Measure and Integration A First Course

M.Thamban Nair

Department of Mathematics Indian Institute of Technology Madras

2013

.

Preface

This book gives a short introduction to the theory of measure and integration. It is essentially an updated version of the notes which the author has been using for teaching courses on measure and integration many times for the last 23 years. The topics covered in this book are standard ones. However, the reader will definitely find that the presentation of the concepts and topics are different from the standard texts.

It starts by introducing the necessity of the concept of integration of functions that are more general than those allowed within the theory of Riemann integration, and then introduces the concept of Lebesgue measurable sets that is more general than the concept of intervals. Once we have this family of measurable sets, and the concept of a Lebesgue measure, it becomes almost obvious that one need not restrict the theory of integration to the subsets of the real line, but can be developed on any set together with a *sigma algebra* on it. Thus, the concept of a measure on a *measurable space* allows us to have a theory of integration in a very general setting which has immense potential for application to diverse areas of mathematics and its applications.

Although the theory of integration is very vast, the attempt in this book is to introduce the students to this modern subject in a simple and natural manner so that they can pursue the subject further with confidence, and also apply the concepts in other branches of mathematics, specially in the theory of differential and integral equations, Fourier analysis etc.

This book can be used for a one semester course of about 40 lectures for the first or second semester of a post graduate programme. As Lebesgue measure is introduced in the beginning, no pre-requisites sought, except the mathematical maturity to appreciate and grasp concepts in analysis.

January-May 2013/2014

M. Thamban Nair

.

Contents

	Pre	eface	iii
1	Rev	view of Riemann Integral	1
	1.1	Definition and Some Characterizations	1
	1.2	Advantages and Some Disadvantages	6
2	Lebesgue Measure		
	2.1	Lebesgue Outer Measure	12
	2.2	Lebesgue Measurable Sets	18
	2.3	Problems	27
3	Measure and Measurable Functions		
	3.1	Measure on an Arbitrary σ -Algebra	30
	3.2	Measurable Functions	38
	3.3	Simple measurable functions	46
	3.4	Problems	49
4	Inte	egral of Positive Measurable Functions	51
	4.1	Integral of Simple Measurable Functions	51
	4.2	Integral of Positive Measurable Functions	56
	4.3	Riemann Integral as Lebesgue Integral	61
	4.4	Monotone Convergence Theorem	62
	4.5	Problems	66

vi Contents

5	Inte	egral of Complex Measurable Functions	67
	5.1	Integrability	67
	5.2	Dominated Convergence Theorem	71
	5.3	L^p - Spaces	74
		5.3.1 Hölder's and Minkowski's inequalities	76
		5.3.2 Denseness of $C[a, b]$ in $L^p[a, b]$ for $1 \le p < \infty$	82
	5.4	Indefinite integral and its Derivative	84
	5.5	Appendix	92
	5.6	Problems	97
6	Inte	egration on Product Spaces	99
	6.1	Introduction	99
	6.2	Product Measure	99
	6.3	Fubini's Theorem	107
	6.4	Counter Examples	109
		6.4.1 σ -finiteness condition	109
		6.4.2 Completeness	111
	6.5	Problems	111
	Rei	ferences	112
	Ind	ex	113