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What is affine arithmetic?

• AA is a tool for validated numerics

� introduced by Comba and Stolfi in 1993

• AA is designed to handle the dependency problem in IA

� AA keeps track of first-order correlations

• AA has been used successfully as a replacement for interval arithmetic

� AA provides tighter interval estimates in many cases

� AA provides additional information that can be exploited



The dependency problem in interval arithmetic

IA can’t see correlations between operands

g(x) = (10 + x)(10− x) for x ∈ [−2,2]

10 + x = [8,12]

10− x = [8,12]

(10 + x)(10− x) = [64,144] diam = 80

Exact range = [96,100] diam = 4



The dependency problem in interval arithmetic

IA can’t see correlations between operands

g(x) = (10 + x)(10− x) for x ∈ [−u, u]

10 + x = [10− u,10 + u]

10− x = [10− u,10 + u]

(10 + x)(10− x) = [(10− u)2, (10 + u)2] diam = 40u

Exact range = [100− u2,100] diam = u2



The dependency problem in interval arithmetic

g(x) =
√

x2 − x + 1/2/
√

x2 + 1/2

g g ◦ g

gn→ c = fixed point of g ≈ 0.5586, but intervals diverge

Interval estimates may get too large in long computations



Affine arithmetic: concepts



Affine arithmetic: representation

AA represents a quantity x with an affine form

x̂ = x0 + x1ε1 + · · ·+ xnεn

• noise symbols εi ∈ U = [−1,+1]

independent, but otherwise unknown

• central value x0 ∈ R

• partial deviations xi ∈ R

• n is not fixed

new noise symbols created during computation



Intervals in affine arithmetic

Affine forms imply interval bounds:

x ∼ x̂ = x0 + x1ε1 + · · ·+ xnεn ⇒ x ∈ [x0 − r, x0 + r]

r = |x1|+ · · ·+ |xn| is the total deviation of x̂

Conversely,

x ∈ [a, b]

x ∼ x̂ = x0 + x1ε1

x0 = (b + a)/2

x1 = (b− a)/2

AA algorithms can input and output intervals, but affine forms give more
information.



Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

x̂ = x0 + x1ε1 + · · ·+ xnεn

ŷ = y0 + y1ε1 + · · ·+ ynεn

The region containing (x, y) is

Z = {(x, y) : εi ∈ U}

This region is the image of Un under
an affine map Rn → R2. It’s a
centrally symmetric convex polygon,
a zonotope.



Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

x̂ = x0 + x1ε1 + · · ·+ xnεn

ŷ = y0 + y1ε1 + · · ·+ ynεn

The region containing (x, y) is

Z = {(x, y) : εi ∈ U}

This region is the image of Un under
an affine map Rn → R2. It’s a
centrally symmetric convex polygon,
a zonotope.

The region would be a rectangle if
x and y were independent.



Computing with affine arithmetic

• Affine operations are straightforward by design:

x̂± ŷ = (x0 ± y0) + · · ·+ (xn ± yn)εn

αx̂ = (αx0) + (αx1)ε1 + · · ·+ (αxn)εn

x̂± α = (x0 ± α) + x1ε1 + · · ·+ xnεn

• For non-affine operations, use good affine approximation and append
extra term to represent error:

f̂ = f0 + f1ε1 + · · ·+ fnεn + fkεk

(new noise symbol created)

• Add new noise noise symbol on each operation (affine or not) to
account for rounding errors.



Non-affine operations in AA

To compute z = f(x, y), when f is not an affine operation, write:

f(x, y) = f(x̂, ŷ)

= f(x0 + x1ε1 + · · ·+ xnεn, y0 + y1ε1 + · · ·+ ynεn)

= f∗(ε1, . . . , εn)

where f∗:Un→ R. Now approximate

f∗(ε1, . . . , εn) = fa(ε1, . . . , εn) + zkεk

where fa is some affine approximation of f∗ with error bounded by zk :
∣

∣

∣f∗(ε)− fa(ε)
∣

∣

∣ ≤ |zk| for all ε ∈ U
n

Easiest to take fa = αx̂ + βŷ + γ. (Exact for univariate operations.)

ẑ = f̂(x̂, ŷ) = z0 + z1ε1 + · · ·+ znεn + zkεk



Multiplication in AA

x̂ · ŷ = (x0 +
n

∑

i=1

xiεi) · (y0 +
n

∑

i=1

yiεi)

= x0y0 +
n

∑

i=1

(x0yi + y0xi) εi +
n

∑

i=1

xiεi ·
n

∑

i=1

yiεi

So x̂ · ŷ = x0y0 +
n

∑

i=1

(x0yi + y0xi) εi + zkεk, where

|zk| ≥

∣

∣

∣

∣

∣

∣

n
∑

i=1

xiεi ·
n

∑

i=1

yiεi

∣

∣

∣

∣

∣

∣

, εi ∈ U

Easiest to take

zk =
n

∑

i=1

|xi| ·
n

∑

i=1

|yi|



Choice of affine approximations

a bu a b

Chebyshev Minimum range

• Chebyshev minimizes error — best approximation

• Minimum range minimizes range :-) — preserves signs

• Both have quadratic approximation errors



Choice of affine approximations: square root

a bu C a b MR

a b IA



Comparing AA with IA:

The dependency problem



The dependency problem in interval arithmetic – AA version

AA can see correlations between operands

g(x) = (10 + x)(10− x) for x ∈ [−u, u], x = 0 + u ε

10 + x = 10− u ε

10− x = 10 + u ε

(10 + x)(10− x) = 100− u2 ε

range = [100− u2,100 + u2] diam = 2u2

Exact range = [100− u2,100] diam = u2

AA



The dependency problem in interval arithmetic – AA version

AA can see correlations between operands

g(x) = (10 + x)(10− x) for x ∈ [−u, u], x = 0 + u ε

10 + x = 10− u ε

10− x = 10 + u ε

(10 + x)(10− x) = 100− u2 ε

range = [100− u2,100 + u2] diam = 2u2

Exact range = [100− u2,100] diam = u2

IA



Comparing AA with IA

g(x) =
√

x2 − x + 1/2/
√

x2 + 1/2

g

g ◦ g

IA AA



Comparing AA with IA:

Examples in computer graphics



Comparing AA with IA: plotting implicit curves

x2 + y2 + xy − (xy)2/2− 1/4 = 0

IA (246 cells, 66 exact) (70 cells) AA



Comparing AA with IA: surface intersection

Tensor product Bézier surfaces of degree (p, q):

f(u, v) =
p

∑

i=0

q
∑

j=0

aijB
p
i (u)B

q
j (v), Bn

i (t) =
(n

i

)

ti (1− t)n−i

(2,1) (3,3)



Surface intersection – domain decompositions

(2,1) IA (3,3)

AA



Exploiting the correlations given by AA



Approximating parametric curves

Given a parametric curve C = γ(I), where γ: I → R2 and T ⊆ I,
compute a bounding rectangle for P = γ(T ).
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Approximating parametric curves

Given a parametric curve C = γ(I), where γ: I → R2 and T ⊆ I,
compute a bounding rectangle for P = γ(T ).

Solution:

• Write γ(t) = (x(t), y(t)).

• Represent t ∈ T with an affine form:

t̂ = t0 + t1 ε1, t0 = (b + a)/2, t1 = (b− a)/2

• Compute coordinate functions x and y at t̂ using AA:

x̂ = x0 + x1ε1 + · · ·+ xnεn

ŷ = y0 + y1ε1 + · · ·+ ynεn

• Use bounding rectangle of the xy zonotope.



Approximating parametric curves



Approximating parametric curves



Approximating parametric curves



Approximating parametric curves



Approximating parametric curves



Approximating parametric curves



Approximating parametric curves



Approximating parametric curves



Approximating parametric curves

IA (32 boxes) (8 boxes) AA
Rotated rectangles computed from AA zonotopes



Ray casting implicit surfaces

• Implicit surface
h:R3 → R

S = {p ∈ R3 : h(p) = 0}

• Ray
r(t) = E + t · v, t ∈ [0,∞)

• Ray intersects S when
f(t) = h(r(t)) = 0

• First intersection occurs at smallest
zero of f in [0,∞).

• Paint pixel with color based on
normal at first intersection point



Ray casting implicit surfaces

• Implicit surface
h:R3 → R

S = {p ∈ R3 : h(p) = 0}

• Ray
r(t) = E + t · v, t ∈ [0,∞)

• Ray intersects S when
f(t) = h(r(t)) = 0

• First intersection occurs at smallest
zero of f in [0,∞).

• Paint pixel with color based on
normal at first intersection point

4(x4 + (y2 + z2)2) + 17x2(y2 + z2)− 20(x2 + y2 + z2) + 17 = 0



Interval bisection

• Solve f(t) = 0 using inclusion function F for f :

F (T ) ⊇ f(T ) = {f(t) : t ∈ T}, T ⊆ I

• 0 6∈ F (T )⇒ no solutions of f(t) = 0 in T

• 0 ∈ F (T )⇒ there may be solutions in T

interval-bisection([a, b]):
if 0 ∈ F ([a, b]) then

c← (a + b)/2
if (b− a) < ε then

return c
else

interval-bisection([a, c]) ← try left half first!
interval-bisection([c, b])

Start with interval-bisection([0, t∞]) to find the first zero.



Ray casting implicit surfaces with affine arithmetic

• AA exploits linear correlations of x, y, z in f(t) = h(r(t))

• AA provides additional information

� root must lie in smaller interval

� quadratic convergence near simple zeros



Conclusion



Summary

• AA useful replacement for IA

� AA more accurate than IA

� AA provides additional information that can be exploited

� AA locally more expensive than IA but globally more eficient

• AA algorithms not always faster

� AA overestimates squares if implemented naively

� AA range estimates not always better

• AA has geometric flavor

� good for computer graphics!



Other approaches to the dependency problem

• Generalized interval arithmetic (Hansen, 1975)

� affine expressions on a fixed set of “noise symbols” with interval
coefficients

� affine operations not exact

� does not exploit direct correlations of intermediate values

• Linear interval arithmetic (Tupper, 1996) — basis of GrafEq

• Centered forms

• Slopes

• Taylor forms (Berz)

• Zonotope enclosures (Kühn, 1998)

� AA is zonotope arithmetic!



Other talks about AA at SCAN 2002

• “A Numerical Method of Proving the Existence of Solutions for
Nonlinear ODEs Using Affine Arithmetic”, by Yuchi Kanzawa and
Shin’ichi Oishi (yesterday at 12:00)

• “Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why?
What Next?”, by Nedialko Nedialkov, Vladik Kreinovich, and Scott
Starks (today at 11:00)


