What Exactly Can We Learn from Samples?

- Pew Research Center Poll, 2015: Randomly selected 1504 American adults.
- Found that 53% of sampled adults disapproved of the Affordable Care Act (ACA), the 2010 health care law. (45% of sampled adults approved of the ACA.)
- Question: Since 53% of the sample disapproved of the ACA, can we conclude that the majority of the general American adult population disapproved of the ACA?
- Related question: Is 1504 respondents enough people in the sample to allow any conclusions about the population?

Parameters and Statistics

- Parameter: A number that describes a population in some way.
- Statistic: A number that describes a sample in some way.
- Key difference: In practice, we usually never know the actual value of a parameter. (because we don't have data on the whole population)
- In contrast, we can calculate the value of a statistic based on the sample data, which we do have.
- So ... we often use the value of the statistic to estimate the unknown value of the parameter.

Pew Research Poll Example Again

- What proportion of the population oppose the ACA?
- This is an unknown parameter - we denote a population proportion by p.
- To estimate p, here, we can calculate the proportion in the sample opposing the ACA.
- This is a statistic which estimates the parameter - we denote a sample proportion by \hat{p} (pronounced " p -hat").

Clicker Quiz 1

Note that of the 1504 adults sampled by Pew, 797 opposed the ACA. What is the sample proportion \hat{p} opposing the ACA?
A. $\frac{797}{1504}=0.53$
B. 797
C. 1504
D. $\frac{1504}{797}=1.89$

- In other words . . . we estimate that 53% of the population of adults oppose this ACA health care law.

Sampling Variability

- What if we conducted another poll (same survey question, but a different random sample of 1504 U.S. adults).
- Would exactly 53% of this new sample oppose the ACA?

Sampling Variability

- What if we conducted another poll (same survey question, but a different random sample of 1504 U.S. adults).
- Would exactly 53% of this new sample oppose the ACA?
- Probably not - maybe 48% would, or 55% would, or 50% would, etc.
- If we did repeated samples of 1504 adults, we'd get a somewhat different \hat{p} each time.
- If this sample-to-sample variation is too large, then we can't trust the results of the sample we did take very much.

How Much Sampling Variation Is There?

- Suppose the truth is that $p=0.50$ is the true proportion opposing the ACA in the population.
- Computer simulations can approximate the variation in \hat{p} values we'd get if we took many random samples from this population.
- Example: Let's take 1000 SRS's, each of size 100, from this hypothetical population having $\boldsymbol{p}=\mathbf{0 . 5}$.
\bullet Results in $1000 \hat{p}$ values: $0.50 \quad 0.55 \quad 0.58 \quad 0.45 \quad 0.55 \quad 0.44$ $0.540 .410 .61 \quad 0.44$, etc.
- Some sample proportions are bigger than 0.5 , some are smaller.

Overall picture of all $1000 \hat{p}$ values:

Sample proportions when sample sizes $=100$

Figure 1: Plot of pattern of \hat{p} values from 1000 samples when $\boldsymbol{n}=100$.

- Note: SRS size of 100 isn't as big a sample size as in the Pew research poll (had $\boldsymbol{n}=1504$)
- Now let's take 1000 SRS's each of size 1504:
- Now our $1000 \hat{p}$ values are: $\begin{array}{llllll}0.488 & 0.471 & 0.507 & 0.479 & 0.528\end{array}$ 0.4850 .4970 .4940 .499 , etc.
- Numbers seem closer to 0.5 than with previous example.

Overall picture of all $1000 \hat{p}$ values:

Figure 2: Plot of pattern of \hat{p} values from 1000 samples when $n=1504$.

Clicker Quiz 2

Which method appears preferable, taking a SRS of 100 adults, or a SRS of 1504 adults?
A. $n=100$, because 100 is a round number.
B. $n=1504$, because most of the \hat{p} values are near the true p.
C. $n=100$, because the \hat{p} values might be farther from the true p.
D. $n=1504$, because it costs less money to survey more people.

Bias and Variability

- Note in each case, the estimates (the \hat{p} values) were centered around the true parameter value, 0.5 (no systematic overestimation nor underestimation)
- Conclusion: \hat{p} is an unbiased estimator of p.
- Bias: When a statistic systematically overestimates or systematically underestimates the parameter we are trying to estimate.
- Note also: The \hat{p} values tended to be spread out farther around 0.5 in the first case ($n=100$) than in the second case ($n=1504$).
- The sample proportion \hat{p} has more sampling variability when we take a small sample than when we take a large sample.
- Variability: Measures how spread out the statistic's values are when we take many samples and calculate the statistic each time.
- In reality, companies only have time to take one sample.
- They want the method to have low variability so they can trust the result they get.

Managing Bias and Variability

- To eliminate bias, use a simple random sample.
- To reduce variability, use a larger sample.
- It may cost more time \& money to do these things rather than to cut corners (convenience sample, small sample size, etc.)
- But if you want trustworthy results, your sampling method must be a good one.

Margin of Error

- Polls usually report not just an estimate, but a margin of error.
- Example: " 53% of adults opposed this law. The margin of error for this poll was plus or minus 2.6 percentage points."
- What does this mean?

Margin of Error

- Polls usually report not just an estimate, but a margin of error.
- Example: " 53% of adults opposed this law. The margin of error for this poll was plus or minus 2.6 percentage points."
- What does this mean?
- Pew believes the true proportion of all U.S. adults opposing the law is between $0.53-0.026=0.504$ and $0.53+0.026=0.556$ (between 50.4\% and 55.6\%)
- What they don't say: Pew is " 95% confident" in this statement (more later).

Margin of Error: The "One-over-root-n" Trick

- The margin of error for a sample proportion (with a sample of size n) is roughly $1 / \sqrt{n}$ (assuming 95\% confidence)
- Pew research poll example ($n=1504$):

$$
\frac{1}{\sqrt{1504}}=\frac{1}{38.78} \approx 0.026(\text { or } 2.6 \%)
$$

- This rule works for a SRS.
- Note: The larger the sample, the smaller the margin of error.

Margin of Error: The "One-over-root-n" Trick Again

- The margin of error for a sample proportion (with a sample of size n) is roughly $1 / \sqrt{n}$ (assuming 95\% confidence)
- In May 2011, Gallup asked 1018 randomly chosen American adults whether same-sex marriages should be recognized by the law as valid. 53% said "yes".
- 2011 Gallup poll example ($n=1018$):

$$
\frac{1}{\sqrt{1018}}=\frac{1}{31.91} \approx 0.03(\text { or } 3 \%)
$$

- Note: For this somewhat smaller sample, there is a larger margin of error.

Clicker Quiz 3

We calculate a sample proportion based on a sample of 64 people. Our margin of error (assuming 95\% confidence) is roughly:
A. $1 / 8=0.125$ (or 12.5%)
B. $1 / 64=0.016$ (or $1.6 \%)$
C. 8%
D. $\mathbf{6 4 \%}$

What does "95\% confidence mean?"

- Suppose we estimate a proportion, with a margin of error of 2 percentage points.
- This means that in 95% of possible samples, our sample proportion will be within 2 percentage points of the true proportion.
- That is, our method "works" 95% of the time.
- However, we don't know whether the one sample we did take is one of the "lucky 95% " or one of the "unlucky 5% ".

Confidence Statements

- Confidence statement: Contains both a margin of error and a level of confidence.
- Example: "With 95\% confidence, the true proportion of U.S. adults opposing the ACA is between 0.504 and 0.556 ."
- Confidence statement is always a statement about the population.
- Almost all sample surveys use 95% confidence, but other confidence levels could be used.

Clicker Quiz 4

Consider this confidence statement from Nov. 1, 2012: "With 95\% confidence, we conclude that between 46% and 54% of all North Carolina voters will vote for Mitt Romney in the 2012 presidential election." What is the margin of error associated with the estimated proportion?
A. 0.54 (or 54\%)
B. 0.46 (or 46\%)
C. 0.04 (or 4\%)
D. 0.02 (or 2\%)

Sampling from Large Populations

- The size of the population doesn't make a difference concerning the variability of a statistic.
- Only important thing is that the population is at least 100 times larger than the sample.
- So will a sample of 100 USC students give as much precision as a sample of 1504 U.S. adults?
- No - the sample size itself is the important thing, not the fraction of the population size that the sample makes up.
- Note also: a large sample size reduces variability, but it doesn't reduce bias.
- A large volunteer sample is still a biased sample.

