Semi-Infinite Programming for Trajectory
Optimization with Nonconvex Obstacles

Kris Hauser

Duke University, Durham NC 27708, USA,
kris.hauser@duke.edu,
WWW home page: http://people.duke.edu/~kh269

Abstract. This paper presents a novel optimization method that han-
dles collision constraints with complex, non-convex 3D geometries. The
optimization problem is cast as a semi-infinite program in which each
collision constraint is implicitly treated as an infinite number of nu-
meric constraints. The approach progressively generates some of these
constraints for inclusion in a finite nonlinear program. Constraint gen-
eration uses an oracle to detect points of deepest penetration, and this
oracle is implemented efficiently via signed distance field (SDF) versus
point cloud collision detection. This approach is applied to pose opti-
mization and trajectory optimization for both free-flying rigid bodies
and articulated robots. Experiments demonstrate performance improve-
ments compared to optimizers that handle only convex polyhedra, and
demonstrate efficient collision avoidance between nonconvex CAD mod-
els and point clouds.

Keywords: optimization, semi-infinite programming, collision avoidance

1 Introduction

Optimization in robotics has long been complicated by the difficulty of encod-
ing collision constraints between complex geometries, even though complex ge-
ometries are routinely handled by planners that produce feasible (non-optimal)
paths. Sampling-based motion planners [6] have been successful because they
leverage the extensive body of work fast collision detection between non-convex
bodies [5], which allows collision checks to be performed rapidly. However, these
checks are binary computations that cannot be easily incorporated into numer-
ical optimizers, which usually require differentiable constraints. A naive numer-
ical encoding for objects composed of M and N geometric primitives (e.g., tri-
angles) would require O(MN) pairwise constraints. Hence, past optimization
approaches require robot links and environments to be represented using simple
convex geometries, such as ellipsoids [11], capsules [8], polyhedra [10,12], and
superquadrics [2] to speed up computation. This introduces severe limitations
on allowable shapes of objects and robot geometries. The goal of this paper is
to overcome these challenges by introducing a novel constraint encoding and
optimization method that can handle non-convex objects in a computationally-
efficient manner.

2 Kris Hauser

The approach taken here is to represent each collision constraint as an infi-
nite set of simpler constraints in a semi-infinite programming (SIP) framework.
Although it is not possible to optimize an infinite number of constraints di-
rectly, a finite subset of constraints, suitably chosen, is sufficient to define an
optimum. An exchange method is used that instantiates a series of finite opti-
mization problems, each of which progressively adds some number of constraints.
Using a judicious constraint selection procedure, called an oracle, the series of
problems converges toward one that contains a true optimum.

For collision avoidance between a pair of objects, we establish constraints
that every point on the surface of one object is required to be outside of or on
the surface of the other object. We call the first object the privileged object.
The oracle detects the point in the privileged geometry that penetrates most
deeply into the other. To make this procedure fast, the privileged geometry is
represented as a point cloud, and the other is represented as a signed distance
field (SDF) which supports O(1) depth lookup and O(1) gradient estimation at
a point. Bounding volume hierarchies speed up the oracle query. For trajectories,
dynamic collision detection techniques are able to find the deepest point in both
space and time. A benefit of this technique is that raw point clouds can be
directly used in optimization, while precomputed SDFs can be employed for
robot links. This avoids the expense of computing geometric data structures
on-the-fly as environmental point clouds are acquired from sensors.

The technique is implemented for free-flying rigid bodies as well as articulated
robots, both to optimize static poses and trajectories. The technique converges
quickly to local optima even with highly complex geometries. Poses can be op-
timized in tens of milliseconds and trajectories in a few seconds on standard
PC hardware. Surprisingly, performance is comparable to and sometimes better
than optimizers specialized for convex polyhedral geometries.

2 Semi-infinite programming with collision constraints

2.1 Semi-infinite programming

A semi-infinite programming (SIP) problem over the state variable x € R™ is
defined as follows
min f(x)

s.t.
g1z, y1) 20 Vy €Ys (1)

g (z,yar) >0 Vyar € Y.

where g;(z,y) € R™ are the constraint functions, y; denotes the i'th index
parameter, and Y; C RP¢ is its domain. Each of the functions f is assumed to be
twice differentiable, g1, ..., gy are assumed to be differentiable, and inequalities
are interpreted element-wise.

Semi-Infinite Programming 3

a(x,y)

Fig. 1. An example of a simple semi-infinite optimization problem with f(z) = x, one
constraint g1 (x,y) = « — sin(z + y) > 0, and domain y € [—2,2]. The minimum is at
x = 1, with the supporting value of y = w/2 — 1. The dark curve plots the constraint
value while z is fixed at the optimum.

The constraints in (1) define an infinite set of parameters for which the
constraint must be satisfied. An example of such a problem is shown in Fig. 1.
SIP has also been applied to robot trajectory optimization problems under state
and control constraints, in which the 1D time variable of the spline is the index
parameter [15]. It has also been applied to robust optimization problems in which
the disturbance is the index parameter [16].

Of course, existing optimization solvers cannot directly consider a continuous
infinity of constraints, which has motivated a rich set of approaches in the op-
timization literature. One approach [9] is to eliminate the y terms by replacing
constraints with inner minimizations of the form:

gi(x) = min g;(z,y;) > 0. 2
gi(w) = min gi(z, y:) (2)
For example, the constraint in Fig. 1 could be replaced with
_ x—1 ifrn/2€x—2x+2
9(z) = : : . (3)
x — max(sin(z — 2),sin(z +2)) otherwise

This approach allows (1) to be encoded as a standard nonlinear program, but
a nondifferentiable one. For collision constraints, a common approach is employ
the distance function [1, 3], which only depends on the configuration z. But in
practice, convergence difficulties arise due to nondifferentiability, which occurs
when the minimizing parameter jumps discontinuously. For example, consider
a rectangle slightly angled so that vertex a penetrates a plane and defines the
penetration depth. On the next iteration, another vertex, say vertex b, may pen-
etrate and define the active constraint. This process may then oscillate between
a and b because both vertices cannot be considered simultaneously active.

4 Kris Hauser

Fig. 2. Illustrating the SIP exchange method to enforce separation of two objects. A
contour plot of the fixed object’s signed distance field is illustrated. After each iteration,
the oracle adds the deepest penetrating point (red circle) to the list of constraint points
(black circles).

2.2 Optimization with instantiated constraints

Suppose we are given a finite number N of instantiated constraint indices iV, ..., (™)
and corresponding index parameters y*), ... y®™). Here, i¥) € {1,..., M} and
yY) € Yy, for j = 1,...,N. We can then define an instantiation of the struc-
tured problem corresponding to these parameters as follows:
min f(x)
xr
S.t.
) M) >0
giw \ %, Y Z (4)
i) (a:,y(N)> > 0.
This is a finite-dimensional nonlinear program (NLP) with O(N max(myq, ..., mar))

constraints, and can be solved (locally) using standard methods like sequential
quadratic programming (SQP) or interior point methods.

The idea of the exchange method is to progressively instantiate constraints
and parameters (i1, y(), (i(?) | y(2)), ... giving rise to a sequence of instantiated
NLPs whose solutions converge toward the true optimum [9]. Specifically, define
P as the instantiation corresponding to the first k elements of the constraint
sequence, and let z} its solution. A naive approach would sample points incre-
mentally from each domain (e.g., randomly or on a grid), and with a sufficiently
dense set of points the iterates z7, 23, ... will eventually approach an optimum.
But this approach is inefficient as most samples will not affect the iterated solu-
tions. It is also possible to delete constraints from the constraint set when they
are not deemed necessary (the “exchange”), which saves time in later NLP solve
steps. For example, one simple strategy is to delete all instantiated constraints
whose value at the current iterate exceeds a threshold 7.

Semi-Infinite Programming 5

Constraint generation oracle The key question for constraint generation is
which new constraint g;u (2, y*)) > 0 to add to yield fast convergence. We rely
on an oracle, a subroutine that performs this selection process. As an example,
a maximum-violation oracle identifies a parameter value that has a large effect
on the next iterated solution. Specifically, on iteration k this strategy calculates
the most violating parameter of each constraint, keeping x fixed at xj_1:

Y arg min, ey, min gi(z5_1,y). (5)
in which the second minimization finds the smallest element in the g; vector.
Then, the constraint with minimum value is computed as

M
(k) - . — ((k))
i arg minmin g; (7x-1,y, ©)
y® oy
The constraint generation process using this oracle is illustrated in Fig. 2.

This approach does, however, beg the question about how to perform the
minimization (5) over each Y; efficiently. Best results are obtained by obtaining
a global minimum, and to do this quickly it is often necessary to resort to
implementation-specific procedures such as branch-and-bound. In the following
discussion we shall assume that such a minimizer is available, and postpone

discussion of its implementation until Section 2.3.

Pseudocode and performance considerations The basic meta-algorithm
is listed in Algorithm 1. It takes as input the problem, an initial guess zg, and
an iteration count N. It also uses the Oracle subroutine. Return status may
include infeasible, which indicates an infeasible local minimum, converged, which
indicates a feasible local or global minimum, and not converged, which means
the iteration count is exhausted.

Besides the choice of N and the oracle, there are a number of performance
characteristics to tune.

Constraint instantiation strategy. The strategy used in Steps 4 and 5 is an im-
portant component of performance, with most-violating constraint at one end of
a spectrum. There is a tradeoff when choosing how many constraints to instanti-
ate, since adding more constraints helps the method converge in fewer iterations,
but increases the cost of solving the optimization problem at each iteration. We
have experimented with the approach of instantiating M constraints in a single
iteration, one for each index i and most-violating parameter y”". Another ap-
proach, if a global optimization technique is used, might instantiate constraints
corresponding to all local minima of (5).

It is important to detect and ignore duplicated or near-duplicated index
parameters in Step 5, because the most-violating parameter may stay unchanged
between subsequent steps. This avoids adding multiple identical constraints that
may cause numerical difficulties during NLP solving.

6 Kris Hauser

Algorithm 1 Basic SIP solver pseudocode

1: procedure SIP(f, g1,...,9m,Y1,...,Yn, 20, N, S, 7) > o is an initial guess
2: I+{} > Instantiated constraints
3: for k=1,2,...,N do

4: Generate ik, yx via Oracle(xr—1)

5: Add (ik,yk) to I

6: Remove from I any (i,y) where ¢;(zk—1,y) > v

T Let Py be (4) instantiated with I.

8: Run S steps of an NLP solver on Py, starting from x,_1

9: If Py is infeasible, return “infeasible”
10: Otherwise, set xj to its solution
11: if zj is unchanged, return xy, “converged”
12: end for
13: return xy, “not converged”

14: end procedure

Inner optimization strategy. The method employed to solve for the new op-
timization variable in Step 8 is also important. Coherence between problems
Pi._1 and P, may suggest the use of warm-starting to speed up solve times. The
number of steps S may be set low to avoid spending too much time on problems
whose constraint sets are not sufficiently populated. There is a tradeoff between
effort expended on inner optimization and convergence rate, because effort may
be wasted on early problems that omit crucial constraints. On the other hand,
solve times are slower on later outer iterations because more constraints are in-
stantiated. The extreme S = 1 version of this approach is to take a single QP
step, which is most favorable when the oracle is fast and f is approximated well
by its quadratic Taylor expansion.

Each quadratic programming (QP) call finds a step Az s.t.

rrAlin %AmTV2f(xk)Aa: + Vf(zy)Az
S.t.

Vegia (xk,y(l)) Az + g;) (fcmy(l)) >0 (7)

Vagioo (xk,y“v)) Az + g0 (mk,y“v)) >0

and then takes a step zp11 <) + apAz. Here a4 is a parameter in [0, 1]
determined via line search or a trust region method. One problem that occurs
is that after the move to xy, we may discover that it deeply violates constraints
that were not previously instantiated. This may lead to oscillatory behavior or
large jumps into basins of attraction of infeasible local minima. To avoid this
problem, we implement a trust region approach that limits the step size to a
box —hy < Ax < hy. If a new deeper point is discovered after a candidate step,
the step is not taken (o = 0) and the trust region is shrunk. The step is also

Semi-Infinite Programming 7

.5

Fig. 3. Illustrating a slice of a signed distance field (SDF) for a non-convex link of an
industrial robot.

rejected if a merit function is increased. Otherwise, the full step is taken and the
trust region is grown. We implement trust region shrinking with hg4q1 < hg - 0.5
and growing with hyy1 < hg - 2.5

Another issue to be addressed is that the QP (7) may not be feasible. In
this case, we formulate a relaxed QP that introduces slack variables into the
constraints. We then minimize a weighted sum of the standard objective function
and the sum of squares of slack variables to determine the step.

It should be noted that significant speed gains can be obtained by implement-
ing branch-and-bound techniques in the most-violating constraint oracle. Here, an
upper bound g on the most-violating constraint value is maintained, initialized
with the minimum value of g; over all previous instantiated constraints. Then,
during each minimization of (5), g is used to discard subsets of the domain
that have no chance of yielding a smaller value. g is then updated as smaller
constraint values are found.

2.3 Collision-free constraint formulation

Let g denote a configuration of the system and A and B two objects. A collision
constraint dictates that the workspace occupied by the geometries of the objects
G4 C R? and G C R3 do not intersect. Let us assume that G4 and Gp are
open sets, so the constraint requires that G4(q) N Gp(q) = 0.

We assume each object is a rigid body, and hence the configuration only
affects the object’s rigid transform T4 (q) relative to the world frame. Hence, we
can express G a(q) = Ta(q)GY, where G, is the object’s geometry in its reference
frame. Let us assume that each reference geometry has a surface representation
0GY and a signed distance function (SDF) D4(y). The SDF is defined so that
|Da(y)| gives the distance from y € R3 to dGY, and sign(Da(y)) = —1 if
y € GY, sign(Da(y)) = 0 if y € 9GY, and sign(Da(y)) = 1 if y is strictly
outside.

Barring the possibility of B being completely enclosed by A, an estimate of
distance between A and B is given by

dap(@) = min, Ds (T4 (2)T5(0)y) - (®)

This value is exact when A and B are disjoint, and is an approximation of the
negated penetration depth when A and B intersect (provided that B € A.)

8 Kris Hauser

The benefit of this approach is that penetration depth lookup for a single
point is performed in O(1) time. SDF gradient calculation is also O(1) using
finite differencing. Given a closed polygonal mesh, the SDF is calculated using
the Fast Marching Method (FMM) applied on a voxel grid. Values off of the grid
vertices are approximated via trilinear interpolation. If y is outside of the grid
entirely, the distance is approximated by determining the closest point 3’ in the
grid, and assigning D4(y) = |ly — /|| + Da(y’).

To represent the distance between two objects, we define

945(q,y) = D (T1 " (0)Ts(q)y) 9)

to establish a semi-infinite constraint over the domain y € GY.

It is a straightforward matter to provide constraint Jacobian information,
which is used by most optimization algorithms like SQP use to determine lin-
earized approximations of constraints at each inner iteration. The Jacobian of
the constraint function is

Ve9a5(a.y) = VDg (T5" (@) Ta(q)y) - J5(q,y) (10)

where VDjp is the distance gradient, and J§ (¢,) is V,(T5"(¢)Ta(q)y). Specifi-
cally this is the Jacobian of the coordinates of point y relative to B’s coordinate
frame, where y is given in A’s local coordinates. This matrix is calculated via for-
ward kinematics depending on whether ¢ encodes an articulated robot or object
pose.

2.4 Performance notes

It is important to note that the constraint is non-symmetric, as object A is
represented as a surface model while B is the SDF. We call object A the privileged
object, and the choice of the privileged object in a pair can affect performance
in two ways. First, the more complex B is, the more likely optimization will fall
into local minima in its SDF. Second, the amount of precomputation needed to
build an SDF is non-negligible, and SDF construction from a mesh may suffer
from artifacts if the mesh is non-watertight. As a result, it is typically better
to represent robot links as SDFs because they do not change over time, and
this gives developers a chance to manually inspect the SDF for a high-quality
representation. Note that to enforce self-collision constraints, robot links will
also need to store a surface representation. Environment geometries are better
suited for surface representations, since these can be constructed dynamically
from sensor data with minimal amounts of precomputation.

It should be noted that SDFs may contain some non-differentiable points
along the medial axis of the object, which may slow convergence of optimization.
But each optimization step drives points away from poorly behaved areas, and
furthermore the smoothing effect of finite differencing mitigates the potential
performance degradation.

Semi-Infinite Programming 9

2.5 Most-violating parameter calculation

When 9GY is approximated via a point cloud of p points, the most-violating
parameter of (9), e.g., the closest / deepest penetrating point, can be determined
in O(p) time using brute force computation. Brute force computation is trivially
parallelizable and suitable for implementation on a GPU. However, for large
values of p a bounding volume hierarchy (BVH) approach may be significantly
faster.

A BVH is a hierarchical geometric data structure of progressively smaller
bounding geometries, where leaf nodes contain one or more primitive points [5].
The significance is that proximity queries between two BVHs can be answered
quickly using branch-and-bound techniques. Although BVH proximity queries
are more complex and BVH construction incurs some precomputation cost, the
speed gains across multiple penetration depth may ultimately make it worth-
while. The BVH approach also allows the branch-and-bound techniques of Sec. 2.2
to be applied across multiple constraints, which speeds up most-violating param-
eter determination.

Our approach builds a sphere-based BVH of the point cloud. Specifically,
an octree data structure is built containing the point cloud, subdividing until
each cell contains no more than 10 points. For each leaf octree node, an axis-
aligned bounding box is fit to the points it contains, and for each non-leaf node,
a bounding box is fit to the bounding boxes of its children.

To query for the closest / deepest penetrating point against an SDF geometry
dp, we use a branch and bound method that relies on a fast lower bound query
between a node N in the BVH and the SDF. Given the lower and upper values
Pmin and Dpaz of N’s bounding box, we build a circumscribing sphere with
center ¢ = (Pmin + Pmaz)/2 with and radius 7 = ||pmasz — Pmin||/2. The minimum
value of the SDF within this sphere is lower bounded by Iy = dB(TngAc) -,
which is also a lower bound on the SDF value at the points contained with N.

The nodes of the BVH are traversed, starting from the root in order of non-
decreasing [n. A lowest encountered distance value d,,;, is maintained, which
is initialized to an arbitrary point in GY. If traversal encounters any node N
with Iy > dpin, it is pruned. Otherwise, if N is a leaf node then all of its points
are checked for being the deepest point. Otherwise, its children C1,...,C} are
added to the traversal queue with priority values l¢,,...lc,-

2.6 Trajectory collision constraints

We also take a semi-infinite approach to formulate collision constraints along an
entire trajectory. This is in contrast to a classical collocation approach, which
instantiates static constraints at a discrete set of points in the time domain.
The two disadvantages of collocation are that collisions may be missed between
collocation points, and that a large number of collocation points leads to a large
number of constraints and hence slow optimization times.

Instead, we consider time to be a parameter in a semi-infinite constraint that
enforces collision constraints across the entire continuous trajectory. Let the

10 Kris Hauser

optimization variable x define the configuration trajectory ¢(t), e.g., for splines
x is a stacked set of control points. To make the dependence of the trajectory
on z clear, we shall say q(t;).

Now, we modify (9) to include time as an additional variable as follows:

hap(z,p,t) = gap(q(t;z),p) = Dp(Ty ' (¢(t; 2))Tp(q(t; x))p) (11)

which is treated as a semi-infinite constraint over the index parameter y = (p, t)
with domain y € G% x [0,T]. The Jacobian with respect to z is computed via
the chain rule, and for spline representations the Jacobian is sparse.

The most-violating constraint of (11) can be determined efficiently via a
branch-and-bound technique. Determine a Lipschitz constraint Kj bounding the
magnitude of (9) with respect to the kth entry of q. Then, for any ¢/, the change
of (9) from its value at a different configuration ¢ is bounded in magnitude by

l9a8(4,y) — 9aB(q,9)| < K(q—¢') (12)
where .
K(Aq) = Ki|Agy. (13)
k=1

Over any time interval [t%,¢°], from the spline representation we can de-
termine a Lipschitz bound K on the trajectory derivative. This establishes a
parallelipiped in state-time space that is guaranteed to contain the trajectory
segment:

lq(t) — (") < [t — 1] - Ka

lg(t) — q(t")| < [t —t°| - Ka (14)

We may then use this in conjunction with (12) to bound the value of hag(z,p, t)
over all p and t € [t%,t°]. If we have calculated g* = gap(q(t%),p®) and g* =
ga8(q(t*), p*) along with most-violating points p® and p® at the endpoints, then
we can obtain the bounds

|hap(z,p,t) — g*| < [t —t*] - K(Ka) VpedGY and t € [t*,¢").

b b 0 b (15)

|hag(z,p,t) —g°| < |t —t’| - K(Ka) Vpe€ O0Gy, and t € [t*,t°].
Hence, a lower bound on the possible values of hap(z,p,t) over this domain is
obtained at the value of ¢ such that g% — (t — t*)K(Ka) = ¢° — (t* —t)K(K).

This value is t = m(g“ —g") + tb%ta giving

han(e,pt) > 56"+ 6%) — 5t — 1) K(Ka). (16)
If this lower bound is greater than the least currently established upper bound

on the distance h, then the interval [t%,¢?] can be pruned from consideration.
Overall the approach uses recursive subdivision to find the most-violating
continuous time and point on A, up to a given resolution e (which is far finer
than would be reasonable for collocation methods, e.g. 107°). First, we evaluate

Semi-Infinite Programming 11

statically the penetration depth at states q(to), .. ., q(ts) where to,...,ts are the
spline knot points. An upper bound h on the most violating point and time is
initialized to the minimizer of gap across knot points. For each of the interme-
diate ranges (tg,tr+1) we recursively subdivide while pruning any segment for
which the r.h.s. of (16) exceeds h. At the midpoint (¢ +tx+1)/2, the static pen-
etration depth is evaluated, and the process recurses. Furthermore, to lower & as
quickly as possible, candidate segments are stored in a priority queue sorted by
increasing lower bound. The process quickly narrows down to a small range of
possible most-violating times, and empirically we have observed approximately
O(log€) static penetration depth computations.

As mentioned in Section 2.2 it is useful to perform branch-and-bound over
many constraints at once. This is especially true when considering a large number
of potential collision pairs. To do so we unify the segment priority queues and
maintain a common upper bound k. This quickly eliminates the need for dynamic
collision checking for pairs that have no chance of defining the most violating
constraint.

3 Experiments

The SIP algorithm is implemented with front end in the Python programming
language, with Python bindings to the OSQP QP solver [14], which is imple-
mented in C, and custom C++ collision detection software. All experiments
were run on a single core of a 2.6 GHz Intel i7 processor. Parameters include
N = 50 maximum iterations, S = 1, constraint deletion threshold v = 0.1, and
a convergence tolerance of ||Az|| < 10~4y/n.

3.1 Performance characteristics

This set of experiments characterize the performance of the algorithm in static
pose optimization. First, we consider the cube-sphere collision scenario of Fig. 4.
The cube has dimension 0.5m on each axis and the sphere has radius 1m.
The cube is represented as a signed distance field with 2 cm resolution and the
sphere is discretized into a point set of 10,298 points with 5cm resolution. For
each run, 50 targets along the given trajectory are sampled on a uniform grid
and the cube is initialized with its center at that position. At all positions, the
cube penetrates the sphere. The optimization is used to minimize the distance
between the object’s center and the target while avoiding collision.

We compare SIP to a standard NLP formulation with max-penetration con-
straints (2) (MP). Since these objects are convex, we can also formulate them as
convex polytopes. We use the exact penetration depth computation of the GJK
algorithm [4] to implement the MP constraint (using the libced library, written
in C). We also compare an NLP that instantiates no-penetration constraints
between the SDF and 1,000 points sampled from the sphere (NLP-1k). Results
show that MP has the lowest computation time, but SIP is not far behind. MP
and SIP obtain similar objective function values. NLP-1k is 40x slower due to

12 Kris Hauser

Method Time (ms) Obj (m) Pen (mm) % Pen

SIP 35.7 0.102 O 0
MP 30.5 0.0998 4.0 18
NLP-1k 1,281 0.119 0.52 4
SIP-100k 65.8 0.112 0 0

Fig. 4. The sphere-cube test scenario. Targets are chosen along a straight line tra-
jectory, and for each run the optimization minimizes the distance between the cube
center and the target. Test results include average computation time (Time), optimized
objective function value (Obj), penetration depth (Pen), and fraction penetrating (%
Pen).

the large number of instantiated constraints. Certainly, if all 10,0004 points were
included, a standard NLP would be even more expensive.

The most severe weakness of MP is that it often fails to satisfy constraints.
In fact, 18% of its runs terminated with some penetration, with an average of
4.0mm penetration. This is due to oscillation between penetrating and non-
penetrating conditions, since MP only considers the effect of one support point
at each iteration. NLP-1k does somewhat better, but also fails to detect some
collisions due to the limited number of instantiated points.

We also tested a version of SIP where the sphere was discretized even more
finely to obtain 108,200 points (SIP-100k). Despite the number of points increas-
ing by an order of magnitude, the added resolution only adds about 40% more
computation time. This is because collision detection costs scale sub-linearly,
and the number of constraints instantiated still remains small, with SIP-100k
instantiating 7.3 constraints and SIP instantiating 2.3.

To illustrate the capabilities of our algorithm in handling complex geometries,
Fig. 5 shows the same cube in a point cloud scan of an office environment from the
Cornell RGB-D Scene Understanding dataset [7]. The 640 x 480 RGB-D image
contains 307,200 points, 228,352 of which are valid. Precomputation of the point
cloud into an octree took 198 ms, although this could be sped up further if the
structured nature of the point cloud were taken into account. A similar test to
the test above was run, with the target location moving horizontally across the
bookshelf, with some penetration at each location. On average, SIP instantiates
7.8 constraints and terminates in 77.5 ms.

3.2 Trajectory optimization

Experiments illustrated in Figs. 6 and 7 test the ability of SIP to handle non-
convex geometries in robot trajectory optimization. In each case, the start and
end of the trajectory were fixed while 10 intermediate milestones were optimized.
The robot model here is the 6DOF Staiibli TX90L industrial manipulator, with
a pipe attached to its terminal link. In both cases, objects from the Princeton

Semi-Infinite Programming 13

Fig. 5. Optimizing a geometry to be as close as possible to the given widget while
avoiding contact with the point cloud. The 640 x 480 point cloud is obtained from the
Cornell RGB-D scene dataset and contains 228,352 valid points.

Distance to obstacles (m)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

01 02

Link 3 init
Link 4 init
Link 6 init - ~
Link 3opt ¢
Link 4opt o %
Link 6opt # %

AN X
¢' A

]

03 04 05 06 07 08 09 1
Time along trajectory

Fig. 6. Optimizing a robot trajectory in close proximity to an office chair obstacle.
Left: The yellow curve is the initial end effector trajectory, and the orange one is the
optimized trajectory. Right: distances to the environment for 3 links supporting the

optimized trajectory.

14 Kris Hauser

Fig. 7. Optimizing a robot trajectory in close proximity to a tree-shaped obstacle. The
yellow curve is the initial end effector trajectory, and the orange one is the optimized
trajectory. Dots along the trajectory and on the obstacle indicate the instantiated
constraint points. Left: start configuration. Right: goal configuration.

Shape Benchmark [13] are instantiated near the robot, and the optimizer mini-
mizes the sum of squared distances between milestones. The robot link geome-
tries are converted to SDFs with 2 cm resolution, and the obstacle is represented
as a point cloud with 2 cm resolution. This supersampling is performed by adap-
tively subdividing the longest edge of the obstacle mesh until the maximum edge
length is less than 2cm. A suboptimal collision-free trajectory is given as the
initial seed.

Fig. 6 shows the optimized path for the chair obstacle, in which the end effec-
tor rises from under the seat and slides between the chair back and the armrest.
The plot shows robot-obstacle distances along the original and optimized path
for each of the limiting links. This demonstrates that the trajectory is first lim-
ited by link 3 (the “elbow”) which passes very close to the underside of the seat.
Next, link 4 (the “forearm”) passes around the armrest. Finally, link 6 (the end
effector) slides along the seat back and chair. This path was computed in 7.26s,
and it should be noted that running time is heavily dependent on the desired
level of convergence. This example exhausts the maximum of 50 iterations, with
the bulk of iterations performing “fine-tuning” with step magnitude < 0.01. Ter-
minating at 20 iterations would have terminated in 2.23 s but sacrifices only 10%
of optimality.

Fig. 7 shows the optimized path for the tree obstacle. The robot must extract
itself between two branches, and then pass underneath the lower-left branch.
Here, collision with the end effector is the primary limiting constraint. Total
computation time is 5.77s, and the objective function value is still somewhat
improving after 50 iterations. Fig. 8 plots computation time against the objective
function extending to 100 iterations, showing convergence at around 7s. Another
issue to examine is the number of milestones used in the path representation. As
the number of milestones increases, the path becomes slightly more optimized.

Semi-Infinite Programming 15

238 14

o 26

% 24 12
o 22 o
e 2 0 8
T 18 e 6
£ 16 E 4
£l 2
2 0

01 2 3 4 5 6 7 8 9 10 0 10 20 30 40 50 60 70 80 90 100
Time (s) Trajectory divisions

Fig. 8. Left: convergence of trajectory optimization over time on the example of Fig. 7.
Right: running times vs the number of milestones in the trajectory representation.

Running times are shown in Fig. 8, showing a roughly linear and relatively
shallow relationship between milestone count and running time.

It should be noted that our method, like other optimization methods, per-
forms much better when initialized with a collision-free trajectory, rather than
having to extricate the robot from a deeply-penetrating pose. This is because the
separation direction is poorly approximated when the objects penetrate deeply,
and furthermore the interaction between geometric penetration and robot kine-
matics is highly nonlinear and complex. For example, if an initial configuration
has the robot’s hand behind a two-sided wall, the back-face of the wall would
suggest that the forearm should move forward through the wall in order to re-
solve the collision. As a result, optimization performs better when used as a
postprocessor for a feasible motion planner, e.g., PRM or RRT, rather than a
replacement.

4 Conclusion

This paper presents a novel optimization method to handle nonpenetration con-
straints with highly non-convex and geometric complex objects. A semi-infinite
programming approach combined with an efficient deepest-penetration oracle al-
lows it to be applied to robot pose and trajectory optimization with models com-
posed of hundreds of thousands of primitives. Experiments demonstrate that the
approach rapidly converges in challenging scenarios. Code for the algorithms can
be found at https://github.com/krishauser/SemiInfiniteOptimization.

There are still many issues to be addressed regarding local minima. Especially
in deeply-penetrating cases, performance is likely to be improved with better
estimation techniques for penetration depth and direction. We are also interested
in integrating this approach with feasible motion planners to produce an optimal
motion planner with fast convergence rates.

Acknowledgment

The author thanks Tracy Lu for assistance with proofreading this manuscript.
This work is partially supported by NSF grants #1253553 and #1527826.

16

Kris Hauser

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

J. E. Bobrow. Optimal robot plant planning using the minimum-time criterion.
IEEE Journal on Robotics and Automation, 4(4):443-450, 1988.

N. Chakraborty, J. Peng, S. Akella, and J. E. Mitchell. Proximity queries between
convex objects: An interior point approach for implicit surfaces. IEEE Transactions
on Robotics, 24(1):211-220, 2008.

S. Dubowsky, M. Norris, and Z. Shiller. Time optimal trajectory planning for
robotic manipulators with obstacle avoidance: A cad approach. In IEEFE Int. Conf.
on Robotics and Automation, volume 3, pages 1906-1912. IEEE, 1986.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEFE J. Robotics
and Automation, 4(2):193-203, 1988.

S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical structure
for rapid interference detection. In Proc. Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), pages 171-180. ACM, 1996.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The International Journal of Robotics Research, 30(7):846-894, 2011.

H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic labeling of 3d
point clouds for indoor scenes. In Neural Information Processing Systems, 2011.

. N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient optimiza-

tion techniques for efficient motion planning. In IEEE Int. Conf. Robotics and
Automation, pages 489-494. IEEE, 2009.

R. Reemtsen and S. Gorner. Numerical methods for semi-infinite programming: a
survey. In Semi-infinite programming, pages 195-275. Springer, 1998.

A. Richards, T. Schouwenaars, J. P. How, and E. Feron. Spacecraft trajectory plan-
ning with avoidance constraints using mixed-integer linear programming. Journal
of Guidance, Control, and Dynamics, 25(4):755-764, 2002.

S. F. Saramago and V. S. Junior. Optimal trajectory planning of robot manip-
ulators in the presence of moving obstacles. Mechanism and Machine Theory,
35(8):1079-1094, 2000.

J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,
K. Goldberg, and P. Abbeel. Motion planning with sequential convex optimization
and convex collision checking. The International Journal of Robotics Research,
33(9):1251-1270, 2014.

P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The princeton shape bench-
mark. In Shape Modeling International, Genova, Italy, June 2004.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An operator
splitting solver for quadratic programs. ArXiv e-prints, Nov. 2017.

A. 1. F. Vaz, E. M. Fernandes, and M. P. S. Gomes. Robot trajectory planning with
semi-infinite programming. European Journal of Operational Research, 153(3):607—
617, 2004.

B. Zeng and L. Zhao. Solving two-stage robust optimization problems using a
column-and-constraint generation method. Operations Research Letters, 41(5):457—
461, 2013.

