
CHAPTER 6

Algorithms

The idea of an algorithm is of fundamental importance in computer
science and discrete mathematics. Broadly speaking, an algorithm is

a sequence of commands that, if followed, result in some desirable outcome.
In this sense a recipe for baking a cake is an algorithm. If you follow the
instructions you get a cake. A typical algorithm has what we call input, that
is, material or data that the algorithm uses, and output, which is the end
result of the algorithm. In following the recipe for a cake, the ingredients
are the input. The recipe (algorithm) tells what to do with the ingredients,
and the output is a cake.

For another example, the instructions for making an origami swan from
a piece of paper is an algorithm. The input is the paper, the algorithm is a
sequence of instructions telling how to fold the paper, and the output is a
(paper) swan. Different input (in color, size, etc.) leads to different output.

To run or execute an algorithm means to apply it to input and obtain
output. Running or executing the swan algorithm produces a swan as
output. We freely use the words “input” and “output” as both nouns and a
verbs. The algorithm inputs a piece if paper and outputs a swan.

Today the word “algorithm” almost always refers to a sequence of steps
written in a computer language and executed by a computer, and the input
and output are information or data. Doing a Google search causes an
algorithm to run. The “Google Algorithm” takes as input a word or phrase,
and outputs a list of web pages that contain the word or phrase. When we
do a Google search we type in the input. Pressing the Return key causes
the algorithm to run, and then the output is presented on the screen.

Running such an algorithm is effortless because the computer does all the
steps. But someone (actually, a group of people) designed and implemented
it, and this required very specialized knowledge and skills. This chapter is
an introduction to these skills. Though our treatment is elementary, the
ideas presented here—if taken further—can be applied to designing quite
complex and significant algorithms.
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In practice, algorithms may have complex “feedback” relationships be-
tween input and output. Input might involve our clicking on a certain icon
or button, and based on this choice the algorithm might prompt us to enter
further information, or even upload files. Output could be as varied as an
email sent to some recipient or an object produced by a 3D printer.

For simplicity we will concentrate on algorithms that simply start with
input information, act on it, and produce output information at the end.
To further simplify our discussion, the input and output information will
be mostly numeric or alphanumeric. This is not as limiting as it may sound.
Any algorithm—no matter how complex—can be decomposed into such
simple “building-block algorithms.”

Although all of our algorithms could be implemented on a computer, we
will not express them any particular computer language. Instead we will
develop a kind of pseudocode that has the basic features of any high-level
computer language. Understanding this pseudocode makes mastering any
computer language easier. Conversely, if you already know a programming
language, then you may find this chapter relatively easy reading.

Our exploration begins with variables.

6.1 Variables and the Assignment Command
In an algorithm, a variable is a symbol that can be assigned various values.
As in algebra, we use letters a,b, c, . . . , z as variables. If convenient, we may
subscript our variables, so x1, x2 and x3 are three different variables.

Though there is no harm in thinking of a variable as a name or symbol
that represents a number, in programming languages a variable actually
represents a location in the computer’s memory that can hold different
quantities (i.e., values) at different times. But it can hold only one value at
any specific time. As an algorithm runs, it can assign various values to a
variable at different points in time.

An algorithm is a sequence of instructions or commands. The command
that says the variable x is to be assigned the value of 2 is expressed as

x := 2,

which we read as “x is assigned the value 2” or “x gets 2.” Once this command
is executed, x stands for the number 2, at least until it is assigned some
other value. If a later command is

x := 7,

then x stands for the value 7. If the next command in the algorithm is
y := 2 · x+1,



Loops and Algorithm Notation 167

then the variable y stands for the number 15. If the next command is

y := y+2,

then after executing it y has the value 15+2= 17.
In the context of algorithms, the term variable has a slightly different

meaning than in algebra. In an algorithm a variable represents a specific
value at any point in time, and that value can change over time. But in
algebra a variable is a (possibly) indefinite quantity. The difference is
highlighted in the algorithm command y := y+2, which means y gets a new
value that is its previous value plus 2. By contrast, in algebra the equation
y= y+2 has no solution.

In an algorithm there is a difference between y := 2 and y = 2. In an
algorithm, an expression like y= 2 is interpreted as an open sentence that
is either true or false. Suppose an algorithm issues the command y := 2.
Then, afterwards, the expression y= 2 has the value True (T), and y= 3 has
the value False (F). Similarly, y= y+2 is F, no matter the value of y.

6.2 Loops and Algorithm Notation
Programming languages employ certain kinds of loops that execute
sequences of commands multiple times. One of the most basic kinds of
loops is called a while loop. It is a special command to execute a sequence
of commands as long as (or while) an open sentence P(x) involving some
variable x is true. A while loop has the following structure. It begins with
the word while and ends with the word end, and these two words enclose
a sequence of commands. The vertical bar is just a visual reminder that
the commands are all grouped together within the while loop.

while P(x) do
Command 1
Command 2

...
Command n

end

When the while loop begins running, the variable x has a certain value. If
P(x) is true, then the while loop executes Commands 1 through n, which may
change the value of x. Then, if P(x) is still true the loop executes Commands
1 through n again. It continues to execute Commands 1 through n until
P(x) is false. At that point the loop is finished and the algorithm moves on
to whatever command comes after the while loop.
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The first time the while loop executes the list of commands is called the
first iteration of the loop. The second time it executes them is called the
second iteration, and so on.

In summary, the while loop executes the sequence of commands 1–n
over and over until P(x) is false. If it happens that P(x) is already false
when the while loop begins, then the while loop does nothing.

Let’s look at some examples. These will use the command output x,
which outputs whatever value x has when the command is executed.

Consider the while loop on the right, after
the line x := 1. It assigns y := 2 · x, outputs y,
replaces x with x+1, and continues doing this
as long as x ≤ 6. We can keep track of this with
a table. After the first iteration of the loop, we
have y= 2 ·1= 2 and x = 1+1= 2, as shown in the
table. In any successive iteration, y is twice what
x was at the end of the previous iteration, and x
is one more than it was, as reflected in the table.
At the end of the 6th iteration, x = 7, so x ≤ 6
is no longer true, so the loop makes no further
iterations. From the table we can see that the
output is the list of numbers 2,4,6,8,10,12

x := 1
while x ≤ 6 do

y := 2 · x
output y
x := x+1

end

iteration 1 2 3 4 5 6
x 2 3 4 5 6 7
y 2 4 6 8 10 12

Now let’s tweak this example by moving the
output command from inside the loop, to after it.
This time there is no output until the while loop
finishes. The table still applies, and it shows
that y= 12 after the last iteration, so the output
is the single number 12.

x := 1
while x ≤ 6 do

y := 2 · x
x := x+1

end
output y

Next, consider the example on the right. It is
the same as the previous example, except it has
x := x−1 instead of x := x+1. Thus x gets smaller
with each iteration, and x ≤ 6 is always true, so
the while loop continues forever, never stopping.
This is what is called an infinite loop.

x := 1
while x ≤ 6 do

y := 2 · x
x := x−1

end
output y

We regard an algorithm as a set of commands that completes a task in
a finite number of steps. Therefore infinite loops are to be avoided. The
potential for an infinite loop is seen as a mistake or flaw in an algorithm.

Now that we understand assignment commands and while loops, we can
begin writing some complete algorithms. For clarity we will use a systematic
notation. An algorithm will begin with a header with the word “Algorithm,"
followed by a brief description of what the algorithm does. Next, the input
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and the output is described. Finally comes the body of the algorithm, a
list of commands enclosed between the words begin and end. For clarity
we write one command per line. We may insert comments on the right
margin, preceded by a row of dots. These comments are to help a reader
(and sometimes the writer!) understand how the algorithm works; they are
not themselves commands. (If the algorithm were written in a computer
language and run on a computer, the computer would ignore the comments.)

To illustrate this, here is an algorithmwhose input is a positive integer n,
and whose output is the first n positive even integers. If, for example, the
input is 6, the output is the list 2,4,6,8,10,12. (Clearly this is not the most
impressive algorithm. It is intentionally simple because its purpose is to
illustrate algorithm commands and notation.)

Algorithm 1: computes the first n positive even integers
Input: A positive integer n (Tells reader what the
Output: The first n positive even integers input & output is.)
begin

x := 1
while x ≤ n do

y := 2 · x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y is the xth even integer
output y
x := x+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . increase x by 1

end
end

In addition to while loops, most programming languages feature a so-
called for loop, whose syntax is as follows. Here i is a variable, and m
and n are integers with m ≤ n.

for i := m to n do
Command
Command

...
Command

end

In its first iteration the for loop sets i := m, and executes the list of commands
between its first and last lines. In the next iteration it sets i := m+1 and
executes the commands again. Then it sets i := m+ 2 and executes the
commands, and so on, increasing i by 1 and executing the commands in each
iteration. Finally, it reaches i := n in the last iteration and the commands
are executed a final time. None of the commands can alter i, m and n.
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To illustrate this, let’s rewrite Algorithm 1 with a for loop.

Algorithm 2: computes the first n positive even integers
Input: A positive integer n
Output: The first n positive even integers
begin

for i := 1 to n do
y := 2 · i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y is the ith even integer
output y

end
end

6.3 Logical Operators in Algorithms
There is an inseparable connection between algorithms and logic. A while
loop continues to execute as long as some open sentence P(x) is true. This
open sentence may even involve several variables and be made up of other
open sentences joined with logical operators. For example, the following
loop executes the list of commands as long as P(x)∨∼Q(y) is true.

while P(x)∨∼Q(y) do
Command
Command

...
end

The list of commands must change the values of x or y, so P(x)∨∼Q(y) is
eventually false, or otherwise we may be stuck in an infinite loop.

Another way that algorithms can employ logic is with what is known as
the if-then construction. Its syntax is as follows.

if P(x) then
Command
Command

...
end

If P(x) is true, then this executes the list of commands between the then
and the end. If P(x) is false it does nothing, and the algorithm continues
on to whatever commands come after the closing end. Of course the open
sentence P(x) could also be a compound sentence like P(x)∨∼Q(y), etc.
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A variation on the if-then command is the if-then-else command:

if P(x) then
Command
Command

...
else

Command
...

end

If P(x) is true, this executes the first set of commands, between the then
and the else. And if P(x) is false it executes the second set of commands,
between the else and the end.

Let’s use these new ideas to write an algorithm whose input is n and
whose output is n!. Recall that if n = 0, then n! = 1 and otherwise n! =
1 ·2 ·3 ·4 · · · ·n. Thus our algorithm should have the following structure.

if n = 0 then
output 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 0!= 1

else
Compute y := n! . . . . . . . . . . . . (we need to add the lines that do this)
output y

end

To finish it, we need to add in the lines that compute y= 1 ·2 ·3 ·4 · · · ·n. We
do this by first setting y= 1 and then use a for loop to multiply y by 1, then
by 2, then by 3, and so on, up to a final multiplication by n.

Algorithm 3: computes n!
Input: A non-negative integer n
Output: n!
begin

if n = 0 then
output 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .because 0!= 1

else
y := 1
for i := 1 to n do

y := y · i
end
output y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because now y= n!

end
end
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Lists often occur in algorithms. A list typically has multiple entries,
so when stored in a computer’s memory it’s not stored in single memory
location, but rather multiple locations. A list such as X = (2,4,7,4,3), of
length five, might be stored in six successive locations, with the first one
(called X ) containing the length of X :

X x1 x2 x3 x4 x5

5 2 4 7 4 3

The memory location X contains the number 5, which indicates that the
next five locations store the five entries of the list X . We denote by x1 the
location immediately following X , and the one after that is x2, and so on.

If an algorithm issues the command X := (2,4,7,4,3), it has created a list
with first entry x1 = 2 , second entry x2 = 4, and so on. If a later command is
(say) x3 := 1, then we have X = (2,4,1,4,3). If we then issued the for loop

for i := 2 to 5 do
xi := 0

end

the list becomes X = (4,0,0,0,0), etc.
We use uppercase letters to denote lists, while their entries are denoted

by a same letter in lowercase, subscripted. Thus if A = (7,6,5,4,3,2,1), then
a1 = 7, a2 = 6, etc. The command X := A results in X = (7,6,5,4,3,2,1).

The next algorithm illustrates these ideas. It finds the largest entry of a
list. We will deviate from our tendency to use letters to stand for variables,
and use the word biggest as a variable. The algorithm starts by setting
biggest equal to the first list entry. Then it traverses the list, replacing
biggest with any larger entry it finds.

Algorithm 4: finds the largest entry of a list
Input: A list X = (x1, x2, . . . , xn)
Output: The largest entry in the list
begin

biggest := x1 . . . . . . . . . . . . . . . . . this is the largest value found so far
for i := 1 to n do

if biggest < xi then
biggest := xi . . . . . . . . . . this is the largest value found so far

end
end
output biggest

end
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Next we create an algorithm that sorts a list into numerical order. For
example, if the input is X = (4,5,1,2,1,3), the output will be X = (1,1,2,3,4,5).
To illustrate the idea, take a very disordered list X = (5,4,3,2,1). Starting
at the first entry, it and the second entry are out of order, so swap them to
get a new list X = (4,5,3,2,1), shown on the second row below. Then move
to the second entry of this new X . It and the third entry are out of order,
so swap them. Now X = (4,3,5,2,1) as on the third row below. Continue, in
this pattern, moving left to right. For this particular list, four swaps occur.

5

5

5

5

5

4

4

4

4

3

3

3

2

2

4

1

3

3

2

2

2

1

1

1

1

swap # i = 1

swap # i = 2

swap # i = 3

swap # i = 4


k = 1 (1st pass)

Now the last entry is in correct position, but those to its left are not.
Make a second pass through the list, swapping any out of order pairs. But
we can stop just before reaching the last entry, as it is placed correctly:

4

4

4

4

3

3

3

2

2 1

3 2

2

1

1

1

5

5

5

5

swap # i = 1

swap # i = 2

swap # i = 3


k = 2 (2n pass)

Now the last two entries are in their correct places. Make another pass
through the list, this time stopping two positions from the left:

3

3

3

2

2 1

3 1

1

4

4

4

5

5

5

swap # i = 1

swap # i = 2

 k = 3 (3rd pass)

Now the last three entries are correct. We need only swap the first two.
2

21

1 3

3

4

4

5

5
swap # i = 1

}
k = 4 (4th pass)

This final list is in numeric order. Note that in this example the input
list X = (5,4,3,2,1) was totally out of order, and we had two swap every pair
we encountered. In general, if a pair happens not to be out of order, we
simply don’t swap it. Our nest algorithm implements this plan.
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In sorting the example list of length n = 5 on the previous page, we
had to make n−1 passes through the list, numbered k = 1,2,3, . . . ,n−1. In
the kth pass, we compared and swapped i = n− k consecutive pairs of list
entries (one less swap each time time k increases). Our algorithm carries
out this pattern with a for loop letting k run from 1 to n−1. Inside this
loop is another for loop that lets i run from 1 to n−k, and on each iteration
comparing xi to xi+1 and swapping if the first is larger than the second.

Algorithm 5: (Bubble Sort) sorts a list
Input: A list X = (x1, x2, . . . , xn) of numbers
Output: The list sorted into numeric order
begin

for k := 1 to n−1 do
for i := 1 to n−k do

if xi > xi+1 then
temp := xi . . . . . . . . . . . . . . . . temporarily holds value of xi
xi := xi+1
xi+1 := temp . . . . . . . . . . . . . . .now xi and xi+1 are swapped

end
end

end
output X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . now X is sorted

end

Computer scientists call Algorithm 5 the bubble sort algorithm, be-
cause smaller numbers “bubble up” to the front of the list. It is not the most
efficient sorting algorithm (In Chapter 20 we’ll see one that takes far fewer
steps), but it gets the job done.

Our bubble sort algorithm has a for loop inside of another for loop. In
programming, loops inside of loops are said to be nested. Nested loops are
very common in the design of algorithms.

For full disclosure, Algorithm 5 has aminor flaw. Youmay have noticed it.
What if the input list had length n = 1, like X = (3)? Then the first for loop
would try to execute “for k := 1 to 0 do.” This makes no sense, or could
lead to an infinite loop. The same problem happens X is the empty list.
It would be easy to insert an if-else statement to handle this possibility. In
the interest of simplicity (and pedagogy) we did not do this. The purpose
of our Algorithm 5 is really to illustrate the idea of bubble sort, and not to
sort any real-life lists. But professional programmers must be absolutely
certain that their algorithms are robust enough to handle any input.
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Exercises for Sections 6.1, 6.2 and 6.3

1. TheFibonacci sequence is the sequence 1,1,2,3,5,8,13,21,34,55, . . . whose first
two terms are 1 and 1, and thereafter any term is the sum of the previous two
terms. The numbers in this sequence are called Fibonacci numbers. Write an
algorithm whose input is an integer n and whose output is the first n Fibonacci
numbers.

2. A geometric sequencewith ratio r is a sequence of numbers for which any term
is r times the previous term. For example, 5,10,20,40,80,160, . . . is a geometric
sequence with ratio 2. Write an algorithm whose input is three numbers a, r ∈R,
and n ∈N, and whose output is the first n terms of the geometric sequence with
first term a and ratio r.

3. Write an algorithm whose input is two integers n and k, and whose output is
(n

k
)
.

4. Write an algorithm whose input is a list of numbers (x1, x2, . . . , xn), and whose
output is the smallest number in the list.

5. Write an algorithm whose input is a list of numbers (x1, x2, . . . , xn), and whose
output is the word "yes" if the list has any repeated entries, and “no” otherwise.

6. Write an algorithm whose input is two integers n,k and whose output is P(n,k)
(as defined in Fact 4.4 on page 94).

7. Write an algorithm whose input is two positive integers n,k, and whose output
is the number of non-negative integer solutions of the equation x1 + x2 + x+ x3 +
·· ·+ xk = n. (See Section 4.9.)

8. Write an algorithm whose input is a list X = (x1, x2, . . . , xn) and whose output is
the word “yes” if x1 ≤ x2 ≤ ·· · ≤ xn, or “no” otherwise.

9. What does the following algorithm do?

Algorithm
Input: A list of numbers (x1, x2, x3 . . . , xn)
Output: ?
begin

x := 0
for i = 1 to n do

x := x+ xi
end
output x

n
end

10. As noted at the bottom of page 174, our Algorithm 5 does not work on lists of
length 1 or 0. Modify it so that it does.

11. Write an algorithm whose input is an integer n, and whose output is the nth
row of Pascal’s triangle.
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6.4 The Division Algorithm
Many times in this book we will need to use the basic fact that any integer a
can be divided by an integer b > 0, resulting in a quotient q and remainder r,
for which 0≤ r < b. In other words, given any two integers a and b > 0, we
can find two integers q and r for which

a = qb+ r, and 0≤ r < b.

As an example, b = 3 goes into a = 17 q = 5 times with remainder r = 2.
In symbols, 17= 5 ·3+2, or a = qb+ r.

We are now going to write an algorithm whose input is two integers a ≥ 0
and b > 0, and whose output is the two numbers q and r, for which a = qb+r
and 0≤ r < b. That is, the output is the quotient and remainder that results
in dividing a by b.

To see how to proceed, notice that if a = qb+ r, then

a = b+b+b+·· ·+b︸ ︷︷ ︸
q times

+ r,

where the remainder r is less than b. This means that we can get r by
continually subtracting b from a until we get a positive number r that is
smaller than b. And then q is the number of times we had to subtract b.
Our algorithm does just this. It keeps subtracting b from a until it gets
an answer that is smaller than b (at which point no further b’s can be
subtracted). It uses a variable q that simply counts how many b’s have been
subtracted.

Algorithm 6: The division algorithm
Input: Integers a ≥ 0 and b > 0
Output: Integers q and r for which a = qb+ r and 0≤ r < b
begin

q := 0 . . . . . . . . . . . . so far we have subtracted b from a zero times
while a ≥ b do

a := a−b . . . . . .subtract b from a until a ≥ b is no longer true
q := q+1 . . . . . . . q increases by 1 each time a b is subtracted

end
r := a . . . . . . . . . . . . . . .a now equals its original value, minus q b’s
output q
output r

end
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The division algorithm is actually quite old, and its origins are unclear.
It goes back at least as far as ancient Egypt and Babylonia. Obviously it
was not originally something that would be implemented on a computer. It
was just a set of instructions for finding a quotient and remainder.

It has survived because it is so fundamental and useful. Actually, in
mathematics the term division algorithm is usually taken to be the state-
ment that any two integers a and b > 0 have a quotient and remainder. It is
this statement that will be most useful for us later in this course.

Fact 6.1 (The Division Algorithm) Given integers a and b with b > 0,
there exist integers q and r for which a = qb+ r and 0≤ r < b.

This will be very useful for proving many theorems about numbers and
mathematical structures and systems, as we will see later in the course.

Notice that Fact 6.1 does not require a ≥ 0, as our algorithm on the
previous page did. In fact, the division algorithm in general works for any
value of a, positive or negative. For example, if a =−17 and b = 3, then

a = qb + r

is achieved as
−17=−6 ·3+1,

that is, b = 3 goes into a =−17 q =−6 times, with a remainder of r = 1. Notice
that indeed 0≤ r ≤ b. Exercise 6.10 asks us to adapt Algorithm 6 so that it
works for both positive and negative values of a.

6.5 Procedures and Recursion
In writing an algorithm, we may have to reuse certain blocks of code nu-
merous times. Imagine an algorithm that has to sort two or more lists. For
each sort, we’d have to insert code for a separate bubble sort. Rewriting
code like this is cumbersome, inefficient and annoying.

To overcome this problem, most programming languages allow creation
of procedures, which are mini-algorithms that accomplish some task. In
general, a procedure is like a function f (x) or g(x, y) that we plug values into
and get a result in return.

We will first illustrate this with a concrete example, and afterwards
we will define the syntax for general procedures. Here is a procedure that
computes n!.
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Procedure Fac(n)
begin

if n = 0 then
return 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 0!= 1

else
y := 1
for i := 1 to n do

y := y · i
end
return y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .now y= n!

end
end

This procedure now acts as a function called Fac. It takes as input a number
n and returns the value y= n!, as specified in the return command on the
last line. For example Fac(3)= 6, Fac(4)= 24, and Fac(5)= 120. Now that we
have defined it we could use it in (say) an algorithm to compute

(n
k
)= n!

k!(n−k)! .

Algorithm 7: to compute
(n

k
)

Input: Integers n and k, with n ≥ 0
Output:

(n
k
)

begin
if (k < 0)∨ (k > n) then

output 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in this case
(n

k
)= 0

else
output Fac(n)

Fac(k) ·Fac(n−k)
. . . . . . . . procedure Fac is called here

end
end

If an algorithm (like the one above) uses a previously-defined procedure,
we say the algorithm calls the procedure.

In general, a procedure named (say) Name has the following syntax. The
first line declares the name of the procedure, followed by a list of variables
that it takes as input. The body of the procedure has a list of commands,
including the return statement, saying what value the procedure returns.

Procedure Name( list of variables )
begin

command
...

return value
end
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Our next example is a procedure called Largest. Its input is a list
(x1, x2, . . . xn) of numbers, and it returns the largest entry. For example,
Largest(7,2,3,8,4)= 8. It is just a recasting of Algorithm 4 into a procedure.

Procedure Largest(x1, x2, x3, . . . , xn )
begin

biggest := x1 . . . . . . . . . . . . . . . . . this is the largest value found so far
for i := 1 to n do

if biggest < xi then
biggest := xi . . . . . . . . . . this is the largest value found so far

end
end
return biggest

end

To conclude the section, we explore a significant idea called recursion.
Although this is a far-reaching idea, it will not be used extensively in the
remainder of this book. But it is a fascinating topic, even mind-boggling.

We have seen that a procedure is a set of instructions for completing
some task. We also know that algorithms may call procedures, and you
can imagine writing a procedure that calls another procedure. But under
certain circumstances it makes sense for a procedure to call itself. Such a
procedure is called a recursive procedure.

Here is an example. We will call it RFac (for RecursiveFactorial). It is
our second procedure for computing a factorial, that is, RFac(n)= n!. It uses
the fact that n!= n · (n−1)!, which is to say RFac(n)= n ·RFac(n−1).

Procedure RFac(n )
begin

if n = 0 then
return 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . because 0!= 1

else
return n ·RFac(n−1) . . . . . . . . . . . . . . . . . . . because n!= n · (n−1)!

end
end

To understand how it works, consider what happens when we run, say,
RFac(5). Because 5 6= 0, the procedure’s code says it needs to return 5·RFac(4).
But before doing this, it needs to run RFac(4). But RFac(4) needs to return
4 ·RFac(3), and RFac(3) needs to run RFac(2), and so on.
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Figure 6.1 helps keep track of this. Each call to RFac is indicated by a
shaded rectangle. The rectangles are nested, one within another, reflecting
the pattern in which calls to RFac occur within other calls to RFac.

0

1

2

3

4

5

level

return 5 ·

return 4 ·
return 3 ·

return 2 ·

return 1 ·

return 1

RFac(5)

RFac(4)

RFac(3)

RFac(2)

RFac(1)

RFac(0)

5 ·4 ·3 ·2 ·1

4 ·3 ·2 ·1

3 ·2 ·1

2 ·1

1

Figure 6.1. Here’s what happens when we run RFac(5). Note that RFac(5)
needs to return 5 · RFac(4). But before doing this it has to run RFac(4)
and wait for the result. In turn, RFac(4) needs to return 4 ·RFac(3), so it
has to run RFac(3) and wait for the result. Then RFac(3) needs to return
3 ·RFac(2), so it has to run RFac(2) and wait for the result. Next RFac(2)
needs to return 2 ·RFac(1), so it has to run RFac(1) and wait for the result.
Then RFac(1) needs to return 1 ·RFac(0). Here the pattern stops, as RFac(0)
simply returns 1 (according to the procedure’s code). At this point, none
of the calls RFac(5), RFac(4), RFac(3), RFac(2), and RFac(1) is finished,
because each is waiting for the next one to finish. Now RFac(1) returns
1 ·RFac(0)= 1 ·1= 1 to RFac(2), which is waiting for that value. Next RFac(2)
returns 2 ·RFac(1) = 2 ·1 to RFac(3), and RFac(3) returns 3 ·RFac(2) = 3 ·2 ·1
to RFac(4). Finally, RFac(4) returns 4 ·RFac(3)= 4 ·3 ·2 ·1 to RFac(5). At last
RFac(5) returns to correct vlaue of 5 ·RFac(4)= 5 ·4 ·3 ·2 ·1.

As noted above, a procedure that calls itself is said to be a recursive
procedure, and the situation in which a procedure calls itself (i.e., runs a
copy of itself) is called recursion.

Some mental energy may be necessary in order to fully grasp recursion,
but practice and experience will bring you to the point that you can design
programs that use it. We will see recursion in several other places in this
text. Section 14.2 will introduce a method of proving that recursion really
works. In Section 20.4 designs a recursive sorting algorithm that is much
quicker and more efficient than bubble sort.



Procedures and Recursion 181

Exercises for Sections 6.4 and 6.5
1. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose

output is the list in reverse order.
2. Write a procedure whose input is two positive numbers n and k, and whose

output is P(n,k) (as defined in Fact 4.4 on page 94).
3. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose

output is “yes” if X is in numeric order (i.e., x1 ≤ x2 ≤ ·· · ≤ xn), and “no” otherwise.
4. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose

output is the number of entries that are negative.
5. Write a procedure whose input is a list X = (0,0,1,0,1, . . . ,1) of 0’s and 1’s, of

length n. The procedure returns the number of 1’s in X .
6. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose

output is the average of all the entries.
7. Write a procedure whose input is a list of numbers X = (x1, x2, . . . , xn), and whose

output is the product of x1x2 · · ·xn of all the entries.
8. Write a procedure whose input is two lists of numbers X = (x1, x2, . . . , xn) and Y =

(y1, y2, . . . , yn), andwhose output is themerged list Z = (x1, y1, x2, y2, x3, y3, . . . , xn, yn).
9. Write a procedure whose input is two lists of numbers X = (x1, x2, . . . , xn) and

Y = (y1, y2, . . . , yn), and whose output is the list Z = (x1+y1, x2+y2, x3+y3, . . . , xn+yn).
10. Algorithm 6 is written so that it requires a > 0. Rewrite it so that it works for all

values of a, both positive and negative. (But still assume b > 0.)
11. TheFibonacci sequence is the sequence 1,1,2,3,5,8,13,21,34,55, . . . whose first

two terms are 1 and 1, and thereafter any term is the sum of the previous two
terms. The numbers in this sequence are called Fibonacci numbers. Write
a recursive procedure whose input is an integer n and whose output is the nth
Fibonacci number.

12. A geometric sequencewith ratio r is a sequence of numbers for which any term
is r times the previous term. For example, 5,10,20,40,80,160, . . . is a geometric
sequence with ratio 2. Write an recursive procedure whose input is three
numbers a, r ∈R, and n ∈N, and whose output is the nth term of the geometric
sequence with first term a and ratio r.

13. An arithmetic sequence with difference d is a sequence of numbers for which
any term is d plus the previous term. For example, 5,8,11,14,17,20, . . . is a
arithmetic sequence with difference 3. Write an recursive procedure whose
input is three numbers a,d ∈R, and n ∈N, and whose output is the nth term of
the arithmetic sequence whose first term is a and whose difference is d.

14. Rewrite the division algorithm (Algorithm 6 on page 176) as a recursive proce-
dure Div. It should take as input two numbers a,b and return an ordered pair
(q, r), where a = qb+ r with 0≤ r ≤ b. Example: Div(25,3)= (8,1).
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6.6 Counting Steps in Algorithms
Computer scientists are attentive to algorithm efficiency. An algorithm
should complete its task in the shortest amount of time possible, with the
fewest number of steps. Of course the number of steps needed probably
depends on what the input is. Thus a significant question is

How many steps does Algorithm X have to make to process input Y?

To get started, suppose an algorithm has the following piece of code,
where n has been assigned an integer value in some pervious line.

for i := 1 to 3n do
Command 1
Command 2

end
Command 3
for j := 1 to n do

for k := 1 to n do
Command 4

end
end

In all, how many commands are executed? The first for loop makes 3n
iterations, each issuing two commands, so it makes 3n ·2= 6n commands.
Then a single command (Command 3) is executed. Next comes a nested for
loop, where Command 4 is executed once for each pair (i,k) with 1≤ j,k ≤ n.
By the multiplication principle, there are n·n = n2 such pairs, so Command 4
is executed n2 times. So in all, 6n+1+n2 commands are executed.

Now let’s count the steps in this chunk of code:

for i := 0 to n do
for j := 0 to i do

for k := 0 to j do
Command 1

end
end

end

Command 1 is executed for each combination of i, j,k with 0≤ k ≤ j ≤ i ≤ n.
Each combination corresponds to a list of n stars and 3 bars ∗∗∗|∗∗|∗|∗∗· · ·∗
where k is the number of stars to the left of the first bar, j is the number
of stars to the left of the second bar, and i is the number of stars to the
left of the third bar. Such a list has length n+3, and we can make it by
choosing 3 out of n+3 spots for the bars and filling the rest with stars.
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There are
(n+3

3
)
such lists, so the number of times Command 1 is executed

is
(n+3

3
)= n(n−1)(n−2)

3! = n3−3n2+2n
6 = 1

6 n3 − 1
2 n2 + 1

3 n.
We finish the chapter by comparing two different algorithms that do the

same task, namely search through a sorted list of numbers to determine if
a particular number appears. We will see that the second (somewhat more
complex) algorithm is vastly more efficient in terms of commands executed.

Each algorithm takes as input a number z and a list X = {
x1, x2, . . . , xn

}
of

numbers in numeric order, that is, x1 ≤ x2 ≤ ·· · ≤ xn. The output is the word
“yes” if z equals some list entry; otherwise it returns the word “no.”

The first algorithm, called sequential search, simply traverses the list
from left to right, stopping either when it finds z = xk, or when it goes past
the end of the list without ever finding such an xk. A variable f ound equals
either the word “‘yes” or the word “no.” The algorithm starts by assigning
f ound := no, and changes it to “yes” only when and if it finds a k for which
z = xk. It has a while loop that continues running as long as f ound := no
(no match found yet) and k ≤ n (it hasn’t run past the end of the list).

Algorithm 8: sequential search
Input: A number z and a sorted list X = (x1, x2, . . . , xn) of numbers
Output: “yes” if z appears in X ; otherwise “no”
begin

f ound := no . . . . . . . . . . . . . . . . . . . . . . . . . . .means z not yet found in X
k := 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .k is subscript for list entries xk
while ( f ound = no ) ∧ (k ≤ n) do

k := k+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .go to next list entry
if z = xk then

f ound := yes . . . . . . . . . . . . . . . . . . . the number z appears in X
end

end
output f ound

end

Two comments. First, we could opt to also output k at the end of the
algorithm, to tell which which list entry xk equals z in the event of yes.
Second, the sequential search algorithm also works just as well when X is
not in numeric order. (But this will not be the case with our next algorithm.)

Counting steps, Algorithm 8 has two commands prior to the while loop.
Then the while loop does at most n iterations, each with two commands. So
it searches a list of length n in at most 2+2n steps. This is a worst-case
scenario, in which z is not found, or it is found at the very end of the list.
At the other extreme, if x1 = z, then the algorithm stops after 4 steps.
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Next we design an algorithm that takes a different approach to searching
a list. Unlike sequential search, which examines every list entry, this new
method ignores almost all entries but still returns the correct result.

To illustrate the idea, suppose we need to decide if z = 4 is in the list
X = (0,1,1,2,3,3,3,3,4,5,5,5,5,8,8,9). If z is in the list, it is in the shaded
area between the left-most position L = 1 and the right-most position R = 16.

X =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0 1 1 2 3 3 3 3 4 5 5 5 5 8 8 9

L = 1 R = 16M = ⌊ L+R
2

⌋= 8

Jump to a middle position M = ⌊L+R
2

⌋= 8, the average of L and R, rounded
down (if necessary) to an integer. The number z = 4 we are searching for is
greater than xM = 3, so it is to the right of x8, in the shaded area below.

X =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0 1 1 2 3 3 3 3 4 5 5 5 5 8 8 9

L=9 R=16M=⌊ L+R
2

⌋=12

So update L := M+1 and form a new middle M := ⌊L+R
2

⌋= 12 (shown above).
Now xM = 5, and the number z = 4 we seek is less than xM, so it is in the

shaded area below. So update R := M−1. Form a newmiddle M := ⌊L+R
2

⌋= 10.

X =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0 1 1 2 3 3 3 3 4 5 5 5 5 8 8 9

L=9 R=11M=⌊ L+R
2

⌋=10

Again, xM = 5, and the number z = 4 we seek is less than xM, so it is in the
shaded area below. Update R := M−1 and form a new middle M := ⌊L+R

2
⌋= 9.

X =
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0 1 1 2 3 3 3 3 4 5 5 5 5 8 8 9

L=9 R=9M=⌊ L+R
2

⌋=9

Now L = R, and we have zeroed in at xM = 4, the number sought, and
having ignored most entries of the list.
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This new search strategy is called binary search. Binary search works
by continually maintaining two list positions L (left) and R (right) that the
searched-for entry z must be between. In each iteration, a middle M is
computed. If xM = z, we have found z. If xM < z, then z is to the right of M,
so M +1 becomes the new L, If xM > z, then z is to the left of M, so M −1
becomes the new R. In this way, L and R get closer and closer to each other,
trapping z between them (if indeed X contains z). If z is not in X , then
eventually L = R. At this point the algorithm terminates and reports that z
is not in X .

Algorithm 9: binary search
Input: A number z, and a sorted list X = (x1, x2, . . . , xn) of numbers
Output: “yes” if z appears in X ; otherwise “no”
begin

f ound := no . . . . . . . . . . . . this means z has not yet been found in X
L := 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . left end of search area is x1

R := n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . right end of search area is xn

while ( f ound = no ) ∧ (L < R ) do
M :=

⌊
L + R

2

⌋
. . . . . . . . . . . . . . . . . . . . M is middle of search area

if z = xM then
f ound := yes . . . . . . . . . . . . . . . . . . . the number z appears in X

else
if z < xM then

R := M−1 . . . . . . . . . . . . if z is in X , it’s between xL and xM

else
L := M+1 . . . . . . . . . . . . if z is in X , it’s between xM and xR

end
end

end
output f ound

end

Let’s analyze the number of steps needed perform a binary search on a
list of length n. Algorithm 9 starts with 3 commands, initializing f ound,
L and R. Then comes the while loop, which iterates until f ound = yes or
L = R. How many iterations could this be? Before the first iteration, the
distance between L and R is n−1. At each iteration, the distance between
L and R is at least halved.
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Thus, after the first iteration the distance between L and R is less than n
2 .

After the second iteration the distance between them is less than 1
2 · n

2 = n
22 .

After the third iteration the distance between them is less than 1
2 · n

22 = n
23 .

Thus, after i iterations, the distance between L and R is less than n
2i .

So in the worse case, the while loop keeps running, for i iterations, until
n
2i ≤ 1< n

2i−1 ,

which is the smallest i for which we can be confident that the distance
between R and L is less than 1 (and hence 0). Multiplying this by 2i yields

n ≤ 2i < 2n.

We can isolate the number of iterations i by taking log2, and using various
logarithm properties. 1

log2(n) ≤ log2(2i) < log2(2n)
log2(n) ≤ i < log2(2)+ log2(n)
log2(n) ≤ i < 1+ log2(n).

So the number of iterations i is an integer that is between log2(n) and
1+ log2(n), which means i = d log2(n)e. (Generally log2(n) is not an integer,
unless n = 2k is an integer power of 2, in which case log2(n)= log2(2k)= k.)

In summary, the binary search algorithm (Algorithm 9) issues 3 com-
mands, followed by a while loop that makes at most d log2(n)e iterations.
Each iteration executes 2 commands: the assignment of M = ⌊L+R

2
⌋
, followed

by an if-else statement. Thus the binary search algorithm does a total of at
most 3+2d log2(n)e steps to search a list of length n.

By contrast, we saw that sequential search (Algorithm 8) needs at most
2+2n steps to search a list of length n. Figure 6.2 compares the graphs of
y= 2+2n with y= 3+2log2(n), showing that in general binary search involves
far fewer steps than sequential search. This is especially pronounced for
long lists. For example, if a list X has length n = 215 = 32768, a sequential
search could take as many as 2+2 ·32768= 65538 steps, but a binary search
is guaranteed to finish in no more than 3+2log2(32768)= 3+2 ·15= 33 steps.

This case study illustrates a very important point. An algorithm that
cannot finish quickly is of limited use, at best. In our technological world,
it is often not acceptable to have to wait seconds, minutes, or hours for an

1If your logarithm skills are rusty, we will review logarithms in Chapter 19. They will
not be used in a substantial way until Chapter 20.
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algorithm to complete a critical task. Programmers need to compare the
relative efficiencies of different algorithm designs, and to create algorithms
that run quickly. The ability to do this rests on the foundation of the
counting techniques developed in Chapter 4. We will take up this topic
again, in Chapter 20, and push it further.
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Figure 6.2. A comparison of the worst-case performance of sequential
versus binary search, for lists of length n.

Exercises for Section 6.6

1. Suppose n is a positive integer. In the following piece of code, how many times
is Command executed? The answer will depend on the value of n.

for i := 0 to n do
for j := 0 to i do

for k := 0 to j do
for ` := 0 to k do

Command
end

end
end

end
2. Suppose n is a positive integer. In the following piece of code, how many times

is Command executed? The answer will depend on the value of n.
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for i := 1 to n do
for j := 1 to n do

for k := 1 to n do
for ` := 1 to n do

Command
end

end
end

end
3. How many steps does the bubble sort algorithm (Algorithm 5 on page 174) take

if its input list X = (x1, x2, . . . , xn) is already sorted?
4. Find a formula for the number of steps that Algorithm 1 (page 169) executes for

an input of n.
5. Find a formula for the number of steps that Algorithm 2 (page 170) executes for

an input of n.
6. Find a formula for the number of steps that Algorithm 3 (page 171) executes for

an input of n > 0.
7. Find a formula for the number of steps that Algorithm 4 (page 172) executes

when the input is a list of length n.
8. Find a formula for the worst-case number of steps that the bubble sort algorithm

(Algorithm 5 on page 174) executes when the input is a list of length n.
9. Find a formula for the number of steps that The division algorithm (Algorithm 6

on page 176) executes when the input is two positive integers a and b. (The
answer will depend on a and b.)


