Section 3.6--A Summary of Curve Sketching

Analyzing the Graph of a Function

- 1) Determine the domain and range of the function
- 2) Determine the intercepts, asymptotes, and symmetry of the graph
- 3) Locate the x-values for which f'(x) and f''(x) either are zero or do not exist. Use the results to determine relative extrema and points of inflection

Example 1

Analyze and sketch the graph of $f(x) = \frac{2(x^2-9)}{x^2-4}$

$$f(x) = \frac{2(x^2-9)}{x^2-4} = \frac{2(x+3)(x-3)}{(x+2)(x-2)}$$

$$f'(x) = \frac{20x}{(x^2-4)^2}$$

$$f''(x) = \frac{-20(3x^2+4)}{(x^2-4)^3}$$
possible poi : none

1) Domain: all R except x=-2,2 check denoise

f'(0)=5>0

2) X-int: (-3,0) (3,0)

set f(x)=0 : solve

y-int: (0, 2)

v.a. X=-2, x=2

Set denominator=0

3) relative minimum $(0,\frac{9}{2})$

Derivative tests

	· · · · · · · · · · · · · · · · · · ·						
Ti	X	FW	f'(x)	cone	P"(X)	conc	
(,-3)	-5	1.524	_	dec	_	conc l	
(-3 ₁ -2)		-2.444	_	· dec	_	conel	
(-2,0)		5.333	_	طعد	+	conc T	
(0,2)	l	5.333	+	in	+	cone T	
(2,3)	2.5	-2.444	+	inc	_	conc I	
(3,∞)	5	1.524	+	ine	_	conc l	
		-					

Use asymptotes, intercepts, and critical numbers to help set up test intervals. This table helps to find extra points to plat in addition to arning the behavior of the graph (inc/dec, concare up/down)

Analyze and sketch the graph of $x^2 - 2x + 4$

$$f(x) = \frac{x^2 - 2x + 4}{x - 2}$$

$$f'(x) = \frac{x(x-4)}{(x-2)^2}$$

$$f''(x) = \frac{8}{(x-2)^3}$$

1) Domain: all R rexcept X=2

2) X-int: hone

y-int: (0,-2)

V.a. X=2

h.a. none

3) relative maximum (0,-2) relative minimum (4,6)

Ti	L X	f(x)	f'(x)	cone	f"(X)	cone
(-∞,0)	-1	<u> 5</u> 3	+	ine	_	concare 1
(0,2)	l	-3	•	dec	_	concare 1
(2,4)	3	7	_	dec	+	concare 1
(4, <i>∞</i>)	5	19	+	ine	+	concare T

$$f(x) = \frac{x^2 - 2x + 4}{x - 2}$$

Analyze and sketch the graph of $f(x) = \sqrt{x^2+2}$

$$f(x) = \frac{x}{\sqrt{x^2 + 2}}$$

$$f'(x) = \frac{z}{(x^2+2)^{3/2}}$$

$$f''(x) = \frac{6x}{(x^2+2)^{5/2}}$$

no rest.

c.n. none

c.n. x=0

1) Domain: all R

2) x-int: (0,0)

y-int: (0,0)

no v.a.

h.a. y=-1, y=13) pt of unflection (0,0)

<u>Ti</u>	X	f(x)	f'(x)	conc	F"W	conc
(-0,0)	-1	- <u>1</u>	+	ine	_	concare L
(0,00)	l	।	+	ine	+	concare T

Analyze and sketch the graph of $f(x) = 2x^{5/3} - 5x^{4/3}$

$$f(x) = x^{4/3}(2x^{1/3}-5)$$
 $f'(x) = \frac{10}{3}x^{1/3}(x^{1/3}-2)$ $f''(x) = \frac{20(x^{1/3}-1)}{9x^{2/3}}$

1) Domain: all R

2) X-int: (0,0), $(0,\frac{125}{8})$

y-int: (0,0)

v.a. hone

h.a. none

3) relative min: (8,-16)

relative max: (0,0)

pt. of inflection: (1,-3)

_	Ti	L X	+(x)	f'(x)	conc	£"(x)	Conc
(-∞	(0)	-1	-7	+	ine	_	concare 1
(0	Ci	12		_	dec	_	concare 1
CI,	8)	2		_	dec	+	concave T
(8,	$\int (\infty$	9		+	line	+	concare 1

Analyze and sketch the graph of $+(x) = x^4 - 12x^3 + 48x^2 - 64x$

$$f(x) = x(x-4)^3$$
 $f'(x) = 4(x-1)(x-4)^2$ $f''(x) = 12(x-4)(x-2)$

1) Domain: all R

2) X-int: (0,0), (4,0)

y-int: (0,0)

v.a. none

h.a. none

3) relative min: (1,-27)

pts. of inflection: (2,-16), (4,0)

	×.	F(x)	F'(X)	conc	f"(x)	conc
(-∞,o)	-1	-125	_	dec	+	concave T
(p,1)	12		_	dec	+	concave T
(1,2)	3 2		+	ine	+	concare T
(2,4)	3	-3	+	Une	_	concare I
(4,00)	15	5	+	ine	+	concare T
- '			/			

Factoring work for lexample 5:	
$f(x) = \chi(x^3 - 12x^2 + 48x - 64) = \chi(x - 4)^3$	
$f'(x) = 3x(x-4)^2 + (x-4)^3(1) = (x-4)^2(4x-4) = 4(x-4)^2(x-1) cn x=1,4$	•
	4
$f''(x) = 8(x-4)(x-1) + 4(x-4)^2 = 4(x-4)(2x-2+x-4) = 4(x-4)(3x-6)$	
= $12(x-4)(x-2)$ possible pt of inf x=2,4	

Analyze and sketch the graph of $f(x) = \frac{\cos x}{1+\sin x}$

Period: 2TT

f'(x)=

x-int: (= 0)

Y-int: (0,1)v.a. $X = -\frac{\pi}{2}, \frac{3\pi}{2}$

h.a. none

no extrema

pt. of inflection $(\frac{\pi}{2}, 0)$

Ti	X	FW)	f'(x)	conc	£"(x)	conc
$\left(\frac{T}{2},\frac{T}{2}\right)$	0	1	J	طعر	+	concare T
$\left(\frac{\pi}{2},\pi\right)$	<u>क्रा</u>		_	dec	_	concare I
$\left(\pi,\frac{3\pi}{2}\right)$	<u>8π</u>		\ -	ر هد	_	concave 1

