Online Appendix: "Optimal taxation and debt with uninsurable risks to human capital accumulation"
 Piero Gottardi, Atsushi Kajii, and Tomoyuki Nakajima
 March 6, 2015

1 Proofs

1.1 Proof of Lemma 1

The proof of this lemma uses an argument similar to Epstein and Zin (1991) and Angeletos (2007). Since the idiosyncratic shocks, $\theta_{i, t}$, are i.i.d. across individuals and across periods, the utility maximization problem of each individual can be expressed as:

$$
\begin{aligned}
& V_{t}(x)=\max _{c, \eta_{h}}\left\{(1-\beta) c^{1-\frac{1}{\psi}}+\beta\left(E_{t}\left[V_{t+1}\left(x^{\prime}\right)^{1-\gamma}\right]\right)^{\frac{1-\frac{1}{\psi}}{1-\gamma}}\right\}^{\frac{1}{1-\frac{1}{\psi}}} \\
& \text { s.t. } \quad x^{\prime}=(x-c)\left[R_{k, t+1}\left(1-\eta_{h}\right)+R_{h, t+1} \theta^{\prime} \eta_{h}\right] \geq 0, \\
& \quad c \in[0, x], \quad \eta_{h} \in[0,1] .
\end{aligned}
$$

Here, $V_{t}(x)$ is the value function for the utility maximization problem of an individual whose total wealth is x at the beginning of period t. We conjecture that there exists a (deterministic) sequence $\left\{v_{t}\right\}_{t=0}^{\infty}$, with $v_{t} \in \mathbb{R}_{+}$for all t, such that

$$
V_{t}(x)=v_{t} x
$$

Using this conjecture and the budget constraint, we obtain

$$
\left(E_{t}\left[V_{t+1}\left(x^{\prime}\right)^{1-\gamma}\right]\right)^{\frac{1}{1-\gamma}}=v_{t+1}(x-c)\left\{E_{t}\left[\left(R_{k, t+1}\left(1-\eta_{h}\right)+R_{h, t+1} \theta^{\prime} \eta_{h}\right)^{1-\gamma}\right]\right\}^{\frac{1}{1-\gamma}}
$$

It follows that in the above maximization problem the individual chooses the portfolio η_{h} so as to solve the following maximization problem:

$$
\eta_{h}=\underset{\eta_{h}^{\prime} \in[0,1]}{\arg \max }\left\{E_{t}\left[\left(R_{k, t+1}\left(1-\eta_{h}^{\prime}\right)+R_{h, t+1} \theta^{\prime} \eta_{h}^{\prime}\right)^{1-\gamma}\right]\right\}^{\frac{1}{1-\gamma}}
$$

Let ρ_{t+1} denote the maximized value in this problem. Note that neither η_{h} nor ρ_{t+1} depends on the initial state x. That is, under the conjectured value function, all individuals would choose the same portfolio and the same certainty-equivalent rate of return.

Given the certainty-equivalent rate of return, ρ_{t+1}, the level of consumption is chosen so as to solve

$$
\max _{c \in[0, x]}\left\{(1-\beta) c^{1-\frac{1}{\psi}}+\beta\left[v_{t+1} \rho_{t+1}(x-c)\right]^{1-\frac{1}{\psi}}\right\}^{\frac{1}{1-\frac{1}{\psi}}}
$$

The first-order condition for this problem is

$$
(1-\beta) c^{-\frac{1}{\psi}}=\beta v_{t+1}^{1-\frac{1}{\psi}} \rho_{t+1}^{1-\frac{1}{\psi}}(x-c)^{-\frac{1}{\psi}}
$$

which leads to

$$
\eta_{c}=\left\{1+\left(\frac{\beta}{1-\beta}\right)^{\psi}\left(v_{t+1} \rho_{t+1}\right)^{\psi-1}\right\}^{-1}
$$

where $\eta_{c}=\frac{c}{x}$.
On the other hand, the Bellman equation implies

$$
v_{t}^{1-\frac{1}{\psi}}=(1-\beta) \eta_{c}^{1-\frac{1}{\psi}}+\beta\left(v_{t+1} \rho_{t+1}\right)^{1-\frac{1}{\psi}}\left(1-\eta_{c}\right)^{1-\frac{1}{\psi}}
$$

This equation and the above first-order condition for c imply that

$$
v_{t}^{\psi-1}=(1-\beta)^{\psi}+\beta^{\psi} v_{t+1}^{\psi-1} \rho_{t+1}^{\psi-1}
$$

The bounded solution to this difference equation is

$$
v_{t}=(1-\beta)^{\frac{\psi}{\psi-1}}\left\{1+\sum_{s=0}^{\infty} \prod_{j=0}^{s}\left(\beta^{\psi} \rho_{t+1+j}^{\psi-1}\right)\right\}^{\frac{1}{\psi-1}}
$$

Also, the consumption rate η_{c} is

$$
\eta_{c, t}=(1-\beta)^{\psi} v_{t}^{1-\psi}
$$

It is straightforward to verify that, constructed in this way, $\left\{V_{t}(x), \eta_{c}, \eta_{h}\right\}$ indeed characterizes the solution to the utility maximization problem. The rest of the lemma follows immediately.

1.2 Proof of Proposition 3

Totally differentiating constraint (36) of problem (35), we obtain

$$
\left(\tilde{r}-F_{k}+F_{h}-\tilde{w}\right) d \eta_{h}-\left(1-\eta_{h}\right) d \tilde{r}-\eta_{h} d \tilde{w}=0
$$

Evaluating this expression at the benchmark equilibrium, where $G_{t}=B_{t}=0, \tilde{r}_{t}=\hat{F}_{k}$ and $\tilde{w}_{t}=\hat{F}_{h}$, for all t, yields

$$
\left(1-\hat{\eta}_{h}\right) d \tilde{r}+\hat{\eta}_{h} d \tilde{w}=0
$$

Thus, to satisfy the balanced budget, \tilde{r} and \tilde{w} must satisfy the following relationship around $(\tilde{r}, \tilde{w})=$ $\left(\hat{F}_{k}, \hat{F}_{h}\right):$

$$
\frac{d \tilde{w}}{d \tilde{r}}=-\frac{1-\hat{\eta}_{h}}{\hat{\eta}_{h}}
$$

Hence the effect of a marginal change in \tilde{r}, taking into account the induced change in \tilde{w} via the government budget constraint, is given by $\frac{\partial}{\partial \tilde{r}}-\frac{1-\hat{\eta}_{h}}{\hat{\eta}_{h}} \frac{\partial}{\partial \tilde{w}}$ and will be denoted by $\frac{d}{d \tilde{r}}$. Since the lifetime utility is increasing in ρ_{t} for each t, it suffices to show that $\frac{d \rho}{d \tilde{r}}>0$.

The envelope theorem implies that $\frac{\partial \rho}{\partial \eta_{h}}=0$ at the benchmark equilibrium. It follows that

$$
\begin{aligned}
\frac{d \rho}{d \tilde{r}} & =\hat{\rho}^{\gamma} E\left[\hat{R}_{x}(\theta)^{-\gamma}\left\{\left(1-\hat{\eta}_{h}\right)+\theta \hat{\eta}_{h} \frac{d \tilde{w}}{d \tilde{r}}\right\}\right], \\
& =\hat{\rho}^{\gamma} E\left[\hat{R}_{x}(\theta)^{-\gamma}(1-\theta)\right]\left(1-\hat{\eta}_{h}\right)
\end{aligned}
$$

where $\hat{R}_{x}(\theta) \equiv\left(1-\delta_{k}+\hat{F}_{k}\right)\left(1-\hat{\eta}_{h}\right)+\left(1-\delta_{h}+\hat{F}_{h}\right) \theta \hat{\eta}_{h}$. Since $E(\theta)=1$, we have

$$
E\left[\hat{R}_{x}(\theta)^{-\gamma}(1-\theta)\right]=\operatorname{Cov}\left(\hat{R}_{x}(\theta)^{-\gamma}, 1-\theta\right)>0
$$

where the inequality follows from the fact that both $\hat{R}_{x}(\theta)^{-\gamma}$ and $1-\theta$ are decreasing functions of θ. Given that $\hat{\eta}_{h}<1$, this proves that $\frac{d \rho}{d \tilde{r}}>0$.

It remains to show that the after-tax rental rate of capital, \tilde{r}, and the tax rate on capital income, τ_{k}, move in the opposite directions around the benchmark equilibrium. Since $\tau_{k}=1-\frac{\tilde{r}}{F_{k}}$, we have

$$
\begin{equation*}
\frac{d \tau_{k}}{d \tilde{r}}=\frac{-\hat{F}_{k}+\left(-\hat{F}_{k k}+\hat{F}_{k h}\right) \frac{d \eta_{h}}{d \bar{r}}}{\hat{F}_{k}^{2}} \tag{43}
\end{equation*}
$$

Differentiating the individual first order conditions (15) yields

$$
\left\{\Phi_{\tilde{r}}-\frac{1-\hat{\eta}_{h}}{\hat{\eta}_{h}} \Phi_{\tilde{w}}\right\} d \tilde{r}+\Phi_{\eta_{h}} d \eta_{h}=0
$$

so that

$$
\begin{equation*}
\frac{d \eta_{h}}{d \tilde{r}}=\frac{\frac{1-\hat{\eta}_{h}}{\hat{\eta}_{h}} \Phi_{\tilde{w}}-\Phi_{\tilde{r}}}{\Phi_{\eta_{h}}} \tag{44}
\end{equation*}
$$

Thus we obtain

$$
\frac{d \tau_{k}}{d \tilde{r}}=\frac{1}{\hat{F}_{k}^{2}} \frac{-\hat{F}_{k} \Phi_{\eta_{h}}+\left(-\hat{F}_{k k}+\hat{F}_{k h}\right)\left(\frac{1-\hat{\eta}_{h}}{\hat{\eta}_{h}} \Phi_{\tilde{w}}-\Phi_{\tilde{r}}\right)}{\Phi_{\eta_{h}}}<0
$$

since by Assumption 1 we have $\Phi_{\tilde{w}}>0, \Phi_{\tilde{r}}<0$, while $\Phi_{\eta_{h}}<0$ follows from the strict concavity of $\rho\left(\tilde{r}, \tilde{w}, \eta_{h}\right)$ and $F_{k h}=(1-\alpha) \alpha k^{\alpha-1} h^{-\alpha}>0$. This completes the proof.

1.3 Proof of Proposition 4

We are interested in the welfare effect of a marginal variation of \bar{b}_{T+1} evaluated at $\bar{b}_{T+1}=0$, that is the sign of $d v_{0} /\left.d \bar{b}_{T+1}\right|_{\bar{b}_{T+1}=0}$. Denote the variables solving the Ramsey problem under (37) as $v_{t}\left(\bar{b}_{T+1}\right), \rho_{t}\left(\bar{b}_{T+1}\right)$, etc.. It is immediate to see that its solution is the same as under (34) for all periods except two,

$$
\begin{equation*}
\rho_{t}\left(\bar{b}_{T+1}\right)=\rho^{o}, \quad \forall t \neq T+1, T+2 \tag{45}
\end{equation*}
$$

Hence from (12) we get $v_{t}\left(\bar{b}_{T+1}\right)=v^{o}, \quad \forall t \geq T+2$, and $d v_{0} / d v_{T}>0$, so that

$$
\left.\left.\frac{d v_{0}}{d b_{T+1}}\right|_{\bar{b}_{T+1}=0} \gtreqless 0 \quad \Longleftrightarrow \quad \frac{d v_{T}}{d b_{T+1}}\right|_{\bar{b}_{T+1}=0} \gtreqless 0
$$

We have so ${ }^{27} \rho_{T+2}\left(\bar{b}_{T+1}\right)=\rho^{R}\left(\bar{b}_{T+1}, 0, \eta_{c, T+1}\left(\bar{b}_{T+1}\right)\right)$. Recalling again (12), we obtain

$$
\begin{equation*}
v_{T+1}\left(\bar{b}_{T+1}\right)=\left\{(1-\beta)^{\psi}+\beta^{\psi} \rho_{T+2}\left(\bar{b}_{T+1}\right)^{\psi-1} v_{T+2}\left(\bar{b}_{T+1}\right)^{\psi-1}\right\}^{\frac{1}{\psi-1}} . \tag{46}
\end{equation*}
$$

Here, note that (45) implies $\partial v_{T+2} / \partial \bar{b}_{T+1}=0$. In addition, $\partial \rho^{R}\left(0,0, \eta_{c}\right) / \partial \eta_{c}=0 .{ }^{28}$ Differentiating then $v_{T+1}\left(\bar{b}_{T+1}\right)$ with respect to \bar{b}_{T+1} and evaluating it at $\bar{b}_{T+1}=0$ yields

$$
\begin{equation*}
\left.\frac{d v_{T+1}}{d \bar{b}_{T+1}}\right|_{\bar{b}_{T+1}=0}=\beta^{\psi}\left(\rho^{R o}\right)^{\psi-2} \rho_{1}^{o} v^{o}, \tag{47}
\end{equation*}
$$

where $\rho_{1}^{R o} \equiv \partial \rho^{R}\left(b, b^{\prime}, \eta_{c}^{o}\right) / \partial b$, evaluated at $b=b^{\prime}=0 .{ }^{29}$
Next, consider the expression analogous to (46) for date T :

$$
\begin{equation*}
v_{T}\left(\bar{b}_{T+1}\right)=\left\{(1-\beta)^{\psi}+\beta^{\psi}\left(\rho_{T+1}\left(\bar{b}_{T+1}\right)\right)^{\psi-1} v_{T+1}\left(\bar{b}_{T+1}\right)^{\psi-1}\right\}^{\frac{1}{\psi-1}} . \tag{48}
\end{equation*}
$$

Its derivative with respect to \bar{b}_{T+1}, evaluated at $\bar{b}_{T+1}=0$, using (47) and again the fact that $\partial \rho^{R} /\left.\partial \eta_{c, T}\right|_{\bar{b}_{T+1}=b_{T}=0}=0$, equals

$$
\left.\frac{d v_{T}}{d \bar{b}_{T+1}}\right|_{\bar{b}_{T+1}=0}=\beta^{\psi}\left(\rho^{o}\right)^{\psi-2} v^{o}\left[\rho_{2}^{R o}+\beta^{\psi}\left(\rho^{o}\right)^{\psi-1} \rho_{1}^{R o}\right],
$$

where $\rho_{2}^{R o} \equiv \partial \rho^{R}\left(b, b^{\prime}, \eta_{c}^{o}\right) / \partial b^{\prime}$ evaluated at $b=b^{\prime}=0$.
Let us denote then by $\lambda\left(b, b^{\prime}, \eta_{c}\right)$ the Lagrange multiplier on the flow budget constraint for the government in problem (32) and by $\eta_{h}\left(b, b^{\prime}, \eta_{c}\right), \widetilde{r}\left(b, b^{\prime}, \eta_{c}\right), \widetilde{w}\left(b, b^{\prime}, \eta_{c}\right)$, and $R_{x}\left(b, b^{\prime}, \eta_{c}\right)$ its solution. Using the envelope property and the fact that b, b^{\prime} only appear in constraint (31) of the problem,

[^0]we obtain, when $b_{t}=g_{t}=0$ for all $t:{ }^{30}$
\[

$$
\begin{aligned}
\rho_{1}^{R o} & =-\lambda^{o}\left(1-\delta_{k}+F_{k}^{o}\right), \\
\rho_{2}^{R o} & =\lambda^{o} \beta^{\psi}\left(\rho^{o}\right)^{\psi-1} R_{x}^{o},
\end{aligned}
$$
\]

since

$$
\eta_{c}^{o}=1-\beta^{\psi}\left(\rho^{o}\right)^{\psi-1} .
$$

Therefore,

$$
\begin{equation*}
\frac{d v_{T}}{d \bar{b}_{T+1}}=\xi\left[R_{x}^{o}-\left(1-\delta_{k}+F_{k}^{o}\right)\right], \tag{49}
\end{equation*}
$$

where

$$
\xi \equiv \beta^{2 \psi}\left(\rho^{o}\right)^{2 \psi-3} \lambda^{o} v^{o}
$$

and $\xi>0$ since $\lambda^{o}>0$, as we show next. As argued in Section 3.1, when $b_{t}=g_{t}=0$ for all t, problem (32) reduces to (35).

Let us write the solution to (10) as $\eta_{h}(\widetilde{r}, \widetilde{w})$. Then the first order conditions for \widetilde{r} and \widetilde{w} in problem (35) are given by

$$
\begin{aligned}
& 0=\frac{\partial \rho}{\partial \widetilde{r}}-\left(1-\eta_{h}^{o}\right) \lambda^{o}+\left[\frac{\partial \rho}{\partial \eta_{h}}+\lambda^{o}\left(-F_{k}^{o}+F_{h}^{o}+\widetilde{r}^{o}-\widetilde{w}^{o}\right)\right] \frac{\partial \eta_{h}}{\partial \widetilde{r}}, \\
& 0=\frac{\partial \rho}{\partial \widetilde{w}}-\eta_{h}^{o} \lambda^{o}+\left[\frac{\partial \rho}{\partial \eta_{h}}+\lambda^{o}\left(-F_{k}^{o}+F_{h}^{o}+\widetilde{r}^{o}-\widetilde{w}^{o}\right)\right] \frac{\partial \eta_{h}}{\partial \widetilde{w}} .
\end{aligned}
$$

From the second equation, recalling that under Assumption 1 we have $\frac{\partial \eta_{h}}{\partial \bar{w}}>0$ and $\frac{\partial \eta_{h}}{\partial \vec{r}}<0$, we obtain

$$
\lambda^{o}\left(-F_{k}^{o}+F_{h}^{o}+\widetilde{r}^{o}-\widetilde{w}^{o}\right)=\frac{-\frac{\partial \rho}{\partial \widetilde{w}}+\eta_{h}^{o} \lambda^{o}}{\frac{\partial \eta_{h}}{\partial w}} .
$$

Substituting then this equation into the first equation above, and solving for λ^{o}, we get

$$
\lambda^{o}=\left(1-\eta_{h}^{o}-\frac{\eta_{h}^{o} \frac{\partial \eta_{h}}{\partial \widetilde{r}}}{\frac{\partial \eta_{h}}{\partial \widetilde{w}}}\right)^{-1}\left(\frac{\partial \rho}{\partial \widetilde{r}}-\frac{\frac{\partial \rho}{\partial \widetilde{w}} \frac{\partial \eta_{h}}{\partial \widetilde{r}}}{\frac{\partial \eta_{h}}{\partial \widetilde{w}}}\right)>0,
$$

where the sign of the inequality follows from the fact that $\eta_{h}^{o} \in(0,1), \frac{\partial \rho}{\partial \widetilde{r}}>0$ and $\frac{\partial \rho}{\partial \widetilde{w}}>0$.

[^1]
1.4 Proof of Proposition 5

The Lagrangean for problem (33), using (12) and (14) to substitute for ρ_{t+1} and $\eta_{c, t}$, is

$$
v_{0}+\sum_{t=0}^{\infty} \lambda_{t}^{v}\left\{(1-\beta)^{\psi}+\beta^{\psi} \rho^{R}\left(b_{t}, b_{t+1},(1-\beta)^{\psi} v_{t}^{1-\psi}\right)^{\psi-1} v_{t+1}^{\psi-1}-v_{t}^{\psi-1}\right\} .
$$

The first-order condition with respect to b_{t+1} is then

$$
\begin{equation*}
\lambda_{t}^{v} \beta^{\psi} \rho_{t+1}^{\psi-2} \rho_{2, t+1}^{R} v_{t+1}^{\psi-1}+\lambda_{t+1}^{v} \beta^{\psi} \rho_{t+2}^{\psi-2} \rho_{1, t+2}^{R} v_{t+2}^{\psi-1}=0, \tag{50}
\end{equation*}
$$

where $\rho_{t+1} \equiv \rho^{R}\left(b_{t}, b_{t+1}, \eta_{c, t}\right), \rho_{2, t+1}^{R} \equiv \partial \rho^{R}\left(b_{t}, b_{t+1}, \eta_{c, t}\right) / \partial b_{t+1}$, and $\rho_{1, t+2}^{R} \equiv \partial \rho^{R}\left(b_{t+1}, b_{t+2}, \eta_{c, t+1}\right) / \partial b_{t+1}$. The first-order condition for v_{t+1} is

$$
\begin{equation*}
\lambda_{t}^{v} \beta^{\psi} \rho_{t+1}^{\psi-1} v_{t+1}^{\psi-2}+\lambda_{t+1}^{v} \beta^{\psi} \rho_{t+2}^{\psi-2} \rho_{\eta_{c}, t+2}^{R}(1-\beta)^{\psi}(1-\psi) v_{t+1}^{-\psi} v_{t+2}^{\psi-1}-\lambda_{t+1}^{v} v_{t+1}^{\psi-2}=0, \tag{51}
\end{equation*}
$$

where $\rho_{\eta_{c}, t+2}^{R} \equiv \partial \rho^{R}\left(b_{t+1}, b_{t+2}, \eta_{c, t+1}\right) / \partial \eta_{c, t+1}$.
In a steady-state equilibrium, equation (50) reduces to

$$
\begin{equation*}
\rho_{2}^{R}+\frac{\lambda_{t+1}^{v}}{\lambda_{t}^{v}} \rho_{1}^{R}=0 \tag{52}
\end{equation*}
$$

and equation (51) to

$$
\begin{equation*}
\frac{\lambda_{t+1}^{v}}{\lambda_{t}^{v}}=\beta^{\psi} \rho^{\psi-1}\left(1-\beta^{\psi} \rho^{\psi-1}(1-\beta)^{\psi}(1-\psi) \frac{\rho_{\eta_{c}}^{R} v^{1-\psi}}{\rho}\right)^{-1} \tag{53}
\end{equation*}
$$

where the term in parenthesis captures the effect on ρ of the change in the savings rate, given by the second term in (51), which only arises (as we saw in foonote 30) when debt is nonzero.

By a similar argument to the one in the proof of Proposition 4 above, at a steady state equilibrium the derivative of ρ^{R} with respect to b and b^{\prime} satisfies

$$
\begin{align*}
-\frac{\rho_{1}^{R}}{\rho_{2}^{R}} & =\frac{1-\delta_{k}+F_{k}}{\left(1-\eta_{c}\right) R_{x}} \\
& =\frac{1-\delta_{k}+F_{k}}{\beta^{\psi} \tilde{\rho}^{\psi-1} R_{x}} \tag{54}
\end{align*}
$$

where, for the second equality, we used again (14), $\eta_{c}=(1-\beta)^{\psi} v^{1-\psi}$, and constraint (12), $v^{\psi-1}=$ $(1-\beta)^{\psi}+\beta^{\psi} \rho^{\psi-1} v^{\psi-1}$, of problem (33).

Combining (52)-(54) and using again (14), yields the claimed result:

$$
R_{x}=\left(1-\delta_{k}+F_{k}\right)\left[1-(1-\psi) \beta^{\psi} \rho^{\psi-2} \rho_{\eta_{c}}^{R} \eta_{c}\right]^{-1} .
$$

2 Sufficient conditions for Assumption 1

Let us rewrite problem (9) more compactly as

$$
\max _{\eta_{h} \geq 0} E\left[u\left(r\left(1-\eta_{h}\right)+\theta w \eta_{h}\right)\right],
$$

where, with a slight abuse of notation, r denotes $1-\delta_{k}+\widetilde{r}, w$ denotes $1-\delta_{h}+\widetilde{w}$, and the function $u($.$) is increasing, concave and with a constant coefficient of relative risk aversion \gamma$. Letting η_{h}^{*} be an interior solution of (9), the properties stated in Assumption 1 are equivalent to $\frac{\partial \eta_{r}^{*}}{\partial r}<0$ and $\frac{\partial \eta_{k}^{*}}{\partial w}>0$, as already noticed in the main text. Setting $R \equiv \theta w-\alpha$, problem (9) may also be written as

$$
\begin{equation*}
\max _{\eta_{h} \geq 0} E\left[u\left(r+R \eta_{h}\right)\right], \tag{55}
\end{equation*}
$$

when $\alpha=r$. Problem (55) is often referred to as the standard portfolio choice problem. Hereafter, we shall use some results on such problem reported in Gollier (2004). ${ }^{31}$

From Proposition 9 in Gollier (2004) it follows that, when the coefficient of relative risk aversion γ is not larger than one, any first order stochastic improvement in R increases the optimal value of η_{h}. Since an increase in w induces such an improvement, we conclude that $\frac{\partial \eta_{k}^{*}}{\partial w}>0$ if $\gamma \leq 1$.

Note that an increase in r, keeping R (that is, α) constant, constitutes an increase in wealth and so from Proposition 8 in Gollier (2004) it follows that this change induces a decrease in η_{h}^{*} if u exhibits decreasing absolute risk aversion. With constant relative risk aversion, u indeed exhibits decreasing absolute risk aversion. There is then a second effect of the increase in r, given by the change in R : an increase in α induces a first order worsening on R and so reduces η_{h}^{*} if $\gamma \leq 1$. Hence we conclude that $\frac{\partial \eta_{h}^{*}}{\partial r}<0$ if $\gamma \leq 1$.

Having established that the stated properties always hold when $\gamma \leq 1$, we show next that, when $\gamma>1$, they hold for some family of distributions of θ. Assuming that θ is a continuous random variable with density function $g(t)$ differentiable almost everywhere, we shall show below that the stated comparative statics properties hold if both $\frac{g^{\prime}(t)}{t}$ and $\frac{g^{\prime}(t)}{t}$ are non-increasing in t. The condition hold for example when θ is a uniform distribution over some interval, or a Pareto distribution (i.e., the density function is a power function).

To establish the result we build on Proposition 17 in Gollier (2004), stating that, if $u($.$) is strictly$ increasing, then any improvement in R in monotone likelihood ratio (MLR) increases the optimal value η_{h}^{*} of problem (55). That is, if R and R^{\prime} are distinct continuous random variables with density f_{R} and $f_{R^{\prime}}$ respectively, the optimal value η_{h}^{*} under R^{\prime} is larger than that under R if $f_{R^{\prime}}(t) / f_{R}(t)$ is non decreasing in t.

Since $R=\theta w-\alpha, \operatorname{Pr}[R \leq z]=\operatorname{Pr}[\theta \leq(z+r) / w]$ and so the density function $f(z)$ of R is

[^2]given by
\[

$$
\begin{equation*}
f(z)=\frac{d}{d z} \int_{0}^{(z+r) / w} g(t) d t=\frac{1}{w} g\left(\frac{z+r}{w}\right) . \tag{56}
\end{equation*}
$$

\]

So in order to use the above proposition to establish the property $\frac{\partial \eta_{h}^{*}}{\partial w}>0$, it suffices to show that for any $\hat{w}>w \frac{1}{\hat{w}} g\left(\frac{z+r}{\hat{w}}\right) / \frac{1}{w} g\left(\frac{z+r}{w}\right)$ is non decreasing in z. Taking a monotone (logarithmic) transformation and differentiating with respect to z, this condition obtains when

$$
\frac{1}{\hat{w}} \frac{g^{\prime}\left(\frac{z+r}{\hat{w}}\right)}{g\left(\frac{z+r}{\hat{w}}\right)}-\frac{1}{w} \frac{g^{\prime}\left(\frac{z+r}{w}\right)}{g\left(\frac{z+r}{w}\right)} \geq 0
$$

that is, when

$$
\frac{1}{w} \frac{g^{\prime}\left(\frac{z+r}{w}\right)}{g\left(\frac{z+r}{w}\right)} \text { is non-decreasing in } w,
$$

at any $w>0$, for given z and r. Since the map $w \mapsto(z+r) / w$ is monotonic and decreasing, setting $t=(r+z) / w$, the condition above can be equivalently stated as

$$
t \frac{g^{\prime}(t)}{g(t)} \text { is non-increasing in } t
$$

Next, we use the same proposition to derive a condition guaranteeing that $\frac{\partial \eta_{h}^{*}}{\partial r}<0$. Recalling the argument above regarding the effect of increasing r keeping R constant, when $u($.$) exhibits$ decreasing absolute risk aversion, it suffices to show that the optimal value of η_{h}^{*} decreases as α in $R=w \theta-\alpha$ increases, keeping r fixed. Hence we derive next a condition on $g(t)$ such that a decrease in α induces a MLR improvement: that is, for any $\hat{\alpha}<\alpha \frac{1}{w} g\left(\frac{z+\hat{\alpha}}{w}\right) / \frac{1}{w} g\left(\frac{z+\alpha}{w}\right)$ is non decreasing in z. Arguing analogously as in the previous case, we can show that this property holds if $g^{\prime}\left(\frac{z+\alpha}{w}\right) / g\left(\frac{z+\alpha}{w}\right)$ is non increasing in α at any $\alpha>0$, where z and w are fixed. So changing variables we conclude that $\frac{\partial \eta_{h}^{*}}{\partial r}<0$ holds if

$$
\frac{g^{\prime}(t)}{g(t)} \text { is non-increasing in } t
$$

3 Exogenous government purchases

Here we extend our analysis to the case where the public expenditure policy is specified in terms of an exogenous sequence of absolute levels of expenditure $\left\{G_{t}\right\}_{t=0}^{\infty}$ (rather than per unit of total wealth). We will obtain conditions characterizing the Ramsey steady state which are analogous to those obtained in Proposition 5 and Corollary 6. Hence, also in the case of exogenous G_{t}, the capital income tax rate must be positive in the long run, as long as the effect on the saving rate is small enough.

When the sequence $\left\{G_{t}\right\}_{t=0}^{\infty}$ is exogenously given, we can no longer use the recursive approach followed in the paper to solve the Ramsey problem in the case where $\left\{g_{t}\right\}_{t=0}^{\infty}$ is exogenously given.

We solve instead the problem in a more direct way. Given X_{0} and b_{0}, the Ramsey problem consists in the maximization of v_{0} with respect to $\left\{b_{t+1}, X_{t+1}, v_{t+1}, \widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right\}_{t=0}^{\infty}$ subject to

$$
\begin{aligned}
v_{t}^{\psi-1} & =(1-\beta)^{\psi}+\beta^{\psi} \rho_{t+1}^{\psi-1} v_{t+1}^{\psi-1} \\
\frac{G_{t+1}}{X_{t}} & +\left(1-\delta_{k}+\widetilde{r}_{t+1}\right) b_{t}=\left(1-\eta_{c, t}\right) R_{x, t+1} b_{t+1}+F\left(k_{t}, h_{t}\right)-\widetilde{r}_{t+1} k_{t}-\widetilde{w}_{t+1} h_{t} \\
\frac{X_{t+1}}{X_{t}} & =\left(1-\eta_{c, t}\right) R_{x, t+1},
\end{aligned}
$$

where $\eta_{h, t}, \eta_{c, t}, \rho_{t+1}, R_{x, t+1}, k_{t}$, and h_{t} are the following functions of $\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, b_{t}$, and v_{t} :

$$
\begin{aligned}
\eta_{h, t} & =\eta_{h}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right) \equiv \underset{\eta_{h}}{\arg \max } \rho\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, \eta_{h}\right) \\
\rho_{t+1} & =\rho\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right) \equiv \max _{\eta_{h}} \rho\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, \eta_{h}\right) \\
R_{x, t+1} & =R_{x}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right) \equiv\left(1-\delta_{k}+\widetilde{r}_{t+1}\right)\left(1-\eta_{h}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right)\right)+\left(1-\delta_{h}+\widetilde{w}_{t+1}\right) \eta_{h}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right) \\
\eta_{c, t} & =\eta_{c}\left(v_{t}\right) \equiv(1-\beta)^{\psi}\left(v_{t}\right)^{1-\psi} \\
k_{t} & =k\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, b_{t}, v_{t}\right) \equiv\left(1-\eta_{c}\left(v_{t}\right)\right)\left(1-\eta_{h}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right)\right)-b_{t} \\
h_{t} & =h\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, v_{t}\right) \equiv\left(1-\eta_{c}\left(v_{t}\right)\right) \eta_{h}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right)
\end{aligned}
$$

The Lagrangean for this problem is then:

$$
\begin{aligned}
v_{0}+\sum_{t=0}^{\infty}[& \lambda_{v, t}\left\{(1-\beta)^{\psi}+\beta^{\psi} \rho\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right)^{\psi-1} v_{t+1}^{\psi-1}-v_{t}^{\psi-1}\right\} \\
& +\lambda_{b, t}\left\{\left[1-\eta_{c}\left(v_{t}\right)\right] R_{x}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right) b_{t+1}+F\left[k\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, b_{t}, v_{t}\right), h\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, v_{t}\right)\right]\right. \\
& \left.\quad-\widetilde{r}_{t+1} k\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, b_{t}, v_{t}\right)-\widetilde{w}_{t+1} h\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, v_{t}\right)-\frac{G_{t+1}}{X_{t}}-\left(1-\delta_{k}+\widetilde{r}_{t+1}\right) b_{t}\right\} \\
& \left.+\lambda_{x, t}\left\{\left[1-\eta_{c}\left(v_{t}\right)\right] R_{x}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right)-\frac{X_{t+1}}{X_{t}}\right\}\right]
\end{aligned}
$$

The first order conditions for v_{t}, b_{t}, and \widetilde{r}_{t+1} are so, respectively, ${ }^{32}$

$$
\begin{align*}
& 0=-\lambda_{v, t} \frac{v_{t}^{\psi-2}}{\psi-1}+\lambda_{v, t-1} \frac{\beta^{\psi}}{\psi-1} \rho_{t+1}^{\psi-1} v_{t+1}^{\psi-2} \tag{57}\\
&+\lambda_{b, t} \eta_{c}^{\prime}\left(v_{t}\right)\left\{-R_{x, t+1} b_{t+1}-F_{k, t}\left(1-\eta_{h, t}\right)-F_{h, t} \eta_{h, t}+\widetilde{r}_{t+1}\left(1-\eta_{h, t}\right)+\widetilde{w}_{t+1} \eta_{h, t}\right\} \\
&-\lambda_{x, t} \eta_{c}^{\prime}\left(v_{t}\right) R_{x, t+1}, \\
& 0=\lambda_{b, t-1}\left(1-\eta_{c, t-1}\right) R_{x, t}-\lambda_{b, t}\left(1-\delta_{k}+F_{k, t}\right), \tag{58}\\
& 0=(\psi-1) \lambda_{v, t} \beta^{\psi} \rho_{t+1}^{\psi-2} \rho_{r, t+1} v_{t+1}^{\psi-2} \\
&+\lambda_{b, t}\left\{\left(1-\eta_{c, t}\right) R_{x, r, t+1} b_{t+1}+F_{k, t} k_{r, t}+F_{h, t} h_{r, t}-k_{t}-\widetilde{r}_{t+1} k_{r, t}-\widetilde{w}_{t+1} h_{r, t}-b_{t}\right\} \\
&+\lambda_{x, t}\left(1-\eta_{c, t}\right) R_{x, r, t+1}, \tag{59}
\end{align*}
$$

[^3]where $\eta_{c}^{\prime}\left(v_{t}\right) \equiv d \eta_{c}\left(v_{t}\right) / d v_{t}, F_{k, t} \equiv \partial F\left(k_{t}, h_{t}\right) / \partial k_{t}, F_{h, t} \equiv \partial F\left(k_{t}, h_{t}\right) / \partial h_{t}, \rho_{r, t+1} \equiv \partial \rho\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right) / \partial \widetilde{r}_{t+1}$, $R_{x, r, t+1} \equiv \partial R_{x}\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}\right) / \partial \widetilde{r}_{t+1}, k_{r, t} \equiv \partial k\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, b_{t}, v_{t}\right) / \partial \widetilde{r}_{t+1}$, and $h_{r, t} \equiv \partial h\left(\widetilde{r}_{t+1}, \widetilde{w}_{t+1}, v_{t}\right) / \partial \widetilde{r}_{t+1}$.

Assuming that G_{t} grows at an exogenous, constant rate $\gamma_{G}>0$, we focus again our attention on a steady state (balanced growth path) where all the variables in equations (57)-(59) remain constant, except for the Lagrange multipliers, $\lambda_{v, t}, \lambda_{b, t}$, and $\lambda_{x, t}$ that grow at the same rate:

$$
\frac{\lambda_{v, t}}{\lambda_{v, t-1}}=\frac{\lambda_{b, t}}{\lambda_{b, t-1}}=\frac{\lambda_{x, t}}{\lambda_{x, t-1}} \equiv \gamma_{\lambda} .
$$

Since ρ is constant we have $v=(1-\beta)^{\psi} /\left(1-\beta^{\psi} \rho^{\psi-1}\right)$. Also, $\eta_{c}=(1-\beta)^{\psi} v^{1-\psi}$, and so

$$
\beta^{\psi} \rho^{\psi-1}=1-\eta_{c} .
$$

It then follows from equation (57) that, along a balanced growth path,

$$
\frac{\lambda_{v, t}}{\lambda_{v, t-1}}=\left(1-\eta_{c}\right)+\Lambda \eta_{c}^{\prime}(v)
$$

where Λ is the term

$$
\Lambda \equiv \frac{\psi-1}{v^{\psi-2}}\left[\frac{\lambda_{b, t}}{\lambda_{v, t-1}}\left\{-R_{x} b-F_{k}\left(1-\eta_{h}\right)-F_{h} \eta_{h}+\widetilde{r}\left(1-\eta_{h}\right)+\widetilde{w} \eta_{h}\right\}-\frac{\lambda_{x, t}}{\lambda_{v, t-1}} R_{x}\right],
$$

a constant given the fact that all Lagrange multipliers grow at the same rate.
We can then use equation (58) to derive the following steady-state condition which is the counterpart of the one in Proposition 5:

$$
\begin{equation*}
R_{x}=\left(1-\delta_{k}+F_{k}\right)\left[1+\frac{\Lambda \eta_{c}^{\prime}(v)}{1-\eta_{c}}\right] . \tag{60}
\end{equation*}
$$

Just as in the case of a constant, exogenously given level of g, this condition implies that at a Ramsey steady state the average rate of return on consumers' portfolios, R_{x}, is equal to the before tax return on physical capital (or equivalently the cost of government debt), $1-\delta_{k}+F_{k}$, augmented with the effect of public debt on the saving rate, $\Lambda \eta_{c}^{\prime} /\left(1-\eta_{c}\right)$. As long as the latter effect is small, we get again $R_{x} \approx 1-\delta_{k}+F_{k}$, which implies that the optimal capital tax rate is positive in the long run: $\tau_{k}>0$.

When $\psi=1$, again the effect on the saving rate valishes, so that condition (60) reduces to

$$
R_{x}=1-\delta_{k}+F_{k},
$$

which is identical to the condition derived in Corollary 6.

4 Algorithm to solve the model numerically

The Ramsey equilibrium for our model can be computed in a straightforward way. The function $\rho^{R}\left(b, b^{\prime}, \eta_{c}\right)$ is computed as the solution to the maximization problem defined in (32). Then the steady state value of b is obtained by solving equation (39).

The transitional dynamics is computed for the calibrated economy where $\psi=1$. In this case η_{c} is constant, so the function above can be written simply as $\rho^{R}\left(b, b^{\prime}\right)$ and (30) simplifies to

$$
\ln \left(v_{0}\right)=\sum_{t=0}^{\infty} \beta^{t+1} \ln \left(\rho_{t+1}\right)
$$

In the dynamic programming formulation, the Ramsey problem (33) can be written as

$$
\ln v(b)=\max _{b^{\prime}} \beta \ln \rho^{R}\left(b, b^{\prime}\right)+\beta \ln v\left(b^{\prime}\right)
$$

This problem is solved by discretizing the state space and by the value function iteration.

5 Transitional dynamics

The Ramsey equilibrium converges to the steady state only in one period. Figure 1 in this appendix illustrates the transitional dynamics of the Ramsey equilibrium, starting from the "baseline equilibrium" in Table 2 in the main text.

Figure 1: Transitional dynamics of the Ramsey equilibrium starting from the baseline equilibrium.

[^0]: ${ }^{27}$ Here and in what follows we omit the dependence of ρ^{R} on g whenever g_{t} is constant across periods.
 ${ }^{28}$ To see this, recall from the definition of $\rho^{R}\left(b, b^{\prime}, \eta_{c}\right)$ in (32) that η_{c} affects ρ^{R} only through the government budget constraint (31). Consider the associated function:

 $$
 \begin{aligned}
 & f\left(b, b^{\prime}, \eta_{c}, \eta_{h}, \widetilde{r}, \widetilde{w}, R_{x}\right) \\
 & \equiv g+\left(1-\delta_{k}+\widetilde{r}\right) b-\left(1-\eta_{c}\right) R_{x} b^{\prime}-F\left[\left(1-\eta_{c}\right)\left(1-\eta_{h}\right)-b,\left(1-\eta_{c}\right) \eta_{h}\right] \\
 & \quad+\widetilde{r}\left[\left(1-\eta_{c}\right)\left(1-\eta_{h}\right)-b\right]+\widetilde{w}\left(1-\eta_{c}\right) \eta_{h}
 \end{aligned}
 $$

 We have $\left.\frac{\partial f}{\partial \eta_{c}}\right|_{b=b^{\prime}=0}=0$ and so, by the envelope theorem we get the claimed property.
 ${ }^{29}$ The superscript ${ }^{\circ}$ indicates, as in the main text, variables evaluated at a solution of the Ramsey problem under the constraint $b_{t}=g_{t}=0$ for all t.

[^1]: ${ }^{30}$ To better understand the form of these expressions, notice that, as we see from (31), a marginal increase of \bar{b}_{T+1} relaxes this constraint at $T+1$ yielding a gain of $\lambda^{o}\left(1-\eta_{c}^{o}\right) R_{x}^{o}$, while tightening this constraint at $T+2$ with a loss of $\lambda^{o} \beta^{\psi}\left(\rho^{o}\right)^{\psi-1}\left(1-\delta_{k}+F_{k}^{o}\right)$ (recall that $\rho_{1}^{R o}$ is multiplied by $\beta^{\psi}\left(\rho^{o}\right)^{\psi-1}$ in the expression of $\left.d v_{T} / d b_{T+1}\right)$. Since $\left(1-\eta_{c}^{o}\right)=\beta^{\psi}\left(\rho^{o}\right)^{\psi-1}$, the comparison of these two reduce to the comparison between R_{x}^{o} and $\left(1-\delta_{k}+F_{k}^{o}\right)$.

[^2]: ${ }^{31}$ Gollier, C. (2004), "The Economics of Risk and Time," MIT Press.

[^3]: ${ }^{32}$ To derive the steady state condition determining the tax rate on capital we do not have to use the first-order conditions with respect to \widetilde{w}_{t+1} or X_{t+1}. But, of course, we would need those conditions to derive all the steady state equilibrium variables.

