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1 Introduction

Synchronisation, as its etymology suggests, may be defined as the adjustment of rhythms of
repetitive events (phenomena, processes, ...) through weak interaction.

Let us underline the following concepts related to synchronisation:

Repetition of a process or an event. We consider the synchronisation of phenomena that
occur independently of each other i.e., by their own “force” and which repeat them-
selves through time. Let us stress that repetition does not imply periodicity (events
repeat themselves every exact constant amount of time measures) but it indicates that
the processes happens over and over again, regularly. The

rhythm marks the pace of the repetition for a process. Therefore, two processes will be
synchronised if they have the same rhythm. To fix the ideas, one may think of two
pendulum clocks oscillating with different frequencies and out of phase; each at its own
rhythm. If the pendula are decoupled physically, that is, if the movement of one does
not exert any influence on the movement of the second whatsoever, the clocks will
continue oscillating at their own pace. Instead, the clocks may adjust their rhythms
one another if there exists a

weak interaction i.e., a physical coupling. For instance, two pendulum clocks hanging from
a beam will transmit each other vibrations of very small intensity through the beam.
As a result, and this depending on other factors, the two clocks may start to oscillate
at the same frequency, after some time.

Such was the observation that C. Huygens, the Dutch Natural Philosopher made accidentally
when attempting to construct a clock capable to measure time at sea, back in the 17th
century.
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Figure 1. Huijgens's synchronised pendula

One can identify various types of synchronisation. Firstly, one can make the distinction
between self and controlled synchronisation.

Self-synchronisation pertains to the case when two or more otherwise free oscillators inter-
act through a weak coupling without external stimuli and influence each other's rhythm
until all attain a synchronised motion; an adjustment of rhythms.

Controlled synchronisation pertains to the case when via external stimuli, two or more
systems are forced to enter in synchrony. Two forms of controlled synchronisation may
be distinguished:

mutual synchronisation, in which case two or more processes adjust their rhythms
with no particular priority on either one's rhythm;

master-slave synchronisation, in which case on system imposes its own rhythm of
motion to the second. The dominant process is commonly called the master and
the entrained system is called the slave.

Self-synchronisation may be observed in a number of natural phenomena. As a matter
of fact, as soon as the universal (nonetheless abstract) concept of time enters into the
equation one immediately can make a link to the concept of time-keeper, clock. From here
to synchrony is but a small step. Endless examples of synchronised clocks may be found in
nature: the movements of planets, the circadian rhythm synchronised with the day/night
cycle, the heart pace maker cells, neuron firing, etc. Synchronised processes which may
cause bigger astonishment and curiosity are the famous examples of fireflies’ synchronised
lightening. It has been observed that a group of fireflies initially lightening “randomly” will
eventually light on and off in a perfect synchrony as if led by a director yet, it has been
proved that this is a case of mutual self synchronisation.

Other situations that relate to the concept of synchronisation are group formation of
animals such as banks of fish, flocks of migrating birds, etc.

Such natural phenomena have inspired engineers and scientists to study both, self and
controlled synchronisation, for a number of decades and within a variety of domains includ-
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ing (nonlinear) physics, biology, medicine, mechanical engineering, mechatronics, robotics,
computer science, etc.

Through these Lecture Notes we intend to give a broad yet introductory perspective
on Synchronisation. We explore synchronisation as understood by physicists by studying
the particular but extensive topic of synchronisation of chaotic oscillators; we study the
consensus paradigm, a subject of research highly popular in computer science and network
communications engineering; we briefly discuss consequences of synchronisation phenomena
of biological cells, in particular, as cause of certain brain diseases; we study controlled syn-
chronisation of mechanical systems. The leading thread is control and stability theory. We
often approach the analysis of synchronisation using stability theory tools while we design
mechanisms of forced synchronisation based on modern nonlinear control techniques such as
but not exclusively, observer design.

2 Synchronisation, mathematically speaking

We have spoken so far, of synchronisation (of oscillators) as being the adjustment of rhythms
due to weak interaction. At this point, we emphasise the word adjustment and give it a
mathematical meaning. Consider a set of IV general nonlinear systems

T, = Fl(t,xl)—{—Gl(t,:Ul,...,xN) (t,:ﬂi)GRXRn, 1el,...,N
T, = E(t,xi)+Gi(t,ZC1,...,$N)

j:N - FN(t,I’Z)‘i‘GN(t,I'l,,JjN)

with drifts F; and interconnections GG;. Let @ : R x R” x R™ — R" be a continuous function.
We say that the systems are synchronised with respect to @ if

lim Q(t, 1‘1(15), .%'Q(t)) =0

In the case, of autonomous systems that is, the synchronisation of autonomous oscillators
one may restate the problem for systems of the form

T, = F1($1)+G1($1,...,$N) SCZ'E]R”, 1e€l,...,N
&y = Fi(x;)+ Gi(z1,...,2N)

iy = Fy(z;)) +Gn(21,...,2N)

and a function @ : R™ x R™ — R"™ such that the trajectories satisfy

lim Q(z1(t), z2(t)) = 0.
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Indeed, the latter is a fairly general way of stating the synchronisation paradigm. It
concerns couplings of dynamic systems which may be forced or unforced. In a number of
situations the significant synchronisation problem may concern the whole state for instance,
Q may be defined as [z; — 3 --- xx_1 — &N TN — x1] | or possibly, if only two states are
significant to be sinchronised, Q = [x1; — T2 -+ TN—1, — TN, TN, — xl,i]T.

Master-slave synchronisation

This situation pertains to the case in which a slave system, say described by the dynamical
equation

is(t) = f(t,xs(t)) xs(to) ER™E > 1, >0 (1)
is synchronised with a master system
Tm(t) = ft,zm(t)) xm(te) ER"t>1t, >0 (2)

in the sense that the master system performs a free motion whereas the slave system must
follow the movement of the master’s. Hence, we say that the systems are synchronised if for
any initial conditions t,,0, tso, Tmo, and s, the respective motions of systems (2) and (1)
satisfy:

lim |zs(t) — zm(t)| = 0. (3)

t—o00
Case-study: synchronisation of two forced pendula

L N L N L

N

Figure 2. Synchronisation of two mechanical pendula

W,

Let us consider the problem of synchronising the two pendula showed in Fig. 2. That
is, we consider the problem of making the “slave” pendulum oscillate at the frequency of
the “master”, while assuming that no control action is available at the joints. Instead, we
desire to achieve our task by modifying on line the length of the slave pendulum thereby, its
oscillating frequency which is given by

Iy
w) =1/ —.
"7 Vsl
The dynamic equations are
slave: 7+ 2Gwy + w%y = aqcoswit
master: Yag + 2Cowatyg + w%yd = a9 coswsat
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where the control input corresponds to the change in wq, i.e.,
djl =Uu.

If wg >0, ¢4 = (2, a1 = ag, using a cascades approach it is easy to prove that the linear
control law uw = —k&, with &k > 0 makes that

lim @(t) =0  lim §(t)=0.

t—o0 t—o00
where @(t) := w1 (t) —wz and g(t) := y(t) — yq(t). One only needs to observe that, defining

v =Yg + 2Cwayq + w%yd —acoswot =0

and z := [f, 9], the two pendula dynamic equations

i+ 2Cw1y + WPy = acoswit + v
fig + 2Cwatq + wiyq = acos wat

and the control law, are equivalent to

Z1 = %9
%9 = —2(wozy — w%zl + g2(t, z,w)

O = —kd

where go(t, 2,@) = 2(Dzs + 2¢0Ya(t) — &% (21 + ya(t)) — 20wayq + alcoswit — cos wat).
Notice that this system is of the form

z = fl(z) +g(t7 2, (D) (4)
o = —kd (5)
where g(t,z,0) := [0, ga(t, 2,&)] " and clearly, 2 = f1(z) is exponentially stable. It occurs

that, since the “growth” of the function g(¢,-,w) is linear for each fixed @ uniformly in ¢
that is, for each fixed & there exists ¢ > 0 such that |g(¢,z,@)| < c|z| for all t > 0, the
cascaded system (4) is globally asymptotically stable. Roughly speaking, the exponentially
stable dynamics 2 = fi(z) dominates over the interconnection term, no matter how large
the input @(t) gets.

Mutual synchronisation

Let us consider a simple but intuitive example. The synchronisation of two harmonic oscil-
lators

Tl = —WwIo Y1 = —wyo
To = wI Y2 = wy1

The solutions are given by z1(t) = A(x,) cos(wt) and z1(t) = A(x,) sin(wt) where the am-
plitude of the oscillations A, depends on the initial conditions; similarly for the “y-oscillator.
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By definition, synchronisation takes place if there exists a weak interaction between the sys-
tems. Say that the interaction occurs as the value of the state x1 is somehow “transmitted”
to the second oscillator. Then, the dynamics of the latter becomes

2)1 = —Wys — f(yl — 561), ?>0
Y2 = wyr + Ly — 1)

We shall say that the systems are synchronised if
lim |z; —y;| =0, i€1,2.
t—o0

One way of establishing whether synchronisation takes place is by analysing the behaviour of
the error trajectories. That is, by establishing the convergence property? for the error system.
Let

|2

1 1
V(fﬂ—y):§|$1—y1 +§|9E2—y2|2

First, it is clear that

pilel S V(2) < pa2f?

av T
dz - < — _
dz v z=x—y |:F(x) F(.%’y)} =~ —p3 ‘.’IJ y‘
%(z) < pa 2|
where ( |
—WIT —WyY2 — { Y1 — T1
Fz) = Flz.y) =
(x) |: W :| ’ (xay) |: wY1 —|—€(y1 _ xl) :| )
Then,
_ |t e mm
Now, define

P— {Pl pz}
b2 P3

with p; > 0 and p1p3 > p2 hence P is positive definite and symmetric. We have

PA4 ATP— | “2pit2w+Op2  —2pz+ps(l+w) —wpr
—20py + p3(€ + w) — wpr —2wps
Let
_ wpr + Lpo
b3 7£ T

then, the terms in the off-diagonal of PA+ AT P equal zero and the latter is negative definite
provided that
2
wpy + ¢
plg P1P2 > pg
+w

2See the Notes on Oscillations
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which holds for sufficiently large p; and sufficiently small ps. Thus,

%
—V
dz

T

F(@) = F(a.y)| < —ps |z~

Z=xr—yY

with p3 > 0 being a lower-bound on the min{2¢p; — 2(w + £)p2, 2wps}.

We conclude the exponential convergence of xz(t) — y(t) for any values of ¢ and w in
particular, under weak interaction (small ).

3 Observer-based synchronisation

The paradigm of master-slave synchronisation may be broached, from a control-theory view-
point, via observer and more generally, estimation theory. After all, note that the problem
for the slave system consists in reproducing the motion of the master. Mathematically, it is
required that x4(t) converges to ,,(t) asymptotically®>. Such problem is well-studied among
control theorists as an observer-design paradigm. Moreover, while an abundant and solid
theory has been completed for linear systems, there is a considerable bulk of literature on
nonlinear observers which nevertheless, is far from being completed.

On Luenberger observers

Let us start our exposition with linear systems particularly, by briefly recalling what a Luen-
berger observer is. Consider the linear system of differential equations*

t=Axr y=Cx (6)

where z € R" is the state column vector and C' is a row vector in R™. Assume that the
observability matrix

C

CA
O .= ) (7)

CAn—l

is of full rank n, which corresponds to the dimension of the state. Indeed, if this structural
condition holds we are guaranteed to be able to construct and observer for system (6). The
Luenberger observer is given by

P=At—L(H—y), §=Ck (8)

where y is a measured output and L is the observer gain, a design parameter to be chosen
appropriately. We are concerned with the problem of ensuring that (3) holds, to that end,

3Here, we concentrate on this type of synchronisation otherwise, recall that the synchronisation paradigm
even in the master-slave setting is more general since one typically requires a function of (the difference
between) z,, and zs to converge to zero.

“By dropping the argument t.
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we are interested in studying the (Lyapunov) stability of the error system dynamics:
r=Az— L —y) (9)

where we have defined z := # — . Defining, accordingly, A := A — LC we see that Equation
(8) also has the form
T =Azx. (10)

According to classical Lyapunov stability theory the trivial solution = = 0 of system (10) is
exponentially stable if the following holds: there exist positive definite symmetric matrices
P and @ such that

ATP+PA=-Q. (11)

For time-invariant systems (A constant) this is equivalent to having the eigen-values of A to
be negative. For time-varying systems, the condition to satisfy becomes:

At)TP+ PA(t) + P = —Q(t) (12)
and, in general, that the eigen-values of A(t) are (strictly) negative for all ¢ is not sufficient

for stability.

To be on the safe side, we recall that the trivial solution x = 0 of a dynamical system
(2) is said to be exponentially stable if there exist positive real numbers k and + such that

lz(t)] < k |zo|e 7)) Vi >t, > 0. (13)

Obviously, if  denotes the synchronisation errors between two signals, exponential stability
of z = 0 is sufficient but not necessary for synchronisation.

The Example of the two harmonic oscillators synchronised through weak interaction gives
a clear illustration of what observer theory may bring to the study of synchronisation.
Consider again the oscillator

Tml = —WTmy2

Tm2 = WImnl

which may be represented in the compact form

. 0 —w
Ty = Axy,, A= [ ] .
w 0
Suppose that it is required to design a slave system that follows its motion based on
the measurement of the trajectory z,,1(t). Such a slave system is

14

Ty = Awg — L(xsl - :le), [f

] £>0,
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By defining C' = [1 0] we immediately recognise the similarity of the slave system above
and a Luenberger observer. Only the notation is different. However, the synchronisa-
tion error dynamics with state ¥ := x5 — x,, is given by

. _ -4 —w

x=[A-LCz, [A-LC]= [w+€ 0 }
and it is clear that the eigen-values of [A — LC] are negative for any positive values of
£ and w hence, the synchronisation errors converge to zero exponentially.

This is evidently, the same conclusion that we had drawn previously under the same
arguments but from a different perspective.

The simplicity with which we solved the previous synchronisation problem is motivating
to push the observer technique further. That is, we are left wondering whether it is applicable
to nonlinear systems or at least, to nonlinear oscillators such as chaotic systems. Although a
similar reasoning may guide us in the synchronisation of nonlinear systems, nonlinear observer
design is extremely challenging. In the next chapter we broach some techniques of observer
design for systems which are linear in the unmeasured variable. Such a class is in general
narrow however, it encompasses a large number of chaotic oscillators.

In anticipation of what we shall study in the chapters on Oscillations and Synchronisation
of Chaotic systems, let us have a look at the observer-design problem the famous Lorenz
system® whose dynamics is given by the bilinear system

Tml = O'(me - wml)
Tm2 = TTml — Tm2 — Tm1Tm3
Tm3 = Tml1Tm2 — bTm3

where o, b and r are constant parameters. The model is nonlinear but may be rewritten in
the affine form

Tm = Aly)zm (14a)
Yy = ITml (14—b)
-0 o 0
Aly) = r -1 —y (14¢)
0 y =0

that is, assuming that x,,; is measurable. What is remarkable and cannot be overestimated
is that the system may be written in a form where the unknown states appear linearly.

The measured output x,,; entrains the possible interaction between this and a similar
oscillator. Then, the observer (slave) system is given by

s = A(y)zs — L(ys —y) (15a)
Ys = Tsl- (15b)

5See Notes on Oscillations.
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To ensure synchronisation it is sufficient to guarantee that there exists P positive definite
and symmetric such that
[A(y) — L] P + P[A(y) — L]

is negative definite uniformly in y. This is of course, a difficult-to-verify condition however,
it is only sufficient. In the chapter on synchronisation of chaotic systems we shall study
methods which require more relaxed assumptions.

4 Synchronisation as a Stabilisation Problem

Now, let us study the problem of synchronisation as a tracking control problem. It should be
clear to readers familiarized with the latter that synchronisation in the sense that one motion
is imposed to another, has all the flavour of a standard tracking control problem.

To fix the ideas we place the discussion in the context of master-slave synchronisation
that is, we assume to be given a master system which evolves freely according to a nonlinear
dynamics

Bm = fn(t,Zm)  Tm(te) ER"E>1, >0 (16)

and a forced slave system
Zs = fs(t,xs) +u x5(to) ER"E >, >0 (17)

which is affected by an external control input.

The problem may be posed in the context of a standard tracking control problem for the
system (17) in which it is required that it follows the desired reference trajectory x,,(t). That
is, synchronisation is reached if the trajectory tracking control problem is solved. The im-
portance of this simple observation cannot be overestimated. Common knowledge regarding
tracking control is vast, especially concerning mechanical and electro-mechanical systems.

Another way to present the problem is the following. Define e = x4 — x,, then,

é= fs(t,e +xm(t)) — fr(t,zm(t)) +u

that is, the error dynamics depends on the state e and time. Note that the master system
states have been replaced by the trajectories generated for a particular pair of initial conditions
to and x,,(tp). The control problem comes to designing u so that the origin {e = 0} be
stabilised asymptotically.

Depending on the variables that may be measured and the dimension of the control
inputs, one may be able to apply different nonlinear control techniques such as feedback-
linearisation, Lyapunov-based, passivity-based, etc. We shall not develop any of these since
it is out of scope in this Notes however, we recall next an interesting structure-based tech-
nique called cascades-based control. This technique is particularly well-suited for mechanical
systems and oscillators such as chaotic systems, in view of their intrinsic stability®.

5See the Notes on Oscillations
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Cascades-based synchronisation

The cascaded controlled synchronisation design consists in writing an error-system by sub-
tracting the dynamics of one system from the other and then, to perform a cascades-based
control of the error system, to zero. In such manner we bring the synchronisation problem to
that of stabilisation of a time-varying system. To accomplish the stability analysis hence, to
investigate whether synchronisation is achieved, we use modern tools of qualitative analysis
of time-varying systems known as cascaded systems.

On cascaded systems

Cascaded systems have the form

§1 = fit,&1) +g(t, &1, &2) (18a)
& = fat, &) (18b)

with state £ = [¢], &)] € R™*72 and the interconnection is such that g(t,&;,0) = 0.

Analysis
The origin of the system (18) is uniformly globally asymptotically stable if:

1. the origin of & = f1(t, &) is uniformly globally asymptotically stable;
2. the origin of & = fy(t, &) is uniformly globally asymptotically stable;
3. the solutions of (18) are uniformly globally bounded.

We recall that uniform global asymptotic stability means that:

e the origin is stable in the sense of Lyapunov and uniformly in the initial conditions;

e the solutions are bounded uniformly in the initial conditions and for any size of the
initial states;

e the norm of the solutions converge to zero at a rate independent of the initial conditions.

Hence, in particular, if one ensures uniform asymptotic stability of the origin of (18) it follows
that

Jim [€(6)] = 0.

From the three numbered items above, boundedness of solutions is necessary and suf-
ficient and is, in general, hard to verify. Fortunately, for certain classes of systems, simple
conditions are well established. For cascaded systems (18) it suffices to observe the following
extra conditions to guarantee boundedness of the solutions:

11
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C1.— for the system & = f1(t, &) we dispose of a Lyapunov function V; such that

‘M &1l <aVi(t, &) Y&l =m
061

‘ a‘/1 (t, 51)
2S]

<cp V]G] <n

%;&)fl(t,&) < —cq &1l

C2.— the interconnection term g(t,&) is once continuously differentiable and satisfies

l9(t; €1, €2)| < 01([€2]) + Oa([&2]) |65

C3.— the trajectories &(t) are integrable:

/OO Ea(t)] dt < cs .

to

In the previous conditions all constants are independent of the initial conditions, C1 needs
to be verified for a particular choice of 71 and 72 and the functions 6; and 65 are continuous
non-decreasing. Condition C1 holds for instance by Lyapunov functions satisfying polyno-
mial bounds such as common quadratic functions. Condition C2 simply imposes that the
interconnection term g has linear growth in the variable £;. Condition C3 imposes a speed
of convergence on &,(t), it holds in particular if the trajectories &2(t) converge exponentially
fast.

Controlled synchronisation

Consider the equations of two identical hyper chaotic systems; the master system with general
equations

Wy, = f{y(wm) —|—g£,”(wm,xm,ym,zm) (193)
T = i (W) + 97 (Wi Ty Y, Zm) (19b)
Um = f;n(wy) —|—gym(wm,xm,ym,zm) (19¢)
Zm = fzm(wy) + 97" (Wi Ty Yms Zm) (19d)
and a slave system be described by the equations
ws = {Z(ws) +gzsu(w8axsay3azs) + Uy (203)
is = [filwz) + g5 (ws, Ts, Ys, Zs) + Ua (20b)
Ys = ys(wy) +g;(w57$37y3725) +uy (20c)
i = fl(wy) + g3 (ws, s, ys, 25) + U - (20d)

12
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Define e(.y := (:)s — (*)m- Then, the synchronisation error dynamics takes the form

by = fu(t,ew)+ guw(t, ey, eq, ey, e:) + Uy (21a)
ér = faolt,ex) + gz(t,ew,eq, ey, €2) + Uy (21b)
ey = fyltiey) + gyt ew, ez ey, €:) +uy (21¢)
& = fute:) + g:(t, ew,ex,ey,ez) +u (21d)

where f,(t,ew) = fi(ew + wn(t)) — fi(wm(t)) and similarly for all the other functions.
Note that f,(t,0) = 0 provided that f]' = f hence, we assume that the two systems are
equal (if they are not, they may be rendered equal via control).

Cascaded-based controlled synchronisation reduces to design ., u;, uy and u, in a way
that the four equations above are constituted of two subsystems of second order, intercon-
nected in cascade. Moreover, the conditions C1-C3 in the Appendix must be verified. For
instance, one may choose without much loss of generality, {1 = [ew, e;] and & = [ey, €]
then, we design u,, = u% + u’ and u, = u? + u® so that:

e the systems é,, = fi,(t,e) +ul, and é, = f.(t, e;) +u be asymptotically stable and
locally exponentially stable;

e the systems (21c) and (21d) be asymptotically stable;
e the function gw(t,ew,em,ey,ez)+u2} has terms of at most linear growth in e, and e,;

e the function g,(t, €y, €z, €y, €2) +u? has terms of at most linear growth in e, and e,.

Roughly speaking, the previous guidelines lead to the satisfaction of conditions C1-C3 to
establish asymptotic stability of the error synchronisation system.

Cascades-based design is structure-oriented and is not systematic. Instead, it relies on the
designer’s ability to construct a controller for each subsystem. The method's advantage lies
in its essential feature: “dividing to conquer”; designing controllers for much simpler systems
than originally. As it is generic, it applies to a number of chaotic systems. A key feature is
that typically, the nonlinearities gZ’?) are of the second order that is, they consist of bilinear
and quadratic terms so the growth restrictions on the nonlinearities is a mild assumption.

5 Bibliographical remarks

A good approach to start the study of synchronisation is to read general science education
texts. For instance, we may cite the enjoyable book

e S. H. Strogatz, Sync: How Order Emerges From Chaos In the Universe, Nature, and
Daily Life Hyperion, 2003

which describes how synchrony is present in nature. The author is a recognized mathematics

and physics professor, author of several other texts for instance, on chaos, nonlinear physics
and several popular science monographs.

13
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A somewhat more technical yet extremely accessible to any student of science or engi-
neering is

e A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in
Nonlinear Sciences. Cambridge Nonlinear Science Series, 2003.

The first chapters of this book have greatly inspired this lecturer to organise the introductory
material.

An early inspirational text for the control theorist as it is written by a Russian mathe-
matician and researcher on theoretical mechanics, is

e |. I. Blekhman, Synchronisation in Science and Technology, ASME Press translations,
New York, 1988

The method of observers for synchronisation was originally “exported” to disciplines
within physics and engineering other than control theory, by the milestone paper

e H. Nijmeijer and |. Mareels. An observer looks at synchronization. [EEE Trans. on
Circ. Syst. I: Fundamental Theory and Applications, 44(10):882-890, 1997.

which, for the automatic-control researcher, remains a good survey and tutorial.

Interested readers on the stabilisation approach to synchronisation are invited to see the
rapidly growing literature on the topic, in physics and circuits fora. To mention a few:

e Physical Review Letters;

e Physical Review A;

e Physics Letters A and E;

e Chaos, Solitons and Fractals;

e Nonlinearity,

e |EEE Trans. Circ. Syst. | and II,

J. Bifurcation and Chaos . ..

Finally, interest readers may consult the introductory tutorial on cascaded systems in

e A. Loria and E. Panteley, “Cascaded nonlinear time-varying systems: analysis and
design, ch. in Advanced topics in control systems theory”, Lecture Notes in Control
and Information Sciences, F. Lamnabhi-Lagarrigue, A. Loria, E. Panteley, eds., London:
Springer Verlag, 2005.

The latter is the compendium of lecture notes from the 3rd edition of the Paris Graduate
School, precursor of the the EECI Graduate School.
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