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Abstract

While fully homomorphic encryption (FHE) is a fairly new realm of cryptography, it has

shown to be a promising mode of information protection as it allows arbitrary compu-

tations on encrypted data. The development of a practical FHE scheme would enable

the development of secure cloud computation over sensitive data, which is a much-needed

technology in today’s trend of outsourced computation and storage. The first FHE scheme

was proposed by Craig Gentry in 2009, and although it was not a practical implementa-

tion, his scheme laid the groundwork for many schemes that exist today. One main focus

in FHE research is the creation of a library that allows users without much knowledge of

the complexities of FHE to use the technology securely. In this paper, we will present the

concepts behind FHE, together with the introduction of three open-source FHE libraries,

in order to bring better understanding to how the libraries function.

Keywords: Fully Homomorphic Encryption, Secure Cloud Computing, Secure Compu-

tation
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1 Introduction

In the not so distant future, the majority of storage and computation of data will take

place in the cloud. In 2018, 81% of companies with at least 1,000 employees already

utilized cloud computing technology in their everyday processes, and this percentage is

expected to breach 90% by 2024 [48]. Cloud computing is a promising technology as it

offers the benefits of flexibility, improved disaster recovery, and increased collaboration

from which organizations can benefit. In spite of these benefits, major security issues can

arise when critical data is stored in the cloud. Confidentiality of information in the cloud

is not guaranteed, which is an immense hindrance to the adoption of cloud computing

technology. But, if suitable encryption is applied to data before storage this problem can

be mitigated.

Unfortunately, a new issue arises with this solution. Every time that a computation

needs to be performed on the encrypted data in the cloud, the data would first have to be

downloaded and decrypted on the client side. Then, after the data is processed, it would

have to be re-encrypted and re-uploaded to the cloud. This tedious and time consuming

process almost out-weighs the benefits of using cloud storage in the first place.

Homomorphic encryption (HE) is a relatively new realm of cryptography which gives

the ability to privately and securely store and compute on data in the cloud without the

necessity to decrypt it first. In addition, most existing homomorphic encryption schemes

are based on lattice cryptography, specifically the Learning with Errors problem, making

them secure against modern and post-quantum cryptography attacks. The development

of an efficient homomorphic encryption scheme would not just provide a benefit to one

specific sector, but rather it would have a wide breadth of impact in various domains rang-

ing from national security to genomics. In [3], they outline several potential applications

for HE, but here we will recount a simple example offered in 1978 by Rivest, Adleman,

and Dertouzos [49].

Consider a small loan lending company. Instead of storing their data in-house, which

requires expensive equipment, they opt to store their data through a cloud service provider.

Loan data contains highly sensitive personal information, and cannot be stored in the clear

as anyone could potentially gain access to the cloud platform and view the data.

Now consider that the loan company hires a third-party to run their proprietary soft-

ware to analyze the loan data to gain insight on how to improve their business, but do not

trust the third-party to not sell their data. In addition, since the software is proprietary

to the third-party company, they will not simply send it to the loan company to use. One
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solution to this situation is to use homomorphic encryption, or privacy homomorphism as

[49] terms it. Using homomorphic encryption, the loan company could encrypt their data

before storing it in the cloud, and allow the third-party to access the cloud in order to

download the data for computation. The analysis company would run their software over

the encrypted data and then re-upload the encrypted output to the cloud. This would

require the analysis company to modify their software to allow it to process computations

on encrypted data, but neither party ever has to reveal their secrets in this scheme.

Homomorphic encryption is not without its disadvantages though. Since it is based

on lattice cryptography, HE ciphertexts are “noisy” as error is introduced in the encryp-

tion process to hide the keys. Even worse, while the noise grows only slightly during

homomorphic addition, it grows exponentially during homomorphic multiplication. This

noise growth puts a limitation on the amount of computations that can be carried out

in an encrypted manner while still being able to decrypt correctly. It also drastically

increases run-time and storage requirements which makes it questionable if homomorphic

encryption could ever be used effectively as a cryptography scheme.

In his 2009 thesis, A Fully Homomorphic Encryption Scheme [24], Craig Gentry not

only proved that homomorphic encryption was indeed computationally possible, but con-

structed the first viable fully homomorphic encryption scheme (FHE) that allowed ar-

bitrary computations on encrypted data. Since his seminal work, research of FHE has

grown exponentially, leading to the creation of several FHE libraries that allow even a

novice in cryptography to implement the new, powerful technology.

In this thesis we will explore the mechanisms behind fully homomorphic encryption,

three important fully homomorphic schemes (BGV, BFV, CKKS), and three recent fully

homomorphic encryption libraries (HElib, SEAL, PALISADE). The rest of this thesis

is organized in the following manner. Chapter 2 will give the history of FHE and will

introduce the foundational work that has been completed in the field. Chapter 3 will

explain the preliminary knowledge required for the understanding of the rest of the thesis.

In Chapter 4, we will explore three different fully homomorphic encryption schemes as

well as an operation called SIMD that can be used to make FHE schemes more efficient.

Chapters 5, 6, and 7 will discuss the libraries HElib, Microsoft SEAL, and PALISADE,

respectively. The implementation of a simple example in each library will be carried out

in Chapter 8. Finally, the concluding remarks will be given in Chapter 9.
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2 Related Work

The idea of homomorphic encryption dates back to 1978, one year after the release of RSA.

In 1978, Rivest, Adleman, and Dertouzos published [49] which reasoned that homomorphic

encryption is a theoretic possibility. For more than 30 years it was unclear whether an

efficient solution to homomorphic encryption existed and if efforts should be exerted in

trying to find one.

There was no clear vision of how to approach the construction of a feasible homo-

morphic encryption scheme until 2005, when Regev published the Learning with Errors

problem [44]. The introduction of LWE revolutionized the cryptography world, and shed

enough light on the HE problem for Craig Gentry to see a path to a viable solution and

construct the first plausible fully homomorphic encryption scheme in 2009.

Since the release of Gentry’s publication, the development of FHE can be grouped

into three different generations corresponding to the approach taken in constructing the

FHE scheme.

First-generation FHE: The first generation of FHE development includes Gen-

try’s original scheme which used ideal lattices. Extensive design and implementation

work in the years following its release improved upon Gentry’s original implementa-

tion by many orders of magnitude in run-time performance. A year after the release

of [24], Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan

published the second FHE scheme that was based on [24], but took a simpler ap-

proach by replacing the ideal lattice computations with integer arithmetic [20]. The

schemes developed in the first-generation served as a foundation for the second

generation’s research, but they are not used in production today as they all suffer

from very rapid noise growth, which severely limits the amount of homomorphic

computations that can be performed.

Second-generation FHE: Many of the homomorphic encryption schemes cur-

rently in use today were products of the second generation of FHE development.

The second generation started in 2011 with the release of the BGV scheme by Zvika

Brakerski, Craig Gentry, and Vinod Vaikuntanathan [9]. It was followed closely

by the NTRU-based scheme LTV by Lopez, Alt, Tromer, and Vaikuntanathan in

2012 [40]. That same year also saw the release of a scale-invariant FHE scheme

called BFV by Brakerski, Fan, and Vercauteren [22]. There was then a 4-year gap
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until Cheon, Kim, Kim, and Song released CKKS, originally named HEAAN, which

allowed homomorphic computations on real numbers [14].

The majority of the schemes in this generation are based on the hard problem of

Ring-LWE. In addition, all of the schemes follow Gentry’s original blueprint in the

sense that they first construct a somewhat homomorphic encryption (SHE) scheme

and then convert the SHE scheme to a FHE scheme through the addition of some

sort of noise reduction technique such as bootstrapping or modulus switching.

Third-generation FHE: The third generation of FHE development was high-

lighted by the creation of schemes that avoid the expensive relinearization step

required in many second generation schemes to perform multiplication. The main

products of this era were the GSW scheme in 2013 by Craig Gentry, Amit Sahai,

and Brent Water [29], the FHEW scheme by Ducas and Micciancio in 2014 [21], and

the TFHE scheme by Chillotti et al. in 2016 [17]. The schemes of this era greatly

improved the efficiency of FHE, and most can bootstrap in less than 0.1 seconds, a

task that used to take upwards of hours.

With the creation of the above FHE schemes, several FHE libraries have been pub-

lished in order to allow even the most novice user to use the new encryption technology.

Table 2.1 lists 11 popular FHE libraries as well as their authors, what schemes they sup-

port, and what language they are written in.

Table 2.1: Recent Fully Homomorphic Encryption Libraries

Library Author Schemes Language

HElib Halevi, Shoup BGV C++

Microsoft SEAL Microsoft BFV, CKKS C++

PALISADE NJIT Lattice crypto library C++

HEAAN Cheon, Kim, Kim, Song CKKS C++

FHEW Ducas, Micciancio FHEW C++

TFHE Chillotti et al. TFHE C++

FV-NFLlib CryptoExperts BFV C++

NuFHE NuCypher GPU based TFHE Python

Lattigo EPFL-LDS BFV, CKKS Go

Λ© λ Crockett, Peikert Lattice crypto library Haskell

cuHE Dai, Wei, Sunar DHS CUDA

In addition, two fully homomorphic frameworks have been published which combine
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several of the FHE libraries into one platform. Table 2.2 lists two popular frameworks,

their authors, and the libraries they support.

Table 2.2: Recent Fully Homomorphic Encryption Frameworks

Framework Author Libraries

E3 MoMA Lab TFHE, FHEW, HElib, SEAL

SHEEP Alan Turing Institute HElib, SEAL, PALISADE, TFHE

With the rapid development of FHE schemes, libraries, and frameworks, it is impor-

tant that the cryptography community has a standard for how to safely set the security

parameters. In order for homomorphic encryption to be adopted in medical, health, and

financial sectors, it will have to be standardized and go through an intensive review pro-

cess by multiple standardization bodies and government agencies. An important part of

the standardization process is the agreement on security levels for varying parameter sets.

HomomorphicEncryption.org is an open consortium of people from industry, government

and academia who have undertaken the task of this standardization [38]. Specifically, they

set to uniformize and simplify the FHE library APIs, and provide education to application

developers on how to safely implement FHE.

5



3 Preliminaries

Before delving into the explanation of the fully homomorphic encryption libraries, it will

be helpful to have an understanding of the underlying mechanisms of fully homomorphic

encryption itself. In this Chapter, we will explore the basics of homomorphic encryption,

somewhat homomorphic encryption, bootstrapping, modulus switching, and finally, fully

homomorphic encryption.

3.1 HE: Homomorphic Encryption

When data is encrypted under a standard modern day encryption scheme, there are only

two operations that can be performed on the data: storage and retrieval. If any com-

putation or analysis needs to be performed on the encrypted data, it must be decrypted

first. This requirement comes at a cost of time, resources, and privacy. Homomorphic

encryption schemes provide an alternative to regular cryptographic schemes by offering

mechanisms to perform operations upon encrypted data without having to decrypt it first.

Homomorphic encryption operates on a circuit level, meaning that the functions used

in homomorphic encryption must consist only of binary operations like AND and XOR.

For example, addition can be represented as the multiplication of two bits:

AND(b1, b2) = b1 · b2

and XOR can be seen as the addition of two bits modulo 2:

XOR(b1, b2) = (b1 + b2) mod 2

This is not an inherent problem as every function that a computer performs can be reduced

to some series of bit-wise functions, but as will be shown later, the depth of the circuit, or

how many operations are carried out, can greatly affect the efficiency and correctness of

the HE scheme. For simplicity, the term function and circuit will be used interchangeably

throughout this thesis.

When thinking of a regular public key encryption scheme, it can be helpful to relate it

to slamming a door that automatically locks when it is closed. Anyone can close the door,

but only the person with the correct key can unlock it and go through [27]. Homomorphic

encryption on the other hand can be thought of as a locked glove-box. Gentry provides

an attractive example in [23] that we will borrow to explain the concepts throughout this
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chapter.

Imagine that Alice owns a jewelry store and has a collection of expensive raw materials

that can be transformed into a final product and be sold for a high dollar. Alice does not

trust her workers to not walk off with the precious raw materials when she is not looking,

so she wishes to find a way to grant her workers the permission to process the materials

without having direct access to them. She comes up with an idea to put the materials

inside of a transparent glove-box, locking it with her master key, and then giving the box

to the workers. The workers can insert their hands into the gloves and manipulate the

materials into a finished piece of jewelry without ever having direct access to them. Once

assembled, the workers give the box back to Alice who can unlock it and retrieve the final

product.

In this example, the placing of the raw materials inside the glove-box and locking it

with a key, k, represents the encryption, Enck, of some set of plaintext {m1,m2, . . . ,mn}.
The workers’ manipulation of the materials with the gloves represents the homomorphism

or malleability of the encryption scheme as it allows the raw data to be processed while

locked inside the box. The final product inside the box represents the final ciphertext,

c = Enckf(m1,m2, . . . ,mn), which is the encryption of the function over the original

plaintexts.

In the above example, the property of homomorphism was showed through the ma-

nipulation of the materials by the workers, but in a real homomorphic encryption scheme,

the encryption and decryption functions can be thought of as homomorphisms between

plaintext and ciphertext spaces. Put simply, a homomorphism is the transformation of

one set into another that preserves the relationship of the elements in the first set.

Definition 3.1.1 (Homomorphism [11]). If G and H are groups, a homomorphism from

G to H is a function f : G→ H such that f : (g1 � g2) = f(g1)⊗ f(g2) for any elements

g1, g2 ∈ G, where � denotes the operation in G and ⊗ denotes the operation in H.

While homomorphic encryption is a relatively new concept, homomorphism is not. In

fact, the notion of homomorphic encryption, originally called a privacy homomorphism,

was introduced by Rivest, Adleman, and Dertouzous [49] shortly after the publication of

RSA in 1978. RSA is an asymmetric encryption scheme meaning that each user must

have a public and private key in order to carry out encryption and decryption.

Let {e, n} be some public key. The encryption of message m is given by:

E(m) = me mod n

Consider two messages m1 and m2. RSA has a multiplicative homomorphic property
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as the product of two ciphertexts is equal to the encryption of the product of the two

messages.

E(m1) · E(m2) = me
1m

e
2 mod n = (m1m2)

e mod n = E(m1 ·m2)

Since RSA only has multiplicative homomorphism and not addition, it is termed as a

partial homomorphic encryption scheme (PHE).

Besides the idea of homomorphism, homomorphic encryption schemes differ from other

public-key schemes as they have an additional function called Eval . In terms of writing a

program, the Eval function is where all the encrypted computation actually takes place.

Definition 3.1.2 (Public-key Encryption). A traditional public-key encryption scheme

is a 3-tuple of probabilistic, polynomial-time algorithms KeyGen, Enc, and Dec:

KeyGen: Takes as input a security parameter λ and outputs a pair of keys (pk, sk)

where pk is the public key and sk is the private key. The plaintext space P is defined

by pk the ciphertext space C is defined by sk.

Enc: Takes as input the public key pk and a message m ∈ P . It outputs a ciphertext

c ∈ C. This process is denoted as c← Encpk(m).

Dec: Takes as input the private key sk and a ciphertext c ∈ C. It outputs a message

m ∈ P if the right combination of keys is used, or ⊥ if decryption is not successful.

This process is denoted as m := Decsk(c).

Definition 3.1.3 (Homomorphic Encryption). A homomorphic encryption scheme is a

4-tuple of algorithms KeyGen, Enc, Dec, Eval:

KeyGen: Takes as input a security parameter λ and outputs a pair of keys (pk, sk)

where pk is the public key and sk is the private key.

Enc: Takes as input the public key pk and a message m ∈ {0, 1}. It outputs a

ciphertext c ∈ C. This process is denoted as c← Encpk(m).

Dec: Takes as input the private key sk and a ciphertext c ∈ C. It outputs a message

m ∈ P if the right combination of keys is used, or ⊥ if decryption is not successful.

This process is denoted as m := Decsk(c).

Eval: Takes as input the public key pk, n ciphertexts c1, c2, . . . , cn ∈ C and a

certain permitted function F . It outputs F (c1, c2, . . . , cn) ∈ C. Consider the set of
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ciphertexts ci = {c1, c2, . . . , cn} and their corresponding decrypted messages mi =

{m1,m2, . . . ,mn}. The evaluation is correct if the following holds:

Dec(Eval(F, ci, pk), sk) = F (mi)

or the evaluation of the ciphertexts that are encrypted with pk through the function

F decrypts under sk to the computation of the plaintexts themselves through F .

It is important to note that homomorphic encryption schemes do not always have to be

asymmetric. In fact, homomorphic encryption in the asymmetric and symmetric setting

are essentially the same. Transforming a asymmetric homomorphic encryption scheme to

a symmetric one is relatively simple. The main obstacle is that in the public-key setting,

the homomorphic evaluation algorithm is also given the encryption key. To overcome this

issue, the encryption key can simply be appended to the end of each ciphertext [51]. It is

more difficult to go from a symmetric scheme to an asymmetric one.

Theorem 3.1.1. (Symmetric to Asymmetric HE [30]) If E is a symmetric homomorphic

encryption scheme it can be transformed to an asymmetric one by the following process.

First, a public key must be chosen and published. This public key can be a collection of

` random bits, {b1, . . . , b`}, and the encryption of those bits `, {c1, . . . , c`}.

pk = {(b1, c1), . . . , (b`, c`)}, ci = Encsk(bi)

The amount of bits ` chosen depends on the size of the ciphertext, ` � |ci|. To encrypt

a bit σ, first choose another random bit string −→r such that the inner product between

ri and bi is equal to σ:
∑
ribi = σ. Then, compute the homomorphic inner product:

c =
∑

ri=1 ci = Enc(
∑
ribi). Note that the homomorphic inner product is just the

modulo 2 inner product of ri and bi.

For the purpose of this thesis, we will be focusing on the asymmetric variant of homo-

morphic encryption schemes.

3.2 SHE: Somewhat Homomorphic Encryption

Before 2009, all homomorphic encryption schemes were actually only somewhat homo-

morphic [26]. SHE is an extension of PHE which allows an arbitrary number of either

additions or multiplications, but only a bounded number of the other. This means that

SHE can only handle a limited class of permitted functions or circuits. This can be vi-

sualized through the example of Alice’s jewelry shop where the glove-boxes are defective
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and only allow the workers to manipulate the gloves for a certain amount of time, or a

certain number of steps, before they become stiff and inoperable.

One simple example of a SHE scheme built using only modular arithmetic can be seen

in [20]. For simplicity, it will be explained as a symmetric encryption scheme, but as

noted before, any symmetric encryption scheme can be transformed into an asymmetric

one. In [20], they use a security parameter denoted λ, and variables N = λ, P = λ2, and

Q = λ5.

KeyGen: Takes as input the security parameter λ and generates key p which is a

random P -bit odd integer.

Enc: Takes as input the key p and a message m ∈ {0, 1}. To encrypt the bit m,

choose m′ to be a random N -bit number such that m′ = m mod 2 and choose q to

be a random Q-bit number. It outputs a fresh1 ciphertext c = m′ + pq where m′ is

the noise of the system that masks the actual message m.

Dec: Takes as input the key p and ciphertext c. It outputs mf = (c mod p) mod 2.

Here, c′ = (c mod p) is in the range (−p/2, p/2) with the condition that p divides

c− c′ with no remainder.

Eval: Takes as input a boolean function f and a set of ciphertexts Sc = {c1, . . . , cn}.
First, f is represented as a circuit C made of XOR and AND gates. Let C† be a

copy of the circuit C, but with the XOR and AND gates replaced by addition and

multiplication gates over the integers. Let f † be the multivariate polynomial that

corresponds to the circuit C†. It outputs c = f †(c1, . . . , cn), or the computation of

the ciphertexts through the function f †.

In this scheme, the ciphertexts are near-multiples of p, but not exact multiples. For

example, consider λ = 2. In KeyGen, p is a random P = λ2 = 4 bit odd integer:

p = 1001 = 9

Now, choose the message m = 1. To encrypt m, first generate

m′ = 1 mod 2 = 1

1Meaning it only has a small amount of noise, around N -bits.
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and q as a Q = λ5 = 32 bit integer,

q = 11011010110100000011111000111100 = 3671080508

The final ciphertext is computed as

c = 1 + 9(3671080508) = 33039724573

To show that this number is a near-multiple of p consider

(c mod p) = (33039724573 mod 9) = 1

This means that c is −1 away from a multiple of p.

Despite there being noise in the system, the correct decryption can still be achieved.

Finishing out the example, take

(33039724573 mod 9) = 1 mod 2 = 1

which is the original message. This is possible because the noise exists in the same parity

as the message, meaning that the message and error are both even or they are both odd.

In addition to being a valid encryption scheme, this scheme is also homomorphic be-

cause by adding, subtracting, or multiplying the ciphertext, the underlying messages are

actually added, subtracted, or multiplied modulo 2. Despite this being a valid homo-

morphic scheme, a significant problem exists. As operations are carried out, the noise

of the system grows. Eventually it grows to a point where decryption no longer returns

the correct result. This means that the scheme can only support some functions, namely

functions where the accrued noise does not grow over p/2.

Since SHE is limited to functions that are not too complicated (e.g. functions that

only contain low-degree polynomials), one may wonder if there is any benefit to using SHE

over FHE when FHE can compute any function. In fact, there are cases in which SHE

may be sufficient or even preferred over FHE. In the case where only a simple function

needs to be computed, the overhead of SHE is much lower than the overhead of FHE 2.

For example, take the computational times for the Gentry-Halevi’s SHE and FHE

implementations shown in Table 3.1. Comparing the times for the SHE scheme and the

FHE scheme for the different key dimensions, it can be clearly seen that SHE has faster

2Here, overhead refers to the ratio of the time required for encrypted computation to the time required
for plaintext computation.
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computation times than FHE. But, this is at the drawback of only being able to compute

some functions, not all. In addition, SHE schemes are not able to handle their own de-

cryption function without significant modifications, meaning that these types of schemes

are not inherently bootstrapable. If the SHE scheme can be bootstrapped, it can then

be used to construct a FHE scheme. The concept of bootstrapping will be discussed in

detail in the next section.

Table 3.1: Comparison of Genty-Halevi’s SHE and FHE Schemes [28]

Dimension SHE KeyGen FHE KeyGen

2048 1.25 s 40 s

8192 10 s 8 min

32768 95 s 2 hr

3.3 Bootstrapping

Once again consider the defective glove-boxes where the gloves lock after a certain amount

of time or number of manipulations. How can Alice circumvent this problem and still be

able to produce jewelry? One solution would appear if the glove-boxes have a one-way

insertion slot much like that of a mailbox. If this is the case, then one box could be put

inside another through the slot. Alice can first give a worker a glove-box, box1, containing

the raw material. In addition, she can give them several other boxes, box2 . . . boxn. Inside

each of the additional boxes is the key to the previous box, meaning box2 contains the

key to box1, box3 contains the key to box2 and so on. Note that the final box is locked

by a key that only Alice holds.

Figure 3.1: Bootstrapping procedure for Alice’s jewelry shop.

In the Figure 3.1, box1 contains the original form of the raw materials. The worker

is able to manipulate the materials into a chain and a gemstone before the gloves lock.

Then, they put the first box in the second through the one-way slot. Using the key in

box2, the worker unlocks box1 and retrieves the materials. They then finish construction

of the necklace. Alice can then use her key to unlock box2 and retrieve the final product.
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All existing HE schemes have the trait that a small amount of noise is added during

encryption. Computing homomorphically on ciphertexts will cause the noise to grow to

the point where they become so large that decryption fails [22]. Bootstrapping, originally

proposed and termed recrypt by Gentry, can be used to lower the noise in a ciphertext to

a fixed level that is determined by the complexity of the decryption circuit.

Definition 3.3.1 (Recrypt [23]). Let c1 be the encryption of message bit m with key pk1

and sk1 be a private key encrypted with key pk2 using the Enc function Enc(pk2, sk1j)

over the bits of sk1. The function Recrypt can then be described as follows:

Recrypt: Takes as input pk2, the decryption circuit D = Dec, sk1, and c1. First,

generate the vector c1 using the encrypt function Enc(pk2, c1j) which operates over

the bits of c1, i.e. encrypt c1 element wise with pk2. It returns the output of

Eval(pk2, D, sk1, c1) which effectively eliminates the pk1 portion of c1 leaving it

encrypted only under pk2.

Bootstrapping refreshes a ciphertext by running the decryption function on it ho-

momorphically. Usually, when a ciphertext is doubly-encrypted (which happens in this

scenario c1 = Epk2(Epk1(m))) the outside ciphertext is decrypted in order to get to the

inside. But in recrypt, the inner ciphertext is actually decrypted homomorphically with

the corresponding key, c1 = Epk2(Dsk1,pk2
(c1)). While this decreases the noise of the sys-

tem by eliminating the noise from the inner ciphertext, additional noise is added in the

evaluate function. But, as long as the new noise added from evaluate is less than the

noise eliminated from the inner ciphertext the scheme should continue to function.

Unfortunately, bootstrapping is an extremely costly operation. The complexity of

most approaches to bootstrapping is at least the complexity of the decryption times the

bit-length of the individual ciphertexts that are used to encrypt the bits of the private

key [9]. This is because bootstrapping requires the evaluation of the decryption circuit

homomorphically, so each private key bit is replaced by a large ciphertext encrypted

representation of that bit.

3.4 Modulus Switching

Because of the large computational overhead of bootstrapping, alternative methods of

noise reduction have been proposed. The most notable one is modulus switching, proposed

by Brakerski, Gentry, and Vaikuntanathan in [9].

The main idea of modulus switching is to use an evaluator, who knows a bound on

the length of the private key sk, but not sk itself, to transform a ciphertext c mod q into

a different ciphertext c′ mod p without jeopardizing the correctness of the scheme. The
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transformation simply scales c by a factor (p/q) and rounds appropriately. If sk is short,

and p� q, then the noise of the system decreases. Modulus switching allows the evaluator

to minimize the noise of the system without knowing sk and without bootstrapping,

making it a light-weight mode of noise management.

Definition 3.4.1 (Modulus Switching [9]). Let p and q be two odd moduli and c be an

integer vector. Define c′ to be the integer vector closest to (p/q)·c such that c′ = c mod 2.

Then, for any s with |[〈c, s〉]q| < q/2− (q/p) · `1(s):

[〈c′, s〉]p = [〈c, s〉]q mod 2 and |[〈c′, s〉]p| < (p/q) · |[〈c, s〉]q|+ `1(s)

where `1(s) is the `1 norm of s, 〈a, b〉 represents the dot product of a and b, and [·]q
represents and element modulo q.

It may not be inherently obvious why modulus switching works. The main idea of

modulus switching is to scale down the ciphertext c ∈ Zq by a factor β after each multi-

plication. To do this, modulus switching carefully chooses a gradually decreasing modulus

q for each level of multiplication, which allows the noise level to remain small and constant

from one level to the next. This results in a new ciphertext c/β ∈ Zq/β and a reduced

noise level e/β. By performing this procedure, the absolute magnitude of the noise in the

ciphertext decreases. Through modulus switching, k levels of multiplication can be per-

formed before reaching the noise ceiling. This is an exponential improvement compared

to the log(k) levels allowed in regular HE multiplication3.

3.5 FHE: Fully Homomorphic Encryption

While SHE schemes only allow the computation of some functions, fully homomorphic

encryption (FHE) schemes enable the computation of arbitrary functions on encrypted

data. This property makes FHE the most sophisticated homomorphic encryption scheme

and the “holy grail” of modern cryptography.

The underlying concept of FHE is rather simple. Given a set of ciphertexts, {c1, · · · , cn}
that are the encryption of messages {m1, . . . ,mn}, a FHE scheme should allow anyone to

output a ciphertext that is the encryption of f(m1, . . . ,mn) for any function f , as long as

f can be efficiently4 computed. In other words, if a user has a function f and wants to get

the result of the plaintexts through the function, then it is possible to instead compute

on the ciphertexts to obtain a result that decrypts to f(m1, . . . ,mn). There should be

3See [9] for a more detailed explanation of how this exponential improvement is achieved.
4In this setting, a function f is efficient if the cost of evaluating f depends polynomially on a security

parameter as well as the the complexity of the function itself.
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no information leaked about the messages, the computation of the messages through the

function f , f(m1, . . . ,mn), or any intermediate plaintext values. All components of the

scheme should always remain encrypted until the very end when the user with the private

key decrypts the final value [24].

A HE scheme is a FHE scheme if it has the algorithms defined in Definition 3.1.3 and

also satisfies the property that f can be any arbitrary function (as long as it is efficiently

computatble). In addition, if a cryptosystem can encrypt messages m ∈ {0, 1}, and can

perform addition and multiplication of the data efficiently, then the cryptosystem is a

FHE scheme if the following hold:

• Functionality: Let S be a set of valid ciphertexts S = {c1, . . . , cn} and sk be a

private key. For ci ∈ S, let Cadd = c1 + c2 ∈ S and Cmult = c1 ∗ c2 ∈ S. Then:

1. Dec(sk, Cadd) = Dec(sk, c1) + Dec(sk, c2)

2. Dec(sk, Cmult) = Dec(sk, c1) * Dec(sk, c2)

• Efficiency: For a security parameter λ:

1. All operations (KeyGen, Enc, Dec, Add, Mult, Eval) only take polynomial

time with respect to λ. This is to say that all functions can be computed

compactly.

2. All valid ciphertexts of the scheme have polynomial size with respect to λ. This

means that the ciphertext size needs to be independent of the function being

homomorphically evaluated.

The first practical FHE scheme was proposed by Gentry [24] and was based upon a

modified version of his SHE scheme in which the decryption function is squashed to make

it simple enough for the bootstrapping procedure. To do this, instead of computing the

multiplication of two long numbers5, addition of a small set of numbers is carried out

instead. The summation performed corresponds to a low-degree polynomial that can be

computed efficiently in a homomorphic fashion. In addition, a “hint” is added to the

original public key - namely, a large set with a secret sparse subset that sums to the

original private key and relies on the sparse subset sum assumption.

Gentry’s original scheme was computed on polynomials, utilizing the hard problem of

ring learning with errors (R-LWE). But instead of polynomials, FHE can be computed

on integers using the hard problem of approximate greatest common divisor (AGCD) or

5In the original decryption scheme, m = (c mod p) mod 2 can be rewritten as m =
LSB(c) XOR LSB(bc/pe). The multiplication here refers to c time 1/p.
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even on matrices by using the hardness of normal learning with errors (LWE). LWE is

considered a “hard” problem as it cannot be solved efficiently, or concretely that is it can-

not currently be solved in polynomial time. No one underlying hard problem is inherently

better than another, but rather the underlying hard problem is what provides proof of

the security of the scheme. Proof of security is crucial in the design and implementation

of any cryptographic system. Hard problems give a proof of security because if a crypto-

graphic system can be reduced to a hard to solve problem, then the cryptosystem itself

should be computationally difficult to break. In addition, the FHE libraries currently in

use do not use Gentry’s original FHE scheme, rather they use more efficient schemes such

as BGV, BFV, and CKKS. These schemes and their underlying hard problems will be

discussed thoroughly in the next chapter.
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4 Underlying Schemes

Underneath every fully homomorphic encryption library lies a fully homomorphic en-

cryption scheme. In the three libraries chosen, the three main FHE schemes used are

BGV, BFV, and CKKS. In addition, many of the schemes support SIMD operations that

introduce a dramatic decrease in run-time.

4.1 BGV: Brakerski-Gentry-Vaikuntanathan

The BGV scheme was proposed in 2012 in the paper “Fully Homomorphic Encryption

without Bootstrapping” by Brakerski, Gentry, and Vaikuntanathan [9]. BGV is a levelled

FHE (LFHE) scheme, meaning that the parameters of the scheme depend (polynomially)

on the depth of the circuits that the scheme is capable of evaluating.

Definition 4.1.1 (Levelled Fully Homomorphic Encryption [9]). We say that a family

of homomorphic encryption schemes with a positive integer security parameter L, {E (L) :

L ∈ Z+}, is levelled fully homomorphic if, ∀L ∈ Z+, every E uses the same decryption

circuit, E (L) compactly evaluates all circuits of depth at most L, and the computational

complexity of E (L)’s algorithms are polynomial (the same polynomial for all L) in L, and

(in the case of the evaluation algorithm) the size of the circuit.

The depth referred to above is the multiplicative depth, which is different than the mul-

tiplicative level of the scheme. Multiplicative depth is how many sequential multiplications

can be performed while multiplicative level is the total amount of multiplications that can

be performed on a ciphertext. For example, the multiplicative depth of x1 · x2 + x3 · x4
is 1, not 2, even though two multiplications are carried out. If the equation was changed

to x1 · x2 · x3, the multiplicative depth would be 2 as two consecutive multiplications

are carried out. Multiplicative level cannot exceed the multiplicative depth, otherwise

decryption cannot be carried out successfully.

BGV allows the user to choose if they want a RLWE based version of BGV or a plain

LWE based one. The main difference between using RLWE or plain LWE is that while

they both achieve the same results, LWE does it with worse performance as the run time

of a LWE scheme is worse than that of a RLWE one. In addition to using RLWE over

LWE, they forgo Gentry’s bootstrapping procedure for noise management and instead use

modulus switching.

As explained in the previous chapter, the main idea behind modulus switching is that

an evaluator, who does not know the private key s but instead knows a bound on its
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length, can transform a ciphertext c modulo q into a different ciphertext modulo p while

preserving correctness. They use modulus switching in their scheme to keep the noise level

essentially constant while sacrificing modulus size and gradually sacrificing the remaining

homomorphic capacity of the scheme.

In the LWE instantiation, R = Znq is the ring of dimension n of integers mod q,

whereas in RLWE instantiation, R = Z[x]q/(x
d + 1) where d = 2n. This is essentially the

polynomials of degree less than d with coefficients modulo q.

N1 Analytics offers a simplistic example of polynomial ring arithmetic that we will

recount here in order to give a strong foundation for the understanding of the FHE scheme

computations [35]. Let n = 4, d = 2n = 16, and q = 24. Then, plaintexts can take the

form:

a15x
15 + a14x

14 + a13x
13 + a12x

12 + a11x11 + a10x
10 + a9x

9+

a8x
8 + a7x

7 + a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0

where ai ∈ {0, q − 1} or 0 to 23. Visually, this can be depicted as in Figure 4.1 where

each loop represents one power of x that appears in the polynomial and a dot represents

one of the 24 possible values the coefficient can take. We will table this example for now

and return back to it in the BFV section.

Figure 4.1: Depiction of a polynomial ring with degree 16
and plaintext modulus 24 [35].

A detailed explanation of BGV and how to implement the full scheme can be found

in [9], but [2] provides a simplistic overview of how basic BGV functions. Here we will

recount the basic version of BGV which provides enough detail for the purpose of this

paper.

The basic BGV scheme can be broken down into 7 separate functions:

1. ParamGen(λ, µ, b): Takes as input security parameters λ and µ, and a bit b ∈
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{0, 1} to set the LWE version (RLWE or LWE). It outputs params = (q, d, n, χ)

where q = q(λ) is an odd ciphertext modulus1, d = d(λ) is a power of 2, n = n(λ)

is the dimension of the system, and χ is a discrete Gaussian distribution used for

error sampling. Note that for the RLWE variant R = Z[x]/(xd + 1), or the ring

with polynomials of degree less than d.

2. SecKeyGen(params): Takes as input the parameters params. In the basic scheme

the private key sk is sampled from the error distribution χ and belongs to the ring

R. Namely:

sk = s = (1, s′[1], . . . , s′[n]) ∈ Rn+1
q and s′ ← χn

where s′[i] is the i-th coefficient of s′.

3. PubKeyGen(params): Takes as input the parameters params. PubKeyGen

first calls SecKeyGen to generate sk. From sk it extract s′. Then, it generates a

uniformly random N × n matrix A′ from the ring RN×n
q where N = b(2n+ 1)logqc

and an error term e← χn. Set b← A′s′+ 2e and A to be the n+ 1 column-matrix

consisting of b followed by the n columns of −A′. It returns the public key pk = A.

4. Enc(params,m,pk): Takes as input the parameters params, the message m ∈
{0, 1}, and the public key pk. First m is mapped into the ring Rn+1

q by setting m =

(m, 0, . . . , 0) ∈ Rn+1
q . Then, a value2 r is sampled from RN

2 . The final ciphertext

output is c←m+AT r ∈ Rn+1
q . Note: while not explicitly shown in this explanation

the ciphertext produced is comprised of two elements in Rn+1
q . See [2] for an in-depth

explanation. The BFV section also touches on this tuple construction.

5. Dec(sk, c): Takes as input the private key sk (Note: sk = s) and the ciphertext c.

Dec outputs m← [[〈c, s〉]q]2 which is the dot product of c with s modulo q modulo

2.

6. EvalAdd(c1, c2): Takes as input two ciphertexts c1 and c2 that are encrypted

under the same sk. It outputs c3 = {(c1,0 + c2,0), . . . , (c1,n+1 + c2,n+1)}.

7. EvalMult(c1, c2): Takes as input two ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1)

that are encrypted under the same sk. It outputs c3 = {(c1,0 ∗ c2,0), c1,0 ∗ c2,1 + c1,1 ∗
c2,0, (c1,1 ∗ c2,1)}.

1x(λ) means x is polynomial in respect to λ.
2r is a vector of size N with elements modulo 2, i.e. has values of 0 and 1.
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In the basic BGV scheme, ciphertexts grow as a result of EvalMult as shown in the

example above. When performing a d-degree polynomial multiplication on a plaintext in

BGV, the resulting ciphertext has d+1 ring elements. This problem is mitigated through

the relinearization of the ciphertext, which will be explained more in the BFV section.

To turn the explained scheme above into a FHE scheme, after performing the wanted

addition and multiplications on the ciphertext, a function named Refresh is called. Re-

fresh essentially invokes a scaling function that switches the moduli and then switches

the key which the resulting ciphertext is encrypted under. By combining Refresh with

the bootstrapping procedure a FHE scheme can be achieved [50].

BGV offers a nice optimization of the scheme with the concept of batching. The

main idea behind batching is to pack multiple plaintexts into each ciphertext so that a

function can be homomorphically evaluated on multiple inputs with approximately the

same efficiency as homomorphically evaluating it on one. Batching allows the reduction

of the per-gate computation time from quasi-linear in the security parameter (Õ(λ · L3

where L is the level of the system) to poly-logarithmic (Õ(λ)). Batching, also referred to

as packing, will be discussed later in detail.

It is important to note that out of the three schemes mentioned in this chapter BGV

is the most efficient scheme when performing the same operation on multiple ciphertexts

at once due to their batching procedure. But on the opposite side, out of the three,

BGV is the most difficult to use and to implement correctly. Additionally, it can only

perform computations over integers, not complex integers or real numbers. Despite these

downfalls, BGV was chosen as a recommended scheme for HE during the Homomorphic

Encryption Standardization Workshop held in 2018.

4.2 BFV: Brakerski-Fan-Vercauteren

In 2012, Fan and Vercauteren [22] modified Brakerski’s [8] fully homomorphic encryption

scheme based on LWE to work under the security assumption of RLWE. In both [22] and

[8], they make use of relinearization, but BFV has a more efficient approach. They also

simplify the bootstrapping procedure, by introducing a modulus switching trick that [8]

did not have. These improvements will be explained throughout the remainder of this

section.

The plaintext space in BFV is Rt = Zt[x]/(xd + 1) where t is the plaintext coeffi-

cient modulus and d is the plaintext polynomial modulus. The encryption of a plaintext

in BFV generates a ciphertext which is represented by two polynomials from the ring

with the same polynomial modulus d, but a different coefficient modulus q � t, i.e.

Rq = Zq[x]/(xd + 1). Similar to BGV, these ciphertexts grow in size when homomorphic
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multiplication is carried out. In order to keep the ciphertext from outgrowing what the

scheme can support, a relinearization procedure3 is used to bring a n + 1 degree poly-

nomial back to degree n. Fully homomorphic computations can be carried out in BFV

fashion in the following manner:

Let λ be the security parameter, q > 1 be an integer polynomial modulus, d be a degree

with d = 2n, t be an integer plaintext coefficient modulus with 1 < t < q, δ = bq/tc, T be a

positive integer base that will be used in the relinarization key generation, ` = blogT (q))c,
R2 represent the polynomial ring with coefficients modulo 2, i.e., the coefficients of the

form {-1, 0, 1}, and χ be the a discrete Gaussian distribution over the integers with a

standard deviation σ used for error sampling.

The BFV scheme can be broken down into 7 functions [52, 22, 35]:

1. PrivateKeyGen(λ): Takes as input the security parameter λ and randomly

samples s ← R2. It outputs a private key sk = s. Referring back to the example

from N1 Analytics in the section on BGV, the private key sk can take the form:

sk = x15 − x13 − x12 − x11 − x9 + x8 + x6 − x4 + x2 + x− 1

2. PublicKeyGen(sk): Takes as input the private key sk and sets s = sk. Sample

a← Rq and e← χ. It outputs the public key pk as:

pk = ([−a · s + e)]q, a)

For example, if q = 874 and t = 7 then a and e could equal:

a =42x15 − 256x14 − 393x13 − 229x12 + 447x11 − 369x10 − 212x9+

52x7 + 70x6 − 138x5 + 322x4 + 186x3 − 282x2 − 60x+ 84

e =− 3x15 + x14 + x13 + 7x12 − 6x11 − 6x10 + x9

− x6 + 3x5 − 4x4 + 4x3 + 4x+ 1

The first part of the public key would then be constructed as shown in Figure 4.2

3In [22] they offer two different relinearization functions. For the purpose of this paper we will focus on
version 1 which minimizes the relinearization error. Version 2 minimizes the time and space requirements
of the relinearization function.
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Figure 4.2: Computation of BFV public key [35]

pk0 =− 285x15 − 431x14 − 32x13 + 86x12 − 83x11 − 142x10 − 41x9+

430x8 + 26x7 − 158x6 − 281x5 + 377x4 + 110x3 − 234x2 − 113x+ 252

Notice that despite multiplying two polynomials, which usually causes the addition

of their exponents, the degree of the plaintext polynomial never exceeds degree 15

due to the reduction of the polynomial by (xd+1). This extra plus one to the reduc-

tion introduces a sign change which helps scramble the result of the multiplication.

For instance, consider 2x14 × x4 = 2x18 mod (x16 + 1) = −2x2 shown in Figure 4.3

below.

Figure 4.3: Multiplication of polynomials modulo (xd + 1). The green dot indicates the 0
value of the coefficient and the red dot indicates how the term is moved by multiplication
[35].

3. EvaluationKeyGen(sk, T ): Takes as input the private key sk and T . Setting

sk = s, for i = 0, . . . , ` sample ai ← Rq and ei ← χ. Output the evaluation key

evk as:

evk = ([−(ai · s + ei) + T i · s2]q, ai)

for i = 0, · · · , `.
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4. Encrypt(pk,m): Takes as input public key pk and a message m ∈ Rt. First,

it separates pk into pk[0] = p0 and pk[1] = p1. Then, it randomly samples

u, e1, e2 ← χ. It computes and returns the ciphertext ct as:

ct = ([δ ·m + p0u + e1]q, [p1u + e2]q)

5. Decrypt(sk, ct): Takes as input private key sk and ciphertext ct. First, it sets

sk = s, c0 = ct[0], and c1 = ct[1]. Then, it computes and outputs the message

m′ ∈ Rt as:

m′ =

[⌊
t · [c0 + c1 · s]q

q

⌉]
t

6. Add(ct0, ct1): Takes as input two ciphertexts ct0 ct1 and returns the resulting

ciphertext ct′ as:

ct′ = (ct0[0] + ct1[0], ct0[1] + ct1[1])

7. Multiply(ct0, ct1): Takes as input two ciphertexts ct0 and ct1 and returns the

resulting ciphertext ct′ as:

c0 =

[⌊
t · ct0[0] · ct1[0]

q

⌉]
q

c1 =

[⌊
t · (ct0[0] · ct1[1] + ct0[1] · ct1[0])

q

⌉]
q

c2 =

[⌊
t · ct0[1] · ct1[1]

q

⌉]
q

c′0 = c0 +
∑̀
i=0

evk[i][0]c
(i)
2

c′1 = c1 +
∑̀
i=0

evk[i][1]c
(i)
2

ct′ = (c′0, c
′
1)

8. Relinearization: The main goal of relinearization is to take the size of the

ciphertext back to at least degree 2 after a multiplication was carried out. Suppose

that some multiplication produces a size 3 ciphertext, i.e., (c0, c1, c2). To turn this

into a size 2 ciphertext (c′0, c
′
1) that decrypts to the same result requires the use of

the relinearization key created in the function EvaluationKeyGen. The natural
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approach would be to set:

c′0 = [c0 + evk[0]c2]q

c′1 = [c1 + evk[1]c2]q

Unfortunately, since c2 can have coefficients up to size q the decryption process will

fail. Instead, c2 will need to changed to a smaller base before being used in the

above equations. Specifically:

c2 =
∑̀
i=0

ci2T
i

4.3 CKKS: Cheon-Kim-Kim-Song

Both BGV and BFV have a disadvantage in that they can only perform computations over

the integers, or put another way, they only support discrete computations such as boolean,

integer, or modulo operations. This makes them not very practical for the majority of real

world applications since most real-world data belongs to a continuous space such as R or

C. CKKS solves this problem by allowing computation on complex numbers with limited

precision by treating the encryption noise as part of the error that occurs naturally during

approximate computations [47, 45].

CKKS was proposed by Cheon, Kim, Kim, and Song in the paper “Homorphic En-

cryption for Arithmetic of Approximate Numbers” released in 2017 [14]. The scheme

originally went by the name HEAAN, but to distinguish it from the homomorphic en-

cryption library HEAAN (which is a library that implements CKKS/HEAAN), the name

was changed to CKKS after the authors. Since its release in 2017, several improvements

have been made to the scheme such as a full residue number system (RNS) variant [16]

and an bootstrapping function for the scheme which brings it to be a FHE scheme [12]

as CKKS in the original paper was only a levelled HE scheme.

Before delving into the CKKS scheme, it is important to make the distinction between

two types of approximate arithmetic operations: floating-point arithmetic and fixed-point

arithmetic.

Definition 4.3.1 (Floating-point Representation). In the floating-point number system,

a real number is represented by a product of an integer called a significand and a scaling

vector which is usually called a scaling factor. For example, 1.011101 = 1011101∗2−6 has

the significand 1011101 and a scaling factor of 2−6. The intuition behind this represen-

tation scheme is that the floating point number is not the exact value we want to store,

but it is just the approximate value.
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Definition 4.3.2 (Floating-point Arithmetic). In floating-point arithmetic, the signifi-

cand is assumed to have a binary point to the right of the leftmost bit. In addition, the

number of bits in the significand is fixed while the scaling factor can dynamically change

during the computation. For example:

(101011 ∗ 2−5) ∗ (110111 ∗ 2−5) = 100100111101 ∗ 2−10 ≈ 100101 ∗ 2−4

Definition 4.3.3 (Fixed-point Arithmetic). For fixed-point arithmetic, the scaling vector

is fixed, but the bit size of the significand can change. For example:

(101011 ∗ 2−5) ∗ (110111 ∗ 2−5) = 100100111101 ∗ 2−10 ≈ 1001010 ∗ 2−5

Fixed point arithmetic is the preferred approximate arithmetic style for homomorphic

computations since it is more stable. CKKS supports fixed-point arithmetic but allows

for some extra noise from the scheme to be added.

In CKKS, there is a distinction between a message m and a plaintext pk. The message

m is a vector of floating-point numbers or complex numbers. It is first transformed into

a plaintext by a public encoding map before it is encrypted and computations can be

carried out. Specifically, this encoding map is a complex canonical embedding map. The

use of this type of map allows the transformation to preserve the precision of the plaintext

after encoding and decoding4. In similar fashion, to obtain the decrypted message, the

returned plaintext from the decryption function will have to be decoded back to a vector of

either floating-point or complex numbers. As mentioned, both the encoding and decoding

functions are public and are just transformations from Cn/2×R to R = Z[x]/(xn + 1) for

encoding and the opposite for decoding.

The main idea in the CKKS scheme is to treat the noise created during computations

as part of the error that naturally occurs during approximate computations. Consider

the encryption of significand m that satisfies 〈c, sk〉 = m + e mod q for some small error

e. The decryption structure m′ = m + e itself is an approximate value of the original

message m. If |e| is small enough not to destroy the significand of m, the precision is

almost preserved. For example, if m = 1.23 ∗ 104 , e = −17 then a possible decryption

could be m′ = 12283 ≈ m.

Here we will go over a basic overview of the CKKS scheme with notation taken from

[14].

Let b > 0 be a base, q0 be a modulus and q` = b` · q0 for 0 < ` ≤ L where L is

4See [15] for an in-depth explanation of how canonical embedding works.
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the maximum level of the scheme. For a real number σ > 0, DG(σ2) samples a vector

in ZN by drawing it coefficients independently from the discrete Gaussian distribution χ

with variance σ2. For a positive integer h, HWT (h) is the set of signed binary vectors

in {−1, 0, 1}N whose Hamming weight is exactly h. For a real number 0 ≤ p ≤ 1, the

distribution ZO(p) draws each entry in the vector from {−1, 0, 1}N , with probability p/2

for each of −1 and +1, and probability 1−p of being 0. Note: ∆ ≥ 1 is the scaling factor.

The CKKS scheme can be broken down into 8 functions:

• KeyGen(λ): Takes as input the security parameter λ, and generates the parame-

ters of the scheme as M = M(λ, qL) which is a power of two, an integer h = h(λ, qL),

an integer P (λ, qL), and a real value σ = σ(λ, qL).

It then selects s ← HWT (h), a ← RqL , a’ ← RP ·qL , e ← DG(σ2), and e’ ←
DG(σ2). It generates and returns the private key sk, public key pk, and evaluation

key evk as:

sk← (1, s)

pk← (b, a) ∈ R2
qL

where b← −as + e mod qL

evk← b′, a′) ∈ R2
P ·qL where b′ ← −a′s + e′ + Ps2 mod P · qL

• Ecd(z,∆): Takes as input a message z ∈ CN/2 which is a vector of Gaussian

integers, and returns the corresponding plaintext polynomial m ∈ R. 5

• Dcd(m; ∆): Takes as input a ciphertext m ∈ R and returns the corresponding

polynomial in CN/2.

• Enc(m,pk): Takes as input a plaintext m and a public key pk. It first samples a

vector v← ZO(0.5) and e0, e1 ← DG(σ2). It outputs the encrypted message as:

c = v · pk + (m + e0, e1) mod qL

• Dec(c, sk): Takes as input a ciphertext c and a private key sk. Taking c = (b, a)

it outputs a plaintext m′ as:

m′ = b + a · s( mod q`)

• Add(c1, c2): Takes as input two ciphertexts c1 and c2. It performs the addition of

5The technical details of encoding and decoding are beyond the scope of this paper. See [14] for a
more detailed description.
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the two ciphertexts and returns cadd as:

cadd ← c1 + c2 mod q`

• Mult(c1, c2, evk): Takes as input two ciphertexts c1 and c2 and represents them as

c1 = (b1, a1), c2 = (b2, a2). Let d = (d0,d1,d2) = (b1b2, a1b2 + a2b1, a1a2) mod q`

represent the multiplication of the two ciphertexts. Output the multiplication and

relinearization of d as:

cmult ← (d0,d1) + bP−1 ·RS(d2) · evke mod q`

where b·e stands for rounding to the nearest integer.

• RS`←`′(c): Takes as input a ciphertext c and performs the change of basis from `

to `′ to be used in the relinearization procedure after multiplication. Namely:

c′ ←
⌊
q′`
q`

c

⌉
∈ mod q′`

4.4 SIMD: Single Instruction Multiple Data

When performing the same operations on multiple ciphertext, the Single Instruction Mul-

tiple Data (SIMD) method should be utilized in order to maximize the efficiency of the

scheme via parallel processing. SIMD allows the encryption of not just a single message

per ciphertext, but rather a vector of messages in a single ciphertexts. Then, additions

and multiplications of ciphertexts are carried out component wise. Using fully homo-

morphic SIMD operations enables a more efficient use of both space and computational

resources [53].

All of the libraries discussed in this thesis use some sort of plaintext packing, also

denoted batching, in their implementation of the FHE schemes to mimic SIMD operations

and achieve more efficient computations.
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5 HElib

Homomorphic Encryption Library (HElib)1 is an open-source software library released

in 2013 by Halevi and Shoup under the Apache License v2.0. It implements the RLWE

version of the BGV scheme and many optimizations to make the homomorphic evaluations

run more efficiently. Their optimizations include the implementation Smart-Vercauteren

[53] ciphertext packing techniques, relinearization, and bootstrapping. It is written in

C++ and makes use of the NTL mathematical library for polynomial arithmetic and

multi-threading optimizations. In addition, HElib has native implementations for Linux

and MacOS systems.

One way to view HElib is as implementing an assembly language which is executed

on a hardware platform constructed by the underlying FHE scheme [55]. The hardware

platform (the FHE scheme) defines the operation that can be applied homomorphically

as well as the cost of the operations. Like assembly language, HElib is fairly low-level as

it only carries computations such as set, add, multiply, and shift. At this time it is mostly

meant for researchers working on HE rather than production implementations.

Figure 5.1: The layers of HElib. Taken from [32] page 4.

The HElib library can be broken down into 2 main layers, namely the math layer and

the cryptography layer as shown in Figure 5.1. These 2 layers can then each be broken

down into 2 more layer. The bottom layer belongs to the math layer and contains modules

for implementing mathematical structures and various other utilities. The second layer

1http://homenc.github.io/HElib/
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also belongs to the math layer and implements the function for computing the Double-

Chinese Remainder Theorem (Double-CRT) representation of polynomials, which is a

vital function as HElib only operates over polynomials in Double-CRT representation.

This is different from other FHE libraries which deal with the coefficient representation

of plaintexts. Double-CRT has the benefit of allowing additions and multiplications to

take place in linear time, but at the cost of an expensive conversion between coefficient

and Double-CRT representations as well as the requirement to perform a key switching

function after every multiplication.

The third layer belongs to the crypto layer and implements the cryptosystem functions

such as key generation, encryption, decryption, and evaluation. Finally, the top layer

provides interfaces for using the cryptosystem to operate on arrays of plaintext values.

For more information on specifically which functions each layer provides, see [32].

It is important to note that rather than working with integers in HElib, each ciphertext

encrypts a vector v ∈ F n, where F can be any finite field that the user chooses. The

length of v is not chosen by the user, rather it is determined by other parameters in the

system. Typically, the vectors lie in the range of length n ∈ [100, 1000]. Operating with

encrypted vectors makes HElib very synonymous to a SIMD architecture environment.

As noted before, the costs of each operation in HElib are predefined depending on the

parameters set. But, generally the costs follow the pattern of addition being the cheapest

operation and the multiplication of two vectors being the most expensive as summarized

in Table 5.1.

Table 5.1: HElib operations and their cost which is measured in time and noise.

Operation Time Cost Noise Cost

Constant Addition cheap cheap

Addition cheap cheap

Constant Mult. cheap moderate2

Multiplication expensive expensive

Rotation expensive cheap

Since mid-2018, HElib has been extensively revised to improve its reliability, robust-

ness, and performance. This includes the introduction of many new algorithms [33], more

robust parameter derivations to limit the necessity of recryption, as well as a significantly

improved bootstrapping procedure [34].

2This is even for multiplying by a constant factor of 0 or 1 which is basically a free operation in other
FHE libraries’ implementations.
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5.1 Implementation

In order to install and use HElib 1.0.0, several external libraries will need to be installed.

Specifically: CMake version 3.5.1 or greater, Make, g++ version 5.4.0 or greater, pthreads,

git, patchelf, and m4. HElib has two main external dependencies, NTL version 11.0.0 or

greater and GMP version 6.0.0 or greater.

The HElib documentation offers two modes of installation. The first mode is a package

build that bundles HElib and its dependencies in a directory where they can be moved

around freely on the system to wherever the user wishes. In addition, NTL and GMP are

automatically downloaded and installed in this process. The second mode of installation

requires the user to build the libraries themselves. For simplicity, we will install HElib

using the package mode of installation. Here, we will recount installing HElib on Ubuntu

18.04 but other modes of installation can be found on their github.

1. Install the pre-requisites : CMake, Make, g++, pthreads, git, patchelf, and m4

$ sudo apt -get install build -essential cmake make

libpthread -stubs0 -dev git patchelf m4

2. Clone the HElib repository from Github

$ git clone https :// github.com/homenc/HElib.git

3. Create a build directory as a sibling of src

$ cd HElib

$ mkdir build

$ cd build

4. Run the CMake configuration, specifying that the mode of installation should be

package build. Other build options can be specified here as well, for example, testing

can be enabled and is done so in this example.

$ cmake -DPACKAGE_BUILD=ON -DENABLE_TEST=ON ..

5. Compile the install

$ make -j

Occasionally, the HElib installer will not be able to download GMP and NTL. If this

is the case, download the required version of each and place the .tar.bz2 and .tar.gz
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files in their needed directories /HElib/build/dependencies/Download/gmp fetched

and /HElib/build/dependencies/Download/ntl fetched then run $ make -j

again.

6. Test the install compilation

$ make -j test

Note: It will look like not much is happening as there is no progress bar while the

tests run, but just be patient. Eventually the tests will finish. If all the tests are

successful, the final output will look as in Figure 5.2.

7. Run the install

$ sudo make install

HElib comes with two examples that the user can reference when learning how to use

the library. The first is BGV general example and the second is binaryArith example.

Here, we will show how to compile and run BGV general example.

1. Go to the directory of the wanted example

$ cd ~/ Helib/examples/BGV_general_examples

2. Run the CMake configuration, build the executable, and run the example

$ cmake .

$ make

$ ./ BGV_general_example

The results of the BGV general example should resemble those of Figure 5.3

The easiest way for a user to build their own programs with HElib is to use CMake.

In the CMake file for the project, add the line:

find package(helib)

Then, when running CMake, use the option:

-Dhelib DIR=/usr/local/helib pack/share/cmake/helib

See Figure 5.4 for an example CMake file.
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Figure 5.2: Output of HElib test script.

Figure 5.3: HElib BGV Example output.

Figure 5.4: HElib example CMake file.
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6 Microsoft SEAL

Microsoft’s Simple Encrypted Arithmetic Library (SEAL) is an open-source FHE library

that aims for making homomorphic encryption easy to use and available for everyone [52].

The library is designed with cloud computing cases in mind, wanting to give users an easy

way to interact with encrypted data stored on cloud services without having to download

and decrypt it first. Despite FHE schemes being able to be symmetric or asymmetric,

SEAL only offers the asymmetric variants.

SEAL is already deployed by several companies, meaning that SEAL can be seen as

a production-quality open-source FHE library. For example, Intel integrates SEAL into

their neural network compiler nGraph, allowing artificial intelligence models to directly

process encrypted data.

Development of SEAL started in 2015 and it was first released under the MIT license

to the public on github1 in 2018. Currently it is on version 3.4.0, but version 3.5.0 is set

to release mid-April 2020. It was developed in C++17, although it does come with some

C# components namely the .NET standard wrapper which allows for cross-platform im-

plementation. SEAL can be deployed on Windows, Linux, MacOS, and Android, making

it a highly versatile library.

SEAL currently implements two homomorphic encryption schemes, BFV and CKKS.

The only real similarity between SEAL’s BFV implementation and the textbook imple-

mentation is that the plaintext space is still Rt. SEAL’s ciphertext space is tuples of Rq

of at least length 2, which is different than textbook BFV which has a ciphertext space

of Rq ×Rq. This change allows arbitrarily sized ciphertexts, but at the cost of losing the

compactness property of homomorphic encryption [13] and that addition and multiplica-

tion functions have to now support arbitrary sized ciphertexts. A benefit to using the

arbitrary sized ciphertexts is that there is no need for relinearization before decrypting

the ciphertext back to the wanted message.

Although SEAL’s end API is not too difficult to use, they give the warning that there is

a steep learning curve and that the user should understand many homomorphic encryption

specific concepts before using the library. This is because the performance differences can

be severe (up to 100,000 times slower) between a simple implementation, versus a highly

optimized implementation that was created by someone who is experienced with FHE

concepts. If the user tries to simply re-use or adapt code from the examples, they will

1GitHub.com/Microsoft/Seal
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most likely produce code that is vulnerable, malfunctioning, or extremely slow.

Luckily, SEAL provides extensively commented code and examples to help users

who are new to the concepts of homomorphic encryption to learn what each parameter

does, and how changing the parameters affects the overall security. All of the examples

can be found in /SEAL/native/examples and run by typing ./sealexamples in the

/SEAL/native/bin folder.

They offer six main examples, namely:

1. BFV Basics : 1 bfv basics.cpp

In this example, they show how to evaluate a simple polynomial of encrypted integers

through using the BFV mode of operation. For new users, this is the best place to

start as they give detailed explanations of the parameters used in SEAL.

2. Encoders : 2 encoders.cpp

The encoders example introduces the user to three different encoders at their dis-

posal: IntegerEncoder, BatchEncoder, and CKKSEncoder. Note that the first two

encoding schemes are only available in BFV mode and the last in CKKS mode. An

encoder takes messages from the user and encodes them into a plaintext polynomial

that can be used by SEAL.

3. Levels : 3 levels.cpp

In the levels example, the concept of levels in the BFV and CKKS scheme are

discussed. In SEAL, a set of encryption parameters is uniquely identified by a 256-

bit hash of the parameters which allows for easy access to the parameters. But, as

soon as any of the parameters change, the hash will as well. To overcome this issue,

SEAL creates a chain of encryption parameters derived from the original parameter

set. Creating this chain allows for easy access to all of the parameter sets, which in

turn enables modulus switching (i.e., changing the ciphertext parameters down in

the chain) to be performed.

4. CKKS Basics : 4 ckks basics.cpp

This example explains the basics of how to implement CKKS in SEAL. Namely, it

introduces the re-scaling function. Re-scaling is used after multiplications in CKKS

to reduce the size of the polynomial and stabilize how the polynomial expands. In

order to perform an operation involving two or more different ciphertexts all of the

ciphertexts must be encrypted under the same parameter set. To achieve this, the

modulus switching procedure explained in 3 levels.cpp is used. In the example
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they show how to compute the polynomial function πx3+0.4x+1 for several floating

point values x.

5. Rotation : 5 rotation.cpp

The rotation example shows how to cyclically rotate encrypted vectors in BFV as

well as CKKS.

6. Performance : 6 performance.cpp

Rather than an example, the performance script offers the times for all operations

in SEAL based off of user selected parameters. Tests can be run for CKKS and

BFV with both default SEAL set degrees and user specified degrees.

6.1 Implementation

SEAL can be installed on Windows, Linux, MacOS, as well as Android. The following

instructions will detail the global installation of SEAL on an Ubuntu 18.04 systems. Other

operating systems, as well as a local installation instructions, can be found on SEAL’s

github repository.

In order to install SEAL version 3.4, only CMake version 3.12 or higher and g++

version 6.0 or higher needs to be installed. SEAL has no external dependencies that must

be installed for it to function.

1. Install the pre-requisites: CMake, g++

$ sudo apt -get install build -essential

$ sudo apt -get install cmake

2. Clone the SEAL github repository to the local machine. For this tutorial, SEAL

was downloaded to a file in the home directory.

$ mkdir SEAL

$ cd SEAL

$ git clone https :// github.com/microsoft/SEAL.git --

recurse -submodules

3. Build SEAL

$ cd native/src

$ cmake .

$ make

$ cd ../..
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4. Build SEAL examples

$ cd native/examples

$ cmake .

$ make

$ cd ../..

5. Build unit tests

$ cd native/tests

$ cmake .

$ make

$ cd ../..

6. Install SEAL

$ cd native/src

$ cmake .

$ make

$ sudo make install

$ cd ../..

Before SEAL is used, it is important to test that all of the modules were installed

and configured correctly. To do this, run the tests found in /SEAL/native/bin with the

command ./sealtest. If the installation was carried out correctly, an output similar to

Figure 6.1 will be shown.

SEAL also makes it simple for users to run their own programs through using CMake.

After creating the program, the user writes the CMake file in the same directory. The

contexts of the CMake file can be seen in Figure 6.2.

If the installation was done globally, CMake can be run with $ cmake ., but if SEAL

was installed to not the default location (/usr/local/), CMake must be run with:

$ cmake . -DCMAKE PREFIX PATH=<your path>
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Figure 6.1: Output of SEAL test script.

Figure 6.2: Example SEAL CMake file.
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7 PALISADE

PALISADE was released in 2017 and is currently supported by a team at the New Jersey

Institute of Technology along with the backing of several partners and collaborators in

academia (MIT, UCSD, WPI, ...) and industry (Raytheon, IBM Research, Galois, ...). It

is released under the BSD 2 clause and has cross platform support for Windows, Linux,

MacOS, and Android environments. It is written in C++ and the objects that are created

by and manipulated within PALISADE are instances of C++ classes.

PALISADE is unique from the other FHE libraries discussed in this thesis in the

sense that it is actually a lattice cryptography toolkit. In addition to being able to per-

form FHE computations, it provides implementations for the building blocks of lattice

cryptography capabilities along with end-to-end implementations of advance lattice cryp-

tography protocols for public-key encryption, proxy re-encryption, program obfuscation

and more. They also provide an experimental platform for research and development as

well as an implementation ready platform of known protocols that can directly be in-

tegrated into applications. Major contributions to secure computing have already been

made using PALISADE. The main one being that it was used as the library for a win-

ning Genome-Wide Association Studies (GWAS) solution at the iDASH Secure Genome

Analysis Competition in 2018 1.

Here, we will recount an overview of the PALISADE construction, paying specific mind

to how the scheme handles FHE computations. PALISADE offers several HE schemes to

choose from. Namely: BGV, 3 variants of BFV, CKKS, and Stehle-Steinfeld (StSt)2. In

addition, they offer other HE related protocols such as proxy re-encryption (PRE), SHE,

levelled SHE, and multiparty homomorphic encryption.

Knowing that debugging FHE applications can be a slow process due to the com-

putations on encrypted data being significantly slower and more compute-intensive than

computing on plaintext data, PALISADE provides a Null scheme for fast error checking.

Null supports the same API as BFV, BGV, and StSt implementations, but does not

encrypt the data and performs all operations on unencrypted plaintexts. It serves as a

light-duty no-security equivalent of the encrypted computing protocols so that developers

can test the correctness of their PALISADE program efficiently.

1http://www.humangenomeprivacy.org/2018/
2Version 1.7 of PALISADE also supports the FHEW scheme.
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Figure 7.1: The layers of PALISADE. Taken from [43] page 10.

Like HElib, PALISADE also has a layered design as shown in Figure 7.1. Each level

of PALISADE offers a set of services to the layer above it, and makes use of services in

the layer below. The layers of PALISADE are as follows:

1. Application: All program that use the PALISADE library functions can be found

in this layer. This layer makes calls to functions found in the crypto layer as well

as functions in the encoding layer. When developing applications, the Application

layer serves as an entry point to the rest of the PALISADE library.

2. Encoding: The encoding layer contains all the functions necessary to encode a

plaintext message into a plaintext object that is usable by PALISADE as well as

the corresponding decoding functions.

3. Crypto: All of the classes corresponding to lattice cryptography functions are

found at this layer.

4. Lattice Operations: This layer provides support for lattice constructions such as

rings. The Double-CRT representation of rings is also implemented in this layer.

Operations are performed on lattices by decomposing the operations into primitive

arithmetic operations represented as integers, vectors, and matrices. The primitive

math layer is utilized to perform these operations.
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5. Primitive Math: All low-level mathematical operations can be found at this lay-

ers. The primitive math layer provides support for basic modular arithmetic, effi-

cient Number Theoretic Transform (NTT) computations, Fermat-Theoretic Trans-

form (FTT) functions, and discrete Gaussian samplers among other functions.

The official PALISADE documentation [43] provides an easy to read and in-depth look

at all of the capabilities of PALISADE along with several sample implementations that a

user can reference when building their projects. In addition, they provide implementation

instructions on their git repository 3 that we will detail next.

7.1 Implementation

In order to install PALISADE version 1.7, a few external libraries will need to be installed,

namely: a C++ compiler with OpenMP library support, CMake, Make, and autoconf.

By default, PALISADE does not have any external dependencies but the user is given the

option to add GMP/NTL and tcmalloc third-party libraries if they wish.

Here, we will provide the instruction to install PALISADE on a Linux system, specif-

ically Ubuntu 18.04. Other OS installation instructions can be found on their gitlab

wiki4.

1. Install pre-requisites: g++, CMake, Make, and autoconf

$ sudo apt -get install build -essential

$ sudo apt -get install cmake

$ sudo apt -get install autoconf

2. Clone the PALISADE git repository to the local machine

$ git clone https :// gitlab.com/palisade/palisade -

release.git

3. Change directories to the file where the cloned PALISADE repository is and down-

load the sub-modules

$ cd PALISADE

$ git submodule sync --recursive

$ git submodule update --init --recursive

3https://gitlab.com/palisade/palisade-release/-/tree/master
4https://gitlab.com/palisade/palisade-release/-/wikis/home
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4. Create a build directory where the binaries will be built

$ mkdir build

$ cd build

$ cmake ..

5. Install external dependencies such as GMP/NTL or tcmalloc if desired

6. Build PALISADE

$ make -j(number of processes)

Note: the -j command specifies the number of jobs to run simultaneously. We used

-j16 in our installation.

7. Install PALISADE

$ sudo make install

Before using PALISADE for the first time, it is important to test and clean the build

to make sure everything is functioning correctly. In the build folder:

1. Run unit tests to make sure all capabilities operate as expected

$ make testall

This step will take a couple minutes to run. If all goes well, the output in Figure

7.2 will show.

2. Run the sample example

$ cd bin/demo/pke

$ ./demo -simple -example

The output should be very similar to Figure 7.3

PALISADE makes it easy to build C++ projects by providing a sample CMake file

that can be copied into the working project directory. For example, to build a project

called TestProject perform the following:

1. Build and install PALISADE

2. Create the C++ project anywhere on your system. For this example, we have copied

the code from the CKKS example demo-simple-real-numbers.cpp into a folder called

SampleProjectBuild that was on the desktop.
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3. Copy CMakeLists.User.txt from the root directory of the git repository to the folder

of the project.

4. Rename CMakeLists.User.txt to CMakeLists.txt.

5. Update CMakeLists.txt to specify the desired name of the executable and the source

code files. See Figure 7.4 for an example.

6. Run the CMake and Make commands to build the executable. Note: the direc-

tory of PALISADE is /usr/local by default, but if upon installation the directory

was specified to be something different, the path to that directory would go where

/usr/local is here.

$ cmake -DPALISADE_DIR =‘/usr/local ‘ ..

$ make

7. Run the final program

$ ./ SampleProjectBuild

For reference, the output of the demo-simple-real-numbers.cpp example is shown in

Figure 7.5.

Figure 7.2: Sample output from running the PALISADE unit tests
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Figure 7.3: Output of running the example of PALISADE in bin/demo/pke

Figure 7.4: Updated CMakeLists.txt file.

Figure 7.5: Output from executing demo-sample-real-numbers.cpp
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8 Implementation of Example Programs

In order to show the comparison between the different libraries, we will implement the

same example program in each library for the schemes it supports. The test will be the

homomorphic evaluation of a final velocity (Vf ) given an acceleration (a), time (t), and

initial velocity (Vi). Namely, we will homomorphically compute Vf = Vi + at. While

the example is fairly simplistic, it helps to provide insight not only on how the libraries

work, but also how the libraries’ run times compare. When possible, we will use batch-

ing/packing or any other optimizations available. The target security level for all of the

tests is 128 bits, meaning that it should take an attacker O(2128) operations to break

the scheme. We compare the schemes based on timing, testing the times for parameter

generation, key generation, encryption, evaluation, and decryption. Tables 8.1 and 8.2

show the average times for each library and the standard deviations, respectively. All

tests were performed on a Dell Precision 7920 with an Intel Xeon processor and 256 GB

ram running Ubuntu 18.04 LTS. All programs are written in C++ and can be found on

https://github.com/ancarey/OpenSourceFHE.

8.1 BGV Test

The BGV scheme is available in the HElib and PALISADE libraries. Unfortunately, since

parameter selection in BGV is rather tedious, the tests between HElib and PALISADE

are slightly different. For HElib, we were able to get 2760 elements in each vector and

performed the calculations of the final velocities for each one. On the other hand, for

PALISADE we could only generate vectors with 8 elements due to the complexity in

choosing the parameters. In PALISADE for the BGV setting, several additional param-

eters have to be chosen over the other schemes it implements. The main variables being

the big ciphertext modulus, the root of unity used in the ciphertext, and the the big root

of unity which is the modulus used for the bit packing operations. There are no helper

functions to generate these values, so they have to be hand chosen and fine tuned in order

to work correctly. PALISADE is currently in the process of streamlining and improving

the process of parameter selection so in the future, the PALISADE implementation could

be fine tuned to allow vectors of length 2760. Regardless, based on the other PALISADE

experiments, it is safe to assume that the PALISADE implementation of BGV would

run faster than HElib’s. In addition, we ran the HElib scheme with vectors of length 8

for direct comparison. Figures 8.1, 8.2, and 8.3 show the outputs of the BGV test for
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PALISADE, HElib with length 8, and HElib with length 2760, respectively.

8.2 BFV Test

The BFV scheme is available in the SEAL and PALISADE libraries. The time, initial

velocity, and acceleration vectors were 2760 elements long and all of the elements were

generated randomly. Operations were performed element wise, starting first with the

multiplication of the acceleration and time vectors followed by the addition of the initial

velocity vector to calculate the final velocity. While the times for parameter generation

were fairly close for the two libraries, the times for the remaining sections were vastly

different with SEAL always being the fastest. See Figures 8.4 and 8.5 for the outputs of

the experiments.

8.3 CKKS Test

The CKKS scheme is available in the SEAL and PALISADE libraries. The time, initial

velocity, and acceleration vectors were 2760 elements long and all of the elements were

generated randomly. Operations were performed element wise, starting first with the

multiplication of the acceleration and time vectors as in the BFV tests. PALISADE was

able to do the addition of the initial velocity and a · t with no steps in between, but

SEAL required a relinearization and re-scaling step between the two. Once again, the

times for the two schemes were comparable for the parameter generation, but for all the

other parts, SEAL was significantly faster. Figures 8.6 and 8.7 show the outputs of these

tests.

Figure 8.1: Final Velocity Calculator implemented with BGV on PALISADE
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Figure 8.2: BGV on HElib with vectors of length 8

Figure 8.3: Final Velocity Calculator implemented with BGV on HElib
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Figure 8.4: Final Velocity Calculator implemented with BFV on SEAL

Figure 8.5: Final Velocity Calculator implemented with BFV on PALISADE
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Figure 8.6: Final Velocity Calculator implemented with CKKS on SEAL

Figure 8.7: Final Velocity Calculator implemented with CKKS on PALISADE
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9 Conclusion

Fully homomorphic encryption, while still in its development phases, has seen significant

growth over the past few years. With the hard work of companies and private researchers,

FHE libraries are being developed that enable users without much background knowledge

in FHE to be able to reap the powerful benefits it provides when it comes to online

secure storage and computation. This work has shown the concepts behind homomorphic

encryption, how fully homomorphic schemes are constructed, and the main aspects of

three different open-source FHE and lattice libraries. In addition, we implemented the

same program, the calculation of a final velocity, for each scheme in each library to

show how each of the libraries compares. In the future, we hope to use the knowledge

discussed here as a springboard into a graduate thesis on the improvement of current fully

homomorphic systems, hoping to one day get FHE as a normalized mode of encryption.
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A Lattices

An n-dimensional lattice L is the set of all linear combinations of n linearly independent
vectors v1,v2, ...,vn.

L = {a1v1 + a2v2 + ...+ anvn|ai ∈ Z}

In other words, lattices are mathematical structures that consist of points in an n-
dimensional space, with some periodic structure [serious crypto]. For example, consider
a lattice with n = 2:

Figure 1: An example of a 2 dimensional lattice

The linearly independent vectors v1, ...,vn that make up the lattice are called the basis
B of the lattice. Generally the basis vectors are organized into an n × n matrix where
each vector becomes a column:

B =


v10 v20 · · · vn0

v11 v21 · · · vn1

...
...

. . .
...

v1n−1 v2n−1 · · · vnn−1


The basis in matrix form can be used to represent the lattice in the following way:

L = L(B) =
n∑
i=1

aivi : ai are integers

Manipulating these matrices is the core of lattice-based cryptography.

A.1 Ideal Lattices

An ideal is a subset I or a ring R that is:

• Closed under addition: ∀i1, i2 ∈ I , ii + i2 ∈ I

• Closed under multiplication with R: ∀i ∈ I, ∀r ∈ R, i · r ∈ I

An ideal lattice is simply a lattice with some additional algebraic structure. The main
difference between a lattice and an ideal lattice is that while normal lattices are groups,
ideal lattices are ideals.
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B LWE : Learning with Errors

In 2005, Regev [regev 2005] introduced the Learning with Errors (LWE) problem and
showed that solving LWE for the average case is as hard as solving several standard lattice
problems in the worst case. This allows cryptographic constructions that are based on
LWE to be secure under the idea that worst-case lattice problems are hard.

The main idea behind the LWE problem is trying to find a secret s given some set of
“noisy” linear equations of the form b = as + e. If the error term e did not exist, finding
s would be as simple as performing Gaussian elimination. The introduction of the error
into the equation makes the problem significantly more difficult.

The error generally comes a Gaussian distribution that is rounded to the nearest
integer and then reduced modulo q, where q can be an integer or a polynomial depending
on if plain LWE or ring LWE is being being implemented.

Definition B.1 (LWE Distribution). For positive integers n and q, an error distribution χ
taken as a discrete Gaussian distribution, and a vector s that is taken as an n-dimensional
integer vector modulo q (i.e. s ∈ Znq ), the LWE distribution As,χ generates a sample (a,b)
by choosing a ∈ Znq uniformly at random, choosing e← χ, and computing b = 〈sa〉+ e.

B.1 RLWE: Ring Learning with Errors

Ring Learning with Errors (RLWE) was introduced by Lyubaskevsky, Peikert, and Regev
in 2013 [lattice LWE ring]. It is simply a ring based version on the LWE problem explained
above.

Definition B.2 (RLWE (lattice lwe ring)). For a security parameter λ, let f(x) be a cy-
clotomic polynomial Φm(x) with deg(f) = ρ(m) depending on λ and set R = Z[x]/(f(x)).
Let q = q(λ) ≥ 2 be an integer. For a random element s ∈ Rq and a distribution χ = χ(λ)

over R, denote with A
(q)
s,χ the distribution obtained by choosing a uniformly random ele-

ment a← Rq and a noise term e← χ and outputting (a, [a · s + e]q).
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