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1 Proofs

1.1 Proof of Lemma 1

The proof of this lemma uses an argument similar to Epstein and Zin (1991) and Angeletos (2007).

Since the idiosyncratic shocks, θi,t, are i.i.d. across individuals and across periods, the utility

maximization problem of each individual can be expressed as:

Vt(x) = max
c,ηh

{
(1− β)c

1− 1
ψ + β

(
Et[Vt+1(x′)1−γ ]

) 1− 1
ψ

1−γ

} 1

1− 1
ψ

s.t. x′ = (x− c)
[
Rk,t+1(1− ηh) +Rh,t+1θ

′ηh
]
≥ 0,

c ∈ [0, x], ηh ∈ [0, 1].

Here, Vt(x) is the value function for the utility maximization problem of an individual whose total

wealth is x at the beginning of period t. We conjecture that there exists a (deterministic) sequence

{vt}∞t=0, with vt ∈ R+ for all t, such that

Vt(x) = vtx

Using this conjecture and the budget constraint, we obtain(
Et[Vt+1(x′)1−γ ]

) 1
1−γ = vt+1(x− c)

{
Et

[(
Rk,t+1(1− ηh) +Rh,t+1θ

′ηh
)1−γ]} 1

1−γ

It follows that in the above maximization problem the individual chooses the portfolio ηh so as to

solve the following maximization problem:

ηh = arg max
η′h∈[0,1]

{
Et

[(
Rk,t+1(1− η′h) +Rh,t+1θ

′η′h
)1−γ]} 1

1−γ

Let ρt+1 denote the maximized value in this problem. Note that neither ηh nor ρt+1 depends on

the initial state x. That is, under the conjectured value function, all individuals would choose the

same portfolio and the same certainty-equivalent rate of return.

Given the certainty-equivalent rate of return, ρt+1, the level of consumption is chosen so as to

solve

max
c∈[0,x]

{
(1− β)c

1− 1
ψ + β [vt+1ρt+1(x− c)]1−

1
ψ

} 1

1− 1
ψ
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The first-order condition for this problem is

(1− β)c
− 1
ψ = βv

1− 1
ψ

t+1 ρ
1− 1

ψ

t+1 (x− c)−
1
ψ

which leads to

ηc =

{
1 +

(
β

1− β

)ψ
(vt+1ρt+1)ψ−1

}−1

where ηc = c
x .

On the other hand, the Bellman equation implies

v
1− 1

ψ

t = (1− β)η
1− 1

ψ
c + β (vt+1ρt+1)

1− 1
ψ (1− ηc)1− 1

ψ

This equation and the above first-order condition for c imply that

vψ−1
t = (1− β)ψ + βψvψ−1

t+1 ρ
ψ−1
t+1

The bounded solution to this difference equation is

vt = (1− β)
ψ
ψ−1

1 +

∞∑
s=0

s∏
j=0

(
βψρψ−1

t+1+j

)
1

ψ−1

Also, the consumption rate ηc is

ηc,t = (1− β)ψv1−ψ
t

It is straightforward to verify that, constructed in this way, {Vt(x), ηc, ηh} indeed characterizes the

solution to the utility maximization problem. The rest of the lemma follows immediately.

1.2 Proof of Proposition 3

Totally differentiating constraint (36) of problem (35), we obtain

(r̃ − Fk + Fh − w̃) dηh − (1− ηh) dr̃ − ηh dw̃ = 0.

Evaluating this expression at the benchmark equilibrium, where Gt = Bt = 0, r̃t = F̂k and w̃t = F̂h,

for all t, yields

(1− η̂h) dr̃ + η̂h dw̃ = 0.

Thus, to satisfy the balanced budget, r̃ and w̃ must satisfy the following relationship around (r̃, w̃) =

(F̂k, F̂h):
dw̃

dr̃
= −1− η̂h

η̂h
.

2



Hence the effect of a marginal change in r̃, taking into account the induced change in w̃ via the

government budget constraint, is given by ∂
∂r̃−

1−η̂h
η̂h

∂
∂w̃ and will be denoted by d

dr̃ . Since the lifetime

utility is increasing in ρt for each t, it suffices to show that dρ
dr̃ > 0.

The envelope theorem implies that ∂ρ
∂ηh

= 0 at the benchmark equilibrium. It follows that

dρ

dr̃
= ρ̂γE

[
R̂x(θ)−γ

{
(1− η̂h) + θη̂h

dw̃

dr̃

}]
,

= ρ̂γE
[
R̂x(θ)−γ(1− θ)

]
(1− η̂h),

where R̂x(θ) ≡ (1− δk + F̂k)(1− η̂h) + (1− δh + F̂h)θη̂h. Since E(θ) = 1, we have

E
[
R̂x(θ)−γ(1− θ)

]
= Cov(R̂x(θ)−γ , 1− θ) > 0,

where the inequality follows from the fact that both R̂x(θ)−γ and 1− θ are decreasing functions of

θ. Given that η̂h < 1, this proves that dρ
dr̃ > 0.

It remains to show that the after-tax rental rate of capital, r̃, and the tax rate on capital income,

τk, move in the opposite directions around the benchmark equilibrium. Since τk = 1− r̃
Fk

, we have

dτk
dr̃

=
−F̂k + (−F̂kk + F̂kh)dηhdr̃

F̂ 2
k

. (43)

Differentiating the individual first order conditions (15) yields{
Φr̃ −

1− η̂h
η̂h

Φw̃

}
dr̃ + Φηhdηh = 0,

so that

dηh
dr̃

=

1−η̂h
η̂h

Φw̃ − Φr̃

Φηh

. (44)

Thus we obtain

dτk
dr̃

=
1

F̂ 2
k

−F̂kΦηh + (−F̂kk + F̂kh)
(

1−η̂h
η̂h

Φw̃ − Φr̃

)
Φηh

< 0,

since by Assumption 1 we have Φw̃ > 0, Φr̃ < 0, while Φηh < 0 follows from the strict concavity of

ρ(r̃, w̃, ηh) and Fkh = (1− α)αkα−1h−α > 0. This completes the proof.

1.3 Proof of Proposition 4

We are interested in the welfare effect of a marginal variation of bT+1 evaluated at bT+1 = 0, that

is the sign of dv0/dbT+1

∣∣
bT+1=0

. Denote the variables solving the Ramsey problem under (37) as

vt(bT+1), ρt(bT+1), etc.. It is immediate to see that its solution is the same as under (34) for all

periods except two,

ρt(bT+1) = ρo, ∀t 6= T + 1, T + 2 (45)
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Hence from (12) we get vt(bT+1) = vo, ∀t ≥ T + 2, and dv0/dvT > 0, so that

dv0

dbT+1

∣∣∣∣
bT+1=0

R 0 ⇐⇒ dvT
dbT+1

∣∣∣∣
bT+1=0

R 0.

We have so27 ρT+2(bT+1) = ρR(bT+1, 0, ηc,T+1(bT+1)). Recalling again (12), we obtain

vT+1(bT+1) =
{

(1− β)ψ + βψρT+2(bT+1)ψ−1vT+2(bT+1)ψ−1
} 1
ψ−1

. (46)

Here, note that (45) implies ∂vT+2/∂bT+1 = 0. In addition, ∂ρR(0, 0, ηc)/∂ηc = 0.28 Differentiating

then vT+1(bT+1) with respect to bT+1 and evaluating it at bT+1 = 0 yields

dvT+1

dbT+1

∣∣∣∣
bT+1=0

= βψ(ρRo)ψ−2ρo1v
o, (47)

where ρRo1 ≡ ∂ρR(b, b′, ηoc )/∂b, evaluated at b = b′ = 0.29

Next, consider the expression analogous to (46) for date T :

vT (bT+1) =
{

(1− β)ψ + βψ
(
ρT+1(bT+1)

)ψ−1
vT+1(bT+1)ψ−1

} 1
ψ−1

. (48)

Its derivative with respect to bT+1, evaluated at bT+1 = 0, using (47) and again the fact that

∂ρR/∂ηc,T
∣∣
bT+1=bT=0

= 0, equals

dvT

dbT+1

∣∣∣∣
bT+1=0

= βψ(ρo)ψ−2vo
[
ρRo2 + βψ(ρo)ψ−1ρRo1

]
,

where ρRo2 ≡ ∂ρR(b, b′, ηoc )/∂b
′ evaluated at b = b′ = 0.

Let us denote then by λ(b, b′, ηc) the Lagrange multiplier on the flow budget constraint for the

government in problem (32) and by ηh(b, b′, ηc), r̃(b, b
′, ηc), w̃(b, b′, ηc), and Rx(b, b′, ηc) its solution.

Using the envelope property and the fact that b, b′ only appear in constraint (31) of the problem,

27Here and in what follows we omit the dependence of ρR on g whenever gt is constant across periods.

28To see this, recall from the definition of ρR(b, b′, ηc) in (32) that ηc affects ρR only through the government budget

constraint (31). Consider the associated function:

f(b, b′, ηc, ηh, r̃, w̃, Rx)

≡ g + (1− δk + r̃)b− (1− ηc)Rxb′ − F [(1− ηc)(1− ηh)− b, (1− ηc)ηh]

+ r̃ [(1− ηc)(1− ηh)− b] + w̃(1− ηc)ηh

We have ∂f
∂ηc

∣∣∣
b=b′=0

= 0 and so, by the envelope theorem we get the claimed property.

29The superscript o indicates, as in the main text, variables evaluated at a solution of the Ramsey problem under

the constraint bt = gt = 0 for all t.
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we obtain, when bt = gt = 0 for all t:30

ρRo1 = −λo(1− δk + F ok ),

ρRo2 = λoβψ(ρo)ψ−1Rox,

since

ηoc = 1− βψ(ρo)ψ−1.

Therefore,
dvT

dbT+1

= ξ [Rox − (1− δk + F ok )] , (49)

where

ξ ≡ β2ψ(ρo)2ψ−3λovo

and ξ > 0 since λo > 0, as we show next. As argued in Section 3.1, when bt = gt = 0 for all t,

problem (32) reduces to (35).

Let us write the solution to (10) as ηh(r̃, w̃). Then the first order conditions for r̃ and w̃ in

problem (35) are given by

0 =
∂ρ

∂r̃
− (1− ηoh)λo +

[
∂ρ

∂ηh
+ λo(−F ok + F oh + r̃o − w̃o)

]
∂ηh
∂r̃

,

0 =
∂ρ

∂w̃
− ηohλo +

[
∂ρ

∂ηh
+ λo(−F ok + F oh + r̃o − w̃o)

]
∂ηh
∂w̃

.

From the second equation, recalling that under Assumption 1 we have ∂ηh
∂w̃ > 0 and ∂ηh

∂r̃ < 0, we

obtain

λo(−F ok + F oh + r̃o − w̃o) =
− ∂ρ
∂w̃ + ηohλ

o

∂ηh
∂w̃

.

Substituting then this equation into the first equation above, and solving for λo, we get

λo =

(
1− ηoh −

ηoh
∂ηh
∂r̃

∂ηh
∂w̃

)−1(
∂ρ

∂r̃
−

∂ρ
∂w̃

∂ηh
∂r̃

∂ηh
∂w̃

)
> 0,

where the sign of the inequality follows from the fact that ηoh ∈ (0, 1), ∂ρ
∂r̃ > 0 and ∂ρ

∂w̃ > 0.

30To better understand the form of these expressions, notice that, as we see from (31), a marginal increase of bT+1

relaxes this constraint at T + 1 yielding a gain of λo (1− ηoc )Rox, while tightening this constraint at T + 2 with a loss

of λoβψ(ρo)ψ−1(1 − δk + F ok ) (recall that ρRo1 is multiplied by βψ(ρo)ψ−1 in the expression of dvT /dbT+1). Since

(1− ηoc ) = βψ(ρo)ψ−1, the comparison of these two reduce to the comparison between Rox and (1− δk + F ok ).
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1.4 Proof of Proposition 5

The Lagrangean for problem (33), using (12) and (14) to substitute for ρt+1 and ηc,t, is

v0 +

∞∑
t=0

λvt

{
(1− β)ψ + βψρR(bt, bt+1, (1− β)ψv1−ψ

t )ψ−1vψ−1
t+1 − v

ψ−1
t

}
.

The first-order condition with respect to bt+1 is then

λvtβ
ψρψ−2

t+1 ρ
R
2,t+1v

ψ−1
t+1 + λvt+1β

ψρψ−2
t+2 ρ

R
1,t+2v

ψ−1
t+2 = 0, (50)

where ρt+1 ≡ ρR(bt, bt+1, ηc,t), ρ
R
2,t+1 ≡ ∂ρR(bt, bt+1, ηc,t)/∂bt+1, and ρR1,t+2 ≡ ∂ρR(bt+1, bt+2, ηc,t+1)/∂bt+1.

The first-order condition for vt+1 is

λvtβ
ψρψ−1

t+1 v
ψ−2
t+1 + λvt+1β

ψρψ−2
t+2 ρ

R
ηc,t+2(1− β)ψ (1− ψ) v−ψt+1v

ψ−1
t+2 − λ

v
t+1v

ψ−2
t+1 = 0, (51)

where ρRηc,t+2 ≡ ∂ρR(bt+1, bt+2, ηc,t+1)/∂ηc,t+1.

In a steady-state equilibrium, equation (50) reduces to

ρR2 +
λvt+1

λvt
ρR1 = 0 (52)

and equation (51) to

λvt+1

λvt
= βψρψ−1

(
1− βψρψ−1(1− β)ψ (1− ψ)

ρRηcv
1−ψ

ρ

)−1

, (53)

where the term in parenthesis captures the effect on ρ of the change in the savings rate, given by

the second term in (51), which only arises (as we saw in foonote 30) when debt is nonzero.

By a similar argument to the one in the proof of Proposition 4 above, at a steady state equilib-

rium the derivative of ρR with respect to b and b′ satisfies

−ρ
R
1

ρR2
=

1− δk + Fk
(1− ηc)Rx

=
1− δk + Fk
βψρ̃ψ−1Rx

, (54)

where, for the second equality, we used again (14), ηc = (1− β)ψ v1−ψ, and constraint (12), vψ−1 =

(1− β)ψ + βψρψ−1vψ−1, of problem (33).

Combining (52)-(54) and using again (14), yields the claimed result:

Rx = (1− δk + Fk)
[
1− (1− ψ)βψρψ−2ρRηcηc

]−1
.
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2 Sufficient conditions for Assumption 1

Let us rewrite problem (9) more compactly as

max
ηh≥0

E [u (r (1− ηh) + θwηh)] ,

where, with a slight abuse of notation, r denotes 1− δk + r̃, w denotes 1− δh + w̃, and the function

u(.) is increasing, concave and with a constant coefficient of relative risk aversion γ. Letting η∗h be

an interior solution of (9), the properties stated in Assumption 1 are equivalent to
∂η∗h
∂r < 0 and

∂η∗h
∂w > 0, as already noticed in the main text. Setting R ≡ θw−α, problem (9) may also be written

as

max
ηh≥0

E [u (r +Rηh)] , (55)

when α = r. Problem (55) is often referred to as the standard portfolio choice problem. Hereafter,

we shall use some results on such problem reported in Gollier (2004).31

From Proposition 9 in Gollier (2004) it follows that, when the coefficient of relative risk aversion

γ is not larger than one, any first order stochastic improvement in R increases the optimal value of

ηh. Since an increase in w induces such an improvement, we conclude that
∂η∗h
∂w > 0 if γ ≤ 1.

Note that an increase in r, keeping R (that is, α) constant, constitutes an increase in wealth

and so from Proposition 8 in Gollier (2004) it follows that this change induces a decrease in η∗h if

u exhibits decreasing absolute risk aversion. With constant relative risk aversion, u indeed exhibits

decreasing absolute risk aversion. There is then a second effect of the increase in r, given by the

change in R : an increase in α induces a first order worsening on R and so reduces η∗h if γ ≤ 1.

Hence we conclude that
∂η∗h
∂r < 0 if γ ≤ 1.

Having established that the stated properties always hold when γ ≤ 1, we show next that,

when γ > 1, they hold for some family of distributions of θ. Assuming that θ is a continuous

random variable with density function g(t) differentiable almost everywhere, we shall show below

that the stated comparative statics properties hold if both tg
′(t)
t and g′(t)

t are non-increasing in t.

The condition hold for example when θ is a uniform distribution over some interval, or a Pareto

distribution (i.e., the density function is a power function).

To establish the result we build on Proposition 17 in Gollier (2004), stating that, if u(.) is strictly

increasing, then any improvement in R in monotone likelihood ratio (MLR) increases the optimal

value η∗h of problem (55). That is, if R and R′ are distinct continuous random variables with density

fR and fR′ respectively, the optimal value η∗h under R′ is larger than that under R if fR′ (t) /fR (t)

is non decreasing in t.

Since R = θw − α, Pr [R ≤ z] = Pr [θ ≤ (z + r) /w] and so the density function f(z) of R is

31Gollier, C. (2004), “The Economics of Risk and Time,” MIT Press.
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given by

f (z) =
d

dz

∫ (z+r)/w

0
g (t) dt =

1

w
g

(
z + r

w

)
. (56)

So in order to use the above proposition to establish the property
∂η∗h
∂w > 0, it suffices to show

that for any ŵ > w 1
ŵg
(
z+r
ŵ

)
/ 1
wg
(
z+r
w

)
is non decreasing in z. Taking a monotone (logarithmic)

transformation and differentiating with respect to z, this condition obtains when

1

ŵ

g′
(
z+r
ŵ

)
g
(
z+r
ŵ

) − 1

w

g′
(
z+r
w

)
g
(
z+r
w

) ≥ 0,

that is, when
1

w

g′
(
z+r
w

)
g
(
z+r
w

) is non-decreasing in w,

at any w > 0, for given z and r. Since the map w 7→ (z + r) /w is monotonic and decreasing, setting

t = (r + z) /w, the condition above can be equivalently stated as

t
g′ (t)

g (t)
is non-increasing in t.

Next, we use the same proposition to derive a condition guaranteeing that
∂η∗h
∂r < 0. Recalling

the argument above regarding the effect of increasing r keeping R constant, when u(.) exhibits

decreasing absolute risk aversion, it suffices to show that the optimal value of η∗h decreases as α

in R = wθ − α increases, keeping r fixed. Hence we derive next a condition on g(t) such that a

decrease in α induces a MLR improvement: that is, for any α̂ < α 1
wg
(
z+α̂
w

)
/ 1
wg
(
z+α
w

)
is non

decreasing in z. Arguing analogously as in the previous case, we can show that this property holds

if g′
(
z+α
w

)
/g
(
z+α
w

)
is non increasing in α at any α > 0, where z and w are fixed. So changing

variables we conclude that
∂η∗h
∂r < 0 holds if

g′ (t)

g (t)
is non-increasing in t.

3 Exogenous government purchases

Here we extend our analysis to the case where the public expenditure policy is specified in terms

of an exogenous sequence of absolute levels of expenditure {Gt}∞t=0 (rather than per unit of total

wealth). We will obtain conditions characterizing the Ramsey steady state which are analogous

to those obtained in Proposition 5 and Corollary 6. Hence, also in the case of exogenous Gt, the

capital income tax rate must be positive in the long run, as long as the effect on the saving rate is

small enough.

When the sequence {Gt}∞t=0 is exogenously given, we can no longer use the recursive approach

followed in the paper to solve the Ramsey problem in the case where {gt}∞t=0 is exogenously given.
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We solve instead the problem in a more direct way. Given X0 and b0, the Ramsey problem consists

in the maximization of v0 with respect to {bt+1, Xt+1, vt+1, r̃t+1, w̃t+1}∞t=0 subject to

vψ−1
t = (1− β)ψ + βψρψ−1

t+1 v
ψ−1
t+1

Gt+1

Xt
+ (1− δk + r̃t+1)bt = (1− ηc,t)Rx,t+1bt+1 + F (kt, ht)− r̃t+1kt − w̃t+1ht

Xt+1

Xt
= (1− ηc,t)Rx,t+1,

where ηh,t, ηc,t, ρt+1, Rx,t+1, kt, and ht are the following functions of r̃t+1, w̃t+1, bt, and vt:

ηh,t = ηh(r̃t+1, w̃t+1) ≡ arg max
ηh

ρ(r̃t+1, w̃t+1, ηh),

ρt+1 = ρ(r̃t+1, w̃t+1) ≡ max
ηh

ρ(r̃t+1, w̃t+1, ηh),

Rx,t+1 = Rx(r̃t+1, w̃t+1) ≡ (1− δk + r̃t+1)(1− ηh(r̃t+1, w̃t+1)) + (1− δh + w̃t+1)ηh(r̃t+1, w̃t+1),

ηc,t = ηc(vt) ≡ (1− β)ψ(vt)
1−ψ,

kt = k(r̃t+1, w̃t+1, bt, vt) ≡ (1− ηc(vt))(1− ηh(r̃t+1, w̃t+1))− bt,

ht = h(r̃t+1, w̃t+1, vt) ≡ (1− ηc(vt))ηh(r̃t+1, w̃t+1),

The Lagrangean for this problem is then:

v0 +
∞∑
t=0

[
λv,t

{
(1− β)ψ + βψρ(r̃t+1, w̃t+1)ψ−1vψ−1

t+1 − v
ψ−1
t

}
+ λb,t

{
[1− ηc(vt)]Rx(r̃t+1, w̃t+1)bt+1 + F [k(r̃t+1, w̃t+1, bt, vt), h(r̃t+1, w̃t+1, vt)]

− r̃t+1k(r̃t+1, w̃t+1, bt, vt)− w̃t+1h(r̃t+1, w̃t+1, vt)−
Gt+1

Xt
− (1− δk + r̃t+1)bt

}
+ λx,t

{
[1− ηc(vt)]Rx(r̃t+1, w̃t+1)− Xt+1

Xt

}]
.

The first order conditions for vt, bt, and r̃t+1 are so, respectively,32

0 = −λv,t
vψ−2
t

ψ − 1
+ λv,t−1

βψ

ψ − 1
ρψ−1
t+1 v

ψ−2
t+1 (57)

+ λb,tη
′
c(vt)

{
−Rx,t+1bt+1 − Fk,t(1− ηh,t)− Fh,tηh,t + r̃t+1(1− ηh,t) + w̃t+1ηh,t

}
− λx,tη′c(vt)Rx,t+1,

0 = λb,t−1(1− ηc,t−1)Rx,t − λb,t(1− δk + Fk,t), (58)

0 = (ψ − 1)λv,tβ
ψρψ−2

t+1 ρr,t+1v
ψ−2
t+1

+ λb,t

{
(1− ηc,t)Rx,r,t+1bt+1 + Fk,tkr,t + Fh,thr,t − kt − r̃t+1kr,t − w̃t+1hr,t − bt

}
+ λx,t(1− ηc,t)Rx,r,t+1, (59)

32To derive the steady state condition determining the tax rate on capital we do not have to use the first-order

conditions with respect to w̃t+1 or Xt+1. But, of course, we would need those conditions to derive all the steady state

equilibrium variables.
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where η′c(vt) ≡ dηc(vt)/dvt, Fk,t ≡ ∂F (kt, ht)/∂kt, Fh,t ≡ ∂F (kt, ht)/∂ht, ρr,t+1 ≡ ∂ρ(r̃t+1, w̃t+1)/∂r̃t+1,

Rx,r,t+1 ≡ ∂Rx(r̃t+1, w̃t+1)/∂r̃t+1, kr,t ≡ ∂k(r̃t+1, w̃t+1, bt, vt)/∂r̃t+1, and hr,t ≡ ∂h(r̃t+1, w̃t+1, vt)/∂r̃t+1.

Assuming that Gt grows at an exogenous, constant rate γG > 0, we focus again our attention

on a steady state (balanced growth path) where all the variables in equations (57)-(59) remain

constant, except for the Lagrange multipliers, λv,t, λb,t, and λx,t that grow at the same rate:

λv,t
λv,t−1

=
λb,t
λb,t−1

=
λx,t
λx,t−1

≡ γλ.

Since ρ is constant we have v = (1− β)ψ/(1− βψρψ−1). Also, ηc = (1− β)ψv1−ψ, and so

βψρψ−1 = 1− ηc.

It then follows from equation (57) that, along a balanced growth path,

λv,t
λv,t−1

= (1− ηc) + Λη′c(v),

where Λ is the term

Λ ≡ ψ − 1

vψ−2

[
λb,t
λv,t−1

{
−Rxb− Fk(1− ηh)− Fhηh + r̃(1− ηh) + w̃ηh

}
− λx,t
λv,t−1

Rx

]
,

a constant given the fact that all Lagrange multipliers grow at the same rate.

We can then use equation (58) to derive the following steady-state condition which is the coun-

terpart of the one in Proposition 5:

Rx = (1− δk + Fk)

[
1 +

Λη′c(v)

1− ηc

]
. (60)

Just as in the case of a constant, exogenously given level of g, this condition implies that at a

Ramsey steady state the average rate of return on consumers’ portfolios, Rx, is equal to the before

tax return on physical capital (or equivalently the cost of government debt), 1−δk+Fk, augmented

with the effect of public debt on the saving rate, Λη′c/(1− ηc). As long as the latter effect is small,

we get again Rx ≈ 1 − δk + Fk, which implies that the optimal capital tax rate is positive in the

long run: τk > 0.

When ψ = 1, again the effect on the saving rate valishes, so that condition (60) reduces to

Rx = 1− δk + Fk,

which is identical to the condition derived in Corollary 6.

4 Algorithm to solve the model numerically

The Ramsey equilibrium for our model can be computed in a straightforward way. The function

ρR(b, b′, ηc) is computed as the solution to the maximization problem defined in (32). Then the

steady state value of b is obtained by solving equation (39).

10



The transitional dynamics is computed for the calibrated economy where ψ = 1. In this case ηc

is constant, so the function above can be written simply as ρR(b, b′) and (30) simplifies to

ln(v0) =
∞∑
t=0

βt+1 ln(ρt+1).

In the dynamic programming formulation, the Ramsey problem (33) can be written as

ln v(b) = max
b′

β ln ρR(b, b′) + β ln v(b′).

This problem is solved by discretizing the state space and by the value function iteration.

5 Transitional dynamics

The Ramsey equilibrium converges to the steady state only in one period. Figure 1 in this ap-

pendix illustrates the transitional dynamics of the Ramsey equilibrium, starting from the “baseline

equilibrium” in Table 2 in the main text.
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Figure 1: Transitional dynamics of the Ramsey equilibrium starting from the baseline equilibrium.
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