
SUPPLEMENTARY INFORMATION

S-A

As mentioned in the paper, the transition from a state of phase locking to state of phase drifting happens through

intermittent phase locking or imperfect phase locking with arbitrary phase slips (Figs. 3b-I, 4b-I, and 4d-I in the main

article). These phase slips happen due to the phase jump observed in one of the signals. The instantaneous phase of

p′ and q̇′ are shown along with the relative phase in Fig. S1. A linear fit curve is subtracted from the unwrapped

instantaneous phase (in Fig. S1a and S1c) so as to view the fluctuations in relative phase in bounded region. Figs.

S1a and S1b correspond to the flame location (xf ) 15.1 cm (corresponding to the results shown in Fig. 4a in the main

article) and Figs. S1c and S1d correspond to the flame location (xf ) 15.3 cm (corresponding to the results shown in

Fig. 4b in the main article).

FIG. S1. (a) Instantaneous phase of p′ and q̇′ and (b) relative phase between them during phase locking (xf = 15.1 cm).

(c) Instantaneous phase of p′ and q̇′ and (d) relative phase between them during imperfect phase locking (xf = 15.3 cm).

Occasional phase jump in q̇′ (c) causes to the slips in relative phase, making the relative phase unbounded.
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During phase locking, instantaneous phases of p′ and q̇′ do not show any departure from each other which, in turn,

results in bounded relative phase. On the other hand, during imperfect phase locking, occasional phase jumps are

observed in any one of the signals resulting in slips in relative phase. At xf = 15.3 cm, jumps are observed in q̇′ (Figs.

S1c) whereas, at xf = 16.1 cm, jumps are observed in p′ (not shown).

S-B

During quasiperiodic oscillations, PLV shows lower value in phase locking region compared to that in periodic

oscillations (Fig. 5a in main article). PLV also shows a decrease in the phase locking region (Fig. 5a-I in the

main article). Difference in PLV in the state of phase locking (precisely, phase trapping) is due to the variation in

amplitude of the bounded oscillations of the relative phase. Time series of relative phase between p′ and q̇′ along with

corresponding phase locking values are shown for different xf during phase locking state in Fig. S2. From Fig. S2, it

can be concluded that PLV decreases as the amplitude of relative phase oscillations increases.

FIG. S2. Time series of relative phase at different flame locations (xf ) exhibiting phase locking between p′ and q̇′. (a) During

periodic oscillations. (b) and (c) during quasiperiodic oscillations. Corresponding phase locking values (PLV ) show that PLV

decreases as the amplitude of relative phase oscillations increases.

S-C

In the analysis of synchronization, frequency locking and phase locking appear hand in hand. For signals with single

frequency, frequency locking straightaway indicates phase locking. However, for more complex signals with many

frequencies, although locking in mean frequency (〈dφ/dt〉) indicates phase locking, locking in dominant frequency

does not.

Here, we are interested in quasiperiodic signals having two dominant frequencies. We observe different phase

dynamics between the pressure oscillations (p′) and the heat release rate oscillations (q̇′) even when two dominant

frequencies are completely locked (Fig. 4-I in the main article). The FFT plots for individual signals along with the

relative phase are shown in Fig. S6.

Now, the question which arises from the experimental observations is: does locking in both the frequencies of such

quasiperiodic signals always mean phase locking? In other words, if both frequencies of two quasiperiodic signals are
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same, will the dynamics of relative phase between them be always bounded?

As a probable cause, we first check the relative phase of two time lagged quasiperiodic signals. As, in the course

of experimentation we change the flame locations in the acoustic field keeping the location of pressure measurement

fixed, there might be a constant time lag between p′ and q̇′ signals. Intuitively, a time lag should lead to a constant

shift in relative phase with a complete phase locking. To check this with the quasiperiodic signals, we generate signals

with frequency ratio being golden mean ratio (ω = (
√

5− 1)/2) as

y(t) = cos (2πft) + a ∗ cos (2πfωt) (1)

We check the dynamics of the relative phase between y1(t) = y(t) and y2(t) = y(t+ τ), where τ is, in effect, a time

lag between y1 and y2. Two overlapped signals are shown in Fig. S3c and amplitude spectrum of y1(t) and y2(t) are

in Fig. S3a and S3b. Surprisingly, the time lag does not lead to any constant phase lag, however the relative phase

becomes oscillatory (Figure S3d).

FIG. S3. (a) and (b) FFT plots of two time delayed quasiperiodic signals (f1 = 123.6 Hz and f2 = 200 Hz). (c) Overlapped time

series of two such quasiperiodic signals and (d) relative phase between them which is oscillatory and bounded, characteristics

of phase trapping.

Relative phase (∆φ) being bounded shows a periodic oscillations, known as phase trapping [1]. Therefore, an initial

phase lag can lead to phase trapping for quasi-periodic signals when the spectral contents (height of the FFT peaks) of

two different frequencies are not same (implemented setting a = 0.3). For two quasiperiodic signals with frequencies

of equal spectral content (a = 1), it is trivial to show analytically that ∆φ is a constant.

Let us say, φ1(t) is the phase of a general function u1(t). Now, if we define u2(t) as u1(t − τ0), then φ2(t) will be

equal to φ1(t− τ0). Therefore, the relative phase (∆φ = φ1(t)− φ2(t)) will be constant iff φ is a linear function of t

(for τ0 6= 0).

For a simple quasiperiodic signal such as y(t) = cos (2πft) + cos (2πfωt), phase, φ becomes (1 + ω)t/2 which is

a linear function of t. Therefore, constant phase shift is expected from two time-delayed signals. In short, even a

time lag leads to oscillatory relative phase, it remains unbounded. The question remains: what is the reason for the

relative phase to be unbounded even when the frequencies are locked?

We examined the spectral content of two incommensurate frequencies. To that end, we generate two quasiperiodic
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signal having similar frequencies with different amplitudes as

y1(t) = cos (2πft) + a ∗ cos (2πfωt)

y2(t) = cos (2πft) + b ∗ cos (2πfωt)
(2)

We set the values of a and b as 0.3 and 0.7 respectively so as to keep the dominant frequencies for both the signals

similar (Fig. S4a and b). FFT plots, time series and relative phase are shown in Fig. S4. Relative phase shows phase

trapping (Fig. S4d) even when the spectral contents are different for two signals.

FIG. S4. (a) and (b) FFT plots of two quasiperiodic signals (f1 = 123.6 Hz and f2 = 200 Hz) with different spectral contents

(height of the peaks). (c) Overlapped time series of two such quasiperiodic signals and (d) relative phase between them which

shows phase trapping.

FIG. S5. (a) and (b) FFT plots of two quasiperiodic signals (f1 = 123.6 Hz and f2 = 200 Hz) where dominant frequency is

different. (c) Overlapped time series of two such quasiperiodic signals and (d) relative phase between them which shows phase

drfting.
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FIG. S6. FFT plots of p′ (1st roq) and q̇′ (2nd row) and relative phase (3rd row) between them are shown for flmae location

(xf ) 15.1 cm (a), 15.3 cm (b), 15.6 cm (c), 16.1 cm (d), 16.3 cm (e)

Next, we swap the dominant frequency keeping the frequencies same by properly choosing the coefficients of sinusoids

in eq. 2. To that end, we set the values of a (0.3) and b (1.3) in such a way that dominant frequency is not the

same anymore for the signals chosen (Fig. S5a and b). For such signals, FFT plots, time series and relative phase

are shown in Fig. S5. The relative phase of such signals becomes unbounded (Fig. S5d). The fact that the frequency

with higher spectral content repeats more in time causes to differ the mean frequencies of the signals. Therefore, two

frequency locked quasiperiodic signals with different dominant frequency can lead to a phase drift.

To summarize, having different dominant frequency can be one of the causes for two quasiperiodic signals which

have equal independent frequencies to be phase drifted. However, in experimental data, there are more than two

frequency components having comparably small spectral content. FFT plots and relative phase between p′ and q̇′

signals are shown in Fig. S6 (corresponding to the results shown in Fig. 4 in the main article). In experimental

data, change in dominant frequency is observed at flame location (xf ) 15.3 cm (Fig. S6b) where the relative phase

is observed to be unbounded. However, at other flame locations (Fig. S6c), phase drifting is observed even though

the signals have same dominant frequency. There are a lot more frequencies in both signals with low spectral content

which might effectively change the dynamics in relative phase. We conjecture here that this could be one of the many

causes that lead to unbounded phase for two frequency locked quasiperiodic signals.

[1] J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and T. Erneux, Physical review letters 107, 104101 (2011).


	Supplementary Information
	S-A
	S-B
	S-C
	References

