bouguer (BB) model plays an important role in colorant formula-
tion, being frequently used to predict light transmission through colored

4 A
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Figure 5.32 Light transport models for (a) transparent, (b) translucent, and (c)
opaque media.
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materials in liquid solutions. In digital color imaging, it is most applicable
for continuous-tone printing with transparent colorants and media (i.e., Fig-
ure 5.32a). The underlying assumption is that the spatial rate of change of
light radiance as it passes through an absorbing colorant layer is proportional
to the radiance itself. Mathematically, this is given by
ar,(n) _
= —AMI(L) (5.59)
where [(A) = radiance at position x within the colorant layer
A(M = a proportionality factor given by

AN = & w k(A) (5.60)

where & = concentration of the colorant
w = thickness of the colorant layer
k(X) = spectral absorption coefficient of the colorant

Substituting Equation 5.60 into Equation 5.59 and integrating with respect
to x over the thickness of the colorant, we obtain the following expression
for the radiance I(A) emerging from the colorant:

I(h) = I(M)exp(=Ewk(R)) = L(M)T,(A)exp(-Ewk(L)) (5.61)

where [(}) is the radiance of light that would be transmitted in the absence
of the colorant, which can be expressed as the product of the incident light
I(A) and the bare transparency T,(A). Equation 5.61 essentially states that the
amount of light absorption depends directly on the amount of absorbing
material within the colorant, which in turn is proportional to both the con-
centration and thickness of the colorant layer. Often, the colorant thickness
w is assumed to be spatially constant and is folded into the absorption
coefficient k(A). To this end, we no longer explicitly include w in the analysis.

It is useful to introduce spectral transmittance T(A) and optical density
D(A) of a colorant layer.

T = I’% = T,(0)exp(-Ek(L);

D(A) = —logio(T(A))=D,(A) + 0.4343 & k(L) (5.62)

For color mixtures, the additivity rule can be invoked, which states that
the density of a colorant mixture is equal to the sum of the densities of the

individual colorants.?® For a CMY printer, we thus have

DM = Dy(A) + 0.4343(Ec k(M) + Ep k() + Ey k(D) (5.63)
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which can be written in terms of transmittance,
Temy(M) = TN expl=(EckcV) + &y k(M) + & ky(M)] (5.64)

The model can be extended to reflective prints under the assumption that
there is no scattering of light within the paper. This yields

Remy(A) = Rp(x)exp[—(‘gckc(x) +Epkp (M) + Evky(M))] (5.65)

where Rq (M) and R,(A) are the spectral reflectances of the colorant mixture
and paper, respectively. Note that, in reality, most reflective media do exhibit
scattering, hence reducing the accuracy of Equation 5.65.

For a given printer, the parameters of Equations 5.64 and 5.65 are esti-
mated from measurements of selected patches. The procedure for a CMY
reflection printer is as follows:

* Measure the spectral reflectance of the paper, R,(A), and solid C, M,
Y patches, Ro(A), Ry (M), Ry(A).

e Estimate the spectral absorption coefficient k-(A) for the cyan colo-
rant. This is done by setting - =1, £, =&, = 0 in Equation 5.65 to yield

RCO‘)) (5.66)

ke(h) = —log(m
P

Use analogous expressions to derive k,(A) and k,(A).

* Derive the relationship between input digital level d; and cyan con-
centration &; by printing a stepwedge of pure cyan patches at dif-
ferent digital levels d;, and measure spectral reflectances R¢/(A). From
Equation 5.65, we know that

Rei(M)Y _
_log( R (7»)) = Eke(d) (5.67)
The quantity on the left is the absorption corresponding to concen-
tration at level d]-; hence, we denote this as kcj(k). A least-squares
estimate for & can be computed by minimizing the error.

Zchj‘(M - éc]‘kc(x)Hz (5.68)
x

where the summation is overall measured wavelengths within the
visible spectrum. Using the least-squares analysis in Appendix 5.4,
the optimal &, is given by
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szj(Mkc(M
B = (5.69)
> ke(h)
A

By definition, these estimates lie between 0 and 1. Using Equation
5.69, we obtain a set of pairs (d;, &), from which one-dimensional
fitting or interpolation is used to generate a TRC that maps digital
count to dye concentration for all digital inputs 0 < d < d,,,.. This
process is repeated for magenta and yellow.

This completes the model derivation process, and all the parameters in
Equation 5.65 are known. The model can be tested by exercising it with an
independent set of CMY test data. The model predictions are compared with
actual measurements using a standard error metric such as AE,,. For effi-
ciency of computation, the model can be used to create a three-dimensional
LUT that maps CMY directly to CIE coordinates.

The BB model works very well for photographic transparencies and, to
a reasonable extent, for photographic reflection prints. One of the shortcom-
ings of this model is that it does not account for scattering within colorant
layers, thus reducing its applicability for certain printing technologies. The
scattering phenomenon is explicitly introduced in the Kubelka-Munk model,
described next.

5.10.2.2 Kubelka—Munk model

The Kubelka-Munk (KM) model is a general theory for predicting the reflec-
tance of translucent colorants. An appealing aspect of this theory is that it
also models transparent and opaque colorants as special cases. The foremost
applicability for printer characterization is the case of continuous-tone print-
ing processes on reflective media. In this section, only the important formulae
are presented. Their derivations are rather lengthy and can be found in many
sources, including Allen.>!

Kubelka-Munk theory assumes a special case of Figure 5.32b, with light
being transmitted or scattered in only two directions: up and down. The
most general form of the KM model for translucent colorant layers is given by

R,(A) = R.(%)

N R Ru%) - iy Jexe [0 gz =R ) 65.70)

Rp(h)—Rw(K)—(Rp(k) 5 (M)exp[ws(x)(R 5 Rm(k)ﬂ

where R(A) = the spectral reflectance of the sample
R,(M) = the reflectance of the paper
w = the thickness of the colorant layer
K(M) and S(A) = absorbing and scattering coefficients, respectively
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R..(A) = the reflectance of an infinitely thick sample, given by

_ K KM)Y K(\)
R = 14K J(Sm)”(sm) 5.71)

In practice, a sample is “infinitely thick” if any increase in thickness results
in a negligible change in reflectance. Equation 5.71 can be inverted to obtain

K _ (1-R.(A)°

S(M) ~ 2R.(M) (5.72)

For colorant mixtures, the additivity and proportionality rules can be applied
to obtain overall absorbing and scattering coefficients from those of the
individual colorants.

K() = k,(M) + z Eki(M); S(A) = s,(M) + Z &isi(X) (5.73)

i=CM,)Y i=CM,Y

where k,(A) and s,(A) = the absorption and scattering terms for the paper
&, = the concentration of colorant i

The general KM model, Equation 5.70, can be simplified to the two limiting
cases of transparent and opaque colorants (Figure 5.32a and 5.32c), described
next.

5.10.2.2.1 KM model for transparent colorants. For transparent colorant
layers, the scattering term in Equation 5.70 approaches zero, resulting in the
following expression:°!

R(A) = R,(M)exp[-2wK(M)] (5.74)

where K(}) is given by Equation 5.73. Note that this is very similar to the
Beer-Bouguer model, Equation 5.65. However, the absorption coefficients in
the two models are different, because BB assumes collimated light, whereas
KM assumes diffuse light. The procedure outlined in Section 5.10.2.1 for the
BB model can be used to estimate ki(A) from C, M, Y samples at maximum
concentration and to derive the mapping between input digital value d; and
dye concentration &; from stepwedge measurements.

Berns has used this model to characterize dye diffusion printers.> In this
work, the model parameters [i.e., k(1) and &, i = C, M, Y] were initially
derived using essentially the procedure outlined in Section 5.10.2.1. A third-
order polynomial was used to fit the relationship between digital count and
dye concentration. The model resulted in unsatisfactory results (AE,, = 12).
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It was discovered that a major source of error arose from the channel inde-
pendence assumption in the KM model, i.e., the cyan dye concentration
depends only on the cyan digital count, etc. The author observed that, due
to the sequential nature of the dye diffusion and transfer process, there is a
significant sequential interaction among the colorants. This was accounted
for by introducing a matrix with cross terms to relate KM predictions to
more realistic estimates. Coefficients of the matrix were obtained by regres-
sion on a set of measurements of colorant mixtures. This correction was
found to significantly improve the model prediction, resulting in AE,, = 3.
Details are given in the Berns reference. The empirical correction just
described is a common way of accounting for limitations in a physics-based
model and will be encountered again in discussions of the Neugebauer
model.

5.10.2.2.2 KM model for opaque colorants. For opaque samples, the lim-
iting case of infinite thickness in Equation 5.71 can be used to predict spectral
reflectance. Note that Equation 5.71 depends only on the ratio K(A)/S(A) for
the colorant mixture, which can be obtained from the absorption and scat-
tering coefficients of the individual colorants using Equation 5.73.

k, (M) + 2 Eiki(L)

K(}\') — i=CM,Y 575
S s+ Y Es() o7
i=CM,Y

This is referred to as the two-constant KM model. With certain pigments, it
is reasonable to assume that the scattering in the colorants is negligible
compared to scattering in the substrate.>! In this case, the denominator in
Equation 5.75 reduces to s,(A), and Equation 5.75 can be rewritten as

KOy _ b0, g g kb

= —_— 7
S 5,00 500 (5.76)

i=C,M,Y

This is referred to as the single-constant KM model, as only a single ratio
k(MN)/s(A) is needed for each colorant.

To derive the model, the k(A)/s(A) terms for each colorant are obtained
from reflectance measurements of samples printed at maximum concentra-
tion, using Equation 5.72. Next, the relationship between digital count and
colorant concentration & are obtained from reflectance measurements of sin-
gle-colorant stepwedges and a regression procedure similar to that outlined
in Section 5.10.2.1. Finally, Equations 5.76 and 5.71 are evaluated in turn to
obtain the predicted reflectance. More details are found in papers by Parton
et al.”® and Kang.> In these papers, the opaque single-constant KM model
is used to predict the spectral reflectance of solid area coverage in inkjet
prints. The prediction accuracies are in the range of 1.65 to 5.7 AE,,
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depending on the ink mixing process and the particular mixtures tested.
Note that most inkjet printers use halftoning, a process that is not well
predicted by KM theory. The latter only predicts the solid overprints in inkjet
prints, hence its application is in ink formulation rather than device charac-
terization.

5.10.2.2.3 Modeling front-surface and interlayer reflections. ~An important
effect not taken into account in the KM and BB models is reflection loss at
the boundaries between colorant layers, as well as front surface reflection
(FSR) at the boundary between the uppermost colorant layer and air. Because
a certain amount of light is lost due to FSR, this should ideally be subtracted
before computing reflectance. However, in a spectrophotometer, at least part
of the light from FSR reaches the detector. To correct for this effect,
Saunderson® developed a relationship between the reflectance R(A) as pre-
dicted by BB or KM, and the reflectance R,,,(A) as measured by a spectro-
photometer.

meas

_ Rmeus(k) _kl . _
R(?\,) - 1 _kl — k2(1 — Rmms(k)), Rmeus(l) - kl +

(1-k)(A-k)R(M)
T_k,R(A)

(5.77)

where k, is the Fresnel reflection coefficient that accounts for front surface
reflection, and k, models total internal reflection that traps light within the
colorant layers. The factor k; depends on the refractive index 1 of the upper-
most colorant layer. A common assumption for 1 is 1.5, which corresponds
to k; = 0.04. The theoretical value of k, for the case of perfectly diffuse light
is 0.6.°! Alternatively, these parameters can be chosen to provide the best
empirical fit between measured and modeled reflectance data.

The Saunderson correction is performed as a final step after deriving the
BB or KM, and it has been shown to improve model accuracy.?>>

5.10.2.2.4 Modeling fluorescence. ~Another drawback with both the BB
and KM models is that they do not account for fluorescence. Many paper
substrates employ optical brighteners that exhibit fluorescence and can thus
limit the utility of these models. Fluorescence modeling is discussed in more
detail in Chapter 3, which deals with the physics of color.

5.10.2.3  Neugebauer model

The Neugebauer model is used to model a halftone color printing process.
Each primary colorant in a halftone process is rendered as a spatial pattern
of dots, each dot being printed at one of a small number of concentration
levels. The impression of intermediate levels is achieved by modulating the
size, shape, and spatial frequency of the dots. (Techniques for color halfton-
ing are covered in more detail in a subsequent chapter.)

A process employing N colorants at Q concentration levels results in one
of QN colorant combinations being printed at any given spatial location. We
begin the formulation with the simplest case of a binary black-and-white
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printer. This corresponds to N = 1 and Q = 2 (zero or maximum) concentra-
tion levels; thus, at any given spatial location, we have two possible colorant
combinations, black or white. The reflectance of a halftone pattern is pre-
dicted by the Murray-Davies equation,*

R=(1-KkP, + kP, (5.78)

where k = fractional area covered by the black dots
P,, P = reflectances of paper and black colorant, respectively

The Neugebauer model is a straightforward extension of the Murray-Davies
equation to color halftone mixtures.® Binary printers employing C, M, Y
colorants render one of 2° = 8 colorant combinations at a given spatial
location. The set of colorant combinations is S = {P, C, M, Y, CM, MY, CY,
CMY}, where P denotes paper white, C denotes solid cyan, CM denotes the
cyan—magenta overprint, etc. The Neugebauer model predicts the reflectance
of a color halftone as a weighted average of the reflectances of the eight
colorant combinations.

R = Zwipi (5.79)
i=$

where S = the aforementioned set of colorant combinations

P; = spectral reflectance of the ith colorant combination,
henceforth referred to as the ith Neugebauer primary

the relative area coverage of the ith colorant combination,

which is dictated by the halftoning method used

weight w;

In the original Neugebauer equations, the predicted color is specified by
three broadband reflectances representing the short, medium, and long
wavelength portions of the electromagnetic spectrum. In this work, spec-
trally narrowband reflectances are used instead of their broadband counter-
parts, as the former generally yield greater accuracy.”” The spectral Neuge-
bauer equations are

RV = Y wPi() (5.80)

ie§S

Because P;()) are colors of solid overprints, they can be predicted from single-
colorant measurements using the BB or KM theories described in the previ-
ous sections. However, for any given set of colorants, there are only a small
number of such overprints; hence, they are usually measured directly.

5.10.2.3.1 Effect of halftone dot placement. A common assumption is
that the dot placements of the colorants are statistically independent; i.e.,
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the event that a particular colorant is placed at a particular spatial location
is independent of other colorants being placed at the same location. This
leads to the Demichel dot model.*® The Neugebauer primaries and the cor-
responding weights are given by

Pz(}\') € SP = {PP(}\')r PC(A')/ PM}\'/ PY(}\')/ PCM(}\')r PCY()\')/ PMY(X’)I PCMY(X)}I
w;e S, ={(1-0)(1-m)(1-y), c(1-m)(1-y), m(1-c)(1-y),

y(1-c)(1-m), cm(1-y), cy(1 —=m), my(1l-c), cmy}
(5.81)

Here, ¢, m, y are the fractional area coverages corresponding to digital
inputs d,, d,,, d,, respectively. A halftone screen for which statistical indepen-
dence is often assumed is the rotated halftone screen configuration, where
the screens for ¢, m, y are placed at different angles, carefully selected to
avoid moiré artifacts. This is shown schematically in Figure 5.33a. Validity
of the independence assumption for certain types of halftones such as rotated
screens has been demonstrated by Viggiano et al.’®

A geometrical interpretation of Equations 5.80 and 5.81 is that R(A) is a
result of trilinear interpolation performed among the P,(A) in cmy space. (This
can be verified by comparing these equations with the trilinear interpolation
equations given in Chapter 11, dealing with efficient color transformations.)
An algebraic interpretation of the model is that Equations 5.80 and 5.81 form
a third-order polynomial in terms of c, m, y, with P(A) being the polynomial
coefficients.

Another commonly used halftone configuration is the dot-on-dot
screen,” where the C, M, Y dots are placed at the same screen angle and

520 @)

CY

(a) (b)

Figure 5.33 Dot area coverages for (a) rotated screen and (b) dot-on-dot screen.
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phase as shown in Figure 5.33b. While the basic form of the mixing equations
is similar to Equation 5.80, the weights w; are different from those of ran-
domly positioned dots. Let X; be the colorant with the ith smallest area
coverage a;. For example, if [c, m, y] = [0.8, 0.5, 0.2], then X; =Y, X, =M, X;
=GC a,=02,a,= 05, a;= 0.8. The set of Neugebauer primaries and corre-
sponding weights are now given by

Pi(h) e Sp {Px1x2x3(7¥)/ Px2x3(7\-)/ Px3(7\-)/ P.(M},

w; € S, {a;,a,—ay,a3—a,1-a,}

(5.82)

The final output reflectance in Equation 5.80 is now a summation of, at most,
four terms.

Geometrically, Equation 5.82 represents tetrahedral interpolation among
the Py(A) at four of the eight vertices of the cmy cube. (This can be verified
by comparing Equation 5.82 with the equations for tetrahedral interpolation
given in the Chapter 11.) Different Neugebauer primaries are selected for
the calculation depending on the relative sizes of the area coverages c, m, y
(equivalently, the tetrahedron to which the input cmy coordinate belongs).
However, the weights w,, and hence the resulting interpolated output R(A),
are continuous as the input cmy coordinate moves from one tetrahedron to
another in cmy space. Algebraically, it is easily seen from Equations 5.80 and
5.82 that, for fixed A, R(A) is a linear function of ¢, m, y, with the P(}) being
the weighting coefficients.

The aforementioned dot-on-dot mixing model assumes an ideal dot
pattern with no noise, a perfectly rectangular dot density profile, and no
misregistration effects. In practice, these assumptions may be violated. It has
been shown® that a weighted mixture of the dot-on-dot and Demichel mix-
ing models can effectively capture some of these effects. The new predicted
reflectance is given by

RV = (1 — )R,y (M) + Ry, (W) (5.83)

where R, (A) = reflectance predicted by the dot-on-dot model
Ryem(M) = reflectance predicted by the Demichel model
o = a weighting parameter that determines the relative
proportions of the two mixing models; this factor can be
chosen to fit the model to a set of measured data

As alluded to earlier, all these versions of the Neugebauer model easily
generalize for an arbitrary number of colorants. For N colorants, the
Demichel model for independent dot placement will result in the summation
in Equation 5.80 containing 2V terms, while the dot-on-dot model contains
N +1 terms.
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5.10.2.3.2 Effect of halftone screen frequency. The ideal Neugebauer
model assumes a perfect rectangular dot profile as a function of spatial
location. In reality, dots have soft transitions from regions with full colorant
to regions with no colorant. If the halftone screen frequency is relatively low,
or a clustered dot is used, the relative area of the paper covered by the
transition regions is small, and the Neugebauer model would be expected
to be relatively accurate. On the other hand, if the screen frequency is high,
or a dispersed dot is used, a relatively large fraction of the paper is covered
by transition regions, and the model breaks down. While some of the cor-
rections discussed in following sections partially account for soft transitions,
the reliability of the model has been seen to be greatest with clustered dot
screens with frequency less than 100 halftone dots per inch.

5.10.2.3.3 Effect of light scattering in the paper. An important pheno-
menon not modeled by the basic Neugebauer equations is the scattering of
light within the paper. To understand this phenomenon, consider the inter-
action of light with a black halftone print. The light that reaches the paper
is given by

I, =1, -k +KkT) (5.84)

where [, = incident light intensity
I, = light reaching the paper
k = fractional black area coverage
T, = transmittance of the black colorant

Figure 5. 34a shows the case where there is no optical scattering within the
paper. In this case, light incident on the print at a location containing colorant
will also exit through the colorant; likewise, light reaching the substrate will
exit from the same location. The reflected light is thus given by

Ly=L{1-k P, +kT2P,} (5.85)

where P, is reflectance of the paper.

Define the reflectance of the solid black colorant as P, = T?P,. The overall
reflectance is then given by the original Murray-Davies Equation 5.78.

Consider now the case where there is scattering within the paper, as
shown in Figure 5.34b. In this case, light that enters the paper through an
area with no colorant may leave the paper through an area that is covered
with colorant, and vice versa. To account for this, Yule and Nielsen®® proposed
a simple correction to the Murray—Davies model for a black printer. Assuming
that light reaching the paper is given by I, in Equation 5.84, the light emerging
from the substrate is I,R,. If complete diffuse scattering is assumed, the light
is equally likely to re-emerge from the paper in all directions. In this case,
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Figure 5.34 Light reflection (a) without and (b) with optical scattering within the
substrate.

the emerging light experiences the same transmission function, (1 - k + kT}),
as in Equation 5.84. The final reflected light is given by

Ly = L,P,(1—k+kTy) = [,,P,(1—k+kTx) (5.86)

With the black reflectance being defined as Py = T/?P,, the following expres-
sion is obtained for the overall reflectance:

R = Ilfff‘ = (1-Kk)P)* + kP;*)’ (5.87)

m

The Yule-Nielsen (YN) correction results in a nonlinear relationship between
the area coverage k and the resulting reflectance R. Figure 5.35 is a plot of
R vs. k with and without the YN correction. The latter predicts a smaller
reflectance (i.e., a darker print) than the linear Murray-Davies model. This
is indeed the case in reality. The darker print can be thought of as being
effected by a larger dot area coverage k; hence, the scattering phenomenon
is often referred to as optical dot gain.
Equation 5.87 can be generalized as follows:

R = (1-kP, " +kP/"" (5.88)
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Figure 5.35 Reflectance vs. area coverage for K colorant (a) without Yule-Nielsen
correction (n = 1) and (b) with Yule-Nielsen correction (1 = 2).

where 7 is known as the YN parameter. When n = 1, Equation 5.88 reduces
to the Murray-Davies equation, i.e., the case of no optical scattering within
the substrate. When n = 2, we have the case of complete diffuse optical
scattering given in Equation 5.87. In reality, one would expect to encounter
partial diffuse scattering, which would yield intermediate values, 1 <n < 2.
Therefore, n is often treated as a free parameter chosen to optimally fit
measured data. The YN correction is readily applied to the spectral Neuge-
bauer equations.

R(A) = (2 wiPi(k)l/”)H (5.89)

ieS

Figure 5.36 is a plot of the prediction accuracy of the Neugebauer model as
a function of n for a rotated screen. The device being modeled was a Xerox
5760 CMYK laser printer. Details of the experiment that produced these
results are given in the paper by Balasubramanian.® Clearly, inclusion of the
YN factor (i.e., n > 1) greatly improves model accuracy. Interestingly, for this
case, best results are achieved for n > 2, for which there is no direct physical
interpretation. Statistical or empirical fitting of model parameters can indeed
often result in nonphysical values. This is largely due to noise and other
characteristics such as front surface and internal reflections not being suffi-
ciently captured by the given model.

Other, more sophisticated techniques have been proposed that model
optical scattering with spatial point spread functions.®%> These approaches
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Figure 5.36 Average AE vs. YN parameter n for spectral Neugebauer model with 24
=16, 3* = 81, and 5* = 625 primaries, for rotated dot screen.

are covered in more detail in Chapter 3. The following discussion is restricted
to the YN correction, as it is a very simple yet effective way of improving
model accuracy.

5.10.2.3.4 Estimation of dot area coverages. In addition to the optical
dot gain just described, halftone printing also experiences mechanical dot
gain, which results from the physical spreading of colorant on the paper. A
combination of optical and mechanical dot gain results in a nonlinear rela-
tionship between the input digital counts to the halftone function and the
dot area coverages used in the Neugebauer calculation. Furthermore, in some
printing processes, optical interactions among the colorants can result in the
dot gain for a given colorant being dependent on the area coverages of the
other colorants. However, for pedagogical purposes, we will make the sim-
plifying assumption that there are no interchannel interactions so that the
cyan area coverage depends on only the cyan digital count, etc. This assump-
tion is reasonably upheld in many printing processes and allows the rela-
tionship between digital count and dot area to be determined from single-
colorant stepwedge data. From Equation 5.89, the reflectance of a cyan patch
produced at digital level d; is given by

Re M) = (1-c)pP,(M)"" +¢;Pe(M)" (5.90)
The least-squares estimate minimizes the error

E= Y RO =((1-c)PpW)" +¢PcV))T’ (591)

reV
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The optimal area coverage is obtained by setting to zero the partial derivative
of Equation 5.91 with respect to ¢, yielding

(P, =R()Y(PRW) " = Pe(M) )
= 2 - (5.92)
3 (Po(M)" = Pe(M)"’
A

opt

¢

The result is a set of pairs {d;, ¢} from which a continuous function can be
derived that maps digital count to dot area coverage using some form of
one-dimensional fitting or interpolation. The process is repeated for the other
colorants. If a sufficiently fine sampling of stepwedge data is available,
piecewise linear interpolation should be adequate; otherwise, higher-order
functions such as splines are desirable. Figure 5.37 shows optimized magenta
dot areas for the DocuColor 12 printer for values of n =1 and n = 2. For the
case where n = 1, the dot area coverages must account entirely for both
optical and mechanical dot gain. When n > 1, the YN correction partially
accounts for optical dot gain; hence, the dot area coverages are generally
smaller in magnitude.

An alternative technique for determining dot areas is to minimize the
error in CIELAB rather than spectral coordinates. Unlike the previous
approach, this is a nonlinear optimization problem that must be solved with
numerical or search-based techniques. Given this fact, one can extend the
training set to include colorant mixtures, e.g., C = M =Y, in addition to the
single-colorant stepwedges. Balasubramanian® provides further details of
this approach.

5.10.2.3.5 Cellular Neugebauer model. The set of primaries P,(A) of the
basic Neugebauer model are derived from C, M, Y overprints of either 0 or
100% area coverages. This set can be generalized to include intermediate
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magenta dot area function

0 32 64 96 128 160 192 224 255
input digital value

Figure 5.37 Optimized magenta dot area functions for n = 1 and 2.
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area coverages. For example, if 50% area coverages of C, M, Y are included
with 0 and 100%, then each colorant has three states, and there are 3% = 27
Neugebauer primaries. Geometrically, this is equivalent to partitioning the
three-dimensional cmy space into a grid of eight rectangular cells, formed
by nodes at 0, 50, and 100%. Hence, this is referred to as the cellular Neu-
gebauer model.®* A two-dimensional example is shown in Figure 5.38 for a
printer employing only cyan and magenta colorants. Depending on the type
of halftone screen, the appropriate mixing equations are applied within each
cell. The mixing equations are to be geometrically interpreted as a three-
dimensional interpolation of the P,(A)'/" at the cell vertices. For the case of
the random halftone, the logical extension from the noncellular model is to
perform trilinear interpolation within each cell whereas, for the dot-on-dot
case, tetrahedral interpolation is to be applied.

More explicitly, a given set of dot areas c, m, y can be represented as a
point in three-dimensional cmy space and will fall in a rectangular cell that is
bounded by the lower and upper extrema, denoted ¢, c,, m;, m,, v, y,, along
each of the three axes. That is, ¢, and ¢, are the two points along the cyan axis
that satisfy the constraint 0 < ¢, <c <¢, <1; ¢, ¢, € I, where I, is the set of
allowable states or area coverages for the Neugebauer primaries correspond-
ing to the cyan colorant. Analogous definitions hold for the magenta and
yellow coordinates. To estimate the reflectance within a given cell, the dot area
values c, m, y, must be normalized to occupy the interval [0, 1] within that cell.

, _ C—(
¢ = - (5.93)

with analogous expressions for m” and y’. The weights w,” for the cellular
model are then given by Equation 5.81 for random screens and Equation
5.82 for dot-on-dot screens, with ¢, m, y being replaced by ¢’, m’, y’, respec-
tively. Let P;'(A) be the spectral Neugebauer primaries that correspond to the
vertices of the enclosing cell. The mixing equations for the cellular model
are then given by Equation 5.89, with w; replaced by w;’and P, replaced by P;".

Py (2)m Pou"
[ = |n put
M=0.5
P,(1)" C=0.5 P

Figure 5.38 Two-dimensional illustration of cellular Neugebauer model. Solid circles
denote spectral primaries interpolated to obtain reflectance R(A)!/" at the input cm
value.
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Note that the cellular equations physically model a halftoning process
wherein each colorant can produce M > 2 concentration levels. For binary
printers, the justification for using a cellular model is empirical rather than
physical; the finer cellular subdivision of cmy space affords finer interpola-
tion of measured data, hence yielding greater accuracy.

Figure 5.36 compares the accuracy of the noncellular model for a CMYK
printer with cellular versions employing 3* = 81 and 5* = 625 primaries. As
the number of cells increases, the model accuracy improves significantly. At
the same time, the dependence on the YN factor decreases. This is to be
expected, as the cellular model marks a transition from a model-based to an
empirical approach and hence would be less sensitive to model parameters.

5.10.2.3.6 Spectral regression of the Neugebauer primaries. Thus far, the
primaries Py(A) in Equation 5.89 are considered as fixed parameters that are
directly measured. An alternative is to treat these quantities as free variables
that can be optimized via regression on a training set of spectral reflectance
data. This technique will be described next for the case of a noncellular CMY
model employing rotated screens. (Extension to the cellular case, N colorants,
or dot-on-dot screen is straightforward). It is assumed that the optimal n
factor and dot area coverages have been derived using the aforementioned
techniques. To formulate the regression problem, it is convenient to express
the Neugebauer equations in matrix-vector form. Consider each spectral
measurement as an L-vector. Collect the YN modified spectral reflectances
R(M)Y" of T training samples into a T x L matrix R. Similarly, collect the YN
modified Neugebauer primaries Py(A)!/" into an 8 x L matrix P. Finally, gen-
erate a T X 8 weight matrix W whose element w;; is the area coverage of the
jth Neugebauer primary for the ith training sample. Equation 5.89 can then
be rewritten as

R=W- P (5.94)
From Appendix 5.A, the least squares solution for P is given by
P, = (WW1HWR (5.95)

The terms in P are raised to the power 7 to obtain optimized primary reflec-
tances. It must be emphasized that the choice of CMY samples in the training
set T is crucial in determining the condition or rank of matrix W. Namely, to
ensure sufficient rank, the samples should be chosen so that there are no null
columns in W. A simple way to assure this is to pick a regular three-dimen-
sional grid of training samples. Also, note that the foregoing analysis is based
on a particular choice of n and the dot area coverage functions. The process
can be iteratively repeated by rederiving n and the dot areas corresponding
to the newly optimized primaries, and then repeating the regression step.
Experiments by the author have shown that more than two iterations do not
generally yield significant improvements in model accuracy.”
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5.10.2.3.7 Owerall model optimization. The following procedure may
be used to optimize the various parameters of the Neugebauer model for a
CMY printer:

* Select the resolution of the cellular Neugebauer model. In the au-
thor’s experience, three levels (i.e., two cells) per colorant offers an
acceptable trade-off between accuracy and number of samples re-
quired. Generate CMY combinations corresponding to the cell nodes
(i.e., the Neugebauer primaries).

* Select the resolution of C, M, Y stepwedges to generate dot area
functions. In the author’s experience, a minimum of 16 samples per
colorant is usually adequate.

* Select an additional set of CMY mixtures to test and refine the model.
One possibility is to use an N x N x N grid of CMY combinations
that does not coincide with the Neugebauer primaries.

¢ Combine the above CMY samples into a characterization target. (As
an alternative to designing a custom target, the standard IT8.7/3
printer characterization target described in Section 5.3 can be used,
as it contains the patches necessary to derive and test the Neugebauer
model.) Print the target and obtain spectral measurements.

* For a fixed value of n (e.g., n = 1), use Equation 5.92 to generate
estimates of dot area coverages for the stepwedge samples. Interpo-
late or fit the data to create functions that map digital count to dot
area coverages. With 16 or more samples per stepwedge, piecewise
linear interpolation should produce adequate accuracy.

¢ Evaluate the accuracy of the model in predicting the stepwedge data.
This is accomplished by computing a AE metric between model pre-
dictions with actual measurements.

* Optimize the model with respect to n by repeating the previous two
steps for several n values in some nominal range (e.g., 1 <n <7) and
selecting the n that produces the minimum AE.

¢ Select a mixing model depending on the type of halftone screen (e.g.,
Demichel vs. dot-on-dot).

¢ If the dot-on-dot model is chosen, find the optimal blending param-
eter oo in Equation 5.83 by iterating through different values of o,
computing AE for the model’s prediction of mixed color samples from
the test set, and selecting o that minimizes the AE.

e If spectral regression of the primaries is desired, select a set of mixed
color samples from the test set, and use Equation 5.95 to compute
optimal primaries P,(A).

Figure 5.39 summarizes the steps in the application of the Neugebauer
model. Accuracy of the model must be evaluated on an independent set
of CMY samples. If the prediction error is within the variability of the
printer, the model is considered to be a satisfactory representation of the
real printer.
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Figure 5.39 Block diagram of Neugebauer model calculation.

5.10.2.3.8 Accuracy of the various Neugebauer models. Table 5.1 com-
pares the performance of the various types of Neugebauer models applied
to the Xerox 5760 CMYK printer. Details are provided by Balasubramanian.>
Clearly, the YN parameter offers significant benefit to the model. The cellular
framework with 5* = 625 primaries offers the best accuracy, but this is at the
expense of a substantial number of measurements. The cellular model with
3* = 81 primaries, as well as spectral regression, offer a promising trade-off
between measurement cost and accuracy.

Table 5.1  Effort Involved and Resulting Accuracy of the Various
Neugebauer Models for a Rotated Dot

No. of Spectral Avg. 95%
Model Measurements AE?%, AE%,
Basic spectral 72 8.88 16.3
Yule-Nielsen corrected 72 3.50 7.80
Cellular, 3* primaries,
Yule-Nielsen corrected 137 2.96 6.0
Cellular, 5* primaries,
Yule-Nielsen corrected 681 2.01 5.0
Yule-Nielsen corrected,
global spectral regression 188 2.27 5.3

5.10.2.3.9 Further enhancements. Several researchers have explored
other refinements of the model. Arney et al.** showed that the colors of both
the paper and the dots are functions of the relative dot area coverages, and
they extended the Neugebauer model to account for this. Lee et al.®® departed
from the Demichel model and used a sequential quadratic programming
method to estimate these parameters. Iino and Berns® accounted for optical
interactions among the colorants by introducing a correction to the dot gain
of a given colorant that depends on the area coverages of the other colorants.
Hua and Huang® and Iino and Berns®*% explored the use of a wavelength-
dependent Yule-Nielsen factor. Agar and Allebach’ developed an iterative
technique of selectively increasing the resolution of a cellular model in those
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regions where prediction errors are high. Xia et al.”! used a generalization
of least squares, known as total least-squares (TLS) regression to optimize
model parameters. Unlike least-squares regression, which assumes uncer-
tainty only in the output space of the function being approximated, total
least-squares assumes uncertainty in both the input and output spaces and
can provide more robust and realistic estimates. In this regard, TLS has wide
applicability in device characterization.

5.10.3 Empirical techniques for forward characterization

With this class of techniques, a target of known device-dependent samples
is generated, printed, and measured, and the characterization function is
derived via data fitting or interpolation. Linear regression is generally inad-
equate for printer characterization; any of the more sophisticated nonlinear
techniques described in Section 5.4 are applicable.

5.10.3.1 Lattice-based techniques

Perhaps the most common approach is to generate a regular grid of training
samples in m-dimensional device space, print and measure these samples,
and use a lattice-based technique to interpolate among the measured colo-
rimetric values (see Section 5.4.5). There is an inherent trade-off between the
size and distribution of the sample set and the resulting accuracy. This trade-
off must be optimized based on the particular printer characteristics and
accuracy requirements. Remember that, if the printer has been calibrated,
these functions must be incorporated into the image path when generating
the target; hence, they will also affect the overall printer characteristics. If,
for example, the printer has been calibrated to be linear in AE from paper
along each of the primary axes (see Section 5.10.1), then uniform spacing of
lattice points is a good choice, as these correspond approximately to equal
visual steps. The following is a simple procedure to determine a suitable
grid size for a CMY printer, assuming it has been either linearized channel-
wise to AE from paper or gray-balanced and linearized to neutral L*:

* Generate uniformly spaced lattices of size s* in CMY space, where
5<5<10. Also generate an independent test target of CMY samples.
The latter can be generated by invoking a random number generator
for each of the digital values d,, d,, d, or by using a regular lattice
that is different from any of the training sets.

* Generate targets for both the lattice and the test data, process through
the calibration functions, print, and measure CIELAB values.

* From this data, generate a set of three-dimensional LUTs of size s*
that map CMY to CIELAB space.

¢ Select a three-dimensional interpolation technique, e.g., trilinear or
tetrahedral interpolation. Process the test CMY samples through each
of the LUTs to obtain CIELAB estimates. Compute AE between esti-
mated and measured CIELAB.
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¢ Plot average and 95th percentile AE as a function of s. Alogical choice
for the lattice size is the smallest s for which an increase in lattice
size does not yield appreciable reduction in 95th percentile AE value.

Figure 5.40 shows such a plot for a Xerox DocuColor 12 laser printer. This
plot suggests that, for this printer, there is no appreciable gain in increasing
the grid size beyond s = 8.

The extension to CMYK printers is straightforward. Note, however, that
the lattice size (hence, the number of measurements) increases as s*and can
quickly become prohibitively large. One method of improving the trade-off
between lattice size and accuracy is sequential interpolation, described next.

5.10.3.2  Sequential interpolation

The general framework for sequential interpolation (SI) was introduced in
Section 5.4.6. Here, we describe a specific application to CMYK character-
ization. Consider a decomposition of CMYK space into a family of CMY
subspaces corresponding to different levels of K, as shown in Figure 5.41. If
we were to print and measure the CMYK nodes of each CMY lattice, we
would obtain a series of volumes in L*a*b* space, as illustrated schematically
in the same figure. Each gamut volume corresponds to variations in C, M,
and Y, with fixed K. Note that as K increases, the variation in color, and
hence the gamut volume, decreases. For the case where K = 100%, we have
almost negligible color variation. The fact that the curvature of the function
strongly depends on K motivates an SI structure comprising a family of CMY

[ average error
Il 95th percentile error

6 8
Lattice size along each dimension

Figure 5.40 AE vs. lattice size.
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Figure 541 Sequential interpolation: a decomposition of CMYK into a family of
CMY subspaces at different K and corresponding CIELAB gamuts. The CMY lattices
become coarser as K increases.

lattices for different K. A finely sampled CMY lattice is used for K = 0, and
the lattice size decreases with increasing K, as shown in Figure 5.41. When
building the SI structure, each CMY lattice is filled with measured CIELAB
values. Interpolation to map CMYK to CIELAB is performed as follows:

* Project the input CMYK point onto the K dimension and select neigh-
boring levels K; and Kj,;.

® Project the input CMYK point onto CMY space and perform three-
dimensional interpolation on the two CMY lattices corresponding to
levels K; and Kj,; to produce two CIELAB points.

* Use the input K value to perform one-dimensional interpolation of
these two CIELAB points.

Table 5.2 shows experimental results comparing the SI structure with a
regular lattice. For approximately the same lattice size, the SI technique offers
superior accuracy, hence improving the quality/cost trade-off. Further
details are given by Balasubramanian.”

It is noteworthy that the standard IT8.7/3 printer characterization target
described in Section 5.3 facilitates SI. The target contains 6 CMY lattices of
size 63, 63, 5%, 5%, 43, 23, corresponding to K values (in percentage) of 0, 20,
40, 60, 80, 100, respectively.
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Table 5.2  Comparison of Accuracy and Number of Training Samples for
Standard vs. Sequential Interpolation

CIE ‘94 AE Number of
Model Average 95th Percentile LUT Nodes
Regular 4 x 4 x 4 x 4 lattice 3.0 12.3 256
Sequential interpolation with 53, 43,
3%, 23 CMY lattices corresponding
to k=0, 85, 170, 255 1.8 6.25 224

5.10.3.3  Other empirical approaches

Tominaga (Chapter 9 of Reference 7) describes an example of a neural net-
work for printer characterization. This is accomplished in two steps. First, a
four-layer neural net is derived for the forward transform from CMYK to
CIELAB using over 6500 training samples. Next, a cascaded eight-layer neu-
ral net is constructed, the first stage being the inverse mapping from CIELAB
to CMYK and the second stage being the previously derived forward map-
ping from CMYK to CIELAB. The second stage is kept static, and the first
stage is optimized to minimize the CIELAB-to-CIELAB error for the overall
system. Tominaga reports an average AE, of 2.24 for a dye sublimation
printer. As with the other techniques, the optimal number of training samples
and the neural net structure depend on the printer characteristics and desired
accuracy, and they have to be initially determined by trial and error.

Herzog” proposes an analytic model for the mapping between CMY
and CIELAB. The printer gamut is described as a family of nested shells in
both CMY and CIELAB space. A simple mathematical model of distortion
and scaling operations is used to relate each shell from one space to another
via an intermediate representation called a kernel gamut. Colors in between
the shells are mapped via linear interpolation. A total of 626 measurements
are required to derive the model, and average AE,, errors between 0.7 and
2.5 are reported for various data sets.

5.10.4 Hybrid approaches

We have seen thus far that physical models and empirical techniques offer
different trade-offs between effort and accuracy. There are two ways to
combine the strengths of these two classes of techniques. The first is to use
empirical data to optimize the parameters of a physics-based model. Many
examples of this were encountered in the optimization of BB, KM, and
Neugebauer models. The second is to use empirical data to refine the pre-
diction of a printer model as a post-processing step, as shown in Figure 5.42.
The assumption is that the model is a good first-order approximation, and
that a small number of additional refinement samples is sufficient to correct
for objectionable inaccuracies in the model.!? The number and distribution
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Figure 542 Block diagram showing refinement of printer model.

of refinement samples depend on the characteristics of the printer and the
model, as well as on accuracy requirements. If the printer model is known
to be erroneous in certain regions of color space, the refinement samples can
be chosen with a denser sampling in these regions. Similarly, regions of color
space to which the human visual system is more sensitive (e.g., flesh tones
and neutral colors) can be sampled more densely. In the absence of such
information, a reasonable approach is to span the gamut with an approxi-
mately uniform sampling.

In the case of forward printer characterization, the refinement is a colo-
rimetric function from, for example, CIELAB to CIELAB. Any of the multi-
dimensional data-fitting or interpolation techniques described in Section 5.4
can be applied to estimate this function from the refinement samples. Local
linear regression has been used successfully by the author!? to reduce average
AE,, errors from approximately 5 to 2.5.

5.10.5 Deriving the inverse characterization function

The inverse printer characterization is a mapping from CIE color to device
colorant values that, when rendered, will produce the requested CIE color
under defined viewing conditions. This mapping is usually implemented as
a three-dimensional LUT, so it needs to be evaluated at nodes on a regular
three-dimensional lattice in CIE coordinates. Some of the lattice nodes will
lie outside the printer gamut; we assume that these points are first mapped
to the gamut surface with a gamut-mapping step (described in Chapter 10).
Hence, we restrict the inversion process to colors that are within the printer
gamut.

In the case where the forward function is described by an analytic model,
a possible approach is to directly invert the parameters of the model via
analytic or search-based techniques. The most notable efforts in this direction
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have been in the inversion of the Neugebauer model to estimate dot area
coverages from colorimetric values.”*” Here, we adopt a more general inver-
sion process that is independent of the technique for determining the for-
ward function. The process is accomplished in two steps.

1. Use the forward characterization function to generate a distribution
of training samples {c, d;} in device-independent and device-depen-
dent coordinates.

2. Derive the inverse function by interpolating or fitting this data.

5.10.5.1 CMY printers

In the case of three-colorant devices, the forward function from CMY to
colorimetric coordinates (e.g., CIELAB) is a unique mapping; hence, a unique
inverse exists. Any of the interpolation or fitting techniques described in
Section 5.4 can be used to determine the inverse function from the training
samples. Tetrahedral inversion, described in Section 5.4.5, can be used if the
device signals are generated on a regular lattice. Figure 5.43 compares four
fitting algorithms (local linear regression, neural network, polynomial regres-
sion, and tetrahedral inversion) as to their ability to invert a Neugebauer
model derived for a Xerox DocuColorl2 laser printer. The neural network

12 T I I T
. [ average error .
: Il 95th percentile error ;
10 ........ .............. .............. ............... ]
8 .................................................... .

Delta E*(94)
(o))

1 2 3
Fitting algorithm

Figure 5.43 Comparison of various algorithms used to invert a Neugebauer model:

1. local linear regression, 2. neural network, 3. polynomial regression, and 4. tetra-
hedral inversion.
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used a feed-forward algorithm with one hidden layer containing six neurons.
The polynomial regression used a 3 x 11 matrix as in Equation 5.18b. A
training set of 10° = 1000 samples was used to derive the parameters for each
of the fitting algorithms. An independent set of 125 samples was used as the
test set. The test data, specified in CIELAB, were mapped through a given
inverse algorithm to obtain CMY, which was then mapped through the for-
ward printer model to obtain reproduced CIELAB values. The plot in Figure
5.43 shows the average and 95% AE;4 errors between the original and repro-
duced values. Local linear regression and the neural network offer the best
performance. In the author’s experience, this observation holds generally
true for a wide variety of printers. Local linear regression possesses the added
advantage that it is less computationally intensive than the neural network.

Another factor that affects the overall inversion accuracy is the size of
the three-dimensional LUT used to finally approximate the inverse function.
An experiment was conducted to study overall inversion error as a function
of LUT size. The workflow is the same as described in the preceding para-
graph, except that the inverse function is now a three-dimensional LUT built
using local linear regression on 1000 training samples. Figure 5.44 is a plot
of overall inversion error as a function of LUT size. The error decreases with
increasing LUT size; however, beyond a certain point, the returns diminish.
From the plot, it is clear that a LUT size beyond 16 x 16 x 16 does not afford
a noticeable gain in accuracy — another observation that has been seen to

: [ average error
~~~~~~~~~~ +-- | I 95th percentile error

Delta E*(94)

3 4
LUT size along each dimension = 2

Figure 544 LUT approximation error vs. LUT size.
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hold true for a wide variety of printers. Note that the relative spacing of
nodes along each dimension can also affect LUT accuracy. In this experiment,
the nodes were spaced uniformly, because the input space, CIELAB, in which
the LUT was built, is approximately visually uniform.

5.10.5.2 CMYK printers

Although, in principle, the three C, M, and Y colorants suffice to produce
all perceivable hues, very often, a fourth black (K) colorant is used for several
reasons. First, the K colorant is usually considerably less expensive than C,
M, and Y, and it can thus be used in lieu of CMY mixtures to render dark
neutrals and shadows. Second, the addition of K can result in an increase in
gamut in the dark regions of color space in comparison to what is achievable
using only CMY mixtures. Third, the use of K can help reduce the total
amount of colorant required to produce a given color, a feature that is critical
in certain technologies such as inkjet printing.

In the context of device characterization, the K colorant introduces
redundancy into the forward transform, as a large (in principle, infinite)
number of CMYK combinations can result in the same colorimetric measure-
ment. This results in the inverse function being ill posed, and additional
constraints are required to generate a unique CMYK combination for each
input CIE color. Some common methods of deriving the constrained inverse
are presented next.

5.10.5.2.1 Inversion based on K addition, undercolor removal, and gray
component replacement. The processes of black (K) addition, undercolor
removal (UCR), and gray component replacement (GCR) trace their origins
to the graphic arts printing industry.>’ Together, they define a unique trans-
form from a set of canonical CMY primaries to the CMYK signals for the
given printer. Geometrically, the transform generates a three-dimensional
manifold within the four-dimensional CMYK space, with the property that
every CMYK combination within the manifold results in a unique colori-
metric response. Once this transform is established, the inversion can be
carried out on the canonical CMY device as described in Section 5.10.5.1.
Figure 5.45 shows the derivation and application of the inverse function
for a CMYK printer. The two functions in Figure 5.45b are usually concat-
enated into a composite inverse transform from CIE to CMYK signals.
Recall that the printer is assumed to have been calibrated, so the CMYK
signals resulting form the inversion process are finally processed through
the calibration functions prior to printing. In some implementations, the
calibration is concatenated with the characterization or stored in the same
profile.

There are numerous methods for designing K addition, UCR, and GCR
functions. They are usually chosen for an optimal trade-off among factors
such as gamut volume, colorant area coverage, and smoothness of transitions
from neutral to non-neutral colors. The trade-off is usually carried out
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Figure 5.45 Constrained inverse characterization of CMYK printers: (a) construction
of inverse 3-3 function and (b) combining the inverse 3-3 function with K addition,
UCR, and GCR to construct inverse 3-4 function.

heuristically with knowledge of the printer characteristics and quality
requirements. Some examples of these functions are presented next.

5.10.5.2.1.1 Black addition. This is commonly chosen to meet a
desired behavior along the C = M =Y axis. Suppose the printer has been
gray-balanced and linearized to neutral L*. If we define darkness D* as a
scaled inverse of L* using Equation 5.58, then we have C =M =Y = D* along
the neutral axis for the range 0<D* < D%, . Here, D%, is the maximum
digital count (e.g., 255 for an 8-bit system). We can then define K as a
monotonic increasing function f; of neutral D*. Numerous functional repre-
sentations can be used, for example the power-law,

D* ( D* - D)f)ffset
fl(D*) = e Dfnﬂx - thfset
0 lf(OSD*SD’SffSEt)

¥
) if D offset <D*<D max (596)

Here, y and D%, are parameters that can be adjusted to suit the desired
behavior of K along the neutral axis. For y> 1, larger values of yand D7,
result in less aggressive f; (i.e., less K is used for a given amount of neutral
C=M=Y). As yand D", approach 1 and 0, respectively, f; becomes more
aggressive, with the amount of K approaching the amount of neutral C =M
=Y.
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5.10.5.2.1.2 Undercolor removal. This function describes the
amount of reduction in CMY primaries to compensate for the K addition. It
is also derived with attention to the neutral axis. A simple form of CMY
reduction is given by

C’=C-£(D¥ (5.97)

with analogous expressions for M and Y. Again, we are abounded with
numerous strategies for f,(D*). One approach is based on the rationale that
the CMY reduction should be proportional to the amount of K addition,

f2(D*) = af (D*), 0<sa<1 (5.98)

The case where oo = 1 (i.e.,, CMY subtraction equals K addition) is often
referred to as 100% UCR.

A more sophisticated approach is to derive f, to colorimetrically com-
pensate for the K addition. This can be performed as follows. For a given
neutral input C = M =Y sample, the resulting L* and hence D* that would
be produced by printing this sample can be predicted via the forward char-
acterization function. The amount of K associated with this input C = M =
Y is given by f;(). We can now derive the new smaller amounts, C' = M’ =
Y’, which produce the same D* when combined with the given K. This step
is achieved by combining