
In Reference [2] a general method was described for 
designing reflective N stars for single-mode fiber where N = 

M 2  or N = 2 M 2 .  That method is also applicable to designing 
orthogonal-polarization reflective N stars where N = M 2  or 
N = 2M2.  As in Figure 2, an N star, where N = M 2 ,  is 
constructed with M polarization-maintaining transmissive 
M X M stars in parallel with one OPFR connected to one 
output of each M X M star and with the other outputs of the 
M x M stars interconnected with 90” polarization-rotating 
splices (see Figure 9 of Reference [2]). This design is based 
on the availability of polarization-maintaining transmissive 
M X M stars. For M = 2”, polarization-maintaining trans- 
missive M X M stars can be constructed by cascading 2 X 2 
PMDCs. 

As in Figure 3, reflective N stars, where N = 2 M 2 ,  are 
constructed with 2M polarization-maintaining transmissive 
M X M stars in parallel with M OPHRs. A total of M 90” 
polarization-rotating splices are used to connect one output 
port of each pair of adjacent M X M transmissive stars. 
And, a total of M ( M  - 1)/2 2 X 2 PMDCs with a 90” 
polarization-rotating splice at each input port connect the 
remaining output ports of the transmissive stars (see Figure 
13 of Reference [21). 

111. CONCLUSIONS 
Multipath-free orthogonal-polarization reflective N-star net- 
works are proposed where N = M 2  and N = 2 M 2  for M = 

2”. These networks use polarization-maintaining fiber and 
are constructed with M X M transmissive polarization- 
maintaining directional couplers, 90” polarization-rotating 
splices, orthogonal-polarization full reflectors, and 
orthogonal-polarization half reflectors. The all-fiber design is 
theoretically lossless and does not require optical isolation. In 
an actual network the amount of light that is directed toward 
the transmitters depends on the polarization isolation of the 
PBS and PMDC, polarization coupling in the fiber, and splice 
alignment. Ideally, the isolation can be > 25 dB [5, 6, 8, 101. 
This is much lower than the 3-dB isolation of a reflective star 
using single-mode fiber and nonpolarization-preserving fiber 
directional couplers. 
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ABSTRACT 
A modified set of Maxwell’s equations is presented that includes complex 
coordinate stretching along the three Cartesian coordinates. The added 
degrees of freedom in the modified Maxwell’s equations allow the speci- 
fication of absorbing boundaries with zero reflection at all angles of 
incidence and all frequencies. The modified equations are also related to 
the perfectly matched layer that was presented recently for 2 0  wave 
propagation. Absorbing-material boundary conditions are of particular 
interest for finite-difference time-domain (FDTD) computations on a 
single-instruction multiple-data (SIMD) massively parallel supercom- 
puter. A 30 FDTD algorithm has been deueloped on a connection 
machine CM-5 based on the modified Maxwell’s equations and simula- 
tion results are presented to validate the approach. 0 1994 John Wiley 
& Sons, Inc. 

1. INTRODUCTION 
The finite-difference time-domain method [l,  21 is widely 
regarded as one of the most popular computational electro- 
magnetics algorithms. Although FDTD is conceptually very 
simple and relatively easy to program, the method is actually 
quite efficient, because it involves O( N 1.5) computational 
complexity in 2D and computational complexity in 
3D [3]. In fact, FDTD can be considered an optimal algo- 
rithm, because O ( N a )  numbers are produced in O ( N a )  
operations. 

FDTD is also ideally suited for implementation on a 
single-instruction multiple-data (SIMD) massively parallel 
computer. The reason is that the stencil operations that must 
be computed at each node of the space grid involve only 
nearest-neighbor interactions and may be implemented at a 
minimum communication cost [4]. A major challenge, how- 
ever, is in implementing absorbing boundary conditions 
(ABCs) at the edges of the FDTD grid. On scalar and vector 
computers, these boundary conditions are typically computed 
using methods such as the Engquist-Majda [51, Mur 161, Liao, 
Wong, Yang and Yuan [7], or Higdon [8] ABC. However, 
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these methods are not ideal for parallel supercomputers, 
because they all involve communication with many elements 
normal to the grid boundary. Such communication can easily 
surpass the time spent computing core FDTD operations in 
the grid interior, especially for higher-order boundary condi- 
tions, and hence can become a bottleneck in the FDTD code. 
Also, they do not allow for SIMD operation on a parallel 
machine without the use of masking. 

An alternate method of implementing an ABC is to use a 
conventional absorbing material boundary [4, 9- 141. For 
SIMD parallel computation, these methods have the advan- 
tage that the ABC may be implemented with the same FDTD 
stencil operation as the interior nodes by modifying the 
conductivity material parameter at the edge of the FDTD 
grid. The disadvantage is that the reflection coefficient at the 
absorbing border is zero only at normal incidence and is both 
angle and frequency dependent. Consequently, the absorbing 
material border region must be made quite large-typically 
20-100 grid points along each edge in order to minimize 
reflections. 

Recently, Berenger 1151 suggested a more general method 
of implementing an absorbing material boundary condition. 
Berenger proposed a procedure for 2D wave propagation 
whereby Maxwell's equations are generalized and added de- 
grees of freedom are introduced. The added degrees of 
freedom allow the specification of absorbing borders with 
zero reflection coefficient at all angles of incidence and all 
frequencies. Moreover, the generalized Maxwell's equations 
reduce to the familiar Maxwell's equations as a special case 
and hence the same generalized equations can be used to 
propagate fields in both the interior and absorbing regions. 
Although the interface between the interior region and the 
absorbing boundary is reflectionless, there is still a reflection 
from the edge of the grid. The advantage of using Berenger's 
procedure is that much larger conductivity values may be 
specified in the absorbing region, leading to a drastic reduc- 
tion in the number of grid points required for the absorbing 
boundary. 

In the present article a formulation similar to the Berenger 
idea is derived for 3D wave propagation from first principles 
using a coordinate stretching approach. The advantage of the 
new method for SIMD parallel computation is stressed. The 
method is validated with 3D FDTD numerical computations 
on a Thinking Machines Corporation Connection Machine 
CM-5. 

2. MODIFIED MAXWELL'S EQUATIONS 
For a general medium, we define the modified Maxwell's 
equations in the frequency domain, assuming Ci"' time 
dependence, as 

V, X E = iwpH, (1) 

Vh X H = -iweE, (2) 

V,. EE = p,  (3) 
0, * p H  = 0, (4) 

where 

600 

In the above, e j ,  h i ,  i = x, y, z are coordinate-stretching 
variables that stretch the x ,  y ,  z coordinates for v, and v h .  It 
shall be shown later that when ei and hi are complex num- 
bers, the medium can be lossy. Note that (3) and (4) are 
derivable from (1) and (2). A general plane-wave solution to 
Eqs. (1)-(4) has the form 

and 

where k = i k ,  + j k ,  + ik,. Substituting Eqs. (7) and (8) into 
Eqs. (1) and (2)  above gives 

where 

and 

Combining the above, we have 

But from Eq. (9), k; H = 0 for a homogeneous medium. 
This gives the dispersion relation 

or 

1 1 1 
K~ = -kZ + -ky' + -kZ (13) 

exhx e,h, ezhz 

where K' = W%E.  Equation (13) is the equation of an ellip- 
soid in 3D and is satisfied by 

k ,  = KG sin 0 cos 4,  

k,= K G e h sin 6 sin 4,  

(14) 

(15) 

and 

k ,  = KG cos 0. (16) 

Note that when e i ,  h i ,  i = x ,  y ,  z are complex, the waves in 
the x ,  y ,  and z directions are attenuative and can be inde- 
pendently controlled. Under the matching condition, ex = h,, 
ey = h,, and e ,  = h,, we have lk,I2 = lkhI2 = K'.  The wave 
impedance is then given by 
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irrespective of the values for ei,  i = x, y ,  z and the direction 
of propagation. 

3. SINGLE-INTERFACE PROBLEM 
Assume that a plane wave is obliquely incident on the inter- 
face z = 0 in Figure 1. Furthermore, we may assume that the 
plane wave is of arbitrary polarization. The incident field may 
be decomposed into a sum of two components, one with 
electric field transverse to z (TE') and the other with mag- 
netic field transverse to z (TM'). We will examine these two 
components individually. 

In the TEz case, we let the incident field in region 1 be 
given as 

E i  = E,eiki". (18) 

In the above, khi * E, = 0, and E, is in the xy plane. Simi- 
larly, we define the reflected field in region 1 as 

and the transmitted field in region 2 as 

Phase matching requires that k ,  = k,, = k,, and ki, = k ,  
= k f y .  Hence, we can define E,, = Eot = E, because they all 
point in the same direction. Applying the boundary condition 
that the tangential electric field must be continuous across 
the plane z = 0,' we have 

1 + R~~ = T ~ .  (21) 

The magnetic field may be determined using Eq. (9) for 
regions 1 and 2 as 

and 

where 

(23) 

and similarly for kr ,  and kre. We also define k l z  = ki,, 
k,, = k,, and note that kr, = -k lz .  Then equating the tan- 
gential components of Eqs. (22) and (231, we have 

Combining Eqs. (21) and (241, we have 

(25) 
klze2z P2 - kzzelz P1 R E  = 
klzezz P2 + k2zelz P1 

This boundary condition follows from the modified Maxwell's equation 
(1). 

Z 
4 incident 

reflected 

region 1 

Y < Z d  region 2 
transmitted plane 

wave 
Figure 1 Plane wave with arbitrary polarization incident on the 
plane z = 0 

and 

Applying a similar procedure to the TM' component, we 
have 

and 

(28) 

4. A PERFECTLY MATCHED INTERFACE 
The phase matching condition requires that k, ,  = k,, and 
kl,  = k,,, or 

K~,/K sin 8, cos 41 = K,,/= sin 8, cos 4, (29) 

and 

where K~ = w f i  and K~ = 06. For a perfectly 
matched medium, we choose = E , ,  pl = p,, ex = h, and 
ey = h,. Equations (29) and (30) become 

e l ,  sin el cos 41 = eZx sin 8, cos rp2 (31) 

and 

e l ,  sin O1 sin 4, = e,, sin 8, sin 4,. (32) 

If we now choose e l ,  = e,, and e l ,  = e,,, then 8, = 8,, 
41 = 4, and we can show that both RTE = 0 and RTM = 0 
for all angles of incidence and all frequencies. 

If region 1 is a vacuum, then p = p,, E = E,, and 

~ ~ , , , ~ 1 , , ~ 1 ~ , ~ 1 , , ~ , , , ~ 1 , ~  = (1,1,1,1,1,1). (33) 

In order to have a lossy region 2 with no reflections at the 
region l/region 2 interface, we choose 
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where s2 is a complex number. In this case, 

k,, = k,, = K~ sin f3 cos 4 ,  (35) 

k,, = k,, = K~ sin 0 sin 4, (36) 

k , ,  = Kg COS 0,  (37) 

k,, = K ~ S ,  cos 0 ,  (38) 

where K~ = 06. If s2 = sk + is;, the wave will attenu- 
ate in the z direction. This kind of interface is useful for 
building material ABCs in a FDTD simulation. 

and 

(49) 

ESg d 
E- + a;E,, = - j  X H, 

d t  dY 
(50) 

d 

d t  dz 
+ u,E, = -2 X H. 

JE, 
E- (51) 

Equations (46)-(51) describe 3D wave propagation in a 
perfectly matched medium. The wave-propagation phe- 
nomenon described by these equations is very similar to that 
described by Maxwell's equations with the exception that 
attenuation may be controlled through the a,, uy and a, 
variables. The FDTD implementation of these equations on a 
Yee FDTD grid is straightforward. Absorbing boundaries at 
the edges of the simulation region may be created by choos- 
ing appropriate values of a;, a,, and a,. Equations (46)-(51) 
may be seen to include Berenger's equations 1151 as a subset 
for the 2D TE or TM case. 

The above equations involve 12 components of electro- 
magnetic fields. For a free-space/lossy-medium interface, a 
scheme may be devised using only 10 field components for 
the 3D case, and only 3 components for the 2D case. How- 
ever, this is achieved at the loss of SIMD operation on a 
parallel machine. 

5. MODIFIED EQUATIONS IN THE TIME DOMAIN 

For the general case of a matched medium, we let ex = h,  = 
1 d  

s,, e, = h, = sy  and e, = h, = s,. Then, V, = V, = f- - 
s- ax 

1 d  1 d  1 d  
V, X E = --f X E + --P X E + --,2 X E. (39) s, dx s y  dY s, d z  

Then, defining Hsx, HSy, and H, in terms of the components 
of Eq. (391, we let 

1 d  

s, d x  
iwpHsx = - - f X E, (40) 

6. COMPUTER SIMULATION RESULTS 
In order to demonstrate the new method, a 3D orthogonal 
grid FDTD algorithm was developed based on Eqs. (46)-(51). 
The FDTD algorithm was implemented as a SIMD code on 
the Thinking Machines Corporation Connection Machine 
CM-5. The algorithm operates very efficiently on the CM-5 
because the FDTD stencil operations that need to be com- 
puted at each node involve only nearest-neighbor interac- 
tions. The communication operations resulting from the 
nearest-neighbor interactions are at a minimum cost, since 
the neighboring processors are for the most part at the 
bottom of the fat-tree communication network, where com- 
munication bandwidth is maximum. 

To validate our 3D FDTD algorithm, we solved a simple 
problem of computing the field radiated from an infinitesimal 
electric dipole in free space. An analytic solution was also 
computed in the frequency domain for many excitation fre- 
quencies. The frequency-domain solution was then multiplied 
by the spectrum of FDTD source pulse and inverse Fourier 
transform to yield a time-domain analytic solution for com- 
parison with the FDTD solution. 

The FDTD solution was solved in a cubic region of 
dimension (N,, N,, N,) = (128, 128, 32) grid points. The grid 
parameters chosen were A x  = Ay = A z  = 2.5 mm, At  = 4.5 
ps and N, = 512 time steps were computed. 

The infinitesimal electric dipole was simulated by exciting 
the E, field in a single grid cell with the source pulse 

(41) 

and 

1 d  

s, dz 
iwyHSz = - - i X E  (42) 

where H = H, + HSg + H,. Similarly, we can write Eq. (2) 
as 

1 d  
-iwEEsx = -- f X H, 

s, dx (43) 

(44) 

and 

1 d  

s, dz 
-iweE, = -- 2 X H. (45) 

where E = E, + E, + Esz. Note that H , ,  E,, i = x, y ,  z are 
two-component vectors. 

We now let s, = 1 + ia,/wE, s, = 1 + iay/we, and s, = 

1 + ia,/we. Writing Eqs. (40)-(42) and (43)-(45) in the time 
domain, we have 

1 
[ 4 ( t / ~ ) ~  - ( t / ~ ) ~ ] e - ' / ' ,  (52) 

J y ( t )  = A x  A y  Az 

where 7 = 1/4.rrf0 and a value of f,, = 1.0 GHz was chosen. 
The dipole source was located at grid location (n,, n,, 
n,) = (91, 64, 16). The Ex and Ey fields were obtained by 
sampling the fields at grid location (n,, n y ,  n,) = (37, 91, 16). 
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The absorbing boundaries used for the FDTD simulation 
consisted of planar layers of thickness eight grid points on all 
surfaces. Along the borders parallel to the x axis, the value of 
ux was specified, and uy and u- were specified on the 
borders parallel to the y and z axes, respectively. The con- 
ductivity values were chosen with a parabolic taper decreas- 
ing from the maximum value toward the center of the grid 
such that the reflection coefficient at normal incidence was 
R ,  = 0.0001. 

The Ex field computed using both the analytic formula- 
tion and the FDTD algorithm are overlaid in Figure 2. The 
curves due to the analytic and numerical solutions are barely 
distinguishable, indicating excellent agreement. Similarly, the 
Ey field due to the analytic and numerical solutions are 
overlaid in Figure 3. Again, we see excellent agreement. Any 
difference between the analytic and numerical solutions in 
Figures 2 and 3 may be attributed to modeling errors such as 
the finite size of the dipole source and the discrete approxi- 
mation of Maxwell’s equations in addition to reflections due 
to imperfections in the absorbing boundaries. 

The CM-5 machine used to solve the FDTD problem is 
located at the National Center for Supercomputing Applica- 
tions (NCSA) at the University of Illinois. The program was 

-80001 
I 

, lo4 

I 
100 200 300 400 500 600 

-1.5’ 
0 

Time step 

Figure 3 Analytic and numerical FDTD solution overlaid for the 
E ,  field resulting from an infinitesimal electric dipole 

TABLE 1. CPU times for FDTD Problem on CM-5 

CPU sec (Run 1, Run 2, Run 3; Avg.) Nodes 

32 50.5,50.2,50.6; 50.4 
64 29.9,30.0,30.0; 30.0 

128 17.9, 18.4, 18.4; 18.2 
256 12.4, 13.2,12.7; 12.8 

written in CM Fortran and compiled using CMF version 2.1. 
The CM-5 at the NCSA has 512 nodes with vector units. CPU 
times were determined by running the problem on 32-, 64-, 
128-, and 256-node partitions. For this problem, a total of 0.5 
million unknown field quantities (128 X 128 X 32 grid) were 
determined for 512 time steps. The CPU times are shown in 
Table 1. 

7. CONCLUSIONS 
A modified set of Maxwell’s equations have been introduced 
using complex coordinate stretching factors along the three 
Cartesian coordinate axes. This modification introduces addi- 
tional degrees of freedom in Maxwell’s equations such that 
absorbing boundaries may be specified with zero reflection 
coefficient at all frequencies and all angles of incidence. The 
formulation was shown to be related to the perfectly matched 
layer that was recently derived by Berenger for 2D wave 
propagation. A 3D FDTD algorithm was developed from the 
modified Maxwell’s equations that use the reflectionless ab- 
sorbing interface property to implement radiation boundary 
conditions at the edges of the FDTD grid. The accuracy of 
the algorithm was validated by computing the field radiated 
from an infinitesimal electric dipole and comparing against a 
known analytical expression. The FDTD algorithm was imple- 
mented on the Connection Machine CM-5 and timing results 
were presented. This breakthrough in absorbing material 
boundary conditions allows EM scattering to be computed 
very efficiently on SIMD parallel computers. 
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ABSTRACT 
A simple technique to improve the impedance bandwidth of a circular 
microstrip patch antenna using two sectoral slots is proposed. Using this 
design more than 5% impedance bandwidth is obtained. The added 
advantage of this new antenna is that it can be fed by a 50-n microstrip 
line. 0 1994 John ryiley & Sons, Inc. 

INTRODUCTION 
Microstrip antennas are quickly replacing conventional an- 
tennas due to advantages such as light weight, small size, low 
production cost, and conformal nature. The commonly used 
radiating elements are rectangular and circular patches. The 
inherent disadvantage of these antennas is their extremely 
narrow impedance bandwidth. Although numerous methods 
are described in the literature to improve the impedance 

bandwidth of rectangular patch antennas [l-41, only a few 
techniques are available on bandwidth enhancement of a 
circular microstrip patch. This is mainly due to the limited 
use of the circular patch antenna because of high input 
impedance along its circumference, which restricts the direct 
use of a 50-R microstrip line as feed. A method to overcome 
this constraint has already been proposed by the authors, 
wherein, a sectoral slot shunted with a conducting strip is 
made on the patch 151. This antenna shows wide variation in 
input impedance along the circumference and thus can easily 
be matched with a microstrip line of any impedance. 

One of the techniques commonly used to enhance the 
bandwidth of the circular patch is by using a parasitic ele- 
ment over the patch in a stacked fashion [6]. Another conven- 
tional method is the use of a thick dielectric substrate to 
improve the impedance bandwidth of the circular patch an- 
tenna [7]. Even though there is substantial improvement in 
the impedance bandwidth of the antennas, in both cases the 
structure becomes bulky and complex. In this article we 
report a new technique to enhance the impedance bandwidth 
of circular patch antenna on thin dielectric substrates. 

DESIGN AND EXPERIMENTAL DETAILS 
The schematic diagram of the antenna is shown in Figure 1. 
Two sectoral slots are made on the patch surface. The 
presence of the sectoral slots on the patch causes the an- 
tenna to resonate at two adjacent frequencies, which results 
in the enhancement of the impedance bandwidth. 

As a typical example, an antenna is fabricated on a dielec- 
tric substrate having thickness h = 0.16 cm and dielectric 
constant 6,. = 4.5. The radius I of the patch is 4.95 cm and 
the sectoral slot angle 8 is 6”. The angular position of the 
5 0 4  feed point from the center of the sectoral slot is 30”. 

The VSWR plot of the antenna is shown in Figure 2. The 
2:l VSWR bandwidth of the antenna is 47.66 MHz and the 
central frequency is at 882.7 MHz. This corresponds to a 
5.4% impedance bandwidth. This is much larger than the 
impedance bandwidth of 1% to 2% of ordinaIy circular patch 
antennas. 

The E- and H-plane radiation patterns of the antenna at 
the central frequency and the two end frequencies (normal- 

Figure 1 Schematic diagram of the antenna 
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