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Summary 

Management of telecommunication networks is complex and costly. In a recent survey [1], 80% of the participating 
telecom operators indicated that operational excellence is the most important area for improvements. This need for 
operational excellence together with the upcoming demand for high velocity in service deployment calls for novel 
concepts, which evolve beyond existing workflows and processes as defined in current frameworks based on 
historical best-practices (e.g. eTOM and ITIL). We present two examples of current operational practices that reflect 
the overhead incurred by operators when introducing a new MPLS VPN service or when operating network middle 
boxes of types which are expected to be replaced with virtual functions running on the UNIFY production 
environment. 

As part of the UNIFY vision, networking and service functions will be virtualized on commodity hardware, and thus 
treated as software applications. As outlined in D2.1, services described as service graphs (an association of Virtual 
Network Functions – VNFs - and their interconnections) are presented through a software interface.. UNIFY 
develops a set of orchestration engines and controllers that further refine the service graph towards policies and 
configuration parameters and eventually  deploy the resulting NF-FG (Network Function Forwarding Graph) on the 
virtual infrastructure of the production environment.  

Due to the software nature of the virtualized network functions, modern agile software development and operations 
methods (collectively referred in the industry by the term DevOps), common to software companies such as Google, 
Facebook, IBM, HP and Yahoo, constitute a good source of inspiration for novel concepts that may be adapted to 
telecom carrier environments. DevOps relies on four major underlying principles: Monitor and validate operational 
quality; Develop and test against production-like systems; Deploy with repeatable, reliable processes; Amplify 
feedback loops. Technical aspects associated to these principles reflect on the tools and processes for monitoring, 
validating and testing software and programmable infrastructure.. Such technical aspects are the focus of our own 
Service Provider DevOps concept. DevOps has also a cultural dimension, reflected mainly in the Amplify feedback 
loops principle, which we will not be able to address within this project. 

The SDN and cloud management areas in general are hot research topics. We reviewed the literature in line with the 
areas outlined in the Work Package objectives from the description of work: observability and monitoring; 
troubleshooting infrastructure problems; verification and network policy checking; testing and debugging of 
programmable networks. A major problem related to frequent and fine-grained observability updates from many 
nodes, as envisioned in UNIFY, is scalability and resource-efficiency. At the network level, the applicability of the 
existing, centralized, Openflow verification tools is limited to the network control plane only. This is a severe 
restriction in a UNIFY production environment that supports deploying active network functions such as load 
balancers, firewalls, etc. as part of a service graph. State-of-the-art semi-automated SDN troubleshooting is a mere 
workflow-led integration of otherwise separated network monitoring or debugging tools. Programming interfaces 
that enable tools to exchange rich diagnostic data in a controlled manner with components of the UNIFY 
architecture are required for a higher   degree of automation. In addition, virtual network function developers that 
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use one of the recently introduced network programming languages are limited to the network flow space in terms 
of resources that can be accessed. We identify a need for better support from the infrastructure for controlling and 
monitoring network, compute and storage resources, as well as infrastructure platform support during the initial 
deployment and debugging cycles. 

We identify four major characteristics of telecommunication networks that make them different from data centres 
even when a significant part of the functionality is virtualized:  

 higher spatial distribution with lower levels of path and equipment redundancy;  

 high availability; 

 strictly controlled latency;  

 larger number of distributed datacentres.  

These characteristics pose additional challenges, compared to the state of the art, that need to be accounted for 
when applying data centre DevOps principles in this environment. 

For the Service Provider DevOps concept, we defined two Developer roles: one associated to a classical operator role 
assembling the service graph for a particular category of services (we call it the Service Developer) and another one 
associated to the classical equipment vendor role in actually programming a virtual network function (we call it the 
VNF Developer). The role of the “operator” in UNIFY is to ensure that a set of performance indicators associated to a 
service are met when the service is deployed on virtual infrastructure within the domain of a telecom provider. We 
identify four categories of processes within the WP4 activity areas that involve these actors (in parentheses we 
indicate the DevOps principle reflected most in a particular process): Observability (Monitor and validate operational 
quality); Troubleshooting (Monitor and validate operational quality); Verification (Deploy with repeatable, reliable 
processes); and VNF Development support (Develop and test against production-like systems). To complete the 
Service Provider DevOps picture, the Bootstrap process from WP2 as well as the Service Invocation and 
Confirmation processes developed in WP3 need to be involved. Support from the Universal Node is needed for 
executing the intelligent filtering and aggregation algorithms envisaged by our observability and troubleshooting 
processes. We detail the WP4-specific process flows by mapping them on the functional architecture defined by 
WP2.  

The processes and their components (exemplified in research challenges and proposed tools) defined requirements 
and create opportunities for integration between the Work Packages. The sets of initial requirements already 
reported in the MS3.1 and D5.1 documents are complemented by further description and details in this deliverable. 
As presented in Annex 2, we conclude that all Work Package objectives, except the one related to the evaluation for 
which it would be too early in the project timeframe, are covered by several research challenges that will be 
approached in WP4 as well as requirements placed towards other Work Packages.  
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We conclude this deliverable by briefly outlining the work towards the next document, Milestone 4.1, planned to be 
made available by the Work Package in month 12. We need to identify and specify interfaces associated to passing 
Service Provider DevOps-relevant information between components of the functional architecture. In cooperation 
with the service instantiation and deployment framework developed in WP3, we will work on specifying how to 
describe monitoring and verification capabilities such that they could be integrated in the UNIFY production 
environment. Together with the work on the infrastructure and hardware aspects in WP5, we will work on further 
understanding how the Universal Node can support our requirements for programmable monitoring capabilities.  
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1 Introduction 

1.1 Project vision 
We envision full network and service virtualization to enable rich and flexible services and operational efficiency. 
Therefore, the UNIFY consortium will research, develop and evaluate means to orchestrate, verify and observe end-
to-end service delivery from home and enterprise networks through aggregation and core networks to data centres. 
Telecom providers struggle with low service flexibility, increasing complexity and related costs. Although cloud 
computing and networking have been two active fields of research, there is currently little integration between the 
vast networking assets and data centres of telecom providers. A unified production environment will create 
unprecedented opportunities for innovation, an improved quality of experience for users, and technological 
leadership for European industry and academia. A faster and more flexible network will reduce operating costs and 
open up new business possibilities. 

1.2 Relation with other work packages 
The WPs of UNIFY and a schematic workflow of the activities are shown in Figure 1. As shown in the workflow WP2 
is the main owner of the use cases definition, the related requirements and the architectural aspects so it will 
integrate and steer the activities of the technical work packages such as WP3 (Service Programming, Orchestration 
and Optimization), WP4 (Advanced Management Framework and Tools), and WP5 (Universal Node Architecture and 
Evaluation). In particular, WP3 will work on the definition of service orchestration solution, WP4 will implement a 
new management framework in the UNIFY architecture, and WP5 in collaboration with the other WPs will design a 
Universal Node hardware and software architecture and perform an evaluation of its viability. All WPs activities will 
be highly integrated under the technical supervision of WP2. 

 

Figure 1: Relation of UNIFY work packages 
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1.3 Scope of the deliverable  
This deliverable will document the results and status of WP4 at the end of Task 4.1 (Initial Requirements and 
Specification for Service Provider DevOps (SP-DevOps). In this deliverable, we document the studied state-of-the-
art work (Section 2), which includes existing management approaches and models, a description of current service-
chain (and middlebox) operation practices with an analysis of the major pain- and cost-points, and a study of related 
work from the scientific and academic environment related to SDN and cloud management. We will also summarize 
the status of the UNIFY project based on the current snapshot of deliverable D2.1, describing a major use-case and 
the preliminary architecture which will enable a carrier-grade environment with high- velocity of feature 
deployments (Section 3). The deliverable describes a sketch of the SP-DevOps concept (Section 4) developed by 
applying datacentre-originated DevOps principles to programmable telecommunications networks. Besides the 
theoretical sketch of how DevOps could be applied in a Service Provider scenario, this section will also describe the 
identified process embedded into the functional architecture draft of D2.1, and finally give an outlook on specific 
research questions identified and tools proposed regarding the SP-DevOps processes in focus. A major result of this 
deliverable is the initial set of requirements (Section 5): technical requirements related to features in the controller 
and the Universal Nodes, and operational requirements related to interactions between service chain development 
and operation teams in a telecom provider environment. This deliverable will set the stage for activities in tasks 4.2 
and 4.3 and will also have relevance for related tasks in WP3 and  WP5. 
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2 State of the Art and related work  

In this section we first describe the relevant state of the art in terms of management and operational practises in the 
industry as background for the UNIFY SP-DevOps concept. We will then give examples of current practices in service 
operations at telecom providers in order to highlight the major current pain-points. Finally, we will outline the most 
important related work with respect to management of SDN and cloud. The related work overview will focus on 
observability and monitoring, verification, troubleshooting, testing and debugging, in line with the plans and vision 
for the UNIFY SP-DevOps concept. 

2.1 Management approaches  
Management of telecom networks and services incurs high operating expenses related to complex management 
requirements. However, despite the high expenses, a survey by the TMForum [1] points out that more than 80% of 
the participating telecom operators indicated that operational excellence is the most important area for 
improvements. This need for operational excellence together with the upcoming demand for high velocity in service 
deployment calls for novel concepts, which evolve beyond existing workflows and processes as defined in current 
frameworks based on historical best-practices (e.g. eTOM and ITIL).  

As part of the UNIFY vision, networking and service functions will be virtualized on commodity hardware, and thus 
treated as software applications. As such, modern software development methods constitute a good source of 
inspiration for novel concepts. In contrast to network operators, IT companies are already advancing with methods 
for continuous delivery (CD) today. They are engaged in a continuous cycle to develop code, perform initial testing, 
release for others to test, deploy in an operational environment, and then monitor the operational status at runtime. 
These CD methodologies are supported by a set of tools that focus on automation and programmability to 
accomplish standard management tasks mainly in terms of configuration and fault management in the data centre. 
The term DevOps is used to refer to the combination of CD methods and supporting tools, although there is no 
consensus in the industry with respect to the finer details of what is included and what is excluded from this. 

In the following subsections, we will first provide the background on traditional best practice models for the telecom 
and IT industries (i.e. eTOM and ITIL, respectively) and relate them to the goals of the UNIFY project (i.e. SP-DevOps). 
Next, to highlight the contrast, we will outline the more recent, still evolving, concept for agile DevOps-based IT 
development and operations. These approaches will form the background for our late discussion on SP-DevOps, an 
attempt to apply modern DevOps principles on traditional telecom operator business. 

2.1.1 Best practice models in telecom: eTOM 
eTOM [2], the enhanced Telecom Operations Map, introduced by TMForum, defines a best practice model for 
business processes in the telecommunications industry. An overview is presented in D2.1. The part of eTOM most 
relevant for the purpose of this deliverable belongs to processes within the Operations area.  
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Figure 2: eTOM Level 2 Model 

Figure 2 depicts the eTOM Level 2 Model for Operations. Here, each core process is generally part of one vertical 
Level 1 grouping and one horizontal process grouping. This level of detail roughly corresponds to the process 
descriptions in D2.1 section 6 [3], where the lifecycle of services  to be deployed in the production environment is 
described through a number of UNIFY processes. Most of these processes could be mapped onto eTOM level2 
processes in a straight-forward way. As an example, the UNIFY process relating to bootstrapping would map on the 
vertical process for readiness, covering the horizontal areas of both service and resource management – in eTOM 
called Service/Resource Management Support & Readiness. On the other hand, UNIFY programmability processes 
related to orchestration, instantiation and deployment of services dealt within the development of the 
programmability framework, are mapping nicely onto the Fulfilment processes of eTOM, specifically called Service 
Configuration & Activation as well as Resource Provisioning. For SP-DevOps, the most relevant UNIFY processes are 
related to observability and monitoring, troubleshooting, and verification. In the eTOM model, these are encapsulated 
within the Assurance processes related to services and resources – i.e. Problem Management, Quality Management, 
Trouble Management, and Performance Management.  

From these examples, it can be seen that many UNIFY processes can be mapped onto eTOM – hence the framework 
proves helpful in order to structure and organize the UNFIY service lifecycle based on industry best-practices. 
However, from a WP4 SP-DevOps perspective, it is important to highlight the two following observations: 

 Operational eTOM processes are defined in the traditional way of encapsulating functionalities within 
organizational silos, usually pursuing their own goals, with customized tools and an own mind-set (or culture). 
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This is in stark contrast to the DevOps ideas of cross-functional teams and common tools and goals across the 
organization. 

 While eTOM provides a decent set of best-practice processes for operations of telecommunication services (the 
Ops part of DevOps), it does not provide the processes for actual development of services and network 
functions (i.e. the Dev parts). In 2014, TM Forum initiated the ZOOM (Zero-Touch Orchestration, Operations and 
Management) to address the transition of operations towards DevOps. At the time of writing this deliverable, a 
set of user stories were made available to TM Forum member companies in an exploratory TR229 report [4]. 

2.1.2 Best practice models in IT: ITIL 
ITIL (IT Information Library) v.3.0 is a collection of best practices and guidelines for companies and practitioners on 
the subject of managing IT services throughout their lifecycle. The applicability of ITIL to telecommunication services 
is recognized by the TMForum organization and described as part of the FrameworkX [5] . A generic observation is 
that ITIL describes a series of roles and processes that are considered complex and rigid by the DevOps community. 
However, we point out that such processes could form a strong baseline for automated actions, while 
communication barriers between the different roles could be lowered through the use of common tools. The ITIL 
publications of major importance in the WP4 context are the Service Transition and Service Operation. 

ITIL Service Transition defines best practices related to “introducing new and changed services in supported 
environments” [6]. Of particular WP4-interest are the guidelines for change management, service validation and 
testing. Release and deployment management could be considered as being addressed partly in the context of WP3. 
On the other hand, ITIL Service Operation [7] focuses on “achieving effectiveness and efficiency in the delivery of 
services to ensure value for customer, users and provider”. Methods and tools usable for both proactive and reactive 
operation are provided. Topics of high importance from a SP-DevOps perspective in WP4 are event and incident 
management, while for example availability of services and optimizing the capacity utilization are considered more 
of a focus for instantiation and deployment of services dealt with in WP3. We make the following observations 
regarding the applicability of ITIL to a UNIFY production environment: 

 ITIL evolved out of best practices optimized for a manually-driven rigid change management process 
involving a large number of human actors. In contrast, a DevOps environment is expected to be highly agile 
and adaptable with focus on small teams. 

 While automation is regarded as an optimization option in ITIL, a rather high degree of it is expected in a 
DevOps environment due to the natural reliance on scripting and APIs. Furthermore, by reducing the 
number of actors and roles, DevOps methods create an opportunity to further simplify ITIL and thus provide 
additional gains compared to simple automation.  



 

6 Deliverable D4.1 10.02.2015 
 

2.1.3 Modern agile development and operations models in IT: CD and DevOps 
DevOps is a paradigm shift in the way of developing and operating software and systems, based on close ties 
between Dev (writing and testing code) and Ops (operating the virtual infrastructure and the application) activities. It 
appeared initially in startup companies that had to bootstrap with very little human and financial resources. As 
DevOps ideas spread, a few attempts have been made by practitioners to sketch maturity models (MM) and 
approaches that cover the gaps between those two activities and show enterprises an evolutionary path. MMs are 
wide developmental frameworks that enable assessing processes and methods within an organization against a set 
of benchmark criteria. However, there exists no standardized or universally agreed DevOps model to date. In the 
following, we will summarize our findings of the most relevant existing MMs and approaches. 

For this study, we first have evaluated several proposed maturity models on DevOps and CD. The first three models 
(i.e. [8] [9] [10]) are relatively similar. They are based on the main phases of the software development and delivery 
pipeline. Each model contains a subset of {architecture and design, building, deployment¸ testing, release 
management, monitoring and reporting, data management} but none of them covers the full set. The model 
proposed in [10] adds culture and organization as a key area. This is totally sensible as DevOps is at least as much 
about the mindset and culture around the software delivery process as it is about processes and  tools. The model 
proposed in [11] takes a different approach. It identifies three areas of maturity which do not relate directly to phases 
of the development/delivery pipeline. Those three areas are Process, Automation and Collaboration. For each of 
those areas, activities or processes that should be realized are identified. 

In all of the above models, five maturity levels have been defined for each area. Two models use generic names to 
identify the levels (beginner, advanced …), while others use names which are more specific to the achievements that 
have to be developed to reach that level (repeatable, measured, optimized). It is understood that higher levels in the 
maturity models should not necessarily be the ultimate objectives to reach by all organizations, as this could 
introduce unjustifiable costs for the actual benefits. The targeted level depends on the capability, the type of service 
and application offered and the established business models. For instance, UrbanCode [8] suggested the targeted 
level for each area and indicated which level is currently the norm in the industry.   
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Figure 3: Comparison of DevOps models 

Besides maturity models, we also considered the high-level descriptions of DevOps by prominent consulting houses. 
In Figure 3, we compare representations of the DevOps approaches detailed by IBM in [12], HP in [11] and InfoQ in [13]. 
We observe that the four principles defined by Sharma in [14] permeate through all these models: 

- Monitor and validate operational quality 

- Develop and test against production-like systems 

- Deploy with repeatable, reliable processes 

- Amplify feedback loops 

As these four principles seem to provide a common ground for understanding DevOps, we will relate to them in our 
definition of DevOps in a UNIFY environment in section 4. 

In addition to the processes outlined by the maturity models, DevOps practices are supported by a range of tools 
that are used by people in both the development and operations teams, or in mixed teams that include people with 
dual roles. Popular DevOps tools such as Chef [15], Puppet [16] and Ansible [17] address mainly the configuration 
management space. Originally restricted to compute resources, they were extended to support the configuration of 
network nodes. Common characteristics of these tools include the use of templates defined in a domain-specific 
language and powerful scripting capabilities that allow a high degree of automation. The monitoring capabilities of 
Ansible are limited to reading counters exposed by the node. None of them was designed for use as a performance 
troubleshooting or validation tool and therefore are cumbersome and may only provide extremely limited 
functionality when employed in such scenarios. A recent trend in the industry is to present performance 
management solutions that were integrated with an SDN controller as DevOps tools [18] [19] from a marketing 
perspective. 
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2.2 Current practices in service graph operations  
In this section, we will review practices in operating service graphs in telecom networks. As dynamic service graphs 
are yet to be deployed in production, we consider two examples based on fixed service graphs built on physical 
hardware and an additional example related to the use of middle boxes. 

2.2.1 Service examples 
We present current practices for two examples services, including configuration and maintenance activities. In 
particular, we focus on the configuration and monitoring of fixed service graphs built on hardware physical network 
resources: i) an MPLS VPN service which is a rather popular service offered by ISPs to their business and enterprise 
customers, and ii) an IPTV service, which is also a highly popular value-added service offered by ISPs to their (mainly 
residential/consumer) customers. The reason for selecting these two services is the fact that their high popularity 
implies higher occurrence of configuration and maintenance activities; thus, high probability to impact the operating 
costs of the ISP that is deploying/providing them. 

As observed in the eTOM discussion within Section 2.1.1, current best-practises related to the lifecycle management 
of a telecommunications services do not cover the development of the network functions themselves. This takes 
place at the equipment manufacturer. The eTOM Product Lifecycle Management covers the work related to defining 
a new service (such as a MPLS VPN service) in terms of contractual clauses, parameters to be included in the 
agreement that reflect the service capacity and quality, accounting and billing, etc. These processes are 
implemented manually by different departments at the operator and rely on the support of a multitude of software 
tools. 

Example 1: MPLS VPN service 

MPLS VPN employs Multi-Protocol Label Switching (MPLS) to create and support Virtual Private Networks (VPNs), 
thus, offering the flexibility to network providers to transport and route several types of network traffic with 
heterogeneous QoS characteristics using the technology and features of an MPLS backbone. 

Figure 4 depicts the network infrastructure involved in an MPLS VPN service to the customer of a network provider, 
including the customer network (right), the customer edge (CE) router, the provider edge (PE) router, the core 
MPLS network and the access network of the service provider, and finally, the remote user (left) that communicates 
with the customer. 

Specifically, the CE router is practically the customer-premises equipment (CPE) device to which subscribers in the 
customer’s network connect. The CE router connects to a PE router, which is located at the edge of the MPLS core 
network of the service provider, by initiating a remote access session to it. Then, a PE router connects to one or 
more CE routers and has full knowledge of the VPN routers associated with each one of them, while it is not aware 
of VPN routes associated with CE routers which are not connected to it. Moreover, the MPLS core comprises several 
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routers that do not assign VPN information and do not have any awareness of CE routers; the main focus of the 
MPLS core routers is on label switching. 

 

Figure 4: MPLS VPN network [20]  

The configuration of an MPLS VPN service comprises several steps that need to be completed by a network 
operator. In particular, the first step is the configuration of the MPLS core network, which includes enabling label 
switching of IP packets on the interfaces of the core routers, configuration of virtual routes and forwarding tables 
(i.e. per VPN), association of virtual routes with physical interfaces, and configuration of multi-protocol BGP (MP-
BGP) routing session between the PE routers. Limited automation can be implemented based on pre-defined 
configuration templates, which need to be developed before the first service is deployed and modified to track 
changes in the infrastructure. 

Second, the definition of a virtual template interface which enables the dynamic configuration of virtual access 
interface (VAI) per user upon request; when the user terminates the session, the VAI goes down and resources are 
released for other users. Such parameterized templates are defined manually, and applying them to the 
infrastructure is often a manual task, time consuming and error-prone.  Moreover, Asynchronous Transfer Mode 
(ATM) permanent virtual circuits (PVCs) are created to support encapsulated PPP over ATM on either point-to-
point, or to multi-point sub-interfaces. Third, the formation and association of each VPN to a virtual routing and 
forwarding (VRF) configuration and a virtual template interface is performed. Fourth, the user profiles and 
Authentication, Authorization and Accounting (AAA) services are configured at the customer premises. Finally, 
verification is performed according to a manual workbook. 

Regarding maintenance, the service provider is obliged to frequently monitor a multitude of interfaces and protocols 
such as: i) concerning the MPLS core: validation of successful running of the routing protocol, verification of 
successful label switching, label distribution and bindings, and ii) concerning the MPLS VPN: validation of VRF 
configurations and routing tables, verification of associations of PE and CE routers, etc. A complete set of tasks 
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related to the configuration, monitoring and maintenance of a MPLS VPN service, in line with the service definition 
from [20], is provided in Annex 1.  

Operational procedures related to a MPLS VPN service are inefficient due to the complex manual configuration (e.g., 
more than 180 different commands to complete the configuration, even though some of these could be included in 
templates that are pre-defined) and monitoring of the different nodes associated with the service.  Such manual 
activities are highly time-consuming and prone to errors and mistakes, which in turn imply significant operating 
costs for the service provider and could be further increased by penalties due to SLA violations w.r.t to delivery or 
troubleshooting times. 

Example 2: IPTV service  

IPTV has been deployed by multiple network operators for distribution of both live TV as well as video-on-demand 
(VoD), i.e. on-demand delivery of video content. Unlike (residential) broadband Internet service which is provided on 
a best-effort basis, ensured high quality-of-service (QoS) is critical for an IPTV service. Therefore, the especially high 
sensitivity of the IPTV application to impairments creates very big network management challenges.    

Figure 5 illustrates the network infrastructure involved in IPTV service delivery to end customers including the 
transport network, the content delivery network, and the access network [21]. The transport network infrastructure 
consists of high-bandwidth MPLS/IP core and distribution. A series of specific hardware elements need to be 
planned, deployed and managed specifically for this service – set top boxes and Video Switching Offices, for 
example. As Quality of Service demands are not possible to fulfil with a best effort infrastructure, a new virtual 
network needs to be defined and managed through specific VLAN tags deployed in the DSLAM. 

The video head-end consists of real-time encoders/decoders for local and national broadcast video channels, VoD 
libraries for on-demand video services, and video switching equipment for video transport. The VoD servers 
implement the storage and real-time streaming functionality for on-demand services. The conditional access 
system (CAS) provides encryption and decryption services, as well as key generation and distribution functionality, 
for both broadcast and on-demand services. 

The middleware ties a number of logical components together into a more comprehensive IPTV/video software 
system. The middleware implements the user interface for both broadcast and on-demand services. Note that there 
are several different middleware implementations depending upon existing/proposed OSS architecture. 

Billing of content services can be either pre-paid or post-paid. The end user access is xDSL, or FTTx for wireline 
providers and QAM/coaxial for cable operators. 

The set-top box (STB) is the hardware and common software infrastructure component that is used by the on-
demand and broadcast clients as well as by the video decryption function and the video decoder. The hardware may 
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also include a hardware-based decoder and decryption subsystem. The STB software typically includes an 
embedded operating system, and may also include application infrastructure components such as a Web browser. 

 

Figure 5: Network infrastructure involved in IPTV service delivery to end customers [21]. 

The service provisioning of IPTV comprises several tasks that need to be fulfilled by a network operator. In 
particular, the first step is the service activation in multiple informational systems of the service provider such as 
CRM, DSLAM EMS’s, CPE provisioning system, identity and access control system (i.e. AAA), and the billing system. 
Next, a quite complex configuration must be performed carefully in the head-end, VoD servers, CAS, middleware 
and STBs. Additionally, proactive and reactive maintenance procedures, fault management and troubleshooting 
need to be executed so as to ensure that the IPTV service performs according to the QoS levels defined in related 
SLAs. 

Furthermore, IPTV network management puts currently several challenges to service providers. For instance, a 
service provider must handle multi-vendor equipment, e.g., head-end, middleboxes, VoD servers, CAS/DRM 
equipment and STBs, which may not be always interoperable. As already discussed, careful configuration must be 
performed so as to avoid post-installation issues and malfunctions. Moreover, monitoring of the service capacity 
from the head-end to the access network and instant switching to an alternative (back-up) path are critical to 
assure high (or adequate) QoS to end-users. Finally, trouble-shooting and isolation of problems is rather difficult 
due to the complexity of the IPTV system. 

Especially, concerning the network management and maintenance, the service provider should perform monitoring 
of both devices, e.g. the VoD servers, and the service itself, e.g. video quality. Thus, the service provider must monitor 
a multitude of KPIs such as packet loss, latency and channel change time for the IPTV service, CPU, memory and 
buffer utilization for the various involved devices, committed information rate (CIR) utilization, as well as queue 
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drops and number of dropped frames for the network. Network management and maintenance is performed by 
means of mainly two methodologies: i) packet probing, and ii) device instrumentation; both of them are executed 
manually, thus incurring a high risk for mistakes, or faults to be disregarded. 

In conclusion, the complex and mostly manual deployment and configuration, the necessity to involve operations 
personnel in constant monitoring activities and the difficulty of maintenance, all worsened by the integration 
complexity of a multi-vendor environment result in time-consuming and very error-prone  provisioning of IPTV 
services, which in turn would implies significant operating costs for the service provider.  

2.2.2 The effect of middle boxes on management 
In current telecommunication networks there is a large deployment of middle-boxes, providing L4-L7 networks 
services. Current practices are showing that these middle-boxes are implying high capital and operating expenses, 
complex management requirements, and causes of failures from physical infrastructure and overload. UNIFY goals 
are to develop an architecture and SP-DevOps solutions in order to reduce capital and operating expenses, improve 
performance and, maybe, add new types of network services.  

Today there is a range of deployed middle-boxes [22] such as WAN optimizers, NAT, proxies, intrusion detection and 
prevention systems, any sort of firewalls and other application-specific gateways. Each middle-box (typically closed 
and quite expensive) supports a narrow specialized function (layer 4 or higher) and it is mostly built on a specific 
hardware platform. Middle-boxes are deployed along most paths from sources to destinations: that’s why the 
Internet lost its initial simple end-to-end forwarding principle. A recent study [23] shows that about 33% of paths 
tested keep state and perform some level of L4+ functionality. 

 

Figure 6: Box plot of middlebox deployments for small (fewer than 1k hosts), medium (1k-10k hosts), large (10k-100k 
hosts), and very large (more than 100k hosts) enterprise networks [24] 

In Figure 6 (extracted from [24]) it is shown that the number of middle-boxes is on par with the number of routers 
in a network. This highlights that middle-boxes today contribute to the network ossification, but also represent a 
significant fraction of the network capital and operational expenses. The cost is further increased by complex 
management requirements, and the need for overprovisioning to react to failure and overload scenarios [24]).  

http://www.blog.telecomfuturecentre.it/2013/02/25/middle-boxes-no-thanks-stateless-core-and-stateful-edges/middleboxes/
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For example Figure 7 shows the five year expenditures on middle-box hardware against the number of actively 
deployed middle-boxes in the network. Figure 8 correlates the number of middle-boxes against the number of 
networking personnel. 

 

Figure 7: Administrator-estimated spending on middle-box hardware per network [24]. 

 

Figure 8: Administrator-estimated number of personnel per network [24]. 

This short analysis illustrates the need for significantly more sustainable and cost-efficient alternatives to expensive 
and rigid middle-box solutions. The work in UNIFY is aimed at developing a framework based on hardware 
resources either in the Cloud or in the Network, and with a proper orchestration of virtual elements, which 
altogether aims to enable efficient, flexible, and dynamic service-chaining and provisioning. In general, there are 
already Open Source software implementations of firewalls [25], load balancers [26], proxies and caches [27], 
monitoring and measurement [28], intrusion detection [29] [30], and ubiquitous NAT that support virtualized 
service-chaining approaches - however, while being a promising start towards flexible service deployment, there 
are some concerns about, for example, the performance of network functions purely developed in software and 
running on standard hardware resources. In the next section, two examples further illustrate the limitations in 
current service deployment and maintenance practices and processes. 
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2.3 SDN and cloud management  
The following sections cover previous work within cloud and SDN environments grouped according to the different 
focus areas of the DevOps efforts in UNIFY : observability and monitoring, verification and policy checking, 
troubleshooting, as well as debugging and testing. In each subsection, relevant cloud management approaches are 
discussed followed by currently available SDN approaches. 

2.3.1 Observability and monitoring  
In control theory, a system is called observable if we could reconstruct its internal state based on outputs that can be 
measured seemingly simultaneously. In a real complex system, such as a telecom network composed of tens of 
thousands of physical nodes on which millions of software processes are executed, continuous experimental access 
is limited to only some of the variables that describe internal system states. Such a system is thus only partially 
observable. In UNIFY, we use the term ”observability” to collectively refer to methods that attempt to measure or 
estimate performance metrics or Key Performance or Quality Indicators and based on them determine particular 
system states in the UNIFY production environment. Examples of metrics include network delay, jitter and packet 
loss, processor utilization by a particular process, container or virtual machine; parameters include buffer 
occupancy, number of flows active, number of containers deployed on the same server; system states include link-
level forwarding for a particular flow, network-level forwarding according to a particular routing protocol, the stage 
in the orchestration process reached by a particular NF-FG at a certain point in time during deployment, whether a 
particular container is being migrated or not, etc. 

Increasing the observability in the network and cloud through the means of resource-efficient and scalable 
monitoring approaches is an enabler for the deployment and operation of service graphs. According to a recent 
analyst report taken up in the press [31], up to 74% of the network operations personnel surveyed believe that 
existing visibility on cloud environments is insufficient. The same survey finds 29% of the administrators 
complaining of the loss of visibility in SDN environments, 24% find SDN too difficult to troubleshoot and 47% have 
difficulties keeping up with constant changes. .  

2.3.1.1 Cloud monitoring 
Monitoring of resources (both virtualized and physical) in cloud computing environments is a mature research area, 
with production-grade environments operating in large public and private clouds for several years. In this 
subsection, we review toolsets and framework components representative for public and private cloud monitoring 
and the monitoring of SDN.  

The JCatascopia [32] framework includes a series of intelligent probes deployed in the cloud computing 
infrastructure that store and retrieve the value of an observed metric, a timeline for those observations as well as 
the capability to perform filtering and adaptive sampling on the collected data. Application-level metrics are 
supported through a system of plugins that currently support the collection of throughput and delay values. Metrics 
are aggregated at different levels (compute node or virtual machine levels) and used for further processing via 
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Agent and Server entities. The framework allows for users to define rules for how metrics should be aggregated. 
Features supported by the JCatascopia tool are similar to objectives assumed by WP4. The filtering and adaptive 
sampling capabilities of the intelligent probes, for example, are in line with features we plan to develop at the 
network level. 

CloudWatch [33] monitors resources at Amazon, currently the largest provider of public cloud infrastructure. 
CloudWatch is made available in an “aaS” manner. It includes a large number of pre-defined metrics at both 
application (for example, MapReduce database transaction statistics) and infrastructure (for example, CPU and 
bandwidth utilization for a VM instance). The users have a limited capability to define their own metrics, and billing 
depends on the frequency of the monitoring interval. CloudWatch is integrated with services of the Amazon IaaS 
platform, of particular relevance being the integration with the Auto-Scaling and Elastic Load Balancing services.  

Hyperic [34] is part of the VMware cloud management suite. It provides performance monitoring for physical and 
virtual infrastructure, middleware and several enterprise applications (such as Microsoft Exchange and IBM 
Websphere) using a combination of agentless and classical agent-based monitoring. Significant capabilities are the 
auto-discovery of key properties for newly-created VMs and automatic configuration of monitoring functionality. 
Hyperic also has the capability to copy and re-use monitoring configurations and alert policies, speeding up the 
deployment of monitoring capabilities. Hyperic is part of the vCenter Operations Enterprise framework [35], which 
allows determining dynamic thresholds based on hourly-observed behaviour of a performance metric in correlation 
with other metrics.  

Note that both CloudWatch and Hyperic are proprietary and will not be considered for comparison with the 
monitoring tools we develop in WP4 as the possibility to determine how specific functionality is implemented is 
highly limited. We nevertheless include them in order to indicate that market demand exist for intelligent monitoring 
functions that simplify the work of administrators deploying the monitoring functionality and the analysis of the 
collected measurements. 

Ceilometer [36] (also known as Openstack Telemetry component), implements infrastructure–level monitoring in 
cloud environments based on the Openstack platform. It collects monitoring information from compute, network 
and storage resources in Openstack-managed environments. It expects the resource managers to publish 
monitoring information through the Oslo messaging bus, but push and pull agents that communicate directly with 
the resource managers are also supported. Ceilometer has no capabilities of monitoring virtual network functions, 
which are regarded as applications from its perspective. Ceilometer offers a REST API to access monitoring 
information once it is stored in the database. Anecdotic evidence suggests that MongoDB, the database 
recommended by Ceilometer developers, supports about 386 writes per second and 33,360,480 events per day 
[37]. Ceilometer is integrated with Heat, the orchestration component of Openstack, and provides input data for 
performance-triggered auto-scaling rules. 
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Google cAdvisor [38] is a container monitoring tool that can be delivered itself as a container. Newly released in May 
2014, the functionality is limited to monitoring only a handful of metrics to analyse usage and performance 
characteristics of Docker containers. It has programmable filtering capabilities for the data that is generated, 
although the filters need to be defined at the compilation time of the tool. Both raw and processed data is made 
available through a versioned REST API. 

2.3.1.2 SDN monitoring 
In today’s IP-based networks, OAM tools such as Bidirectional Forwarding Detection (BFD) operate largely in a 
distributed and decentralized manner [39], which is in contrast to Software Defined Networking (SDN) concepts, 
which operate with a logically centralized control plane. It has been shown that it is possible to integrate existing 
OAM tools into SDN (specifically OpenFlow) environments [40]. However, in this approaches the OAM control plane 
remains distributed which violates SDN principles and complicates management and operations tasks. Furthermore, 
approaches that rely on pre-Openflow OAM tools require integration of several technology-specific toolsets, which 
on the long run is not an extensible solution and will substantially increase the complexity of datapath elements. 
Performance monitoring tools addressing OpenFlow networks were proposed, for example in [4-6]. These solutions 
utilize the centralized control plane and are implemented in the form of controller applications which take 
advantage of the existing OpenFlow counter facilities. However, most of these solutions operate under assumptions 
that are usually not met in a service provider scenario as envisioned in UNIFY: they assume re-active flow 
instantiation, triggered by the arrival of an unknown flow at a switch; and/or they assume access to fine-grained 
flow definitions with fully specified matching structures. 

Resource/Accuracy tradeoffs in SDNs is a topic that is highly relevant in UNIFY to achieve the scalability objectives. 
Moshref et al [41] explore the trade-offs in resource usage and measurement accuracy for three different SDN 
measurement primitives: counting, hashing and programming. One main difference between the three approaches 
is the amount of processing and analysis that is done locally in the switches. In terms of counting, the switches only 
update flow-based counters and rely on the controller to perform all analysis on these counters and to periodically 
adjust the measurement rules. A hash-based switch can extract summaries of traffic and transfer the results to the 
controller for further analysis. A programmable switch can run simple measurement programs to collect and 
analyse more data locally. The focus in [41] is on a use case where the task is to detect large flows (hierarchical heavy 
hitters) in a network. The authors argue that at finer time-scales and with more variability in the traffic, hashing and 
programming offer better resource/accuracy trade-offs. 

FlowSense [42] is a passive monitoring approach in which information already existing in OpenFlow control 
messages is used for monitoring link utilization. Based on the information stored in flow control messages upon 
initiation and removal of flows, the link utilization can be calculated. Passive monitoring is a scalable way of 
estimating the behaviour in the network, but the limitations are here related to timing - all estimates of the link 
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utilization requires data based on completed flow sessions in order to get all data, which may not be suitable in a 
UNIFY environment where timing is essential for dynamic service-chains.   

OpenSketch [43] is an SDN traffic measurement architecture that addresses the challenge of balancing between 
generality and efficiency in SDN monitoring. The framework introduces a measurement data plane, which is 
automatically configured by the controller and comprises a three-stage pipeline of hashing (data reduction), filtering 
(rule-based flow selection), and counting (statistics accumulation). This approach offers a high degree of 
automation, but the maintenance of 'sketches', i.e., data structures storing information about packet states, takes 
time and resources.  Hence, it might be more suitable for analysis at higher levels in an SDN architecture.  

NetFlow [44] and sFlow [45] are tools developed for flow monitoring in classic IP and Ethernet networks, but could 
also be applied in cloud and SDN environments. NetFlow-enabled routers collect statistics on IP-traffic data, which 
are sent to a server for analysis. Such data include e.g. source and destination IP address, ports, type of service, 
packet and byte counts, timestamps, protocol flags, and routing information. sFlow is a network monitoring protocol 
that uses random sampling of packets (matching the headers of one or several flows) and scheduled sampling of 
counters. The results of the sampling are also sent to a server for analysis. One of the differences between the tools 
is that NetFlow is designed only for monitoring on IP-level, whereas sFlow can be applied in any network layer.  As 
noted in Yu et al. [43] , Netflow [44] and sFlow [45] provide generic support for measurements, but the 
encapsulation and forwarding of datagrams to a controller quickly become too costly in terms of resources in a 
highly dynamic network environment. 

Latency monitoring has always been crucial in the operation of a network, and therefore it has been in permanent 
focus of research.  However, SDN creates new challenges (because, for example, the OpenFlow standards do not 
require too much monitoring capabilities from a standard compliant OpenFlow switch), but SDN also allows 
implementing some novel monitoring techniques. For instance, in [46] a mechanism to measure link latency from 
an OpenFlow controller is proposed based on sending a small, specially crafted OpenFlow packet through a link from 
the controller and back while measuring the amount of time it took to do so. The evaluation shows that their 
proposed scheme has accuracy close to that of ping but with a lower overhead. In WP4 alternative, scalable and 
resource efficient approaches will be considered that exploit the features of the UNIFY architecture by either 
monitoring existing traffic in the network or generating monitoring traffic in the Universal Node (see Section 4.3.1).  

2.3.1.3 Conclusion 
Monitoring solutions for network and compute resources are inefficient from the point of view of resource 
utilization and make it difficult or impossible to control trade-offs between accuracy and the resource utilization. In 
SDN/Openflow, they are limited to using data provided by basic counters supported by the switch specification. 
Aggregation and filtering algorithms employed are fairly basic and limited with respect to the types of metrics on 
which they could be applied. Programmability is also a problem, as each of the tools exposes its own interface with 
individual data and operation encoding, which makes very difficult the integration of multiple tools within a system 
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or accessing data from a different receiver such as orchestration software. Certain problems specific to SDN 
environments limit the observability when aggregated flow descriptors are used or create a high overhead on the 
controller. Section 4.3.1 will detail how we plan to approach some of the above challenges. 

 

2.3.2 Troubleshooting  
Troubleshooting encompasses localization and root-cause analysis of detected faults, changes and performance 
degradations in the observed network behaviour. The applicability of these and other approaches in cloud and SDN 
contexts will be considered in the work towards troubleshooting support mechanisms in UNIFY. We use the term 
“troubleshooting” to collectively refer to techniques that correlate and filter information collected from different 
entities within the UNIFY production environment with the purpose to identify a particular erroneous situation. 
Examples of entities include virtual and physical switches, hypervisors and servers. The correlation refers to 
collecting and assembling together data along a set of rules or descriptions associated to the particular erroneous 
situation to be investigated. Such data could include, for example, the content of the flow tables within a virtual 
switch and the erroneous situation under investigation could be the non-forwarding of a particular traffic flow. 

2.3.2.1 Cloud troubleshooting 
VScope [47] is a flexible, agile monitoring and analysis system for troubleshooting real-time multi-tier applications. It 
allows for dynamically created processing overlays in combination with monitoring and on-line processing of 
observed metrics. VScope abstracts troubleshooting as a process involving repeated operations such as monitoring 
of metrics on a set of nodes; interaction between a set of nodes within specified spatio-temporal scope; and analysis 
of collected metrics from a set of nodes. 

Monalytics [48] is based on a similar approach as VScope, capable of dynamically constructing Distributed 
Computation Graphs (DCGs) overlays, implementing monitoring functions for capturing, aggregating and 
incrementally analysing data on-demand and in real-time. The proposed architecture offers a flexible approach to 
multi-layer monitoring and troubleshooting at a large scale. Analytic functions can be dynamically created, initiated, 
adjusted and terminated as necessary and deployed in different types of centralized, hybrid and tree topologies for 
meeting different requirements on costs and analytic needs. 

MonitorRank [49] provides a ranked order list of possible root causes of detected anomalies in a service-oriented 
web architecture. The aim is to isolate and rank the combinations of services and API calls that are most likely to be 
a root cause, without complete prior information about dependencies or domain knowledge. For this reason, the 
approach relies on unsupervised learning and is partially based on pseudo-clustering and analysis of historical time-
series of monitored metrics and API calls in addition to generated call graphs. A random-walk approach is employed 
to compute a score used in the ranking process performed in obtained call graphs.  
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2.3.2.2 SDN troubleshooting 
OF-Rewind [50] is a SDN-debugging tool that is capable of recording both control and data traffic traces of an 
OpenFlow network, and is capable of replaying it in a custom OpenFlow network to reproduce the bugs. The 
challenges in replaying include timing accuracy, multi-instance synchronization, and online replay of multiple 
network elements. The amount of traffic passing through a network can be significant, and for this reason OF-
Rewind records a subset of traffic and uses this to reproduce or to find the root cause of bugs. However, partial 
recordings can be insufficient as some data needed for replay and debugging may be missing.  

Automatic Test Packet Generation (ATPG) [51] is another debugging tool, which automatically generates a minimal 
set of packets in a real network to test all forwarding rules, firewall rules, links and network elements for errors. For 
finding the minimal set of packets, ATPG takes snapshots of forwarding tables periodically. The efficiency of ATPG 
approaches depends on the snapshot (or probing) interval and is thereby linked to the additional load incurred in the 
network. The approach in this case is restricted to only the action part of the forwarding rules and does not account 
for the matching part, meaning that relevant debugging information may be missed. The approach requires 
additional fields that are not currently supported by the OpenFlow standard for troubleshooting purposes.  

A systematic troubleshooting methodology for SDN is suggested and discussed in [52], in which state and code layers 
are related to corresponding categories of faults. In the proposed layered approach a binary search troubleshooting 
procedure can be employed to localize a bug (e.g. erroneous control logic). The authors outline a generic 
troubleshooting workflow that can be implemented and executed automatically, and that can be combined with 
recently developed troubleshooting tools in each step (such as ATPG [51], OF-Rewind [50], NICE [53]). The overall 
methodology is in general relevant to consider with respect to the troubleshooting and verification approaches 
investigated in UNIFY. 

The SDN Troubleshooting System (STS) [54] automatically reduces the sequence of debugging events (isolated by 
the use of e.g. OFRewind) and other important events (like link and component failures) to a ``minimal causal 
sequence'' that still triggers the same bug. The main contribution is the generalization of delta debugging to 
distributed systems which enables STS to prune unnecessary events. STS also benefits from internal events 
exposed by the controller software. Additionally, STS relies on the Hassel library [55] to notice when a bug manifests. 
A limitation of this off-line tool is that it is inadequate in dealing with performance bugs. 

2.3.2.3 Conclusion 
Troubleshooting in SDN is an active research area, with many problems being identified and point solutions being 
independently proposed to address them. However, daily operations of resources would thus require expert 
knowledge of tens or hundreds of tools that each diagnoses small categories of problems. The integration of such 
tools into workflows is difficult because of the lack of common interfaces. Many of the tools require gathering all 
data at a centralized location or massive generation of test traffic, which puts a high load on the infrastructure. 
Existing methods rely on the OpenFlow specification, but visibility on other infrastructure control interfaces need to 
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be considered in a unified production environment. . Section 4.3.3 will detail how we plan to approach some of the 
above challenges. 

2.3.3 Verification and policy checking  
In UNIFY, we use the term “verification” to collectively refer to approaches that compare and contrast expected and 
detected system states in the UNIFY production environment. The expectations are based on pre-defined 
representations of the system states under investigation, while the detection of the actual state can be provided 
through observability or by other means. Examples of such system states include availability of cloud infrastructure, 
compliance with security policies, the existence of forwarding loops or whether a certain node is reachable or not. 
Mechanisms for verification and policy checking are necessary to avoid conflicting behaviour in the network devices 
caused by contradicting rules (such as forwarding loops) or violations against e.g. security policies. Note that the 
following approaches in cloud environments are mostly related to application-level services. 

2.3.3.1 Verification of cloud computing functionality 
Verification of cloud services and an overview of existing techniques are provided in [56]. In this paper, the authors 
investigate existing tools and methods for cloud consumers and service providers to verify that their services work 
as expected from different points of view: functional correctness, service availability, reliability, performance and 
security guarantees. Given the narrowness of the existing tools, the authors encourage future efforts on this 
research area and highlight some promising directions. For example, some work has been done in the direction of 
verifying the users interaction with untrusted cloud services (Venus [57], SPORC [58]), verifying sensitive data 
propagation within a cloud environment (CloudFilter [59]) and solve accountability issues that raise when moving 
services to a cloud infrastructure [60] [61]. However, authors identify different areas where we still lack specific 
cloud-oriented verification tools and they propose some possible promising research directions to help and 
encourage future efforts exactly on these issues. To this end, from a functional point of view, it would be interesting 
for customers to have tools that check whether the cloud infrastructure is operating in the correct way, i.e. if it is 
running the correct application. In addition, customers need to verify that performance and availability levels are 
aligned with the ones agreed with the cloud provider by means of SLAs and, if a violation occurs, they need to assess 
how frequently it happens. 

Verification of multi-domain cloud security policies is discussed in [62]. In this paper the authors define a model 
checking technique that can be used as a management service/tool for the verification of multi-domain cloud 
security policies. The necessity of a collaboration scheme among different cloud systems is becoming more and 
more important since this enables them to achieve higher uptime and services usage. 

Cloud services composition is discussed in [63] where a framework for Cloud service composition is introduced that 
aims to overcome the issues caused by the open and flexible nature of Cloud services, by incorporating some 
trusted third-party entities to govern and optimize the service composition process. 
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2.3.3.2 Verification of SDN functionality 
FORTNOX [64] is a software extension to the NOX OpenFlow controller that aims to enforce the security constraints 
imposed on an SDN network by a security application. In particular, FORTNOX prevents an application to 
inappropriately install new rules that contradict the existing ones. To achieve this goal, FORTNOX detects and 
resolves rules conflicts at execution time by analysing each newly arrived rule. The conflict resolution algorithm can 
perform on-the-fly checking of hundreds of rules with an overhead in the order of few milliseconds. FORTNOX is 
targeted at detecting conflicts between security-related rules, but the approach is relevant for verifying other 
aspects in the deployment of a service-chain in UNIFY. 

VeriFlow [65] is a layer between a software-defined networking controller and network devices that dynamically 
checks for network-wide invariant violations at each forwarding rule insertion. In particular, VeriFlow introduces 
novel incremental algorithms to search for potential violation of key network invariants — for example, availability of 
a path to the destination, absence of routing loops, access control policies, or isolation between virtual networks. The 
approach is based on checking various network properties for the packet equivalence classes affected by the new 
rule, followed by building a forwarding graph representing forwarding decisions at each node, that in turn is 
validated against the network invariants. Some of the limitations of the approach are related to scalability and 
accuracy as it is assumed that a complete view of the network is available through a centralized controller which 
may work well only for smaller networks.  

NetPlumber [66] is a real-time policy checking tool with the Header Space Analysis (HSA) as its theoretical 
foundation. It is targeted at verifying SDN networks, but its abstract concepts can be adapted to fit conventional 
networks as well. Header Space Analysis is based on a geometric interpretation of the packet headers as an L-
dimensioned space and on switch processing as a transfer function that operates on this space. Applying the switch 
functions in cascade, the system can explore and analyse a variety of reachability properties. Although NetPlumber 
has proved to be scalable and efficient (in real network deployments with thousands of rules), the main limitation of 
NetPlumber (as well as HSA, in general) is that it cannot precisely model dynamic network appliances or network 
functions, since it relies on reading the state of network devices. An additional limitation could be the large amount 
of time needed to handle link up/down events, due to the regeneration of the NetPlumber internal network 
representation. 

Header Space Analysis (HSA) [55] allows for static checking of the forwarding rules of a whole network. It can detect 
reachability failures, forwarding loops, traffic isolation and leakage problems. Moreover, other tools (ATPG [51], STS 
[54], [67]) have already been built upon the open source implementation of the proposed technique called Hassel. 
The key to HSA is the efficient calculation of Network Transfer Functions, which tells how the bits of incoming 
packet header are changed when the packet passes a specific forwarding element. Although the Hassel library 
seems practical for analysing a campus-sized network, HSA is currently not capable of handling nodes with stateful 
forwarding rules. 
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2.3.3.3 Conclusion 
The majority of the SDN verification tools operate on network configuration rules (commonly OpenFlow), and none 
of them considers active network functions (i.e. VNFs or middle-boxes that dynamically change the forwarding path 
of a flow according to local algorithms, as for example an intrusion detection system or a load balancer may do). In 
other words, these tools operate on the (centralized) programmability of the control plane only and are not 
adequate for situations such as the UNIFY production environment where VNFs may program the data plane and 
cloud resources are integrated with the network. Section 4.3.2 will detail how we plan to approach some of the 
above challenges.  

2.3.4 Testing and debugging 
Deployment of applications and network functions requires various types of debugging and model-checking tools to 
ensure the intended behaviour of the component. In UNIFY, different approaches to testing and debugging service-
chains and included service-components are considered and leveraged from existing methods. From a cloud 
management perspective, cloud testing is the concept of evaluating the functionality and performance of software 
and services using a cloud platform, in which different scenarios and traffic conditions can be tested in a large scale. 
A survey of representative approaches for cloud testing (including multi-layer testing, SLA-based testing, large scale 
simulations and on-demand test environment) is presented in [68]. The paper highlights that the focus is shifted 
from software development and product-oriented activities to service-oriented reuse, composition and online 
renting. The challenges of cloud testing is in terms of the dependability between systems, parallelization, and 
development of evaluation metrics, to name a few. 

2.3.4.1 Cloud testing  
CloudTest [68] is a production software tool for functional, load, and performance testing of web sites and web 
applications. Nodes can be distributed across public and private clouds to cooperate in a large load testing. CloudTest 
On-Demand allows for testing web sites under normal and extreme traffic conditions and can be used to simulate 
thousands of virtual users visiting website simultaneously, using either private or public cloud infrastructure service.  
Memory-based techniques enable real-time analysis of the data produced in large-scale tests. Provisioning data are 
displayed via an analytic dashboard on a synchronized time-line. 

iTKO LISA [69] provides a cloud-based environment and services for composite application development, 
verification and validation. The framework builds executable test cases for functional, load, and performance testing, 
which enables complete tests of the service. The testing capabilities of the framework include coverage-based 
testing for heterogeneous distributed architecture, codeless testing, UI testing, as well as load and performance 
testing. LISA also provides a codeless testing environment for QA and development which enables a rapid design and 
execution of automated tests. 

Cloud9 [70] is a cloud-based testing service that uses parallel symbolic execution techniques by migration to the 
cloud platform, and implements the "Testing as a Service" (TaaS) concept. Under this model, users of the Cloud9 
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testing service are charged according to test goal specifications that they provide, meaning that the total cost of 
service is proportional to the program size. During a test, the Cloud9 attempts to follow all the possible executions by 
exploring the program path-by-path, with the drawbacks of extensive path exploration, CPU-intensive constraint 
solving, and high memory usage. Although this is offered as TaaS, the approach is relevant to SP-DevOps as an 
example where the execution of a software or service component is divided and tracked across several nodes in, for 
example, a sandboxed testing environment. 

Cloudstone [71] is an open-source toolkit consisting of a set of automation tools for generating load and measuring 
the performance of a synthetic Web 2.0 social application in different deployment environments. The toolkit allows 
for selecting a deployment architecture and automated deployment of components; specification of workload 
profiles; experimentation using a workload generator; and analysis of the resulting behaviour. A metric in terms of 
dollars per user per month is introduced for evaluating the cloud performance in terms of usage and costs relative 
to e.g. consumed storage and computing. These approaches are focused on testing software developed for cloud 
computing but include similar challenges related to testing of service chains and individual components within the 
DevOps-concept. The challenges are similar in terms of virtual machine placement, dependency relations, and traffic 
generation as well as testing in a secure environment that will not affect other parts of the cloud system.  

2.3.4.2 SDN debugging 
NICE [53] is a model checking tool, augmented with a symbolic execution engine, capable of checking the 
correctness of an OpenFlow application, based on the popular NOX controller, at development time. NICE can test an 
unmodified version of the controller application using a simplified model of hosts and switches against a number of 
predefined properties, possibly extending them to meet the user’s requirements. The heuristic approach employed 
in NICE makes the method fast and efficient in finding several types of bugs, such as routing loops and black holes, 
and it can also verify different reachability constraints. The main limitation of NICE is related to the time duration of 
a complete verification process in a real (and complex) network scenario and to the memory requirements of this 
process, which will likely not meet the requirements of the UNIFY use cases with respect to real-time verification in 
fast DEV-OP cycles. 

OFTEN [72] test switches and controllers together as one system, instead of testing individual components of an 
SDN system.  The authors argue that, for example, in case of OpenFlow switches, the compliance validations to 
OpenFlow standards are simply not enough because of cross-feature interactions among different components of 
the system. Traditional testing of an integrated network is more or less straightforward, but it is a tedious task that 
includes writing lots of specific test cases. OFTEN takes another approach, it modifies NICE by extending its 
controller testing capabilities to the whole system. The model checker of NICE uses a model of the network 
environment, whereas OFTEN interacts with the real network.  One limitation is that it is not possible to know for 
sure whether an OpenFlow switch has finished processing a datapath packet. Preliminary results show some 
potential of the tool, but the size of state space limits its practical usage in case of complex networking settings. 
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Network debugger (NDB) [73] is a network debugging primitive analogous to well-known software debugging ones. 
The debugging tool allows users to study packet backtraces when a user-defined breakpoint is 
triggered.  Breakpoint conditions can be based on packet fields (like OpenFlow matching rules) and packet paths; a 
packet backtrace is a sequence of forwarding actions of the packet.  NDB modifies the OpenFlow control traffic in 
order to duplicate packets in the switch for each matched flow entry. The duplicates are then marked and sent to a 
collector module, where the unique marks help to create backtraces. Although there are some cases when the 
correct backtrace cannot be reconstructed due to some ambiguity, SDN developers may still find NDB useful in case 
of diagnosing bugs in the controller or in the switch that affect the correctness of forwarding. 

Anteater is a debugging tool [74], which takes snapshots of forwarding tables of distributed or centralized networks 
and analyses them for errors. Anteater converts forwarding table states into instances of Boolean satisfiability (SAT) 
problem, and uses a SAT solver to find bugs. Anteater can verify a network for the reachability, forwarding loops, 
and packet loss issues without sending real packets in the network. Although the detection performance is rather 
high (86% of randomly sampled bugs from the Bugzilla open-source repository), one of the limitations of Anteater 
is that it assumes that the snapshots in a network are consistent over time. However, in large networks with 
frequent changes to a forwarding state, the snapshot might be inconsistent because the network state changes 
while the snapshot is being taken. The other limitation of this tool is that it cannot test issues due to link failures or 
hardware failures. 

2.3.4.3 Conclusion 
Testing and debugging tools aimed at clouds and SDNs have a series of limitations in terms of the explosion of states 
that need to be examined, the assumptions they make regarding the stability of the network and the scalability of 
the probing approach. No environment that tests both cloud and SDN resources exists at the writing of this 
deliverable. Section 4.3.2 will detail how we plan to approach some of the above challenges. 

2.3.5 Distributed SDN control planes 
Openflow started as a logically and physically centralized architecture and evolved towards different levels of logical 
centralization and physical distribution. For carrier networks as complex and large-scale as those envisioned to be 
supported through the UNIFY architecture, it is inevitable to distribute the network control plane across several 
compute and storage resources, which can (and should) be spread geographically as well. This section will introduce 
some examples on how distribution of functionality has impact on observability, verification and troubleshooting 
capabilities of the network.  

In [75] the authors identify two main approaches to distributed SDN control planes; flat or hierarchical (Figure 9). 
The authors identify classes of control plane functionality which do not rely on a global view of the network, and 
thus could be handled by a local controller, i.e., a controller which is topologically close to the network devices it 
controls. One example of control plane functionality which can be handled locally is heavy-hitter detection, an 
important feature for network troubleshooting in WP4, intrusion detection, traffic engineering and load-balancing. 
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Flat control partitioning Hierarchical control partitioning 

Figure 9: Approaches for distributed SDN control planes 

Flat SDN control is required to realize a cooperative control plane across administrative, topologically, or 
geographically diverse datacentre locations. Flat control plane partitioning allows for global optimizations, such as 
optimized placement of content caches or other chains of VNFs. The amount of state required to synchronize across 
all partitions however can be kept low by limiting it to state which is required for global optimizations. Determining 
what state needs to be shared across a flat control plane to facilitate troubleshooting of faults that affect multiple 
domains is relevant in the WP4 context. 

A hierarchical distribution of a WiFi-tailored SDN control plane was presented in [76], providing fine-grained control 
over rapidly changing transmission parameters that are specific to the IEEE 802.11 WiFi protocol. Another example is 
the ElastiCon [77] approach which is an elastic distributed controller architecture, which addresses the issues that 
may arise due to the static configuration of the mapping between switches and controllers, i.e., uneven load 
distribution and lack of elasticity. Approaches intended for operation in decentralized architectures are also 
considered, addressing for example non-conflicting policy composition in distributed control planes [78]. 

From a WP4 perspective, the decentralized and distributed operation is highly relevant and necessary with respect 
to scalable and resource-efficient network observability and troubleshooting. This is achieved through a hierarchical 
controller architecture operating based on different layers as described in WP2, but also by enabling distributed 
node-local analytics in the Universal Nodes developed by WP5. Verification and debugging could be performed in a 
centralized and decentralized manner, but may require different assumptions and approaches, which are subject to 
further investigation. 
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3 Summary of relevant UNIFY results  

In this section, we will briefly summarize the initial considerations regarding UNIFY use-cases, processes, and 
architecture aspects1. We will first present the use-case selected as the main focus of this work-package, and 
highlight how it is suitable to highlight relevant WP4 aspects. We will then outline the envisioned UNIFY service 
lifecycle and related processes selected as the main scope of the project, in order to give a better understanding of 
how SP-DevOps will fit into UNIFY. Finally, we will provide an overview of the initial overarching architecture 
together with a first draft of the functional architecture, derived from the selected processes of the UNIFY service 
lifecycle. This will allow us to describe SP-DevOps process flows embedded into the UNIFY architecture and point 
out research challenges in Section 4.  

3.1 Exemplary use-case: Secure, content aware IP VPN 
This example shows a potential future evolution of the baseline MPLS VPN case described as state-of-the-art in 
section 2.2.1 to include additional functions such SSL accelerator, malware and intrusion detection and private 
content delivery network (Figure 10). If such a complex service would be realized  with today’s production-grade 
telecom hardware, it would require that the MPLS VPN infrastructure be supplemented with a number of 
middleboxes, each middlebox dedicated to supporting one network function. Apart from the disadvantages incurred 
with managing hardware middleboxes that were mentioned in section 2.2, placing the hardware in fixed locations 
within the network would require careful planning from the operator and has the potential to introduce additional 
delays in order to channel traffic from customer premises to the fixed location where a particular hardware box was 
deployed. The installation and operation of the middleboxes is equivalent to building a parallel network (similar to 
what had to be done for the IPTV service described in section 2.2.1), dedicated to this service, and having a small 
potential of reuse for other services.  

D2.1 described a Content-Aware IP VPN use case where a carrier provides value to a large enterprise customer by 
embedding Virtual Network Functions (VNFs) corresponding to SSL accelerator functionality, a malware and 
intrusion detection function, private content delivery network support and an elastic router (Figure 10). Compared to 
the rather static middlebox-based MPLS VPN extension, the UNIFY Content-Aware IP VPN example shows how the 
operator can use Virtual Network Functions deployed on generic hardware instead of building a parallel network 
infrastructure to support this service. On-demand VNF placement and re-use of generic hardware between 
different services are facilitated. The UNIFY Content-Aware IP VPN has an inherent dynamic aspect in that policies 
associated to it allow the enterprise to increase the resource usage 10x for a relatively limited time interval, in the 
order of minutes or hours, by employing an elastic router and taking advantage of a programmable optical transport 
                                                                    
1 These considerations are taken from UNIFY D2.1 [3], which represents the current status of the integrated input 
and work carried out in all technical workpackages WP3, WP4 and WP5. 
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network. Traffic that was identified as infected documents by the malware-IDS function is automatically and 
dynamically made to bypass the content delivery network, thus reducing the spread of an infection. 

 

Figure 10: Secure, content aware IP VPN service [3] 

A Service Graph is an association of VNFs and their interconnections. Some examples of basic monitoring 
functionality internal to the Service Graph include compute resource utilization for the SSL VNF, compute and 
storage resource utilization for the IDS VNF, network delay measured between the service access point at the 
branch office and the service access point at the main office, packet losses measured along traffic tunnels within the 
aggregation and core parts of the network, etc. Key Quality Indicators that are agreed through the Service Level 
Specification are usually exposed to the enterprise customer through a self-service portal. Examples of such 
parameters could include Committed Information Rate (1000 Mbit/s and 100 flows/s), Committed Burst Rate 
(10000 Mbit/s, 30000 flows/s for a time interval of 1h), Malware detection rate 98%, Caching maximum capacity 10 
TB, branch-main office latency 10ms. 

The following aspects of the use case are relevant from a SP-DevOps perspective: 

- An elastic router that increases and decreases capacity depending on the traffic demand requires that 
monitoring functionality associated to it scales to a) include the new instances added to the router and b) 
accommodate a potential increase in monitoring-related traffic generated by the new router instances 
(such increase could be significant if certain ports had to be put in span or mirror modes, or traffic is being 
captured through technologies such as sFlow or IPFIX). Every scale-in and scale-out operation requires that 
flow descriptors for incoming and outgoing traffic from the various instances are verified as being correctly 
configured in the infrastructure.  
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- Software updates (for new functionality or bug fixing) are expected several times a year. Critical security 
updates needs to be applied outside pre-scheduled maintenance windows. This creates a need for 
capabilities supporting the testing of such new patches in an environment as close as possible to the real 
operating network. Such capabilities may include monitoring features that provide a higher level of detail 
than during normal network operations. They could also include verification features that validate both the 
deployment and the resource usage in the test environment. 

- The fact that traffic dynamically bypasses certain VNF instances (for example, traffic identified as malware-
infected documents are not sent through the content delivery network) requires a verification capability 
that is able to validate such cases. 

- The telecom operator has the capability to rapidly customize the service for a particular customer based on 
diverse criteria, such as using VNFs that have restricted features but are more cost-effective for the 
customer or choosing VNFs provided by a particular software company in case policy restrictions demand it 
on security grounds.  

3.2 UNIFY process model and service lifecycle 
The UNIFY service lifecyle has been derived from traditional operator processes (eTOM) as well as DevOps principles 
in order to accommodate for increased dynamicity and higher service velocity. We introduce the model in Figure 11. A 
detailed description with the relationship to our developed SP-DevOps concept will be presented in Section 4.  

 

Figure 11: Simplified Process model and mapping to UNIFY 

As the main scope of the UNIFY project as a whole, we identify four larger process groups relating to Development, 
Operation Support and Readiness, Fulfilment, and Assurance. In an eTOM analogy, these processes would be 
situated on the Level 1 of the framework. The SP-DevOps concept will span the four main UNIFY processes and 
provide an additional level of detail focused on particular areas. In an eTOM analogy, the SP-DevOps processes would 
be situated on the Level 2 of the framework. The focus will be on the assurance part providing additional 
management capabilities to the service and virtual network function graphs in the areas of monitoring and 
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verification. The UNIFY high level processes served as guidance and input for detailing the functional architecture 
(see Section 3.3) and can include further sub-processes:  

● Boot-strapping is covering all aspects to enable the unified production environment to work. This includes details 
required to translate and map information between architecture layers and abstractions, information about the 
resources and it’s capabilities,, to inform relevant elements on the different architectural layers about available 
information and to enable infrastructure to perform basic management tasks such as monitoring of nodes, links 
and interfaces between architecture layers. 

● The programmability framework will rely on available information and interfaces from the boot-strapping 
process. The goal with UNIFY’s programmability framework is to enable on-demand processing anywhere in the 
physically distributed network and clouds. The major objective is to enable dynamic and fine-grained service (re-
)provisioning, for which a Service Invocation sub-process will resolve and map network function forwarding 
graphs (NF-FG) and associated requirements through different levels of abstractions (and virtualizations) to 
physical resources available in the distributed system (both network and cloud) while adhering to operational 
policies..  

● Monitoring and verification (more details in Section 4) is covering a set of operational aspects for service and 
virtual network function graphs like collection of information, verification, analytics, failure detection and 
resolution, quality observations. These processes will rely on information from boot-strapping process, as well as 
interaction with programmability for monitoring function placement and configuration. Here, sub-processes for 
Observability, Verification and Troubleshooting have been defined, all focus areas of the work in WP4. 

● The Development process is capturing the aspects of the development (or rather definition) of service graphs on 
the one hand as well as dynamic development of network functions (VNFs) on the other hand. In UNIFY, we 
assume that the needs of the service developer are largely fulfilled with support of monitoring and verification 
functions introduced above. The additional requirements of VNF developers will be covered in an additional 
process specifically aiming at VNF development support. 

Additionally, we have identified two other processes in the eTOM process model which are relevant for the 
completion of the UNIFY service lifecycle, but which have been considered out of scope in terms of research focus 
within the project: Termination process, and Strategy and live cycle management (shown in Figure 11 as orange 
boxes with dotted lines). But both processes are considered out of scope in terms of research focus within the 
project and therefore will be not further detailed.  

3.3 Initial UNIFY Architecture 
In order to understand the SP-DevOps process flows detailed in section 4.2.2, we will briefly introduce the initial 
draft of the UNIFY architecture. UNIFY is defining a three layers architecture as reported in Figure 12, composed by a 
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Service Layer, an Orchestration Layer and an Infrastructure Layer. The three layered model can be augmented with 
an application layer corresponding to the users of the services (shown as Service + SLA).  

The Service Layer is in charge of turning the service chain provisioning into consumable services by defining and 
managing service logics; establishing programmability interfaces to users (residential, enterprise, network-network, 
OTT, etc.) and interacting with traditional OSS/BSS systems. The service layer is also responsible to create further 
service abstractions as needed toward the different users (e.g., BigSwitch topology) and to realize the necessary 
adaptations according to such abstractions.  

The Orchestration Layer is split into three major sub-components: the Resource Orchestrator Layer, the Controller 
Adaptation Layer and the Controller Layer. From a resource orchestration point of view, the Orchestration layer 
collects and harmonizes virtualized resources into a global virtualized resource view at its compute, storage and 
networking abstraction. The global resource view in the orchestrator consists of four main components; forwarding 
elements, compute host capabilities, hardware-based or accelerated network function capabilities, and the data 
plane links that connect them. All of the resources must have some associated abstract attributes (capabilities) for 
the resource provisioning to work. The Controller Layer is responsible to provide technology independent control 
interfaces and to virtualize resources. Note that there could be as many different controllers in the Controller Layer 
as there are different technical sub-domains. 

 

Figure 12: The three layered UNIFY architecture 

The Infrastructure Layer encompasses all network, compute and storage physical resources. It can support the 
creation of virtual instances (networking, compute and storage) out of the physical resources. One of the challenges 
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is to harmonize virtualization above these resources by proper abstraction in the Orchestration Layer. Four types of 
physical resources are identified: 

i) our Universal Node (UN),  

ii) SDN enabled network nodes (e.g., OpenFlow switches),  

iii) Data Centres (e.g., OpenStack) and  

iv) legacy network nodes or network appliances.  

For development and prototyping, the main focus will be on the UN as it is the most novel type of resource 
developed within UNIFY. SDN enabled network nodes are also in scope given that they can fulfil the requirements 
for the specific observability and troubleshooting capability in question.  

In the following, the 4 (sub)layers are depicted including the top-level functional model as described in detail in D2.1, 
representing the initial draft of the resulting functional architecture (Figure 13). The SP-DevOps concept and its 
related sub-processes (Observability, Verification, Troubleshooting, VNF-Development support) will mainly relate to 
the functional components on the right part of the sub-layers, which will be described in more detail in Section 4.2.2. 

 

Figure 13: Initial UNIFY functional architecture 
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4 SP-DevOps concept  

4.1 Sketch of SP-DevOps concept  
In this section we define the roles of “developers” and “operators” in UNIFY. We will discuss briefly how we propose 
to apply IT DevOps principles in a carrier environment as envisaged in the UNIFY project. It has been widely 
acknowledged that a key component of DevOps is embedded in the cultural aspects that create an environment 
where development and operations team may interact with increased efficiency. We believe that this could be a 
topic for research in organizational processes and behaviours, but WP4 does not have the right capabilities in order 
to pursue such a research topic. Instead, we focus on the automation, measurement and verification aspects for 
DevOps, identify a set of related problems and present our first ideas on tools that could be developed to address 
these problems from a technical perspective. An organization may then adopt one or more of the solutions we 
propose and find the best way of integrating them in their own processes, along with defining how these processes 
will need to change to take advantage of the new technical capabilities. This approach is similar to the way typical 
DevOps tools such as Chef, Puppet and Ansible were developed from the ground up. 

There are two facets of the “developer” role in UNIFY. One facet refers to the person that determines which high-
level functions should be part of a particular service, decides what logical interconnections are needed between 
these blocks and defines a set of high-level constraints or goals related to parameters that define the service. This 
person might be the product owner for a particular family of services offered by a telecom provider. They might be a 
key account representative that adapts an existing service template to the requirements of a particular customer by 
adding or removing a small number of functional entities. We refer to this person as the service developer and for 
simplicity (access control, training on technical background, etc.) we consider the role to be internal to the telecom 
provider. The other facet of the UNIFY “developer” role is a person that writes the software code for a new virtual 
network function. Depending on the actual virtual network function being developed, this person might be internal 
or external to the telecom provider. We refer to them as VNF developers. 

The role of the “operator” in UNIFY is to ensure that a set of performance indicators associated to a service graph 
are met when the service graph is deployed on virtual infrastructure within the domain of a telecom provider. In 
cloud computing companies such as Google, Amazon and Facebook, this role falls within the responsibility of the so-
called site reliability engineering teams. From a standard telecom and enterprise management perspectives, this 
role is related to assurance processes in the eTOM framework and to the Service Operation in ITIL, respectively. 

Compared to a standard cloud computing environment in which DevOps originated, a unified network and cloud set 
of resources in a telecom provider environment exhibits the following major differences: 

- Higher spatial distribution, with lower levels of redundancy: telecom resources are spread over wide areas due 
to coverage requirements. In access and aggregation networks, the levels of equipment redundancy are much 
lower than in the massive data centres of typical cloud computing companies. Differences in latencies of any 
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two control actions may trigger unsynchronized state changes between neighbour nodes, which in turn may 
translate onto legitimate packets being dropped in the parts of the network that have yet to receive the latest 
update to the flow table while incoming traffic is forwarded by the nodes that already received the updates. 

- High availability is the norm, with stricter adherence to the four or five “9s” expected from customers. 
Infrastructure support for such capabilities needs to be verified at the service development stage, and 
downtime minimized during operations. 

- Strictly controlled latency is required for many virtual network functions due to technical restrictions specified 
in standardization documents. This drives demand for more frequent measurements, impacts the precision 
required from measurement tools and requires automated handling of operations such as scaling or migration.  

- A larger number of distributed data centres is needed [79] in order to address the spatial distribution and 
controlled latency requirements 

The differences outlined above impact the way in which DevOps principles may be applied to telecom provider 
infrastructure. Although the principles remain the same, the potential costs of rolling back a service change are 
higher for telecom providers because redundant equipment might simply not be available to take over the 
functionality while a patch (be it software, or configuration) is being applied while high-availability requirements are 
expected to be strictly enforced. As such, we assert that an increased focus needs to be put on the verification and 
validation at various stages in the deployment and activation of service graphs by developers and operators. The 
ITU-T Y.1564 standard defines a methodology for validating standards-based Ethernet connectivity services at 
deployment time and continuously during their lifetime. We envisage that similar functionality and processes need 
to be developed for service graphs, although the problem in the service graph case is much more complex due to 
the huge increase in the potential number of parameters and verification tools. Having the right information on 
virtual network function and infrastructure metrics at the right place and at the right time has a high potential to 
reducing the troubleshooting time for problems. Finally, isolation capabilities for data plane and control planes in the 
network nodes and virtual network functions that enable testing in a production-like environment are paramount. 

4.2 SP-DevOps applied on UNIFY  
The UNIFY production environment plays a key role in the interaction between service or VNF developers and the 
operators. The UNIFY production environment provides the tools for orchestrating, configuring and controlling the 
virtual resources used by a service graph or virtual network function. This means that all the resources (in terms of 
compute capacity, network interfaces and tunnel identifiers for the dataplane, management plane and control plane 
connections and storage for both the infrastructure and the virtual network function management notifications) are 
identified and configured automatically as result of work performed in WP3. 

The aim of SP-DevOps is to situate itself overall at the “Defined” level of the HP DevOps maturity model [11]: 
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 Customization of services or new releases of VNFs have the capability to be released frequently to the 
production environment based on policies provided by team members representing Operations. Our 
interpretation of release management from [11] is that it enables successive improvements of service 
graphs in a UNIFY production environment. Such improvements result by defining new categories or 
classes of services that include certain constraints or policies by default, or changing the composition of the 
service graph to include newly-developed virtual functions.  

 Self-service one-click automated build, orchestration and deployment processes are identical in all 
environments (development, test, production). We expect to be able to go beyond “Defined” to the 
“Measured” level by providing visibility onto metrics related to the introduction of new services, such as 
release cycle time and defects.  

 Collaboration is part of an established process and supported by a tool chain common to cross-functional 
feature delivery teams. In this area we will address only the common tool chain by providing tools that 
could be used by cross-functional team members addressing both development and operations scope. 
Cultural aspects, such as frequent communication characterized by mutual trust, cannot be addressed in 
this Work Package. Neither could we address detailed measurements of collaboration processes at the 
organizational level. 

 

 

Figure 14: Schematic representation of the SP-DevOps cycle 

In line with the principles of the IBM DevOps model [12], the observations regarding particularities of telecom 
provider environment outlined in Section 4.1 and the WP4 Description of Work, we define four large categories of 
processes that are integral part of SP-DevOps (i.e. Verification; Observability; Troubleshooting; Support for VNF 
Development). For completeness, we represent SP-DevOps in a cyclical form as depicted in Figure 14. The “Define” 
stage represents the process through which fulfilment functions determine which resources should be allocated to 
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a service graph defined by a service developer. The “Code” stage is associated to the process of the VNF Developer 
writing the software that will be executed as a virtual network function. The “Deploy” stage represents fulfilment 
functions that configure and activate resources in the unified production environment. For the VNF Developer role, 
additional constraints, in particular in view of isolating the execution environment, need to be taken into account at 
this stage. This is therefore represented as an additional stage in the SP-DevOps cycle. Verification functions are the 
way WP4 implements this stage of SP-DevOps. The “Operate” stage is concerned with assurance functions related 
to the production environment and the VNF. For the VNF Developer role, this stage of SP-DevOps is concerned with 
debugging the software implementation in a realistic medium isolated within the unified production environment. 
Observability and troubleshooting functions are the way WP4 implements this stage of SP-DevOps. The VNF 
Developer may transition its virtual network function to the real production environment by making it available to 
the “Define” stage of SP-DevOps once the software debugging was successful – this is indicated through the blue 
outline of the “Sw debugging” arrow. 

The cogwheels placed between stages of the SP-DevOps cycle symbolize the fact that automation is an inherent 
part of the concept. Automation is needed in order to respond to velocity and scalability requirements generated by 
the UNIFY production environment. Programmatic interfaces located at the transition between stages in the SP-
DevOps cycle act as an enabler for the automation.  

The four categories of processes dealt with in WP4 relate mainly to three out of the four DevOps principles [12]: 

● Monitor and validate operational quality: This is the principle motivating the core activities in WP4: providing 
processes and accompanied methods and tools for Verification and Observability, together with capabilities 
supporting Troubleshooting of service graphs. 

● Develop and test against production-like systems: With respect to development of new or updated virtual 
network functions (VNFs), we will detail a process supporting VNF-Development, allowing the developers of new 
or updated VNFs to deploy and verify their functions on the UNIFY production environment. With respect to 
development or definition of service graphs, the developers are supported by verification and debugging 
capabilities within the various layers of the architecture. And with respect to the operation of the infrastructure, 
isolation and virtualisation will be key concepts to protect other active services. 

● Deploy with repeatable, reliable processes: This principle corresponds largely to one of the general UNIFY ideas 
about automatic deployment and operation of service graphs. While the fulfilment related processes are part of 
WP3 (Service Deployment process and programmability framework), reliability of these processes is supported 
by programmable and automated observability and verification capabilities developed in WP4. 

The forth principle “amplifying feedback loops” is very much connected to both the culture within an organization, 
as well as business decisions based on market or customer feedback, and is as such not directly covered by the 
technical solutions developed in WP4. However, this principle is obeyed in UNIFY from a technical point of view by 
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providing a customer facing service layer, including interfaces towards fulfilment and assurance processes, 
potentially even development processes. 

 

Figure 15: Relations between SP-DevOps stages and UNIFY processes 

Figure 15 depicts the relations between processes currently defined in D2.1 (the WP4 processes are further detailed 
in Section 4.2.2) and the overall SP-DevOps stages. The bootstrapping process (D2.1) is the base for adding new 
virtual functions and resources. The Service Invocation processes (D2.1) enables the Developer (whether for a 
service, or a network function) to define a service graph and automatically trigger its deployment onto suitable 
resources. When the deployment is completed, the Service Confirmation process (D2.1) announces the resource 
identifiers and enables operations capabilities to either assure the day to day operations or participate in a 
distributed virtual network function debugging session.  

Before describing the four large categories of SP-DevOps processes in relation to the functional architecture, it is 
important to understand our definition of monitoring functions and their observability components envisioned for 
UNIFY. This is relevant, since most of the processes and research questions developed in the scope of UNIFY WP4 
will be centred around observability and troubleshooting of service chains and its building blocks.  

4.2.1 Definition of Monitoring Functions  
Since monitoring and validation of operational quality has been identified as a key principle of SP-DevOps, we want 
to give our definition of monitoring functions and corresponding components. The following definitions are 
embedded into the UNIFY functional architecture (Figure 13) and are described separately due to their importance 
for the remainder of this deliverable. 
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The overall purpose of the monitoring functionality implemented in UNIFY is to increase the observability over the 
network behaviour and state, as a trade-off between scalability (i.e. resource-efficiency in terms of monitoring 
overhead) and accuracy. Certain monitoring functionality will also address the unification of network and compute 
resources. 

Monitoring functionality is implemented as Virtual Network Functions (VNFs) operating in both control and data 
planes. Conceptually, such a VNF consists of one or several observability points (OP) instantiated on one or several 
virtual nodes. The monitoring function consists of a control plane (CP) component for analysis and control of lower-
level monitoring operations towards the observability points. In turn, an observability point operates in terms of a 
local CP and data plane (DP) components for local analytics and measurement purposes (Figure 16). 

 

 

Figure 16: Conceptual overview of a monitoring function. 

The operational scope of a monitoring function includes the Virtualized Infrastructure Management Layer 
(Controller Layer) and the infrastructure layer. A monitoring function implements different levels of observability 
and analysis for performance monitoring and troubleshooting purposes. The complexity of the monitoring function 
can vary from very simple probing mechanisms in the infrastructure layer to more complex analytic applications 
based on one or several observability points, instantiated in one or several nodes.  

The monitoring function includes a CP component that implements mainly three functions:  

 control domain and global analytics of reported measurements; 

 notifications for further performance analysis or troubleshooting purposes;  
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 dynamic control functionality towards certain OPs in the infrastructure layer. 

 

 

Figure 17: The main operational scope of a monitoring function encompasses implemented functionality mainly in 
the Controller Layer and infrastructure layer. 

The definition of a monitoring function enables the implementation of monitoring capabilities at varying levels and 
complexities. A simple monitoring function can, for example, be implemented for monitoring delay and loss on a 
certain link (physical or logical) relative to specified QoS requirements. The delay and loss metrics can be observed 
by instantiated observability points in two or more nodes involved, and modelled using e.g. probabilistic approaches 
[80]. Depending on the implementation, the link metrics can either be provided in terms of separate observability 
points for delay and loss, or from the same observability point. A more complex monitoring function can for example 
implement trend analysis based on model estimates collected from several observability points in the network. 

The monitoring function is instantiated via an interface of the virtualized function by the orchestrator given 
configuration and monitoring specifications (e.g. type of monitoring function, requirements on accuracy, detection 
thresholds, etc.). The instantiation in the Controller Layer includes mapping of the observability points on to certain 
nodes in the infrastructure layer. The number of observability points and the placement of them are parameters 
specific to the implementation of the monitoring function, but the exact mapping onto resources in the 
infrastructure layer is part of the resource management components in the orchestration layer.  
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4.2.1.1 Observability points and components 
Observability points implement measurement and modelling functionality local to a virtual node and consist of two 
types of components operating in the local CP and the data plane (DP) (Figure 18). The output from one or several 
observability points can be used for high-level analytics in the monitoring function at the Controller Layer.  

In general terms, typical for the local CP component is low frequency updates and control operations and high 
complexity computations (updates of estimates, local change detection, troubleshooting support, etc), whereas the 
DP component operates at a high frequency and low complexity (counter updates, flow entry matching, etc).  

Local CP components enable in-network analytics, which is an important part in meeting the requirements on 
scalability, specifically for measurement intensive monitoring functions. The main tasks of the local CP component 
are to: 

 execute control operations relevant to specific implementations of a monitoring function, such as scheduling of 
active measurements, packet manipulation in certain cases when an active measurement tool is implemented 
with CP support, message and information exchange between OPs, or forwarding of certain packets to the 
Controller Layer CP component; 

 perform high-level computations for the purpose of node-local performance analytics of e.g. a certain flow or 
flow aggregates, that can be further used for e.g. detecting local performance degradations and other types of 
troubleshooting support; 

 act as a measurement data transport intermediary, that pre-aggregates or pre-processes data in the network to 
limit the bandwidth and computational load on the analytics component of the virtual monitoring function; 

 report the observed behaviour based on the fulfilment of specified conditions, or in terms of regularly pushed 
messages in accordance with specification, or by request. The receiver of such a report or notification can be a 
developer, service user, operator or another management function (e.g. for dynamic resource management 
purposes). 
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Figure 18: Overview of an observability point and components in a virtual node. The observability point can be 
configured and reconfigured by a specific interface, but the instantiation of an OP is handled by a local resource 

management processes in the node. 

Note that the degree to which a local CP component is implemented in each OP is dependent on whether the 
monitoring function is implemented for centralized or in-network monitoring. For example, a centralized monitoring 
function strictly following the SDN paradigm would for the largest part be based on the centralized CP component in 
the Controller Layer for performance monitoring and analytics, rather than on a local CP component. Thus, a local 
CP component can be very simple in terms of forwarding a packet from the DP component to a centralized CP 
component, or perform more complex operations such as producing estimates of the observed network behaviour, 
or send a test packet at certain intervals, for example.  

The DP component performs low-complexity operations but at a high frequency specific to the implemented 
monitoring functionality. Such operations mainly include: 

 passive measurement support, such as counter updates to specified flows or flow-aggregates; 

 active measurement support, such as packet manipulation (e.g. timestamping and marking) and creation of 
measurement probes; 
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 packet forwarding to the local CP component. 

Operations performed in the DP component are supported by the capabilities of the DP provided by the UN, which 
are further outlined in the WP5 deliverable D5.2 [81]  It is expected that the DP of the UN supports OF-counters but 
also allows for software-defined counters that can perform simple arithmetic operations, in order to observe 
different aspects of the network behaviour (e.g. at different time granularities). This is necessary for the support of 
dynamic and flexible network operations. The degree of observability, resource-efficiency and accuracy in modelled 
link metrics and monitored network behaviour depends on the frequency with which the operations in the DP 
component are performed (e.g. the frequency of counter readings), as well as the resources needed to perform 
certain actions (e.g. number of counters needed to accurately model a flow behaviour).  

4.2.1.2 Interfaces 
Upon instantiation of a service graph, the monitoring functions are specified in accordance with desired accuracy 
and the conditions under which the monitoring functions should operate. This specification can include 
deterministic measurement rates, detection thresholds, or input specifying probabilistic guarantees on the 
monitoring performance. From a resource-consumption perspective, it is assumed that the orchestration layer 
performs functional decomposition determining the monitoring objectives relevant to each layer of the composition, 
as well as resource management functionality for instantiating a monitoring function and associated observability 
points. 

A monitoring function consists of a set of interfaces that allow for instantiation and (re-) configuration of the 
monitoring behaviour as well as for notification to the Controller Layer and the orchestrator (Figure 17). A Virtualized 
Network Function interface allows for configuration and instantiation of each observability point from the Controller 
Layer CP component specific to each monitoring function (Figure 18). Moreover, OPs instantiated at the nodes can 
exchange messages (such as test packets) for measurement and troubleshooting purposes (Figure 18). 

4.2.2 SP-DevOps process flows 
We will in the following describe the four large categories of processes in focus of UNIFY WP4 (Observability, 
Verification, Troubleshooting, VNF Developer support,) in more detail and map their functionality to each UNIFY 
architecture layer and involved components described in D2.1. Figure 19 illustrates a simplified overview of the 
functional architecture with the components within the main scope of WP4 highlighted. 
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Figure 19: Functional UNIFY architecture with WP4 focus: Solid stars represent identified UNIFY DevOps research 
challenges (Section 4.3); stripy stars represent integration aspects. 

Although we present the high-level processes views here, it is understood that the major research contribution will 
be in terms of technical aspects covered by particular parts of these processes. The processes are important from 
the perspective of integrating the output of the Work Package with WP3 and WP5 in the integrated testbed. 
Identifying them in the beginning of the project gives us a communication tool towards the other Work Packages 
and contributes to understanding what interfaces and common functionality would need to be developed in order 
for the integration to take place. 

4.2.2.1 Observability process and associated functional components 
The Observability process provides visibility onto the operational performance of service graphs deployed in the 
unified production environment. The process (Figure 20) has two distinct objectives: 
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1. Key Performance and Quality Indicator (KPI/KQI) translation and tool selection which determines what should 
be measured for a service graph, how such measurements are carried out and where such measurement 
capabilities are instantiated and configured. This is represented in the figure (depicted as yellow arrows) as the 
chain of events going from a Developer down through the layers terminating at the Infrastructure layer. 

2. Measurement data generation and analysis which rely on novel capabilities for performance and fault 
management developed by UNIFY partners. Basic data generation capabilities on any type of resource include 
e.g. packet/byte counters, notifications and logs generated by the resource itself or a function executing on the 
resource. This is represented in the figure (depicted as green arrows) as the chain of events going from the 
Infrastructure layer up to the Developers.  

Starting with the first objective, KPI/KQI translation and tool selection, there are several functional blocks in the 
architectural layers to fulfil this objective:  

 In the service layer an incoming service graph contains an SLA that describes a set of KPIs and/or KQIs that 
need to be fulfilled during the lifetime of the service. These KPIs and KQIs provide the first trigger of the SP-
DevOps Observability process by dictating which measurements are needed for a service graph and how they 
are analysed. In the service layer these need to be translated and mapped from high-level abstract KQIs that 
may be applied to compound network functions to more precise KPIs by the “KPI – KQI Translation” functional 
component. 

 In the orchestration layer the KPIs that are provided from the service layer as part of an NF-FG are mapped to 
Observability Points, which in turn are mapped onto virtualized infrastructure management and infrastructure 
layer resources that can provide the required measurements and analysis to fulfil the KPIs. This is done by the 
“KPI mapping / OP creation“ functional block, whose output is taken into account during the orchestration 
process. In the resulting instantiable NF-FG produced by the orchestration layer new NFs may be included to 
provide the necessary observability components, if their corresponding KPI calculation cannot already be 
provided by the existing infrastructure resources or existing NFs. Additionally, the orchestration layer includes a 
second trigger in the SP-DevOps Observability process when it requests the creation of Observability Points that 
are not the direct result of service graph specifications, in order to obtain up-to-date resource utilization and 
infrastructure health monitoring data. The orchestration layer uses this data as part of the orchestration process 
in order to take the current state of the network and compute resources into account when mapping NF-FGs to 
the available resources. These triggers are created by the “Resource manager” functional block.  
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Figure 20: The Observability process in relation to architectural layers: Yellow arrows indicate the observability 
request and invocation; green arrows indicate notification and reporting; solid arrows represent the parts of the 
process dealt with in WP4; dashed arrows represent the parts of the process flow that need to be done in shared 
responsibility with other WPs. 

 At the Controller Layer the KPIs that are part of the incoming NF-FG are mapped to existing Observability Points 
in the infrastructure layer or new one are allocated. This is done by the “Domain observability / KPI Observer” 
functional block together with the Domain resource manager, in particular the “Resource Manager” function 
within the Domain resource manager. Observability Points in this layer are represented by an “Observability 
Point CP Component” block which is responsible for coordinating the lower layer Observability Points instances 
and for aggregating/analysing their output. The output of Controller Layer is then communicated to the 
infrastructure layer using technology specific protocols for the particular infrastructure.  
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 In the Infrastructure layer Observability Points for gathering measurements and performing initial analysis and 
aggregation are instantiated and configured based on commands from the virtualized infrastructure 
management layer. Observability Points are represented by two functional blocks, “OP local CP component” and 
“OP DP component”, the first performing aggregation/analysis at the node level and the second representing 
the functionality performing the actual measurements. The functional block responsible for instantiation and 
configuration of these functions is the “Observability & Performance Manager”.  

For the second objective, measurement data generation and analysis, there are also several functional blocks in the 
architectural layers that are involved, starting from the infrastructure layer: 

 In the Infrastructure layer, data is gathered, analysed and aggregated by the “OP local CP component”. Analytics 
results are then forwarded to the Controller Layer for further analysis. Analytics performed in the “Observability 
Point CP component” includes e.g. modelling of flow counters and modelling of measurements such as delay or 
loss that might be performed in the node. The “OP local CP” component also generates notifications/alarms in 
case of e.g. failures, which are sent to the Controller Layer where management decisions may be taken. Such 
alarms may also have a role in the Troubleshooting process, detailed in Section 4.2.2.3. 

 The Controller Layer obtains locally aggregated/analysed measurements and other data provided by 
observability points in the infrastructure layer and performs domain level analysis, using the "Observability Point 
CP Component" functional block. The received data is also used in the “Domain observability / KPI observer” 
functional block in order to monitor the KPI status versus thresholds and generate notifications when 
thresholds are breached. Results of these functional blocks are sent to the orchestration layer, and/or acted 
upon within appropriate layer via local triggers.  

 In the Orchestration layer notifications and modelled data is received for further analysis and 
troubleshooting/resource management support, the data is processed in the "Global analytics", “Global 
observability / KPI Observer” functional blocks. Relevant data is provided to the "Resource manager" functional 
block for updating the global resource view and informing the orchestration process. The “Global analytics” and 
“Global observability / KPI Observer” also sends notifications and KPI status updates to the Service layer.  

 Finally, in the Service Layer, notifications and KPI statuses are integrated and translated back to the original 
KQI/KPIs requested in the service graph(s) by the “KQI-KPI Translation”, “KQI Observer”, and “Analytics & 
reporting” functional blocks.  

Moreover, several of the steps in the Observability process are required to be dynamic in the sense that they are 
expected to be triggered following the increase or decrease of resources allocated to a service graph, when service 
graph components are migrated through the production environment. 
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4.2.2.2 Verification process and associated functional blocks 
Enabling ongoing verification of code is an important goal of continuous integration as part of the DevOps concept. 
While traditional DevOps mainly refers to verification of code, we relate this goal in SP-DevOps to verification of 
service definitions and configurations. Automated verification functions on each layer of the architecture facilitate 
verification as part of each step in the deployment process, allowing identification of problems already early in the 
service lifecycle. In that sense, verification is less of a process, but rather a set of features providing gatekeeper 
functions to verify the abstract service models - Service Graph, Network Function –Forwarding Graph (NF-FG), and 
the proposed resource configuration - before actual instantiation on the infrastructure layer takes place. The 
Verification process is outlined graphically in Figure 21. 

We describe the Verification process and its functionality mapped to UNIFY functional architecture from Figure 19): 

 The Service Layer receives a service request from developers in the form of a Service Graph with a related SLA 
definition. This abstract Service Graph definition will allow the SL to verify the absence of loops and other 
topological consistency properties. As a result, Service Graphs can be marked as invalid and returned to the 
customer/user early on in the deployment process. If the verification does not find any inconsistencies, the 
deployment process continues in the next layer. The result of the Service Layer is a NF-FG which is also verified 
for absence of loops and other topological properties before it is sent to the orchestration layer.  
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Figure 21: Verification process in relation to architecture layers: Yellow arrows indicate the validation requests and 
invocation; green arrows indicate notification and reporting; solid arrows represent the parts of the process dealt 
with in WP4; dashed arrows represent the parts of the process flow that need to be done in shared responsibility 
with other WPs. 

 The Orchestration Layer receives a NF-FG and performs the placement of the contained NFs (i.e. finds locations 
where they can be instantiated or already running NFs that can fulfil their requirements), resulting in an 
instantiable NF-FG which can be verified against consistency with respect to the resource, capability and 
topology descriptions. Furthermore, on this layer the instantiable NF-FG can be verified against policy violations 
related to placement of NFs and performance impact on already deployed NF-FGs on the chosen infrastructure. 

 The Controller Layer consists of a set of different controllers for both compute and networking resources. The 
verification functionality in this layer targets consistency of specific configuration instances, such as inconsistent 
network configuration in the form of OpenFlow rules. Verification of the services and service components 
instantiated in the infrastructure layer are functionally handled in the virtualized infrastructure management 
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layer, following SDN principles. Therefore we have not planned any verification or validation functionality 
directly in the infrastructure layer. The verification functionality for the infrastructure and the virtualized 
infrastructure management layer is implemented in the "Verification" functional block.  

4.2.2.3 Troubleshooting process and associated functional blocks 
With troubleshooting, we mean the localization of the source of a problem (the “trouble”) related to a certain 
process. Troubleshooting mechanisms will need to operate on several levels of the architecture and will largely take 
advantage of the Verification and Observability mechanisms and tools introduced as part of the processes described 
above. By methodically ruling out potential causes, the actual root cause can be identified.  

A troubleshooting process is triggered either manually by a developer, or by automated Service and Orchestration 
layer components based on reports or notifications provided by deployed Observability points. A requested 
troubleshooting process aims to follow up on reported bugs, faults, and anomalous states that require further 
investigation when the faulty or anomalous condition cannot be immediately localized from existing observations 
and reports. This includes automated deployment and re-deployment of relevant verification and Observability 
points in order to isolate the root-cause of detected bugs, faults and anomalies.  

Fault localization reports are also generated asynchronously in the infrastructure layer, as in-network 
troubleshooting capabilities in the infrastructure layer run autonomous fault localization and root-cause analysis by 
analysing exchanged information (estimates, log or audit information, states, counter values, etc.). Detected and 
localized faults and performance degradations in the infrastructure layer are reported to the virtualized 
infrastructure management layer (and forwarded if necessary to higher layers) where further investigation may 
happen, or other tools may be triggered etc. This differs from manual triggers or those generated by higher layers as 
the fault localization may already be completed by the infrastructure itself.  
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Figure 22: Troubleshooting process in relation to architecture layers: Yellow arrows indicate the troubleshooting 
requests and invocation; green arrows indicate notification and reporting; solid arrows represent the parts of the 
process dealt with in WP4; dashed arrows represent the parts of the process flow that need to be done in shared 
responsibility with other WPs. 

The troubleshooting process depicted in Figure 22 shows the different ways troubleshooting / fault detection may 
be triggered: 
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 The Service Layer participates in the troubleshooting process mainly as a conduit of troubleshooting 
requests and by providing an interface to the troubleshooting capabilities for developers. This is done by the 
“Troubleshooting” functional block in the service layer. 

 The “Global Troubleshooting” functional block in the Orchestration Layer receives triggers from layers above 
and below to the “Global Troubleshooting” functional block, as well as triggers from other functional blocks 
in the same layer, the “Global Analytics” and “Global / KPI Observer” blocks. The “Global Troubleshooting” 
block in the orchestration layer is also responsible for automating various troubleshooting tasks using 
measurements in the orchestration layer and troubleshooting capabilities of lower layers (e.g. by triggering 
the creation of new Observability points and analysing their results). The “Global Troubleshooting” block is 
also responsible for presenting these automated workflows as troubleshooting capabilities to the Service 
layer above it. 

 The “Domain Troubleshooting” block in the Controller Layer serves a very similar role as its counterpart in 
the Orchestration layer but on a domain level, typically without a global view of the system. It receives 
triggers from layers above and below, as well as internal triggers from the “Domain Observability / KPI 
Observer” and “Observability point CP component” functional blocks. It also makes available domain-level 
troubleshooting capabilities to higher layers for automating troubleshooting workflows.  

 The Infrastructure Layer provides troubleshooting capabilities to the higher layers mainly in the form of 
Observability points (the “Observability point CP component” and “Observability point DP component” 
functional blocks) and Verification tools (in the “Verification” block) that can be created and configured by 
higher layers. Some of these Observability points may additionally perform in-network fault localization and 
thus independently locate faults and report these to higher layers. 

4.2.2.4 VNF Development support 
When applied in the unified production environment, the VNF Development process supports the team developing 
functionality of a network function in line with the DevOps principle “Develop and test against production-like 
systems” mentioned in Section 4.2. The unified production environment provides the means to instantiate a newly 
developed or updated VNF onto the infrastructure. It also provides the means to identify the resources where a 
particular instance is being executed, which is important for debugging purposes. Note that the VNF Development 
process includes only the interactions with entities belonging to the unified production environment, i.e. neither 
considering the Developer’s IDE nor functionality of traditional OSS/BSS systems (a discussion about the split 
between orchestration and management can be found in D2.1). For example, the actual copying of the code to the 
production environment, as well as configuration tasks to be performed before and after the instantiation, are part 
of the interaction with the OSS/BSS and thus not depicted in our process. 
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Figure 23: Processes supporting Development of VNFs: Yellow arrows indicate the downstream requests; green 
arrows indicate upstream responses; solid arrows represent the parts of the process dealt with in WP4; dashed 
arrows represent the parts of the process flow that need to be done in shared responsibility with other WPs. 

In order to facilitate VNF development to be performed directly in the production system, there needs to be a set of 
supporting functions by the architecture towards the VNF developer on top of the Service Layer. We consider three 
sub-processes which will provide this functionality. Once a VNF under development is deployed within the 
production system, VNF developers will be supported with the observability, verification and troubleshooting 
capabilities described in the preceding subsections. During the VNF development process, we envision the 
observability capabilities for the specific network function to be placed more extensively in the infrastructure (finer-
grained placement) and produce data in higher frequencies (as depicted as the right-hand flow in Figure 23). 

The three additional sub-processes are described below, and are depicted as the left-hand flow in Figure 23: 
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● Adding a new VNF to the production environment: This sub-process allows developers to add their new VNF (or 
a new version of an existing VNF) to the production environment for testing and debugging purposes. To start 
with, the developer submits a description of the VNF capabilities and resource requirements to the Service Layer, 
which in turn informs the Orchestration about the existence of the new VNF. The Service Layer also stores the 
description of the new VNF in the service catalogue or inventory.  The “adding a new VNF” view is also employed 
when updating an existing VNF. In this case, the updated VNF is stored in the service catalogue and the 
Orchestration is informed about any changes in terms of resource requirements that might have been 
introduced by the update. Optionally, if the resource model of the VNF is not yet known, then the Service Layer 
forwards a request to the Orchestration layer which determines by creating a simple service graph what are the 
resources allocated to the sample instance of the VNF. 

● Modifying an already deployed service graph with a new or updated VNF: Besides debugging isolated VNFs, 
developers can proactively minimize bugs by testing their new VNF code embedded in a complete service graph, 
interacting with other VNFs used in the production environment. Here, the developer announces their intention 
to deploy a particular VNF (identified through a VNF id) in a particular service graph (identified through a Service 
Graph id) instantiated in the unified production environment. The request is received at the Service Layer, 
forwarded to the Orchestration layer which queries the service catalogue for the resources allocated to the 
current instance of the VNF and what resources need to be allocated to the new instance. The Controller Layer is 
responsible for allocating the new resources and it configures the policies associated to steering traffic towards 
the new VNF instance. Once the policies are in place, the developer is informed about the availability, identifiers 
and possibly location of the resources and can proceed with the actual copying of the binary VNF distribution, 
which takes place outside the VNF Development process. 

● Attach VNF to software IDE: This sub-process is an enabler for actual VNF debugging activities. The developer 
queries the Service Layer by providing a Service Graph identifier and the type of the VNF in order to determine 
where the instance they are interested in is being executed. The Service Layer forwards the request to the 
Orchestration, which determines what resources are used for the VNF instance and provides the developer with 
an identifier for the resources and the VNF instance. The developer can then connect to the running VNF 
instance by means of tools such as distributed software debuggers, developed outside of UNIFY, and perform the 
debugging activity. The assumption of the “Attach VNF to software IDE” view is that no special needs have to be 
fulfilled in order to enable to connect to the VNF using a software debugger. In cases when special functionality 
needs to be deactivated or modified (for example, when the VNF instance is protected by a firewall), the 
developer needs to submit to the Service Layer a request to change the service graph accordingly. 
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4.3 Research challenges and proposed tools 
After the generic description of the SP-DevOps related processes targeted by WP4, the following subsections will 
highlight specific research questions identified within the scope of the various processes. We will describe the 
challenges in connection with first indications of the tools and methods that are planned to be investigated and 
developed in WP4 Task 4.2 and 4.3, and eventually implemented in the SP DevOps prototyping Task 4.4. In Annex 2 
we present a mapping of the research challenges against the objectives defined for the Work Package in the 
Description of Work document. 

4.3.1 Observability 
The UNIFY service provider will depend on the ability to monitor fault- and performance metrics for various reasons, 
ranging from SLA assurance to real-time and in-depth observability needs supporting increased velocity and 
dynamicity of tasks such as network planning, performance analysis and optimization. However, programmable 
monitoring capabilities will not only support the operational aspect of a provider, but also support any type of service 
developer (which might be a role within the providers organization, a role within a trusted partner of the provider, or 
in the future even a 3rd party developer) with greater visibility into the performance characteristics of the virtualized 
infrastructure, thereby facilitating verification, troubleshooting and service performance evaluation. 

A major problem related to frequent and fine-grained observability updates from many components, as envisioned 
in UNIFY, is scalability and resource-efficiency. In WP4, we will study and propose multiple complementing 
approaches to tackle this challenge, including distributed- and centralized- (i.e. controller-based) solutions, as well 
as generic extensions to existing passive SDN counter collection approaches. 

4.3.1.1 Distributed monitoring framework for SDN  
Current SDN-frameworks are from a fault and performance management and monitoring perspective in general 
very limited, offering at most the possibility to measure flow statistics based on simple counters in the switches ( 
[42], [46], [43], [41]). To ensure telecom operator-scale for deployed UNIFY service platforms, it is crucial for the 
observability capabilities to be scalable and resource-efficient, since observability points can and will be instantiated 
in large numbers at various network locations, instructed to collect diverse measurements at high frequencies in 
order to meet carrier requirements such as failure-resilience, service-deployment flexibility, and dynamic scaling. 
We plan to advance state of the art of SDN fault and performance management tools in the following aspect: 

 RC1: Probabilistic in-network monitoring methods: Efficient monitoring functions are crucial for enabling the 
UNIFY vision of dynamic and flexible service-chaining. This requires scalable and resource-efficient modelling 
of various performance indicators, as well as fast and flexible detection of the source of performance 
degradations with low level and high precision monitoring data, while minimizing control/data plane overhead. 
In UNIFY, we will develop scalable and adaptive approaches for performance monitoring, based on probabilistic 
methods for efficient calculation of statistical estimates of performance measurements for modelling of flow 
and link metrics, using distributed methods when applicable. To achieve scalability we aim to calculate the 
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estimates as locally as possible, and provide the results as compact and expressive parametric distributions. The 
monitoring functions will be adaptive and controllable through high-level performance objectives, which will 
contribute to operational resource-efficiency and simplified configuration.  In order to pursue these design 
goals, certain requirements on node resources need to be fulfilled for modelling of flow and link metrics (as 
listed in Section 5.1.1). These requirements include e.g. basic computational and storage facilities at the nodes for 
local estimation and aggregation, and additional counters in the data plane for obtaining richer statistics of the 
observed network behaviour at varying time scales. We believe that a distributed, probabilistic approach is 
absolutely necessary in order to deliver sufficiently precise data and predictions on monitored performance 
indicators with modest demands on infrastructure resources. 

 RC2: Scalable observability data transport and processing : The data collected by observability points needs to 
be propagated to the control plane component of the virtual monitoring function, centrally located at the 
Controller Layer (controller). Typically, the data is aggregated to compute the final metrics required by the 
monitoring objective on this central location. However, this puts pressure on both the underlying network 
capacity, and also on the processing capabilities of the central aggregator. We will propose a method to optimize 
the processing and transport of observability data through the use of in-network aggregation. We will introduce 
in-network aggregation points (AP) to effectively reduce the load on both the network and the control plane 
component on the Controller Layer. APs will be deployed deeply into the network (e.g. as local CP components) 
in order to attract data from observability points in their proximity, aggregate and pre-process the data by a 
function specified by the monitoring objective, and send the data (with greatly reduced overhead) up to the 
control plane component. Here, one key problem will be finding the optimal placements of APs while trading-
off between traffic load benefits and costs associated with instantiating APs. Existing work in this area, 
especially the VirtuCast algorithm [82], only consider commutative and associative aggregation or filtering 
functions. However, as monitoring functions are in general not commutative, the main research challenge is to 
extend the existing algorithmic framework of [82] to incorporate arbitrary monitoring functions, while still 
optimizing both AP placements and traffic usage. In summary, we plan to develop a scalable observability data 
transport and processing system that builds on the general ideas of VirtuCast and is adapted to the UNIFY 
architecture and Use-Cases. 

4.3.1.2 Controller based performance monitoring for SDN 
 As noted in section 2.3.1.2 most of the performance monitoring solutions for Openflow networks operate under 
assumptions that are usually not met in a service provider scenario as envisioned in UNIFY: they assume re-active 
flow instantiation, triggered by the arrival of an unknown flow at a switch; and/or they assume fine-grained flow 
definitions with fully specified matching structures. Both of these assumptions are not met in most service provider 
networks, where operators typically will proactively populate flow tables during provisioning time (e.g. for routing 
purposes), and take advantage of the possibilities to aggregate traffic by coarse-grained flow definitions (i.e. by 
applying wildcards in certain fields of the flow definition table). Additionally, due to the inherently centralized nature 
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of existing SDN control planes, controller based methods often suffer from the resulting scalability challenges with 
respect to signalling and notification load.  

 RC3: Low-overhead performance monitoring for SDN: Motivated by the shortcomings of current solutions, it is 
our goal to design a scalable and programmable method that provides generic SDN performance data in a 
service provider scenario as depicted in UNIFY (e.g. use case in Section 3.1). In summary, the design goals are the 
following:  

• Accurate determination of link and flow performance (i.e. loss, delay, throughput) 

• Generic, technology independent solution based on the existing SDN components  

• Programmable interfaces to facilitate automation (e.g. for troubleshooting purposes)  

• Effectiveness against granularity of flow definitions and flow-deployment mode (reactive vs proactive) 

• Scalability with respect to signalling and data-plane overhead 

 

We will investigate a method for estimating network performance metrics (at first focusing on packet loss and 
delay) which contributes to the observability capabilities of the network infrastructure in UNIFY [83]. The 
method will take advantage of user traffic transported using pre-deployed aggregated Openflow flow 
descriptors. Employing user traffic will reduce network overhead compared to most OAM tools that rely on 
active measurement methods, i.e. injection of packets or packet trains into the network. We will explore how to 
adapt existing ideas on low-cost monitoring (FlowSense [42]) to pre-provisioned and aggregated flow 
definitions in order to keep signalling overhead between control and data planes minimal. We will also 
investigate a programmable devolving mechanism of aggregated flow-definitions (defined with wildcards) into 
isolated microflows (with fully defined flow definitions) which can be used as measurement samples. This idea 
is inspired by DevoFlow [84], but requires extensions to support various performance metrics while being 
steered by policies on control and orchestration layers. Further ideas for potential extensions of the method 
include extensions for additional network performance metrics (such as throughput, packet reordering, etc.) 
and expandability toward non-network resources (i.e. integration with compute resources e.g. for a combined 
delay metric). With respect to deployment of the observability method, conditional activation of the capability 
will be considered, as well as consistent configuration across the network path in question. 

4.3.1.3 Passive measurement extensions to SDN 
OpenFlow-enabled switches passively gather statistics in several places of the OpenFlow switch model, based on 
counting the packets and bytes traversing a particular part of a switch configuration. In the latest OpenFlow version 
(1.4.0 at the time of writing) these statistics are available for individual flow table entries, aggregate flow table 
entries, whole flow tables, group entries, meters, queues and ports. While these counter-based statistics provide a 
wealth of information about the system, the “rawness” of the measurements and the protocol used to access them 
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makes using the data efficiently to calculate network metrics a difficult process with a large overhead. We are 
planning to extend various parts of the statistics system with capabilities on the switch to reduce overhead on both 
the network and the central controller. 

The extensions we will investigate involve the inclusion of new metrics into existing structures, for example adding 
latency statistics to queuing and flow table statistics. Such metrics can easily be calculated locally on the switch, but 
require heavy overhead to calculate it at the centralized controller. Other extensions we will investigate are 
mechanisms for retrieval and use of existing statistics in a different manner. Such type of protocol messaging 
extensions can involve the inclusion of thresholds and associated alarms where today frequent polling would be 
necessary, as well as methods for obtaining for example the top 100 flow entries based on e.g. throughput rather 
than having to poll each individual installed flow table entry.  

This work will be integrated as much as possible with both the distributed and controller-based monitoring 
approaches described above. The primary goal of the extensions is the proactive gathering of various metrics on link, 
queues, and nodes, such as their utilization and current latency, in order to support the orchestration and resource 
placement and optimization algorithms developed in WP3. At the moment the focus is on two extensions described 
below (RC4 and RC5), but this will be reconsidered if WP3 work shows the need for further metrics. 

 RC4: Novel metrics in counter structures: Passive latency estimates could be obtained via monitoring the status 
of buffers in the network. Network buffers exists as a way to temporarily store bursts of incoming packets 
before transmitting them on an outgoing link, instead of dropping the packets. They are intended to perform 
this job transiently, quickly emptying the buffer after it has been used to store a burst. However, in many cases 
the buffers get filled up and stay full (obtaining a “standing queue”), losing their function of absorbing 
temporary bursts since they cannot buffer any more packets. Instead they just act as a source of latency in the 
network and cause additional packet drops. Active queue management (AQM) techniques, such as Random 
Early Detection, is intended to help mitigate this problem, known as “bufferbloat”, but are notoriously difficult to 
configure correctly. Newer AQM such as Codel [85] measure the local standing queue and use it as a way of 
indicating when packets should be dropped. We believe the same metric gathered from multiple nodes could be 
used to predict the current latency over a path (for WP3, assisting in resource allocation) and provide insight as 
to the cause of network problems (as a troubleshooting tool). This requires extensions of existing statistics 
structures in OpenFlow. 

 RC5: Efficient counter retrieval: Flow entry utilization (or “flow popularity”) can be measured using OpenFlow 
statistics and used to indicate how to dynamically allocate and route flow entries in the network, in order to 
reduce overall latency, congestion, and network resource usage, by prioritizing the allocation of the most 
popular entries (which often conform to a Zipf distribution [86]). However, existing methods require continuous 
polling of all installed flow entries in order to determine the relative popularity of each flow. This is one of the 
problems that could be solved by adding new mechanisms in OpenFlow for retrieving statistics, by distributing 
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the work of e.g. sorting the local flow entries based on a metric and periodically updating a controller with a 
small subset of entries and their statistics.  

4.3.2 Verification 
Enabling ongoing verification of code is an important goal of continuous integration as part of the DevOps concept. 
Here we mean verification with respect to the service definitions and configurations initiated by the Service 
Developer. Automated verification functions on each layer of the architecture facilitate verification as part of each 
step in the deployment process, allowing identification of problems early in the service lifecycle. 

 RC6: Deploy-time functional verification of dynamic Service Graphs: The role of verification is key in the SDN 
scenario. A completely programmable network cannot disregard procedures to check the correctness of a 
network configuration set before it is deployed in the real system, especially if this comes from a user/customer 
with relatively low expertise. With this in mind, several tools have been proposed with the aim of enabling a 
(formal) verification of specific SDN configurations (e.g. with respect to availability of a path to the destination, 
absence of routing loops, access control policies, or isolation between virtual networks). Among the others, NICE 
[53], VeriFlow [65], and NetPlumber [66] represent significant examples in this direction (see Sections 2.3.3 and 
2.3.4 for more details).  

The majority of these tools operate on network configuration rules (commonly OpenFlow), and in any case all of 
them do not consider active network functions (i.e. VNFs or middle-boxes that dynamically change the 
forwarding path of a flow according to local algorithms, as e.g. the IDS in the UC described in Section 3.1). In 
other words, these tools operate on the (centralized) programmability of the control plane only. This might be a 
limitation if we consider a possible network deploying active network functions, i.e. an environment that also 
enables programmability of the data plane in a distributed fashion. With this respect, novel tools for SDN 
verification are required, which could extend existing ones toward a fully programmable environment, such as 
one that includes network function virtualization. 

This also is particularly relevant in the context of the UNIFY project, which considers a network architecture 
made of virtual network functions running on physical network nodes. Tools like NICE, Veriflow or NetPlumber 
should be extended or adapted, in order to be able to work in this context too. Moreover, in the UNIFY 
architecture, network functions can be more than passive packet processing elements, simply combined into 
chains by means of proper forwarding rules set by a control plane level. For example, active network functions 
such as load balancers, packet marking modules, and intrusion detection systems might modify packet 
forwarding paths at run-time, or even the incoming traffic itself. For this reason, the adaptation of the standard 
SDN verification tools such as NICE and VeriFlow to the UNIFY architecture should be done not only to check the 
correctness of chain creation rules, but a more in depth verification of the resulting traffic paths should be done 
when active network functions are deployed into chains. 
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We will develop tools supporting the verification process during deployment of a Service Graph. For each step of 
the deployment process through the UNIFY architecture (from Service- to Infrastructure layer) we will 
investigate appropriate verification functions. Starting from a high-level verification of the customer input (i.e. 
the Service Graph), the verification process will then go more in depth in the chain configuration procedure by 
operating on the Network Function Forwarding Graph (NF-FG), which maps the Service Graph to the available 
network functions. If verification at this layer gives a positive feedback too, the tool will finally consider the low-
layer information represented by the actual set of forwarding rules and other chain configuration parameters. 
Verification at the higher layers will be operated on graph descriptions and hence will mainly focus on 
topological properties (e.g., absence of forwarding loops or deadlocks). As this process involves lower layers of 
the architecture, it will have the opportunity to access additional information. This enables the verification of 
more quantitative properties (e.g. compliance with resource availability), as well as a more detailed and precise 
verification of the abovementioned topological ones. At the Infrastructure Layer, the tool will also handle 
possible active network functions, if any is deployed in the chain. This last verification step represents the most 
relevant advance beyond the current state of the art, as already mentioned. Here, the challenges stand in 
extending the already known verification techniques that operate on the control plane (e.g. on Openflow rules) 
so that virtual and active network functions can also be considered. This has to be done without a relevant 
degradation of verification times, so as to still allow fast SP-DevOps cycles. After the study of the already 
existing tools, our work will proceed with the design of adapted tools to the new context. 

 RC7: Run-time verification of forwarding configurations by enhanced ATPG: The existing Automatic Test Packet 
Generation (ATPG) [51] tool for verification of deployed flow rules is very specific to one type of network and has 
many shortcomings and overheads. One of the overheads of ATPG is polling the network periodically for the 
forwarding state and performing all-pairs reachability. If this polling interval is significantly large, there are more 
chances that ATPG will have incorrect information of the network state as the state may change over time. If 
the polling interval is small, it brings additional load in the network. In addition, the current implementation of 
ATPG is only able to verify and test the action part of the forwarding rule. Therefore, the matching part of the 
forwarding rule remains untested. Furthermore, with the current ATPG implementation, only active rules can 
be tested: for example, an error in a backup rule cannot be detected in a normal operation or an error in the 
working path cannot be detected in a failure operation. Moreover, ATPG modifies a packet to add a history field: 
an ordered list of rules the packet matched so far in the network. ATPG uses this history field to localize the root 
cause of the issues.  

The main goal of our enhanced test packet generation tool is to solve all the aforementioned limitations of ATPG 
by testing both matching part and action part and also test the inactive rules for protection paths. For this 
purpose, our tool will periodically send test packets in the network to verify its operational status and therefore, 
these errors can be reported automatically to the network engineers. For verification of data plane connectivity, 
it can verify the network state periodically and can report if errors are present. 
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4.3.3 Troubleshooting 
Implementing the UNIFY architecture or a similar SDN architecture supporting traffic chaining necessarily leads to 
complex systems consisting of a large number of components. These components are located at several abstraction 
layers of the architectures. In order to identify the source of problems in such a complex and multi-layered 
environment, both Service developers and VNF Developers will require support of advanced and troubleshooting 
mechanisms which need to be available during development, deployment and operation phases of the SP-DevOps 
cycle. Troubleshooting tools will need to operate on several levels of the architecture and will largely take advantage 
of verification and observability tools introduced above (Sections 4.3.1 and 4.3.2), as well as complementing existing 
tools (Section 2.3). These tools will be used collectively for localizing the cause of a problem such as fault or 
performance degradation. By ruling out sources of the problem the actual root cause can be narrowed down.  

 RC8: Automated troubleshooting workflows: The problem of integrated network troubleshooting was first 
described profoundly in [52]. In UNIFY, we will follow a similar approach that automatically addresses the whole 
architecture to debug Service Graph deployment, configuration and troubleshoot operational problems. For this, 
we will go beyond the state of the art in SDN debugging / troubleshooting at more than one area. First, we 
intend to design a debugging system for the multi-layered UNIFY architecture. Components of the multi-layer 
architecture will be able to define monitoring and debugging information accessible through a common 
interface. This interface will employ layer hopping logic for allowing the debugger to follow execution across 
layers and components. To enable such an automatic troubleshooting logic, we will consider interfaces towards 
the observability and verification capabilities developed in UNIFY, allowing, fine-grained and automatic on-
demand control for integration with other fault and performance measurement mechanisms and tools. 

 RC9: In-network troubleshooting: Empirical parameters for metric models, obtained via probabilistic in-network 
monitoring as described in Section 4.3.1.1, will be used for fault management and troubleshooting purposes. 
Working towards the objectives of increased scalability, automation and adaptability in a timely manner, we will 
investigate how typically centralized SDN monitoring could be augmented with distributed and autonomous 
approaches for in-network detection and localization of performance degradations to physical and logical 
network devices. For these purposes, we will consider change detection and event correlation methods, which 
will require e.g. resource-efficient information exchange between nodes and access to local log data stored in 
the nodes. The overall approach of detecting changes in local estimators enables early warning of potential 
degradations, which is an important aspect to address towards dynamic and flexible deployment and operation 
of service-chains. 

 RC10: Troubleshooting with active measurement methods: Besides run-time verification of forwarding 
configurations, the automated test packet generation (ATPG) method can also be used to debug many errors 
dealing with forwarding rules, actions, links, bandwidth usage, latency, and network elements. While the core 
algorithm of ATPG is targeting the minimization of test-packet sets for maximal forwarding rule verification, the 
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tool can also be used as active measurement method for observability metrics such as delay, bandwidth usage, 
loss etc. For troubleshooting, it can thus be integrated into an automated workflow to perform verification and 
active performance measurements. 

4.3.4 VNF development support 
The VNF Development process supports any VNF developer to conform to the DevOps principle “Develop and test 
against production-like systems”. Developing, debugging, and deploying a VNF in a live system raises many 
architectural, performance, and security issues we plan to address.  For example, in a multi-layer architecture like 
UNIFY, it is not trivial to identify lower-layer instances of a high-level service description, e.g., identify a running VNF 
process on a specific machine inferred from high-level service graphs. From the perspective of performance and 
security, the appropriate isolation is the most important issue to address in order to protect already configured and 
running service graphs. Most of these issues are highly dependent on parts of the UNIFY architecture developed in 
other WPs and will need to be studied in close cooperation, such as functionality related to deployment of VNFs 
within the orchestration layer (WP3) or actual instantiation on the infrastructure layer (WP5).  For example, well-
defined troubleshooting interfaces are required for software components implementing the functionalities of all 
UNIFY layers. 

 RC11: VNF development support: We investigate in details and elaborate on several functionalities required by 
VNF developer that shed light on possible solutions. These include the following:  

o adding a new version of a VNF to the service catalogue (optionally with a blank resource model).  

o VNF-developer initiated queries for access points of instantiated network functions. These access 
points then can be used, for instance, to attach a debugger to the VNF under development.  

o automatically determining VNF resource model by creating a special service chain. This service chain 
consists of the VNF in question, necessary Observation Points, and possibly traffic sources.  

o upgrading an instantiated service graph on the fly with a new version of a VNF. This probably should 
result in gradually driving traffic to the new VNF as old flows terminate.  

o accessing a network debugger like break pointing tool from multilayer debugger. This multi-layer 
debugger concept enables the support/definition of novel troubleshooting mechanisms between 
arbitrary layers of the architecture.  
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5 Requirements for realizing SP-DevOps in UNIFY 

This section presents initial requirements defined from the perspective of the SP-DevOps concept (detailed in 
Section 4), and is a revisited and extended version of the high level requirements towards the UNIFY architecture 
documented in Section 4.3 of D2.1 [3]. 

Most of the requirements and processes in the scope of UNIFY SP-DevOps will be centred on observability and 
troubleshooting of service chains and its building blocks. As we noted in Section 4.2.1, a monitoring function consist 
of one or several observability points (OP) instantiated on one or several nodes together with a control plane 
component for analysis and control of lower-level monitoring operations towards the observability points. In turn, an 
observability point operates in terms of a node-local control and data plane components for local analytics and 
measurement purposes. 

The requirements fall into two main categories: The first (and larger part) of the requirements express technical 
demands on the UNIFY architecture, i.e., what the architecture should provide in order to meet the needs of the SP-
DevOps concept (technical requirements, in short). Fulfilling the technical requirements is expected to be done in 
collaboration between WP4 and WP3 and WP5. The second part of the requirements formulates further guiding 
principles in terms of usefulness criteria from the users’ point of view, which we call operational requirements. In 
Annex 2 we present a mapping of both technical and operational requirements onto the objectives of the Work 
Package as specified in the Description of Work. 

It is important to note that the requirements documented below will be revised with technical concepts evolving in 
other technical work-packages and updates will be documented in forthcoming WP4 milestone reports and 
deliverables. 

In the following, the key requirements are written in bold. Some of these requirements are of more general aspect 
and broken down to more detailed requirements. 

5.1 Technical Requirements  
Technical requirements are expressed towards both the infrastructure (node-level, NL) and towards higher layers of 
the UNIFY architecture, primarily the orchestration layer (OL). The requirement of the SP-DevOps concept toward 
the infrastructure level will explicitly target the Universal Node given that it is under development within the project 
and would thus be a better candidate for adding advanced programmable functionality, compared to other UNIFY 
infrastructure targets. The requirements towards the higher layers will put demands mainly on the orchestration 
layer and target all of its sub-layers defined in the overarching architecture, but most commonly the virtualized 
infrastructure manager (i.e. SDN controller) sub-layer.  
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5.1.1 Node-level (infrastructure) requirements 
One of the key questions in terms of observability is how the UN will support observability components. This 
subsection collects the identified requirements on the Universal Node, which are a refinement of the initial 
monitoring requirements documented Section 4.5 of D5.1 [87], as well as Section 4.3 of D2.1 [3] 

 NL1: The UN must support advanced monitoring capabilities  

This high-level requirement corresponds to SP-DevOps Req. 3-2 in D2.1. With advanced monitoring capabilities we 
mean that observability points (OP) will go beyond collecting simple statistics and counters from physical and virtual 
infrastructure resources. As an example, it is envisioned that observability points provide scalable and detailed 
performance metrics. These components can in turn require support from the UNIFY architecture and 
infrastructure, which must provide means for the OPs to, for example, perform packet manipulation (e.g., adding 
timestamps, marking certain types of packets for monitoring, etc. as further detailed in NL4) and to implement 
simple decision functions on virtual infrastructure resources dedicated to the specific OP (thresholds for 
notifications, aggregation of events, etc.). 

 NL1.1: Observability components must have access to read the resource state on physical and virtual levels 
and access to timestamped log data stored in infrastructure resources. 

 NL1.2: Universal Nodes should provide required resources (e.g. memory, CPU, storage) resources for node-
local analytics. 

 NL1.3: Observability components must be able to access data required to derive basic network metrics 
(throughput, loss, delay, jitter) on different levels of granularity (packet, flow, links, etc.) on physical and 
virtual infrastructure resources (corresponds to D5.1,Monitoring Req. 1) 

 NL1.4: Observability components must be allowed to perform node-local analytics in the UN, based on 
counters capable of performing arithmetic operations directly in the data plane (e.g. for the purpose of 
aggregation, filtering, etc.) (corresponds to D5.1,Monitoring Req. 9).  

 NL1.5: Observability components must be able to apply sampling strategies on measurement data at 
different levels of granularity (packet, flow, etc.) (corresponds to D5.1,Monitoring Req. 4) 

 NL2: The UN must provide interfaces to access observability metrics of services and their associated components 
in a desired timely manner. 

This high-level requirement corresponds to SP-DevOps Req. 3-5 in D2.1. It should support dynamic service 
optimization by mandating interfaces that propagate monitoring information in various time-scales, including close 
to real-time. This means, for example, that the monitoring capabilities of the OpenFlow protocol are not sufficient: 
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counters in the data plane need to perform arithmetic operations allowing for modelling of flow counters at high 
sampling rates (i.e., less than 100 ms).  

 NL2.1: Observability components must be able to regularly report observability data. Reporting should be 
done in user specified time intervals, or alternatively the interval can be controlled through 
deterministic/probabilistic limits or other conditions. 

 NL 3: Observability Points must allow for dynamic installation, activation and deactivation on request for service 
provisioning and operational aspects. 

The high level requirement NL3 corresponds to SP-DevOps Req. 3-6 in D2.1. It specifies that the UN needs to support 
dynamic activation and deactivation of observability components in order to realize conditional observability points.  

 NL4: The UN should provide monitoring information to higher layers in suitable level of detail and granularity 
through Observability Points. 

The high-level requirement NL4 corresponds to node-level aspect of SP-DevOps Req. 3-7 in D2.1. It implies that in 
order to provide information through OPs to higher-layers, the UN also needs to implement capabilities that can 
provide OPs with necessary low-level information in line with the previously listed requirements. 

Both of the above two requirements (NL3 and NL4) demand interfaces to the Universal Node for interaction with its 
advanced capabilities. On the other hand, they necessitate providing advanced capabilities for the monitoring and 
troubleshooting tasks. The following list details these two aspects. 

 NL4.1: Observability components must be able to perform packet manipulation (e.g., adding timestamps, 
mark a certain packet for monitoring, etc.) (corresponds to D5.1, Monitoring Req.3)  

 NL4.2: Observability components should be able to dynamically instantiate software-defined counters 
executed directly in the data plane (corresponds to D5.1, Monitoring Req.9).  

 NL4.3: Universal Nodes should support instantiation of additional counters in the data plane as it enables 
modelling of counter values observed with fine granularity. 

 NL4.4: Universal Nodes should allow for implementation of simple decision functions on virtual switches 
(thresholds for notifications, aggregation of events, etc.) 

 NL4.5: Observability components must be able to perform active and passive measurements to observe and 
model different aspects of the network behaviour for monitoring and troubleshooting purposes. The use of 
active measurements means that observability-defined packets would need to be created within a 
Universal Node and inserted in the datapath such that they share the faith of the flows under test. 

 NL4.6: Observability components and/or the infrastructure management layer must be able to instantiate, 
maintain and update sets of counters on virtual infrastructure resource.  
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 NL4.7: Observability components should also be able to instantiate, maintain and update more complex 
structures (e.g., Arrays) instead of single values for counters (corresponds to D5.1,Monitoring Req.2)  

 NL4.8: Observability components need to exchange messages directly between physical and virtual 
infrastructure resources for efficient use and re-use of monitoring data as well as for troubleshooting 
purposes. However, observability components should not exchange information directly when they are 
situated in different administrative domains, for example customer VNFs “under observation” shall not 
receive information directly from observability components belonging to the infrastructure provider.   

5.1.2 Orchestration level requirements 
This subsection collects the identified requirements on the higher layers of the UNIFY architecture, primarily the 
orchestration layer, but also aspects of the service layer. The aim of these requirements is to outline the 
consequences and associated SP-DevOps requirements that arise given the overarching key requirements from 
D2.1. 

 OL1: The UNIFY architecture must support capabilities to develop and test components. 

This high-level requirement corresponds to SP-DevOps Req. 3-1 in D2.1. It aims to facilitate increased service velocity 
towards customers by continuous deployment and integration practices. This reflects DevOps principles by making it 
possible to develop and test VNFs and NF-FGs in production-like systems. These capabilities can for example 
include creation and isolation of resources slices (computer, network, storage) and isolation or special treatment of 
downstream traffic from development virtual network functions (VNF). The architecture must also be capable of 
running different versions of the same VNF at the same time. 

 OL2: The UNIFY architecture must support automated integration of monitoring, troubleshooting and verification 
capabilities. 

This high-level requirement corresponds to SP-DevOps Req. 3-3 in D2.1. It mandates programmable interfaces 
towards monitoring and verification capabilities on all architecture layers to support automation of operational 
processes. Automation of operational processes will allow adaptation and coordination of workflows for service 
design, development and operations teams. 

 OL3: The UNIFY architecture should be able to react accordingly to reports and notifications generated by 
observability and verification components. 

This high-level requirement corresponds to SP-DevOps Req. 3-4 in D2.1. Since observability and verification 
components will asynchronously generate reports and notifications (e.g., exceptions with respect to pre-configured 
or adaptively set thresholds and limits, such as changes, performance degradations, SLO breaches, etc), the above 
requirement specifies that the UNIFY orchestration and service layers will need to provide means to react in a way 
to mitigate the reported problem. This could be, e.g., to forward the notification through a service layer interface to 
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the application logic, or to trigger an appropriate function within the orchestration or service layer (e.g., a scaling 
function, or a function providing some sort of re-optimization through changes in VNF placement or rerouting). 

 OL3.1: The OL must provide parameter updates and other information relevant for (re-) configuration of 
monitoring functions upon operational changes in the network and service-chains, in order to obtain 
accurate monitoring information and maintain the capability of making near-optimal management 
decisions in a timely manner. 

 OL3.2: The OL should include deployment of monitoring functions within the deployment of a service chain. 
This includes deployment of virtual monitoring functions (including all necessary OPs) as well as 
configuration input on the appropriate level of detail for the specific network functions (e.g. KQIs translated 
to KPIs, etc.) 

 OL 3.3: Management-related functional components in the architecture should provide an observability 
components operating in the physical/virtual devices with relevant timestamped historical data, logs, 
events and other data (such as topology) upon request or as part of instantiating an observability 
component (e.g. topology). 

 OL3.4: All components within UNIFY architecture should report all errors in each round of tests  
 OL3.5: The OL must provide observability components with specified conditions for dynamic activation and 

deactivation of OP operations (allowing for conditional OPs).  

 OL4: The UNIFY architecture and its components should provide monitoring information in suitable level of detail 
and granularity according to the needs of applications or functional blocks within the architecture. 

This high-level requirement corresponds to SP-DevOps Req. 3-7 in D2.1. Here, the demand for appropriate 
information for different abstraction and virtualisation needs is covered. For example, information might be needed 
per application, user or even fine-grained element in the architecture. 

 OL4.1: Monitoring functions and observability components must be able to send reports and asynchronous 
notifications to the Virtualized Infrastructure Management Layer (e.g., exceptions with respect to pre-
configured or adaptively set thresholds and limits, such as changes, performance degradations, SLO 
breaches, etc) 

 OL4.2: The UNIFY architecture should contain analytics functions on all architectural layers capable of 
aggregating different types of metrics collected and pre-aggregated by multiple components into domain 
or service chain wide KPIs 

 OL4.3: Management functions and observability components must be allowed to perform in-network 
aggregation and processing in the infrastructure layer, in order to produce monitoring information at the 
specified detail and granularity in a resource efficient and timely manner. 
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 OL5: The UNIFY architecture must support automated verification of services and their formal representations. 

This high-level requirement corresponds to SP-DevOps Req. 3-8 in D2.1. Verification tools offer possibilities to debug 
service components during design time to ensure intended functionality, as well as ensuring resource availability 
and verification of parameters settings during deployment time based on the specifications of service graphs and 
components. During deployment time, the validation and verification tools may need to operate within specified 
bounds (e.g., time limits) to ensure rapid service-chain deployment or re-deployment.  

The interfaces supporting automated verification of services and forwarding graphs of the above requirement must 
work on all architectural layers (i.e., levels of abstraction), e.g., formal verification of definitions and configurations 
with respect to validity and inconsistency. To support verification functions, relevant pieces of information must be 
provided by the UNIFY architecture. 

 OL5.1: The network operator must be able to verify the successful deployment and operation of virtual 
functions and service graphs consisting thereof.  

 OL5.2: Verification of the operation of different paths in the service graph must be supported dynamically 
and on-the-fly. 

 OL5.3: Verification module at Service Layer must receive (or be able to access) information about the 
service graph representing the service graphs to be verified and other related parameters, e.g., the ordered 
list of VNFs in a service graph. 

 OL5.4: Verification module at Orchestration Layer must receive (or be able to access) information about the 
NF-FG representing the service graphs to be verified and a description of the underlying resources and 
topology. 

 OL5.5: Verification module at controller layer must receive (or be able to access) information about the 
overlay topology of the service graphs to be verified and a description of the available computing and 
storage resources and of the VNF chain configuration rules. 

 OL5.6: Verification modules must receive (or be able to access) possible verification policies to verify for a 
specific service graph (e.g., "all packets must pass through a given firewall"). 

 OL6: The verification functions should operate at design and (re-)deployment time. 

This high-level requirement corresponds to SP-DevOps Req. 3-9 in D2.1. It is in line with the verification module 
described previously, but it additionally stresses the importance its place within the different workflows the users 
interacts with the UNIFY architecture. 
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5.2 Operational Requirements 
This last part of the requirements formulates further guiding principles from the operators point of view, which we 
refer to as operational requirements. In part, these requirements reflect back on the SP-DevOps concept itself and 
will be taken into account during method development and interface specification. They are relevant in particular for 
the interaction with WP3 and our contributions to the integrated prototype.   

 OR1: The impact of monitoring, verification and troubleshooting on the performance of the UNIFY architecture 
should be as low as possible. 

The scalability requirements can be broken down at many levels. For example, one aspect is the efficiency of the 
measurement data transport. For the purpose of resource-efficiency, scalability and timeliness, monitoring 
functions based on in-network aggregation and processing in certain types of observability components are needed. 
For measurement intensive monitoring applications, the transport of measurement data collected by observation 
components needs to be efficient in the use of bandwidth. In-network processing also provides increased scalability 
in the processing of large amounts of fine-grained measurement data as the computational load is distributed. The 
degree to which in-network monitoring function can be instantiated during deployment and operation in the UNIFY 
framework is a trade-off between the type of observability needed, level of detail desired and available resources. 

 OR2: The proposed SP-DevOps methods and tools must be in harmony with existing operational processes. 

For authentication, authorization and accounting purposes, the operator must be capable to validate the 
type/class/quality of service that a customer receives. Accountability is also important for the sake of SLAs 
monitoring and billing processes, but also to avoid customers' misuse or malicious behaviour. Additionally, the 
network operator must be able to verify the successful development and operation of virtual functions and service 
chains consisting thereof. Moreover, the verification of the operations of different paths in the service graph must be 
supported dynamically and on-the-fly. The network operator should be able to dynamically resolve/troubleshoot 
issues with VNFs or service graphs and in a flexible manner, which also includes the possibility to temporarily start, 
stop, configure and deploy observability points as necessary. Automatic monitoring and troubleshooting processes 
could be employed (even periodically), instead of manual or ad-hoc procedures that involves human intervention. 
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6 Conclusions 

In this deliverable, we present a sketch of the SP-DevOps concept as a proposal that would enable telecom 
providers to support faster introduction of new services. We identified characteristics that differentiate DevOps in a 
telecom provider environment compared to the datacentre, where the concept originates. We identified two 
developer roles – the Service Developer defines a service graph associated to a new service, and the VNF developer 
implements the software associated with a new virtual network function and maintains existing ones. We also 
identified the need for an Operator role that, in addition to the regular daily operation duties from the eTOM and ITIL 
frameworks, empowers the developers to troubleshoot problems with their code in conditions close to a real 
production environment. In our definition, SP-DevOps reposes on three pillars aligned towards the Work Package 
objectives specified in the Description of Work: observability, troubleshooting and verification. Processes associated 
to each one of these areas were described, pinpointing components of the functional architecture that would be 
involved in the implementation. 

We outlined the fact that the concept of SP-DevOps is wider than WP4 and requires cooperation with WP3 and WP5. 
In this respect, we formulated a set of technical requirements towards the programmability framework, the 
Universal Node as well as towards the overall architecture developed in WP2. WP4 will also have a role in fulfilling 
parts of the technical requirements. These requirements are complemented by two generic operational 
requirements aimed at the observability, verification and troubleshooting areas to be approached in this Work 
Package. 

We surveyed the state of the art for the areas of software-defined infrastructure monitoring, verification and 
troubleshooting, with a focus on software-defined networks. Several key issues were identified and preliminary 
ways of addressing them in the duration of the project were outlined. Monitoring and troubleshooting approaches 
were found to be highly limited in terms of the level observability that can be efficiently provided in a UNIFY context. 
We will address this by designing resource-efficient, scalable and controllable methods capable of operating 
dynamically relative to specified KPIs and adapt to performance changes in service graphs. This will include 
development of more advanced methods based on capabilities of the OpenFlow standard as well as extended OAM 
mechanisms for obtaining richer information about the virtualized infrastructure behaviour while lowering the 
operational overhead. We discussed the need for and presented a definition for Observability points, which are 
virtual network functions that implement advanced monitoring functionality. Verification approaches assume a 
centralized and statically-controlled network configuration, which is different from the dynamic UNIFY production 
environment. We will design verification mechanisms that exploits the programmability of the UNIFY environment 
to provide dynamic adaptation to service graphs deployments and runtime evolution. The VNF Development 
framework provides the service developer the necessary means for testing, debugging and deploying services, and 
relies partially on the monitoring, troubleshooting, and verification processes. Main research challenges to be 
addressed include efficient tracking and identification of different VNF processes common to a service graph 
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running in the UNIFY multi-layer architecture, as well as maintaining the specified performance of service-chains. 
The research challenges we outlined cover all the objectives proposed in the Work Package description document. 

The following steps will be taken to advance the SP-DevOps sketch towards an initial concept that will be detailed in 
MS4.1. We will identify and specify interfaces associated to passing SP-DevOps-relevant information between 
components of the functional architecture. In cooperation with the service instantiation and deployment framework 
developed in WP3, we will work on specifying how to describe monitoring and verification capabilities such that they 
could be integrated in the UNIFY production environment. Together with the work on the infrastructure and 
hardware aspects in WP5, we will work on further understanding how the Universal Node can support our 
requirements for programmable monitoring capabilities. The progress of these discussions, along with the progress 
made by partners in designing monitoring, verification and troubleshooting capabilities will be reported in MS4.1. As 
the map of capabilities and interfaces becomes more complete, we will start documenting how an integrated WP4 
prototype could be built for demonstrating the advantages of our combined approaches. The progress in this 
direction will too be documented in MS4.1.  
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Annex 1 : Detailed service configuration steps 

Example #1: VPN service 

In Figure 24, an MPLS VPN network is depicted. 

 

Figure 24: MPLS VPN Network [20] 

Below, we present the tasks that need to be completed by a network operator to configure, monitor and maintain, 
and trouble-shoot such an MPLS VPN network. 

A. Configuration 

1. Configuring the MPLS Core Network 
a. Enabling Label Switching of IP Packets on Interfaces 
b. Configuring Virtual Routing and Forwarding Instances 
c. Associating VRFs 
d. Configuring Multiprotocol BGP PE to PE Routing Sessions 

2. Configuring Access Protocols and Connections 
e. Configuring a Virtual Template Interface 
f. Configuring PPP (or PPPoE) over ATM Virtual Connections and Applying Virtual Templates 

3. Configuring and Associating Virtual Private Networks 
g. Creating a VRF Configuration for a VPN 
h. Associating a VRF Configuration for a VPN with a Virtual Template Interface 

4. Configuring RADIUS User Profiles for RADIUS-Based AAA 
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5. Verification 
 

 Configuration of PPPoE to MPLS VPN 
o Drawbacks: manual configuration, complexity 
o Number of commands in CLI: 183 
o Probability of mistake: Very high 

B. Monitoring and maintenance 

1. Monitoring and maintenance of the MPLS Configuration 
a. Verification of Successful Running of the Routing Protocol  
b. Verification of MPLS 
c. Verification of Connections Between Neighbors 
d. Verification of Label Distribution 
e. Verification of Label Bindings 
f. Verification of Labels Are Set 

2. Monitoring and maintenance of the MPLS VPN 
a. Verification of VRF Configurations  
b. Verification of the Routing Table 
c. Verification of PE to PE Routing Protocols 
d. Verification of PE to CE Routing Protocols 
e. Verification of the MPLS VPN Labels 
f. Testing the VRF 

 Monitoring and maintenance of PPPoE to MPLS VPN 
o Drawbacks: manual, high frequency, prone to mistakes 

 

Example #2:IPTV service 

A. IPTV network management drawbacks/challenges 

 Multi-vendor equipment such as head-end equipment, middleboxes, VoD servers, CAS/DRM equipment, 
etc. 

 Careful configuration of multiple systems and network devices; necessary to avoid post-installation issues. 
 Critical monitoring of QoS across the network, i.e. from head-end to the access network. 
 Complex trouble-shooting and isolation of problems. 
 Constant capacity monitoring and instant switch to an alternative (back-up) path to carry the video. 

B. Service provisioning – tasks to be fulfilled 



 

79 Deliverable D4.1 10.02.2015 
 

1. Service activation: CRM, DSLAM EMS’s, subscriber management, CPE provisioning system, identity and 
access control (AAA servers), billing system for service enablement. 

2. Configuration management. 
3. Service assurance: execution of proactive and reactive maintenance to ensure that the IPTV service 

performs according to the QoS levels defined in SLAs. 
4. Fault management. 

C. Network management and maintenance 

1. VoD monitoring 
2. Video quality monitoring 
3. Performance management 

 IPTV service KPIs: Packet loss, jitter, latency, channel change time 
 Device KPIs: CPU, memory, buffer utilization 
 Network KPIs: CIR utilization, queue drops, dropped frames 
 Methodology: probes, device instrumentation 
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Annex 2 : Mapping onto WP4 Objectives 

Table 1: Research Challenges described in D4.1, mapped on the WP4 Objectives in the DoW 

DoW WP4 Objective Research Challenges 

O4.1 Evaluate and demonstrate, in an agile manner, the SP-

DevOps concept for selected scenarios, including the 

development of the Service Provider DevOps prototype 

(DevOpsPro) 

N/A 

O4.2 Define conditional observability points located on 

Universal Nodes and develop an automated approach for 

deploying them consistently 

Partly addressed by RC1, RC2, RC3, RC8, RC9, RC10 

O4.3 Develop scalable service monitoring approaches, adapted 

to software-defined networks, that are efficient in reducing 

the number of manual diagnosing steps and amount of 

observation data transiting on the network 

RC1: Probabilistic in-network monitoring methods 

RC2: Scalable observability data transport and processing 

RC3: Low-overhead performance monitoring for SDN 

RC4: Novel metrics in counter structures 

RC5: Efficient counter retrieval 

RC9: In-network troubleshooting 

RC10: Troubleshooting with active measurement methods 

O4.4 Design methods for verifying service chain functionality 

at runtime and locating service chain faults 

RC7: Run-time verification of forwarding configurations by 

enhanced ATPG 

O4.5 Enable automatic definition of workflows for verification 

and activation tests for dynamic service chains 

RC8: Automated troubleshooting workflows 

RC11: VNF development support 

O4.6 Enable the possibility to verify service chains within the 

limit of one development cycle 

RC6: Deploy-time functional verification of dynamic Service 

Graphs 
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Table 2: High-level requirements described in D4.1, mapped on the WP4 Objectives in the DoW 

DoW WP4 Objective High-level requirements 

O4.1 Evaluate and demonstrate, in an agile manner, the SP-

DevOps concept for selected scenarios, including the 

development of the Service Provider DevOps prototype 

(DevOpsPro) 

N/A 

O4.2 Define conditional observability points located on 

Universal Nodes and develop an automated approach for 

deploying them consistently 

NL1: The UN must support advanced monitoring capabilities 

NL 3: Observability points must allow for dynamic installation, 

activation and deactivation on request for service provisioning 

and operation aspects 

NL4: The UN should provide monitoring information to higher 

layers in suitable level of detail and granularity through 

Observability Points 

O4.3 Develop scalable service monitoring approaches, adapted 

to software-defined networks, that are efficient in reducing 

the number of manual diagnosing steps and amount of 

observation data transiting on the network 

NL1: The UN must support advanced monitoring capabilities 

NL2: The UN must provide interfaces to access observability 

metrics of services and their associated components in a 

desired timely manner 

NL4: The UN should provide monitoring information to higher 

layers in suitable level of detail and granularity through 

Observability Points  

OL4: The UNIFY architecture and its components should 

provide monitoring information in suitable level of detail and 

granularity according to the needs of applications or functional 

blocks within the architecture 

OR1: The impact of monitoring, verification and 

troubleshooting on the performance of the UNIFY 

architecture should be as low as possible 

OR2: The proposed SP-DevOps methods and tools must be in 

harmony with existing operational processes 
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O4.4 Design methods for verifying service chain functionality 

at runtime and locating service chain faults 

OL1: The UNIFY architecture must support capabilities to 

develop and test components 

OL5: The UNIFY architecture must support automated 

verification of services and representations  

OR2: The proposed SP-DevOps methods and tools must be in 

harmony with existing operational processes 

O4.5 Enable automatic definition of workflows for verification 

and activation tests for dynamic service chains 

OL1: The UNIFY architecture must support capabilities to 

develop and test components 

OL2: The UNIFY architecture must support automated 

integration of monitoring, trouble-shooting and verification 

capabilities 

O4.6 Enable the possibility to verify service chains within the 

limit of one development cycle 

OL5: The UNIFY architecture must support automated 

verification of services and representations 

OL6: The verification functions should operate at design and 

(re-)deployment time. 

OL3: The UNIFY architecture should be able to react 

accordingly to reports and notifications generated by 

observability and verification components 

 


