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Review

In last chapter, we learnt generalized estimating equations (GEE) for
modeling marginal models. GEE methods are “semiparametric”
because they do not rely on a fully specified probability model.

With GEE, the estimates are efficient if the working covariance
assumptions are correct. If the working covariance assumptions are
wrong, the estimated coefficients are still approximately unbiased,
and SE’s from the sandwich (empirical) method are reasonable if the
sample is large. The philosophy of GEE is to treat the covariance
structure as a nuisance.

This chapter presents an alternative model type that has a term in
the model for each cluster. The cluster-specific term takes the same
value for each observation in a cluster. This term is treated as
varying randomly among clusters. It is called a random effect.
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Overview

This chapter presents an alternative model type called Generalized linear
mixed models (GLMMs).

Generalized linear mixed models (GLMMs) are modern methods for
handling correlated or clustered data

They explicitly model cluster-specific or subject-specific effects

This effect is treated as random effect across clusters, but takes the
same value for each observation in a cluster.

This approach contrasts with marginal models that average over the
clusters or subjects

The model we considered here is also called random intercepts model. It is
possible to have other types of random effects for instance random slopes.

Revisit 2000 General Social Survey (R+SAS) and Longitudinal study
on depression (R).

Basketball Free Throw Success (R).

R (lme4), SAS (GLIMMIX and NLMIXED)
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Matched-pair Example Revisit: 2000 General Social Survey

In the 2000 General Social Survey, 1144 subjects were asked whether, to
help the environment, they would be willing to (1) pay higher taxes or (2)
accept a cut in living standards.

Cut Living Standards
Pay Higher Taxes Yes No Total
Yes 227 132 359
No 107 678 785
Total 334 810 1144

How can we compare the probabilities of a “yes” outcome for the two
environmental questions?
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Random Effects Model Approach

Let
πij = Pr(Yij = “Yes”) i = 1, 2, . . . , 1144, j = 1, 2

and
xi1 = 1 (Question 1), xi2 = 0 (Question 2)

The GLMM model is

logit(πij) = αi + βxij , (1)

αi ∼ N(α, σ2)

αi is the random effect of individual i

Model (1) is subject-specific. Each subject has his/her own intercept

This model is also called logistic-normal

It is possible to use other distribution for the random effect. But
normal is almost the standard choice

The random effect is assumed for the intercept
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An equivalent form of the GLMM in (1) is

logit(πij) = α + ui + βxij , i = 1, 2, . . . , 1144, j = 1, 2

ui ∼ N(0, σ2)

The likelihood function is

L(α, β, σ2) =
n∏

i=1

Pr(Yi1,Yi2|xi1, xi2)

=
n∏

i=1

∫ 2∏
j=1

Pr(Yij |ui ; xij , α, β) Pr(ui ;σ
2)dui

since Yi1 and Yi2 are conditionally independent given ui .

Maximizing L(α, β, σ2) is not trivial. The difficulty is in the evaluation of
the integration. Approximation is used:

Laplace approximation

Gauss-Hermite quadrature (replace integration by bins, whose number
needs to be specified)
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Estimate from SAS/R

Software α̂ β̂ σ̂2
α −2 log-likelihood

PROC GLIMMIX −1.417(0.236) −0.209(0.130) 8.112 (1.203) 2520.5
PROC NLMIXED −1.427(0.238) −0.210(0.130) 8.274 (1.275) 2520.3
R glmer −1.403(0.235) −0.210(0.130) 8.035 (NA) 2521.4

Estimates of β are similar in the three methods, but not for α and σ2

PROC NLMIXED has smaller value on −2 log-likelihoods

MH estimates of β̂ is equal to

log(132/107) = 0.21

with
SE =

√
1/107 + 1/132 = 0.130

“Whenever the sample log odds ratio in such a table is nonnegative,
as it usually is, the ML estimate of β with this random effects
approach is identical to the conditional ML estimate”
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How does random effect model differ from the marginal model

Recall that the marginal model ignores the variation in αi :

logit[Pr(Yi = “Yes”)] = α + βxi , i = 1, 2, . . . , 2288

The estimates for β is log((359× 810)/(785× 334) = 0.104 < 0.21

“When the link function is
nonlinear, population-averaged
effects of marginal models are
typically smaller in magnitude
than the cluster-specific effects of
GLMMs”
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Interpretation for estimated effects

For the conditional model: for any given subject, the estimated odds
of a “yes” response on higher taxes are exp(0.210) = 1.23 times the
estimated odds of a “yes” response on lower standard of living.

For the marginal model: the estimated odds of a “yes” response on
higher taxes for a randomly selected subject are exp(0.104) = 1.11
times the estimated odds of a ?yes? response on lower standard of
living for a different randomly selected subject.
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Another example for understanding the interpretation from a study
investigating smoking behavior on respirator function (Zeger et al.,
1988).

The population-averaged effects for marginal model: β
estimates difference in infection rate between the population of
smokers and non-smokers.

The subject-specific effects from conditional model: β
estimates difference in an individual’s probability of infection
given a change in his smoking status.

Zegar, S.L., Liang, K.-Y., and Albert, P.S. (1988). Models for
longitudinal data: A generalized estimating equation approach.
Biometrics 44, 1049-1060.
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Small-area estimation of binomial probabilities

Small-area estimation refers to estimation of parameters for many
geographical areas when each may have relatively few observations.

For example, a study might find county-specific estimates of characteristics
such as the unemployment rate. With a national or statewide survey,
counties with small populations may have few observations.

To see this, we use the basketball free throw success example to illustrate.
Table 10.2 shows results of free throws (a standardized shot taken from a
distance of 15 feet from the basket) for the 15 top-scoring centers in the
National Basketball Association after one week of the 2005-2006 season.

logit(Pr(“success”)) = αi , i = 1, . . . , n

= α + ui , i = 1, . . . , n

where
ui ∼ N(0, σ2)
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Based on the output,

For a player with random effect ui = 0, the predicted logit is
α̂ = 0.9076. The variance of this prediction is σ̂2 = 0.1779. 95% of
the predicted logits fall within

0.908± 1.96
√

0.1779 = (0.08, 1.73)

The predicted probability of making a free throw is

exp(0.9076)

1 + exp(0.9076)
= 0.71

The 95% confidence limits are

exp{(0.08, 1.73)} = (0.52, 0.85)

For player Yao, who has random effect ui = 0.0896, the predicted
logit is α̂ + ui = 0.9972. The variance of this prediction remains
σ̂2 = 0.1779. Other calculations are parallel to above
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player-specific sample proportions vs its estimated proportion

pi : proportion of successful ones

πi : Pr(“success”)

Estimated proportions are less variation in them that the
player-specific sample proportions

Shrinkage towards the overall proportion 101/143 = 0.706
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Inference on Variance Components

In the Basketball Free Throw Success example, suppose we are interested
in testing α1 = α2 = . . . = α15 to see whether the success rates of the
players are different. In random effects model, this is equivalent to testing

H0 : σ2 = 0 vs H1 : σ2 > 0

The alternative H1 is one-sided because σ2 can not be negative.

The likelihood ratio statistic no longer has a limiting chi-square
distribution: with 50% chance a chi-square distribution with 1df;
other 50% chance being equal to 0.

The threshold for a level 5% test is 2.706 (i.e., not 3.84 anymore). (R
code: qchisq(0.9,1))

The p-value is half of the right-tail of the corresponding χ2. (R code:
0.5*(1-pchisq(LRTvalue,1)))

We can use the LRT to compare two nested covariance matrices;
otherwise, choose with AIC/BIC
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Choosing Marginal or Conditional Models

Marginal model approach

GEE is computationally simpler and more amenable to standard
software

Likelihood-based inferences are not possible with GEE

GEE does not provide estimates of subject-specific effects

Conditional model approach

Useful if one wants to model the subject-specific effects

Provides estimates of subject-specific effects (αi s) and their variation
(σ2) or other subject-specific characteristics

Computationally demanding

Risk of model mis-specification
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Conditional Models: Random Effects versus Conditional ML

The conditional ML approach

removes subject-specific terms in the model

does not need an assumed distribution for subject-specific
terms. This is good

provides no information on subject-specific terms. Can not do
between subject comparison. This is not good

Computation intensive with large sample size

can be less efficient than random effects model
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