Chapter 2

Section	Suggested Problems
2.1	$1,3,5-8,11,12,14,15$.
2.2	$1,3,5,8-13,15,16,21$.
2.3	$1-13$ odd, $17,19,33,36,40-42$.
2.4	$1,3,6,7,10,11,14,15,17$.
2.5	$1-5,7,9,11,14,15,18-23$.
2.6	$1-5,6,10,15$.
Review	$7,8,19,20,28$.

Figure 1: $y=a x^{2}+b x+c$

Please recall Problem 46 on page 60 and what we did in class related to this problem. Here we replace the function $y=x^{2}$ with a general parabola $y=a x^{2}+b x+c$ and repeat what we did in class to find the slope of the tangent line to this parabola at the point $\left(x_{0}, y_{0}\right)$ where $y_{0}=a x_{0}^{2}+b x_{0}+c$. Let $(0, \beta)$ be a point on y-axes. The slope of the line through the points $(0, \beta)$ and $\left(x_{0}, y_{0}\right)$ is

$$
\frac{y_{0}-\beta}{x_{0}-0}=\frac{a x_{0}^{2}+b x_{0}+c-\beta}{x_{0}} .
$$

The equation of the line through the points $(0, \beta)$ and $\left(x_{0}, y_{0}\right)$ is

$$
y=\frac{a x_{0}^{2}+b x_{0}+c-\beta}{x_{0}} x+\beta .
$$

To find where this line intersects the parabola $y=a x^{2}+b x+c$ we solve for x the equation:

$$
a x^{2}+b x+c=\frac{a x_{0}^{2}+b x_{0}+c-\beta}{x_{0}} x+\beta .
$$

Multiplying through by x_{0} we get

$$
a x_{0} x^{2}+b x_{0} x+c x_{0}=\left(a x_{0}^{2}+b x_{0}+c-\beta\right) x+\beta x_{0} .
$$

Grouping the terms in the last equation and factoring gives

$$
\begin{aligned}
0 & =a x_{0} x^{2}+b x_{0} x+c x_{0}-a x x_{0}^{2}-b x x_{0}-c x+\beta x-\beta x_{0} \\
& =a x_{0} x\left(x-x_{0}\right)-c\left(x-x_{0}\right)+\beta\left(x-x_{0}\right) \\
& =\left(a x_{0} x-c+\beta\right)\left(x-x_{0}\right) .
\end{aligned}
$$

Hence the x-coordinates of the points of intersection of the line and the parabola are

$$
x=x_{1}=\frac{c-\beta}{a x_{0}} \quad \text { and } \quad x=x_{0} .
$$

These two points coincide if $c-\beta=a x_{0}^{2}$, that is if $\beta=c-a x_{0}^{2}$. In this case the line is the tangent line to the parabola at the point $\left(x_{0}, y_{0}\right)$ and the slope of the tangent line is

$$
\frac{a x_{0}^{2}+b x_{0}+c-\beta}{x_{0}}=\frac{a x_{0}^{2}+b x_{0}+c-c+a x_{0}^{2}}{x_{0}}=\frac{2 a x_{0}^{2}+b x_{0}}{x_{0}}=2 a x_{0}+b .
$$

Thus the slope of the tangent line to the parabola $y=a x^{2}+b x+c$ at the point $\left(x_{0}, y_{0}\right)$ where $y_{0}=a x_{0}^{2}+b x_{0}+c$ is given by the formula $2 a x_{0}+b$.
In Figure 1 I used $a=-2, b=5, c=-1, x_{0}=2$ and $\beta=3$. What is the slope of the tangent line to this parabola at the point $(2,1)$? (Notice that the horizontal and vertical units are different.)

