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Preface
This second edition of Artificial Intelligence By Example will take you through the 
main aspects of present-day artificial intelligence (AI) and beyond!

This book contains many revisions and additions to the key aspects of AI 
described in the first edition:

• The theory of machine learning and deep learning including hybrid and 
ensemble algorithms.

• Mathematical representations of the main AI algorithms including natural 
language explanations making them easier to understand.

• Real-life case studies taking the reader inside the heart of e-commerce: 
manufacturing, services, warehouses, and delivery.

• Introducing AI solutions that combine IoT, convolutional neural networks 
(CNN), and Markov decision process (MDP).

• Many open source Python programs with a special focus on the 
new features of TensorFlow 2.x, TensorBoard, and Keras. Many modules 
are used, such as scikit-learn, pandas, and more.

• Cloud platforms: Google Colaboratory with its free VM, Google Translate, 
Google Dialogflow, IBM Q for quantum computing, and more.

• Use of the power of restricted Boltzmann machines (RBM) and principal 
component analysis (PCA) to generate data to create a meaningful 
chatbot.

• Solutions to compensate for the emotional deficiencies of chatbots.
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• Genetic algorithms, which run faster than classical algorithms in specific 
cases, and genetic algorithms used in a hybrid deep learning neural 
network.

• Neuromorphic computing, which reproduces our brain activity 
with models of selective spiking ensembles of neurons in models that 
reproduce our biological reactions.

• Quantum computing, which will take you deep into the tremendous 
calculation power of qubits and cognitive representation experiments.

This second edition of Artificial Intelligence By Example will take you to the cutting 
edge of AI and beyond with innovations that improve existing solutions. This 
book will make you a key asset not only as an AI specialist but a visionary. You 
will discover how to improve your AI skills as a consultant, developer, professor, 
a curious mind, or any person involved in artificial intelligence.

Who this book is for
This book contains a broad approach to AI, which is expanding to all areas of our 
lives.

The main machine learning and deep learning algorithms are addressed 
with real-life Python examples extracted from hundreds of AI projects and 
implementations.

Each AI implementation is illustrated by an open source program available on 
GitHub and cloud platforms such as Google Colaboratory.

Artificial Intelligence By Example, Second Edition is for developers who wish to build 
solid machine learning programs that will optimize production sites, services, IoT 
and more.

Project managers and consultants will learn how to build input datasets that will 
help the reader face the challenges of real-life AI.

Teachers and students will have an overview of the key aspects of AI, along with 
many educational examples.
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What this book covers
Chapter 1, Getting Started with Next-Generation Artificial Intelligence through 
Reinforcement Learning, covers reinforcement learning through the Bellman 
equation based on the MDP. A case study describes how to solve a delivery route 
problem with a human driver and a self-driving vehicle. This chapter shows how 
to build an MDP from scratch in Python.

Chapter 2, Building a Reward Matrix – Designing Your Datasets, demonstrates the 
architecture of neural networks starting with the McCulloch-Pitts neuron. The 
case study describes how to use a neural network to build the reward matrix 
used by the Bellman equation in a warehouse environment. The process will be 
developed in Python using logistic, softmax, and one-hot functions.

Chapter 3, Machine Intelligence – Evaluation Functions and Numerical Convergence, 
shows how machine evaluation capacities have exceeded human decision-making. 
The case study describes a chess position and how to apply the results of an AI 
program to decision-making priorities. An introduction to decision trees in Python 
shows how to manage decision-making processes.

Chapter 4, Optimizing Your Solutions with K-Means Clustering, covers a k-means 
clustering program with Lloyd's algorithm and how to apply it to the optimization 
of automatic guided vehicles. The k-means clustering program's model will be 
trained and saved.

Chapter 5, How to Use Decision Trees to Enhance K-Means Clustering, begins with 
unsupervised learning with k-means clustering. The output of the k-means 
clustering algorithm will provide the labels for the supervised decision tree 
algorithm. Random forests will be introduced.

Chapter 6, Innovating AI with Google Translate, explains the difference between a 
revolutionary innovation and a disruptive innovation. Google Translate will be 
described and enhanced with an innovative k-nearest neighbors-based Python 
program.

Chapter 7, Optimizing Blockchains with Naive Bayes, is about mining blockchains and 
describes how blockchains function. We use naive Bayes to optimize the blocks 
of supply chain management (SCM) blockchains by predicting transactions to 
anticipate storage levels.
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Chapter 8, Solving the XOR Problem with a Feedforward Neural Network, is about 
building a feedforward neural network (FNN) from scratch to solve the XOR 
linear separability problem. The business case describes how to group orders for a 
factory.

Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs), 
describes CNN in detail: kernels, shapes, activation functions, pooling, flattening, 
and dense layers. The case study illustrates the use of a CNN using a webcam on a 
conveyor belt in a food-processing company.

Chapter 10, Conceptual Representation Learning, explains conceptual representation 
learning (CRL), an innovative way to solve production flows with a CNN 
transformed into a CRL metamodel (CRLMM). The case study shows how to 
use a CRLMM for transfer and domain learning, extending the model to other 
applications.

Chapter 11, Combining Reinforcement Learning and Deep Learning, combines a CNN 
with an MDP to build a solution for automatic planning and scheduling with an 
optimizer with a rule-based system. 

The solution is applied to apparel manufacturing showing how to apply AI to 
real-life systems.

Chapter 12, AI and the Internet of Things (IoT), explores a support vector machine 
(SVM) assembled with a CNN. The case study shows how self-driving cars can 
find an available parking space automatically.

Chapter 13, Visualizing Networks with TensorFlow 2.x and TensorBoard, extracts 
information of each layer of a CNN and displays the intermediate steps 
taken by the neural network. The output of each layer contains images of the 
transformations applied.

Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBM) 
and Principal Component Analysis (PCA), explains how to produce valuable 
information using an RBM and a PCA to transform raw data into chatbot-input 
data.

Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, describes how to build 
a Google Dialogflow chatbot from scratch using the information provided by 
an RBM and a PCA algorithm. The chatbot will contain entities, intents, and 
meaningful responses.
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Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots, explains the 
limits of a chatbot when dealing with human emotions. The Emotion options of 
Dialogflow will be activated along with Small Talk to make the chatbot friendlier.

Chapter 17, Genetic Algorithms in Hybrid Neural Networks, enters our chromosomes, 
finds our genes, and helps you understand how our reproduction process works. 
From there, it is shown how to implement an evolutionary algorithm in Python, 
a genetic algorithm (GA). A hybrid neural network will show how to optimize a 
neural network with a GA.

Chapter 18, Neuromorphic Computing, describes what neuromorphic computing is 
and then explores Nengo, a unique neuromorphic framework with solid tutorials 
and documentation. 

This neuromorphic overview will take you into the wonderful power of our brain 
structures to solve complex problems.

Chapter 19, Quantum Computing, will show quantum computers are superior 
to classical computers, what a quantum bit is, how to use it, and how to build 
quantum circuits. An introduction to quantum gates and example programs will 
bring you into the futuristic world of quantum mechanics.

Appendix, Answers to the Questions, provides answers to the questions listed in 
the Questions section in all the chapters.

To get the most out of this book
Artificial intelligence projects rely on three factors:

• Understanding the subject the AI project will be applied to. To do so, 
go through a chapter to pick up the key ideas. Once you understand 
the key ideas of a case study described in the book, try to see how an 
AI solution can be applied to real-life examples around you.

• The mathematical foundations of the AI algorithms. Do not skip the 
mathematics equations if you have the energy to study them. AI relies 
heavily on mathematics. There are plenty of excellent websites that 
explain the mathematics used in this book.

• Development. An artificial intelligence solution can be directly used on 
an online cloud platform machine learning site such as Google. We 
can access these platforms with APIs. In the book, Google Cloud is 
used several times. Try to create an account of your own to explore 
several cloud platforms to understand their potential and their limits. 
Development remains critical for AI projects.
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Even with a cloud platform, scripts and services are necessary. Also, sometimes, 
writing an algorithm is mandatory because the ready-to-use online algorithms are 
insufficient for a given problem. Explore the programs delivered with the book. 
They are open source and free.

Technical requirements
The following is a non-exhaustive list of the technical requirements for running 
the codes in this book. For a more detailed chapter-wise list, please refer to this 
link: https://github.com/PacktPublishing/Artificial-Intelligence-By-
Example-Second-Edition/blob/master/Technical%20Requirements.csv.

Package Website
Python https://www.python.org/

NumPy https://pypi.org/project/numpy/

Matplotlib https://pypi.org/project/matplotlib/

pandas https://pypi.org/project/pandas/

SciPy https://pypi.org/project/scipy/

scikit-learn https://pypi.org/project/scikit-learn/

PyDotPlus https://pypi.org/project/pydotplus/

Google API https://developers.google.com/docs/api/
quickstart/python

html https://pypi.org/project/html/

TensorFlow 2 https://pypi.org/project/tensorflow/

Keras https://pypi.org/project/Keras/

Pillow https://pypi.org/project/Pillow/

Imageio https://pypi.org/project/imageio/

Pathlib https://pypi.org/project/pathlib/

OpenCV-Python https://pypi.org/project/opencv-python/

Google Dialogflow https://dialogflow.com/

DEAP https://pypi.org/project/deap/

bitstring https://pypi.org/project/bitstring/

nengo https://pypi.org/project/nengo/

nengo-gui https://pypi.org/project/nengo-gui/

IBM Q https://www.research.ibm.com/ibm-q/

Quirk http://algassert.com/2016/05/22/quirk.html
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Download the example code files
You can download the example code files for this book from your account at www.
packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.
4. Enter the name of the book in the Search box and follow the on-screen 

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition. 
In case there's an update to the code, it will be updated on the existing GitHub 
repository.

We also have other code bundles from our rich catalog of books and 
videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839211539_ColorImages.pdf.
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Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter 
handles. For example; "The decision tree program, decision_tree.py, reads the 
output of the KMC predictions, ckmc.csv."

A block of code is set as follows:

# load dataset
col_names = ['f1', 'f2','label']
df = pd.read_csv("ckmc.csv", header=None, names=col_names)
if pp==1:
    print(df.head())

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

for i in range(0,1000):
    xf1=dataset.at[i,'Distance']
    xf2=dataset.at[i,'location']
    X_DL = [[xf1,xf2]]
    prediction = kmeans.predict(X_DL)

Any command-line input or output is written as follows:

Selection: BnVYkFcRK Fittest: 0 This generation Fitness: 0 Time 
Difference: 0:00:00.000198

Bold: Indicates a new term, an important word, or words that you see on the 
screen, for example, in menus or dialog boxes, also appear in the text like this. For 
example: "When you click on SAVE, the Emotions progress bar will jump up."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention 
the book title in the subject of your message and email us at customercare@
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be 
grateful if you would report this to us. Please visit, www.packtpub.com/support/
errata, selecting your book, clicking on the Errata Submission Form link, and 
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address 
or website name. Please contact us at copyright@packt.com with a link to the 
material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, 
please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave 
a review on the site that you purchased it from? Potential readers can then see 
and use your unbiased opinion to make purchase decisions, we at Packt can 
understand what you think about our products, and our authors can see your 
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.
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1
Getting Started with  

Next-Generation Artificial 
Intelligence through 

Reinforcement Learning
Next-generation AI compels us to realize that machines do indeed think. Although 
machines do not think like us, their thought process has proven its efficiency in 
many areas. In the past, the belief was that AI would reproduce human thinking 
processes. Only neuromorphic computing (see Chapter 18, Neuromorphic Computing), 
remains set on this goal. Most AI has now gone beyond the way humans think, as 
we will see in this chapter.

The Markov decision process (MDP), a reinforcement learning (RL) algorithm, 
perfectly illustrates how machines have become intelligent in their own unique way. 
Humans build their decision process on experience. MDPs are memoryless. Humans 
use logic and reasoning to think problems through. MDPs apply random decisions 
100% of the time. Humans think in words, labeling everything they perceive. MDPs 
have an unsupervised approach that uses no labels or training data. MDPs boost the 
machine thought process of self-driving cars (SDCs), translation tools, scheduling 
software, and more. This memoryless, random, and unlabeled machine thought 
process marks a historical change in the way a former human problem was solved.
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With this realization comes a yet more mind-blowing fact. AI algorithms and 
hybrid solutions built on IoT, for example, have begun to surpass humans in 
strategic areas. Although AI cannot replace humans in every field, AI combined 
with classical automation now occupies key domains: banking, marketing, supply 
chain management, scheduling, and many other critical areas.

As you will see, starting with this chapter, you can occupy a central role in this 
new world as an adaptive thinker. You can design AI solutions and implement them. 
There is no time to waste. In this chapter, we are going to dive quickly and directly 
into reinforcement learning through the MDP.

Today, AI is essentially mathematics translated into source code, which makes it 
difficult to learn for traditional developers. However, we will tackle this approach 
pragmatically.

The goal here is not to take the easy route. We're striving to break complexity into 
understandable parts and confront them with reality. You are going to find out right 
from the outset how to apply an adaptive thinker's process that will lead you from 
an idea to a solution in reinforcement learning, and right into the center of gravity 
of the next generation of AI.

Reinforcement learning concepts
AI is constantly evolving. The classical approach states that:

• AI covers all domains
• Machine learning is a subset of AI, with clustering, classification, regression, 

and reinforcement learning
• Deep learning is a subset of machine learning that involves neural networks

However, these domains often overlap and it's difficult to fit neuromorphic 
computing, for example, with its sub-symbolic approach, into these categories 
(see Chapter 18, Neuromorphic Computing).

In this chapter, RL clearly fits into machine learning. Let's have a brief look into the 
scientific foundations of the MDP, the RL algorithm we are going to explore. The 
main concepts to keep in mind are the following:

• Optimal transport: In 1781, Gaspard Monge defined transport optimizing 
from one location to another using the shortest and most cost-effective path; 
for example, mining coal and then using the most cost-effective path to a 
factory. This was subsequently generalized to any form of path from point 
A to point B.
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• Boltzmann equation and constant: In the late 19th century, Ludwig 
Boltzmann changed our vision of the world with his probabilistic 
distribution of particles beautifully summed up in his entropy formula:

S = k * log W
S represents the entropy (energy, disorder) of a system expressed. k 
is the Boltzmann constant, and W represents the number of microstates. 
We will explore Boltzmann's ideas further in Chapter 14, Preparing the 
Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal 
Component Analysis (PCA).

• Probabilistic distributions advanced further: Josiah Willard Gibbs took the 
probabilistic distributions of large numbers of particles a step further. At 
that point, probabilistic information theory was advancing quickly. At the 
turn of the 19th century, Andrey Markov applied probabilistic algorithms to 
language, among other areas. A modern era of information theory was born.

• When Boltzmann and optimal transport meet: 2011 Fields Medal winner, 
Cédric Villani, brought Boltzmann's equation to yet another level. Villani 
then went on to unify optimal transport and Boltzmann. Cédric Villani 
proved something that was somewhat intuitively known to 19th century 
mathematicians but required proof.

Let's take all of the preceding concepts and materialize them in a real-world example 
that will explain why reinforcement learning using the MDP, for example, is so 
innovative.

Analyzing the following cup of tea will take you right into the next generation of AI:

Figure 1.1: Consider a cup of tea



Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[ 4 ]

You can look at this cup of tea in two different ways:

1. Macrostates: You look at the cup and content. You can see the volume of 
tea in the cup and you could feel the temperature when holding the cup 
in your hand.

2. Microstates: But can you tell how many molecules are in the tea, which 
ones are hot, warm, or cold, their velocity and directions? Impossible right?

Now, imagine, the tea contains 2,000,000,000+ Facebook accounts, or 100,000,000+ 
Amazon Prime users with millions of deliveries per year. At this level, we simply 
abandon the idea of controlling every item. We work on trends and probabilities.

Boltzmann provides a probabilistic approach to the evaluation of the features of our 
real world. Materializing Boltzmann in logistics through optimal transport means 
that the temperature could be the ranking of a product, the velocity can be linked 
to the distance to delivery, and the direction could be the itineraries we will study 
in this chapter.

Markov picked up the ripe fruits of microstate probabilistic descriptions and applied 
it to his MDP. Reinforcement learning takes the huge volume of elements (particles 
in a cup of tea, delivery locations, social network accounts) and defines the probable 
paths they take.

The turning point of human thought occurred when we simply could not analyze 
the state and path of the huge volumes facing our globalized world, which generates 
images, sounds, words, and numbers that exceed traditional software approaches.

With this in mind, we can start exploring the MDP.

How to adapt to machine thinking and 
become an adaptive thinker
Reinforcement learning, one of the foundations of machine learning, supposes 
learning through trial and error by interacting with an environment. This sounds 
familiar, doesn't it? That is what we humans do all our lives—in pain! Try things, 
evaluate, and then continue; or try something else.

In real life, you are the agent of your thought process. In reinforcement learning, 
the agent is the function calculating randomly through this trial-and-error process. 
This thought process function in machine learning is the MDP agent. This form of 
empirical learning is sometimes called Q-learning.
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Mastering the theory and implementation of an MDP through a three-step method 
is a prerequisite.

This chapter will detail the three-step approach that will turn you into an AI expert, 
in general terms:

1. Starting by describing a problem to solve with real-life cases
2. Then, building a mathematical model that considers real-life limitations
3. Then, writing source code or using a cloud platform solution

This is a way for you to approach any project with an adaptive attitude from the 
outset. This shows that a human will always be at the center of AI by explaining 
how we can build the inputs, run an algorithm, and use the results of our code. 
Let's consider this three-step process and put it into action.

Overcoming real-life issues using the 
three-step approach
The key point of this chapter is to avoid writing code that will never be used. 
First, begin by understanding the subject as a subject matter expert. Then, write 
the analysis with words and mathematics to make sure your reasoning reflects the 
subject and, most of all, that the program will make sense in real life. Finally, in step 
3, only write the code when you are sure about the whole project.

Too many developers start writing code without stopping to think about how the 
results of that code are going to manifest themselves within real-life situations. You 
could spend weeks developing the perfect code for a problem, only to find out that 
an external factor has rendered your solution useless. For instance, what if you coded 
a solar-powered robot to clear snow from the yard, only to discover that during 
winter, there isn't enough sunlight to power the robot!

In this chapter, we are going to tackle the MDP (Q function) and apply it to 
reinforcement learning with the Bellman equation. We are going to approach it a 
little differently to most, however. We'll be thinking about practical application, not 
simply code execution. You can find tons of source code and examples on the web. 
The problem is, much like our snow robot, such source code rarely considers the 
complications that come about in real-life situations. Let's say you find a program that 
finds the optimal path for a drone delivery. There's an issue, though; it has many limits 
that need to be overcome due to the fact that the code has not been written with real-
life practicality in mind. You, as an adaptive thinker, are going to ask some questions:

• What if there are 5,000 drones over a major city at the same time? What 
happens if they try to move in straight lines and bump into each other?
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• Is a drone-jam legal? What about the noise over the city? What about 
tourism?

• What about the weather? Weather forecasts are difficult to make, so how 
is this scheduled?

• How can we resolve the problem of coordinating the use of charging and 
parking stations?

In just a few minutes, you will be at the center of attention among theoreticians 
who know more than you, on one hand, and angry managers who want solutions 
they cannot get on the other. Your real-life approach will solve these problems. To 
do that, you must take the following three steps into account, starting with really 
getting involved in the real-life subject.

In order to successfully implement our real-life approach, comprised of the three 
steps outlined in the previous section, there are a few prerequisites:

• Be a subject matter expert (SME): First, you have to be an SME. If a 
theoretician geek comes up with a hundred TensorFlow functions to solve 
a drone trajectory problem, you now know it is going to be a tough ride in 
which real-life parameters are constraining the algorithm. An SME knows 
the subject and thus can quickly identify the critical factors of a given field. 
AI often requires finding a solution to a complex problem that even an expert 
in a given field cannot express mathematically. Machine learning sometimes 
means finding a solution to a problem that humans do not know how to 
explain. Deep learning, involving complex networks, solves even more 
difficult problems.

• Have enough mathematical knowledge to understand AI concepts: Once 
you have the proper natural language analysis, you need to build your 
abstract representation quickly. The best way is to look around and find an 
everyday life example and make a mathematical model of it. Mathematics is 
not an option in AI, but a prerequisite. The effort is worthwhile. Then, you 
can start writing a solid piece of source code or start implementing a cloud 
platform ML solution.

• Know what source code is about as well as its potential and limits: MDP 
is an excellent way to go and start working on the three dimensions that 
will make you adaptive: describing what is around you in detail in words, 
translating that into mathematical representations, and then implementing 
the result in your source code.

With those prerequisites in mind, let's look at how you can become a problem-
solving AI expert by following our practical three-step process. Unsurprisingly, 
we'll begin at step 1.
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Step 1 – describing a problem to solve: MDP 
in natural language
Step 1 of any AI problem is to go as far as you can to understand the subject you are 
asked to represent. If it's a medical subject, don't just look at data; go to a hospital 
or a research center. If it's a private security application, go to the places where they 
will need to use it. If it's for social media, make sure to talk to many users directly. 
The key concept to bear in mind is that you have to get a "feel" for the subject, as if 
you were the real "user."

For example, transpose it into something you know in your everyday life (work or 
personal), something you are an SME in. If you have a driver's license, then you are 
an SME of driving. You are certified. This is a fairly common certification, so let's 
use this as our subject matter in the example that will follow. If you do not have a 
driver's license or never drive, you can easily replace moving around in a car by 
imagining you are moving around on foot; you are an SME of getting from one place 
to another, regardless of what means of transport that might involve. However, bear 
in mind that a real-life project would involve additional technical aspects, such as 
traffic regulations for each country, so our imaginary SME does have its limits.

Getting into the example, let's say you are an e-commerce business driver delivering 
a package in a location you are unfamiliar with. You are the operator of a self-driving 
vehicle. For the time being, you're driving manually. You have a GPS with a nice 
color map on it. The locations around you are represented by the letters A to F, as 
shown in the simplified map in the following diagram. You are presently at F. Your 
goal is to reach location C. You are happy, listening to the radio. Everything is going 
smoothly, and it looks like you are going to be there on time. The following diagram 
represents the locations and routes that you can cover:

Figure 1.2: A diagram of delivery routes

The guidance system's state indicates the complete path to reach C. It is telling you 
that you are going to go from F to B to D, and then to C. It looks good!
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To break things down further, let's say:

• The present state is the letter s. s is a variable, not an actual state. It can be 
one of the locations in L, the set of locations:

L = {A, B, C, D, E, F}
We say present state because there is no sequence in the learning process. The 
memoryless process goes from one present state to another. In the example in 
this chapter, the process starts at location F.

• Your next action is the letter a (action). This action a is not location A. The 
goal of this action is to take us to the next possible location in the graph. In 
this case, only B is possible. The goal of a is to take us from s (present state) 
to s' (new state).

• The action a (not location A) is to go to location B. You look at your guidance 
system; it tells you there is no traffic, and that to go from your present state, 
F, to your next state, B, will take you only a few minutes. Let's say that the 
next state B is the letter B. This next state B is s'.

At this point, you are still quite happy, and we can sum up your situation with the 
following sequence of events:

s, a, s'

The letter s is your present state, your present situation. The letter a is the action 
you're deciding, which is to go to the next location; there, you will be in another 
state, s'. We can say that thanks to the action a, you will go from s to s'.

Now, imagine that the driver is not you anymore. You are tired for some reason. 
That is when a self-driving vehicle comes in handy. You set your car to autopilot. 
Now, you are no longer driving; the system is. Let's call that system the agent. 
At point F, you set your car to autopilot and let the self-driving agent take over.

Watching the MDP agent at work
The self-driving AI is now in charge of the vehicle. It is acting as the MDP agent. This 
now sees what you have asked it to do and checks its mapping environment, which 
represents all the locations in the previous diagram from A to F.

In the meantime, you are rightly worried. Is the agent going to make it or not? You 
are wondering whether its strategy meets yours. You have your policy P—your way 
of thinking—which is to take the shortest path possible. Will the agent agree? What's 
going on in its machine mind? You observe and begin to realize things you never 
noticed before. 
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Since this is the first time you are using this car and guidance system, the agent is 
memoryless, which is an MDP feature. The agent doesn't know anything about what 
went on before. It seems to be happy with just calculating from this state s at location 
F. It will use machine power to run as many calculations as necessary to reach 
its goal.

Another thing you are watching is the total distance from F to C to check whether 
things are OK. That means that the agent is calculating all the states from F to C.

In this case, state F is state 1, which we can simplify by writing s1; B is state 2, which 
we can simplify by writing s2; D is s3; and C is s4. The agent is calculating all of these 
possible states to make a decision.

The agent knows that when it reaches D, C will be better because the reward will 
be higher for going to C than anywhere else. Since it cannot eat a piece of cake to 
reward itself, the agent uses numbers. Our agent is a real number cruncher. When 
it is wrong, it gets a poor reward or nothing in this model. When it's right, it gets 
a reward represented by the letter R, which we'll encounter during step 2. This 
action-value (reward) transition, often named the Q function, is the core of many 
reinforcement learning algorithms.

When our agent goes from one state to another, it performs a transition and gets 
a reward. For example, the transition can be from F to B, state 1 to state 2, or s1 to s2.

You are feeling great and are going to be on time. You are beginning to understand 
how the machine learning agent in your self-driving car is thinking. Suddenly, you 
look up and see that a traffic jam is building up. Location D is still far away, and now 
you do not know whether it would be good to go from D to C or D to E, in order to 
take another road to C, which involves less traffic. You are going to see what your 
agent thinks!

The agent takes the traffic jam into account, is stubborn, and increases its reward to 
get to C by the shortest way. Its policy is to stick to the initial plan. You do not agree. 
You have another policy.

You stop the car. You both have to agree before continuing. You have your opinion 
and policy; the agent does not agree. Before continuing, your views need to 
converge. Convergence is the key to making sure that your calculations are correct, 
and it's a way to evaluate the quality of a calculation.

A mathematical representation is the best way to express this whole process at this 
point, which we will describe in the following step.
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Step 2 – building a mathematical model: the 
mathematical representation of the Bellman 
equation and MDP
Mathematics involves a whole change in your perspective of a problem. You are 
going from words to functions, the pillars of source coding.

Expressing problems in mathematical notation does not mean getting lost 
in academic math to the point of never writing a single line of code. Just use 
mathematics to get a job done efficiently. Skipping mathematical representation 
will fast-track a few functions in the early stages of an AI project. However, when 
the real problems that occur in all AI projects surface, solving them with source 
code alone will prove virtually impossible. The goal here is to pick up enough 
mathematics to implement a solution in real-life companies.

It is necessary to think through a problem by finding something familiar around us, 
such as the itinerary model covered early in this chapter. It is a good thing to write it 
down with some abstract letters and symbols as described before, with a meaning an 
action, and s meaning a state. Once you have understood the problem and expressed 
it clearly, you can proceed further.

Now, mathematics will help to clarify the situation by means of shorter descriptions. 
With the main ideas in mind, it is time to convert them into equations.

From MDP to the Bellman equation
In step 1, the agent went from F, or state 1 or s, to B, which was state 2 or s'.

A strategy drove this decision—a policy represented by P. One mathematical 
expression contains the MDP state transition function:

Pa(s, s')

P is the policy, the strategy made by the agent to go from F to B through action a. 
When going from F to B, this state transition is named the state transition function:

• a is the action
• s is state 1 (F), and s' is state 2 (B)

The reward (right or wrong) matrix follows the same principle:

Ra(s, s')
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That means R is the reward for the action of going from state s to state s'. Going from 
one state to another will be a random process. Potentially, all states can go to any 
other state.

Each line in the matrix in the example represents a letter from A to F, and each 
column represents a letter from A to F. All possible states are represented. The 1 
values represent the nodes (vertices) of the graph. Those are the possible locations. 
For example, line 1 represents the possible moves for letter A, line 2 for letter B, and 
line 6 for letter F. On the first line, A cannot go to C directly, so a 0 value is entered. 
But, it can go to E, so a 1 value is added.

Some models start with -1 for impossible choices, such as B going directly to C, and 
0 values to define the locations. This model starts with 0 and 1 values. It sometimes 
takes weeks to design functions that will create a reward matrix (see Chapter 2, 
Building a Reward Matrix – Designing Your Datasets).

The example we will be working on inputs a reward matrix so that the program can 
choose its best course of action. Then, the agent will go from state to state, learning 
the best trajectories for every possible starting location point. The goal of the MDP 
is to go to C (line 3, column 3 in the reward matrix), which has a starting value of 
100 in the following Python code:

# Markov Decision Process (MDP) - The Bellman equations adapted to
# Reinforcement Learning
import numpy as ql
# R is The Reward Matrix for each state
R = ql.matrix([ [0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,100,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0] ])

Somebody familiar with Python might wonder why I used ql instead of np. Some 
might say "convention," "mainstream," "standard." My answer is a question. Can 
somebody define what "standard" AI is in this fast-moving world! My point here 
for the MDP is to use ql as an abbreviation of "Q-learning" instead of the "standard" 
abbreviation of NumPy, which is np. Naturally, beyond this special abbreviation for 
the MDP programs, I'll use np. Just bear in mind that conventions are there to break 
so as to set ourselves free to explore new frontiers. Just make sure your program 
works well!
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There are several key properties of this decision process, among which there is the 
following:

• The Markov property: The process does not take the past into account. It is 
the memoryless property of this decision process, just as you do in a car with 
a guidance system. You move forward to reach your goal.

• Unsupervised learning: From this memoryless Markov property, it is safe 
to say that the MDP is not supervised learning. Supervised learning would 
mean that we would have all the labels of the reward matrix R and learn 
from them. We would know what A means and use that property to make 
a decision. We would, in the future, be looking at the past. MDP does not 
take these labels into account. Thus, MDP uses unsupervised learning to 
train. A decision has to be made in each state without knowing the past 
states or what they signify. It means that the car, for example, was on its 
own at each location, which is represented by each of its states.

• Stochastic process: In step 1, when state D was reached, the agent 
controlling the mapping system and the driver didn't agree on where to 
go. A random choice could be made in a trial-and-error way, just like a coin 
toss. It is going to be a heads-or-tails process. The agent will toss the coin 
a significant number of times and measure the outcomes. That's precisely 
how MDP works and how the agent will learn.

• Reinforcement learning: Repeating a trial-and-error process with feedback 
from the agent's environment.

• Markov chain: The process of going from state to state with no history 
in a random, stochastic way is called a Markov chain.

To sum it up, we have three tools:

• Pa(s, s'): A policy, P, or strategy to move from one state to another
• Ta(s, s'): A T, or stochastic (random) transition, function to carry out that 

action
• Ra(s, s'): An R, or reward, for that action, which can be negative, null, 

or positive

T is the transition function, which makes the agent decide to go from one point 
to another with a policy. In this case, it will be random. That's what machine power 
is for, and that is how reinforcement learning is often implemented.
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Randomness
Randomness is a key property of MDP, defining it as a stochastic process.

The following code describes the choice the agent is going to make:

next_action = int(ql.random.choice(PossibleAction,1))
return next_action

The code selects a new random action (state) at each episode.

The Bellman equation
The Bellman equation is the road to programming reinforcement learning.

The Bellman equation completes the MDP. To calculate the value of a state, let's 
use Q, for the Q action-reward (or value) function. The pseudo source code of the 
Bellman equation can be expressed as follows for one individual state:

𝑄𝑄(𝑠𝑠) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾 ∗ max(𝑠𝑠′) 

The source code then translates the equation into a machine representation, as in the 
following code:

# The Bellman equation
    Q[current_state, action] = R[current_state, action] +
        gamma * MaxValue

The source code variables of the Bellman equation are as follows:

• Q(s): This is the value calculated for this state—the total reward. In step 1, 
when the agent went from F to B, the reward was a number such as 50 or 100 
to show the agent that it's on the right track.

• R(s): This is the sum of the values up to that point. It's the total reward at that 
point.

• 𝛾𝛾 = gamma : This is here to remind us that trial and error has a price. We're 
wasting time, money, and energy. Furthermore, we don't even know whether 
the next step is right or wrong since we're in a trial-and-error mode. Gamma 
is often set to 0.8. What does that mean? Suppose you're taking an exam. You 
study and study, but you don't know the outcome. You might have 80 out 
of 100 (0.8) chances of clearing it. That's painful, but that's life. The gamma 
penalty, or learning rate, makes the Bellman equation realistic and efficient.

• max(s'): s' is one of the possible states that can be reached with Pa(s, s'); 
max is the highest value on the line of that state (location line in the 
reward matrix).
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At this point, you have done two-thirds of the job: understanding the real-life 
(process) and representing it in basic mathematics. You've built the mathematical 
model that describes your learning process, and you can implement that solution 
in code. Now, you are ready to code!

Step 3 – writing source code: implementing 
the solution in Python
In step 1, a problem was described in natural language to be able to talk to experts 
and understand what was expected. In step 2, an essential mathematical bridge 
was built between natural language and source coding. Step 3 is the software 
implementation phase.

When a problem comes up—and rest assured that one always does—it will be 
possible to go back over the mathematical bridge with the customer or company 
team, and even further back to the natural language process if necessary.

This method guarantees success for any project. The code in this chapter is in Python 
3.x. It is a reinforcement learning program using the Q function with the following 
reward matrix:

import numpy as ql
R = ql.matrix([ [0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,100,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0] ])

Q = ql.matrix(ql.zeros([6,6]))

gamma = 0.8

R is the reward matrix described in the mathematical analysis.

Q inherits the same structure as R, but all values are set to 0 since this is a learning 
matrix. It will progressively contain the results of the decision process. The gamma 
variable is a double reminder that the system is learning and that its decisions have 
only an 80% chance of being correct each time. As the following code shows, the 
system explores the possible actions during the process:

agent_s_state = 1

# The possible "a" actions when the agent is in a given state
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def possible_actions(state):
    current_state_row = R[state,]
    possible_act = ql.where(current_state_row >0)[1]
    return possible_act

# Get available actions in the current state
PossibleAction = possible_actions(agent_s_state)

The agent starts in state 1, for example. You can start wherever you want because 
it's a random process. Note that the process only takes values > 0 into account. 
They represent possible moves (decisions).

The current state goes through an analysis process to find possible actions (next 
possible states). You will note that there is no algorithm in the traditional sense with 
many rules. It's a pure random calculation, as the following random.choice function 
shows:

def ActionChoice(available_actions_range):
    if(sum(PossibleAction)>0):
        next_action = int(ql.random.choice(PossibleAction,1))
    if(sum(PossibleAction)<=0):
        next_action = int(ql.random.choice(5,1))
    return next_action

# Sample next action to be performed
action = ActionChoice(PossibleAction)

Now comes the core of the system containing the Bellman equation, translated into 
the following source code:

def reward(current_state, action, gamma):
    Max_State = ql.where(Q[action,] == ql.max(Q[action,]))[1]

    if Max_State.shape[0] > 1:
        Max_State = int(ql.random.choice(Max_State, size = 1))
    else:
        Max_State = int(Max_State)
    MaxValue = Q[action, Max_State]
    
    # Q function
    Q[current_state, action] = R[current_state, action] +
        gamma * MaxValue

# Rewarding Q matrix
reward(agent_s_state,action,gamma)

You can see that the agent looks for the maximum value of the next possible state 
chosen at random.
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The best way to understand this is to run the program in your Python environment 
and print() the intermediate values. I suggest that you open a spreadsheet and note 
the values. This will give you a clear view of the process.

The last part is simply about running the learning process 50,000 times, just to 
be sure that the system learns everything there is to find. During each iteration, 
the agent will detect its present state, choose a course of action, and update the Q 
function matrix:

for i in range(50000):
    current_state = ql.random.randint(0, int(Q.shape[0]))
    PossibleAction = possible_actions(current_state)
    action = ActionChoice(PossibleAction)
    reward(current_state,action,gamma)
    
# Displaying Q before the norm of Q phase
print("Q :")
print(Q)

# Norm of Q
print("Normed Q :")
print(Q/ql.max(Q)*100)

The process continues until the learning process is over. Then, the program will print 
the result in Q and the normed result. The normed result is the process of dividing 
all values by the sum of the values found. print(Q/ql.max(Q)*100) norms Q by 
dividing Q by q1.max(Q)*100. The result comes out as a normed percentage.

You can run the process with mdp01.py.

The lessons of reinforcement learning
Unsupervised reinforcement machine learning, such as the MDP-driven Bellman 
equation, is toppling traditional decision-making software location by location. 
Memoryless reinforcement learning requires few to no business rules and, thus, 
doesn't require human knowledge to run.

Being an adaptive next-generation AI thinker involves three prerequisites: the 
effort to be an SME, working on mathematical models to think like a machine, 
and understanding your source code's potential and limits.
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Machine power and reinforcement learning teach us two important lessons:

• Lesson 1: Machine learning through reinforcement learning can beat human 
intelligence in many cases. No use fighting! The technology and solutions are 
already here in strategic domains.

• Lesson 2: A machine has no emotions, but you do. And so do the people 
around you. Human emotions and teamwork are an essential asset. Become 
an SME for your team. Learn how to understand what they're trying to say 
intuitively and make a mathematical representation of it for them. Your job 
will never go away, even if you're setting up solutions that don't require 
much development, such as AutoML. AutoML, or automated machine 
learning, automates many tasks. AutoML automates functions such as the 
dataset pipeline, hyperparameters, and more. Development is partially or 
totally suppressed. But you still have to make sure the whole system is well 
designed.

Reinforcement learning shows that no human can solve a problem the way a 
machine does. 50,000 iterations with random searching is not an option for a human. 
The number of empirical episodes can be reduced dramatically with a numerical 
convergence form of gradient descent (see Chapter 3, Machine Intelligence – Evaluation 
Functions and Numerical Convergence).

Humans need to be more intuitive, make a few decisions, and see what happens, 
because humans cannot try thousands of ways of doing something. Reinforcement 
learning marks a new era for human thinking by surpassing human reasoning power 
in strategic fields.

On the other hand, reinforcement learning requires mathematical models to function. 
Humans excel in mathematical abstraction, providing powerful intellectual fuel to 
those powerful machines.

The boundaries between humans and machines have changed. Humans' ability to 
build mathematical models and ever-growing cloud platforms will serve online 
machine learning services.

Finding out how to use the outputs of the reinforcement learning program we just 
studied shows how a human will always remain at the center of AI.
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How to use the outputs
The reinforcement program we studied contains no trace of a specific field, as in 
traditional software. The program contains the Bellman equation with stochastic 
(random) choices based on the reward matrix. The goal is to find a route to C 
(line 3, column 3) that has an attractive reward (100):

# Markov Decision Process (MDP) – The Bellman equations adapted to
# Reinforcement Learning with the Q action-value(reward) matrix
import numpy as ql
# R is The Reward Matrix for each state
R = ql.matrix([ [0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,100,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0] ])

That reward matrix goes through the Bellman equation and produces a result in 
Python:

Q :
[[ 0. 0. 0. 0. 258.44 0. ]
 [ 0. 0. 0. 321.8 0. 207.752]
 [ 0. 0. 500. 321.8 0. 0. ]
 [ 0. 258.44 401. 0. 258.44 0. ]
 [ 207.752 0. 0. 321.8 0. 0. ]
 [ 0. 258.44 0. 0. 0. 0. ]]
Normed Q :
[[ 0. 0. 0. 0. 51.688 0. ]
 [ 0. 0. 0. 64.36 0. 41.5504]
 [ 0. 0. 100. 64.36 0. 0. ]
 [ 0. 51.688 80.2 0. 51.688 0. ]
 [ 41.5504 0. 0. 64.36 0. 0. ]
 [ 0. 51.688 0. 0. 0. 0. ]]

The result contains the values of each state produced by the reinforced learning 
process, and also a normed Q (the highest value divided by other values).

As Python geeks, we are overjoyed! We made something that is rather difficult work, 
namely, reinforcement learning. As mathematical amateurs, we are elated. We know 
what MDP and the Bellman equation mean.

However, as natural language thinkers, we have made little progress. No customer 
or user can read that data and make sense of it. Furthermore, we cannot explain 
how we implemented an intelligent version of their job in the machine. We didn't.
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We hardly dare say that reinforcement learning can beat anybody in the company, 
making random choices 50,000 times until the right answer came up.

Furthermore, we got the program to work, but hardly know what to do with the 
result ourselves. The consultant on the project cannot help because of the matrix 
format of the solution.

Being an adaptive thinker means knowing how to be good in all steps of a project. 
To solve this new problem, let's go back to step 1 with the result. Going back 
to step 1 means that if you have problems either with the results themselves 
or understanding them, it is necessary to go back to the SME level, the real-life 
situation, and see what is going wrong.

By formatting the result in Python, a graphics tool, or a spreadsheet, the result can 
be  displayed as follows:

A B C D E F

A - - - - 258.44 -
B - - - 321.8 - 207.752
C - - 500 321.8 - -
D - 258.44 401. - 258.44 -
E 207.752 - - 321.8 - -
F - 258.44 - - - -

Now, we can start reading the solution:

• Choose a starting state. Take F, for example.
• The F line represents the state. Since the maximum value is 258.44 in the B 

column, we go to state B, the second line.
• The maximum value in state B in the second line leads us to the D state in 

the  fourth column.
• The highest maximum of the D state (fourth line) leads us to the C state.

Note that if you start at the C state and decide not to stay at C, the D state becomes 
the maximum value, which will lead you back to C. However, the MDP will never 
do this naturally. You will have to force the system to do it.

You have now obtained a sequence: F->B->D->C. By choosing other points of 
departure, you can obtain other sequences by simply sorting the table.
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A useful way of putting it remains the normalized version in percentages, as shown 
in the following table:

A B C D E F

A - - - - 51.68% -
B - - - 64.36% - 41.55%
C - - 100% 64.36% - -
D - 51.68% 80.2% - 51.68% -
E 41.55% - - 64.36% - -
F - 51.68% - - - -

Now comes the very tricky part. We started the chapter with a trip on the road. But I 
made no mention of it in the results analysis.

An important property of reinforcement learning comes from the fact that we are 
working with a mathematical model that can be applied to anything. No human 
rules are needed. We can use this program for many other subjects without writing 
thousands of lines of code.

Possible use cases
There are many cases to which we could adapt our reinforcement learning model 
without having to change any of its details.

Case 1: optimizing a delivery for a driver, human or not
This model was described in this chapter.

Case 2: optimizing warehouse flows
The same reward matrix can apply to go from point F to C in a warehouse, as shown 
in the following diagram:

Figure 1.3: A diagram illustrating a warehouse flow problem
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In this warehouse, the F->B->D->C sequence makes visual sense. If somebody goes 
from point F to C, then this physical path makes sense without going through walls.

It can be used for a video game, a factory, or any form of layout.

Case 3: automated planning and scheduling (APS)
By converting the system into a scheduling vector, the whole scenery changes. We 
have left the more comfortable world of physical processing of letters, faces, and 
trips. Though fantastic, those applications are social media's tip of the iceberg. The 
real challenge of AI begins in the abstract universe of human thinking.

Every single company, person, or system requires automatic planning and 
scheduling (see Chapter 12, AI and the Internet of Things (IoT)). The six A to F steps in 
the example of this chapter could well be six tasks to perform in a given unknown 
order represented by the following vector x:

𝑥𝑥 =

[
 
 
 
 
 
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6]

 
 
 
 
 

 

The reward matrix then reflects the weights of constraints of the tasks of vector x 
to perform. For example, in a factory, you cannot assemble the parts of a product 
before manufacturing them.

In this case, the sequence obtained represents the schedule of the manufacturing 
process.

Cases 4 and more: your imagination
By using physical layouts or abstract decision-making vectors, matrices, and tensors, 
you can build a world of solutions in a mathematical reinforcement learning model. 
Naturally, the following chapters will enhance your toolbox with many other 
concepts.

Before moving on, you might want to imagine some situations in which you could 
use the A to F letters to express some kind of path.

To help you with these mind experiment simulations, open mdp02.py and go to 
line 97, which starts with the following code that enables a simulation tool. nextc 
and nextci are simply variables to remember where the path begins and will end. 
They are set to -1 so as to avoid 0, which is a location.



Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[ 22 ]

The primary goal is to focus on the expression "concept code." The locations have 
become any concept you wish. A could be your bedroom, and C your kitchen. The 
path would go from where you wake up to where you have breakfast. A could be 
an idea you have, and F the end of a thinking process. The path would go from A 
(How can I hang this picture on the wall?) to E (I need to drill a hole) and, after a few 
phases, to F (I hung the picture on the wall). You can imagine thousands of paths like 
this as long as you define the reward matrix, the "concept code," and a starting point:

"""# Improving the program by introducing a decision-making process"""
nextc=-1
nextci=-1
conceptcode=["A","B","C","D","E","F"]

This code takes the result of the calculation, labels the result matrix, and accepts an 
input as shown in the following code snippet:

origin=int(input(
    "index number origin(A=0,B=1,C=2,D=3,E=4,F=5): "))

The input only accepts the label numerical code: A=0, B=1 … F=5. The function then 
runs a classical calculation on the results to find the best path. Let's takes an example.

When you are prompted to enter a starting point, enter 5, for example, as follows:

index number origin(A=0,B=1,C=2,D=3,E=4,F=5): 5

The program will then produce the optimal path based on the output of the MDP 
process, as shown in the following output:

Concept Path

-> F

-> B

-> D

-> C

Try multiple scenarios and possibilities. Imagine what you could apply this to:

• An e-commerce website flow (visit, cart, checkout, purchase) imagining that 
a user visits the site and then resumes a session at a later time. You can use 
the same reward matrix and "concept code" explored in this chapter. For 
example, a visitor visits a web page at 10 a.m., starting at point A of your 
website. Satisfied with a product, the visitor puts the product in a cart, which 
is point E of your website. Then, the visitor leaves the site before going to 
the purchase page, which is C. D is the critical point. Why didn't the visitor 
purchase the product? What's going on? 
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You can decide to have an automatic email sent after 24 hours saying: "There 
is a 10% discount on all purchases during the next 48 hours." This way, you 
will target all the visitors stuck at D and push them toward C.

• A sequence of possible words in a sentence (subject, verb, object). Predicting 
letters and words was one of Andrey Markov's first applications 100+ years 
ago! You can imagine that B is the letter "a" of the alphabet. If D is "t," it is 
much more probable than F if F is "o," which is less probable in the English 
language. If an MDP reward matrix is built such as B leads to D or F, B can 
thus either go to D or to F. There are thus two possibilities, D or F. Andrey 
Markov would suppose, for example, that B is a variable that represents the 
letter "a," D is a variable that represents the letter "t" and F is a variable that 
represents the letter "o." After studying the structure of a language closely, 
he would find that the letter "a" would more likely be followed by "t" than 
by "o" in the English language. If one observes the English language, it is 
more likely to find an "a-t" sequence than an "a-o" sequence. In a Markov 
decision process, a higher probability will be awarded to the "a-t" sequence 
and a lower one to "a-o." If one goes back to the variables, the B-D sequence 
will come out as more probable than the B-F sequence.

• And anything you can find that fits the model that works is great!

Machine learning versus traditional 
applications
Reinforcement learning based on stochastic (random) processes will evolve beyond 
traditional approaches. In the past, we would sit down and listen to future users to 
understand their way of thinking.

We would then go back to our keyboard and try to imitate the human way of 
thinking. Those days are over. We need proper datasets and ML/DL equations to 
move forward. Applied mathematics has taken reinforcement learning to the next 
level. In my opinion, traditional software will soon be in the museum of computer 
science. The complexity of the huge volumes of data we are facing will require AI 
at some point.

An artificial adaptive thinker sees the world through applied mathematics translated 
into machine representations.

Use the Python source code example provided in this chapter in different ways. 
Run it and try to change some parameters to see what happens. Play around with 
the number of iterations as well. Lower the number from 50,000 down to where you 
find it fits best. Change the reward matrix a little to see what happens. Design your 
reward matrix trajectory. This can be an itinerary or decision-making process.


