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Deep Learning at SEG 2020 
Machine learning dominated the technical program at the Society of Exploration 
Geophysicists (SEG) conference this year; with Deep Learning applications being most 
popular. A consideration of the mechanics of convolutional neural networks (CNNs) 
and generative adversarial networks (GANs) leads to a comparison of several 
complementary efforts to resolve the most obvious challenge to such pursuits in the 
geosciences (the lack of real training data), and several complementary efforts to 
resolve one of the key weaknesses in Full Waveform Inversion (the lack of very low 
frequency signal in the recorded data). Despite the hype that can accompany this 
broad topic, encouraging progress is being made towards geoscientists being able to 
make better informed decisions, using more (all) data, and in less time. 

A Virtual Event 

The entirely virtual SEG 2020 conference was held 11-16 October, and consisted of pre-recorded oral presentations 
from the technical program, with live-streamed Zoom broadcasts of the post-convention workshop program. 
Machine learning (ML) topics formed the largest component of the overall program, and are the basis of the 
discussion below. Deep Learning pursuits based upon various forms of neural networks were prevalent, so I briefly 
summarize the comparative ambitions of convolutional neural networks (CNNs) and generative adversarial neural 
networks (GANs), before sharing a few emerging applications to the geosciences in the SEG 2020 program. 

Machine Learning in the Geosciences 

ML applications to seismic pursuits are typically used to optimize and simplify repeatable processes, or to replicate 
aspects of human-intensive tasks such as seismic data interpretation. In principle, if comprehensive ‘labeled’ data 
are available from several complementary information sources, ML may provide better-informed decisions and 
forecasts—uncorrupted by the fatigue or inconsistency that affects humans applied to onerous and time-consuming 
tasks—although we are a long way from matching human ingenuity and experience-based instinct. As summarized 
in the next sections, all modern Deep Learning pursuits take a modular approach to building deep neural networks 
that abstract operations into layers, which can be configured into flexible input and output configurations. This 
necessity to abstract the operations being simulated is a fundamental limitation on the scope of applications for 
Deep Learning, and a timely reminder that there are already several decades of other ML pursuits such as Monte 
Carlo-based, Support Vector Machine (SVM) and tree-based Random Forest statistical classifications that can 
robustly satisfy a vast range of practical optimization ambitions. An example application to one of the largest 
bottlenecks in seismic imaging workflows—velocity model building—is the automated PGS hyperModel approach 
that generates accurate models on a vast scale in only a few days; with statistical uncertainties if desired. All 
discussion below, however, concerns Deep Learning presentations. 

Convolutional Neural Networks (CNNs) 

As the name suggests, a convolutional neural network (CNN) is an artificial neural network that features one or 
more convolutional layers. This layer configuration enables a deep learning model to efficiently process spatial 
patterns, which makes convolutional layers especially appropriate to applications to the field of Computer Vision. 
Beyond image classification; applications include object detection, wherein the algorithm is tasked with isolating 
objects (or anomalies) within an image; and image segmentation, wherein several overlapping events within an 
image can be discriminated. Semantic segmentation is important in seismic interpretation, and early published 
applications of CNNs have included salt body detection, fault and event interpretation, clinoform interpretation, 
facies classification, the prediction of lithology and fluid properties, and so on. 

As discussed below, CNNs can be trained to statistically estimate filters in seismic imaging workflows rather than 
explicitly formulate them in the traditional manner. Figure 1 is taken from one example application by PGS wherein 

the convolutional filters within each layer were iteratively adjusted during the training step to remove targeted noise 
features and produce ‘clean’ outputs from ‘noisy’ inputs. Once trained, the CNN model was then applied to denoise 
seismic images that correspond to recorded field data. This two-step approach is common to Deep Learning 
pursuits: computational models are built that use inference and pattern recognition instead of explicit sets of rules. 

https://seg20.exceedlms.com/
https://www.pgs.com/campaign/2020/automation/save-up-to-6-months-with-automation-in-seismic-processing-12-weeks/
https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/fb_klochikhina_et_al_july2020_denoise_ml.pdf
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A computational task such as classification, regression, or clustering is improved by conditioning of the model on a 
training data set. In a manner to seismic experts familiar with inversion-based pursuits, the performance of the 
model is measured with regard to a loss, which quantifies the performance of the model on the provided data. A 
good model eventually generalizes to data not used for model training, but with common characteristics and goals, 
on the same task the model was trained to perform. 

U-Net is a popular form of CNNs applied to seismic data analysis, and was originally created for the purpose of 
segmenting biomedical images. The U-Net model, such as illustrated in Figure 1, consists of a fully convolutional 

architecture, and consists of three parts: the encoder (contraction; left branch), the bottleneck (bottom) and the 
decoder (expansion; right branch). These two paths—the contracting and expanding paths—are symmetrical; 
forming a ‘U’ shape. The contracting path serves to allow the model to learn high-resolution features from the image, 
and these high-resolution features are handed directly to the expanding path. By the end of the expanding path, we 
expect the model to have localized these features with the final image dimensions. After concatenating the feature 
maps from the contracting path onto the expanding path, a subsequent convolutional layer allows the network to 
learn to assemble and localize these features precisely. The final result is a network that is highly adept both at 
identifying features and at locating these features within multi-dimensional space. Computationally, the U-Net 
architecture utilizes several shortcuts in an encoder-decoder architecture to efficiently achieve stable segmentation 
results. 

 
Figure 1. U-Net architecture used to attenuate migration artifacts from seismic images, courtesy of Elena 

Klochikhina, PGS. 

Generative Adversarial Networks (GANs) 

GANs provide an interesting alternative to CNNs, and are behind the ‘Deep Fake’ videos that are starting proliferate 
through the online space. At the highest level, a GAN involves two deep learning networks pitted against each other 
in an adversarial relationship, that implicitly learn a latent, low-dimensional representation of arbitrarily high-
dimensional data. One network is the generator which produces samples (e.g. images or time series) in a certain 
style from an input, and the other network is a discriminator that attempts to distinguish whether input samples were 
produced by the generator or not, i.e. real or fake image from the training data. Training a GAN requires two 
opposing (i.e. adversarial) processes, wherein discriminator training alternates with generator training. In 
discriminator training, the generator produces output samples by forward-propagating some vector through the 
network, batches of the desired sample style are mixed into these outputs, and these collective samples are then 
input to the discriminator. A discriminator outputs a prediction that each output is real or fake, and a cross-entropy 
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cost is back-propagated to train the discriminator model to correctly determine the validity of the input samples. 
During generator training, the generator receives a random noise vector as input, and produces a fake sample. All 
output samples from the generator are labeled as real, and the discriminator outputs predictions regarding whether 
the inputs were real or fake. The cross-entropy cost is used via back-propagation to train the generator to become 
better at fooling the discriminator. At the conclusion of overall training, the discriminator is discarded and the 
generator is the final product. Random noise input to the generator will then output samples that match the style of 
the samples the adversarial network was trained on. 

The relative merits of (deep) CNNs vs. GANs are being tested. Like CNNs, early published applications of GANs to 
the geosciences have included the automation seismic interpretation and feature/geobody extraction, rock physics 
and digital rock modeling, generating seismic data, geostatistical inversion, and either augmenting or attempting to 
replace traditional velocity inversion methods such as FWI. 

Two Example Themes from SEG 2020 

Rather than provide an exhaustive technical summary of all the related presentations at SEG 2020, I decided to 
highlight a few interesting aspects of Deep Learning applications. One of the notable challenges to training deep 
neural networks in geoscience is the frequent lack of real data for training. Several presentations demonstrated 
how to robustly generate and apply synthetic data to augment network training. For example, Fraunhofer ITWM 

used synthetic seismic gathers to train a U-Net for automated trim statics and demultiple of post-migration data; 
Total created synthetic data from pseudo-randomly-generated velocity and resistivity models, and trained a network 
to jointly invert (2D) seismic and electromagnetic data for reconstructing salt bodies; Chevron created a global AVA 
database from their well data, and trained models to predict lithology, porosity and fluid type from selected sets of 
features or seismic attributes; the University of Science and Technology of China randomly generated subsurface 
models, generated synthetic data, and trained CNNs to interpret 3D meandering channel features; Stanford 
University simulated facies from an object-based geostatistical model and forward model seismic data to train a 
seismic inversion solution for reservoir facies; Shell generated synthetic data using 4D reservoir and geomechanical 
models, and trained ML models for each producing field of interest to estimated 4D timeshifts; and KAUST 
generated a large dataset of random subsurface models to train a CNN for velocity model building. 

On the topic of velocity model building, full waveform inversion (FWI) was the second-most popular topic at SEG 

2020, and several ML presentations investigated ideas to augment aspects of the traditional FWI workflow. For 
example, FWI benefits from very low frequency (< 3Hz) input data to obtain initial model updates without cycle-
skipping challenges, but such frequencies are often not available in the recorded data. Polytechnique Montreal 
used BP synthetic model data to demonstrate the application of a recursive CNN (RNN) to denoise and generate 
artificial low frequency data from high frequency data. Each pass of the network halves the frequency content of a 
gather (refer to Figure 2), and the dominant frequency can be lowered by a factor of 64 with relative stability.  

Note that the RNN abbreviation is ambiguously used to denote both recurrent and recursive neural networks. 
Recurrent neural networks are particularly suited to sequential tasks in seismic imaging such as time series 
analysis. A recursive neural network is more like a hierarchical network where there is really no explicit sequential 
aspect to the input sequence but the input has to be processed hierarchically in a tree fashion. 

In other efforts to extrapolate low frequencies, Schlumberger generated training data by forward modeling with two 
different (lower and higher frequency) wavelets, and trained a CNN to build a relation between high and low 
frequency data. A CNN-predicted low frequency data were then used to invert a low wavenumber model using FWI, 
and this initial estimate was used in an iterative workflow to help mitigate cycle-skipping effects when low 
frequencies were unavailable in the real data. Advanced Geophysical Technology similarly described a self-learning 
method to exploit underlying physical relations between high and low frequency components of the data, and 
thereby extended the bandwidth of real data to lower frequencies. Equinor trained a U-Net on real seismic data with 
relatively high frequencies labeled and without the relatively low frequency components. The trained network was 
applied to down-sampled data to generate lower frequency components. Application to real data extended the low 
frequencies from about 5 to 2.5 Hz. To complete this brief cross-section of alternate approaches, MIT used synthetic 
Marmousi model data to pursue low-frequency extrapolation of multi-component data as the input to elastic FWI. 
By training a CNN twice, once with a dataset of horizontal components and once with a dataset of vertical 
components, they improved the extrapolation of the low frequencies in contrast to only using an acoustic training 
dataset. At a more sophisticated level, other presentations also sought to augment the way the FWI objective 
function is computed, or improve the rate of convergence, but this level of pursuit is not considered here. 

Some authors also contemplated how to extend the target domain from velocity to the full RTM (reverse time 
migration) image, and although such studies remain conceptual, long term ambitions include real-time processing, 
fast-track generation of ‘migrated’ products, rapid salt model scenario testing, and so on. 

https://library.seg.org/doi/10.1190/segam2020-3427887.1
https://library.seg.org/doi/10.1190/segam2020-3426925.1
https://library.seg.org/doi/10.1190/segam2020-3425889.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3426477.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3426944.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3426944.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3423186.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3428324.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3428270.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3424983.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3423396.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3427086.1
https://library.seg.org/doi/epdfplus/10.1190/segam2020-3428087.1
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Figure 2. Low frequency predictions for the 2004 BP benchmark model, courtesy of Gabriel Fabien-Ouellet, 
Polytechnique Montréal. The first row shows the labeled (real) data after low-pass filtering, and the second and 
third rows show the predictions from two versions of a CNN, respectively. The fourth row shows the mean 
normalized amplitude spectra. Each pass of the network halves the lowest useful frequency content of a gather. 

Summary 

In summary, the applications of Deep Learning and other forms of Machine Learning (ML) to the geosciences are 
increasingly diverse, but commercial solutions are generally confined to various forms of data interpretation and 
characterization. Nevertheless, it is clear that significant global research efforts are helping ML become both useful 
and flexible components of seismic imaging, expanding our toolbox of solutions. While a high-profile ambition has 
been to automate and replace human contributions, thereby greatly accelerating the delivery of products to assist 
decisions, the bigger picture also includes the mitigation of risk and uncertainty. The contribution of ML to 
geoscientists is therefore to make better informed decisions, using more (all) data, and in less time. 

Further Reading Material 

 Deep Learning by Goodfellow, I., Bengio, Y., and Courville, A., 2016, MIT Press. 

 Leveraging Deep Learning for Seismic Image Denoising by Klochikhina, E., Crawley, S., Frolov, S., 
Chemingui, N., and Martin, T., 2020, First Break. 

https://www.deeplearningbook.org/
https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/fb_klochikhina_et_al_july2020_denoise_ml.pdf

