

Artificial Intelligence By
Example
Second Edition

Acquire advanced AI, machine learning, and deep
learning design skills

Denis Rothman

BIRMINGHAM - MUMBAI

Artificial Intelligence By Example
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Divya Mudaliar
Content Development Editor: Dr. Ian Hough
Technical Editor: Saby D'silva
Project Editor: Kishor Rit
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Presentation Designer: Pranit Padwal

First published: May 2018
Second edition: February 2020

Production reference: 2140420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83921-153-9

www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

Contributors

About the author
Denis Rothman graduated from Sorbonne University and Paris-Diderot
University, writing one of the very first word2matrix embedding solutions. He began
his career authoring one of the first AI cognitive natural language processing (NLP)
chatbots applied as a language teacher for Moët et Chandon and other companies.
He authored an AI resource optimizer for IBM and apparel producers. He then
authored an advanced planning and scheduling (APS) solution used worldwide.

"I want to thank the corporations who trusted me from the start to deliver
artificial intelligence solutions and share the risks of continuous innovation.
I also thank my family, who believed I would make it big at all times."

About the reviewers
Carlos Toxtli is a human-computer interaction researcher who studies the impact
of artificial intelligence in the future of work. He studied a Ph.D. in Computer
Science at the University of West Virginia and a master's degree in Technological
Innovation and Entrepreneurship at the Monterrey Institute of Technology and
Higher Education. He has worked for some international organizations such as
Google, Microsoft, Amazon, and the United Nations. He has also created companies
that use artificial intelligence in the financial, educational, customer service, and
parking industries. Carlos has published numerous research papers, manuscripts,
and book chapters for different conferences and journals in his field.

"I want to thank all the editors who helped make this book a masterpiece."

Kausthub Raj Jadhav graduated from the University of California, Irvine,
where he specialized in intelligent systems and founded the Artificial Intelligence
Club. In his spare time, he enjoys powerlifting, rewatching Parks and Recreation,
and learning how to cook. He solves hard problems for a living.

[i]

Table of Contents
Preface xiii
Chapter 1: Getting Started with Next-Generation Artificial
Intelligence through Reinforcement Learning 1

Reinforcement learning concepts 2
How to adapt to machine thinking and become an adaptive thinker 4
Overcoming real-life issues using the three-step approach 5

Step 1 – describing a problem to solve: MDP in natural language 7
Watching the MDP agent at work 8

Step 2 – building a mathematical model: the mathematical
representation of the Bellman equation and MDP 10

From MDP to the Bellman equation 10
Step 3 – writing source code: implementing the solution in Python 14

The lessons of reinforcement learning 16
How to use the outputs 18

Possible use cases 20
Machine learning versus traditional applications 23

Summary 24
Questions 24
Further reading 25

Chapter 2: Building a Reward Matrix – Designing Your Datasets 27
Designing datasets – where the dream stops and the hard work begins 28

Designing datasets 29
Using the McCulloch-Pitts neuron 29
The McCulloch-Pitts neuron 31
The Python-TensorFlow architecture 35

Table of Contents

[ii]

Logistic activation functions and classifiers 35
Overall architecture 35
Logistic classifier 36
Logistic function 37
Softmax 38

Summary 42
Questions 43
Further reading 43

Chapter 3: Machine Intelligence – Evaluation Functions and
Numerical Convergence 45

Tracking down what to measure and deciding how to measure it 46
Convergence 48

Implicit convergence 49
Numerically controlled gradient descent convergence 49

Evaluating beyond human analytic capacity 56
Using supervised learning to evaluate a result that surpasses human
analytic capacity 60
Summary 64
Questions 65
Further reading 65

Chapter 4: Optimizing Your Solutions with K-Means Clustering 67
Dataset optimization and control 68

Designing a dataset and choosing an ML/DL model 69
Approval of the design matrix 70

Implementing a k-means clustering solution 74
The vision 74

The data 75
The strategy 76

The k-means clustering program 77
The mathematical definition of k-means clustering 78
The Python program 80

Saving and loading the model 84
Analyzing the results 85

Bot virtual clusters as a solution 86
The limits of the implementation of the k-means clustering algorithm 87

Summary 88
Questions 88
Further reading 89

Chapter 5: How to Use Decision Trees to Enhance
K-Means Clustering 91

Unsupervised learning with KMC with large datasets 92

Table of Contents

[iii]

Identifying the difficulty of the problem 94
NP-hard – the meaning of P 94
NP-hard – the meaning of non-deterministic 95

Implementing random sampling with mini-batches 95
Using the LLN 96
The CLT 96

Using a Monte Carlo estimator 97
Trying to train the full training dataset 98
Training a random sample of the training dataset 98
Shuffling as another way to perform random sampling 100
Chaining supervised learning to verify unsupervised learning 102

Preprocessing raw data 103
A pipeline of scripts and ML algorithms 103

Step 1 – training and exporting data from an unsupervised ML algorithm 105
Step 2 – training a decision tree 106
Step 3 – a continuous cycle of KMC chained to a decision tree 110

Random forests as an alternative to decision trees 114
Summary 118
Questions 118
Further reading 119

Chapter 6: Innovating AI with Google Translate 121
Understanding innovation and disruption in AI 123

Is AI disruptive? 123
AI is based on mathematical theories that are not new 124
Neural networks are not new 124

Looking at disruption – the factors that are making AI disruptive 125
Cloud server power, data volumes, and web sharing of the early 21st century 125
Public awareness 126

Inventions versus innovations 126
Revolutionary versus disruptive solutions 127
Where to start? 127

Discover a world of opportunities with Google Translate 128
Getting started 128
The program 128

The header 128
Implementing Google's translation service 129

Google Translate from a linguist's perspective 130
Playing with the tool 131
Linguistic assessment of Google Translate 131

AI as a new frontier 135
Lexical field and polysemy 135
Exploring the frontier – customizing Google Translate with a
Python program 137

Table of Contents

[iv]

k-nearest neighbor algorithm 138
Implementing the KNN algorithm 139
The knn_polysemy.py program 142
Implementing the KNN function in Google_Translate_Customized.py 144
Conclusions on the Google Translate customized experiment 152
The disruptive revolutionary loop 153

Summary 153
Questions 154
Further reading 154

Chapter 7: Optimizing Blockchains with Naive Bayes 157
Part I – the background to blockchain technology 158

Mining bitcoins 159
Using cryptocurrency 160

PART II – using blockchains to share information in a supply chain 161
Using blockchains in the supply chain network 164
Creating a block 165
Exploring the blocks 166

Part III – optimizing a supply chain with naive Bayes in a blockchain
process 167

A naive Bayes example 167
The blockchain anticipation novelty 169
The goal – optimizing storage levels using blockchain data 170

Implementation of naive Bayes in Python 173
Gaussian naive Bayes 173

Summary 177
Questions 177
Further reading 178

Chapter 8: Solving the XOR Problem with a Feedforward
Neural Network 179

The original perceptron could not solve the XOR function 180
XOR and linearly separable models 181

Linearly separable models 181
The XOR limit of a linear model, such as the original perceptron 182

Building an FNN from scratch 184
Step 1 – defining an FNN 184
Step 2 – an example of how two children can solve the XOR
problem every day 185
Implementing a vintage XOR solution in Python with an FNN and
backpropagation 189

A simplified version of a cost function and gradient descent 191
Linear separability was achieved 194

Table of Contents

[v]

Applying the FNN XOR function to optimizing subsets of data 196
Summary 202
Questions 203
Further reading 203

Chapter 9: Abstract Image Classification with Convolutional
Neural Networks (CNNs) 205

Introducing CNNs 206
Defining a CNN 207
Initializing the CNN 209
Adding a 2D convolution layer 210

Kernel 210
Shape 215
ReLU 215

Pooling 218
Next convolution and pooling layer 219
Flattening 220
Dense layers 220

Dense activation functions 221
Training a CNN model 221

The goal 222
Compiling the model 223

The loss function 223
The Adam optimizer 225
Metrics 226

The training dataset 226
Data augmentation 227
Loading the data 227

The testing dataset 228
Data augmentation on the testing dataset 228
Loading the data 228

Training with the classifier 229
Saving the model 230

Next steps 230
Summary 231
Questions 231
Further reading and references 231

Chapter 10: Conceptual Representation Learning 233
Generating profit with transfer learning 234

The motivation behind transfer learning 235
Inductive thinking 235
Inductive abstraction 235
The problem AI needs to solve 236

Table of Contents

[vi]

The 𝚪𝚪 gap concept 237
Loading the trained TensorFlow 2.x model 238

Loading and displaying the model 238
Loading the model to use it 242
Defining a strategy 245
Making the model profitable by using it for another problem 246

Domain learning 247
How to use the programs 247

The trained models used in this section 248
The trained model program 248

Gap – loaded or underloaded 249
Gap – jammed or open lanes 251
Gap datasets and subsets 253

Generalizing the 𝚪𝚪 (the gap conceptual dataset) 253
The motivation of conceptual representation learning
metamodels applied to dimensionality 254

The curse of dimensionality 254
The blessing of dimensionality 255

Summary 256
Questions 257
Further reading 257

Chapter 11: Combining Reinforcement Learning
and Deep Learning 259

Planning and scheduling today and tomorrow 260
A real-time manufacturing process 262

Amazon must expand its services to face competition 262
A real-time manufacturing revolution 263

CRLMM applied to an automated apparel manufacturing process 266
An apparel manufacturing process 267
Training the CRLMM 269

Generalizing the unit training dataset 269
Food conveyor belt processing – positive p𝜸𝜸 and negative n𝜸𝜸 gaps 270
Running a prediction program 274

Building the RL-DL-CRLMM 274
A circular process 275
Implementing a CNN-CRLMM to detect gaps and optimize 276
Q-learning – MDP 277

MDP inputs and outputs 278
The optimizer 281

The optimizer as a regulator 281
Finding the main target for the MDP function 284

A circular model – a stream-like system that never starts nor ends 286

Table of Contents

[vii]

Summary 291
Questions 291
Further reading 292

Chapter 12: AI and the Internet of Things (IoT) 293
The public service project 294
Setting up the RL-DL-CRLMM model 295

Applying the model of the CRLMM 297
The dataset 298
Using the trained model 300

Adding an SVM function 301
Motivation – using an SVM to increase safety levels 302
Definition of a support vector machine 303
Python function 305

Running the CRLMM 307
Finding a parking space 307
Deciding how to get to the parking lot 310

Support vector machine 311
The itinerary graph 313
The weight vector 314

Summary 315
Questions 316
Further reading 316

Chapter 13: Visualizing Networks with TensorFlow 2.x
and TensorBoard 317

Exploring the output of the layers of a CNN in two steps
with TensorFlow 318

Building the layers of a CNN 319
Processing the visual output of the layers of a CNN 323

Analyzing the visual output of the layers of a CNN 327
Analyzing the accuracy of a CNN using TensorBoard 334

Getting started with Google Colaboratory 334
Defining and training the model 336
Introducing some of the measurements 339

Summary 341
Questions 342
Further reading 342

Chapter 14: Preparing the Input of Chatbots with Restricted
Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA) 343

Defining basic terms and goals 344

Table of Contents

[viii]

Introducing and building an RBM 345
The architecture of an RBM 346
An energy-based model 347
Building the RBM in Python 350

Creating a class and the structure of the RBM 350
Creating a training function in the RBM class 350
Computing the hidden units in the training function 351
Random sampling of the hidden units for the reconstruction and contractive
divergence 352
Reconstruction 353
Contrastive divergence 354
Error and energy function 354

Running the epochs and analyzing the results 355
Using the weights of an RBM as feature vectors for PCA 357

Understanding PCA 362
Mathematical explanation 363

Using TensorFlow's Embedding Projector to represent PCA 367
Analyzing the PCA to obtain input entry points for a chatbot 370

Summary 372
Questions 373
Further reading 373

Chapter 15: Setting Up a Cognitive NLP UI/CUI Chatbot 375
Basic concepts 376

Defining NLU 376
Why do we call chatbots "agents"? 376
Creating an agent to understand Dialogflow 377
Entities 378
Intents 382
Context 387

Adding fulfillment functionality to an agent 392
Defining fulfillment 393
Enhancing the cogfilmdr agent with a fulfillment webhook 394
Getting the bot to work on your website 397

Machine learning agents 398
Using machine learning in a chatbot 398
Speech-to-text 398
Text-to-speech 399
Spelling 401
Why are these machine learning algorithms important? 403

Summary 404
Questions 405
Further reading 405

Table of Contents

[ix]

Chapter 16: Improving the Emotional Intelligence
Deficiencies of Chatbots 407

From reacting to emotions, to creating emotions 408
Solving the problems of emotional polysemy 408

The greetings problem example 409
The affirmation example 410
The speech recognition fallacy 410
The facial analysis fallacy 411

Small talk 412
Courtesy 412
Emotions 415

Data logging 415
Creating emotions 418
RNN research for future automatic dialog generation 423

RNNs at work 424
RNN, LSTM, and vanishing gradients 425

Text generation with an RNN 426
Vectorizing the text 426
Building the model 427
Generating text 429

Summary 431
Questions 432
Further reading 432

Chapter 17: Genetic Algorithms in Hybrid Neural Networks 433
Understanding evolutionary algorithms 434

Heredity in humans 434
Our cells 435
How heredity works 435

Evolutionary algorithms 436
Going from a biological model to an algorithm 437
Basic concepts 437

Building a genetic algorithm in Python 440
Importing the libraries 440
Calling the algorithm 441
The main function 441
The parent generation process 442
Generating a parent 442
Fitness 443
Display parent 444
Crossover and mutation 445
Producing generations of children 447
Summary code 450

Unspecified target to optimize the architecture of a neural network
with a genetic algorithm 451

Table of Contents

[x]

A physical neural network 451
What is the nature of this mysterious S-FNN? 452
Calling the algorithm cell 453
Fitness cell 454
ga_main() cell 455

Artificial hybrid neural networks 456
Building the LSTM 457
The goal of the model 458

Summary 459
Questions 460
Further reading 460

Chapter 18: Neuromorphic Computing 461
Neuromorphic computing 462
Getting started with Nengo 463

Installing Nengo and Nengo GUI 464
Creating a Python program 466
A Nengo ensemble 466

Nengo neuron types 467
Nengo neuron dimensions 468
A Nengo node 468

Connecting Nengo objects 470
Visualizing data 470
Probes 475

Applying Nengo's unique approach to critical AI research areas 479
Summary 482
Questions 483
References 483
Further reading 483

Chapter 19: Quantum Computing 485
The rising power of quantum computers 486

Quantum computer speed 487
Defining a qubit 490
Representing a qubit 490
The position of a qubit 491

Radians, degrees, and rotations 492
The Bloch sphere 493

Composing a quantum score 494
Quantum gates with Quirk 494
A quantum computer score with Quirk 496
A quantum computer score with IBM Q 497

A thinking quantum computer 500
Representing our mind's concepts 500

Table of Contents

[xi]

Expanding MindX's conceptual representations 500
The MindX experiment 501

Preparing the data 501
Transformation functions – the situation function 501
Transformation functions – the quantum function 504
Creating and running the score 504
Using the output 506

Summary 507
Questions 507
Further reading 508

Appendix: Answers to the Questions 509
Chapter 1 – Getting Started with Next-Generation Artificial
Intelligence through Reinforcement Learning 509
Chapter 2 – Building a Reward Matrix – Designing Your Datasets 511
Chapter 3 – Machine Intelligence – Evaluation Functions and
Numerical Convergence 512
Chapter 4 – Optimizing Your Solutions with K-Means Clustering 513
Chapter 5 – How to Use Decision Trees to Enhance K-Means
Clustering 515
Chapter 6 – Innovating AI with Google Translate 516
Chapter 7 – Optimizing Blockchains with Naive Bayes 518
Chapter 8 – Solving the XOR Problem with a Feedforward
Neural Network 519
Chapter 9 – Abstract Image Classification with Convolutional
Neural Networks (CNNs) 521
Chapter 10 – Conceptual Representation Learning 522
Chapter 11 – Combining Reinforcement Learning and Deep Learning 524
Chapter 12 – AI and the Internet of Things 525
Chapter 13 – Visualizing Networks with TensorFlow 2.x and
TensorBoard 527
Chapter 14 – Preparing the Input of Chatbots with Restricted
Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA) 528
Chapter 15 – Setting Up a Cognitive NLP UI/CUI Chatbot 529
Chapter 16 – Improving the Emotional Intelligence Deficiencies
of Chatbots 530
Chapter 17 – Genetic Algorithms in Hybrid Neural Networks 531
Chapter 18 – Neuromorphic Computing 532
Chapter 19 – Quantum Computing 534

Other Books You May Enjoy 537
Index 541

[xiii]

Preface
This second edition of Artificial Intelligence By Example will take you through the
main aspects of present-day artificial intelligence (AI) and beyond!

This book contains many revisions and additions to the key aspects of AI
described in the first edition:

• The theory of machine learning and deep learning including hybrid and
ensemble algorithms.

• Mathematical representations of the main AI algorithms including natural
language explanations making them easier to understand.

• Real-life case studies taking the reader inside the heart of e-commerce:
manufacturing, services, warehouses, and delivery.

• Introducing AI solutions that combine IoT, convolutional neural networks
(CNN), and Markov decision process (MDP).

• Many open source Python programs with a special focus on the
new features of TensorFlow 2.x, TensorBoard, and Keras. Many modules
are used, such as scikit-learn, pandas, and more.

• Cloud platforms: Google Colaboratory with its free VM, Google Translate,
Google Dialogflow, IBM Q for quantum computing, and more.

• Use of the power of restricted Boltzmann machines (RBM) and principal
component analysis (PCA) to generate data to create a meaningful
chatbot.

• Solutions to compensate for the emotional deficiencies of chatbots.

Preface

[xiv]

• Genetic algorithms, which run faster than classical algorithms in specific
cases, and genetic algorithms used in a hybrid deep learning neural
network.

• Neuromorphic computing, which reproduces our brain activity
with models of selective spiking ensembles of neurons in models that
reproduce our biological reactions.

• Quantum computing, which will take you deep into the tremendous
calculation power of qubits and cognitive representation experiments.

This second edition of Artificial Intelligence By Example will take you to the cutting
edge of AI and beyond with innovations that improve existing solutions. This
book will make you a key asset not only as an AI specialist but a visionary. You
will discover how to improve your AI skills as a consultant, developer, professor,
a curious mind, or any person involved in artificial intelligence.

Who this book is for
This book contains a broad approach to AI, which is expanding to all areas of our
lives.

The main machine learning and deep learning algorithms are addressed
with real-life Python examples extracted from hundreds of AI projects and
implementations.

Each AI implementation is illustrated by an open source program available on
GitHub and cloud platforms such as Google Colaboratory.

Artificial Intelligence By Example, Second Edition is for developers who wish to build
solid machine learning programs that will optimize production sites, services, IoT
and more.

Project managers and consultants will learn how to build input datasets that will
help the reader face the challenges of real-life AI.

Teachers and students will have an overview of the key aspects of AI, along with
many educational examples.

Preface

[xv]

What this book covers
Chapter 1, Getting Started with Next-Generation Artificial Intelligence through
Reinforcement Learning, covers reinforcement learning through the Bellman
equation based on the MDP. A case study describes how to solve a delivery route
problem with a human driver and a self-driving vehicle. This chapter shows how
to build an MDP from scratch in Python.

Chapter 2, Building a Reward Matrix – Designing Your Datasets, demonstrates the
architecture of neural networks starting with the McCulloch-Pitts neuron. The
case study describes how to use a neural network to build the reward matrix
used by the Bellman equation in a warehouse environment. The process will be
developed in Python using logistic, softmax, and one-hot functions.

Chapter 3, Machine Intelligence – Evaluation Functions and Numerical Convergence,
shows how machine evaluation capacities have exceeded human decision-making.
The case study describes a chess position and how to apply the results of an AI
program to decision-making priorities. An introduction to decision trees in Python
shows how to manage decision-making processes.

Chapter 4, Optimizing Your Solutions with K-Means Clustering, covers a k-means
clustering program with Lloyd's algorithm and how to apply it to the optimization
of automatic guided vehicles. The k-means clustering program's model will be
trained and saved.

Chapter 5, How to Use Decision Trees to Enhance K-Means Clustering, begins with
unsupervised learning with k-means clustering. The output of the k-means
clustering algorithm will provide the labels for the supervised decision tree
algorithm. Random forests will be introduced.

Chapter 6, Innovating AI with Google Translate, explains the difference between a
revolutionary innovation and a disruptive innovation. Google Translate will be
described and enhanced with an innovative k-nearest neighbors-based Python
program.

Chapter 7, Optimizing Blockchains with Naive Bayes, is about mining blockchains and
describes how blockchains function. We use naive Bayes to optimize the blocks
of supply chain management (SCM) blockchains by predicting transactions to
anticipate storage levels.

Preface

[xvi]

Chapter 8, Solving the XOR Problem with a Feedforward Neural Network, is about
building a feedforward neural network (FNN) from scratch to solve the XOR
linear separability problem. The business case describes how to group orders for a
factory.

Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs),
describes CNN in detail: kernels, shapes, activation functions, pooling, flattening,
and dense layers. The case study illustrates the use of a CNN using a webcam on a
conveyor belt in a food-processing company.

Chapter 10, Conceptual Representation Learning, explains conceptual representation
learning (CRL), an innovative way to solve production flows with a CNN
transformed into a CRL metamodel (CRLMM). The case study shows how to
use a CRLMM for transfer and domain learning, extending the model to other
applications.

Chapter 11, Combining Reinforcement Learning and Deep Learning, combines a CNN
with an MDP to build a solution for automatic planning and scheduling with an
optimizer with a rule-based system.

The solution is applied to apparel manufacturing showing how to apply AI to
real-life systems.

Chapter 12, AI and the Internet of Things (IoT), explores a support vector machine
(SVM) assembled with a CNN. The case study shows how self-driving cars can
find an available parking space automatically.

Chapter 13, Visualizing Networks with TensorFlow 2.x and TensorBoard, extracts
information of each layer of a CNN and displays the intermediate steps
taken by the neural network. The output of each layer contains images of the
transformations applied.

Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBM)
and Principal Component Analysis (PCA), explains how to produce valuable
information using an RBM and a PCA to transform raw data into chatbot-input
data.

Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, describes how to build
a Google Dialogflow chatbot from scratch using the information provided by
an RBM and a PCA algorithm. The chatbot will contain entities, intents, and
meaningful responses.

Preface

[xvii]

Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots, explains the
limits of a chatbot when dealing with human emotions. The Emotion options of
Dialogflow will be activated along with Small Talk to make the chatbot friendlier.

Chapter 17, Genetic Algorithms in Hybrid Neural Networks, enters our chromosomes,
finds our genes, and helps you understand how our reproduction process works.
From there, it is shown how to implement an evolutionary algorithm in Python,
a genetic algorithm (GA). A hybrid neural network will show how to optimize a
neural network with a GA.

Chapter 18, Neuromorphic Computing, describes what neuromorphic computing is
and then explores Nengo, a unique neuromorphic framework with solid tutorials
and documentation.

This neuromorphic overview will take you into the wonderful power of our brain
structures to solve complex problems.

Chapter 19, Quantum Computing, will show quantum computers are superior
to classical computers, what a quantum bit is, how to use it, and how to build
quantum circuits. An introduction to quantum gates and example programs will
bring you into the futuristic world of quantum mechanics.

Appendix, Answers to the Questions, provides answers to the questions listed in
the Questions section in all the chapters.

To get the most out of this book
Artificial intelligence projects rely on three factors:

• Understanding the subject the AI project will be applied to. To do so,
go through a chapter to pick up the key ideas. Once you understand
the key ideas of a case study described in the book, try to see how an
AI solution can be applied to real-life examples around you.

• The mathematical foundations of the AI algorithms. Do not skip the
mathematics equations if you have the energy to study them. AI relies
heavily on mathematics. There are plenty of excellent websites that
explain the mathematics used in this book.

• Development. An artificial intelligence solution can be directly used on
an online cloud platform machine learning site such as Google. We
can access these platforms with APIs. In the book, Google Cloud is
used several times. Try to create an account of your own to explore
several cloud platforms to understand their potential and their limits.
Development remains critical for AI projects.

Preface

[xviii]

Even with a cloud platform, scripts and services are necessary. Also, sometimes,
writing an algorithm is mandatory because the ready-to-use online algorithms are
insufficient for a given problem. Explore the programs delivered with the book.
They are open source and free.

Technical requirements
The following is a non-exhaustive list of the technical requirements for running
the codes in this book. For a more detailed chapter-wise list, please refer to this
link: https://github.com/PacktPublishing/Artificial-Intelligence-By-
Example-Second-Edition/blob/master/Technical%20Requirements.csv.

Package Website
Python https://www.python.org/

NumPy https://pypi.org/project/numpy/

Matplotlib https://pypi.org/project/matplotlib/

pandas https://pypi.org/project/pandas/

SciPy https://pypi.org/project/scipy/

scikit-learn https://pypi.org/project/scikit-learn/

PyDotPlus https://pypi.org/project/pydotplus/

Google API https://developers.google.com/docs/api/
quickstart/python

html https://pypi.org/project/html/

TensorFlow 2 https://pypi.org/project/tensorflow/

Keras https://pypi.org/project/Keras/

Pillow https://pypi.org/project/Pillow/

Imageio https://pypi.org/project/imageio/

Pathlib https://pypi.org/project/pathlib/

OpenCV-Python https://pypi.org/project/opencv-python/

Google Dialogflow https://dialogflow.com/

DEAP https://pypi.org/project/deap/

bitstring https://pypi.org/project/bitstring/

nengo https://pypi.org/project/nengo/

nengo-gui https://pypi.org/project/nengo-gui/

IBM Q https://www.research.ibm.com/ibm-q/

Quirk http://algassert.com/2016/05/22/quirk.html

Preface

[xix]

Download the example code files
You can download the example code files for this book from your account at www.
packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition.
In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839211539_ColorImages.pdf.

Preface

[xx]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "The decision tree program, decision_tree.py, reads the
output of the KMC predictions, ckmc.csv."

A block of code is set as follows:

load dataset
col_names = ['f1', 'f2','label']
df = pd.read_csv("ckmc.csv", header=None, names=col_names)
if pp==1:
 print(df.head())

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

for i in range(0,1000):
 xf1=dataset.at[i,'Distance']
 xf2=dataset.at[i,'location']
 X_DL = [[xf1,xf2]]
 prediction = kmeans.predict(X_DL)

Any command-line input or output is written as follows:

Selection: BnVYkFcRK Fittest: 0 This generation Fitness: 0 Time
Difference: 0:00:00.000198

Bold: Indicates a new term, an important word, or words that you see on the
screen, for example, in menus or dialog boxes, also appear in the text like this. For
example: "When you click on SAVE, the Emotions progress bar will jump up."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[xxi]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at customercare@
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be
grateful if you would report this to us. Please visit, www.packtpub.com/support/
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packt.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

[1]

1
Getting Started with

Next-Generation Artificial
Intelligence through

Reinforcement Learning
Next-generation AI compels us to realize that machines do indeed think. Although
machines do not think like us, their thought process has proven its efficiency in
many areas. In the past, the belief was that AI would reproduce human thinking
processes. Only neuromorphic computing (see Chapter 18, Neuromorphic Computing),
remains set on this goal. Most AI has now gone beyond the way humans think, as
we will see in this chapter.

The Markov decision process (MDP), a reinforcement learning (RL) algorithm,
perfectly illustrates how machines have become intelligent in their own unique way.
Humans build their decision process on experience. MDPs are memoryless. Humans
use logic and reasoning to think problems through. MDPs apply random decisions
100% of the time. Humans think in words, labeling everything they perceive. MDPs
have an unsupervised approach that uses no labels or training data. MDPs boost the
machine thought process of self-driving cars (SDCs), translation tools, scheduling
software, and more. This memoryless, random, and unlabeled machine thought
process marks a historical change in the way a former human problem was solved.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[2]

With this realization comes a yet more mind-blowing fact. AI algorithms and
hybrid solutions built on IoT, for example, have begun to surpass humans in
strategic areas. Although AI cannot replace humans in every field, AI combined
with classical automation now occupies key domains: banking, marketing, supply
chain management, scheduling, and many other critical areas.

As you will see, starting with this chapter, you can occupy a central role in this
new world as an adaptive thinker. You can design AI solutions and implement them.
There is no time to waste. In this chapter, we are going to dive quickly and directly
into reinforcement learning through the MDP.

Today, AI is essentially mathematics translated into source code, which makes it
difficult to learn for traditional developers. However, we will tackle this approach
pragmatically.

The goal here is not to take the easy route. We're striving to break complexity into
understandable parts and confront them with reality. You are going to find out right
from the outset how to apply an adaptive thinker's process that will lead you from
an idea to a solution in reinforcement learning, and right into the center of gravity
of the next generation of AI.

Reinforcement learning concepts
AI is constantly evolving. The classical approach states that:

• AI covers all domains
• Machine learning is a subset of AI, with clustering, classification, regression,

and reinforcement learning
• Deep learning is a subset of machine learning that involves neural networks

However, these domains often overlap and it's difficult to fit neuromorphic
computing, for example, with its sub-symbolic approach, into these categories
(see Chapter 18, Neuromorphic Computing).

In this chapter, RL clearly fits into machine learning. Let's have a brief look into the
scientific foundations of the MDP, the RL algorithm we are going to explore. The
main concepts to keep in mind are the following:

• Optimal transport: In 1781, Gaspard Monge defined transport optimizing
from one location to another using the shortest and most cost-effective path;
for example, mining coal and then using the most cost-effective path to a
factory. This was subsequently generalized to any form of path from point
A to point B.

Chapter 1

[3]

• Boltzmann equation and constant: In the late 19th century, Ludwig
Boltzmann changed our vision of the world with his probabilistic
distribution of particles beautifully summed up in his entropy formula:

S = k * log W
S represents the entropy (energy, disorder) of a system expressed. k
is the Boltzmann constant, and W represents the number of microstates.
We will explore Boltzmann's ideas further in Chapter 14, Preparing the
Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal
Component Analysis (PCA).

• Probabilistic distributions advanced further: Josiah Willard Gibbs took the
probabilistic distributions of large numbers of particles a step further. At
that point, probabilistic information theory was advancing quickly. At the
turn of the 19th century, Andrey Markov applied probabilistic algorithms to
language, among other areas. A modern era of information theory was born.

• When Boltzmann and optimal transport meet: 2011 Fields Medal winner,
Cédric Villani, brought Boltzmann's equation to yet another level. Villani
then went on to unify optimal transport and Boltzmann. Cédric Villani
proved something that was somewhat intuitively known to 19th century
mathematicians but required proof.

Let's take all of the preceding concepts and materialize them in a real-world example
that will explain why reinforcement learning using the MDP, for example, is so
innovative.

Analyzing the following cup of tea will take you right into the next generation of AI:

Figure 1.1: Consider a cup of tea

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[4]

You can look at this cup of tea in two different ways:

1. Macrostates: You look at the cup and content. You can see the volume of
tea in the cup and you could feel the temperature when holding the cup
in your hand.

2. Microstates: But can you tell how many molecules are in the tea, which
ones are hot, warm, or cold, their velocity and directions? Impossible right?

Now, imagine, the tea contains 2,000,000,000+ Facebook accounts, or 100,000,000+
Amazon Prime users with millions of deliveries per year. At this level, we simply
abandon the idea of controlling every item. We work on trends and probabilities.

Boltzmann provides a probabilistic approach to the evaluation of the features of our
real world. Materializing Boltzmann in logistics through optimal transport means
that the temperature could be the ranking of a product, the velocity can be linked
to the distance to delivery, and the direction could be the itineraries we will study
in this chapter.

Markov picked up the ripe fruits of microstate probabilistic descriptions and applied
it to his MDP. Reinforcement learning takes the huge volume of elements (particles
in a cup of tea, delivery locations, social network accounts) and defines the probable
paths they take.

The turning point of human thought occurred when we simply could not analyze
the state and path of the huge volumes facing our globalized world, which generates
images, sounds, words, and numbers that exceed traditional software approaches.

With this in mind, we can start exploring the MDP.

How to adapt to machine thinking and
become an adaptive thinker
Reinforcement learning, one of the foundations of machine learning, supposes
learning through trial and error by interacting with an environment. This sounds
familiar, doesn't it? That is what we humans do all our lives—in pain! Try things,
evaluate, and then continue; or try something else.

In real life, you are the agent of your thought process. In reinforcement learning,
the agent is the function calculating randomly through this trial-and-error process.
This thought process function in machine learning is the MDP agent. This form of
empirical learning is sometimes called Q-learning.

Chapter 1

[5]

Mastering the theory and implementation of an MDP through a three-step method
is a prerequisite.

This chapter will detail the three-step approach that will turn you into an AI expert,
in general terms:

1. Starting by describing a problem to solve with real-life cases
2. Then, building a mathematical model that considers real-life limitations
3. Then, writing source code or using a cloud platform solution

This is a way for you to approach any project with an adaptive attitude from the
outset. This shows that a human will always be at the center of AI by explaining
how we can build the inputs, run an algorithm, and use the results of our code.
Let's consider this three-step process and put it into action.

Overcoming real-life issues using the
three-step approach
The key point of this chapter is to avoid writing code that will never be used.
First, begin by understanding the subject as a subject matter expert. Then, write
the analysis with words and mathematics to make sure your reasoning reflects the
subject and, most of all, that the program will make sense in real life. Finally, in step
3, only write the code when you are sure about the whole project.

Too many developers start writing code without stopping to think about how the
results of that code are going to manifest themselves within real-life situations. You
could spend weeks developing the perfect code for a problem, only to find out that
an external factor has rendered your solution useless. For instance, what if you coded
a solar-powered robot to clear snow from the yard, only to discover that during
winter, there isn't enough sunlight to power the robot!

In this chapter, we are going to tackle the MDP (Q function) and apply it to
reinforcement learning with the Bellman equation. We are going to approach it a
little differently to most, however. We'll be thinking about practical application, not
simply code execution. You can find tons of source code and examples on the web.
The problem is, much like our snow robot, such source code rarely considers the
complications that come about in real-life situations. Let's say you find a program that
finds the optimal path for a drone delivery. There's an issue, though; it has many limits
that need to be overcome due to the fact that the code has not been written with real-
life practicality in mind. You, as an adaptive thinker, are going to ask some questions:

• What if there are 5,000 drones over a major city at the same time? What
happens if they try to move in straight lines and bump into each other?

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[6]

• Is a drone-jam legal? What about the noise over the city? What about
tourism?

• What about the weather? Weather forecasts are difficult to make, so how
is this scheduled?

• How can we resolve the problem of coordinating the use of charging and
parking stations?

In just a few minutes, you will be at the center of attention among theoreticians
who know more than you, on one hand, and angry managers who want solutions
they cannot get on the other. Your real-life approach will solve these problems. To
do that, you must take the following three steps into account, starting with really
getting involved in the real-life subject.

In order to successfully implement our real-life approach, comprised of the three
steps outlined in the previous section, there are a few prerequisites:

• Be a subject matter expert (SME): First, you have to be an SME. If a
theoretician geek comes up with a hundred TensorFlow functions to solve
a drone trajectory problem, you now know it is going to be a tough ride in
which real-life parameters are constraining the algorithm. An SME knows
the subject and thus can quickly identify the critical factors of a given field.
AI often requires finding a solution to a complex problem that even an expert
in a given field cannot express mathematically. Machine learning sometimes
means finding a solution to a problem that humans do not know how to
explain. Deep learning, involving complex networks, solves even more
difficult problems.

• Have enough mathematical knowledge to understand AI concepts: Once
you have the proper natural language analysis, you need to build your
abstract representation quickly. The best way is to look around and find an
everyday life example and make a mathematical model of it. Mathematics is
not an option in AI, but a prerequisite. The effort is worthwhile. Then, you
can start writing a solid piece of source code or start implementing a cloud
platform ML solution.

• Know what source code is about as well as its potential and limits: MDP
is an excellent way to go and start working on the three dimensions that
will make you adaptive: describing what is around you in detail in words,
translating that into mathematical representations, and then implementing
the result in your source code.

With those prerequisites in mind, let's look at how you can become a problem-
solving AI expert by following our practical three-step process. Unsurprisingly,
we'll begin at step 1.

Chapter 1

[7]

Step 1 – describing a problem to solve: MDP
in natural language
Step 1 of any AI problem is to go as far as you can to understand the subject you are
asked to represent. If it's a medical subject, don't just look at data; go to a hospital
or a research center. If it's a private security application, go to the places where they
will need to use it. If it's for social media, make sure to talk to many users directly.
The key concept to bear in mind is that you have to get a "feel" for the subject, as if
you were the real "user."

For example, transpose it into something you know in your everyday life (work or
personal), something you are an SME in. If you have a driver's license, then you are
an SME of driving. You are certified. This is a fairly common certification, so let's
use this as our subject matter in the example that will follow. If you do not have a
driver's license or never drive, you can easily replace moving around in a car by
imagining you are moving around on foot; you are an SME of getting from one place
to another, regardless of what means of transport that might involve. However, bear
in mind that a real-life project would involve additional technical aspects, such as
traffic regulations for each country, so our imaginary SME does have its limits.

Getting into the example, let's say you are an e-commerce business driver delivering
a package in a location you are unfamiliar with. You are the operator of a self-driving
vehicle. For the time being, you're driving manually. You have a GPS with a nice
color map on it. The locations around you are represented by the letters A to F, as
shown in the simplified map in the following diagram. You are presently at F. Your
goal is to reach location C. You are happy, listening to the radio. Everything is going
smoothly, and it looks like you are going to be there on time. The following diagram
represents the locations and routes that you can cover:

Figure 1.2: A diagram of delivery routes

The guidance system's state indicates the complete path to reach C. It is telling you
that you are going to go from F to B to D, and then to C. It looks good!

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[8]

To break things down further, let's say:

• The present state is the letter s. s is a variable, not an actual state. It can be
one of the locations in L, the set of locations:

L = {A, B, C, D, E, F}
We say present state because there is no sequence in the learning process. The
memoryless process goes from one present state to another. In the example in
this chapter, the process starts at location F.

• Your next action is the letter a (action). This action a is not location A. The
goal of this action is to take us to the next possible location in the graph. In
this case, only B is possible. The goal of a is to take us from s (present state)
to s' (new state).

• The action a (not location A) is to go to location B. You look at your guidance
system; it tells you there is no traffic, and that to go from your present state,
F, to your next state, B, will take you only a few minutes. Let's say that the
next state B is the letter B. This next state B is s'.

At this point, you are still quite happy, and we can sum up your situation with the
following sequence of events:

s, a, s'

The letter s is your present state, your present situation. The letter a is the action
you're deciding, which is to go to the next location; there, you will be in another
state, s'. We can say that thanks to the action a, you will go from s to s'.

Now, imagine that the driver is not you anymore. You are tired for some reason.
That is when a self-driving vehicle comes in handy. You set your car to autopilot.
Now, you are no longer driving; the system is. Let's call that system the agent.
At point F, you set your car to autopilot and let the self-driving agent take over.

Watching the MDP agent at work
The self-driving AI is now in charge of the vehicle. It is acting as the MDP agent. This
now sees what you have asked it to do and checks its mapping environment, which
represents all the locations in the previous diagram from A to F.

In the meantime, you are rightly worried. Is the agent going to make it or not? You
are wondering whether its strategy meets yours. You have your policy P—your way
of thinking—which is to take the shortest path possible. Will the agent agree? What's
going on in its machine mind? You observe and begin to realize things you never
noticed before.

Chapter 1

[9]

Since this is the first time you are using this car and guidance system, the agent is
memoryless, which is an MDP feature. The agent doesn't know anything about what
went on before. It seems to be happy with just calculating from this state s at location
F. It will use machine power to run as many calculations as necessary to reach
its goal.

Another thing you are watching is the total distance from F to C to check whether
things are OK. That means that the agent is calculating all the states from F to C.

In this case, state F is state 1, which we can simplify by writing s1; B is state 2, which
we can simplify by writing s2; D is s3; and C is s4. The agent is calculating all of these
possible states to make a decision.

The agent knows that when it reaches D, C will be better because the reward will
be higher for going to C than anywhere else. Since it cannot eat a piece of cake to
reward itself, the agent uses numbers. Our agent is a real number cruncher. When
it is wrong, it gets a poor reward or nothing in this model. When it's right, it gets
a reward represented by the letter R, which we'll encounter during step 2. This
action-value (reward) transition, often named the Q function, is the core of many
reinforcement learning algorithms.

When our agent goes from one state to another, it performs a transition and gets
a reward. For example, the transition can be from F to B, state 1 to state 2, or s1 to s2.

You are feeling great and are going to be on time. You are beginning to understand
how the machine learning agent in your self-driving car is thinking. Suddenly, you
look up and see that a traffic jam is building up. Location D is still far away, and now
you do not know whether it would be good to go from D to C or D to E, in order to
take another road to C, which involves less traffic. You are going to see what your
agent thinks!

The agent takes the traffic jam into account, is stubborn, and increases its reward to
get to C by the shortest way. Its policy is to stick to the initial plan. You do not agree.
You have another policy.

You stop the car. You both have to agree before continuing. You have your opinion
and policy; the agent does not agree. Before continuing, your views need to
converge. Convergence is the key to making sure that your calculations are correct,
and it's a way to evaluate the quality of a calculation.

A mathematical representation is the best way to express this whole process at this
point, which we will describe in the following step.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[10]

Step 2 – building a mathematical model: the
mathematical representation of the Bellman
equation and MDP
Mathematics involves a whole change in your perspective of a problem. You are
going from words to functions, the pillars of source coding.

Expressing problems in mathematical notation does not mean getting lost
in academic math to the point of never writing a single line of code. Just use
mathematics to get a job done efficiently. Skipping mathematical representation
will fast-track a few functions in the early stages of an AI project. However, when
the real problems that occur in all AI projects surface, solving them with source
code alone will prove virtually impossible. The goal here is to pick up enough
mathematics to implement a solution in real-life companies.

It is necessary to think through a problem by finding something familiar around us,
such as the itinerary model covered early in this chapter. It is a good thing to write it
down with some abstract letters and symbols as described before, with a meaning an
action, and s meaning a state. Once you have understood the problem and expressed
it clearly, you can proceed further.

Now, mathematics will help to clarify the situation by means of shorter descriptions.
With the main ideas in mind, it is time to convert them into equations.

From MDP to the Bellman equation
In step 1, the agent went from F, or state 1 or s, to B, which was state 2 or s'.

A strategy drove this decision—a policy represented by P. One mathematical
expression contains the MDP state transition function:

Pa(s, s')

P is the policy, the strategy made by the agent to go from F to B through action a.
When going from F to B, this state transition is named the state transition function:

• a is the action
• s is state 1 (F), and s' is state 2 (B)

The reward (right or wrong) matrix follows the same principle:

Ra(s, s')

Chapter 1

[11]

That means R is the reward for the action of going from state s to state s'. Going from
one state to another will be a random process. Potentially, all states can go to any
other state.

Each line in the matrix in the example represents a letter from A to F, and each
column represents a letter from A to F. All possible states are represented. The 1
values represent the nodes (vertices) of the graph. Those are the possible locations.
For example, line 1 represents the possible moves for letter A, line 2 for letter B, and
line 6 for letter F. On the first line, A cannot go to C directly, so a 0 value is entered.
But, it can go to E, so a 1 value is added.

Some models start with -1 for impossible choices, such as B going directly to C, and
0 values to define the locations. This model starts with 0 and 1 values. It sometimes
takes weeks to design functions that will create a reward matrix (see Chapter 2,
Building a Reward Matrix – Designing Your Datasets).

The example we will be working on inputs a reward matrix so that the program can
choose its best course of action. Then, the agent will go from state to state, learning
the best trajectories for every possible starting location point. The goal of the MDP
is to go to C (line 3, column 3 in the reward matrix), which has a starting value of
100 in the following Python code:

Markov Decision Process (MDP) - The Bellman equations adapted to
Reinforcement Learning
import numpy as ql
R is The Reward Matrix for each state
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Somebody familiar with Python might wonder why I used ql instead of np. Some
might say "convention," "mainstream," "standard." My answer is a question. Can
somebody define what "standard" AI is in this fast-moving world! My point here
for the MDP is to use ql as an abbreviation of "Q-learning" instead of the "standard"
abbreviation of NumPy, which is np. Naturally, beyond this special abbreviation for
the MDP programs, I'll use np. Just bear in mind that conventions are there to break
so as to set ourselves free to explore new frontiers. Just make sure your program
works well!

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[12]

There are several key properties of this decision process, among which there is the
following:

• The Markov property: The process does not take the past into account. It is
the memoryless property of this decision process, just as you do in a car with
a guidance system. You move forward to reach your goal.

• Unsupervised learning: From this memoryless Markov property, it is safe
to say that the MDP is not supervised learning. Supervised learning would
mean that we would have all the labels of the reward matrix R and learn
from them. We would know what A means and use that property to make
a decision. We would, in the future, be looking at the past. MDP does not
take these labels into account. Thus, MDP uses unsupervised learning to
train. A decision has to be made in each state without knowing the past
states or what they signify. It means that the car, for example, was on its
own at each location, which is represented by each of its states.

• Stochastic process: In step 1, when state D was reached, the agent
controlling the mapping system and the driver didn't agree on where to
go. A random choice could be made in a trial-and-error way, just like a coin
toss. It is going to be a heads-or-tails process. The agent will toss the coin
a significant number of times and measure the outcomes. That's precisely
how MDP works and how the agent will learn.

• Reinforcement learning: Repeating a trial-and-error process with feedback
from the agent's environment.

• Markov chain: The process of going from state to state with no history
in a random, stochastic way is called a Markov chain.

To sum it up, we have three tools:

• Pa(s, s'): A policy, P, or strategy to move from one state to another
• Ta(s, s'): A T, or stochastic (random) transition, function to carry out that

action
• Ra(s, s'): An R, or reward, for that action, which can be negative, null,

or positive

T is the transition function, which makes the agent decide to go from one point
to another with a policy. In this case, it will be random. That's what machine power
is for, and that is how reinforcement learning is often implemented.

Chapter 1

[13]

Randomness
Randomness is a key property of MDP, defining it as a stochastic process.

The following code describes the choice the agent is going to make:

next_action = int(ql.random.choice(PossibleAction,1))
return next_action

The code selects a new random action (state) at each episode.

The Bellman equation
The Bellman equation is the road to programming reinforcement learning.

The Bellman equation completes the MDP. To calculate the value of a state, let's
use Q, for the Q action-reward (or value) function. The pseudo source code of the
Bellman equation can be expressed as follows for one individual state:

𝑄𝑄(𝑠𝑠) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾 ∗ max(𝑠𝑠′)

The source code then translates the equation into a machine representation, as in the
following code:

The Bellman equation
 Q[current_state, action] = R[current_state, action] +
 gamma * MaxValue

The source code variables of the Bellman equation are as follows:

• Q(s): This is the value calculated for this state—the total reward. In step 1,
when the agent went from F to B, the reward was a number such as 50 or 100
to show the agent that it's on the right track.

• R(s): This is the sum of the values up to that point. It's the total reward at that
point.

• 𝛾𝛾 = gamma : This is here to remind us that trial and error has a price. We're
wasting time, money, and energy. Furthermore, we don't even know whether
the next step is right or wrong since we're in a trial-and-error mode. Gamma
is often set to 0.8. What does that mean? Suppose you're taking an exam. You
study and study, but you don't know the outcome. You might have 80 out
of 100 (0.8) chances of clearing it. That's painful, but that's life. The gamma
penalty, or learning rate, makes the Bellman equation realistic and efficient.

• max(s'): s' is one of the possible states that can be reached with Pa(s, s');
max is the highest value on the line of that state (location line in the
reward matrix).

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[14]

At this point, you have done two-thirds of the job: understanding the real-life
(process) and representing it in basic mathematics. You've built the mathematical
model that describes your learning process, and you can implement that solution
in code. Now, you are ready to code!

Step 3 – writing source code: implementing
the solution in Python
In step 1, a problem was described in natural language to be able to talk to experts
and understand what was expected. In step 2, an essential mathematical bridge
was built between natural language and source coding. Step 3 is the software
implementation phase.

When a problem comes up—and rest assured that one always does—it will be
possible to go back over the mathematical bridge with the customer or company
team, and even further back to the natural language process if necessary.

This method guarantees success for any project. The code in this chapter is in Python
3.x. It is a reinforcement learning program using the Q function with the following
reward matrix:

import numpy as ql
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Q = ql.matrix(ql.zeros([6,6]))

gamma = 0.8

R is the reward matrix described in the mathematical analysis.

Q inherits the same structure as R, but all values are set to 0 since this is a learning
matrix. It will progressively contain the results of the decision process. The gamma
variable is a double reminder that the system is learning and that its decisions have
only an 80% chance of being correct each time. As the following code shows, the
system explores the possible actions during the process:

agent_s_state = 1

The possible "a" actions when the agent is in a given state

Chapter 1

[15]

def possible_actions(state):
 current_state_row = R[state,]
 possible_act = ql.where(current_state_row >0)[1]
 return possible_act

Get available actions in the current state
PossibleAction = possible_actions(agent_s_state)

The agent starts in state 1, for example. You can start wherever you want because
it's a random process. Note that the process only takes values > 0 into account.
They represent possible moves (decisions).

The current state goes through an analysis process to find possible actions (next
possible states). You will note that there is no algorithm in the traditional sense with
many rules. It's a pure random calculation, as the following random.choice function
shows:

def ActionChoice(available_actions_range):
 if(sum(PossibleAction)>0):
 next_action = int(ql.random.choice(PossibleAction,1))
 if(sum(PossibleAction)<=0):
 next_action = int(ql.random.choice(5,1))
 return next_action

Sample next action to be performed
action = ActionChoice(PossibleAction)

Now comes the core of the system containing the Bellman equation, translated into
the following source code:

def reward(current_state, action, gamma):
 Max_State = ql.where(Q[action,] == ql.max(Q[action,]))[1]

 if Max_State.shape[0] > 1:
 Max_State = int(ql.random.choice(Max_State, size = 1))
 else:
 Max_State = int(Max_State)
 MaxValue = Q[action, Max_State]

 # Q function
 Q[current_state, action] = R[current_state, action] +
 gamma * MaxValue

Rewarding Q matrix
reward(agent_s_state,action,gamma)

You can see that the agent looks for the maximum value of the next possible state
chosen at random.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[16]

The best way to understand this is to run the program in your Python environment
and print() the intermediate values. I suggest that you open a spreadsheet and note
the values. This will give you a clear view of the process.

The last part is simply about running the learning process 50,000 times, just to
be sure that the system learns everything there is to find. During each iteration,
the agent will detect its present state, choose a course of action, and update the Q
function matrix:

for i in range(50000):
 current_state = ql.random.randint(0, int(Q.shape[0]))
 PossibleAction = possible_actions(current_state)
 action = ActionChoice(PossibleAction)
 reward(current_state,action,gamma)

Displaying Q before the norm of Q phase
print("Q :")
print(Q)

Norm of Q
print("Normed Q :")
print(Q/ql.max(Q)*100)

The process continues until the learning process is over. Then, the program will print
the result in Q and the normed result. The normed result is the process of dividing
all values by the sum of the values found. print(Q/ql.max(Q)*100) norms Q by
dividing Q by q1.max(Q)*100. The result comes out as a normed percentage.

You can run the process with mdp01.py.

The lessons of reinforcement learning
Unsupervised reinforcement machine learning, such as the MDP-driven Bellman
equation, is toppling traditional decision-making software location by location.
Memoryless reinforcement learning requires few to no business rules and, thus,
doesn't require human knowledge to run.

Being an adaptive next-generation AI thinker involves three prerequisites: the
effort to be an SME, working on mathematical models to think like a machine,
and understanding your source code's potential and limits.

Chapter 1

[17]

Machine power and reinforcement learning teach us two important lessons:

• Lesson 1: Machine learning through reinforcement learning can beat human
intelligence in many cases. No use fighting! The technology and solutions are
already here in strategic domains.

• Lesson 2: A machine has no emotions, but you do. And so do the people
around you. Human emotions and teamwork are an essential asset. Become
an SME for your team. Learn how to understand what they're trying to say
intuitively and make a mathematical representation of it for them. Your job
will never go away, even if you're setting up solutions that don't require
much development, such as AutoML. AutoML, or automated machine
learning, automates many tasks. AutoML automates functions such as the
dataset pipeline, hyperparameters, and more. Development is partially or
totally suppressed. But you still have to make sure the whole system is well
designed.

Reinforcement learning shows that no human can solve a problem the way a
machine does. 50,000 iterations with random searching is not an option for a human.
The number of empirical episodes can be reduced dramatically with a numerical
convergence form of gradient descent (see Chapter 3, Machine Intelligence – Evaluation
Functions and Numerical Convergence).

Humans need to be more intuitive, make a few decisions, and see what happens,
because humans cannot try thousands of ways of doing something. Reinforcement
learning marks a new era for human thinking by surpassing human reasoning power
in strategic fields.

On the other hand, reinforcement learning requires mathematical models to function.
Humans excel in mathematical abstraction, providing powerful intellectual fuel to
those powerful machines.

The boundaries between humans and machines have changed. Humans' ability to
build mathematical models and ever-growing cloud platforms will serve online
machine learning services.

Finding out how to use the outputs of the reinforcement learning program we just
studied shows how a human will always remain at the center of AI.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[18]

How to use the outputs
The reinforcement program we studied contains no trace of a specific field, as in
traditional software. The program contains the Bellman equation with stochastic
(random) choices based on the reward matrix. The goal is to find a route to C
(line 3, column 3) that has an attractive reward (100):

Markov Decision Process (MDP) – The Bellman equations adapted to
Reinforcement Learning with the Q action-value(reward) matrix
import numpy as ql
R is The Reward Matrix for each state
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

That reward matrix goes through the Bellman equation and produces a result in
Python:

Q :
[[0. 0. 0. 0. 258.44 0.]
 [0. 0. 0. 321.8 0. 207.752]
 [0. 0. 500. 321.8 0. 0.]
 [0. 258.44 401. 0. 258.44 0.]
 [207.752 0. 0. 321.8 0. 0.]
 [0. 258.44 0. 0. 0. 0.]]
Normed Q :
[[0. 0. 0. 0. 51.688 0.]
 [0. 0. 0. 64.36 0. 41.5504]
 [0. 0. 100. 64.36 0. 0.]
 [0. 51.688 80.2 0. 51.688 0.]
 [41.5504 0. 0. 64.36 0. 0.]
 [0. 51.688 0. 0. 0. 0.]]

The result contains the values of each state produced by the reinforced learning
process, and also a normed Q (the highest value divided by other values).

As Python geeks, we are overjoyed! We made something that is rather difficult work,
namely, reinforcement learning. As mathematical amateurs, we are elated. We know
what MDP and the Bellman equation mean.

However, as natural language thinkers, we have made little progress. No customer
or user can read that data and make sense of it. Furthermore, we cannot explain
how we implemented an intelligent version of their job in the machine. We didn't.

Chapter 1

[19]

We hardly dare say that reinforcement learning can beat anybody in the company,
making random choices 50,000 times until the right answer came up.

Furthermore, we got the program to work, but hardly know what to do with the
result ourselves. The consultant on the project cannot help because of the matrix
format of the solution.

Being an adaptive thinker means knowing how to be good in all steps of a project.
To solve this new problem, let's go back to step 1 with the result. Going back
to step 1 means that if you have problems either with the results themselves
or understanding them, it is necessary to go back to the SME level, the real-life
situation, and see what is going wrong.

By formatting the result in Python, a graphics tool, or a spreadsheet, the result can
be displayed as follows:

A B C D E F

A - - - - 258.44 -
B - - - 321.8 - 207.752
C - - 500 321.8 - -
D - 258.44 401. - 258.44 -
E 207.752 - - 321.8 - -
F - 258.44 - - - -

Now, we can start reading the solution:

• Choose a starting state. Take F, for example.
• The F line represents the state. Since the maximum value is 258.44 in the B

column, we go to state B, the second line.
• The maximum value in state B in the second line leads us to the D state in

the fourth column.
• The highest maximum of the D state (fourth line) leads us to the C state.

Note that if you start at the C state and decide not to stay at C, the D state becomes
the maximum value, which will lead you back to C. However, the MDP will never
do this naturally. You will have to force the system to do it.

You have now obtained a sequence: F->B->D->C. By choosing other points of
departure, you can obtain other sequences by simply sorting the table.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[20]

A useful way of putting it remains the normalized version in percentages, as shown
in the following table:

A B C D E F

A - - - - 51.68% -
B - - - 64.36% - 41.55%
C - - 100% 64.36% - -
D - 51.68% 80.2% - 51.68% -
E 41.55% - - 64.36% - -
F - 51.68% - - - -

Now comes the very tricky part. We started the chapter with a trip on the road. But I
made no mention of it in the results analysis.

An important property of reinforcement learning comes from the fact that we are
working with a mathematical model that can be applied to anything. No human
rules are needed. We can use this program for many other subjects without writing
thousands of lines of code.

Possible use cases
There are many cases to which we could adapt our reinforcement learning model
without having to change any of its details.

Case 1: optimizing a delivery for a driver, human or not
This model was described in this chapter.

Case 2: optimizing warehouse flows
The same reward matrix can apply to go from point F to C in a warehouse, as shown
in the following diagram:

Figure 1.3: A diagram illustrating a warehouse flow problem

Chapter 1

[21]

In this warehouse, the F->B->D->C sequence makes visual sense. If somebody goes
from point F to C, then this physical path makes sense without going through walls.

It can be used for a video game, a factory, or any form of layout.

Case 3: automated planning and scheduling (APS)
By converting the system into a scheduling vector, the whole scenery changes. We
have left the more comfortable world of physical processing of letters, faces, and
trips. Though fantastic, those applications are social media's tip of the iceberg. The
real challenge of AI begins in the abstract universe of human thinking.

Every single company, person, or system requires automatic planning and
scheduling (see Chapter 12, AI and the Internet of Things (IoT)). The six A to F steps in
the example of this chapter could well be six tasks to perform in a given unknown
order represented by the following vector x:

𝑥𝑥 =

[

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6]

The reward matrix then reflects the weights of constraints of the tasks of vector x
to perform. For example, in a factory, you cannot assemble the parts of a product
before manufacturing them.

In this case, the sequence obtained represents the schedule of the manufacturing
process.

Cases 4 and more: your imagination
By using physical layouts or abstract decision-making vectors, matrices, and tensors,
you can build a world of solutions in a mathematical reinforcement learning model.
Naturally, the following chapters will enhance your toolbox with many other
concepts.

Before moving on, you might want to imagine some situations in which you could
use the A to F letters to express some kind of path.

To help you with these mind experiment simulations, open mdp02.py and go to
line 97, which starts with the following code that enables a simulation tool. nextc
and nextci are simply variables to remember where the path begins and will end.
They are set to -1 so as to avoid 0, which is a location.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[22]

The primary goal is to focus on the expression "concept code." The locations have
become any concept you wish. A could be your bedroom, and C your kitchen. The
path would go from where you wake up to where you have breakfast. A could be
an idea you have, and F the end of a thinking process. The path would go from A
(How can I hang this picture on the wall?) to E (I need to drill a hole) and, after a few
phases, to F (I hung the picture on the wall). You can imagine thousands of paths like
this as long as you define the reward matrix, the "concept code," and a starting point:

"""# Improving the program by introducing a decision-making process"""
nextc=-1
nextci=-1
conceptcode=["A","B","C","D","E","F"]

This code takes the result of the calculation, labels the result matrix, and accepts an
input as shown in the following code snippet:

origin=int(input(
 "index number origin(A=0,B=1,C=2,D=3,E=4,F=5): "))

The input only accepts the label numerical code: A=0, B=1 … F=5. The function then
runs a classical calculation on the results to find the best path. Let's takes an example.

When you are prompted to enter a starting point, enter 5, for example, as follows:

index number origin(A=0,B=1,C=2,D=3,E=4,F=5): 5

The program will then produce the optimal path based on the output of the MDP
process, as shown in the following output:

Concept Path

-> F

-> B

-> D

-> C

Try multiple scenarios and possibilities. Imagine what you could apply this to:

• An e-commerce website flow (visit, cart, checkout, purchase) imagining that
a user visits the site and then resumes a session at a later time. You can use
the same reward matrix and "concept code" explored in this chapter. For
example, a visitor visits a web page at 10 a.m., starting at point A of your
website. Satisfied with a product, the visitor puts the product in a cart, which
is point E of your website. Then, the visitor leaves the site before going to
the purchase page, which is C. D is the critical point. Why didn't the visitor
purchase the product? What's going on?

Chapter 1

[23]

You can decide to have an automatic email sent after 24 hours saying: "There
is a 10% discount on all purchases during the next 48 hours." This way, you
will target all the visitors stuck at D and push them toward C.

• A sequence of possible words in a sentence (subject, verb, object). Predicting
letters and words was one of Andrey Markov's first applications 100+ years
ago! You can imagine that B is the letter "a" of the alphabet. If D is "t," it is
much more probable than F if F is "o," which is less probable in the English
language. If an MDP reward matrix is built such as B leads to D or F, B can
thus either go to D or to F. There are thus two possibilities, D or F. Andrey
Markov would suppose, for example, that B is a variable that represents the
letter "a," D is a variable that represents the letter "t" and F is a variable that
represents the letter "o." After studying the structure of a language closely,
he would find that the letter "a" would more likely be followed by "t" than
by "o" in the English language. If one observes the English language, it is
more likely to find an "a-t" sequence than an "a-o" sequence. In a Markov
decision process, a higher probability will be awarded to the "a-t" sequence
and a lower one to "a-o." If one goes back to the variables, the B-D sequence
will come out as more probable than the B-F sequence.

• And anything you can find that fits the model that works is great!

Machine learning versus traditional
applications
Reinforcement learning based on stochastic (random) processes will evolve beyond
traditional approaches. In the past, we would sit down and listen to future users to
understand their way of thinking.

We would then go back to our keyboard and try to imitate the human way of
thinking. Those days are over. We need proper datasets and ML/DL equations to
move forward. Applied mathematics has taken reinforcement learning to the next
level. In my opinion, traditional software will soon be in the museum of computer
science. The complexity of the huge volumes of data we are facing will require AI
at some point.

An artificial adaptive thinker sees the world through applied mathematics translated
into machine representations.

Use the Python source code example provided in this chapter in different ways.
Run it and try to change some parameters to see what happens. Play around with
the number of iterations as well. Lower the number from 50,000 down to where you
find it fits best. Change the reward matrix a little to see what happens. Design your
reward matrix trajectory. This can be an itinerary or decision-making process.

