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Abstract 

Deep learning can help automate the signal analysis process in power side channel analysis. So far, 

power side channel analysis relies on the combination of cryptanalytic science, and the art of signal 

processing. Deep learning is essentially a classification algorithm, which can also be trained to 

recognize different leakages in a chip. Even more so, we do this such that typical signal processing 

problems such as noise reduction and re-alignment are automatically solved by the deep learning 

network. We show we can break a lightly protected AES, an AES implementation with masking 

countermeasures and a protected ECC implementation. These experiments show that where 

previously side channel analysis had a large dependency on the skills of the human, first steps are 

being developed that bring down the attacker skill required for such attacks. This paper is targeted at 

a technical audience that is interested in the latest developments on the intersection of deep 

learning, side channel analysis and security. 

Keywords: Deep Learning, Side-Channel Analysis, Convolutional Neural Networks 

 

1 Introduction 

Deep learning is defined as an advanced machine learning technique that is able to learn by example. 

Among the main applications of deep learning we can refer to self-driving cars, advanced image 

recognition systems and natural language processing. The main reason why deep learning is 

receiving so much attention is mainly attributed to the highly accurate classification results that were 

not achieved before with alternative machine learning methods.  

Even if deep learning is able to provide higher levels of recognition accuracy, its application requires 

large amount of labeled data for the learning procedure and substantially more computation power 

than well-known machine learning techniques. However, current applications benefit from the 

highly availability of big data scenarios and GPU for parallel computing. 

 

1.1 How deep learning works 

Behind the term deep learning there is another term which is very well-known by the scientific 

community: artificial neural networks. A neural network is a structure composed of several layers. At 
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least, one input and one output layer are sufficient to define the neural network structure. Usually, 

classical application of neural networks consider the usage of few hidden layers, which are placed 

between the input and output layers. Traditional structures are composed by 2 or 3 hidden layers. 

Deep learning, also named as deep neural networks, can go far beyond this value and implement 

structures with tenths to hundreds of hidden layers.  

 

 

Figure 1 Basic neural network structure 

 

The structure from Figure 1 is an example of a very basic neural network called Fully Connected 

Network or Multiple Layer Perceptron. It contains only one type of layer, conventionally called dense 

or fully connected layer that is composed of several small structures called neurons. Every neuron 

from a hidden layer is fully connected to all the neurons of its precedent and subsequent layers. 

Many different topologies for artificial neural networks exist and, among the most largely used ones, 

multiple layer perceptron and convolutional neural networks are one of the most popular 

approaches. In the field of side-channel analysis, these two topologies already showed to be 

successful against first-order masking of AES as well as scenarios where the traces are 

desynchronized in time. In the last case, convolutional neural networks are particularly successful 

because they have the ability to identify leakages in different trace positions. 

 

1.2 Multiple layer perceptron 

Multiple layer perceptron (MLP) is a class of feed forward artificial neural network with a function F 

that is composed of multiple linear functions and some non-linear activation functions. Every layer of 
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a MLP is composed of multiple neurons (or, as called in the past, perceptron). The neuron is the basic 

element and it is fully connected to all the neurons of the previous and subsequent layers. Therefore, 

this topology of neural networks is also known as fully-connected network. 

The connection of every neuron to the previous or subsequent layer is defined by a connection 

weight. Additionally, every neuron has a bias value and an activation function. These are the 

parameters that are updated during the training of a multiple layer perceptron. The activation 

function usually is RELU (Rectifier Linear Unit), TANH (hyperbolic tangent) or Sigmoid. The following 

equation defines the output activation value of a neuron: 

𝑎 = 𝑓 (∑𝜔𝑖

𝑛

𝑖=1

𝑖𝑖 + 𝑏𝑖𝑎𝑠) 

where 𝑓() is the activation function, 𝜔𝑖 is the weight connection between the neuron to the neuron 𝑖 

in the previous layer, 𝑖𝑖  is the activation value of the neuron 𝑖 in the previous layer, 𝑏𝑖𝑎𝑠 is the bias 

value and finally 𝑛 is the number of neurons in the previous layer. 

The structure of a multiple layer perceptron must contain at least the following layers: 

 Input layer: the number of neurons in the input layer must be given by the number of samples (or 

points) in the input data; 

 Hidden layers: these are the layers placed between the input and the output layers. The hidden 

layers are responsible for feature extraction and classification of input data; 

 Output layer: the output layer maps the information from the last hidden layer to output 

neurons. The number of neurons in the output layer is equivalent to the number of classes in the 

input data set. Usually, the output value of a neuron in the output layer is given in terms of 

probabilities (between 0 and 1). For that, it is recommended the usage of Softmax as the 

activation function combined with the negative log-likelihood for the loss function in the output 

layer (these hyper-parameters will be explained later in the text). 

 

1.3 Convolutional neural networks 

Convolutional neural networks (CNN) perform automatic feature extraction from input data. The 

original idea \cite{Lecun98gradient-basedlearning} appeared as an advanced solution for object 
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recognition in images. However, their application to 1D data (like time-series) is also very 

appropriate.  

The basic structure of a CNN consists of one or more convolution layer, a fully connected network 

(dense layers) and an output layer. Figure 2 shows an example of a CNN with two convolution layers. 

 

 

Figure 2 Example of a convolutional neural network structure 

 

The convolution layer contains three basic inner structures: a convolution operation, a RELU 

(Rectified Linear Unit) as activation function and a pooling layer. The pooling layer is responsible for 

down-sampling operation (dimensionality reduction). This convolution layer contains internal 

weights and biases for its elements. It implements a fixed amount of convolution filters, and all of 

them are defined with same (1D or 2D) kernel size and a stride to define the step of the convolution 

over the input. The convolution operation (which is the sum of dot products) is performed between 

the filter and the input data. Therefore, it is also assumed that the output result from a convolution 

layer is a filtered result or a feature. After the convolution operation, the result is applied to an 

activation function and, optionally, to a pooling operation. 

The convolution filter parameters (weights and bias) are updated for every iteration. The updates are 

based on the back-propagation algorithm, and it is directly affected by the defined learning rate, 

regularization and updater method. 

 

2  Deep learning for side-channel analysis 

The application of deep learning requires a careful analysis of the problem and the configuration of 

the neural network. Side-channel analysis requires a neural network to identify leakages in traces. 
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This leakage can be understood as the dependency between the power consumption (or 

electromagnetic emanation) and the intermediate states being processed by the cryptographic 

algorithm. The values of intermediate states depend on the input (plaintext or cipher-text) and the 

key material. Usually, the amount of leakage embedded in side-channel traces is limited by inherent 

noise from acquisitions. 

First, it is important to have in mind what is the entire framework of a deep learning application for 

side-channel attacks. The scenario described here is supervised learning, meaning that an open 

sample (with a configurable key), or at least a closed sample with a known key, is required for the 

learning or training phase. After the acquisition phase, the key and inputs are known and are 

associated to each side-channel trace in order to label them. Next, the trace set is split into training 

and validation sets (see Figure 3). Ideally, a new trace set is measured from another and identical 

device (closed sample), containing an unknown key. This last trace set is then used as a test set. 

Because deep learning is very computational expensive, the training phase used to be very time-

consuming, while the validation and test phases are usually fast.  

 

 

Figure 3 Basic side-channel framework for deep learning 
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As do conventional side-channel analysis methods (such as: differential power analysis, template 

attacks), deep learning also requires the definition of a leakage model. The application of multiple 

layer perceptron or convolutional neural networks means that the evaluation is done in a supervised 

setting. Consequently, the traces in the training and validation phases need to be labeled according 

to the defined leakage model. In this procedure, the attacker also defines the amount of classes that 

a neural network must be able to identify (and eventually classify) from the input trace set. As an 

example, if the leakage model is built over the S-box output of the first AES round, the number of 

classes that a neural network expects to see in the training data is: 

 9, if Hamming weight (HW) model is selected; 

 256, if identity (ID) model is selected; 

 2, if the leakage model refers to a single bit in the S-Box output. 

An obvious observation is that more classes require more traces in the training phase. The neural 

network must process a minimum sufficient amount of examples per class to be able to recognize 

the classes. Otherwise, the neural network will not be able to achieve satisfactory accuracy and 

generalization. The usage of identity leakage model should be avoided if the training and validation 

keys are the same, as usually happens when a closed sample (with a known key) is available for the 

training phase. In this case, the Hamming weight leakage model is a better choice. 

Deep learning is, therefore, able to classify side-channel traces according to the labels derived from 

the leakage model. For symmetric-key algorithms, like DES or AES, the attacker can implement a 

divide-and-conquer process, where one key byte is attacked at a time. Therefore, the amount of 

times that a neural network must be trained is equivalent to the number of bytes in the key. However, 

the classification of traces into separate classes does not directly allow the attacker to reveal the key. 

For that, a key enumeration process is necessary. The output of the neural network provides the 

classification probability for each class. These class probabilities are then associated to key byte 

hypothesis in order to extract the likelihood for each key byte candidate. 

 

2.1 Related Works 

Several works already investigated the performance of deep neural networks in side-channel 

analysis. In (H. Maghrebi, 2016), the authors compared the performance (in terms of number of 

traces) of multiple layer perceptron and convolutional neural networks against other supervised 
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methods, like machine learning and template attacks. The work proposed in (E. Cagli, 2017) 

evaluates the performance of convolutional neural networks in scenarios where side-channel traces 

are misaligned due to countermeasures or hardware-related effects (clock jitter). The authors 

demonstrate that convolutional neural networks are able to suppress the misalignment effect if 

combined with regularization techniques like data augmentation. A detailed analysis about neural 

network hyper-parameters for side-channel analysis is given in (E. Prouff, 2018). The authors apply 

different hyper-parameters combinations on an unprotected and protected AES scenarios. 

 

2.2 Advantages of deep learning for side-channel analysis 

Deep learning is a very computational expensive technique that usually requires more time and 

memory resources to be deployed. However, it has clear advantages for side-channel analysis, like: 

 Points of interest selection are no longer necessary. The automatic feature extraction of 

convolutional layers and dense layers can identify the features related to the labeled traces; 

 Convolutional layers can extract features independently of their position in the data. Therefore, 

deep learning should be able to bypass jitter-based effects from unstable clock domains or even 

random delays countermeasures; 

 Because deep learning is a highly parametric model, the classification accuracy, and 

consequently the success rate of a side-channel analysis, can be optimized based on hyper-

parameter optimization; 

 Deep neural networks can implement highly complex functions. Consequently, deep learning 

might be able to break widely adopted countermeasures like masking or shuffling. 

 Section 4 provides some application examples of deep learning on AES and ECC. We also 

compare deep learning against classical side-channel methods. 

  

3 Training a neural network for SCA 

There are a number of factors that need to be taken into consideration when training a neural 

network for doing side channel analysis. In this section, we lay out the basic principles of training a 
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neural network and achieving good generalization performance when training an artificial neural 

network. 

3.1 Training accuracy 

The amount of traces used for training a neural network is, of course, related to the actual problem. 

Side-channel analysis requires a large amount of traces in the training process due to the very small 

statistical differences from one class to the other. Different from other deep learning application 

scenarios (e.g., images,  where the features can be, in most cases, easily visualized), classic side-

channel attacks usually disclose the features in power or electromagnetic traces (or, simply, the 

leakage) using statistical methods that average out the noise (DPA) or model the noise in order to 

identify classes (Template attacks). On the other hand, neural networks learn by example where the 

layered structure implements a complex function that is able to identify the features presented in the 

training data. Therefore, the training phase must cover a wide variety of traces for every given class in 

the training set.  

Furthermore, the number of internal parameters in a neural network (which are derived from the 

amount of layers and neurons) must be sufficient to fit all the input features provided with the 

training set. A neural network will implement a function that will be able to map the input data (with 

a specific label class) to output probabilities that indicate “how much” the input data corresponds to 

each class. If the training set is too small, we can easily overfit the parameters. It means that the 

trained neural network is very capable of classifying the small training set with very high accuracy 

(close to 100%) however it is unable to generalize to new data. To avoid such a scenario, the training 

set must have a minimum adequate amount of traces with respect to the number of parameters in 

the neural network (weight and biases). 

Another reason to check for the good size of the training set is related to the minimum necessary 

classification accuracy. Once the trace set is classified by a neural network according to a specific 

leakage model, the classified traces are applied to a key enumeration or key recovery algorithm. This 

algorithm considers the output probabilities from the output layer in order to rank and return best 

key candidates. Even if the classification accuracy of the validation (or test) set is relatively small, the 

key recovery phase can still be successful. The reason for this relies on the fact that the attack phase 

on symmetric algorithms (AES, DES) needs to process several traces with the same key material. For 

this reason, a key enumeration process is able to eliminate wrong key guesses and make the correct 
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key hypothesis to converge. Increasing the size of the training set may lead to higher classification 

accuracy. Consequently, successful key recoveries are possible with fewer traces in the validation and 

test phases. 

The training accuracy is an important metric during the training process. By observing the evolution 

of the training accuracy after every processed epoch, the user is able to conclude whether the 

amount of training traces is sufficient for the neural network to learn and generalize. Furthermore, 

the training accuracy evolution indicates whether the back-propagation algorithm is stabilizing the 

correct weight and bias values after some time. The learning rate is a very important hyper-

parameter that affects back-propagation algorithm steps during the training phase. Figure 4 shows 

an example of training accuracy evolution when the learning rate is too large to keep the model 

stabilized after the processing of, approximately, 250 epochs. 

 

 

Figure 4 Training accuracy evolution - learning rate is too high. 

One of the solutions to prevent such a scenario of instability is to use learning rate decay rate during 

training. In this case, the learning rate is updated (and mostly reduced) during training. The 

consequence can be observed in Figure 5 in the accuracy and in the loss function evolution, where 

both become more stable after processing more than 250 epochs. 
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Figure 5 Training accuracy evolution - correct learning rate. 

 

3.2 Regularization parameters for generalization 

The selection of hyper-parameters is the most important step in deep learning and neural networks. 

Different hyper-parameters have different influences in the neural network performance. The 

required training time to achieve satisfactory classification accuracy is influenced by the learning 

rate, mini-batch size and number of epochs. Furthermore, some of the hyper-parameters affect 

generalization. 

There are many solutions to improve generalization in deep learning. Solutions proposed by experts 

in the field suggest the usage of: 

 Dropout; 

 Early stopping; 
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 Regularization L1; 

 Weight decay (similar to regularization L2); 

 Data augmentation; 

 Batch normalization (even if this method is not directly implemented for this purpose). 

Regularization L1 and L2 are considered as a penalty in the weight updates in order to prevent them 

to be too large. Typically, the overfitting happens when the neural network is trained for quite a long 

time and the weights become too large. Therefore, regularizers, such as L1 and L2 prevent this effect. 

The L1 regularization penalizes the sum of the absolute values of the weights. The L2 regularization 

penalizes the sum of the squared values of the weights. Furthermore, L1 regularization also helps in 

the feature selection by pruning unneeded features by setting their associated weights to zero. As 

consequence, by setting optimal regularization L1 and L2 values, the training accuracy will not reach 

100\% (because the model cannot perfectly fit the input data anymore) and the generalization can 

happen more easily. A similar effect can be observed when the number of training traces is 

increased. 

Dropout is a technique that turns off a random subset of the neurons from the layers during training. 

This method can prevent a single neuron from overshadowing all the other neurons in a layer during 

training. 

Early stopping tries to prevent the overfitting by returning the best achieved model within a pre-

defined training time. The metric for the early stopping should be the validation accuracy. 

Data augmentation, as the name suggests, uses the original data set to produce additional modified 

data in order to increase the capability of the neural network of dealing with different features in the 

data. 

The mini-batch size used for training is also a determining factor in generalization. The stochastic 

gradient descent algorithm and its variants are employed in a mini-batch regime (batch sizes of 32, 

64… 512). According to (N. S. Keskar, 2017), large batch sizes result in a bigger generalization gap. By 

increasing the batch-size for a specific problem, the analysis will find a threshold after which the 

quality of the model will deteriorate. What is then observed is a drop in the testing accuracy. It is also 

important to mention that, unlike the training with the entire batch (full training set) the cost 

function does not decrease very smoothly when using mini-batches. An alternative idea is to 
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initialize the training with a small batch (called warm-starting) and then gradually increase the batch 

size during epochs. 

In addition, small batch sizes offer an inherent regularization effect, maybe because they add noise 

effects to the learning process. Training with very small batch sizes also requires a very small learning 

rate (e.g., 0.001 or smaller) in order to maintain stability. 

 

3.3 The number of hidden layers 

Deep learning actually receives this denomination because the neural network usually contains tens 

of hidden layers. However, not always a large amount of hidden layers is needed for a successful 

side-channel attack. The reason for that is because a very small accuracy is, sometimes, sufficient to 

execute a successful key recovery. The size of the training set, and the amount of input samples, can 

be related to the number of hidden layers. 

It is important to note that with more hidden layers, the neural network is more capable of learning 

from a training set. This is a benefit when the training set is large enough. Of course, increasing the 

size of the neural network directly increases the amount of internal parameters and more time and 

computation power are necessary to properly train all these parameters. The direct consequence of 

having more hidden layers is that the loss function value decreases faster once the neural network 

starts converging. In this case, the training phase may require fewer epochs to achieve satisfactory 

results or successful key recovery. On the other hand, as already mentioned in Section 3.1, if the 

number of parameters in a neural network is too big for the input data, the network can easily overfit 

the training set. Note that the necessary time to process an entire epoch can be very long if the 

number of hidden layer is too big. 

 

3.4 Automated search for hyper-parameters 

Neural networks are highly parametric models. The initial configuration of the hyper-parameters 

requires (in most cases) advanced knowledge about neural networks. Some of the hyper-parameters 

can be defined based on the target under evaluation and leakage model. Typically, the number of 

hidden layers and their number of neurons are selected based on the target side-channel traces and 
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leakage model. On the other hand, regularization hyper-parameters, learning rate, number of 

epochs, mini-batch size and activation functions are usually defined based on the observed training 

and validation accuracy/recall. For that, the neural networks must be trained several times and the 

user must adapt the hyper-parameters one by one, making the model to converge to local or global 

minima in the hyper-parameters “landscape”. 

The search for an optimized group of hyper-parameters requires a lot of tests, which requires a lot of 

computation power and time. The reason for that is because for every selected group of hyper-

parameters the neural networks need to be re-trained. Among the available hyper-parameter search 

solutions, we have: 

 Grid search; 

 Random search; 

 Optimized search. 

Random and grid search are the most basic hyper-parameter search techniques. These two methods 

search for hyper-parameters inside pre-defined ranges and do not use any optimization technique. 

The best achieved model (based on accuracy, recall, loss function) is assumed as being the best 

candidate. The literature has shown that random search performs better than grid search. Optimized 

searches consider the usage of advanced methods, like evolutionary (or genetic) algorithms, 

Bayesian optimization, simulated annealing, etc. 

 

4 Practical experiments 

This section summarizes the experiments done on using deep learning methods to recover 

cryptographic keys from implementations featuring various countermeasures. 

 

4.1 Bypassing misalignment with CNNs 

Convolutional neural networks (CNNs) can deal with misaligned traces, as proposed in (E. Cagli, 

2017). The results presented in this work demonstrate that CNNs can indeed overcome 

misalignment and jitter-based countermeasures with the application of data augmentation 

techniques. 
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The target is a software AES implementation, where strong misalignment is present, as shown in 

Figure 6. The displayed interval represents the processing of the S-box in the first round. In total, 

45~000 traces are considered for training and 5~000 are considered for validation. 

 

Figure 6 AES traces with misalignment 

The trained convolutional neural network contains two convolution layers and three dense layers. 

The leakage model is Hamming weight of S-box output, meaning that 9 different classes are defined 

in the training set. 

Figure 7 shows the key ranking results for convolutional neural network, correlation power analysis 

and template attacks. As we can observe, CNN is the only scenario where the key recovery is possible 

against the evaluated target. 

 

 

Figure 7 Key ranking evolutions for CNN, CPA and template attack. 

The comparison of key ranking evolutions demonstrates that the trained convolutional neural 

network is able to recover the key. Correlation power analysis and template attacks show no key 

convergence. This basic example shows that convolutional neural networks can efficiently deal with 

misalignment effects in side-channel traces. Furthermore, jitter-based effects are present in most of 

hardware devices due to instabilities in the clock domain or as an intentional countermeasure. Deep 



 

 

 

 

 

17       Lowering the bar: deep learning for side-channel analysis | Riscure | www.riscure.com  

 

 

 

 

 

 

learning shows strong indications to bypass this effect by using convolution filters in neural 

networks.  

 

4.2 Breaking masked AES 

DPA Contest v4 is a public database that we consider as an application case. This trace set is collected 

from a target that implements AES with first order masking countermeasure. Such a countermeasure 

eliminates dependency between predictable intermediate states in a cryptographic algorithm and 

the power consumption (or the electromagnetic emanation). The database consists of 40,000 power 

side-channel traces measured from a software implementation of AES-256. The implementation is 

protected with rotating S-box masking (RSM) scheme, also called a low-entropy masking scheme 

that provides resistance to first order attacks.  

An overview of the DPA Contest V4 trace is shown in Figure 8. 

 

 

Figure 8 DPA Contest V4 side-channel trace 

The full trace represents the power consumption during the processing of the first AES round. The 

raw traces contain 435,000 samples each. The operations that we are interested in are the s-boxes 

and shift rows. This results in an interval of approximately 200,000 samples to apply the black-box 

deep learning analysis. This amount of input samples per traces renders the training process 

unfeasible due to memory and time constraints. The solution is to split the input trace into several 

sub-parts and then train the neural network for all the intervals. Off course, this procedure could be 

sped up with identification of the moment when the offset values (masks) are processed in the first 

round. This is possible because the mask values are provided together with the database. 
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The neural network is trained multiple times in a black box setting for different intervals. By doing so, 

we identify the interval where the validation accuracy is relatively high for the target key byte. 

Although the achieved validation accuracy is not sufficient to successfully recover the key, it was 

enough to identify the interval that has the most leaking samples. Training the neural network on the 

identified interval and after optimizing the training led to successful key recovery. Due to the limited 

amount of traces (40,000) and the selected short interval (1,000 samples), we were able to recover 

the key bytes by training a convolutional neural network with one convolution layer and three fully 

connected layers. In the key enumeration phase, in average 10 traces are sufficient to have the 

correct key byte to be ranked as the first key candidate. 

In profiled side-channel analysis, the key for training and validation (or test) should be different, 

otherwise the key recovery phase is not realistic. In fact, if the same key is used for training and 

validation, it is uncertain whether the neural network is actually learning from the leakage or some 

other features from the input trace. To confirm that this situation is not happening in the current 

scenario, we train and test the neural network on correct and on wrong (random) key byte values. 

Figure 9 illustrates the training and validation recalls for correct and incorrect labels. The recall is the 

average of the individual accuracies per class. It is a more realistic metric when classes are 

unbalanced. 

 

Figure 9 Training and validation recalls for the correct labels (left) and wrong labels (right) 

As we can see in the figure, the validation recall (and generalization) is very low (around 11%) when 

incorrect labels are used for training the network; meaning that our model is actually learning the 
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leakage from the traces. On the other hand, the validation recall for the correct labels achieved 

approximately 22%, which turned out to be sufficient for a successful key recovery. 

Therefore, this experiment showed that deep learning is able to break slightly protected AES 

implementations. 

 

4.3 Attacking protected ECC 

State-of-the-art hardware implementations of elliptic curve cryptography consider several 

countermeasures in order to protect against private key extraction through side-channel analysis. 

Among these countermeasures, point randomization, coordinate randomization and scalar blinding 

prevent the application of classical side-channel analysis methods. In this experiment, the target is a 

Montgomery ladder implementation of the scalar multiplication, protected with scalar blinding and 

coordinate blinding. The implementation is based on Curve 25519 (Bernstein, Public Key 

Cryptography - PKC 2006). 

Side-channel analysis on protected public-key implementations (including RSA) is conducted in a 

different way than it is previously discussed in the paper. Instead of processing a trace set with the 

same key material, every trace contains measurements collected from an execution that uses a 

different (randomized) private key. Therefore, the attacker must work around this limitation by 

attacking a single trace. If an attacker can recover the randomized private key from a single trace, 

then an equivalent of the real private key can be obtained using basic calculus. This is done through a 

special type of side channel attacks called horizontal attacks. 

The procedure for applying horizontal attacks can be summarized in the following way. The trace 

representing the power consumption of a scalar multiplication is divided into sub-parts, where each 

part represents the processing of one bit of the scalar. In the case of Montgomery ladder, every sub-

part contains the processing of a point addition followed by a point doubling. 

Even when horizontal attacks are applied in a supervised setting, the presence of misalignment 

directly reduces the points of interest identification performance. Convolutional neural networks are 

efficient in detecting leakages even when side-channel traces are de-synchronized in the time 

domain. Another advantage here is that a convolutional neural network does not need to be 

informed about the location of points of interest. The network can discover these points of interests 

by itself. 
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In a supervised setting, deep learning is able to recover 100% of the scalar bits if the traces are 

properly aligned in time domain. The same performance can be achieved over the attacked trace set 

if profiled template attacks are considered. For the case when the traces are not aligned, supervised 

template attacks are only able to recover approximately 60% of the scalar bits in the test phase. 

However, a convolutional neural network can recover approximately 90% of the scalar bits. 

To improve the classification accuracy, an optimal set of hyper-parameters must be identified. 

Another way to improve classification accuracy is to adopt data augmentation as a regularization 

method. To do so, we augment the original training set by inserting artificial (random) shifts in the 

traces. This mechanism provides more examples to the network, helping it to learn from a larger 

variety of misaligned traces. After data augmentation, the classification accuracy in the test phase 

raised to 99.4%. The rest of the bits can be recovered using a brute force strategy. 

 

5 Conclusions 

This paper presented an overview of deep learning for side-channel analysis. We provided an 

overview of the methodology that is commonly applied to side-channel attacks when neural 

networks are considered as the model for the key recovery. The paper also covered the details for 

training a neural network for SCA. We applied convolutional neural networks on different targets and 

demonstrated that CNNs can efficiently bypass trace misalignment and recover the key bytes. 

Furthermore, we also applied a convolutional neural network on slightly protected AES (DPA Contest 

V4) as a black-box attack. Finally, a CNN is also trained to bypass misalignment in ECC traces. The 

applied method achieved 99.4% of accuracy when applied on single ECC traces. 
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