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The VLSI CAD flow encompasses an abundance of critical NP-complete and PSPACE-complete

problems. Instead of developing a dedicated algorithm for each, the trend during the last

decade has been to encode them in formal languages, such as Boolean satisfiability (SAT) and

quantified Boolean formulas (QBFs), and focus academic resources on improving SAT and QBF

solvers. The significant progress of these solvers has validated this strategy. This dissertation

contributes to the further advancement of formal techniques in CAD.

Today, the verification and debugging of increasingly complex RTL designs can consume up

to 70% of the VLSI design cycle. In particular, RTL debug is a manual, resource-intensive task

in the industry. The first contribution of this thesis is an in-depth examination of the factors

affecting the theoretical computational complexity of debugging. It is established that most

variations of the debugging problem are NP-complete.

Automated debugging tools return all potential error sources in the RTL, called solutions,

that can explain a given failing error trace. Finding each solution requires a separate call to a

formal engine, which is computationally expensive. The second contribution of this dissertation

comprises techniques for reducing the number of such iterations, by leveraging dominance rela-

tionships between RTL blocks to imply solutions. Extensive experiments on industrial designs

show a three-fold reduction in the number of formal engine calls due to solution implications,

resulting in a 1.64x overall speed-up.

The third contribution aims to advance the state-of-the-art of QBF solvers, whose progress

has not been as impressive as that of SAT solvers. We present a framework for using complete

dominators to preprocess and reduce QBFs with an inherent circuit structure, which is com-
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mon in encodings of PSPACE-complete CAD problems. Experiments show that three modern

QBF solvers together solve 55% of preprocessed QBF instances, compared to none without

preprocessing.

The final contribution consists of a series of QBF encodings for evaluating the reconfigura-

bility of partially programmable circuits (PPCs). The metrics of fault tolerance, design error

tolerance and engineering change coverage are defined for PPCs and encoded using QBFs.

These formulations along with experimental results demonstrate the theoretical and practical

appropriateness of QBFs for dealing with reconfigurability.
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Chapter 1

Introduction

1.1 Motivation

The semiconductor industry has products pervading most commercial and consumer markets.

Its growth is driven by a constant demand for electronic devices with continuously expanding

functionalities, better performance and lower power consumption. With the reducing feature

size of modern integrated circuits (ICs), the number of transistors in the chips used in these

devices is already in the billions. The design and verification of such complex very large scale

integration (VLSI) systems has been made possible by steady advances in computer-aided design

(CAD) tools.

Figure 1.1 [109] shows the major stages in a CAD flow for the fabrication of a VLSI chip.

The behavioral specification of the design, written in C or a behavioral hardware description

language (HDL), is first compiled into a register transfer level (RTL) description given in a

structural HDL such as VHDL or Verilog. This is synthesized into a gate-level circuit, which is

optimized and analyzed. A transistor-level netlist is then created, which is placed and routed.

The physical layout is finally sent to a fabrication plant for silicon manufacturing.

Each design stage is followed by a verification step. Functional verification techniques

such as model checking ensure that the behavior of the synthesized design corresponds to

its specification. After each optimization iteration in logic synthesis, equivalence checking

guarantees that no new errors have been inserted into the design. Timing simulations are

1
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carried out on the transistor netlist to verify that the design conforms to its performance

requirements. Finally, testing is performed after fabrication, before the chips are shipped. In

the event where any of these verification stages fails, the design or chip is debugged in an effort

to locate the root cause of the failure. If a failure is found during functional verification, design

debugging, or RTL debug, is performed to identify the bug(s) in the RTL. On the other hand,

if chip-level testing fails, silicon debug is performed.

Many of the stages shown in Figure 1.1, both on the design and on the verification side, in-

volve problems that are known to be NP-complete, co-NP-complete or PSPACE-complete. For

instance, field-programmable gate array (FPGA) routing [118], combinational automatic test

pattern generation (ATPG) [57], combinational equivalence checking (CEC) [49], peak power

estimation in combinational circuits [43], and discrete gate sizing [90] are all NP-complete

or co-NP-complete. On the other hand, model checking (MC) for properties given in linear

temporal logic (LTL) [108], sequential equivalence checking (SEC) [12] and sequential power

estimation [43] are PSPACE-complete. Instead of developing a dedicated algorithm for each

of these problems, the trend during the last decade has been to encode them in formal lan-

guages, such as Boolean satisfiability (SAT), quantified Boolean formulas (QBF), maximum

satisfiability (MAX-SAT) and satisfiability modulo theories (SMT), and solve them using their

respective solvers. This strategy allows the academic community to focus its resources on im-

proving a handful of formal solvers, rather than tens or hundreds of specialized algorithms. The

tremendous improvements in these solvers have validated this approach.

SAT is considered the canonical NP-complete language, and all other NP-complete problems

can be efficiently reduced to it. The significant advancements in SAT solvers over the last two

decades [38, 84, 87] have stimulated a plethora of SAT formulations for NP-complete and NP-

hard CAD problems and have led to the eventual integration of SAT engines in many CAD

tools. One of the advantages of such a strategy is that any improvement to the SAT solver itself

immediately benefits all SAT-based CAD solutions. This is especially relevant due to yearly SAT

solver competitions [69], which consistently improve the state-of-the-art. Today, SAT solvers

are used as underlying engines in logic synthesis [86], ATPG [67], CEC [50], MC [20], peak

power estimation [80], timing analysis [107], FPGA routing [52, 88] and design debugging [110],
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among other problems.

QBFs are a powerful extension of SAT, considered the canonical PSPACE-complete lan-

guage. All other PSPACE-complete problems can be efficiently encoded as QBFs. Following

the dramatic growth of SAT solvers, the last decade has also seen substantial advances in QBF

solvers [13, 18, 47, 53, 74, 75, 102], with a yearly QBF solver competition [93] encouraging con-

sistent improvements. Although the progress of QBF solvers has not been as impressive as that

of SAT solvers, competitive QBF formulations have been developed for LTL MC [35, 59, 79],

design debugging [79, 113], fault localization and correction [112] and FPGA logic synthe-

sis [72], among other problems. An overview of QBF-based formal verification techniques is

given in [17]. Again, any improvement to the QBF solver would directly benefit all QBF-based

approaches for CAD.

1.1.1 Design Debugging

With the growing size and complexity of VLSI designs, the required verification effort has

increased disproportionately [42]. Significant portions of engineering time and resources are

devoted to achieving functional correctness [2]. As a result, the ratio of verification engineers

to designers in the industry reaches 2 : 1 for complex designs [2]. To make things worse, this

trend has been projected to increase almost seven-fold by 2015 [85]. Despite the allocation of

inordinate amounts of resources to design verification, the latter can consume up to 70% of the

VLSI design cycle [95].

Several functional verification methodologies have been developed by the academic and

industrial communities in order to bridge the gap between our ability to design and to verify

circuits, referred to as the verification gap. These techniques can be categorized into simulation-

based and formal verification approaches. Mainstream verification strategies in industry today

rely on logic simulations, where input patterns are applied repeatedly to exercise corner cases,

and coverage metrics are used to provide confidence in the correctness of the design [2]. The

principal drawback of this approach is that it is non-exhaustive and usually has low coverage.

As such, it is unable to guarantee the correctness of the design. Nevertheless, due to their

simplicity and relative scalability, simulation-based methodologies are widely adopted in the
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industry. In contrast, formal verification techniques explore the design space exhaustively by

employing formal engines such as SAT and QBF solvers. This enables them to prove that the

design conforms to its specification. However, in practice, their applicability is limited to the

block or the sub-system level due to their lack of scalability [2].

If a design does not pass verification, both formal and simulation-based verification tools

return a counter-example, which consists of a sequence of input stimuli exhibiting a discrepancy

between the actual and expected responses of the design and its specification, respectively. The

length of a counter-example refers to the number of clock-cycles in the sequence of inputs

producing a mismatch. Given a buggy design and a counter-example, design debugging is

the process of tracking down the root cause of the observed erroneous behavior. Once a bug is

localized in the RTL, engineers can rectify the design by appropriately modifying it at the given

location and restarting the verification process to ensure that the fix is adequate. Today, design

debugging is still a predominantly manual task in the CAD industry. It entails the manual

analysis of long and complex counter-examples to identify the source of the problem [2]. Recent

technical roadmaps and market studies suggest that once a design fails verification, debugging

it and fixing it can consume up to 32% of the total verification effort [42].

Traditionally, engineers use waveform viewers and various graphical user interfaces to ana-

lyze counter-examples by hand. However, with counter-examples consisting of tens of thousands

of clock-cycles and typical design blocks containing millions of gates, such time-consuming man-

ual processes place an increasingly large burden on the engineer. Furthermore, bugs in complex

interactions between heterogeneous components implemented at multiple levels of abstraction

and using different languages are notoriously difficult to find by human inspection [2]. Finally,

the interwoven ecosystem of intellectual property (IP) blocks in the design necessitates a sophis-

ticated understanding of both the design and verification environments. With different blocks

being designed by different groups that are sometimes in different geographical locations, this

requirement is often too stringent for a single engineer to satisfy. As such, it is not uncommon

for a failure to be passed from designer to designer until the error source is discovered [99],

threatening the time-to-market of the product.

With the aim of alleviating the design debugging cost, several methodologies have been
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proposed over the years to automate this process. Historically, the focus has been on fault

diagnosis algorithms that are based on simulations and binary decision diagrams (BDDs) [3,

55, 56, 70, 73]. Due to the recent advances in formal tools, a new genre of satisfiability-

based automated debugging methodologies has gained a competitive advantage [117]. These

techniques reduce the design debugging problem into a satisfiability problem which can be

solved using a formal engine. Over the years, the original SAT-based gate-level debugging

formulation [111] has been extended to handle hierarchical RTL blocks [6], and its scalability

and performance have improved significantly [6, 41, 61, 63, 79, 100, 110]. However, despite

these advances, increasing design sizes and counter-example lengths still present a challenge to

automated debugging techniques.

1.1.2 Circuit-based Quantified Boolean Formulas

Many CAD problems dealing with the analysis, optimization and verification of sequential

circuits are PSPACE-complete [12, 43, 108]. As the state-space of sequential designs continues

to grow, QBF offers a concise encoding alternative for these problems, which are currently being

reduced to SAT at the expense of exponential-size worst-case formulations, due to the power of

SAT solvers. Model checking is an example of a PSPACE-complete problem that is commonly

translated to SAT [20, 21]. Significant advances in QBF solving procedures are still necessary

in order to robustly handle QBF encodings of challenging CAD tasks.

In most modern QBF solvers, the problem constraints are given as a propositional formula

in conjunctive normal form (CNF), which is essentially a product-of-sums representation. The

standardization of the CNF input format has carried over from SAT to QBF due to the effi-

cient data-structures and solving strategies developed for CNF-based SAT solvers, which are

also used in many QBF solvers. However, QBF instances encoding CAD problems normally

have an internal circuit structure, which is lost during the conversion into formulas in CNF.

Several recent works [97, 122] have pointed out the inadequacies of CNF for QBF and have

suggested a switch to alternative representations. Circuit representations have been used in

SAT solvers [98, 123], and more recently, circuit-based QBF solvers have shown promising re-

sults [40, 53]. Exploiting observability don’t-cares is one of the most common search-space



Chapter 1. Introduction 7

pruning techniques that uses circuit information, and it has been successfully carried over from

SAT to QBF [53, 115]. However, there are more ways to exploit the circuit structure of QBFs

than just using don’t-cares.

1.1.3 Synthesis for Reconfigurability

Larger, denser and more complex digital circuits are leading to an increase in hardware faults

and design errors that slip into production silicon, decreasing manufacturing yield and length-

ening the design cycle. In fact, manufacturing defect levels are expected to increase sharply in

future technologies [1], further decreasing yield. In order to combat these trends, adding space

redundancy and using reconfigurability have been proposed in different contexts to reduce the

number of silicon respins [76, 105]. Double and triple modular redundancy (DMR and TMR)

are examples of design techniques that replicate parts of a design with the aim of yield enhance-

ment as well as chip reliability improvement. Embedded FPGAs have also been used for yield

improvement [4, 36]. However, these methods are costly because they incur significant area or

performance overhead.

Partially programmable circuits (PPCs), recently introduced in [120], attempt to achieve

a flexible balance between yield improvement and the associated costs. PPCs are obtained

from conventional combinational logic circuits by replacing some subcircuits with reconfigurable

elements such as look-up tables (LUTs) and configurable multiplexers (MUXs). The authors

of [120] use heuristics to pick which subcircuits to replace by LUTs. They then employ sets of

pairs of functions to be distinguished (SPFDs) [119] to add redundant connections to these LUTs

and configurable MUXs, such that a large number of faults can be “bypassed” by reprogramming

the PPC post-silicon. However, there are currently no available tools for evaluating the power

of reconfigurability of different PPC architectures.

1.2 Contributions

The four central contributions of this thesis are summarized in the following subsections.
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1.2.1 The Computational Complexity of Design Debugging

Automated design debugging has always been known to be a difficult problem. As such, it made

sense to use the SAT and QBF platforms for encoding it [79, 110]. However, reducing RTL

debug to SAT or QBF does not prove the theoretical computational complexity of debugging,

which is a topic that has not yet been investigated.

The first contribution of this thesis is an in-depth examination of the factors affecting the

theoretical computational complexity of debugging. It is first shown that the problem of (a)

combinational, (b) gate-level debugging, where (c) no primary input or initial-state variable is

unassigned in the counter-example, and (d) assuming the presence of a single bug, is solvable

in polynomial-time. Next, we provide four proofs showing that relaxing any one of the above

assumptions (a), (b), (c) or (d) makes the debugging problem NP-complete. This effectively

draws the line where RTL debug moves from the complexity class P to that of NP-completeness,

and establishes that the general debugging problem is NP-complete.

1.2.2 Debugging using Dominance

Formal debugging methodologies must return all potential bug locations in the RTL that can

explain the given counter-example. Each such location in the RTL is called a solution. With

typical design sizes containing millions of gates, the number of solutions where corrections can

fix the counter-example, can be in the hundreds [61]. Finding each solution requires a new call

to the formal engine, which is computationally expensive. We address this issue by generating

implied solutions on-the-fly, thus reducing the number of formal iterations for returning all

solutions. This is done by using dominators in the circuit.

The first contribution here is an algorithm that iteratively computes dominance relationships

between RTL blocks (e.g., always blocks, if statements or module definitions). Next, we prove

that for each solution RTL block returned by the automated debugger, an RTL block that

dominates it is a separate implied solution. As such, applying our algorithm as a preprocessing

step, the number of formal engine calls for finding all solutions can be significantly reduced.

Furthermore, we prove that corrections for implied solutions can be automatically extracted

without formally analyzing these solutions. These results are shown to be valid for any error
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cardinality. An extensive set of experiments on real industrial designs demonstrates that 66% of

solutions are discovered early due to dominator implications, resulting in a three-fold reduction

in the number of formal engine calls and a 1.64x overall performance speed-up.

1.2.3 Leveraging Dominators in Circuit-based QBFs

A new framework is presented for exploiting the circuit structure of QBFs. The idea is to

simplify circuit-based QBFs by leveraging complete dominators, which are nodes that dominate

all their fanin-cones. A methodology and a rigorous proof are given for the removal of subcircuits

where all nodes are dominated by a single output in a circuit-based QBF, irrespective of input

quantifiers or the structure of the remaining circuit. More precisely, the complete dominator

of a subcircuit is shown to be replaceable by an appropriately computed constant or quantified

input variable, without affecting the truth of the original QBF.

We present a circuit-based QBF preprocessor, called PReDom, which efficiently automates

the process of reducing dominated subcircuits according to the presented methodology. In our

experimental results, three state-of-the-art QBF solvers are able to solve 27% to 45% of the

QBF instances preprocessed using PReDom, collectively solving 55% of all instances, compared

to none without preprocessing.

1.2.4 Reconfigurability in Partially Programmable Circuits

A series of QBF encodings are provided for evaluating the effectiveness of reconfigurability

in PPCs. We define the fault tolerance (respectively, design error tolerance) of a PPC to

be the percentage of stuck-at-faults (respectively, localized design errors) that can be made

unobservable using post-silicon reconfigurations, and we give QBF formulations for computing

these metrics exactly. Then, we present a QBF encoding for performing synthesis for engineering

change orders (ECOs) in PPCs using reconfigurations. ECOs are minor modifications in the

specification at the later stages of the design cycle. Synthesis for ECOs strives to make the

smallest number of changes to the implementation so that the design conforms to its new

specification. We define a measure for quantifying the effectiveness of a PPC in implementing

ECOs. We refer to this as the ECO coverage of a PPC architecture and we show how to
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compute it using QBF. Our formulations and experimental results demonstrate the theoretical

and practical appropriateness of QBF for dealing with reconfigurability.

1.3 Thesis Outline

This thesis is structured as follows. Chapter 2 provides background on Boolean satisfiability and

quantified Boolean formulas, along with their respective solvers. Chapter 3 introduces design

debugging and SAT-based automated RTL debug, and presents our theoretical results on the

computational complexity of the problem. Chapter 4 illustrates our novel RTL debug framework

that uses dominance relationships between RTL blocks for early bug discovery. Chapter 5 gives

a new theory for reducing circuit-based QBFs by leveraging complete dominators and illustrates

the QBF preprocessor PReDom. Chapter 6 gives QBF formulations for evaluating the power of

reconfigurability in PPCs for correcting faults, design errors and performing ECOs. Chapter 7

discusses future work related to each of these contributions and concludes this thesis.



Chapter 2

Boolean Satisfiability and Quantified

Boolean Formulas

2.1 Introduction

This chapter introduces some background material and concepts related to the contributions

of this dissertation. Section 2.2 presents the canonical NP-complete problem of Boolean satis-

fiability (SAT). Section 2.3 introduces quantified Boolean formulas (QBF), which are a gener-

alization of SAT used to encode PSPACE-complete problems. Finally, Section 2.4 illustrates

polynomial-time reductions, NP-completeness and PSPACE-completeness.

2.2 Boolean Satisfiability

Boolean satisfiability (SAT) solvers are used as back-end engines in a variety of scientific do-

mains such as planning [96], computational biology [32], as well as CAD for VLSI [21, 50, 67, 86,

88, 110]. This section introduces the Boolean satisfiability problem and examines the prevalent

strategies used by modern SAT solvers.

A Boolean variable assumes a value from the set B = {0 (or false), 1 (or true)}. A propo-

sitional formula Φ is a formula constructed over a set of Boolean variables x = {x1, . . . , xn}

using Boolean connectives such as ¬ (negation), ∧ (conjunction, i.e., AND), ∨ (disjunction, i.e.,

11
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OR),→ (implication) and ↔ (equivalence), along with parentheses. A truth assignment to a set

of Boolean variables assigns each variable to 0 or 1.

Definition 2.1 Given a propositional formula Φ, the formula satisfiability problem, or FORMULA-

SAT, is to determine whether Φ has a satisfying assignment: a truth assignment to its variables

that makes Φ evaluate to 1. If such an assignment exists, Φ is said to be satisfiable or SAT.

Otherwise, it is unsatisfiable or UNSAT.

The following propositional formula will be used as an example on several occasions in this

section:

Φ = x1 ∧ (x2 ↔ x3) ∧ (x1 → (x2 ∨ ¬x3)) (2.1)

This formula is SAT because {x1 = 1, x2 = 0, x3 = 0} is a satisfying assignment making Φ = 1.

The decision tree of a propositional formula Φ(x1, . . . , xn) is a complete binary tree of height

n, constructed as follows. At each level in the tree, all the internal nodes are labeled by the

same variable xi. The two branches stemming from any given node xi are labeled by 0 and 1,

corresponding to the assignment of xi to 0 and 1, respectively. Each leaf of the tree shows the

evaluation of Φ under the truth assignment given by the path from the root to that leaf. The

decision tree of (2.1) is shown in Figure 2.1. Clearly, a propositional formula is SAT if and only

if its decision tree has at least one leaf that evaluates Φ to 1.

x1

0 1

1

10

0

x3 x3 x3 x3

00

1110 0 0 1 0

x2 x2

00 1 0 0 1

Figure 2.1: The decision tree of (2.1)
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A closely related problem to formula satisfiability is circuit satisfiability. Formula satisfia-

bility and circuit satisfiability are both types of SAT problems.

Definition 2.2 Given a Boolean combinational circuit C with a single primary output y, the

circuit satisfiability problem, or CIRCUIT-SAT, is to determine whether C has a satisfying

assignment: a truth assignment to its primary inputs that makes y evaluate to 1. If such an

assignment exists, C is said to be SAT. Otherwise, it is UNSAT.

2.2.1 Complexity of SAT

CIRCUIT-SAT holds a special place in the history of Computer Science as it is the first problem

to be proven to be NP-complete [30]. FORMULA-SAT is also NP-complete. In addition,

a plethora of important CAD for VLSI problems in synthesis, test and verification are NP-

complete [101]. Section 2.4 gives a detailed introduction to NP-completeness.

No polynomial-time algorithms are currently known for any NP-complete problems. How-

ever, all NP-complete problems are efficiently reducible to one another. As such, other NP-

complete problems can be encoded as SAT problems and solved using SAT solvers. With the

tremendous improvements in SAT solvers over the last two decades [38, 84, 87] and yearly SAT

solver competitions [69] consistently advancing the state-of-the-art, this approach has become

very common. In VLSI CAD, SAT solvers are used as underlying engines in synthesis [86],

test pattern generation [67], formal verification [21, 50], automated design debugging [110] and

FPGA routing [52, 88], among other problems. In other words, instead of dedicated algorithms

to solve each of these VLSI CAD problems, they are encoded as SAT problems and generic

SAT solvers are used to solve them efficiently.

2.2.2 CNF Representation

A propositional formula given in conjunctive normal form (CNF) consists of a conjunction of

clauses, where each clause is a disjunction of literals. A literal is an occurrence of a variable in

its positive or negative polarity, x or ¬x. The FORMULA-SAT problem with the input formula

given in CNF is called CNF-SAT, which is also NP-complete [33]. Most modern SAT solvers
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accept their inputs as CNF formulas rather than general formulas or circuits. In order for the

CNF formula to be SAT, the solver must satisfy each clause by setting at least one literal in it

to 1. A literal l = x (respectively, l = ¬x) evaluates to 1 if its corresponding variable x = 1

(respectively, x = 0).

Consider the following CNF formula, which is logically equivalent to (2.1):

Φ = (x1) ∧ (x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) (2.2)

Here, Φ contains four clauses (x1), (x2 ∨ ¬x3), (¬x2 ∨ x3), (¬x1 ∨ x2 ∨ ¬x3), three variables

x1, x2, x3 and six literals x1, ¬x1, x2, ¬x2, x3, ¬x3. The clause (x1) is called a unit clause

because it contains only one literal, effectively forcing x1 = 1 in any satisfying assignment. The

truth assignment {x1 = 1, x2 = 0, x3 = 0}, which is a satisfying assignment of (2.1), is also a

satisfying assignment of (2.2) because it satisfies every clause in it.

Two SAT instances are said to be equisatisfiable if the first is SAT whenever the second is SAT

and vice versa. Instances of FORMULA-SAT can be translated to equisatisfiable instances of

CNF-SAT in polynomial-time. Although no extra variables were used in the translation of (2.1)

to (2.2), in general a polynomial-time translation requires the use of auxiliary variables [33].

In what follows, we will illustrate the translation of combinational circuits to CNF formulas,

which is much more common in VLSI CAD.

A combinational circuit can be encoded, or modeled, as a CNF formula as follows. First,

each primary input, primary output and internal gate in the circuit is associated with a unique

Boolean variable. Next, for each gate, a CNF formula is generated which evaluates to 1 if

the values assigned to the variables corresponding to the inputs and the output of the gate

are consistent, and to 0 otherwise. Figure 2.2 illustrates the generation of the CNF formula

encoding an AND gate. Table 2.1 gives the CNF clauses for a number of gate types based on

the Tseitin transformation [116]. The CNF formula modeling the whole circuit is formed by

conjuncting the CNF formulas of each gate. It evaluates to 1 if and only if all the values assigned

to the primary inputs, primary outputs and internal gates of the circuit are consistent. As such,

any combinational circuit can be encoded as a CNF formula expressing the same constraints.

This translation requires linear time as long as “counting”-type gates, such as XORs, are assumed
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to have a fixed maximum number of inputs [67, 109].

Example 2.1 The CNF formula for an AND gate y = x1 ∧ x2 is shown in Figure 2.2.

x1 x2 y ΦAND

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

x1
x2

y

ΦAND(x1, x2, y) = (x1 ∨ ¬y) ∧ (x2 ∨ ¬y) ∧ (¬x1 ∨ ¬x2 ∨ y)

Figure 2.2: CNF formula for a two-input AND gate

The translation of Boolean circuits to CNF formulas can be used to reduce instances of

CIRCUIT-SAT to instances of CNF-SAT by adding a final constraint that forces the circuit

output to 1. This can be done by conjuncting the unit clause (y) to the CNF formula generated

by the procedure above, where y denotes the primary output of the circuit. A satisfying

assignment of the resulting CNF formula would correspond to a truth assignment to the inputs

and internal gates of the original circuit, which would make its primary output y = 1.

Many NP-complete CAD for VLSI problems involve a circuit representation coupled with

additional problem-specific constraints. Encoding these problems as SAT problems often boils

down to translating these additional constraints into a CNF formula efficiently. For instance,

Subsection 3.2.1 shows how to formulate the design debugging problem using SAT.

2.2.3 SAT Solvers

Most SAT solvers are based on a backtrack search algorithm devised in 1962 by Davis, Logemann

and Loveland, called DPLL [34]. The DPLL algorithm can be seen as a depth-first search (DFS)

of the decision tree of the CNF formula. The formula is simplified after each variable is assigned

to 0 or 1. If the variable assignments from the root to a given node in the tree make a clause

evaluate to 0, a conflict is identified and the solver backtracks.

Original DPLL SAT solvers performed chronological backtracking, where in the event of

a conflict, the polarity of the most recent variable assignment that is not tried both ways is
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Gate Function CNF Formula

AND y = x1 ∧ x2 ∧ · · · ∧ xn

[

n
∧

i=1

(xi ∨ ¬y)

]

∧

(

n
∨

i=1

¬xi ∨ y

)

NAND y = ¬(x1 ∧ x2 ∧ · · · ∧ xn)

[

n
∧

i=1

(xi ∨ y)

]

∧

(

n
∨

i=1

¬xi ∨ ¬y

)

OR y = x1 ∨ x2 ∨ · · · ∨ xn

[

n
∧

i=1

(¬xi ∨ y)

]

∧

(

n
∨

i=1

xi ∨ ¬y

)

NOR y = ¬(x1 ∨ x2 ∨ · · · ∨ xn)

[

n
∧

i=1

(¬xi ∨ ¬y)

]

∧

(

n
∨

i=1

xi ∨ y

)

XOR y = x1 ⊕ x2
(¬x1 ∨ ¬x2 ∨ ¬y) ∧ (x1 ∨ x2 ∨ ¬y)∧

(¬x1 ∨ x2 ∨ y) ∧ (x1 ∨ ¬x2 ∨ y)

XNOR y = ¬(x1 ⊕ x2)
(¬x1 ∨ ¬x2 ∨ y) ∧ (x1 ∨ x2 ∨ y)∧

(¬x1 ∨ x2 ∨ ¬y) ∧ (x1 ∨ ¬x2 ∨ ¬y)

BUFFER y = x (x ∨ ¬y) ∧ (¬x ∨ y)

NOT y = ¬x (x ∨ y) ∧ (¬x ∨ ¬y)

MUX y = s ? x1 : x0
(¬x0 ∨ s ∨ y) ∧ (x0 ∨ s ∨ ¬y)∧

(x1 ∨ ¬s ∨ ¬y) ∧ (¬x1 ∨ ¬s ∨ y)

Table 2.1: CNF formulas for elementary gate types.
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Algorithm 2.1: Typical CDCL SAT algorithm [38]

input : CNF formula

output: SAT/UNSAT

1 while true do

2 propagate(); // Boolean constraint propagation

3 if no conflict then

4 if all variables assigned then

5 return SAT;

6 else

7 decide(); // assign a new variable

8 else

9 analyzeConflict(); // add a conflict clause

10 if unresolvable conflict then

11 return UNSAT;

12 else

13 backtrackFromConflict();
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flipped [34]. In modern SAT solvers, each conflict is analyzed and a small subset of conflicting

variable assignments is identified. Based on this, a learned clause is added to the original

clause database in order to block the conflicting truth assignment, disallowing the solver from

retrying that assignment combination in the future. This also makes it possible for the solver

to skip decision variables unrelated to the conflict while backtracking upwards in the decision

tree, a process referred to as non-chronological backtracking or backjumping [84]. Backjumping

solvers are called conflict-driven clause learning (CDCL) SAT solvers [83]. Today, CDCL SAT

solvers implement a number of additional key techniques, such as using lazy data structures

for the representation of formulas [87], advanced branching heuristics with low computational

overhead [87], periodic restarts of the search [51], preprocessing algorithms [37], among many

others.

The structure of a typical CDCL SAT solver [38] is shown in Algorithm 2.1. On line 2,

the propagate() function performs Boolean constraint propagation (BCP), which propagates

forced assignments in the CNF formula due to unit clauses until convergence. In the event that a

conflict is found, the function analyzeConflict() on line 9 finds the subset of variable assign-

ments responsible for it, adding them to a conflict clause which is unsatisfied. If the conflict is

unresolvable, the solver returns UNSAT. Otherwise, the function backtrackFromConflict()

on line 13 undoes assignments until the conflict clause learned in analyzeConflict() becomes

unit. In other words, the solver backjumps in the decision tree until the newly unit conflict

clause forces it to switch the polarity of a variable. On the other hand, if propagate() does

not produce a conflict, a new variable is picked and assigned to 0 or 1 in decide() on line 7,

based on heuristics [87]. If all the variables have been assigned without leading to conflicts after

BCP, then the CNF formula is SAT.

Although CDCL and DPLL have exponential time worst-case complexities, modern SAT

solvers (e.g., [10, 19, 38]) are able to efficiently handle industrial SAT problems with millions

of variables and clauses. It is sometimes necessary to find all satisfying assignments of a SAT

problem rather than just one, such as in SAT-based design debugging [110]. A regular SAT

solver can be modified to return all satisfying assignments by adding a blocking clause for each

newly found solution, which makes that assignment unsatisfiable in future runs, and re-solving
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iteratively until the problem becomes UNSAT. Such a solver is called an all-solution SAT solver.

Example 2.2 Consider the CNF formula given in (2.2). When the satisfying assignment

{x1 = 1, x2 = 0, x3 = 0} is discovered, the all-solution SAT solver adds the blocking clause

(¬x1 ∨ x2 ∨ x3) to the CNF formula. The solver is rerun and finds another satisfying assign-

ment, {x1 = 1, x2 = 1, x3 = 1}. The corresponding blocking clause (¬x1 ∨ ¬x2 ∨ ¬x3) is added

to the CNF formula. At this point, the CNF formula becomes UNSAT, which means that all

solutions have been returned.

2.3 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) are a natural extension of propositional formulas where

variables can be bound by existential (∃) or universal (∀) quantifiers [24]. Given a propositional

formula Φ on one variable x, the QBF ∃x.Φ(x) is true (i.e., evaluates to 1) if and only if there

exists an x ∈ {0, 1}, such that Φ(x) = 1. The QBF ∀x.Φ(x) is true if and only if for all

x ∈ {0, 1}, Φ(x) = 1. Formally, we can write:

∃x.Φ(x) = Φ(0) ∨ Φ(1) (2.3)

∀x.Φ(x) = Φ(0) ∧ Φ(1) (2.4)

In this dissertation, we are interested in QBFs in prenex form, written as:

q1x1 q2x2 · · · qmxm . Φ(x1, . . . , xn) (2.5)

where m ≤ n, qi ∈ {∃,∀} and Φ is a propositional formula over x = {x1, . . . , xn}. This formula

can be abbreviated as Q.Φ, where

Q = q1x1 q2x2 · · · qmxm (2.6)

is called the prefix, while Φ is referred to as the matrix.

A variable that is not bound in the prefix is called free. A variable is labeled as an existential

(respectively, universal) variable if it is bound to ∃ (respectively, ∀). A QBF is termed closed if

it contains no free variables, i.e., m = n. Otherwise, it is open. A closed QBF is either true or
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false. An open QBF is a function of its free variables. Notice that a closed QBF of the form:

∃x1 · · · ∃xn . Φ(x1, . . . , xn), (2.7)

where all variables are existential, is true if and only if Φ(x1, . . . , xn) is SAT. As such, the SAT

problem can be encoded as a closed QBF.

In general, the quantification order in the prefix matters. E.g., ∃x1∀x2.Φ(x1, x2) is generally

different than ∀x2∃x1.Φ(x1, x2). However, the quantification order of consecutive existential

(respectively, universal) variables is interchangeable. Therefore it is common practice to group

each set of consecutive existential (respectively, universal) variables in the prefix as follows:

Q = q1v1 q2v2 · · · qrvr (2.8)

such that the qi’s are alternating quantifiers (i.e., qi 6= qi+1), and the vi’s are mutually disjoint

variable sets partitioning x, called scopes. In other terms,
⋃r

i=1 vi = x and
⋂r

i=1 vi = ∅. A

scope vi or variable x ∈ vi is said to be wider (respectively, narrower) than a scope vj or

variable x′ ∈ vj if i < j (respectively, i > j). qr (respectively, q1) is the innermost (respectively,

outermost) quantifier. Similarly, vr (respectively, v1) is the innermost (respectively, outermost)

scope.

The reduction of a QBF Q.Φ by a literal x (respectively, ¬x) is denoted by Q.Φ|x (respec-

tively, Q.Φ|¬x), which replaces occurrences of x by 1 (respectively, 0) and ¬x by 0 (respectively,

1). More generally, if π is a truth assignment over a subset of {x1, . . . , xn}, then Q.Φ|π de-

notes the formula Q.Φ after assigning these variables to their truth values in π. The notations

π = {xi = 1, xj = 0, . . .} and π = {xi,¬xj, . . .} are equivalent and used interchangeably.

Semantically, a QBF can be evaluated by the recursive application of the following two

rules [53]:

∃xQ.Φ = Q.Φ|x ∨Q.Φ|¬x (2.9)

∀xQ.Φ = Q.Φ|x ∧Q.Φ|¬x (2.10)

Example 2.3 Consider the following closed QBF:

∃x1∀x2 . (x1 ↔ x2) (2.11)
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Applying rules (2.9) and (2.10), we get:

∃x1∀x2 . (x1 ↔ x2) = [∀x2.(1↔ x2)] ∨ [∀x2.(0↔ x2)]

= [∀x2.(x2)] ∨ [∀x2.(¬x2)]

= (1 ∧ 0) ∨ (0 ∧ 1)

= 0.

This process is equivalent to asking whether there exists an x1 such that for all x2, x1 ↔ x2.

No such x1, x2 exist, making the QBF false.

The generalization of a single satisfying assignment in SAT is called a Q-model in a closed

QBF, and it is defined as follows. Consider a decision tree of the QBF matrix that respects the

prefix quantification order. In other terms, the root of the tree is labeled by a variable from the

widest prefix scope, and the internal nodes at the lowest level are labeled by a variable from

the narrowest scope. A Q-model is any subtree of this decision tree that (a) has the same root,

(b) includes exactly one branch (0 or 1) at every existential node, (c) includes both branches

(0 and 1) at every universal node, and (d) whose leaves correspond to satisfying assignments of

the QBF matrix (i.e., assignments that make Φ = 1). If such a Q-model exists, then the QBF

is true. Otherwise, it is false.

A Q-model can be equivalently thought of as a set of Boolean functions, called Skolem

functions, defined as follows. For each existential variable xi, its Skolem function fi is a Boolean

function of all universal variables wider than xi, such that for all truth assignments to the

universal variables in the QBF, assigning the existential variables according to the valuation of

their Skolem functions yields Φ = 1.

Example 2.4 Consider the following closed QBF in prenex form:

∃x1 ∀x2 ∃x3 . (x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1) (2.12)

Here, the prefix consists of two existential scopes v1 = {x1} and v3 = {x3}, and one universal

scope v2 = {x2}. Variable x1 has wider scope than x2, which has wider scope than x3.

Figure 2.3 shows the decision tree associated with the QBF in (2.12), which follows the prefix

quantification order. At each leaf, the value in the box gives the evaluation of the QBF matrix
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under the truth assignment given by the path from the root to that leaf. The symbol ∨ is shown

under existential variables indicating that only one branch needs to be included in a Q-model,

and the symbol ∧ is shown under universal variables indicating that both branches need to be

included. The bolded subtree of truth assignments in Figure 2.3 is the only Q-model of (2.12).

In words, when x1 = 1, for all values of x2, there exists an assignment to x3 (x3 = 1 when

x2 = 0 and x3 = 0 when x2 = 1) that satisfies the matrix. As such, this QBF is true.

x1

0 1

1

10

0

x3 x3 x3 x3

011000

1110 0 0 1 0

x2 x2

00

∨

∧ ∧

∨ ∨∨ ∨

Figure 2.3: A Q-model of the QBF in (2.12), shown in bold

The Q-model shown in Figure 2.3 can be equivalently represented using the following two

Skolem functions, one for each existential variable. The Skolem function of x1 is f1 = 1,

which is constant since there are no universals wider than x1. The Skolem function of x3 is

f3(x2) = ¬x2, which is a function of x2. For both assignments to x2 in (2.12), replacing x1

and x3 by their Skolem function valuations (if x2 = 0, then {x1 = 1, x3 = 1}, and if x2 = 1,

then {x1 = 1, x3 = 0}) satisfies the matrix of (2.12).

A QBF is said to be in prenex normal form if the matrix Φ is in CNF. The QBF in

Example 2.4 is in prenex normal form. Most modern QBF solvers accept their inputs as closed

QBFs in prenex normal form.
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2.3.1 Complexity of QBF

Section 2.4 gives some background on PSPACE-completeness. QBF is the canonical PSPACE-

complete problem, which makes it a more expressive encoding formalism than SAT, given the

widely accepted conjecture that NP ⊂ PSPACE. Many interesting problems in AI, such as

adversarial games [92], as well as a number of CAD for VLSI problems, such as LTL model

checking [108], sequential reachability analysis [106], and sequential equivalence checking [12],

are known to be PSPACE-complete and can therefore be efficiently encoded as QBF instances.

Similarly to SAT solvers, QBF solvers have improved significantly during the last decade with

a yearly QBF solver competition [93] encouraging consistent advancements.

2.3.2 QBF Solvers

Modern QBF solvers are more diverse than SAT solvers in terms of their underlying solving

strategies. Approaches based on backtrack search [47, 75, 102], resolution and expansion [18]

and skolemization [13] can all be competitive. Recently, several powerful QBF solvers have

been developed that accept matrices in a circuit-based format as opposed to CNF [40, 53, 74].

Finally, there are also multi-engine QBF solvers that dynamically select among other existing

solvers according to certain heuristics [94]. Today, QBF solvers can handle industrial problems

containing tens to hundreds of thousands of variables and clauses. In what follows, we briefly

examine major QBF solving approaches.

Backtrack search-based QBF solvers [26, 47, 75] extend CDCL SAT algorithms to deal with

universal quantification. Algorithm 2.2 shows a typical search-based QBF algorithm, which

is similar to Algorithm 2.1 with two important differences. First, on line 11, the decide()

function must now respect the prefix quantification order by first branching on all variables in

the outermost scope v1, then on all variables in the next scope v2, and so on. In other terms, it

is illegal to branch on a variable if there exists a wider unassigned variable. On the other hand,

the decision order within a particular scope is arbitrary. This is a generalization of decide()

in Algorithm 2.1 since all variables in a SAT problem belong to a single (existential) scope.

The second difference is how to deal with satisfactions. On line 5, the matrix is satisfied

but the QBF solver cannot return because of universal quantification. Instead, the function
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Algorithm 2.2: Typical search-based QBF algorithm

input : Closed QBF in prenex normal form

output: True/false

1 while true do

2 propagate(); // Boolean constraint propagation

3 if no conflict then

4 if all variables assigned then

5 analyzeSatisfaction(); // add a satisfaction cube

6 if unresolvable satisfaction then

7 return true;

8 else

9 backtrackFromSatisfaction();

10 else

11 decide(); // assign a new variable following the prefix order

12 else

13 analyzeConflict(); // add a conflict clause

14 if unresolvable conflict then

15 return false;

16 else

17 backtrackFromConflict();
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analyzeSatisfaction() implements satisfiability-driven learning to learn from satisfactions.

It has the dual functionality of analyzeConflict(): Just as the function analyzeConflict()

prunes the non-solution space of the decision tree, analyzeSatisfaction() prunes the space

where solutions are known to exist. This is useful because a QBF solver does not stop when a

satisfying assignment is found, and must instead find a Q-model which is a tree of satisfying

assignments. analyzeSatisfaction() will learn a satisfaction cube, which is a conjunction of

literals making the formula true. Later in the search, a satisfaction cube will allow the QBF

solver to avoid revisiting that combination of assignments, since it is already known that it will

lead to a satisfaction.

Example 2.5 Consider the following QBF:

∃x1 ∀x2, x3 ∃x4 . (x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) (2.13)

Let us suppose that during the search process, the QBF solver finds the satisfying assignment

{x1 = 1, x2 = 1, x3 = 0, x4 = 0}. If the function analyzeSatisfaction() determines that

whenever {x1 = 1, x3 = 0}, irrespective of other assignments, the matrix is satisfiable, it can

learn the cube (x1 ∧ ¬x3). At another point in the decision tree, if x1 = 1, the propagate()

function will use this cube to force x3 = 1 because it is already known that x3 = 0 would lead to

a satisfying assignment.

Several alternatives exist to search-based QBF solvers. The solver quantor [18] evaluates

QBFs using variable elimination. It eliminates variables from the innermost existential scope

usingQ-resolution [18, 25] and variables from the innermost universal scope using expansion [18].

In general, both of these techniques can introduce an exponential number of intermediate

clauses. As such, a major component of quantor is a subroutine deciding which variable to

eliminate at a given point in order to limit the matrix size increase. On hard QBF instances,

search-based solvers usually time-out, whereas variable elimination-based solvers tend to run

out of memory.

Another QBF solver, sKizzo [13, 15], relies on a completely different strategy. It uses

Skolemization to successively compute the Skolem functions of the existential variables. sKizzo
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computes and stores these functions compactly using binary decision diagrams (BDDs) [23]. It

also uses a number of other techniques, such as quantifier trees to represent the QBF prefix [16],

instead of the traditional linear representation given by 2.8.

Finally, QBF instances originating from CAD problems usually have a circuit structure

which is lost during the conversion into CNF. A number of recent papers [97, 122] have analyzed

the limitations of the use of CNF for QBF matrices and have offered alternative representations

addressing some of these issues. QBF solvers that accept problems directly in a circuit-based

format have shown promising results using various solving methods [40, 53, 74]. In Chapter 5,

we present a new preprocessing technique which takes advantage of a circuit-based QBF matrix.

2.4 NP-completeness and PSPACE-completeness

The Kleene star of the binary alphabet {0, 1}, denoted by {0, 1}∗, is the set of all binary strings

composed of symbols from {0, 1}. A binary encoding of an abstract object O is a mapping of

this object to a binary string, written as 〈O〉. Graphs, polygons, integers, programs, and so

on, can all be encoded as binary strings1. As such, the input of any problem, called a problem

instance, can be encoded as a binary string in {0, 1}∗.

A decision problem is one whose answer is one of two values (e.g., yes/no, 1/0, true/false,

SAT/UNSAT). The language corresponding to a decision problem denotes the set of binary strings

(encoding problem instances) that map to 1. A decision problem can be entirely characterized

by its corresponding language. For example, the CIRCUIT-SAT language consists of all binary

encodings of single-output combinational circuits that are satisfiable:

CIRCUIT-SAT = {〈C〉 | C is SAT} (2.14)

A language and its corresponding decision problem are often referred to interchangeably.

Now we can assign languages (or decision problems) to complexity classes according to

certain criteria. We say that a language (respectively, a decision problem) L is decidable (re-

spectively, solvable) in polynomial-time if there exists an algorithm A and a constant c such

1In fact, during translation into machine code in a modern computer, these objects are automatically encoded
as binary strings.
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that for any length-n input string x ∈ {0, 1}∗, A determines whether or not x belongs to L in

time O(nc) [33]. If x ∈ L, A accepts x (i.e., A(x) = 1), otherwise A rejects x (i.e., A(x) = 0).

The complexity class P contains all languages that are decidable in polynomial-time:

P = {L | L in decidable in polynomial-time} (2.15)

In Computer Science, problems that are solvable in polynomial-time are considered tractable,

whereas those that require superpolynomial-time are considered intractable.

For a given language L, a verification algorithm is a two-argument algorithm A, where

one argument is the input string x and the other is a binary string y called a certificate [33].

Algorithm A verifies an input string x if there exists a certificate y such that A(x, y) = 1.

Intuitively, a certificate y which makes A(x, y) = 1 is an object that a verification algorithm

can use as “proof” that x belongs to the language. We say that a language L is verifiable

in polynomial-time if there exists a verification algorithm A and constants c and d, such that

(a) for any length-n x ∈ L, there exists a certificate y of size O(nd) which A accepts (i.e.,

A(x, y) = 1) in time O(nc), and (b) for all x 6∈ L, every certificate y is rejected by A (i.e.,

A(x, y) = 0) in time O(nc). The complexity class NP contains all languages that are verifiable

in polynomial-time:

NP = {L | L is verifiable in polynomial-time} (2.16)

The complement L of a language L contains all strings or problem instances not in L. The

complexity class co-NP contains all languages whose complements are in NP:

co-NP = {L | L ∈ NP} (2.17)

In other terms, co-NP is the class of problems for which instances not in the language can be

verified in polynomial-time.

Example 2.6 Consider the CIRCUIT-SAT language. An instance (x) of CIRCUIT-SAT is

an encoding of a circuit 〈C〉. A certificate (y) for CIRCUIT-SAT consists of (an encoding of)

a truth assignment π to the primary inputs of C. The verification algorithm A(〈C〉, 〈π〉) simply

performs circuit simulation under π and returns the assignment to the circuit primary output.
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{0, 1}∗ {0, 1}∗f

L L′

Figure 2.4: A reduction f from L to L′

If 〈C〉 ∈ CIRCUIT-SAT, then clearly there exists a certificate (i.e., a truth assignment to the

primary inputs) 〈π〉, such that simulating it makes the output 1, and hence A accepts. On

the other hand, if 〈C〉 6∈ CIRCUIT-SAT, then for all certificates (i.e., truth assignments to the

primary inputs) 〈π〉 simulating them makes the output 0, and hence A rejects. Finally, circuit

simulation takes polynomial-time in the circuit size and 〈π〉 is of polynomial size with respect

to 〈C〉. Therefore, CIRCUIT-SAT ∈ NP.

Definition 2.3 [33] A language L is polynomial-time reducible to another language L′, written

as L ≤p L′, if there exists a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗, such

that for all x ∈ {0, 1}∗:

x ∈ L⇐⇒ f(x) ∈ L′. (2.18)

We call the function f the reduction function.

Intuitively, L ≤p L′ means that instances of L can be translated into instances of L′ in

polynomial-time and therefore solving L is not more than a polynomial factor harder than

solving L′. It is also said that L is efficiently reducible to L′. Figure 2.4 illustrates a reduction

function f from L to L′. By Definition 2.3, f must reduce every instance x ∈ L into an instance

of L′, and every instance x 6∈ L into a string outside L′. Note that the mapping f does not

have to be surjective (i.e., onto), which means that there may be instances in {0, 1}∗ that f

does not map to, as shown in Figure 2.4. Also f does not have to be injective (i.e., one-to-one),

which means that it can map different strings to the same string, as shown in Figure 2.4.

Definition 2.4 [33] A language L is NP-complete if:
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1. L ∈ NP, and

2. L′ ≤p L, for all L′ ∈ NP.

A language that satisfies the second property in Definition 2.4, but not necessarily the

first, is said to be NP-hard. In other words, a problem is NP-hard if every language in NP is

polynomial-time reducible to it. NP-complete problems are those NP-hard problems that are

also themselves in NP. They can be thought of as the hardest problems in NP. Note that every

NP-complete problem is polynomial-time reducible to every other NP-complete problem. The

class of all NP-complete languages is denoted by NPC. If a polynomial-time algorithm is found

to solve any given NP-complete problem, then P = NP. No polynomial-time algorithms are

currently known for any NP-complete problems.

Using the transitivity of polynomial-time reducibility, reducing a known NP-complete prob-

lem to L in polynomial-time is enough to prove that L is NP-hard, as shown in the following

definition.

Definition 2.5 A language L is NP-complete if:

1. L ∈ NP, and

2. L′ ≤p L, for some L′ that is NP-complete.

The class of co-NP-complete problems is defined as follows.

Definition 2.6 A language L is co-NP-complete if:

1. L ∈ co-NP, and

2. L′ ≤p L, for all L′ ∈ co-NP.

We say that a language (or decision problem) is decidable (solvable) in polynomial-space if

there exists an algorithm A and a constant c such that for any length-n input string x ∈ {0, 1}∗,

A determines whether or not x belongs to L using O(nc) memory bits. Of course, unlike the
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time resource, space is reusable. The complexity class PSPACE contains all languages that are

decidable in polynomial-space:

PSPACE = {L | L in decidable in polynomial-space} (2.19)

Definition 2.7 A language L is said to be PSPACE-complete if:

1. L ∈ PSPACE, and

2. L′ ≤p L, for all L′ ∈ PSPACE.

PSPACE-complete languages are the hardest problems in PSPACE, in the sense that all

languages in PSPACE are polynomial-time reducible to any PSPACE-complete language. As

such, analogously to NP-complete problems, PSPACE-complete problems are polynomial-time

inter-reducible. It is a widely accepted conjecture that PSPACE-complete languages are outside

NP, although this has not been proven. The language of all true QBFs is considered the

canonical PSPACE-complete problem, which makes it a more powerful encoding formalism

than SAT, assuming that NP ⊂ PSPACE.



Chapter 3

The Computational Complexity of

Design Debugging

3.1 Introduction

One of the main reasons for the discrepancy in difficulty between computer-aided verification

and design, a trend called the verification gap, is the computational difficulty of most functional

verification tasks. For instance, combinational equivalence checking (CEC), arguably the most

basic form of formal verification which is used to prove or disprove the functional equivalence

of two combinational circuits, is co-NP-complete [49]. Sequential equivalence checking (SEC)

is even harder; it is PSPACE-complete [12]. Model checking (MC), which aims to verify user-

specified temporal properties of sequential designs, is also PSPACE-complete given properties

in linear temporal logic (LTL) [108], such as SystemVerilog assertions (SVA).

Although several methodologies have been proposed over the years to automate the design

debugging process, with many of them using formal encodings such as SAT and QBF [3, 55,

79, 110], the theoretical computational complexity of debugging has not yet been studied. This

chapter presents several theoretical results on the complexity of debugging. We first illustrate

that the problem of (a) combinational, (b) gate-level debugging, where (c) no primary input or

initial-state variable is unassigned in the counter-example, and with (d) single error cardinality,

is solvable in polynomial-time. Next, we provide four proofs showing that relaxing any one of

31
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the above assumptions (a) to (d) makes the debugging problem NP-complete. This exposes

the line where the design debugging problem moves from the complexity class P to that of

NP-completeness, and establishes that the general debugging problem is NP-complete.

This chapter is organized as follows. Section 3.2 provides a detailed background on design

debugging, with a focus on SAT-based automated debugging. Section 3.3 presents our results

on the complexity of design debugging, and Section 3.4 summarizes the chapter.

3.2 Design Debugging

A buggy design implementation is one that exhibits a functional mismatch compared to its

specification under at least one sequence of input stimuli. A counter-example consists of such

a sequence of primary inputs, starting from a given initial-state, leading to a discrepancy

between the actual and expected responses of a design implementation and its specification,

respectively. A suspect is a component in the buggy circuit or RTL (e.g., a logic gate, a specific

RTL line, a module definition, an always block, and so on) that is not guaranteed to be bug-free.

Given a buggy design and a counter-example, the output of an automated design debugger is

a set of potential bug locations, which we refer to as solutions. Each solution denotes a set

of suspects, where simultaneous modifications, called corrections, can rectify the erroneous

behavior exhibited in the given counter-example.

There may be more than one set of RTL components that can be modified to separately

correct the counter-example. An automated debugger must return all such solutions. The

engineer is given the final task of going through the list of solutions in order to identify the

actual bug and fix it. If several solutions are deemed appropriate to fix the bug, the engineer

may prefer one solution over another in order to perform a correction. This preference is affected

by the simplicity of the correction, as well as the effect of the change on circuit performance

such as timing, power consumption, and so on [99].

In gate-level debugging, each logic gate is a separate suspect and therefore each solution

is a set of gates [110]. In hierarchical debugging, a suspect can be a multiple-output module

and as such, each solution is a set of modules [6]. The error cardinality of a solution, denoted



Chapter 3. The Computational Complexity of Design Debugging 33

1

x1

y

x3

x2

0

1

1
g2

g3

g1

Figure 3.1: An erroneous circuit

by N , is the number of suspects it contains, where simultaneous modifications rectify the

counter-example. Automated debugging tools normally give a preference to solutions with

fewer components [110] because they usually require less modifications. Furthermore, counter-

examples usually stop at the first clock-cycle where there is an output discrepancy, making

it uncommon for multiple bugs to simultaneously propagate to a primary output during that

clock-cycle [61].

Example 3.1 Consider the combinational circuit given in Figure 3.1 to be a buggy imple-

mentation that does not pass verification. The Boolean values in the boxes shown next to the

primary inputs and the primary output of the circuit respectively represent the input stimuli

〈x1, x2, x3〉 = 〈0, 1, 1〉 of a counter-example and the corresponding expected output response

y = 1. The circuit in Figure 3.1 yields the output y = 0 for that input combination, demon-

strating a mismatch compared to its expected behavior.

Assuming that each internal gate is a separate suspect, one gate-level debugging solution is

the AND gate g3, since changing it to a NAND gate would correct the counter-example by making

y = 1, as required. The set of gates {g1, g2} is another solution, of error cardinality N = 2,

since changing both of them to OR gates also fixes the counter-example. The maximum error

cardinality is normally given to the automated debugger by the user. The debugger starts by

finding all solutions with N = 1, then all solutions with N = 2, and so on, until the user-

specified limit.

Debugging techniques can be classified into BDD-based, simulation-based and satisfiability-

based methods. BDD-based approaches [55, 56, 70] build and solve a so-called error equation,
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which states whether a circuit can be modified at a certain location to satisfy its specification.

This method has poor scalability due to the use of BDDs. Furthermore, its applicability to

multiple errors has been shown to be limited.

Simulation-based approaches [56, 73] use algorithms that trace backwards from the primary

output values in the counter-example to prune suspect nodes using different criteria. Then

simulations are performed to verify that each suspect line can correct the design. Such methods

are only applicable to gate-level debugging and even then are not able to prune out large parts

of sequential designs given long counter-examples.

3.2.1 SAT-based Automated Design Debugging

In 2004, capitalizing on the major advances in SAT solvers, a SAT-based automated debugging

technique was proposed by [111]. It encodes combinational gate-level debugging as a SAT prob-

lem, where each satisfying assignment corresponds to a debugging solution. In recent years,

extensions and improved debugging formulations using a variety of formal techniques have been

proposed, building on the initial work of [111]. Sequential circuits are handled in [41, 110]. The

work in [6] extends the formulation to deal with multiple-output circuit blocks in a hierarchical

design, which makes it possible to debug RTL code. Several works improve the scalability of for-

mal debugging techniques, such as QBF-based formulations [79], bounded model debugging [61],

abstraction and refinement [100] and debugging using interpolants [63]. Extensive experiments

show that satisfiability-based debugging techniques outperform traditional approaches by orders

of magnitude [117].

SAT-based RTL debug tools start by synthesizing the erroneous RTL design into a gate-level

sequential circuit C. The symbols x, y and s respectively refer to the set of primary inputs,

primary outputs and state elements (flip-flops) of C. For each z ∈ {x,y, s, . . .}, the Boolean

variable zi denotes the ith element in the set z. In general, bold (z) versus regular (z) symbols

differentiate sets from single variables. We use the term node to refer to any gate, primary

input or state element (primary outputs are simply labels, not separate nodes).

Given a single clock domain, time-frame expansion for k clock-cycles is the process of repli-

cating, or unrolling, the combinational component of C k times, such that the next-state of
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Figure 3.2: Time-frame expansion

each clock-cycle, or time-frame, is connected to the current-state of the next time-frame, thus

modeling the sequential behavior of C. For any variable (or set of variables) zi (or z), symbol

zti (or zt) denotes the corresponding variable (or set of variables) in time-frame t of the un-

rolled circuit. An unrolled circuit is also referred to as an iterative logic array (ILA). Figure 3.2

shows a sequential circuit and its corresponding two time-frame ILA. The behavior of C during

the clock-cycle t is formalized using the transition relation predicate T (st, st+1,xt,yt), which

describes the dependence of the primary outputs yt and next-state st+1 on the primary inputs

xt and current-state st. The transition relation T for time-frame t is simply the CNF formula

representing the combinational component of C, where the current state variables are st and

the next-state variables are st+1.

In hierarchical debugging, each RTL block (e.g., a line of RTL code, a Verilog always block,

an if statement, a module instantiation, etc) is a separate suspect that must be examined.

For each RTL block, its corresponding set of synthesized gates in C is referred to as a circuit

block, or simply block. This one-to-one correspondence between RTL blocks and circuit blocks
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is maintained, and when a given circuit block is found as a solution by the SAT solver, its

corresponding RTL block is returned to the user. Let B = {b1,b2, . . . ,b|B|} denote the set of

all suspect (circuit) blocks in C, where each bi is a collection of nodes. Note that the same node

can belong to more than one block in B because of the hierarchical nature of RTL. The set

out(bi) denotes the output nodes of block bi. In the unrolled circuit, the set bt
i (respectively,

out(bt
i)) contains the nodes (respectively, the output nodes) of block bi in time-frame t. In the

circuit in Figure 3.3, the blocks b1, b2, b3, b4, and b5 are shown in dotted boxes. For example,

we have b3 = {g1, g2}, b5 = {g1, s1}, out(b1) = {x1}, out(b3) = {g1, g2} and out(b4) = {g3}.

Given an erroneous design C, a set of suspect blocks B, a counter-example of length k (along

with its expected outputs) and an error cardinality N , the task of an automated design debugger

is to find all sets of N blocks that can be responsible for the counter-example. More precisely,

each returned set of N blocks {bi1 , . . . ,biN }, where {i1, . . . , iN} ⊆ {1, . . . , |B|}, can be modified

to rectify the erroneous behavior exhibited in the counter-example. We refer to each such set

of N blocks as a solution of cardinality N . SAT-based automated design debugging [6, 110]

encodes the debugging problem as a CNF formula whose satisfying assignments correspond to

debugging solutions. The following are the steps to translate design debugging into a SAT

problem. We use C and B given in Figure 3.3 as an example for illustrating the encoding

process.

First, a set of error-select variables e = {e1, . . . , e|B|} are created with the following purpose:

Setting ei = 1 must disconnect the fanouts of the gates in out(bi) from their fanins, making

them free variables, whereas setting ei = 0 must not modify the circuit. There are many ways

to achieve this. The simplest is by inserting special multiplexers with select line ei at the

y1D
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b1
b3 b4

y2
x2

b2

Q

b5

g2

g1 s1 g3

Figure 3.3: Blocks B in C of Figure 3.2(a)
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Figure 3.4: The usage of error-select variable e3

output nodes of each block bi, such that if ei = 1, the outputs of bi become unconstrained

variables. The black MUXs at the outputs of block b3 shown in the leftmost circuitry in Figure 3.4

illustrate this. For simplicity, we represent this using the equivalent circuitry shown at the center

of Figure 3.4. Furthermore, the same constraints can be achieved more efficiently by adding

the literal e3 directly in the clauses corresponding to these gates in the CNF of the transition

relation T , as shown in Figure 3.4. Setting e3 = 1 would satisfy these clauses, and therefore

the constraints of the gates in out(b3) = {g1, g2}, making the outputs of b3 free variables.

The CNF formula of the combinational component of this enhanced circuit is now denoted

by the transition relation predicate Ten(s, s
′,x,y, e), where s and s′ denote the current-state

and next-state variables. Next, Ten is replicated using time-frame expansion for the length of

the counter-example k, and such that for all time-frames t, out(bt
i) are controlled by the same

error-select variable ei. Figure 3.5 illustrates this, where each ei is shown as an enable on the

side of the gates in out(bt
i), across all time-frames t. This allows the SAT solver to modify the

outputs of block bi across all time-frames by setting ei = 1 to fix any potential errors in bi.

We let U refer to this enhanced ILA:

U =

k
∧

t=1

Ten(s
t, st+1,xt,yt, e) (3.1)

Then, a set of constraints are applied to the initial state, the primary inputs and primary

outputs of U in order to ensure that the counter-example is corrected. In detail, ΦS(s
1) (respec-

tively, ΦX(x1, . . . ,xk) and ΦY (y
1, . . . ,yk)) constrains the initial-state (respectively, primary

inputs and primary outputs) of U to the initial-state (respectively, primary input sequence and

expected primary output values) in the counter-example. ΦS, ΦX and ΦY are normally con-
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Figure 3.5: Design debugging formulation

junctions of unit clauses constraining the initial-state variables, primary inputs and primary

outputs of the unrolled ILA. In general, ΦY can also express a set of properties that the design

must satisfy [62].

Finally, an error cardinality constraint ΦN (e) is conjuncted to the problem, forcing
∑|B|

i=1 ei

to a pre-specified constant N . This constraint can be enforced using a variety of techniques,

such as an adder [110] or a bitonic sorter network [39]. The resulting propositional formula is

given by:

Debug =

k
∧

t=1

Ten(s
t, st+1,xt,yt, e) ∧ΦS(s

1) ∧ΦX(x1, . . . ,xk) ∧ ΦY (y
1, . . . ,yk) ∧ ΦN (e) (3.2)

where Ten(s
t, st+1,xt,yt, e) refers to the transition relation predicate of the enhanced circuit at

time-frame t.

Each assignment to e = {e1, . . . , e|B|} satisfying Debug (3.2) corresponds to a debugging

solution, and the SAT solver must find all such satisfying assignments to e. This is normally

done by iteratively blocking each satisfying assignment using a blocking clause and re-solving

Debug until the problem becomes UNSAT. In a satisfying assignment where some ei = 1, the

values of out(bt
i) across all time-frames t represent a sequence of corrections, which would correct

the erroneous behavior in the counter-example. Note that Debug (3.2) allows these corrections

to be non-deterministic functions of the applied primary inputs. In other terms, a correction

can set a gate output to different values at different time-frames, given the same primary inputs.
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Although it is possible to force deterministic corrections by adding extra constraints, this is not

done usually because of the associated high cost and the rare occurrence of non-deterministic

corrections in practice.

Example 3.2 Consider the sequential circuit in Figure 3.3 to be a buggy implementation.

We are also given a two-cycle counter-example with initial state s1 = 0, inputs 〈x1, x2〉 =

〈〈0, 1〉, 〈0, 1〉〉 and expected outputs in the second time-frame 〈y1, y2〉 = 〈0, 1〉, demonstrating a

mismatch at primary output y1 during the second clock-cycle.

The corresponding design debugging formulation is illustrated in Figure 3.5. The constraints

ΦS = ¬s11, ΦX = ¬x11 ∧x
1
2 ∧¬x

2
1 ∧x

2
2 and ΦY = ¬y21 ∧ y

2
2 are shown in boxes next to the initial-

state, primary inputs and outputs, while ΦN is omitted for brevity. For N = 1, each of {b1},

{b3}, {b4} and {b5} will be returned by the solver as separate solutions. Corrections for solution

{b1} (respectively {b3}, {b4}, {b5}) consist of the satisfying assignments to {x1} (respectively

{g1, g2}, {g3}, {s1}) during the two time-frames. For instance, in any correction for solution

{b1}, x
1
1 must be set to 1, whereas x21 is a don’t-care.

Typically, SAT-based RTL debug tools return all solutions for the smallest N for which

Debug is SAT. This is done by first solving Debug with N = 1, then N = 2, and so on, until a

user-specified maximum error cardinality N = Nmax. If Debug is SAT for a given N , all other

solutions of the same error cardinality are returned and the process stops. The debugger is

sometimes asked to keep returning all solutions of up to N = Nmax. In this case, blocking

clauses that are added for solutions of a given error cardinality must remain in Debug for

higher error cardinalities. Otherwise, if {bi1 , . . . ,biN } is a solution of cardinality N , for all

bj ∈ B − {bi1 , . . . ,biN }, the set of blocks {bi1 , . . . ,biN ,bj} is a solution of cardinality N + 1,

which is clearly unwanted.

Hybrid strategies are often used to guide the solver towards certain areas of the RTL or to

return solutions with varying levels of granularity. For example, if a large RTL block bi is found

as an N = 1 solution of Debug, but none of its contained blocks are N = 1 solutions, this can

be an indication of multiple errors in bi. As such, the set of considered suspect blocks B can

be refined to include only those sub-blocks whose gates are contained in block bi, and N can
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be subsequently increased to 2 (or more) in an effort to find higher error cardinality solutions

of finer granularity contained in bi.

3.3 On the Complexity of RTL Debug

In order to prove complexity results related to design debugging, we must consider its corre-

sponding decision problem that asks whether there exists a solution that can fix the counter-

example. This problem is no harder than the original debugging problem which must return all

such solutions. This works in our favor when we are proving hardness: If the decision version

is hard, then all-solution design debugging is at least as hard.

Let Φ = ΦS ∧ΦX ∧ΦY denote the counter-example consisting of initial state, primary input

and expected primary output constraints. Also, let k refer to the number of cycles, or length,

of the counter-example. Here, ΦS (respectively, ΦX and ΦY ) is a conjunction of unit clauses

on the initial-state variables s1 (respectively, the sequence of primary inputs x1, . . . ,xk, and

the sequence of primary outputs y1, . . . ,yk). We will use the notation s1i ∈ ΦS to indicate that

ΦS constrains bit si of the initial state. In other terms, if ΦS contains one of (respectively,

does not contain either of) the unit clauses (s1i ) or (¬s
1
i ), then s1i ∈ ΦS (respectively, s1i 6∈ ΦS).

Similarly, xti ∈ ΦX (respectively, yti ∈ ΦY ) if and only if ΦX (respectively, ΦY ) constrains the

ith primary input (respectively, output) during the tth time-frame.

Now we can define the DEBUG language as follows:

DEBUG = {〈C,Φ, N,B〉 | Given the freedom to simultaneously and arbitrarily modify the out-

puts of N suspect blocks in B, across k time-frames in the execution

of circuit C under the counter-example initial state ΦS and primary

input sequence ΦX , it is possible to get the expected primary output

values given by ΦY }

(3.3)
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We can equivalently describe DEBUG by referring to its SAT formulation as follows:

DEBUG = {〈C,Φ, N,B〉 | Given circuit C, counter-example Φ, error cardinality N and suspect

blocks B, Debug given by Equation (3.2) is SAT}

(3.4)

A problem instance of DEBUG is of the form 〈C,Φ, N,B〉. The size of a debug instance

|〈C,Φ, N,B〉| is therefore the sum of (1) |〈C〉| (i.e., the size of encoding C), which is polynomial

in its number of nodes, (2) |〈Φ〉| = |〈ΦS〉| + |〈ΦX〉| + |〈ΦY 〉| = O(|s| + k · (|x| + |y|)),1 (3)

|〈N〉| = O(logN), and (4) |〈B〉|.

Instead of simply proving that the DEBUG language given by (3.4) is NP-complete, we

will establish the line where debugging moves from the complexity class P to that of NP-

completeness by introducing four independent restrictions or assumptions on the types of in-

stances 〈C,Φ, N,B〉 allowed in DEBUG, as follows:

(a) C is combinational:

|s| = 0.

(b) Every suspect block in B has exactly one output:

∀bi ∈ B . (|out(bi)| = 1).

(c) No primary inputs can be unassigned throughout the counter-example, neither can any

initial-state variable be unassigned in the first time-frame:

[∀s ∈ s1.(s ∈ ΦS)] ∧ [∀x ∈ x1 ∪ · · · ∪ xk.(x ∈ ΦX)].

(d) Single error cardinality:

N = 1.

By including or excluding any of these four restrictions on debugging instances, we obtain

24 = 16 variations of the DEBUG problem. We let DEBUG[a,b,c,d] with a, b, c, d ∈ {0, 1}

1In a näıve encoding, each state element (respectively, primary input and primary output) constraint in Φ
can take O(log |s|) (respectively, O(log |x|) and O(log |y|)) space. The reason is that for each unit clause in,
for example ΦS , O(log |s|) bits are needed to identify or index the particular state element in s that the unit
clause is assigning, and analogously for ΦX and ΦY . This would yield a total counter-example encoding size of
|〈Φ〉| = O(|s| · log |s|+k ·(|x| · log |x|+ |y| · log |y|)). However, it is possible to order the constraints in Φ according
to the order in which the state elements, primary inputs and primary outputs appear in 〈C〉. Doing this would
eliminate the need to identify each variable in the encoding of Φ, resulting in |〈Φ〉| = O(|s| + k · (|x| + |y|)).
Logarithmic factors such as the difference between the former and latter encodings do not affect our proofs.
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denote these DEBUG variations, where setting a = 1 (respectively, a = 0) indicates that re-

striction (a) applies (respectively, does not have to apply), and so on. For instance, the language

DEBUG[1,0,0,1] refers to the debugging language restricted to (a) combinational circuits, and

(d) single error cardinality solutions. Also DEBUG[0,0,0,0] = DEBUG given by (3.4), and

DEBUG[0,1,0,0] is essentially gate-level debugging.2 We will prove that DEBUG[1,1,1,1] ∈

P, and that ∀〈a, b, c, d〉 ∈ {0, 1}4 − {〈1, 1, 1, 1〉}, DEBUG[a,b,c,d] ∈ NPC. Note that the fact

that a given variation of DEBUG can be reduced to a SAT problem does not prove that it is

NP-complete. We need to reduce a known NP-complete problem to the particular variation of

DEBUG instead.

Theorem 3.1 Consider the following language:

DEBUG[1,1,1,1] = {〈C,Φ, 1,B〉 | Given combinational circuit C, one time-frame counter-

example Φ assigning all primary inputs, error cardinality

N = 1 and single-output suspect blocks B, Debug (3.2) is

SAT}

(3.5)

DEBUG[1,1,1,1] ∈ P.

Proof:

We devise an algorithm that decides DEBUG[1,1,1,1] in polynomial-time in |〈C,Φ, 1,B〉|.

Since ΦX constrains all primary inputs, the circuit C can be fully assigned by propagating ΦX .

Given that each suspect is a single-output block, the only way to change the functionality of

a suspect is to flip its output bit. Since N = 1, one output bit can be flipped at a time.

Flipping a bit, propagating it in the circuit and checking whether ΦY has been satisfied takes

polynomial-time in |〈C〉|+ |〈Φ〉|. Our algorithm does this separately for B blocks, one at a time,

which takes polynomial-time in |〈C〉| + |〈Φ〉| + |〈B〉|. The algorithm accepts if and only if at

least one of these bit-flips can yield the expected primary output values given by ΦY . This

2The only difference between them is that in DEBUG[0,1,0,0], a suspect block can be an arbitrary single-
output function, and not necessarily a primitive logic gate, such as AND or OR. However, this difference is irrelevant
to the computational complexity of both problems because the design debugging problem only examines the
outputs of a suspect block and disregards its inputs.
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takes polynomial-time in the input |〈C,Φ, 1,B〉|, and hence DEBUG[1,1,1,1] ∈ P.

�

Lemma 3.2 ∀〈a, b, c, d〉 ∈ {0, 1}4, DEBUG[a,b,c,d] ∈ NP.

Proof: For all variations of DEBUG, a certificate consists of (1) the truth assignment to all

the output variables of a given set of N blocks across the k time-frames of the counter-example,

and (2) assignments to the unconstrained state elements in ΦS (if any exist) and primary

inputs in ΦX (if any exist). This certificate is clearly of polynomial-size in |〈C,Φ, N,B〉|. The

verification algorithm A must simply circuit-simulate the counter-example constraints in ΦS

and ΦX , along with (1) and (2) in the certificate, which together assign all free variables in the

k-time-frame unrolled circuit, then verify whether the resulting primary output values conform

to ΦY . Algorithm A clearly takes polynomial-time in the input |〈C,Φ, N,B〉|.

If a given problem instance 〈C,Φ, N,B〉 belongs to the considered DEBUG variation, the

corresponding debugging SAT formulation (3.2) is SAT by definition, and therefore it is easy to

see that there will exist such a certificate (it can be extracted from the satisfying assignment

to (3.2)). On the other hand, no such certificate exists for debugging instances that are UNSAT.

As such, ∀〈a, b, c, d〉 ∈ {0, 1}4, DEBUG[a,b,c,d] ∈ NP.

�

Theorem 3.3 Consider the following language:

DEBUG[0,1,1,1] = {〈C,Φ, 1,B〉 | Given circuit C (sequential or combinational), counter-

example Φ assigning all input stimuli, error cardinality

N = 1 and single-output suspect blocks B, Debug (3.2) is

SAT}

(3.6)

DEBUG[0,1,1,1] ∈ NPC.

Proof:
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We will show that CIRCUIT-SAT ≤p DEBUG[0,1,1,1] by giving a polynomial-time reduc-

tion f that maps instances of CIRCUIT-SAT into instances of DEBUG[0,1,1,1]. By Defini-

tion 2.3, for all 〈C〉 ∈ {0, 1}∗, the reduction function f : 〈C〉 → 〈C′,Φ, 1,B〉 must satisfy:

〈C〉 ∈ CIRCUIT-SAT ⇐⇒ f(〈C〉) = 〈C′,Φ, 1,B〉 ∈ DEBUG[0,1,1,1]. (3.7)

Given an instance of CIRCUIT-SAT, which is a single-output combinational circuit 〈C〉,

Figure 3.6 shows how we build the circuit 〈C′〉 in the corresponding DEBUG[0,1,1,1] instance.

In C′, x1 is the only primary input. The other primary inputs of C, namely x2, . . . , xn are

turned into state elements s1, . . . , sn−1 in C′, respectively, where s1 is a shifted version of x1 by

one cycle (using a flip-flop), s2 is a shifted version of s1 by one cycle, s3 is a shifted version of

s2 by one cycle, and so on. The set of suspect blocks B in the reduction consists of one block,

B = {b1}, where b1 = {x1}, as shown in Figure 3.6.

Finally, the counter-example in the reduced instance consists of k = n cycles, where n is

the number of primary inputs of C, and its constraints Φ are given by:

ΦS = s11 ∧ s12 ∧ · · · ∧ s1n−1

ΦX = x11 ∧ x21 ∧ · · · ∧ xn1

ΦY = yn1

C

x1
x2

xn

C y

C ′

b1

x1

y1

f

QD

Q

QD

D

s1

sn−1

s2

Figure 3.6: Constructing C′ and B for DEBUG[0,1,1,1]
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Figure 3.7: SAT-based formulation given 〈C′,Φ, 1,B〉 for DEBUG[0,1,1,1]

In reality, we will see that ΦS and ΦX can be arbitrary, as long as ΦY forces the output of the

last time-frame of C′ to 1.

Now, given any 〈C〉 and its corresponding reduction 〈C′,Φ, 1,B〉 as described above, we need

to show that (3.7) holds. That is, we must show that C is SAT if and only if Debug given

by (3.2) is SAT using our constructed debugging instance 〈C′,Φ, 1,B〉. We illustrate that this is

true using an example.

Consider an arbitrary circuit C with four primary inputs x1, x2, x3 and x4. Then, the

SAT-based debugging formulation using f(〈C〉) = 〈C′,Φ, 1,B〉 is shown in Figure 3.7. As in

Figure 3.5, the error cardinality constraints ΦN , in this case forcing the only error-select line

e1 = 1, is not shown in Figure 3.7. Setting e1 = 1 makes x11, x
2
1, x

3
1 and x41 free variables. Due to

the flip-flops, the inputs of C during the fourth time-frame are connected to these free variables.

Since the only output constraint in ΦY is on the primary output of this fourth time-frame, the

enhanced ILA in Figure 3.7 will only be SAT if there exists a way to assign x11, x
2
1, x

3
1 and x41

to make y1 = 1, which is true exactly when C is SAT. Hence, (3.7) holds. The same argument

applies when C has n inputs instead of four.

The mapping f clearly takes polynomial-time in |〈C〉|. Therefore, CIRCUIT-SAT ≤p DE-

BUG[0,1,1,1]. Since CIRCUIT-SAT is known to be NP-complete, this implies that DEBUG[0,1,1,1]

is NP-hard. But DEBUG[0,1,1,1] ∈ NP by Lemma 3.2, hence it is NP-complete.

�



Chapter 3. The Computational Complexity of Design Debugging 46

Corollary 3.4 ∀〈b, c, d〉 ∈ {0, 1}3, DEBUG[0,b,c,d] ∈ NPC.

Proof: If we relax or exclude any of conditions (b), (c) and (d) from DEBUG[0,1,1,1], we

can still use the same mapping f given in the proof of Theorem 3.3 that reduces instances

of CIRCUIT-SAT. Note that, for example, such a mapping would not yield instances of DE-

BUG[0,1,1,0] with N > 1, but this is irrelevant because f does not have to be an onto function.

Therefore, ∀〈b, c, d〉 ∈ {0, 1}3, DEBUG[0,b,c,d] ∈ NPC.

�

Theorem 3.5 Consider the following language:

DEBUG[1,0,1,1] = {〈C,Φ, 1,B〉 | Given combinational circuit C, one time-frame counter-

example Φ assigning all primary inputs, error cardinality

N = 1 and arbitrary suspect blocks B, Debug (3.2) is SAT}

(3.8)

DEBUG[1,0,1,1] ∈ NPC.

Proof:

We will show that CIRCUIT-SAT ≤p DEBUG[1,0,1,1] by giving a polynomial-time reduc-

tion f that maps instances of CIRCUIT-SAT into instances of DEBUG[1,0,1,1] . Again, for all

〈C〉 ∈ {0, 1}∗, f : 〈C〉 → 〈C′,Φ, 1,B〉 must satisfy:

〈C〉 ∈ CIRCUIT-SAT ⇐⇒ f(〈C〉) = 〈C′,Φ, 1,B〉 ∈ DEBUG[1,0,1,1] . (3.9)

Given an instance 〈C〉 of CIRCUIT-SAT, the circuit 〈C′〉 in our reduction is simply equal

x1
x2

xn

C y

x1
x2

xn

y1

b1

C

f

Figure 3.8: Constructing C′ and B for DEBUG[1,0,1,1]
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to 〈C〉. The set of suspect blocks B consists of one block, {b1}, where b1 = {x1, x2, . . . , xn}, as

shown in Figure 3.8.

Finally, the one-cycle counter-example consists of the following constraints Φ:

ΦS = 1 (i.e., no initial-state constraints)

ΦX = x11 ∧ x12 ∧ · · · ∧ x1n

ΦY = y11

Again, ΦX can be arbitrary, as long as ΦY forces the output of C′ to 1.

If 〈C〉 ∈ CIRCUIT-SAT, then by definition there exists a truth assignment π to its primary

inputs making the output of C 1. In the mapped instance 〈C,Φ, 1,B〉, the outputs of the only

block b1 are the inputs to the same circuit C whose output is constrained to 1 by ΦY . As such,

b1 is clearly a solution, since we know that assigning out(b1) to π satisfies C. And conversely,

if 〈C〉 6∈ CIRCUIT-SAT, no such π exists, and 〈C,Φ, 1,B〉 6∈ DEBUG[1,0,1,1], as required.

Hence, (3.9) holds.

The mapping f clearly takes polynomial-time in |〈C〉|. Therefore, CIRCUIT-SAT ≤p DE-

BUG[1,0,1,1]. Since CIRCUIT-SAT is known to be NP-complete, and along with Lemma 3.2,

DEBUG[1,0,1,1] is also NP-complete.

�

Corollary 3.6 ∀〈a, c, d〉 ∈ {0, 1}3, DEBUG[a,0,c,d] ∈ NPC.

Proof: If we relax any of conditions (a), (c) and (d) from DEBUG[1,0,1,1], we can still use

the same mapping f given in the proof of Theorem 3.5 to reduce instances of CIRCUIT-SAT.

�
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Theorem 3.7 Consider the following language:

DEBUG[1,1,0,1] = {〈C,Φ, 1,B〉 | Given combinational circuit C, one time-frame counter-

example Φ where not all primary inputs need to be con-

strained, error cardinality N = 1 and single-output suspect

blocks B, Debug (3.2) is SAT}

(3.10)

DEBUG[1,1,0,1] ∈ NPC.

Proof:

We will show that CIRCUIT-SAT ≤p DEBUG[1,1,0,1] by giving a polynomial-time re-

duction f that maps instances of CIRCUIT-SAT into instances of DEBUG[1,1,0,1]. For all

〈C〉 ∈ {0, 1}∗, f : 〈C〉 → 〈C′,Φ, 1,B〉 must satisfy:

〈C〉 ∈ CIRCUIT-SAT ⇐⇒ f(〈C〉) = 〈C′,Φ, 1,B〉 ∈ DEBUG[1,1,0,1]. (3.11)

Given an instance 〈C〉 of CIRCUIT-SAT, the circuit C′ in our reduction is shown in Fig-

ure 3.9. C′ consists of C along with an extra BUFFER gate g1 connected to a new primary

input xn+1 and a new primary output y2. The set of suspect blocks B consists of a single

block b1 = {g1}, as shown in Figure 3.9. Finally the one-cycle counter-example consists of the

x1
x2

xn

C y

f

xn+1

x1
x2

xn

y1

y2
b1

C ′

C

g1

Figure 3.9: Constructing C′ and B for DEBUG[1,1,0,1]
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following constraints Φ:

ΦS = 1 (i.e., no initial-state constraints)

ΦX = ¬x1n+1

ΦY = y11 ∧ y12

Notice that ΦX does not constrain primary input x1, . . . , xn and only constrains xn+1 to 0. On

the other hand, ΦY forces both outputs to 1.

If 〈C〉 ∈ CIRCUIT-SAT, then there exists a truth assignment π to x1, . . . , xn evaluating the

output of C to 1. In the mapped instance 〈C′,Φ, 1,B〉, x1, . . . , xn can be assigned to the same π,

satisfying y11 = 1. Also, making e1 = 1 in Debug (3.2) allows the output of block b1, gate g1, to

be a free variable which can be assigned to 1 to trivially satisfy y12 = 1. As such, the constructed

problem instance 〈C′,Φ, 1,B〉 ∈ DEBUG[1,1,0,1]. Conversely, if 〈C〉 6∈ CIRCUIT-SAT, no such

π exists, and it is not possible to satisfy the y11 = 1 constraint in ΦY . Therefore, 〈C,Φ, n,B〉 6∈

DEBUG[1,1,0,1], as required. Hence, (3.11) holds.

The described mapping f clearly takes polynomial-time in |〈C〉|. Therefore, CIRCUIT-

SAT ≤p DEBUG[1,1,0,1]. Since CIRCUIT-SAT is known to be NP-complete, and along with

Lemma 3.2, DEBUG[1,1,0,1] is also NP-complete.

�

Corollary 3.8 ∀〈a, b, d〉 ∈ {0, 1}3, DEBUG[a,b,0,d] ∈ NPC.

Proof: If we relax any of conditions (a), (b) and (d) from DEBUG[1,1,0,1], we can still use

the same mapping given in the proof of Theorem 3.7 to reduce instances of CIRCUIT-SAT.

�

Theorem 3.9 Consider the following language:

DEBUG[1,1,1,0] = {〈C,Φ, N,B〉 | Given combinational circuit C, one time-frame counter-

example Φ assigning all primary inputs, error cardinality

N and single-output suspect blocks B, Debug (3.2) is SAT}

(3.12)
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DEBUG[1,1,1,0] ∈ NPC.

Proof:

We will show that CIRCUIT-SAT ≤p DEBUG[1,1,1,0] by giving a polynomial-time re-

duction f that maps instances of CIRCUIT-SAT into instances of DEBUG[1,1,1,0]. For all

〈C〉 ∈ {0, 1}∗, f : 〈C〉 → 〈C′,Φ, N,B〉 must satisfy:

〈C〉 ∈ CIRCUIT-SAT ⇐⇒ f(〈C〉) = 〈C′,Φ, N,B〉 ∈ DEBUG[1,1,1,0]. (3.13)

Given an instance 〈C〉 of CIRCUIT-SAT, the circuit 〈C′〉 in our reduction is the same circuit

〈C〉. The set of suspect blocks B consists of n blocks, {b1, . . . ,bn}, where b1 = {x1}, . . . ,bn =

{xn}, as shown in Figure 3.10. Our reduction function f sets the error cardinality N to n.

Finally the one-cycle counter-example consists of the following constraints Φ:

ΦS = 1 (i.e., no initial-state constraints)

ΦX = x11 ∧ x12 ∧ · · · ∧ x1n

ΦY = y11

Here, ΦX can be arbitrary, as long as ΦY forces the output of C′ to 1.

If 〈C〉 ∈ CIRCUIT-SAT, then there exists a truth assignment π to its primary inputs making

the output of C 1. In the mapped instance 〈C,Φ, n,B〉, the outputs of the blocks b1, . . . ,bn are

the inputs to the same circuit C whose output is constrained to 1 by ΦY . As such, {b1, . . . ,bn}

is a cardinality-n solution, since we can change N = n block outputs, and we know that

assigning x11, . . . , x
n
1 to π satisfies ΦY . Conversely, if 〈C〉 6∈ CIRCUIT-SAT, no such π exists,

and 〈C,Φ, n,B〉 6∈ DEBUG[1,1,1,0], as required. Hence, (3.13) holds.

x1
x2

xn

C y

x1
x2

xn

y1C

b1

b2

bn

f

Figure 3.10: Constructing C′ and B for DEBUG[1,1,1,0]



Chapter 3. The Computational Complexity of Design Debugging 51

The described mapping f takes polynomial-time in |〈C〉|. Therefore, CIRCUIT-SAT ≤p DE-

BUG[1,1,1,0]. Since CIRCUIT-SAT is known to be NP-complete, and along with Lemma 3.2,

DEBUG[1,1,1,0] is also NP-complete.

�

Corollary 3.10 ∀〈a, b, c〉 ∈ {0, 1}3, DEBUG[a,b,c,0] ∈ NPC.

Proof: If we relax any of conditions (a), (b) and (c) from DEBUG[1,1,1,0], we can still use

the same mapping f given in the proof of Theorem 3.9 to reduce instances of CIRCUIT-SAT.

�

Therefore, every considered DEBUG variant, except the most restricted variation DE-

BUG[1,1,1,1] is NP-complete.

Corollary 3.11 ∀〈a, b, c, d〉 ∈ {0, 1}4 − {〈1, 1, 1, 1〉}, DEBUG[a,b,c,d] ∈ NPC.

Proof: This is a direct implication of Corollaries 3.4, 3.6, 3.8 and 3.10.

�

3.4 Summary

This chapter proves several new results on the complexity of design debugging. Four factors

affecting its theoretical computational complexity are identified. It is shown that, except in the

most restricted scenario where the circuit is combinational, suspects are single-output blocks,

no primary input or initial-state variable is unassigned in the counter-example, and solutions

have single error cardinality, RTL debug is NP-complete.



Chapter 4

Debugging using Dominance

4.1 Introduction

An automated RTL debugger must return all potential bug locations, called solutions, which

consist of RTL lines or blocks where corrections can rectify the erroneous behavior in the

given counter-example. The engineer is given the final task of examining each solution and its

correction in order to identify the real bug and fix it.

Modern debuggers make heavy use of formal tools, such as SAT [110], QBF [79] and max-

imum satisfiability [27]. In all these techniques, finding each solution requires a separate call

to the formal engine. With typical design sizes exceeding the half-million synthesized gates

mark, discovering up to hundreds of solutions [61] one-by-one is computationally expensive and

limits the effectiveness of automated debuggers. This chapter addresses this issue by generating

on-the-fly implied solutions, thus reducing the number of iterations for returning all solutions.

This is done by using structural dominance relationships between circuit components.

A node u is said to be a (structural) single-vertex dominator of another node v if every

path from v to a primary output passes through u. Single-vertex dominators can be found

in linear-time [9, 45] and have been used for optimizing various CAD tasks, e.g., test pattern

generation [64, 89]. More recently, they have been leveraged in the gate-level debugger in [110],

which performs an initial debugging pass on selected dominator gates. However, state-of-the-art

automated design debuggers operate at the RTL-level [6, 100], where bugs occur in multiple-

52
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vertex, multiple-output blocks in the circuit. As such, it is difficult to make use of single-vertex

dominators at the RTL-level. A multiple-vertex block a dominates another multiple-vertex

block b if every path from every node in b to a primary output passes through a node in a.

Unlike existing approaches for finding multiple-vertex dominators, where block boundaries are

not specified in advance [8, 54, 65], we are interested in establishing dominance relationships

among a fixed set of blocks, naturally provided in a hierarchical RTL design.

The initial contribution of this work [82] is an algorithm that iteratively calculates domi-

nance relationships between a predefined set of multiple-vertex blocks in a design. Next, it is

proven that for each (set of) block(s) returned as a solution by the automated design debugger,

every corresponding (set of) dominator(s) is a separate implied solution. As such, applying

our algorithm as a preprocessing step, the number of design debugging iterations for finding

all solutions can be significantly reduced. Furthermore, we prove that corrections for implied

solutions can be automatically generated without explicitly analyzing these solutions. It is

shown that dominator-based solution implications are guaranteed to be valid given any error

cardinality.

The proposed method is conveniently presented and implemented on top of a SAT-based

automated design debugging framework [6, 110]. However, it is also applicable to simulation-

based and other formal diagnosis techniques. An extensive set of experiments on real industrial

designs obtained by our partners demonstrates the consistent benefits of the presented frame-

work. It is shown that 66% of solutions are discovered early due to dominator implications. This

results in a 1.64x overall speed-up in solving time in an industrial environment, demonstrating

the robustness of the proposed approach.

This chapter is organized as follows. Section 4.2 gives notation and preliminaries on dom-

inators. Section 4.3 presents the iterative algorithm for computing dominance relationships

between blocks. Section 4.4 shows how to leverage block dominators for early solution implica-

tions in design debugging. Section 4.5 gives experimental results and Section 4.6 summarizes

the chapter.
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4.2 Preliminaries

Subsection 3.2.1 gives a detailed illustration of the design debugging formulation as a SAT

problem whose satisfying assignments correspond to debugging solutions. We refer the reader

to that subsection for details on design debugging.

The following summarizes some of the notation in debugging used in Subsection 3.2.1 and

presents some new notation. Given a sequential circuit C, the symbol n denotes the set of all

nodes in C. The symbols x, y and s label (possibly overlapping) subsets of n, respectively

referring to the sets of primary inputs, primary outputs and state elements (flip-flops) of C. For

each z ∈ {x,y, s,n}, the Boolean variable zi denotes the ith element in the set z.

We consider designs with single clock domains, although the described theory is applicable

to multiple clock domains using the reduction from multiple clock domains to single clock

domains in [44]. For any variable (or set of variables) zi (or z), symbol zti (or zt) denotes

the corresponding variable (or set of variables) in time-frame t of the unrolled circuit. The

transition relation of C during time-frame t is given by T (st, st+1,xt,yt).

The sequential circuit C can also be represented as a directed graph. For convenience, we

add an artificial sink node r to this graph, such that the set of nodes V = n∪{r} and the set of

edges E = {(ni, nj)|ni is a fanin of nj in C}∪{(yi, r)|∀yi ∈ y}. We reserve the letters u and v to

refer to nodes in V . Let fanout(v) = {u ∈ V |(v, u) ∈ E} and fanin(v) = {u ∈ V |(u, v) ∈ E}.

Furthermore, the nodes n of C are grouped into (possibly overlapping) blocks. Each block

consists of the synthesized gates of a given block of RTL code, such as an always block in

Verilog. Let B = {b1,b2, . . . ,b|B|} denote the set of all blocks, where each bi ⊆ n is a

collection of nodes. The set out(bi) denotes the outputs of block bi. Finally, for each node v,

we let out−1(v) = {bj |v ∈ out(bj)} denote the set of blocks in which v is an output.

In the sequential circuit in Figure 4.1(a), the blocks are shown in dotted boxes. We have

out−1(g3) = {b4}, out
−1(s1) = {b5}, out

−1(g1) = {b3} and out−1(r) = ∅. Note that y1 and

y2 are primary output labels for g3 and g2, respectively, and do not represent separate nodes.

Figure 4.1(b) presents the corresponding directed graph, including the artificial sink r.

We refer the reader to Example 3.2 and Figure 3.5, which give a SAT encoding for debugging
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the circuit in Figure 4.1(a).

4.2.1 Single-Vertex Dominators

In a directed graph C = (V,E, r) with a single output sink r ∈ V , a node u ∈ V is said to be

a structural single-vertex post-dominator, or simply dominator, of a node v ∈ V , if every path

from v to the sink r passes through u. The set dom(v) = {u ∈ V |u dominates v} consists of

nodes that dominate v. As a convention, we consider that a node dominates itself. Furthermore,

to ease the presentation, we assume that every node has a path to r (i.e., all dangling logic has

been removed).

The immediate dominator of a node v (v 6= r), denoted by idom(v), is a provably unique

node u (u 6= v) that dominates v and is dominated by all the nodes in dom(v) − {v}. It can

be shown that for all v ∈ V − {r}, dom(v) = {v} ∪ idom(v) ∪ idom(idom(v)) ∪ · · · ∪ {r} [31].

Therefore it is sufficient to compute all immediate dominators, which can be done in O(|E|+|V |)

time [9, 45]. A nearly linear algorithm given in [71] for computing immediate dominators is often

used in practice. In the directed graph shown in Figure 4.1(b), dom(x1) = {x1, g1, s1, g3, r},

dom(x2) = {x2, r}, idom(x1) = {g1}, idom(x2) = {r}.

In this chapter, we are interested in finding dominance relationships between blocks in B,

rather than between nodes in V . Section 4.3 outlines our approach, and discusses why methods

for computing single-vertex dominators, as well as existing techniques for computing multiple-

vertex dominators are not applicable in a design debugging setting.

y1D

x1

b1
b3 b4

y2
x2

b2

Q

b5

g2

g1 s1 g3

(a) C, B

x2

b2

b1
b4

b5

b3

x1 g1

g2

g3

r

s1

(b) Graph representation of C, B

Figure 4.1: A sequential circuit with blocks
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4.3 Dominance between Blocks

In this section, an iterative algorithm is presented for finding all dominance relationships among

a fixed set of multiple-vertex blocks, which are naturally defined in a hierarchical RTL design.

Definition 4.1 A block bj dominates another block bi, denoted as bjDbi, if and only if every

path from every node in bi to a primary output in y passes through a node in bj.

Assuming that internal (non-output) block nodes cannot be primary outputs, any path to a

primary output exiting a block must pass through one of its outputs. Furthermore all primary

outputs are connected to the artificial sink r. As such, the block dominator relation D ⊆ B×B

can be formalized using restricted quantifier notation [14] as follows:

bjDbi ⇔ ∀v[v ∈ out(bi)].∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj)) (4.1)

where a path p : v
p
 r is a sequence of nodes starting at v and ending at r. The right-hand-side

of Equation 4.1 reads “for all vertices v in out(bi), and for all paths p from v to r, there exists

a vertex u in p, such that u ∈ out(bj)”.

We let the set D(bi) = {bj |bjDbi} consist of blocks that dominate bi. Note that each

block dominates itself (i.e., biDbi) according to (4.1). Consider the sequential circuit given

in Figure 4.1(a). Although x2 is not dominated by g1 or g2 separately, block b2 = {x2} is

dominated by block b3 = {g1, g2}.

The relation D on the blocks B of C in Figure 4.1(b) is illustrated in Figure 4.2. Unlike

single-vertex dominators, a block does not necessarily have a unique immediate dominator

b2

b1

b4

b5

b3

Figure 4.2: Block dominator relation D of C
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block. This is because given blocks bi, bj , bm:

biDbm ∧ bjDbm 6⇒ biDbj ∨ bjDbi.

This can be seen for blocks b3, b4 and b1 in Figure 4.2. Here both b3 and b4 dominate

b1, however there is no dominance relationship between the two. As such, algorithms for

calculating single-vertex immediate dominators cannot be used for computing block dominators.

On the other hand, in existing approaches for computing so-called generalized or multiple-

vertex dominators [8, 54, 65], block boundaries are not defined in advance. Instead, nodes are

assembled into multiple-vertex dominators on-the-fly according to certain conventions, e.g., the

smallest subset of fanout(v) collectively dominating a node v [8, 54]. This is not applicable in

a design debugging setting, where circuit blocks are defined in advance by the hierarchical RTL

design.

In this work, the block dominator relation D on the set of blocks B is computed in two

steps. First, the block dominators of each node v ∈ V are computed. Then, these block-to-

node dominators are used to compute the block-to-block dominator relation D.

Definition 4.2 A block bj dominates a node v, denoted as bjdv, if and only if every path from

v to a primary output in y passes through a node in bj.

The block-to-node dominator relation d ⊆ B × V can be formalized as :

bjdv ⇔ ∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj)) (4.2)

We let the set d(v) = {bj |bjdv} consist of blocks that dominate node v. For instance, in

Figure 4.1(b), d(x1) = {b1,b3,b4,b5}, d(x2) = {b2,b3} and d(s1) = {b4,b5}.

Algorithm 4.1 shows our pseudocode for computing the block dominator relation D. It first

computes the sets d(v) for every v ∈ V (lines 1 to 17). This is done using an iterative algorithm,

where the set of block dominators of each node is initialized to all blocks B and iteratively

refined until it converges to its actual block dominators. These block-to-node dominators are

subsequently used on line 19 to compute D(bi) for every bi ∈ B.

On line 1, CT denotes the transpose of directed graph C (i.e., C with edges reversed). The

function reversePostordering(CT , r) performs a depth-first search (DFS) of CT starting



Chapter 4. Debugging using Dominance 58

Algorithm 4.1: Compute Block Dominators

input : Directed graph C = (V,E, r), blocks B

output: Block dominator relation D

1 V ← reversePostordering(CT , r);

2 // For each node v, compute out−1[v]: the set of blocks in which v is an

output

3 foreach v ∈ V do out−1[v]← ∅;

4 foreach bi ∈ b do

5 foreach v ∈ out[bi] do out−1[v]← out−1[v] ∪ bi;

6 // Compute block-to-node dominator relation d

7 d[r]← ∅;

8 foreach v ∈ V − {r} do d[v]← B;

9 changed← true;

10 while changed do

11 changed← false;

12 foreach u ∈ V in reverse postorder do

13 blocks←
⋂

∀v∈fanout[u]

(

d[v] ∪ out−1[v]
)

;

14 if blocks 6= d[u] then

15 d[u]← blocks;

16 changed← true;

17 foreach v ∈ V do d[v]← d[v] ∪ out−1[v];

18 // Compute block dominator relation D

19 foreach bi ∈ B do D[bi]←
⋂

∀v∈out[bi]
d[v];



Chapter 4. Debugging using Dominance 59

from r, and sorts the nodes in decreasing finishing times. In general, a reverse postordering

is not unique. For instance, for C given in Figure 4.1(b), reversePostordering(CT , r) can

return 〈r, g2, g3, s1, g1, x2, x1〉. Traversing V in reverse postorder guarantees for each node u ∈ V

that at least one of v ∈ fanout(u) is already visited by the time u is traversed. This will reduce

the number of iterations needed for convergence when computing the sets d(v) later in the

algorithm.

Lines 3 to 5 calculate the sets out−1(v) for each node v. The algorithm for computing the

sets d(v) for all nodes v (lines 7 to 16) is based on the traditional data-flow analysis algorithm

for finding single-vertex dominators [7, 31]. Lines 7 and 8 initialize each dominator set d(v) to

all blocks B for v ∈ V − {r}, and to the empty set for v = r. In each iteration of the while

loop, the nodes are traversed in reverse postorder (as calculated on line 1) and a refined set of

dominator blocks is computed for each node on line 13. The computation of this refined set

of dominator blocks of each node on line 13 is the main difference with the data-flow analysis

algorithm for single-vertex dominators. The new set of dominator blocks of a node u ∈ V is

updated to be the intersection, over all v ∈ fanout(u), of the dominator blocks of v as well

as the blocks in which v is an output. If any of the sets d(v) are changed during an iteration

(i.e., the if condition on line 14 is true), the while loop is executed again. The while loop

terminates after an iteration where all block-to-node dominator sets remain unchanged. Line 17

adds the blocks in which node v is an output, to the dominators of v. Finally, on line 19, the

block dominators D(bi) of each block bi are computed by intersecting the block dominators of

each node in out(bi).

Lemma 4.1 The while loop in Algorithm 4.1 terminates and the block-to-node dominator

relation d is correctly computed by the end of the foreach loop on line 17.

Proof:

In [60], the authors describe a class of iterative data-flow analysis algorithms, which have a

variety of applications (e.g., in compiler optimization [5]) and are not restricted to calculating

dominators. Their class of algorithms is presented using a general lattice theoretic framework.

The authors in [60] analyze the computation and the conditions for the termination of this class
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of data-flow analysis algorithms. We will use the conclusions of [60] to analyze the computation

of the block-to-node dominator relation d in Algorithm 4.1.

In order to present the relevant results of [60], we need to introduce some concepts from

lattice algebra. A meet-semilattice is an algebraic structure 〈L,∧〉 consisting of a set L with a

binary operation ∧, called meet, such that for all x, y, z ∈ L, the following identities hold:

• Idempotency: x ∧ x = x

• Commutativity: x ∧ y = y ∧ x

• Associativity: x ∧ (y ∧ z) = (x ∧ y) ∧ z

A partial order is induced on a meet-semilattice by setting x ≤ y if and only if x ∧ y = x.

L is said to have a zero element 0 if for all x ∈ L, 0 ∧ x = 0. L is said have a one element 1, if

for all x ∈ L, 1 ∧ x = x.

Algorithm 4.2 is algorithm “MK” from [60]. The input of this algorithm is a circuit C and a

meet-semilattice 〈L,∧〉 with a zero element 0 and a one element 1. Algorithm 4.2 computes a

mapping A : V → L, which maps each v ∈ V to an element in L. The mapping A does not have

to be one-to-one or onto. Note that the meaning of A(v) is not defined, since Algorithm 4.2

is just an algorithm template. Furthermore, for each v ∈ V , fv on line 7 of Algorithm 4.2 is a

general function of the form fv : L→ L, that must satisfy certain conditions given below.

Let F refer to a set of functions of form f : L → L. F is said to be an admissible set of

functions for L if and only if the following four conditions are satisfied:

(a) All functions f ∈ F are distributive over ∧:

∀x, y[x, y ∈ L].∀f [f ∈ F ].(f(x ∧ y) = f(x) ∧ f(y))

(b) F has an identity function e:

∃e[e ∈ F ].∀x[x ∈ L].(e(x) = x)

(c) F is closed under composition:

∀f, g[f, g ∈ F ].(f ◦ g ∈ F )

(d) For each x ∈ L, there exists a subset of functions H ⊆ F , such that x =
∧

f∈H f(0):

∀x[x ∈ L].∃H[H ⊆ F ].
(

x =
∧

f∈H f(0)
)
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Algorithm 4.2: Algorithm MK in [60]

input : Directed graph C = (V,E, r), meet-semilattice 〈L,∧〉

output: Map A : V → L

1 A[r]← 0;

2 foreach v ∈ V − {r} do A[v]← 1;

3 changed← true;

4 while changed do

5 changed← false;

6 foreach u ∈ V in reverse postorder do

7 temp←
∧

∀v∈fanout(u) fv(A[v]);

8 if temp 6= A[u] then

9 A[u]← temp;

10 changed← true;
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The authors of [60] show that if there exists a set of admissible functions F , such that

∀v ∈ V, fv ∈ F , then Algorithm 4.2 terminates. Note that this mapping from each node v to a

function fv ∈ F does not have to be one-to-one. I.e., given two nodes u, v ∈ V , it is possible

that they map to the same function fu = fv ∈ F . Also, the mapping does not have to be onto.

I.e., there may exist functions in F that no node maps to, or {fv|∀v ∈ V } ⊆ F .

Furthermore, they show that in such a scenario, at the completion of Algorithm 4.2, for

each v ∈ V , we have:

A(v) =
∧

∀ paths p=〈v,v1,v2,...,vn,r〉
from v to r

fv1(fv2(· · · fvn(fr(0)) · · · )) (4.3)

In what follows, we will show that lines 7 to 16 of Algorithm 4.1 constitute a special case of

Algorithm 4.2 for a specific meet-semilattice 〈L,∧〉, a specific set of functions {fv|∀v ∈ V }, and

replacing each A(v) by d(v), which at the end of line 17 will correctly store the block dominators

of node v.

Let us consider the power set of B, denoted as P(B), which is the set of all subsets of B.

We will use capital bold letters, such as B, to refer to elements of P(B). I.e., B ∈ P(B) is some

subset of the blocks in B, or B ⊆ B. It is easy to show that 〈P(B),∩〉 is a meet-semilattice,

where ∩ (set intersection) is our meet-operator. In fact, ∀A,B,C ∈ P(B):

• B ∩B = B. Hence, ∩ is idempotent.

• A ∩B = B ∩A. Hence, ∩ is commutative.

• A ∩ (B ∩C) = (A ∩B) ∩C. Hence, ∩ is associative.

Furthermore, the elements of P(B) admit a partial order ⊆ such that A ⊆ B if and only if

A ∩ B = A. Also, P(B) has a zero element, which is the empty set ∅, since ∀B ∈ P(B),

∅ ∩ B = ∅. And P(B) has a one element, which is the set of all blocks B, since ∀B ∈ P(B),

B ∩B = B.

Using the meet-semilattice 〈P(B),∩〉, replacing 0 and 1 by ∅ and B, respectively, as well

as A by d, lines 1 and 2 of Algorithm 4.2 become the same as lines 7 and 8 of Algorithm 4.1.

Also, since A(v) ∈ L, now d(v) ∈ P(B), as expected. Furthermore, after replacing A by d and
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∧ by ∩ in the remainder of Algorithm 4.2, the only remaining difference from lines 7 to 16 of

Algorithm 4.1 is line 13. So in order to prove that lines 7 to 16 of Algorithm 4.1 are in fact a

valid special case of Algorithm 4.2 (this would make it possible to prove the termination and

correctness of our own algorithm), it only remains to show that the specific functions of the

form fv(B) = B ∪ out−1(v) on line 13 of Algorithm 4.1 satisfy the conditions put forth in [60].

In order to do so, we must show that there exists an admissible set of functions F that the

functions fv(B) = B ∪ out−1(v), for each v ∈ V , can be drawn from.

Given the meet-semilattice 〈P(B),∩〉, let F refer to the following set of functions f , mapping

sets of blocks to sets of blocks:

F = {f(B) = B ∪A | ∀A ∈ P(B)}. (4.4)

Let us first rewrite the four admissability conditions given above using our specific meet-

semilattice 〈P(B),∩〉.

(a) All functions in F are distributive over ∩:

∀A,B[A,B ∈ P(B)].∀f [f ∈ F ].(f(A ∩B) = f(A) ∩ f(B))

(b) F has an identity function:

∃e[e ∈ F ].∀B[B ∈ P(B)].(e(B) = B)

(c) F is closed under composition:

∀f, g[f, g ∈ F ].(f ◦ g ∈ F )

(d) ∀A[A ∈ P(B)].∃H[H ⊆ F ].
(

A =
⋂

f∈H f(∅)
)

We prove that F given in (4.4) is admissible:

(a) For any function f ∈ F , such that f(B) = B ∪C, where C ∈ P(B), and ∀A,B ∈ P(B),

we have f(A ∩ B) = (A ∩ B) ∪C = (A ∪C) ∩ (B ∪C) = f(A) ∩ f(B). Therefore All

functions in F are distributive over ∩.

(b) By Equation (4.4), F contains the function f(B) = B, which is the identity function.
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(c) For any two functions in F , f(B) = B ∪ A and g(B) = B ∪ C, we have (f ◦ g)(B) =

f(g(B) = f(B ∪ C) = B ∪ (C ∪A) ∈ F by the definition of F in Equation (4.4), since

C ∪A ∈ P(B).

(d) For any block A ∈ P(B), let the set of functions H contain one function as follows:

H = {f(B) = B ∪A}. Then
⋂

f∈H f(∅) = A, as required.

Now that we know that F in (4.4) is admissible, we must show that the functions fv(B) =

B ∪ out−1(v) used on line 13 of Algorithm 4.1 are indeed drawn from this F . Since ∀v ∈ V ,

out−1(v) ∈ P(B), clearly {fv(B) = B ∪ out−1(v) | ∀v ∈ V } ⊆ F . Therefore, the while loop in

Algorithm 4.1 terminates.

Now, using (4.3) in the context of our meet-semilattice 〈P(B),∩〉, we know that at the

completion of this while loop, we have:

d(v) =
⋂

∀ paths p=〈v,v1,v2,...,vn,r〉

such that v
p
 r

fv1(fv2(· · · fvn(fr(∅)) · · · ))

=
⋂

∀p[v
p
 r]





⋃

∀u∈p−{v}

out−1(u)



 (4.5)

Finally, on line 17 of Algorithm 4.1, out−1(v) is added to each d(v). As such, by the end of

the foreach loop on line 17, we have:

d(v) =







⋂

∀p[v
p
 r]





⋃

∀u∈p−{v}

out−1(u)










∪ out−1(v)

=
⋂

∀p[v
p
 r]





⋃

∀u∈p

out−1(u)



 =
⋂

∀p[v
p
 r]





⋃

∀u∈p

{bj |u ∈ out(bj)}





=
⋂

∀p[v
p
 r]

{bj|∃u[u ∈ p].(u ∈ out(bj))}

= {bj |∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj))}

Therefore, the computed sets d(v) satisfy the definition of the block-to-node dominator

relation d given in (4.2).

�
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Theorem 4.2 Algorithm 4.1 correctly computes the block dominator relation D.

Proof: D(bi) is computed on line 19 as
⋂

∀v∈out(bi)
d(v). Using Lemma 4.1, we get:

D(bi) =
⋂

∀v∈out(bi)

{bj |∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj))}

= {bj |∀v[v ∈ out(bi)].∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj))}

which satisfies the definition of the block dominator relation D given in (4.1).

�

The overall run-time of Algorithm 4.1 is normally dictated by the run-time of the while

loop from line 10 to 16. Furthermore, during each iteration of the while loop, line 13 clearly

dominates computation time. We assume that all dangling logic has been removed during

preprocessing (i.e., every node has a path to r), and as such |V | = O(|E|). Using an aggregate

analysis of all executions of line 13 during a single iteration of the while loop, it can be seen

that line 13 performs a total of O(|E|) intersections and unions between two sets of size at most

|B| (since d(v), out−1(v) ⊆ B). We assume that all sets are implemented using ordered lists and

therefore intersections and unions can be done in linear time. As such, in a single iteration of

the while loop, line 13 takes O(|B| · |E|) time.

Let c denote the so-called loop-connectedness of the directed graph C = (V,E, r), which

refers to the maximum number of back edges in any cycle-free path in C. The back edges

are defined according to the DFS performed in reversePostordering(CT , r) on line 1.1 It is

proven in [60] that the number of iterations of the while loop for the general class of algorithms

given by Algorithm 4.2 is bounded by c+ 2, if and only if the following condition holds:

∀f, g[f, g ∈ F ]. ((f ◦ g)(0) ≥ g(0) ∧ f(1)) , (4.6)

where F is a set of admissible functions for meet-semilattice 〈L,∧〉, as described in the proof

of Lemma 4.1. Using the set of admissible functions F for meet-semilattice 〈P(B),∩〉 given

in (4.4), which we use for our own Algorithm 4.1, this condition becomes:

∀f, g[f, g ∈ F ]. ((f ◦ g)(∅) ⊇ g(∅) ∩ f(B)) . (4.7)

1Back edges in a DFS traversal are the edges that lead to a discovered but unfinished node during the traversal
(referred to as a gray node in [33]). The reader is referred to [33] for a reminder on back edges in DFS.
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Consider any two functions f, g ∈ F such that f(B) = B ∪A and g(B) = B ∪ C, where

A,C ∈ P(B) are arbitrary sets of blocks. We have:

(f ◦ g)(∅) = f(g(∅)) = f(C) = A ∪C

and

g(∅) ∩ f(B) = C ∩ B = C,

clearly satisfying (4.7). Therefore, our algorithm takes O(c · |B| · |E|) time.

4.4 Leveraging Block Dominance in Design Debugging

In this section, we show how to leverage the relation D to imply solutions early in the design

debugging iterations. In effect, given a solution consisting of a set of blocks, we show that we

can replace each block by any of its dominator blocks to get another solution. Formally, it is

proven that for each known solution of Debug (3.2) of the form {bi1 , . . . ,biN }, every set of

the form {bj1 , . . . ,bjN } such that 〈bj1 , . . . ,bjN 〉 ∈ D(bi1) × · · · × D(biN ) is also a solution of

Debug (3.2). Furthermore, it is shown that corrections for each implied solution can also be

obtained automatically from the satisfying assignment of the original solution.

First, due to the fixed length of a given counter-example, we must define the following,

slightly modified concept of domination.

Definition 4.3 We say that a block bj dominates another block bi within k cycles, denoted as

bjDkbi, if and only if every path containing at most k state elements, starting from every node

in out(bi) to r passes through a node in out(bj).

The following three Lemmas are used in the proof of Theorem 4.6. Note that in Lemma 4.3,

⋃N
n=1 bin (respectively

⋃N
n=1 bjn) denotes a super-block consisting of all nodes in blocks bi1 , . . . ,biN

(respectively bj1 , . . . ,bjN ).

Lemma 4.3 Given blocks bi1 , . . . ,biN and bj1 , . . . ,bjN ,

∧N
n=1(bjnDbin)⇒

(

⋃N
n=1 bjn

)

D

(

⋃N
n=1 bin

)

.
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In other terms, if ∀n[1 ≤ n ≤ N ], bjn dominates bin, then the super-block formed by all nodes

in bj1 , . . . ,bjN , dominates the super-block formed by all nodes in bi1 , . . . ,biN .

Proof: If ∀n[1 ≤ n ≤ N ], any path from any node in out(bin) to a primary output passes

through a node in out(bjn), then clearly any path from any node in one of out(bi1), . . . , out(biN )

to a primary output passes through a node in one of out(bj1), . . . , out(bjN ).

�

Lemma 4.4 Given blocks bi and bj,

bjDbi ⇒ bjDkbi

Proof: If bjDbi then every path from bi to a primary output passes through bj . In particular,

all paths to a primary output with at most k state elements also pass through bj .

�

Lemma 4.5 If bjDkbi in C, then in the k-cycle time-frame expansion of C, every path from

every node in out(bt
i) (∀t[1 ≤ t ≤ k]) to any primary output in {yt, . . . , yk} passes through a

node in out(bt′

j ) (for some t′[t ≤ t′ ≤ k]).

Proof: True by construction.

�

Recall from Subsection 3.2.1 that modern automated debuggers start by solving Debug (3.2)

for N = 1, then N = 2, and so on, until a user-specified maximum error cardinality N = Nmax.

An RTL debug tool either stops after finding all solutions for the smallest N for which Debug

is SAT, or alternatively returns all solutions of every error cardinality up to N = Nmax. In both

cases, given a solution of cardinality N , either no solutions of smaller cardinalities exist or all

such solutions have already been blocked in Debug using blocking clauses, which is why the

following theorem only considers implied solutions of the same cardinality N as the original

solution.
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Theorem 4.6 Given an erroneous design C, a counter-example of length k along with the

corresponding expected outputs and an error cardinality N , if {bi1 , . . . ,biN } is a solution of

Debug (3.2) and
∧N

n=1(bjnDbin), then {bj1 , . . . ,bjN } is an implied solution of Debug (3.2).

Proof: The theorem can be formalized as:

Debug ∧
N
∧

n=1

ein is SAT ⇒ Debug ∧
N
∧

n=1

ejn is SAT (4.8)

where we refer to the left-hand-side (respectively, right-hand-side) formula of the implication

as the LHS (respectively, RHS).

Recall that U in (3.1) refers to the k-time-frame enhanced ILA obtained from C as described

in Subsection 3.2.1. Let I = {bt
in
|1 ≤ n ≤ N, 1 ≤ t ≤ k} (respectively J = {bt

jn
|1 ≤ n ≤ N, 1 ≤

t ≤ k}) denote the union of all nodes in blocks {bi1 , . . . ,biN } (respectively {bj1 , . . . ,bjN })

across all time-frames in U . Also, let out(I) (respectively out(J)) refer to the set of outputs of

I (respectively J). We will partition the nodes in U into three parts, UI , UJ and UR, as follows.

Let UJ denote the transitive fanout of out(J) in U . Let UI denote the nodes in U that are in

the transitive fanout of out(I), but not in UJ . Finally, let UR consist of the remaining nodes in

U , outside UI and UJ . We know that
∧N

n=1(bjnDbin), and by Lemma 4.3 and Lemma 4.4, we

get
(

⋃N
n=1 bjn

)

Dk

(

⋃N
n=1 bin

)

. Given this and Lemma 4.5, we can imply that any path from

out(I) to a primary output must pass through out(J). As a result, these partitions of U can be

represented by the diagram shown in Figure 4.3.

Note that in Figure 4.3, the output constraints are separated into two subsets: ΦY =

ΦJ
Y ∧Φ

R
Y , where Φ

J
Y (respectively ΦR

Y ) denotes the output constraints applied at the outputs of

UJ (respectively UR). This separation is only needed for this proof and is not required by our

method.

We know that given ei1 = 1, . . . , eiN = 1, there exist assignments to the nodes in UI , UJ

and UR satisfying the LHS. Let π(UI), π(UJ) and π(UR) refer to these assignments. We want

to find assignments π′(UI), π
′(UJ) and π′(UR), such that given ej1 = 1, . . . , ejN = 1, the RHS

is satisfied. These assignments are found as follows.

First consider the subset of output constraints applied at the outputs of UR, denoted by ΦR
Y

in Figure 4.3. Since π(UR) satisfies Φ
R
Y and the input constraints to UR (i.e., ΦS ∧ΦX) are the
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UI

UJ

UR
out(J)

out(I)

ΦS ∧ ΦX

ΦJ
YΦR

Y ΦR
Y

Figure 4.3: Partition of U

same in the LHS and the RHS, setting π′(UR) = π(UR) will also satisfy ΦR
Y in the RHS.

Next, consider UI . Note that any path from out(I) to a primary output must pass through

out(J). Also, setting ej1 = 1, . . . , ejN = 1 in the RHS disconnects out(J) from their fanins.

Therefore, there are no output constraints applied on UI (i.e., UI is dangling logic in the RHS).

As such, π′(UI) can simply “propagate” the values of π′(UR) in UI .

Finally, since the nodes in out(J) are disconnected from their fanins in the RHS, the SAT

solver is free to pick any assignment for these variables. Furthermore, setting π′(UR) = π(UR)

already assigned any inputs to UJ coming from UR to the same values as the LHS. Therefore,

we can simply pick π′(UJ) = π(UJ), which will satisfy ΦJ
Y in Figure 4.3. This completes the

satisfying assignment π′ to all the variables in UI , UJ and UR in the RHS. Therefore, the RHS

is SAT.

�

Corollary 4.7 Given a solution {bi1 , . . . ,biN } and its corresponding satisfying assignment π

of Debug (3.2), a sequence of corrections for each implied solution {bj1 , . . . ,bjN} consists of

the assignments to {out(bt
jn
)|1 ≤ n ≤ N, 1 ≤ t ≤ k} in π.

Proof: In the proof of Theorem 4.6, we showed how to build a satisfying assignment π′ of the

RHS of (4.8) given a satisfying assignment π of the LHS. In particular, we showed that the

subset of π′ corresponding to UJ is the same as the subset of π corresponding to UJ . In other

terms, π′(UJ) = π(UJ ). Since UJ is simply the transitive fanout of out(J) in U , the subset of

π′ corresponding to out(J) is also the same as the subset of π corresponding to out(J). As

such, given a satisfying assignment π for the original solution {bi1 , . . . ,biN }, a sequence of
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corrections for the implied solution {bj1 , . . . ,bjN } simply consists of the assignments in π to

out(J) = {out(bt
jn
)|1 ≤ n ≤ N, 1 ≤ t ≤ k}.

�

4.4.1 Overall Flow

The flowchart in Figure 4.4 illustrates the overall design debugging flow using on-the-fly domi-

nator implications. Algorithm 4.1 is first run to compute D(bi) for every block bi ∈ B. Next,

the automated debugger builds the original debugging problem, Debug (3.2), and passes it

to the SAT solver. If it is UNSAT, the flow terminates. Otherwise, a solution {bi1 , . . . ,biN }

is returned. A simple implication engine takes in this solution, and using the pre-computed

block dominator relation D, generates all newly implied solutions. A blocking clause is added

to Debug for each of these implied solutions, as well as the original solution. The resulting

debugging instance is given again to the automated debugger, and this process is repeated until

the problem becomes UNSAT.

Example 4.1 Consider the sequential circuit in Figure 4.1(a) and the corresponding design

debugging formulation given in Example 3.2 and illustrated in Figure 3.5. Assume that D ⊆

B × B has been computed using Algorithm 4.1. Furthermore, assume that N = 1, and that the

solver first returns the solution {b1}. Since D(b1) = {b1,b3,b4,b5}, the solutions {b3}, {b4}

and {b5} (along with their corrections) can be immediately implied, eliminating three SAT

iterations for finding these solutions. After adding the corresponding blocking clauses (¬e1),

(¬e3), (¬e4) and (¬e5) to Debug, the solver returns UNSAT, indicating that all solutions have

been found.

4.5 Experimental Results

This section presents the experimental results for the proposed dominator-based design debug-

ging flow. All experiments are run using a single core of a Core 2 Quad 2.66 Ghz workstation

with 8 GB of RAM and a timeout of 3600 seconds. The proposed debugging framework is

implemented using a state-of-the-art hierarchical SAT-based debugger based on [6, 110], with
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a Verilog front-end to allow for RTL diagnosis. Minisat-v2.2 [38] is used to solve all SAT

instances.

Seven industrial Verilog RTL designs from OpenCores [91] and three commercial designs

provided by our industrial partners are used in our experiments. For each design, several debug-

ging instances are generated by inserting different errors into the design. The RTL errors that

are injected are based on the experience of our industrial partners. These are common designer

mistakes such as wrong state transitions, incorrect operators or incorrect module instantia-

tions. The erroneous design is then run through an industrial simulator with the accompanying

testbench, where a failure is detected and a counter-example is recorded. Each block bi ∈ B

consists of the synthesized gates corresponding to a (set of) line(s) in the RTL implementing

an assignment, an if statement, a module definition, an instantiation, etc. Experiments are

conducted with and without dominator implications. dbg-trad refers to the “traditional” de-

bugging flow (without an implication engine), and dbg-dom refers to our extended debugging

flow using dominator implications, illustrated in Figure 4.4.

Tables 4.1 and 4.2 show the circuit characteristics of our design debugging instances using

OpenCore and commercial designs, respectively. In both tables, the first column gives the

instance name, which consists of the design name and an appended number indicating a different

inserted error. The names of the commercial designs have been replaced by “design1”, etc. The

following four columns respectively show the number of nodes |n|, the number of blocks |B|,

the number of clock-cycles k in the counter-example, and finally the error cardinality N .

Tables 4.3 and 4.4 show the results of all our experiments on the OpenCore and commercial

designs, respectively. In both tables, the first column gives the instance name. Columns o-h and

# sols respectively refer to the run-time overhead for setting up the problem (i.e., generating

the CNF of Debug) and the total number of returned solutions. The o-h run-time includes

graph optimizations such as dangling logic removal. The o-h and the # sols are common for

both dbg-trad and dbg-dom. Note that the number of solutions for instances with N = 2

can be greater than B (e.g., usb funct-3) because each two-block combination {bi1 ,bi2} that

can be modified to correct the counter-example is a solution.

Column four (dbg) shows the total SAT solver run-time using dbg-trad for finding all
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debugging solutions. The remaining columns present the results of our proposed framework,

dbg-dom. Column avg |D| shows the average size of the sets D(bi) computed by Algorithm 4.1.

Next, columns # impl and % impl respectively show the number of implied solutions for each

instance and the percentage of implied solutions among all solutions. Column dom shows the

run-time of Algorithm 4.1 for computing the block dominator relation D. Column dbg gives

the total SAT solver run-time using dbg-dom, while column d+d adds to this the dominator

computation run-time of Algorithm 4.1. Finally, column impr shows the speed-up achieved by

d+d over dbg-trad, first excluding then including the common overhead. In both tables 4.3

and 4.4, the last row gives the geometric mean of the two improvement measures.

Figure 4.5 plots the ratio of implied solutions for each instance, sorted in increasing order.

On average, 66% of all solutions are implied. In other terms, the number of calls to the SAT

solver is reduced by a factor of 2.9x due to the early discovery of solutions using our approach.

For each solution found by the SAT solver, about 2.6 more solutions are implied on average.

This number is significantly less than the average number of dominators of each block, which

is 19.5, because many implied solutions in later iterations might have already been found (or

implied) in previous iterations. Figure 4.6 plots the number of found solutions versus run-time

for both dbg-trad and dbg-dom for design1-2. It can be seen that while dbg-trad returns

Figure 4.5: Ratios of implied solutions to all solutions
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Figure 4.6: # solutions vs. run-time for design1-2
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solutions at roughly equal time intervals, dbg-dom initially discovers solutions at a fast rate due

to new implications, but the rate of discovery of new solutions decreases with time. Returning

most solutions early is beneficial because the designer can start examining returned solutions

earlier, while the debugger continues to run.

The average speed-up in total SAT run-time from dbg-trad to dbg-dom is 1.8x. In many

Figure 4.7: dbg-dom vs. dbg-trad run-time comparison
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cases, higher percentages of implied solutions mean less debugging iterations, which result in less

total SAT solving time. For instance, in vga-1, 21 out of 23 solutions (91%) are implied, yielding

a 2.4x speed-up in total SAT run-time, compared to the averages of 66% implied solutions and

a 1.8x speed-up. However, this is not always true because of the unpredictable behavior of SAT

solvers. Furthermore, we have not found any clear relationships between design parameters

and improvements due to solution implications. Including the time to compute the dominator

relation D, the geometric mean of the speed-up from dbg-trad to dbg-dom is about 1.64x

disregarding common overhead, and 1.4x including common overhead. Figure 4.7 plots the

run-times of our approach (d+d) versus those of dbg-trad on a logarithmic scale, along with

the 1x, 2x, 3x and 10x lines, clearly showing the consistent superiority of the proposed method.

4.6 Summary

This chapter first presents an iterative data-flow analysis algorithm for computing dominance

relationships between multiple-output blocks of an RTL design. Block dominators are then

leveraged for the early detection of potential bugs, called implied solutions, in automated design

debugging, thus reducing the number of formal engine calls. Correction waveforms for these

implied solutions are automatically generated without explicit formal analysis. Finally, an

extensive set of experiments on real industrial designs demonstrates the consistent benefits of

the presented framework.
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Table 4.1: Instance information (OpenCores)

Instance |n| |B| k N

fdct-1 365 574 4 665 142 1

fdct-2 365 574 4 666 146 1

mips789-1 63 241 2 750 24 1

mips789-2 30 171 876 68 1

mips789-3 30 711 904 153 2

usb funct-1 35 158 3 397 31 1

usb funct 2 36 181 3 477 25 1

usb funct 3 36 181 3 401 36 2

wb dma-1 301 812 8 460 20 1

wb dma-2 187 874 6 236 69 1

fpu-1 79 504 1 988 312 1

fpu-2 139 932 2 145 312 1

opensparc ddr2-1 64 915 2 777 23 1

opensparc ddr2-2 58 399 2 779 31 1

vga-1 89 402 1 741 11 308 1

vga-2 89 488 1 833 7 1

vga-3 89 488 1 741 508 2
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Table 4.2: Instance information (commercial)

Instance |n| |B| k N

design1-1 242 086 16 736 25 1

design1-2 532 610 51 564 27 1

design1-3 203 718 10 258 151 1

design1-4 203 706 10 246 5 1

design1-5 532 634 51 564 29 1

design1-6 690 766 51 564 27 1

design2-1 875 837 84 975 212 1

design2-2 875 837 84 975 212 1

design2-3 875 837 84 975 212 1

design3-1 499 705 20 211 562 1

design3-2 499 705 20 211 177 1

design3-3 499 705 20 211 252 2
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Table 4.3: Debugging with and without dominance (OpenCores)

Instance

Common trad dbg-dom

o-h # dbg avg # % dom dbg d+d impr

(sec) sols (sec) |D| impl impl (sec) (sec) (sec) (x)

fdct-1 52.4 79 95.1 15.2 52 66% 7.8 37.4 45.2 2.1x/1.5x

fdct-2 52.2 93 188.0 15.2 64 69% 7.8 148.2 156.0 1.2x/1.2x

mips789-1 15.7 162 76.1 14.2 100 62% 1.0 33.4 34.4 2.2x/1.8x

mips789-2 18.1 37 30.4 9.0 21 57% 0.8 18.5 19.3 1.6x/1.3x

mips789-3 38.4 45 84.4 10.6 34 76% 0.6 52.2 52.8 1.6x/1.3x

usb funct-1 11.9 423 163.5 10.6 231 55% 0.1 76.4 76.5 2.1x/2.0x

usb funct-2 9.6 93 21.4 10.2 51 55% 0.9 11.8 12.7 1.7x/1.4x

usb funct-3 14.6 3 517 1 667.1 10.6 2 656 76% 0.2 690.4 690.6 2.4x/2.4x

wb dma-1 71.0 135 105.8 14.6 75 56% 5.0 50.8 55.8 1.9x/1.4x

wb dma-2 32.0 234 178.6 20.8 125 53% 1.6 119.3 120.9 1.5x/1.4x

fpu-1 168.0 8 20.8 10.4 3 38% 1.6 16.0 17.6 1.2x/1.0x

fpu-2 18.4 80 23.5 7.0 43 54% 0.6 16.1 16.7 1.4x/1.2x

ddr2-1 17.1 76 48.2 8.6 44 58% 0.2 20.7 20.9 2.3x/1.7x

ddr2-2 11.5 99 34.9 8.6 56 57% 0.2 12.7 12.9 2.7x/1.9x

vga-1 72.0 23 50.2 19.3 21 91% 2.3 20.9 23.2 2.2x/1.3x

vga-2 2.9 52 2.2 19.3 28 54% 0.2 1.2 1.4 1.5x/1.2x

vga-3 11.0 1 226 941.8 19.3 1 088 89% 0.2 600.5 600.7 1.6x/1.6x

geomean 1.8x/1.5x
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Table 4.4: Debugging with and without dominance (commercial)

Instance

Common trad dbg-dom

o-h # dbg avg # % dom dbg d+d impr

(sec) sols (sec) |D| impl impl (sec) (sec) (sec) (x)

design1-1 94.0 93 240.6 17.9 53 57% 5.8 135.4 141.2 1.7x/1.4x

design1-2 188.2 122 1 214.0 32.4 93 76% 34.2 869.5 903.7 1.3x/1.3x

design1-3 36.3 127 119.8 18.8 85 67% 3.3 52.5 55.8 2.1x/1.7x

design1-4 16.5 41 31.2 22.5 27 66% 0.5 28.3 28.8 1.1x/1.1x

design1-5 174.5 58 832.3 32.3 45 78% 31.1 634.7 665.8 1.3x/1.2x

design1-6 219.0 71 1 978.3 15.7 40 56% 19.6 1 046.4 1 066.0 1.9x/1.7x

design2-1 456.3 40 410.0 22.7 27 68% 39.2 327.7 366.9 1.1x/1.1x

design2-2 472.7 42 312.2 22.7 32 76% 39.2 228.1 267.3 1.2x/1.1x

design2-3 454.8 32 313.1 22.8 21 66% 39.2 234.7 273.9 1.1x/1.1x

design3-1 99.6 117 180.9 48.8 88 75% 13.1 80.2 93.3 1.9x/1.5x

design3-2 84.8 89 127.0 48.8 67 75% 13.1 63.9 77.0 1.6x/1.3x

design3-3 83.4 1 120 2 326.5 48.8 953 85% 13.1 1 467.0 1 480.1 1.6x/1.5x

geomean 1.5x/1.3x



Chapter 5

Leveraging Dominators in

Circuit-based QBFs

5.1 Introduction

State-of-the-art QBF solvers (e.g. [13, 18, 47, 103]) normally operate on QBF problems with

propositional formulas given in conjunctive normal form (CNF). The standardization of this

format has carried over from SAT to QBF due to the efficient data-structures and solving

strategies developed for CNF-based SAT solvers, which are also used in many QBF solvers.

However, QBF instances originating from CAD problems usually have a circuit structure which

is lost during the conversion into CNF. Recently, a number of papers have shown that this

structure can be effectively exploited in QBF solvers in different ways. In particular, circuit

observability don’t-cares can be used to improve the performance of QBF solvers [40, 53] just

as they did for SAT [98, 123]. Several papers [97, 122] analyze the limitations of CNF for

QBF and offer alternative representations addressing some of these issues. More recently, QBF

solvers that handle problems directly in a circuit-based format have shown promising results

using various solving methods [40, 53, 74].

Here, a novel preprocessing framework for exploiting the circuit structure of QBF prob-

lems using structural dominators is presented [77]. A node in a circuit is said to dominate

another node if every path from the second node to a primary output passes through the first.

80
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Dominator-based search-space pruning techniques are used in many CAD for VLSI applica-

tions, such as test pattern generation [64] and technology mapping [29], among others. In

a circuit-based QBF setting, the aim is to simplify the problem by searching for nodes that

dominate their fanin cones and subsequently removing the dominated subcircuits using proven

theoretical reduction rules. It should be noted that our contribution is orthogonal to existing

CNF-based QBF preprocessors (e.g. [104]).

A rigorous proof is given for the reduction of subcircuits dominated by single outputs in

a circuit-based QBF, irrespective of the subcircuit input quantifiers or the structure of the

remaining circuit. More precisely, the dominator of a subcircuit is shown to be replaceable

by an appropriately computed constant truth value or a quantified input variable, without

affecting the truth of the original QBF. We introduce the circuit-based QBF preprocessor

PReDom: PRe(process) and ReD(uce) Dom(inators). PReDom is independent of any particular

QBF solver and efficiently automates the process of reducing dominated subcircuits.

Experimental results are shown on circuit state-space diameter computation problems [48]

for a distributed mutual exclusion protocol from NuSMV [28]. The run-time overhead of

preprocessing these benchmarks using PReDom is at most five seconds and the resulting logically

equivalent QBF problems can be given to any QBF solver. PReDom reduces the number of clauses

by 47% on average compared to the original instances and 19% after standard simplifications.

Three state-of-the-art QBF solvers solve 27% to 45% of the resulting instances, compared to

none after standard simplifications. These results encourage further research in new strategies

that exploit the circuit structure of QBFs to increase performance.

This chapter is organized as follows. Section 5.2 contains preliminaries. Section 5.3 presents

the formal theory for the reduction of single-output dominated subcircuits in a circuit-based

QBF. Section 5.4 describes the PReDom algorithm. Section 5.5 gives experimental results and

Section 5.6 summarizes the chapter.
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5.2 Preliminaries

5.2.1 Circuit-based Quantified Boolean Formulas

The reader is referred to Section 2.3 for an overview of QBFs in prenex normal form, given as

Q.Φ, whereQ is the prefix and Φ is the matrix given in CNF. In many cases, the matrices of QBF

encodings in VLSI CAD are originally given as logic circuits, e.g., [79]. Here, we standardize

such circuit-based QBFs as Q.C, where C is a logic circuit consisting of interconnected logic

gates, such as NOT, AND, OR and XOR, and a single primary output y, which must be satisfied

(i.e., set to 1). C can be represented as a directed graph (V,E, y) with |V | nodes (primary

inputs and internal gates), |E| edges and primary output y ∈ V . The variables in the prefix Q

are the primary inputs {x1, . . . , xn} of C.

In order to pass Q.C to a CNF-based QBF solver, first a CNF formula Φ expressing C is

constructed in linear time, as detailed in Section 2.2.2, and the unit clause (y) is conjuncted

to Φ, constraining the output to 1. Recall that this translation to CNF requires the addition

of auxiliary variables corresponding the internal circuit gates. Each of these gate variables is

quantified existentially in the prefix Q, and is placed in a narrower scope compared to its gate

inputs. Recall from Section 2.3 that a scope in the QBF prefix is said to be narrower than

another scope if it is quantified after, or to the right, of the latter in the prefix. This forces

each gate variable to simply emulate its gate in C. Figure 5.1 shows a one-gate circuit-based

QBF and its corresponding QBF in prenex normal form.

y∃x1∀x2. ⇐⇒ ∃x1∀x2∃y.

(x1 ∨ x2 ∨ ¬y)∧
(¬x1 ∨ ¬x2 ∨ ¬y)∧
(x1 ∨ ¬x2 ∨ y)∧
(¬x1 ∨ x2 ∨ y) ∧ (y)

x1
x2

Figure 5.1: Circuit-based QBF to prenex normal form conversion

Recall from Section 2.3 that a closed QBF is one where all variables are bound to quantifiers,

whereas an open QBF is one where some variables are free. Two closed QBFs (circuit-based

or in prenex normal form) are said to be logically equivalent if they evaluate to the same logic
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value (i.e., either both are true or both are false). For example, any circuit-based QBF and

its corresponding prenex normal form QBF, such as those shown in Figure 5.1, are logically

equivalent. Two open QBFs with the same free variables are said to be logically equivalent if

for every assignment to their free variables the resulting closed QBFs are logically equivalent. If

Q.Φ and Q′.Φ′ are logically equivalent, we can write Q.Φ = Q′.Φ′, however this does not imply

that Q = Q′ or Φ = Φ′. The same is true for circuit-based QBFs. A function that transforms

a QBF into another QBF is said to preserve logical equivalence if the two QBFs are always

logically equivalent.

5.2.2 Complete Dominators

In a directed graph C = (V,E, y), a node u ∈ V dominates node v ∈ V , if every path from v to

the output y passes through u. The set dom(v) = {u ∈ V |u dominates v} consists of nodes that

dominate v. The inverse set dom−1(v) = {u ∈ V |v dominates u} consists of nodes dominated

by v.

Let the set fanin(v) = {u ∈ V |(u, v) ∈ E} denote the fanins of v, the set fanin∗(v) =

{u ∈ V |∃ a path u v in C} denote the transitive fanin cone of v, and the set faninPI∗(v) =

{u ∈ fanin∗(v)|∀w ∈ V.∄(w, u) ∈ E} denote the primary inputs in the transitive fanin cone

of v. We call a node v a complete dominator if it dominates every node in fanin∗(v), i.e., if

dom−1(v) = fanin∗(v).

Consider the circuit in Figure 5.2. Here, dom(x2) = {x2, α, y}, dom
−1(g3) = {x1, x3, g1, g2, g3}

and faninPI∗(α) = {x1, x2, x3}. Note that dom−1(α) = fanin∗(α) = {x1, x2, x3, g1, g2, g3, α},

hence α is a complete dominator. We refer to the transitive fanin cone fanin∗ of a complete

dominator α as a single-output dominated subcircuit (SODS).

yα
g3

g1 g2

x4
x3
x1
x2

Figure 5.2: A circuit with a complete dominator α
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Many algorithms have been developed for computing the set dom(v) for each v ∈ V . The

run-times of these algorithms have improved from O(|V |2) [7] to O(|E|+ |V |) [45].

5.3 Reducing SODSes in a Circuit-based QBF

This section presents the theory behind a novel circuit-based QBF reduction scheme, which

uses complete dominators. The aim is to obtain a logically equivalent circuit-based QBF which

is smaller than the original, and therefore easier to solve by a QBF solver. For instance, we

will show that in the QBF ∃x1∀x2∃x3∀x4.C, for the circuit given in Figure 5.2, we can assign

the complete dominator α to 1 and remove its fanin-cone while preserving logical equivalence.

In the following subsection, we give a motivating example to illustrate the basic idea, where

a single AND gate can be removed and replaced by a constant. In Subsection 5.3.2, we consider

the general case, and give a formal proof showing how to appropriately reduce any SODS in

a circuit-based QBF and replace its output by a constant truth value or a quantified primary

input, all while preserving logical equivalence. Note that, by definition, the inputs of the SODS

must be primary inputs, and the approach is not applicable to dominated subcircuits that do

not extend all the way to primary inputs.

5.3.1 A Motivating Example

Before discussing the example, we must introduce some notation. Let Q.C denote the original

circuit-based QBF and fα(Q.C) denote the reduced QBF after the elimination of the SODS of

the complete dominator α. We call fα(Q.C) the α-reduced QBF of Q.C. The function fα(Q.C)

can yield one of the following four types of reductions:

• [Q.C]α=0 (or [Q.C]α=1) denotes the QBF Q.C where α has been replaced by 0 (or 1),

fanin∗(α) has been removed from C and the variables in faninPI∗(α) have been removed

from Q.

• [Q.C]α=∃z (or [Q.C]α=∀z) denotes the formula Q.C where α has been replaced by an exis-

tential (or a universal) primary input z, where z ∈ faninPI∗(α). Again, fanin∗(α) has
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been removed from C and the variables in faninPI∗(α) − {z} have been removed from

Q.

Now consider the circuit-based QBF in Figure 5.3. The circuit C contains the AND gate α,

which is a complete dominator. Note that α may fan out to any number of other gates, and C

may contain any number of other inputs, arbitrarily quantified in Q. Let Q.C = ∀x1∃x2Q
′.C

denote this circuit-based QBF.

Claim The QBF Q.C given in Figure 5.3 and [Q.C]α=0 are logically equivalent.

Proof: We must prove that: (a) Q.C is true⇒ [Q.C]α=0 is true, and (b) Q.C is false⇒ [Q.C]α=0

is false.

(a) By definition, Q.C = ∀x1∃x2Q
′.C = ∃x2Q

′.C|¬x1
∧∃x2Q

′.C|x1
. SoQ.C is true⇒ ∃x2Q

′.C|¬x1

is true. But x1 = 0⇒ α = 0, hence ∃x2Q
′.(C|¬x1

∧ (¬α)) is true. At this point, since x2

is completely dominated by α, we can set it to an arbitrary value (e.g., x2 = 0) without

affecting the output y, so Q′.(C|¬x1,¬x2
∧ (¬α)) is true. Since the inputs and output of

α are assigned, we can just remove the AND gate from the circuit. Furthermore, since x1

and x2 can affected the primary output y only through the (now removed) AND gate α,

we can remove x1 and x2 from C and Q, and hence, [Q.C]α=0 is true.

(b) By definition, Q.C is false⇒ ∃x2Q
′.C|¬x1

∧∃x2Q
′.C|x1

is false. So either (b.1) ∃x2Q
′.C|¬x1

is false or (b.2) ∃x2Q
′.C|x1

is false. We show that each of (b.1) and (b.2) implies that

[Q.C]α=0 is false.

(b.1) Analogously to (a), (b.1) ⇒ ∃x2Q
′.(C|¬x1

∧ (¬α)) is false ⇒ [Q.C]α=0 is false.

∀x1∃x2Q
′.

. . .

y
...

. . .
αx1

x2

Figure 5.3: A circuit-based QBF
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(b.2) By definition, ∃x2Q
′.C|x1

= Q′.C|x1,¬x2
∨ Q′.C|x1,x2

. Therefore, (b.2) ⇒ Q′.C|x1,¬x2

is false and Q′.C|x1,x2
is false. But Q′.C|x1,¬x2

is false ⇒ [Q.C]α=0 is false, since x1

and x2 can affect y only through α.

�

Note that Q.C and [Q.C]α=0 being logically equivalent does not mean that corresponding

gates in the two circuits always evaluate to the same value given the same primary input

assignment. In fact, setting x1 = 1 and x2 = 1 in Q.C makes α = 1, whereas α is grounded to

0 in [Q.C]α=0. On the other hand, a QBF solver will evaluate both Q.C and [Q.C]α=0 to the

same value (true or false).

5.3.2 The General Case

Given a complete dominator α with an arbitrary SODS, we will show how to construct fα(Q.C)

and prove that it produces a QBF that is logically equivalent to the original QBF Q.C.

The scopes in the prefix Q impose a partial order ≺ on the variables {x1, . . . , xn}, such

that xi ≺ xj if and only if the scope of xi is wider than the scope of xj . For the sake of the

construction of fα(Q.C) and its proof of correctness, we will use an arbitrary total order on the

prefix Q, which respects this partial order and arbitrarily orders variables that are in the same

scope. In other terms, we will write the prefix as:

Q = q1x1 q2x2 · · · qnxn

Furthermore, let Qi = qi+1xi+1 qi+2xi+2 · · · qnxn. Hence, Qi = qi+1xi+1Qi+1 and we have:

Q0 = q1x1 q2x2 · · · qnxn = Q

Q1 = q2x2 · · · qnxn

...

Qn = ∅.

Notice that Q0.C = Q.C. Also, if 1 ≤ i ≤ n, then Qi.C is an open QBF where the variables

{x1, . . . , xi} are free (i.e., unquantified in Qi). We will use the symbol πi to denote a truth
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assignment that assigns exactly the variables in faninPI∗(α) which are free in Qi.C. In other

terms, if 1 ≤ i ≤ n, πi is a truth assignment to {x1, . . . , xi}∩faninPI∗(α), and π0 = ∅. In order

to construct fα(Q.C), we will need to recursively define a two-argument function fα(Qi.C, πi),

which produces a logically equivalent QBF to Qi.C under the truth assignment πi. In other

terms, fα(Qi.C, πi) must be logically equivalent to Qi.C|πi
. As a result, by definition, we get

fα(Q0.C, π0) = fα(Q.C, ∅) = fα(Q.C|∅) = fα(Q.C).

Similarly to the final reduction fα(Q.C), the function fα(Qi.C, πi) can yield one of the

following four types of intermediate reductions:

• [Qi.C]α=0 (or [Qi.C]α=1) replaces α in Qi.C by 0 (or 1), removes fanin∗(α) from C and

removes the variables in faninPI∗(α) from Qi.

• [Qi.C]α=∃z (or [Qi.C]α=∀z) replaces α in Qi.C by an existential (or a universal) primary

input z, where z ∈ {xi+1, . . . , xn} ∩ faninPI∗(α). It also removes fanin∗(α) from C and

removes the variables in faninPI∗(α)− {z} from Qi.

Note that unlike fα(Q.C), the QBF fα(Qi.C, πi) is not necessarily closed, i.e., it can have

free variables.

Definition 5.1 Given a truth assignment πi, the QBF fα(Qi.C, πi) is recursively defined as

follows:

(a) If i = n, these are the base cases: All the variables in Qn.C = C are free and πn assigns

all the variables in faninPI∗(α). Then:

fα(Qn.C, πn) ,











[Qn.C]α=0 = [C]α=0 if α = 0 under πn

[Qn.C]α=1 = [C]α=1 if α = 1 under πn

(b) If 0 ≤ i < n and xi+1 6∈ faninPI∗(α), then:

fα(Qi.C, πi) , qi+1xi+1fα(Qi+1.C, πi+1), where πi = πi+1

Note that πi = πi+1 is legal since πi+1 cannot assign xi+1 6∈ faninPI∗(α).
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(c) If 0 ≤ i < n and xi+1 ∈ faninPI∗(α), then:

fα(Qi.C, πi) ,











fα(Qi+1.C, πi ∪ {xi+1 = 0}) ∨ fα(Qi+1.C, πi ∪ {xi+1 = 1}) if qi+1 = ∃

fα(Qi+1.C, πi ∪ {xi+1 = 0}) ∧ fα(Qi+1.C, πi ∪ {xi+1 = 1}) if qi+1 = ∀

The resulting QBF fα(Qi.C, πi) is given in Table 5.1 for each qi+1 and each reduction type

of fα(Qi+1.C, πi ∪ {xi+1 = 0}) and fα(Qi+1.C, πi ∪ {xi+1 = 1}).

In Table 5.1, we use the notation a ↑ b (respectively, a ↓ b) for two variables a and b

to denote the one with the widest (respectively, narrowest) scope. For example, if xi ≺ xj,

xi ↑ xj = xi and xi ↓ xj = xj.

In the base case (a) of Definition 5.1, given a truth assignment πn that sets all the vari-

ables in faninPI∗(α), the reduction fα(Qn.C, πn) = fα(C, πn) is simply obtained using circuit

simulation: α is assigned to its simulated value under πn and its fanin cone is removed. This

yields [C]α=0 (respectively, [C]α=1) if the simulated value of α is 0 (respectively, 1). There are

2|faninPI∗(α)| base cases, one for each assignment combination to πn.

For case (c) of Definition 5.1, Table 5.1 gives fα(Qi.C, πi) for each qi+1 ∈ {∃,∀}, and for

each of the four reduction types to fα(Qi+1.C, πi∪{xi+1 = 0}) and fα(Qi+1.C, πi∪{xi+1 = 1}),

namely [Qi+1.C]α=0, [Qi+1.C]α=1, [Qi+1.C]α=∃z and [Qi+1.C]α=∀z . As such, for each qi+1 ∈

{∃,∀}, the number of different cases that need to be considered is equal to the number of ways

to pick two out of these four reduction types for fα(Qi+1.C, πi∪{xi+1 = 0}) and fα(Qi+1.C, πi∪

{xi+1 = 1}), with repetition but without order. This is given by:

(

4 + 2− 1

2

)

=

(

5

2

)

= 10 cases.

The correctness of the results shown in Table 5.1, as well as the other cases in Definition 5.1,

is proven in Theorem 5.1.

We give some intuition for some of the cases in Table 5.1. Case 1 considers the case where

Qi+1.C can be reduced to [Qi+1.C]α=0 under both assignments πi∪{xi+1 = 0} and πi∪{xi+1 =

1}. Assuming that qi+1 = ∃, by part (c) of Definition 5.1, fα(Qi.C, πi) = fα(Qi+1.C, πi∪{xi+1 =

0}) ∨ fα(Qi+1.C, πi ∪ {xi+1 = 1}) = [Qi+1.C]α=0 ∨ [Qi+1.C]α=0 = [Qi+1.C]α=0. This in turn is

logically equivalent to [Qi.C]α=0, since qi+1xi+1 is removed from the prefix of [Qi.C]α=0 anyway
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Table 5.1: fα(Qi.C, πi) for case (c) of Definition 5.1 when i < n and xi+1 ∈ faninPI∗(α)

Case fα(Qi+1.C, πi ∪ {x = 0}) fα(Qi.C, πi)

and fα(Qi+1.C, πi ∪ {x = 1}) qi+1 = ∃ qi+1 = ∀

1 [Qi+1.C]α=0 [Qi+1.C]α=0 [Qi.C]α=0 [Qi.C]α=0

2 [Qi+1.C]α=0 [Qi+1.C]α=1 [Qi.C]α=∃xi+1
[Qi.C]α=∀xi+1

3 [Qi+1.C]α=0 [Qi+1.C]α=∃z [Qi.C]α=∃z [Qi.C]α=0

4 [Qi+1.C]α=0 [Qi+1.C]α=∀z [Qi.C]α=0 [Qi.C]α=∀z

5 [Qi+1.C]α=1 [Qi+1.C]α=1 [Qi.C]α=1 [Qi.C]α=1

6 [Qi+1.C]α=1 [Qi+1.C]α=∃z [Qi.C]α=∃z [Qi.C]α=1

7 [Qi+1.C]α=1 [Qi+1.C]α=∀z [Qi.C]α=1 [Qi.C]α=∀z

8 [Qi+1.C]α=∃z1 [Qi+1.C]α=∃z2 [Qi.C]α=∃z1↓z2 [Qi.C]α=∃z1↑z2

9 [Qi+1.C]α=∃z1 [Qi+1.C]α=∀z2 [Qi.C]α=∃z1 [Qi.C]α=∀z2

10 [Qi+1.C]α=∀z1 [Qi+1.C]α=∀z2 [Qi.C]α=∀z1↑z2 [Qi.C]α=∀z1↓z2
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(given that xi+1 ∈ faninPI∗(α)). Considering qi+1 = ∀ gives a similar result, and case 5 is

analogous to case 1. Case 2 is simply an application of the definition of quantification.

Consider case 7 in Table 5.1 with qi+1 = ∀. Then, according to Definition 5.1, fα(Qi.C, πi) =

[Qi+1.C]α=1 ∧ [Qi+1.C]α=∀z . This is logically equivalent to [Qi.C]α=1 ∧ [Qi.C]α=∀z by the same

argument as above. The QBFs [Qi.C]α=1 and [Qi.C]α=∀z have the same free variables (if any):

The variables in {x1, . . . , xi} that are not in faninPI∗(α). Now notice that for every assignment

to these free variables, the QBF [Qi.C]α=∀z cannot be true if the QBF [Qi.C]α=1 is not true.

In other terms, [Qi.C]α=∀z ⇒ [Qi.C]α=1. This in turn means that the truth of [Qi.C]α=∀z is

a necessary and sufficient condition for the truth of [Qi.C]α=1 ∧ [Qi.C]α=∀z . In other terms,

[Qi.C]α=1 ∧ [Qi.C]α=∀z = [Qi.C]α=∀z , as shown in case 7 when qi+1 = ∀. Cases 3, 4, 5, 6 and 9

are analogous to case 7, for either qi+1 ∈ {∃,∀}.

Finally, consider case 8 with qi+1 = ∃. Then, fα(Qi.C, πi) = [Qi+1.C]α=∃z1 ∨ [Qi+1.C]α=∃z2 ,

which is logically equivalent to [Qi.C]α=∃z1 ∨ [Qi.C]α=∃z2 . Now the key is to notice that if the

QBF [Qi.C]α=∃z1↑z2 is true, then the QBF [Qi.C]α=∃z1↓z2 is also true. The reason is as follows.

In [Qi.C]α=∃z1↑z2 , the scope of α is wider than in [Qi.C]α=∃z1↓z2 . As such, the Skolem function of

α in a Q-model of the QBF [Qi.C]α=∃z1↑z2 is a function of a subset of the universal variables that

the Skolem function of α in a Q-model of the QBF [Qi.C]α=∃z1↓z2 is a function of. Put simply, α

has less flexibility in a Q-model of [Qi.C]α=∃z1↑z2 than in a Q-model of [Qi.C]α=∃z1↓z2 . As such, if

a Q-model for [Qi.C]α=∃z1↑z2 exists, then a Q-model for [Qi.C]α=∃z1↓z2 can be constructed from it

by simply disregarding those extra universal variables that α is now allowed to be a function of.

Therefore, [Qi.C]α=∃z1↑z2 ⇒ [Qi.C]α=∃z1↓z2 . This in turn means that the truth of [Qi.C]α=∃z1↓z2

is a necessary and sufficient condition for the truth of [Qi+1.C]α=∃z1 ∨ [Qi+1.C]α=∃z2 . In other

terms, [Qi+1.C]α=∃z1 ∨ [Qi+1.C]α=∃z2 = [Qi.C]α=∃z1↓z2 , as shown in case 8 when qi+1 = ∃. Case

10 is analogous to case 8, for either qi+1 ∈ {∃,∀}.

In order to construct fα(Q.C, ∅) using Definition 5.1, one has to proceed in a bottom-up

recursive fashion. Starting from all the base cases, where i = n and Qn.C = C, the function

fα(C, πn) must be computed for every πn assigning every combination of faninPI∗(α). Case

(a) of Definition 5.1 deals with base cases. Next, for i = n − 1, we have Qn−1.C = qnxn.C,

and now fα(qnxn.C, πn−1) must be computed for every πn−1 assigning every combination of
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{x1, . . . , xn−1} ∩ faninPI∗(α). One of case (b) or (c) of Definition 5.1 would dictate these

computations, depending on whether xn ∈ faninPI∗(α) or not. At each subsequent step, i is

decreased by one, and fα(QiC, πi) is computed according to Definition 5.1. In the final step,

i = 0 and fα(Q0.C, π0) = fα(Q.C, ∅) is computed. This will be illustrated in detail later using

an example.

Theorem 5.1 For all i and any assignment πi to the variables in {x1, . . . , xi}∩ faninPI∗(α),

Qi.C|πi
and fα(Qi.C, πi) are logically equivalent.

Proof: The proof is by induction over i, and follows the recursive definition of the function

fα(Qi.C, πi) in Definition 5.1. The inductive hypothesis is that Qi+1.C|πi+1
and fα(Qi+1.C, πi+1)

are logically equivalent for all valid πi+1. The inductive step is that Qi.C|πi
and fα(Qi.C, πi)

are logically equivalent for all valid πi.

(a) If i = n (base cases). All the variables in Qn.C = C are free and any πn assigns all the

variables in faninPI∗(α). So fα(Qn.C, πn) = fα(C, πn) ∈ {[C]α=0, [C]α=1} simply replaces

α by its value under πn, which is clearly logically equivalent to C|πn .

(b) If i < n and xi+1 6∈ faninPI∗(α). Note that πi = πi+1 because xi+1 6∈ faninPI∗(α).

We can add the prefix qi+1xi+1 to both sides of the inductive hypothesis because xi+1

does not participate in the transformation. We get that qi+1xi+1fα(Qi+1.C, πi+1) and

qi+1xi+1Qi+1.C|πi+1
are logically equivalent. Since qi+1xi+1fα(Qi+1.C, πi+1) = fα(Qi.C, πi)

by case (b) of Definition 5.1, hence fα(Q.C, π) and Q.C|π are logically equivalent.

(c) If i < n and xi+1 ∈ faninPI∗(α). By the definition of quantification, we have:

∃xi+1Qi+1.C|πi
= Qi+1.C|πi,¬xi+1

∨Qi+1.C|πi,xi+1
and

∀xi+1Qi+1.C|πi
= Qi+1.C|πi,¬xi+1

∧Qi+1.C|πi,xi+1
.

Therefore:

Qi.C|πi
= qi+1xi+1Qi+1.C|πi

=











Qi+1.C|πi,¬xi+1
∨Qi+1.C|πi,xi+1

if qi+1 = ∃

Qi+1.C|πi,¬xi+1
∧Qi+1.C|πi,xi+1

if qi+1 = ∀.

(5.1)
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By the inductive hypothesis:

Qi+1.C|πi,¬xi+1
and fα(Qi+1.C, πi ∪ {xi+1 = 0}) are logically equivalent, and

Qi+1.C|πi,xi+1
and fα(Qi+1.C, πi ∪ {xi+1 = 1}) are logically equivalent.

Replacing these functions in (5.1), we get that Qi.C|πi
is logically equivalent to:











fα(Qi+1.C, πi ∪ {xi+1 = 0}) ∨ fα(Qi+1.C, πi ∪ {xi+1 = 1}) if qi+1 = ∃

fα(Qi+1.C, πi ∪ {xi+1 = 0}) ∧ fα(Qi+1.C, πi ∪ {xi+1 = 1}) if qi+1 = ∀.

(5.2)

It remains to show that (5.2) is logically equivalent to the results displayed in the last two

columns of Table 5.1, for every fα(Qi+1.C, πi∪{xi+1 = 0}) and fα(Qi+1.C, πi∪{xi+1 = 1})

given by the ten cases in Table 5.1.

– Case 1: Here, fα(Qi+1.C, πi∪{xi+1 = 0}) = fα(Qi+1.C, πi∪{xi+1 = 1}) = [Qi+1.C]α=0,

so irrespective of qi+1, (5.2) yields [Qi+1.C]α=0.

– Case 2: Here, (5.2) gives:










[Qi+1.C]α=0 ∨ [Qi+1.C]α=1 if qi+1 = ∃

[Qi+1.C]α=0 ∧ [Qi+1.C]α=1 if qi+1 = ∀.

In the QBF [Qi+1.C]α=0 (respectively, [Qi+1.C]α=1), α is simply a primary input set

to 0 (respectively, 1). Therefore, we can apply the definition of quantification in the

other direction as follows:










[Qi+1.C]α=0 ∨ [Qi+1.C]α=1 = ∃xi+1[Qi+1.C]α=∃xi+1
= [Qi.C]α=∃xi+1

if qi+1 = ∃

[Qi+1.C]α=0 ∧ [Qi+1.C]α=1 = ∀xi+1[Qi.C]α=∀xi+1
= [Qi.C]α=∀xi+1

if qi+1 = ∀,

Conveniently replacing α by the variable in the current scope, which is xi+1.

– Case 5: Analogous to case 1, but replacing [Qi+1.C]α=0 by [Qi+1.C]α=1.

– Cases 3, 4, 6, 7, 8, 9, 10: Recall from formal logic that if a⇒ b, then a ∧ b = a and

a ∨ b = b. As such:

∗ If fα(Qi+1.C, πi∪{xi+1 = 0})⇒ fα(Qi+1.C, πi∪{xi+1 = 1}), then (5.2) becomes:










fα(Qi+1.C, πi ∪ {xi+1 = 1}) if qi+1 = ∃

fα(Qi+1.C, πi ∪ {xi+1 = 0}) if qi+1 = ∀.

(5.3)
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∗ If fα(Qi+1.C, πi∪{xi+1 = 1})⇒ fα(Qi+1.C, πi∪{xi+1 = 0}), then (5.2) becomes:











fα(Qi+1.C, πi ∪ {xi+1 = 0}) if qi+1 = ∃

fα(Qi+1.C, πi ∪ {xi+1 = 1}) if qi+1 = ∀.

(5.4)

Hence, it suffices to prove the implication fα(Qi+1.C, πi∪{xi+1 = 0})⇒ fα(Qi+1.C, πi∪

{xi+1 = 1}) (or vice-versa) for each of these cases.

3 [Qi+1.C]α=0 ⇒ [Qi+1.C]α=∃z. If [Qi+1.C]α=0 is true, we can make [Qi+1.C]α=∃z

true by setting z = 0.

4 [Qi+1.C]α=∀z ⇒ [Qi+1.C]α=0. By definition, if [Qi+1.C]α=∀z is true, it must be

true for both z = 0 and z = 1. In particular, it must be true when z = 0.

6 [Qi+1.C]α=1 ⇒ [Qi+1.C]α=∃z . Analogous to case 3.

7 [Qi+1.C]α=∀z ⇒ [Qi+1.C]α=1. Analogous to case 4.

8 [Qi+1.C]α=∃z1↑z2 ⇒ [Qi+1.C]α=∃z1↓z2 . Without loss of generality, assume that

z1 ↑ z2 = z1 and z1 ↓ z2 = z2. If [Qi+1.C]α=∃z1 is true, then it has a Q-model in

which the value of α is a function of all universal variables with a wider scope

than z1. Since the scope of z2 is narrower, in [Qi+1.C]α=∃z2 the value of α is

a function of all those and possibly additional universal variables. Therefore,

the value of α in a Q-model of [Qi+1.C]α=∃z2 can emulate α in [Qi+1.C]α=∃z1 by

ignoring the remaining universal variables with scopes between z1 and z2, which

α is also a function of in [Qi+1.C]α=∃z2 .

9 [Qi+1.C]α=∀z2 ⇒ [Qi+1.C]α=∃z1 . The proof can be composed from Cases 3 and 4

as follows: [Qi+1.C]α=∀z2 ⇒ [Qi+1.C]α=0 ⇒ [Qi+1.C]α=∃z1 .

10 [Qi+1.C]α=∀z1↓z2 ⇒ [Qi+1.C]α=∀z1↑z2 . Without loss of generality, assume that

z1 ↓ z2 = z1 and z1 ↑ z2 = z2. Widening the scope of the universal α from that

of z1 to that of z2 will make the existential variables between those scopes also a

function of α. Since [Qi+1.C]α=∀z1 is true, to produce a Q-model for [Qi+1.C]α=∀z2

the existential variables between the scopes of z1 and z2 can emulate their values

in a Q-model of [Qi+1.C]α=∀z1 , ignoring α.
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Finally, in the results of all the sub-cases of (c) except case 2, we can simply replace

each of [Qi+1.C]α=0, [Qi+1.C]α=1, [Qi+1.C]α=∃z and [Qi+1.C]α=∀z by [Qi.C]α=0, [Qi.C]α=1,

[Qi.C]α=∃z and [Qi.C]α=∀z , respectively, since xi+1 ∈ faninPI∗(α) will be removed from

the prefix either way.

�

Corollary 5.2 Q.C and fα(Q.C) are logically equivalent.

Proof: In Theorem 5.1, setting i = 0, we have π0 = ∅. Hence Q0.C|∅ = Q.C and fα(Q0.C, ∅) =

fα(Q.C) are logically equivalent.

�

The following example demonstrates the construction of fα(Q.C).

Example 5.1 Consider the circuit-based QBF given in Figure 5.4, where α is a complete dom-

inator. Figure 5.5 illustrates the construction of the logically equivalent α-reduced QBF fα(Q.C)

in a bottom-up recursive fashion. Each node in the tree gives what α is set to in fα(Qi.C, πi),

where Qi is shown at the same level of the node and to the left of the tree, whereas πi assigns

all the literals shown on the edges of the path from the root to that node. For example, at i = 2,

the third node from the left is 0. This means that fα(Q2.C, {x1 = 1, x2 = 0}) = [Q2.C]α=0 =

[∃x3∀x4.C]α=0.

The construction starts with the base cases (i.e., case (a) in Definition 5.1), occurring at

the leaves of the tree in Figure 5.5, where Q4.C = C has only free variables. Each assignment

π4 corresponding to a different leaf, assigns the variables in faninPI∗(α) = {x1, x2, x3}, and

fα(C, π4) sets α to its simulated value under that π4. For example, in the second leaf from

g1
x2
x1
x3
x4

α y
g3

g2∃x1∀x2∃x3∀x4.

Figure 5.4: A circuit-based QBF with complete dominator α
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x1

x2 x2

x3 x3 x3 x3

∅

i Qi

πi

∃x3∀x4

∀x4

¬x1

4

3

2

1

0 1

1

1 0 1

0

0

∃x3

∀x2

¬x2 ¬x2

¬x3 ¬x3 ¬x3 ¬x3

0

0 0

01

1 1 1

1 1 1 1

1 1

∃x1∀x2∃x3∀x4

∀x2∃x3∀x4

Assignment to α in fα(Qi.C, πi)

Figure 5.5: Constructing fα(Q.C)

the left, π4 = {¬x1,¬x2, x3}, which yields α = 1, and hence fα(C, {¬x1,¬x2, x3}) = [C]α=1

(denoted as 1 in the figure for brevity). As such, the base cases are constructed by simulating

α for all combinations of {x1, x2, x3}.

Once all 23 = 8 base cases are computed, we consider Q3.C = ∀x4.C. Since x4 6∈ faninPI∗(α),

by case (b) of Definition 5.1, we get fα(Q3.C, π3) = ∀x4fα(Q4.C, π4), where π4 = π3. So

if fα(Q4.C, π4) = [C]α=0 (respectively, [C]α=1), then fα(Q3.C, π3) = ∀x4.[C]α=0 (respectively,

∀x4.[C]α=1), where π4 = π3. As such, the reduction at α remains the same at the level of vari-

ables in the prefix which are not in faninPI∗(α), such as x4. The dotted lines above each leaf

of the tree in Figure 5.5 demonstrate this.

Next, each of x1, x2, x3 ∈ faninPI∗(α), and therefore they follow case (c) of Definition 5.1.

Here, a node fα(Qi.C, πi) is a function of its two children fα(Qi+1.C, πi ∪ {xi = 0}) and

fα(Qi+1.C, πi ∪ {xi = 1}). For instance, consider Q1.C = ∀x2∃x3∀x4.C and π1 = {x1},

which corresponds to the right child of the root in Figure 5.5. We get fα(Q1.C, {x1 = 1}) =

fα(Q2.C, {x1 = 1, x2 = 0})∧fα(Q2.C, {x1 = 1, x2 = 1}) = [Q2.C]α=0∧ [Q2.C]α=1 = [Q1.C]α=∀x2
,

by applying case 2 in Table 5.1. This is denoted as ∀x2 in the figure for brevity.

The final result is given at the root of the tree, where Q0.C = Q.C, π0 = ∅ and fα(Q.C, ∅) =
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fα(Q.C) = [Q.C]α=1. In other terms, we can set α = 1 and remove its fanin cone without

affecting the value of the original QBF. Propagating α = 1 into the XOR gate yields a NOT gate,

and the original QBF reduces to Figure 5.6. Clearly, this smaller QBF is much easier to solve.

x4∀x4. y

Figure 5.6: The α-reduced QBF of Figure 5.4

Notice that during the construction of fα(Q.C), variables not in faninPI∗(α), such as x4

in Example 5.1, can be disregarded in practice. As such, one only needs to examine the SODS

of α and can disregard the remaining circuit when constructing fα(Q.C).

It is also worth emphasizing that even though the number of simulations to compute fα(Q.C)

using a tree similar to that of Figure 5.5 is exponential in |faninPI∗(α)|, reducing SODSes

using the techniques given in this section can still provide massive run-time improvements. For

instance, consider a circuit-based QBF with n = 16 primary inputs. If there are 4 sets of

4 primary inputs, with each set completely dominated by a separate node, then reducing all

four SODSes would require 4 · 24 = 64 simulations, and solving the resulting QBF problem,

which would have at most 4 inputs, would require an additional 24 = 16 simulations in the

worst-case. This results in at most 64 + 16 = 80 simulations, whereas solving the original

QBF could potentially require 216 = 65536 simulations. Furthermore, reductions of existing

complete dominators can create new complete dominators, which can themselves be reduced

iteratively. The PReDom algorithm described in the following section finds and reduces such

SODSes iteratively.

5.4 The PReDom Algorithm

In this section, we describe our implementation of the preprocessor PReDom, which searches for

complete dominators and applies the theory described in Section 5.3 to reduce their SODSes. In

our implementation, the resulting circuit-based QBF is translated back to prenex normal form,
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so that state-of-the-art CNF-based QBF solvers can take advantage of the reductions. In order

to do so, PReDom also stores the CNF representation of the circuit-based problem. Actions such

as eliminating a subcircuit and setting dominator outputs to constants are done by removing

the clauses corresponding to the gates in that subcircuit and adding unit literals to the CNF

formula, respectively.

Algorithm 5.1 gives a simplified view of the PReDom procedure. Before searching for complete

dominators, PReDom performs several standard optimization steps, grouped in simplify(Q,C)

(line 1). Unit constraint propagation and universal reduction [18] are performed directly in

the CNF. Equivalence reduction is achieved efficiently by removing NOTs and BUFFERs in the

circuit (and therefore their clauses in the CNF) and adding fanin polarity information for the

remaining gates. Finally, dangling gates are also removed.

On line 2, dom(v) is computed for every v ∈ V , where V is the set of nodes in C. We use

the method in [7] because it is simple and sufficiently fast in practice, but faster algorithms

exist, e.g. [45]. Next, we compute the inverse map dom−1(v), for every v ∈ V , which stores the

set of nodes dominated by v.

In the main loop of the preprocessor, each vertex v is traversed in topological order (line 5),

and the set faninPI∗(v) is computed recursively (lines 7 to 9). On line 10, the preprocessor

checks that the number of primary inputs in the fanin cone of v is not more than a user-defined

upper-bound MAX, which we have set to 20. This is needed to avoid memory explosion,

since the number of base cases in the reduction is exponential in |faninPI∗(v)|, as shown in

Figure 5.5.

Line 11 is the condition for v to be a complete dominator, which is reduced on line 12. Here

PI denotes the set of primary inputs in C. The function Reduce uses parallel simulations to

efficiently produce all the input combinations of faninPI∗(v), and applies a scheme similar

to the one shown in Example 5.1, to reduce the SODS of v. When a complete dominator is

found and reduced, it is propagated and its faninPI∗(v) is reset. The ignore flags are used

to disregard nodes which are already known to have more than MAX primary inputs in their

fanin cones.

Finally, it should be noted that PReDom first decomposes gates with more than two inputs
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Algorithm 5.1: PReDom algorithm

input : Prefix Q, matrix C

output: Reduced prefix Q, matrix C

1 simplify(Q,C);

2 dom← computeDom(C);

3 dom−1← computeInv(dom);

4 foreach v ∈ V do ignore[v]← false;

5 foreach v ∈ V in topological order ∧ ¬ignore[v] do

6 if v ∈ PI then

7 faninPI∗[v]← {v} ;

8 else

9 faninPI∗[v]←
⋃

u∈faninPI∗[v]

faninPI∗[u];

10 if |faninPI∗[v]| < MAX then

11 if faninPI∗[v] = dom−1[v] ∩ PI then

12 v ← reduce(v,faninPI∗[v],Q,C) ;

13 faninPI∗[v]← {v} ;

14 else

15 ignore[v]← true ;

16 ∀u∈fanout[v].ignore[u]← true ;
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into several two-input gates. For example, a 4-input AND gate is decomposed into a cascade of

three 2-input AND gates. This is beneficial because if any one of these 2-input AND gates is a

complete dominator of its transitive fanin-cone, its SODS can be reduced even if the original

4-input AND gate is not a complete dominator itself.

5.5 Experimental Results

We implemented our circuit-based QBF preprocessor PReDom in C++. The input format of the

preprocessor is composed of three parts: (1) A circuit description in ISCAS85 format using

NOT, BUFFER, AND, OR, NAND, NOR, XOR and XNOR gates, (2) the corresponding QBF in prenex

normal form, and (3) a file mapping between the circuit nodes and variables/clauses in the CNF.

The preprocessor first applies standard optimizations (simplify), then searches for complete

dominators and reduces their SODSes, as described in this chapter. The resulting problems are

then given to QBF solvers.

The benchmarks are a suite of circuit state-space diameter computation problems called

dme [48] for a distributed mutual exclusion protocol from NuSMV [28]. State-space diameter

computation is an important problem in formal verification which is required for the com-

pleteness of bounded model checking (BMC). The problems are originally given in the QBF1.0

format [46], and are converted in negligible time into our specified format using the converter

of [53]. The results of three state-of-the-art QBF solvers, namely sKizzo-v0.10 [13], 2clsQ [103]

and quantor-v3.0 [18] (with the recommended picosat [19] back end) are compared with and

without PReDom. All experiments are conducted on a Pentium IV 2.8 GHz Linux platform with

12 GB of memory and a time limit of 5 hours.

Table 5.2 shows the preprocessing results using PReDom. The first column gives the instance

name. Column # clause orig gives the original number of clauses in the CNF of each problem

instance. Columns # clause+sim and # clause+dom respectively show the number of clauses

after the optimizations in simplify and after preprocessing by PReDom. Column % red orig-final

(respectively, % red sim-final) shows the percentage reduction in the number of clauses from the

original (respectively, simplified) instance to the final preprocessed instance. Column # SODS
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gives the total number of SODSes which were reduced. Column dom (sec) gives the run-time

to compute the sets dom(v),∀v ∈ V , using the algorithm from [7]. Finally, column total (sec)

gives the total run-time of PReDom on each instance in seconds.

Notice that the average reduction in the number of clauses from the original to the final

instance is 47%. This includes both standard optimizations in simplify and dominator-based

reductions. The average reduction in the number of clauses after simplify is 19%. This number

varies significantly across these benchmarks. Figure 5.7 illustrates the reduction percentages.

For each instance, 100% represents all the original clauses. Each bar is partitioned into the

clauses reduced by simplify (top), then the dominator-based reductions (middle), and the

final clauses (bottom). The high dominator-based reductions, e.g., 53% for dme1 5 and 52%

for dmeSmall 8, occur when a complete dominator with high fanout is replaced by a constant

value, resulting in the elimination of even more circuitry using unit constraint propagation.

This also explains the seeming inverse relationship between the number of reduced SODSes

and the dominator-based reductions, because when a complete dominator is replaced by a

constant, propagation already eliminates other complete dominators which might dominate the

first one. Due to the reduction of SODSes in topological order in PReDom, the maximum size of

faninPI∗(α) for a reduced complete dominator α was 3.

Looking at the last two columns of Table 5.2, we can see that computing the sets dom(v)

takes a significant portion of the preprocessing run-time. This is because we use a simple

algorithm [7], which has an O(|V |2) worst-case time complexity. Once these sets are computed,

the time for finding complete dominators and replacing their SODSes is small.

Table 5.3 shows the results of the application of the QBF solvers sKizzo, 2clsQ and quantor

on the instances after standard simplifications only (column +sim) and after complete prepro-

cessing using PReDom (column +dom). The effect of simplify by itself is minimal because these

QBF solvers already apply equivalent simplifications at the CNF level. sKizzo, 2clsQ and

quantor time-out or mem-out on all instances where our techniques are not used to reduce

SODSes, even with a time-out of 5 hours. On the other hand, they respectively solve 5/11,

3/11 and 5/11 of the instances after preprocessing using PReDom, collectively solving 55% of

all instances, and the run-times are usually less than one second. Since none of the +sim runs
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Figure 5.7: Clause reduction percentages

terminate, our results were validated using the circuit-based QBF solver CirQit [53].

It should be noted that many of the QBF problems in the non-prenex non-CNF track of the

QBFEVAL’08 competition [46] did not have SODSes. The experiments show the benefits of

reducing SODSes, if they exist. On the other hand, even if no SODSes exist, the preprocessing

time is negligible. We also developed a circuit-based QBF solver which performs dominator-

based reductions on-the-fly, rather than as a preprocessing step. However, the overhead was

too large to result in run-time improvements. We discuss this in more detail in Chapter 7.

5.6 Summary

This chapter develops a theory for exploiting the circuit structure of a circuit-based QBF by

leveraging complete dominators. A methodology and a rigorous proof are given for removing

subcircuits that are dominated by single nodes in a circuit-based QBF. We present the QBF

preprocessor PReDom, which applies the described theory to return smaller but logically equiv-

alent QBF instances, in order to expedite the QBF solving process. Experimental results on

circuit diameter computation problems show a significant increase in solved instances after pre-
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processing. This work encourages further research in strategies that exploit the circuit structure

of QBFs to increase performance.
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Table 5.2: PReDom preprocessing results

Benchmark

PReDom

# clause # clause # clause % red % red # dom total

orig +sim +dom orig-final sim-final SODS (sec) (sec)

dme1 2 20 984 11 565 10 068 52% 13% 125 0.9 1.2

dme1 3 32 888 20 488 18 991 42% 7% 125 1.4 1.8

dme1 4 44 792 29 411 27 914 38% 5% 125 1.9 2.5

dme1 5 56 696 38 334 18 173 68% 53% 76 2.4 3.2

dme1 6 68 600 47 257 45 760 33% 3% 125 2.9 3.9

dme1 7 80 504 56 180 54 683 32% 3% 125 3.4 4.6

dme1 8 92 408 65 103 63 606 31% 2% 125 4.0 5.3

dmeSmall 2 13 984 7 701 6 708 52% 13% 83 0.4 0.5

dmeSmall 4 29 856 19 595 9 136 69% 53% 73 0.9 1.1

dmeSmall 8 61 600 43 383 21 020 66% 52% 73 1.8 2.5

dmeSmall 9 69 536 49 330 48 337 30% 2% 83 2.0 2.8

average 47% 19%
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Table 5.3: QBF solver evaluation

Benchmark
sKizzo time (sec) 2clsQ time (sec) quantor time (sec)

+sim +dom +sim +dom +sim +dom

dme1 2 [mem-out] [mem-out] [time-out] [time-out] [mem-out] [mem-out]

dme1 3 [mem-out] 0.2 [time-out] [time-out] [mem-out] 0.2

dme1 4 [mem-out] [mem-out] [time-out] [time-out] [mem-out] 0.1

dme1 5 [mem-out] 0.5 [time-out] 0.6 [mem-out] 0.1

dme1 6 [mem-out] [mem-out] [time-out] [time-out] [mem-out] [mem-out]

dme1 7 [mem-out] [mem-out] [time-out] [time-out] [mem-out] [mem-out]

dme1 8 [mem-out] [mem-out] [time-out] [time-out] [mem-out] [mem-out]

dmeSmall 2 [mem-out] 16.2 [time-out] [time-out] [mem-out] [mem-out]

dmeSmall 4 [mem-out] 0.2 [time-out] 0.1 [mem-out] 0.1

dmeSmall 8 [mem-out] 0.6 [time-out] 0.7 [mem-out] 0.1

dmeSmall 9 [mem-out] [mem-out] [time-out] [time-out] [mem-out] [mem-out]

summary 0/11 5/11 0/11 3/11 0/11 5/11



Chapter 6

Reconfigurability in Partially

Programmable Circuits

6.1 Introduction

Partially programmable circuits (PPCs) [120] are obtained from conventional combinational

logic circuits by replacing some subcircuits with reconfigurable elements such as Look-Up Ta-

bles (LUTs) and configurable multiplexers (MUXs). Their original intention was to bypass

faults post-silicon via reconfigurations. In this chapter, we examine the power of reconfigura-

bility in PPCs for several applications. In addition to correcting manufacturing faults, the

programmable bits in a PPC can be used to mask some localized design errors that escape

verification and propagate into the silicon. Furthermore, we investigate the use of PPCs for

implementing engineering change orders (ECOs), namely small changes in the specification at

later stages of the design cycle. It is well-known that even minor ECOs can lead to vastly

different synthesized implementations [114] if a new iteration of the automated flow is used.

This is usually unwanted because of the effort already invested in optimizing the original de-

sign [22, 114]. As such, synthesis for ECOs strives to make the smallest number of changes

to the implementation [22, 66, 114] so that the design complies to its new specification. In

a PPC, LUT/MUX reconfigurations can be used to implement such changes at virtually zero

cost, avoiding time-consuming design iterations.

105
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Along these observations, the contribution here is multi-fold [81]. We define the fault tol-

erance of a PPC as the percentage of stuck-at-faults that can be made unobservable using

post-silicon reconfigurations. Design error tolerance is defined in a similar fashion. We show

how to compute both of these metrics using formal techniques. Following these contributions,

we present a new method for performing ECOs in PPCs using reconfigurations. Finally, we

define a measure for quantifying the effectiveness of a PPC in implementing ECOs, given an

initial specification. We refer to this as the ECO coverage of a PPC architecture and we develop

a methodology to compute it. We use QBFs as the underlying language for our encodings. Our

formulations demonstrate the theoretical appropriateness of QBFs for dealing with reconfigura-

bility and we capitalize on the considerable advances in QBF solvers in recent years.

It should be noted that this work does not attempt to construct PPCs that maximize ECO

coverage or error tolerance. Instead, it lays the theoretical groundwork for calculating these

quantities, as well as for performing ECOs. The existence of such evaluation tools is a first

step in the generation of optimized PPCs. As such, the work here remains orthogonal and

complementary to that in [120] which is strictly focused on constructing PPCs using heuristics.

Experimental results are presented evaluating PPCs from [120], demonstrating the applicability

and accuracy of the proposed QBF formulations.

This chapter is organized as follows. Section 6.2 contains preliminaries on PPCs. Section 6.3

presents our formulations for calculating fault and design error tolerance. Section 6.4 gives QBF

encodings for performing ECOs and quantifying ECO coverage. Section 6.5 shows experimental

results and Section 6.6 provides a summary of the chapter.

6.2 Preliminaries

The following notation is used throughout the chapter. We use the symbol C to denote a

conventional combinational circuit, and Ĉ to denote the corresponding PPC. The sets x =

{x1, x2, . . . , x|x|}, y = {y1, y2, . . . , y|y|} and g = {g1, g2, . . . , g|g|} respectively refer to the sets of

primary inputs, primary outputs and gates of C. A node v can refer to a gate or a primary input.

The sets fanout(v) and fanin(v) denote the fanout and fanin nodes of v, respectively. The set
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l = {(u, v) | u, v ∈ x ∪ g and v ∈ fanout(u)} contains all lines (also referred to as connections

or branches) in C. For each z ∈ {x,y,g, l}, ẑ = {ẑ1, ẑ2, . . . , ẑ|ẑ|} denotes the corresponding set

in Ĉ. Throughout the chapter, bold (z) versus regular (z) symbols differentiate sets from single

variables, and a hat (ẑ versus z) differentiates between variables in Ĉ and C, respectively.

6.2.1 Partially Programmable Circuits

The type of a node v is given by type(v) ∈ {IN, AND, OR, . . . , LUT, MUX}. A PPC Ĉ is a Boolean

network with three types of nodes [120]:

• Conventional logic gates, such as AND, OR, NOT and XOR.

• LUTs, whose internal functionality can be reconfigured.

• MUXs, whose select lines are controlled by programmable memory cells.

To simplify the presentation, we assume that the original circuit C does not contain LUTs/MUXs.

Note that a LUT can itself be represented as a multiplexer with configurable data inputs. As

such, the configuration bits of a LUT ĝi are the set of Boolean variables:

ĉ(ĝi) = {ĉj(ĝi) | j = 1, . . . , 2n},

where n denotes the number of input select lines of the LUT. On the other hand, the configuration

bits of a configurable MUX ĝi in a PPC are its select lines. They are given by:

ĉ(ĝi) = {ĉj(ĝi) | j = 1, . . . , ⌈log2 n⌉},

where n denotes the number of data inputs of the configurable MUX.

Figures 6.1(a) and 6.1(b) show a combinational circuit C and a corresponding PPC Ĉ. Note

that y1 (respectively, ŷ1) is the primary output label for g5 (respectively, ĝ5) and does not

represent a separate node. In Figure 6.1(b), variables ĉ1(ĝ6) and ĉj(ĝ5) (j = 1, . . . , 8) are the

configuration bits of ĝ6 and ĝ5, respectively.

In [120], PPCs are constructed as follows. First, given an original circuit C, an initial PPC

is generated by replacing certain subcircuits of C with LUTs using simple heuristics. Next,

redundant lines are added from selected nodes to some of these LUTs in an effort to increase the
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Figure 6.1: A circuit and its corresponding PPC

number of so-called robust connections in the PPC. A robust connection is a line where a stuck-

at-0 and a stuck-at-1 can be made unobservable by reprogramming the PPC post-silicon. These

added redundant lines are selected as follows. For each line (u, v), a set of new connections are

added to the LUT inputs such that the functional flexibilities of the LUTs, represented by their

sets of pairs of functions to be distinguished (SPFDs), allow them to be reconfigured to bypass

stuck-at-faults at (u, v). Of course, this is not always possible given limited resources, so not

all lines can be made robust. If more than one redundant line needs to be added to a certain

LUT, a configurable MUX is placed in front of the LUT, which selects between these redundant

lines. We are concerned with evaluating rather than constructing PPCs, hence the reader is

referred to [120] for more details on their algorithms. Our techniques for evaluating PPCs can

be applied to any PPC.

In the PPC shown in Figure 6.1(b), gate g5 is replaced by a LUT ĝ5. Of course, ĝ5 can

be easily programmed to implement OR(ĝ3, ĝ4). Next, we have added redundant connections

(shown using dashed lines) from x̂1 and x̂2 to a MUX ĝ6, which is input to the LUT ĝ5. In the
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coming sections, we present QBF formulations that can show that this PPC structure has 100%

single stuck-at-fault tolerance (disregarding stuck-at-faults at the primary output), 100% design

error tolerance (assuming single gate arbitrary errors) and 100% ECO coverage (using C as the

initial specification and our ECO coverage definition).

6.3 Fault and Design Error Tolerance

In this section, we first construct a QBF formulation for calculating the stuck-at-fault tolerance

of a PPC. We use stuck-at-faults because this type of fault can model many defects [58]. Then,

we extend this formulation to calculate the gate design error tolerance of a PPC. Finally, for

single stuck-at-fault tolerance and single gate design error tolerance, we show how to partition

our formulations into a linear number of smaller parallelizable problems in order to achieve

faster QBF solving times by taking advantage of modern multi-core architectures.

6.3.1 Fault Tolerance

Given a specification C, and a corresponding implementation in the form of a PPC Ĉ with a

fixed configuration, we say that a stuck-at-fault (or a design error) in Ĉ is unobservable if there

does not exist any primary input vector for which Ĉ and C produce different primary outputs.

This can be extended to N stuck-at-faults, where N denotes the cardinality of simultaneous

stuck-at-faults. In what follows, we use the term N -fault to denote N simultaneous stuck-at-

faults.

Definition 6.1 Given a specification C, a PPC Ĉ and a stuck-at-fault cardinality N , the fault

tolerance of Ĉ is the percentage of N -faults that can be made unobservable using reconfigurations.

Using N = 1 for illustration purposes, We emphasize that different single stuck-at-faults are

allowed to be made unobservable by different PPC reconfigurations. The goal is that in silicon,

if a stuck-at-fault is detected during testing, we would like to be able to reprogram the PPC to

“mask” it. In general, if for a given N -fault there exists a PPC reconfiguration making it un-

observable, this N -fault counts towards the fault tolerance of the PPC. Again, reconfigurations

can vary for different N -faults. Clearly, a high fault tolerance increases manufacturing yield
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because faults that otherwise would make the circuit unusable can now be made unobservable

by reconfiguring the PPC LUTs/MUXs.

The key idea is to build a QBF instance where each Q-model corresponds to an N -fault

that cannot be made unobservable by any reconfiguration of Ĉ. In what follows, we explain

how to create the matrix of our QBF formulation using an appropriate circuit construction. In

order to assist the reader in visualizing our descriptions, Figure 6.2 illustrates this construction

(which is described shortly) for C and Ĉ given in Figures 6.1(a) and 6.1(b).

We first create an enhanced version of Ĉ, which we call Ĉsaf . To prevent any confusion, we

stress that any enhancements to Ĉsaf are only added to construct our QBF formulation. We do

not modify the actual PPC Ĉ in any way. We start by adding a special multiplexer in front of

each gate, each line and each primary input, which determines whether or not a stuck-at-fault

is excited at that gate, line or primary input. Note that gate and line stuck-at-faults in this

context correspond to stem and branch stuck-at-faults [58], respectively. Of course, if a gate has

only one fanout, we do not double-count by adding two multiplexers at its output. The shaded

multiplexers in Figure 6.2 illustrate this process for gate ĝ1, line (ĝ1, ĝ4) and primary input x̂1.

We do not show the multiplexers for the remaining gates, lines and primary inputs to avoid

overcrowding that figure. The select-line of each of these multiplexers is called an excitation

variable, denoted by the letter ê.

In more detail, at each gate ĝi (respectively, each line (û, v̂) and each primary input x̂j),

setting ê(ĝi) = 1 (respectively, ê(û, v̂) = 1 and ê(x̂j) = 1) “excites” the stuck-at-fault, by

disconnecting ĝi (respectively, (û, v̂) and x̂j) from its fan-ins, and instead connecting it to a

newly created variable ŵ(ĝi) (respectively, ŵ(û, v̂) and ŵ(x̂j)), which we call a replacement

variable. As will be seen later, these ŵ’s will denote the polarities of the stuck-at-faults. On

the other hand, setting ê = 0 keeps the gate/line/primary input unchanged, as can be seen in

Figure 6.2.

Next, we apply common primary inputs (x) to both C and Ĉsaf , as shown in Figure 6.2.

Furthermore, at least one primary output is forced to be different. Finally, a cardinality con-

straint ΦN is added to force the number of simultaneously active (i.e., assigned to 1) excitation

variables to a pre-specified constant N . This can be done using a bitonic sorter [11]. This
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ĝ2
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Figure 6.2: Stuck-at-fault tolerance matrix

completes the matrix of our QBF formulation.

In order to abbreviate the prefix of our QBF, as well as the remaining QBFs in this chapter,

we use the following notation:

ê(ĝ) = {ê(ĝi) | ∀ĝi ∈ ĝ} ŵ(ĝ) = {ŵ(ĝi) | ∀ĝi ∈ ĝ}

ê(̂l) = {ê(û, v̂) | ∀(û, v̂) ∈ l̂} ŵ(̂l) = {ŵ(û, v̂) | ∀(û, v̂) ∈ l̂}

ê(x̂) = {ê(x̂i) | ∀x̂i ∈ x̂} ŵ(x̂) = {ŵ(x̂i) | ∀x̂i ∈ x̂} (6.1)

And the sets of all excitation and replacement variables are respectively given by:

ê = ê(ĝ) ∪ ê(̂l) ∪ ê(x̂) ŵ = ŵ(ĝ) ∪ ŵ(̂l) ∪ ŵ(x̂) (6.2)

When the context of the type of excitation/replacement variable is clear, we just use the symbols

ê ∈ ê and ŵ ∈ ŵ for brevity.

Recall that the set ĉ(ĝi) refers to the configuration bits of the LUT/MUX ĝi. Let:

ĉ =
⋃

ĝi∈ĝ,
type(ĝi)∈{LUT,MUX}

ĉ(ĝi)

denote the set of all configuration bits in Ĉ.
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Informally, the QBF problem can be stated as follows:

Is it possible to assign exactly N excitation variables in ê to 1, and set what each

corresponding gate/line/primary input is “stuck-at” (by assigning ŵ), such that for

all configurations of the PPC (assignments to ĉ), there exists a primary input vector

satisfying the constraints in Figure 6.2?

This question can be formalized as:

∃ê, ŵ ∀ĉ ∃x,g, ĝ . C(x,y,g) ∧ Ĉsaf (x, ŷ, ĝ, ĉ, ê, ŵ) ∧ (y 6= ŷ) ∧ ΦN(ê) (6.3)

Notice that the placement of ŵ in the widest existential scope forces their assignment before the

assignment of primary inputs, producing the semantics of stuck-at-faults. Adding constraints

on these ŵ’s or moving them in the prefix can result in different error models, as will be seen

shortly. If (6.3) is false, then every N -fault can be made unobservable (i.e., is “maskable”) by

a reconfiguration of the PPC.

In order to count the number of maskable (or unmaskable) stuck-at-faults using (6.3), we

need to add another term to the matrix in (6.3). In fact, notice that if a certain excitation

variable ê is not active, its corresponding ŵ can simply be “grounded” to 0, since its value does

not propagate through the multiplexer. As such, we add the following constraints to (6.3):

∧

ê∈ê

(¬ê→ ¬ŵ) (6.4)

Adding (6.4) prunes the search-space of the QBF solver, such that in any Q-model of (6.3),

the ŵ’s corresponding to the inactive ê’s are assigned to 0. As such, two Q-models of this QBF

that differ in their truth assignments to the widest existential scope (ê, ŵ) will correspond

to two different N -faults that cannot be fixed by the PPC. Therefore, finding all distinct

truth assignments to ê, ŵ that satisfy (6.3) (i.e., that can be extended to Q-models of (6.3)) is

equivalent to finding all unmaskableN -faults. This can be done using a QBF solver, by blocking

the assignment to ê, ŵ in the returned Q-model using a blocking clause and re-solving (6.3)

iteratively until the problem becomes false. Subtracting the number of such solutions from

the total number of N -fault combinations, and dividing the result by this number gives the

stuck-at-fault tolerance of the PPC for cardinality N .
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6.3.2 Design Error Tolerance

In this subsection, we propose a QBF formulation to quantify the effectiveness of a PPC in

masking localized design errors that escape verification and slip into the silicon. Our design

error model consists of any functional modification in the function of a gate. We use the term

N -gates to denote a set of N gates.

Definition 6.2 Given a specification C, a PPC Ĉ and a gate design error cardinality N , the

design error tolerance of Ĉ is the percentage of N -gates where any simultaneous modifications

can be made unobservable using reconfigurations.

For instance, if N = 1, the design error tolerance is equal to the percentage of individual

gates where any design error can be masked by a reconfiguration. In other terms, gates where

at least one type of design error cannot be masked by any reconfiguration do not contribute to

the design error tolerance. In the event that a design error is identified post-silicon, a PPC with

high design error tolerance is likely to offer a configuration fix, allowing the circuit to operate

correctly without the need for a costly respin.

In this subsection, we modify the QBF in (6.3) to deal with gate design errors. We model

design errors by again enhancing Ĉ. Here, Ĉde adds similar multiplexers as in Figure 6.2 but

now only at the outputs of gates. Furthermore, the ŵ(ĝi)’s are no longer unconstrained and

instead are the outputs of newly added LUTs whose select lines are ĝi’s inputs. This allows each

ŵ(ĝi) to be any function of the inputs of ĝi, thus implementing any gate design error. This

construction is illustrated in Figure 6.3, where shaded multiplexers are added for gates ĝ1 and

ĝ2. For each gate, ĝi, the set:

d̂(ĝi) = {d̂j(ĝi) | j = 1, . . . , 2|fanin(ĝi)|}

refers to the configuration bits of the replacement LUT ŵ(ĝi).

Again, applying common primary inputs, forcing different primary outputs and adding

cardinality constraints yields the matrix in Figure 6.3. Using this, our QBF formulation is
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Figure 6.3: Gate design error tolerance matrix

given as follows:

∃ê(ĝ), d̂(ĝ) ∀ĉ ∃x,g, ĝ, ŵ(ĝ) .

C(x,y,g) ∧ Ĉde(x, ŷ, ĝ, ĉ, ê(ĝ), ŵ(ĝ), d̂(ĝ)) ∧ (y 6= ŷ) ∧ ΦN (ê) (6.5)

which asks whether there exist N -gates that can be arbitrarily modified such that for all PPC

configurations (ĉ), there is always an input vector exhibiting the error at a primary output.

Similarly to (6.4), we add the following constraints that ground the configuration bits d̂(ĝi) of

ŵ(ĝi) for gates whose excitation variables are inactive:

∧

ê(ĝi)∈ê(ĝ)



¬ê(ĝi)→





∧

d̂j(ĝi)∈d̂(ĝi)

¬d̂j(ĝi)







 (6.6)

This is done in order to create a one-to-one correspondence between different satisfying

assignments to ê(ĝ), d̂(ĝ) and different N -gate design errors that cannot be masked by the

PPC. Finding all these satisfying assignments using blocking clauses enables us to calculate the

gate design error tolerance of the PPC for cardinality N .
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6.3.3 Problem Partitioning

Most often, we are interested in calculating single stuck-at-fault tolerance and single gate design

error tolerance. It is usually difficult to mask multiple simultaneous faults or errors, especially

with limited redundancy as in PPCs. Here, we show that when N = 1, we can partition the

QBF problem (for both (6.3) and (6.5)) into a linear number of independently solvable and

much easier subproblems, in order to take advantage of the modern multi-core architectures in

solving these QBF instances. Note that our partitioning scheme is also applicable to higher

cardinalities, however the number of independent subproblems increases exponentially with N .

For single stuck-at-fault tolerance, the partitioning is done by enumerating each ê ∈ ê and

the corresponding two polarities of ŵ. For each gate/line/primary input with excitation variable

ê∗ and replacement variable ŵ∗, and each stuck-at value b ∈ {0, 1}, we let:

Ĉsaf |ê∗,ŵ∗=b , Ĉsaf ∧ ê∗ ∧ (ŵ∗ = b) ∧
∧

ê∈ê−{ê∗}

(¬ê) (6.7)

denote the PPC with only that gate/line/primary input stuck-at-b. We now ask whether there

exists a PPC configuration, such that for all primary inputs, this faulty circuit produces the

same outputs as C. Formally, this is stated as:

∃ĉ ∀x ∃g, ĝ . C(x,y,g) ∧ Ĉsaf (x, ŷ, ĝ, ĉ, ê, ŵ)|ê∗,ŵ∗=b ∧ (y = ŷ) (6.8)

Note that the cardinality constraints are no longer necessary because ê is already assigned a-

priori, and all the inactive shaded multiplexers in Figure 6.2 can be discarded due to (6.7). Now

although (6.8) must be solved for every single stuck-at-fault, each of these QBF instances is

completely independent and much easier to solve than (6.3). As such, the number of maskable

single stuck-at-faults can be computed by heavily parallelizing all the QBFs of the form (6.8)

and simply counting the number of true results.

A similar partitioning can be accomplished for the single gate design error tolerance formu-

lation in (6.5). Here, for each gate ĝi, we let:

Ĉde|ê(ĝi) , Ĉde ∧ ê(ĝi) ∧
∧

ê(ĝj)∈ê(ĝ)−{ê(ĝi)}

(¬ê(ĝj)) (6.9)
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denote the PPC where only ĝi can have a design error. We now ask whether for all possible

design errors at ĝi, there exists a PPC configuration that masks the error. Formally,

∀d̂(ĝi) ∃ĉ ∀x ∃g, ĝ, ŵ(ĝi) .

C(x,y,g) ∧ Ĉde(x, ŷ, ĝ, ĉ, ê(ĝ), ŵ(ĝ), d̂(ĝ))|ê(ĝi) ∧ (y = ŷ) (6.10)

In each QBF of the form of (6.10), all d̂(ĝj) and ŵ(ĝj) with j 6= i can be disregarded, since

they cannot propagate through the shaded multiplexers in Figure 6.3. Again, for each gate, a

QBF of the form of (6.10) must be solved to determine whether all possible errors at that gate

can be masked by the PPC. All these QBFs can be solved in parallel. The single gate design

error tolerance of the PPC is equal to the ratio of these QBFs that are true.

6.4 Engineering Change Order

In this section, we first construct a QBF for performing an ECO using a PPC. Then, we define

the ECO coverage of a PPC and show how to compute it using a QBF.

6.4.1 Performing ECOs

ECOs are small changes in the specification at later stages of the design cycle. Synthesis for

ECOs strives to make the smallest number of changes to the implementation [22, 66, 114]. PPCs

can be used to implement ECOs pre- or post-silicon by simply reprogramming the MUXs/LUTs.

Given a modified specification Cmod, if there exists a configuration of the PPC Ĉ, such that

for all primary inputs, Ĉ and Cmod behave identically, then the ECO can be implemented by

reprogramming the PPC. This is easily expressed as the following QBF:

∃ĉ ∀x ∃g, ĝ . Cmod(x,y,g) ∧ Ĉ(x, ŷ, ĝ, ĉ) ∧ (y = ŷ) (6.11)

Figure 6.4 illustrates the matrix of (6.11) given a specification Cmod where the NOT gate g2

has been eliminated and g4 = AND(x3, g1) has been replaced by g4 = NAND(x1, g1). Using a

QBF solver, it can be easily verified that the QBF (6.11) with the matrix shown in Figure 6.4

is true. The satisfying assignment to the configuration bits ĉ returned by the solver can be

used to reprogram the PPC to implement the modified specification at essentially zero-cost.
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ĉ1(ĝ5)
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Figure 6.4: Engineering change matrix

Interestingly, the QBF in (6.11) is similar to a formulation used for FPGA technology mapping

given in [72].

6.4.2 ECO Coverage

Given a PPC Ĉ and an original specification C, we would like to measure the effectiveness of this

PPC architecture in implementing small changes in C. Given a change cardinality N , a simple

way to model small changes in the specification netlist C is to allow N gates to be changed

arbitrarily. As such, we define the ECO coverage of a PPC as follows:

Definition 6.3 Given an original specification C, a PPC Ĉ and a change cardinality N , the

ECO coverage of Ĉ is the percentage of N -gates in C, where any simultaneous modifications can

be implemented using reconfigurations in Ĉ.

Note that many ECOs involve changes at a higher abstraction level, for which different

models should be considered. Furthermore, since this chapter deals with combinational PPCs,

sequential specification changes are not covered. Our formulation for ECO coverage is essentially

the dual of the formulation for design error tolerance given in (6.5). Here, we must enhance the

specification circuit C instead of Ĉ, since we are allowing the specification to change. A multi-
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plexer is added at the output of each gate gi in C, with excitation select line e(gi). Furthermore,

similarly to Figure 6.3, the w(gi)’s are the outputs of newly added replacement LUTs, whose

select lines are gi’s inputs. This allows each w(gi) to be any function of the inputs of gi, thus

modeling any gate change at gi, when e(gi) = 1. This construction is illustrated in Figure 6.5,

where shaded multiplexers are added for gates g1 and g4 (we have skipped the remaining gates

to avoid overcrowding the figure). As before, for each gate gi, the set:

d(gi) = {dj(gi) | j = 1, . . . , 2|fanin(gi)|}

refers to the configuration bits of the replacement LUT w(gi).

Informally, the QBF problem can be stated as follows:

Do there exist N gates in the specifications (e(g)), such that for any modification of

these gates (d(g)), there exists a PPC configuration (ĉ), such that for all primary

inputs, this PPC correctly implements the modified specification?

Adding cardinality constraints ΦN (e), applying common primary inputs and forcing the

primary outputs to be equal, we get the matrix in Figure 6.5 and the following QBF formulation:

∃e(g) ∀d(g) ∃ĉ ∀x ∃g, ĝ,w(g) .

Ceco(x,y,g, e(g),w(g),d(g)) ∧ Ĉ(x, ŷ, ĝ, ĉ) ∧ (y = ŷ) ∧ ΦN (e) (6.12)

where e(g) and w(g) are defined similarly to (6.1).

In (6.12), only e(g) is in the widest scope, so counting all the satisfying assignments to e(g)

using blocking clauses gives the number of N -gates where any change can be implemented by

the PPC using reconfigurations.

6.4.3 Problem Partitioning

In the case where exactly one gate is allowed to arbitrarily change in the specification (i.e.,

N = 1), (6.12) can be partitioned into |g| smaller, independent QBFs by enumerating each

e(gi) ∈ e(g). For each gate gi, we let:

Ceco|e(gi) , Ceco ∧ e(gi) ∧
∧

e(gj)∈e(g)−{e(gi)}

(¬e(gj)) (6.13)
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Figure 6.5: ECO coverage matrix

denote the specification where only gi is allowed to change. We now ask whether for all possible

changes at gi, there exists a PPC configuration that can implement it. Formally,

∀d(gi) ∃ĉ ∀x ∃g, ĝ, w(gi) . Ceco(x,y,g, e(g),w(g),d(g))|e(ĝi ) ∧ Ĉ(x, ŷ, ĝ, ĉ) ∧ (y = ŷ) (6.14)

In each QBF of the form of (6.14), all d(gj) and w(gj) with j 6= i can be disregarded, since

they cannot propagate through the shaded multiplexers in Figure 6.5. For each gate, a QBF

of the form of (6.14) must be solved to determine whether all possible modifications at that

gate in the specification can be implemented by the PPC. All these QBFs can be solved in

parallel. The ECO coverage of the PPC is equal to the ratio of these QBFs that are true.

Again, this partitioning scheme can be extended to higher cardinalities, however the number of

independent subproblems increases exponentially with N .

6.5 Experimental Results

This section presents the experimental evaluation of 21 PPCs from [120] using our proposed

QBF formulations. These PPCs are generated by [120] from some of the MCNC benchmark
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circuits [121]. Experiments are run on a quad-core Intel i5, 3.1 Ghz workstation with 16 GB

of RAM. Since complex faults can be modeled using single stuck-at-faults [58], and given the

limited number of LUTs in the PPCs of [120], we set N = 1 in our tolerance and coverage

calculations. We use the proposed QBF partitioning schemes in Subsections 6.3.3 and 6.4.3 to

speed up the solving process. For each tolerance/coverage computation, the QBF subproblems

are solved in parallel over the four cores. A time-out of 100 seconds is used for each QBF

subproblem. The QBF solver sKizzo-v0.11c [13] is used to solve all QBF instances. Other

QBF solvers, such as QuBE7 [47] give similar results.

Table 6.1 gives some basic information on the PPC instances from [120]. The first five

columns respectively show the PPC name, its number of gates |ĝ|, lines |̂l|, added LUTs and

added MUXs. Next, columns added lines and % added lines respectively show the number of

redundant lines added by [120] to the LUTs/MUXs and the percentage of added lines to all lines

in the PPC. Column % LUTs+MUXs gives the percentage of gates that are added LUTs/MUXs

compared to all gates in |ĝ|.

Table 6.2 shows the results of our evaluations. The first two columns respectively show the

fault tolerance of Ĉ and the total time required for all the corresponding QBF subproblems to

terminate. The next two columns give the design error tolerance of Ĉ and the total time to

compute it. And finally, the ECO coverage measure along with its computation run-time are

given.

For the circuit pair shown in table 6.2, the fault tolerance and ECO coverage are, re-

spectively, at least 40% and at least 52%, because a small number (roughly 5%) of the QBF

subproblems for each of these calculations does not terminate by 100 seconds. Note that since

the QBF subproblems used in our computations are independent, it is easy to improve our

run-times by simply parallelizing more heavily.

Figures 6.6 and 6.7 plot the calculated metrics against % added lines and % LUTs+MUXs,

respectively. As expected, adding more redundant lines to the LUTs/MUXs, and replacing more

gates with LUTs increases both fault tolerance and ECO coverage. On the other hand, the

correlation of these two variables with design error tolerance is weaker, at least given the

considered family of PPCs.
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Figure 6.6: Fault tolerance, design error tolerance and ECO coverage vs. % added lines

On average, only 10% of the lines in the PPCs are added as overhead, and only 12% of the

gates are added LUTs or MUXs. In fact, LUTs replace other gates in the original circuit, so the

overhead in the number of added gates is much less than 12%. We found that these PPCs have

a 53% average single stuck-at-fault tolerance, a 26% average single gate design error tolerance,
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Figure 6.7: Fault tolerance, design error tolerance and ECO coverage vs. % LUTs+MUXs
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and a 52% average ECO coverage. From these results, we can conclude that the small hardware

overhead is more than compensated by the fault/error tolerance and ECO coverage that these

architectures demonstrate, confirming that PPCs are attractive architectures to increase silicon

yield and reduce the cost of the design/manufacturing cycle. Furthermore, the existence of

methods for computing these metrics encourages further research on improving PPCs.

6.6 Summary

This chapter lays the theoretical groundwork for evaluating the reconfigurability of PPC archi-

tectures. QBF encodings are given to calculate the fault tolerance and design error tolerance

of a PPC. Next, QBF formulations are proposed for performing ECOs, and for quantifying the

ECO coverage of a PPC architecture. The presented encodings demonstrate the applicability of

QBFs for dealing with reconfigurability, and the experimental results confirm the attractiveness

of PPCs for increasing silicon yield and reducing the cost of the design/manufacturing cycle.
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Table 6.1: PPC instance information

Ĉ
|ĝ| |̂l| LUTs MUXs added % added % LUTs

lines lines +MUXs

alu2 335 797 5 3 21 3% 2%

alu4 627 1459 7 5 35 2% 2%

apex6 866 1805 98 29 143 8% 15%

apex7 295 586 37 17 74 13% 18%

b9 163 349 20 14 66 19% 21%

c8 145 282 18 6 27 10% 17%

cc 116 206 19 9 26 13% 24%

comp 106 234 2 2 21 9% 4%

example2 477 997 65 31 148 15% 20%

f51m 109 250 8 2 17 7% 9%

frg1 94 197 3 1 5 3% 4%

lal 150 298 19 10 45 15% 19%

mux 60 146 1 1 6 4% 3%

pair 1364 3246 100 85 482 15% 14%

t481 824 2319 1 1 39 2% < 1%

term1 186 458 10 7 57 12% 9%

too large 436 1029 3 3 38 4% 1%

vda 749 1928 39 20 192 10% 8%

x1 359 783 35 20 109 14% 15%

x3 912 1871 99 70 285 15% 19%

x4 563 1279 71 47 287 22% 21%
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Table 6.2: PPC evaluation results

Ĉ
fault time DE time ECO time

tolerance (sec) tolerance (sec) coverage (sec)

alu2 33% 35.5 10% 11.2 16% 12.1

alu4 29% 1145.3 12% 216.7 16% 269.3

apex6 54% 461.0 28% 140.1 65% 197.3

apex7 58% 39.4 22% 9.1 71% 13.6

b9 70% 8.0 23% 2.0 67% 3.0

c8 33% 2.5 6% 0.8 63% 1.2

cc 63% 1.8 23% 0.5 85% 0.7

comp 13% 96.2 7% 60.1 10% 37.8

example2 48% 102.7 17% 22.3 70% 39.2

f51m 60% 1.3 37% 0.5 60% 0.6

frg1 11% 7.1 5% 3.0 20% 4.7

lal 76% 4.7 36% 1.2 70% 1.5

mux 39% 6.9 12% 3.9 25% 4.6

pair ≥ 40% 18431.8 12% 8736.4 ≥ 52% 10566.9

t481 81% 7843.7 65% 1871.6 68% 2921.8

term1 90% 64.2 66% 15.9 56% 16.6

too large 37% 9128.1 21% 1633.7 22% 1946.7

vda 95% 980.6 86% 257.4 88% 234.9

x1 48% 140.4 16% 31.9 50% 42.0

x3 55% 823.4 18% 171.6 65% 222.7

x4 66% 325.5 22% 54.9 62% 78.3



Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

The VLSI CAD flow contains a myriad of important NP-complete and PSPACE-complete prob-

lems. As such, the ever increasing IC design sizes have an exponential effect on the performance

of the algorithms used to solve these tasks. Instead of developing dedicated solutions for each

of these problems, the trend during the last decade has been to encode them in formal lan-

guages, such as SAT and QBF, and focus academic resources on improving SAT and QBF

solvers. Stimulated by yearly competitions, the great advances in these solvers have validated

and propelled this strategy.

In more detail, a formal methodology for tackling a difficult CAD problem entails (1) the

establishment of its complexity class, (2) encoding it in an appropriate formal language, (3)

problem-specific optimizations to prune its solution space, and (4) generic improvements in the

relevant formal engine. The theoretical and practical contributions of this dissertation span all

four of these aspects, albeit for different CAD problems.

• In Chapter 3, several results are presented on the theoretical computational complexity of

debugging. Although formal debugging methodologies encoding the problem into SAT and

QBF have been competitive, the complexity class of debugging has not been investigated

before. We first illustrate that the problem of (a) combinational, (b) gate-level debugging,

where (c) no primary input or initial-state variable is unassigned in the counter-example,

125
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and using (d) single error cardinality, is solvable in polynomial time. Next, we provide

four proofs showing that relaxing any one of the assumptions (a) to (d) moves the problem

from the complexity class P to that of NP-completeness. This establishes that the general

debugging problem is NP-complete.

• In Chapter 4, a novel strategy is presented for advancing existing debugging methods,

by leveraging dominance relationships between RTL blocks to expedite the bug discov-

ery process. We first give an iterative algorithm that computes dominance relationships

between RTL blocks (e.g., always blocks or module definitions). Next, we prove that

for each RTL block returned by the automated debugger as a solution, an RTL block

that dominates it is an implied solution. A solution is a potentially buggy block where a

modification can correct the counter-example returned by verification. As such, applying

our algorithm as a preprocessing step, the number of formal engine calls for finding all

potential error sources is significantly reduced. Furthermore, we prove that corrections at

implied solutions can be automatically extracted without explicit formal analysis. These

results are shown to be valid for any error cardinality. An extensive set of experiments

on real industrial designs demonstrates that 66% of solutions are discovered early due to

dominator implications, resulting in a three-fold reduction in the number of formal engine

calls and a 1.64x overall performance speed-up.

• In Chapter 5, a new framework is illustrated for exploiting the circuit structure of QBFs

by leveraging structural dominators. A methodology and a rigorous proof are given for the

removal of subcircuits that are completely dominated by single outputs in a circuit-based

QBF, irrespective of the subcircuit input quantifiers or the structure of the remaining cir-

cuit, and without affecting the truth of the original QBF. We present a circuit-based QBF

preprocessor, called PReDom, which automates the process of recursively reducing domi-

nated subcircuits according to the presented methodology. In our experimental results,

three state-of-the-art QBF solvers solve 27% to 45% of the QBF instances preprocessed

using PReDom, compared to none without preprocessing.

• In Chapter 6, a series of QBF encodings are presented for evaluating the reconfigurability
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of PPCs. We define the metrics of fault tolerance and design error tolerance as the

percentages of stuck-at-faults and localized design errors, respectively, that can be made

unobservable using reconfigurations in the PPC. QBF formulations are given for the exact

evaluation of both of these measures. Furthermore, the use of PPCs for performing ECOs

using QBF is investigated. Finally, the ECO coverage of a PPC is defined and a QBF

formulation is presented for computing it. The formulations and experimental results

in this chapter demonstrate the theoretical and practical appropriateness of QBFs for

dealing with reconfigurability.

7.2 Future Work

The following provides a summary of extensions and future directions relating to the contribu-

tions of Chapters 4, 5 and 6.

• In Chapter 4, the contrapositive of Theorem 4.6 is also true. In other terms, if we can

tell that an RTL block is a non-solution, i.e., no change at its outputs can correct the

counter-example, then all the blocks it dominates are non-solutions. However, whereas

solution blocks are returned by the solver as soon as they are found, non-solutions blocks

are not known until the end of the solving process.

In order to detect non-solutions on-the-fly, we must modify the SAT solver. This can

be done by using a SAT branching scheme where error-select variables are decided upon

first, and by monitoring the decision tree for learned error-select variables, and there-

fore non-solutions. Blocks dominated by detected non-solutions can then be implied as

non-solutions, further pruning the solution-space. This extension has already been pub-

lished [68], and a related journal paper has been submitted [78] that combines it with the

contributions of Chapter 4. Experiments demonstrate that performing both solution and

non-solution implications results in a further speedup of 1.7x in SAT solving time over

performing only solution implications [68].

• One of the limitations of the work in Chapter 5 is that many circuit-based QBFs do not

have complete dominators at preprocessing time. However, during the solving process,
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truth assignments to certain circuit nodes might create complete dominators on-the-fly,

which can subsequently be reduced in that decision branch. Complete dominators can

also be created due to certain nodes becoming don’t-cares as a result of assignments to

other nodes. In order to exploit this, a circuit-based QBF solver first needs to observe

nodes that have the potential to become complete dominators during the solving process,

and later detect and reduce induced complete dominators on-the-fly.

We made a prolonged attempt to build a QBF solver that reduces subcircuits which

become SODSes on-the-fly, and that outperforms state-of-the-art solvers. We devised node

observation heuristics, and created a dynamic complete dominator detection algorithm.

We also extended the QBF reduction cases in Table 5.1 to yield conflicts, which can happen

inside a solver and would force it to backtrack earlier than it would otherwise. This was

done using CirQit [53] as the base QBF solver. However, the results were disappointing

because the overhead was too high. Unlike in PReDom, gates had to be removed and re-

inserted over and over due to solver backtracks, which was costly. Furthermore, learning

clauses was made difficult when variables changed scopes due to reductions.

Other potential improvements to our work on leveraging dominators in QBF include

dealing with multiple-output complete dominators, which occur more frequently than

single-output complete dominators. Unfortunately, without multiple-vertex blocks that

are specified a priori, such as in Chapter 4, computing multiple-output dominators is a

resource-intensive process [8, 54, 65].

Another idea is to use a BDD to represent the decision tree shown in Figure 5.5. This can

make the reduction process more scalable, which can make it possible to handle bigger

SODSes with more primary inputs. This in turn can lead to more reductions.

• Finally, there are three areas for extensions and future directions with respect to the

contributions of Chapter 6. The first is to use higher-level models for design errors and

ECOs in our tolerance and coverage metrics. For instance, for computing the percentage of

specification changes that can be implemented using reconfigurations, the SVA debugging

models in [62] are a good starting point. Second, today’s QBF solvers cannot handle the
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the presented encodings using large designs. As such, an important challenge is to come

up with faster estimation techniques for these metrics, with or without QBF, at the cost

of acceptably small errors. Finally, the ultimate goal is to use these metrics as objective

functions in iterative algorithms that create PPCs by placing the reconfigurable LUTs in

a way to maximize reconfigurability.
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