
Session

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

1

 EXTREME PROGRAMMING FOR SOFTWARE ENGINEERING
EDUCATION?

Laurie Williams1 and Richard Upchurch2

1Laurie Williams, Department of Computer Science, North Carolina State University, Raleigh, NC 27695, williams@csc.ncsu.edu
2 Richard Upchurch, Computer and Information Science Department, University of Massachusetts Dartmouth, N. Dartmouth, MA 02747,
rupchurch@umassd.edu

Abstract  The eXtreme Programming (XP) software
development methodology has received considerable
attention in recent years. The adherents of XP anecdotally
extol its benefits, particularly as a method that is highly
responsive to changing customer's desires. While XP has
acquired numerous vocal advocates, the interactions and
dependencies between XP practices have not been
adequately studied. Good software engineering practice
requires expertise in a complex set of activities that involve
the intellectual skills of planning, designing, evaluating, and
revising. We explore the practices of XP in the context of
software engineering education. To do so, we must examine
the practices of XP as they influence the acquisition of
software engineering skills. The practices of XP, in
combination or isolation, may provide critical features to
aid or hinder the development of increasingly capable
practitioners. This paper evaluates the practices of XP in
the context of acquiring these necessary Software
Engineering skills.

Index Terms  Extreme Programming. Pair Programming,
Software Engineering, XP

INTRODUCTION

Extreme programming [1, 2] (XP), introduced in 1996, is a
lightweight, yet disciplined software development
methodology. Although it departs significantly from
traditional development practices, anecdotally, XP appears
to be effective. Industrial interest in the use of the
methodology is growing very rapidly. Computer science
educators around the country are also expressing interest in
applying XP in educational settings. Most of this interest is
sparked by anecdotal evidence from industry extolling the
benefits of the practice. Some educators, including the first
author, have already introduced the methodology in
Software Engineering undergraduate courses.

This paper consists of five sections. The first section is
an overview of the XP methodology and associated practices
is next presented. The second section is an overview of
instructional models for educating competent software
engineers. Then, the development of intellectual skills is
discussed and the XP method as an educational practice in
software engineering education is examined. In the last
section, the potential XP may have in the education domain
is examined.

EXTREME PROGRAMMING PRACTICES

Industrial strength practices are one source for potential
activities to support student development. Recently eXtreme
Programming [1-4] (XP) has gained the attention of the
software development community. Interest from the
development community is sparked by anecdotal evidence
extolling the benefits of the practice in terms of staff morale,
reduced project schedules, and satisfied customers. Table 1
[5] provides an overview of the practices associated with
XP. Each of these will be briefly described below.

TABLE I

XP PRACTICES

Metaphor
Collective Code Ownership
Simple Design
Refactoring
Small Releases
Continuous Integration
On-Site Customer

Unit Testing
Functional Test
Pair Programming
Coding Standards
Open Workspace
40-hour week
Planning Game

Metaphor. XP believes that each application should
have conceptual integrity based on a simple metaphor, which
explains the essence of how the system works. For example,
one large XP project was a payroll system for Chrysler. The
metaphor for this project was that the payroll system was
like an assembly line where hour parts were converted to
dollar parts, all parts were assembled and a paycheck was
produced [5].

Collective Code Ownership. On an XP development
team, no single programmer ‘owns’ any part of the code.
The code is entered into the team’s collective code base.
Once entered in the code base, every member of the team
owns the code. Then, any member of the team is able to
change any code in the code base without asking for
‘permission’ from anyone.

Simple Design. XP strives for supremely simple designs.
They stress that programmers should not try to predict future
needs and to design accordingly. They have two tenets to
support their design philosophy: “You aren’t gonna need
it.” (or YAGNI) and “Do the simplest thing that could
possibly work.”

Session

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

2

Refactoring. Refactoring is the process of improving the
code’s structure while preserving (not improving) its
function [3]. XP advocates refactoring code continuously
and explicitly.

Small Releases. XP heightens the pace of spiral
development by having short releases of 3-4 weeks. At the
end of each release, the customer reviews the interim
product, identify defects, and adjust future requirements.

Continuous Integration. Coding assignments are
broken up into small tasks, preferably of no more than one
day. When each task is completed, it is integrated into the
collective code base. As a result, there are many product
builds each day.

On-site Customer. The customers are always readily
available and accessible to the developers for the purpose of
clarifying and validating requirements throughout the
implementation process; preferably, customers are on-site.

Unit Testing. Extensive, automated white box test cases
are written before production code is produced. These
automated tests are added to the code base. Before a
programmer can integrate their code into the code base, they
must pass 100 % of their own test cases and 100% of every
test that was ever written on the code base. This ensures that
the new code implements the new functionality without
breaking anyone else’s code.

Functional Test. Traditionally, project management
techniques have been based on a developer’s own
assessment of how much of their task has been completed.
Alternately, XP promotes the use of functional test case
tracking for calculating project completeness. XP terms this
assessment “Project Velocity.” Functional test cases are
based on customer scenarios. When a functional test case is
successfully passed, it can be considered that a specified
functionality has been implemented properly. Project
completeness is based on the percentage of functional test
cases that have been passed. Team members can
unequivocally compute this measure.

Pair Programming. At all times, two programmers
work side-by-side at one computer, collaborating on the
same design, algorithm, code or test.

Coding Standard. In order for developers to easily
understand each other’s code, an agreed upon coding
standard is followed. Pair programming and collective code
ownership makes the use of a coding standard very
important.

Open Workspace. Personal communication between
developers and customers is paramount in XP. Workplace
layouts have common areas that facilitate open
communication.

40-Hour Week. XP advocates that programmers do not
tire themselves out by overworking themselves. They have
found that during crunch periods when overtime is worked,
the artifacts that are produced are poor.

Planning Game. The techniques for gathering
requirements in XP are a radical departure from that of more
traditional software methodologies. First, customer
requirements are written in natural language, informal "User
Story" cards, similar to use cases [6]. These cards are never
formalized, no relationships or dependencies between the
cards are identified. Software developers place time
estimates and customers assign priorities to each card.
Together, the developers and the customers play the
“Planning Game" in which the customer chooses those User
Stories that comprise the most important content for a short,
incremental deliverable of about one month. Each short
implementation increment is accepted and tried by the
customer. Then, the remaining User Stories are re-examined
for possible requirement and/or priority changes and the
Planning Game is re-played for the next implementation
increment.

INSTRUCTIONAL MODELS FOR SOFTWARE
COMPETENCE

Many agree that a primary factor in producing quality
software is excellent designers [7-10]. However, The
development of competent to excellent software
practitioners remains a challenge. Software engineering
education (SEE) seeks to identify those critical ingredients
that result in competence in the field, then to develop
instructional models that prepare students to become
effective practitioners.

Cognitive research has revealed that developing
intellectual skills, such as those associated with software
engineering, requires explicit instruction and carefully
constructed practice in the context in which such skills will
be applied. We discuss four different strategies to improve
the number and quality of skilled designers graduating from
our educational programs.

Early Identification

One approach is to identify top designers as early as
possible, then nurture these individuals over time [11]. The
problem with this strategy is that those skills that indicate
early promise are often not the same characteristics that
promote mature expertise. Evidence from human resources
research in industry suggests that initial ability predicts
entry- level performance, but does not predict long-term job
success [12]. In addition, grade point average is a very weak
predictor of later success [13]. Although most of this
research has been on domains other than software
development or programming, similar conditions prevail in
software engineering. As a result, we do not consider early
identification a salient strategy.

Design Knowledge

A second strategy focuses on increasing our instruction of
design principles and design artifacts. Here our attention is

Session

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

3

on identifying the characteristics of good programs such as
encapsulation, information hiding, and modularity [14].
Such principles are useful and easily incorporated into
instruction. This approach assumes that a critical factor for
differentiating excellent designers from others is their
knowledge. Unfortunately, knowing appears to be different
from applying. Hence, knowledge of these constructs does
not automatically enable designers to incorporate them into
their own designs. Teaching declarative knowledge alone is
not sufficient because it focuses primarily on the product of
design. The approach does not provide an opportunity for
students to develop how-to knowledge essential to conduct
the business of design [15].

Practicum

The practicum is a third approach to helping students
develop design skills. In this approach, a realistic
environment is provided in which students learn the skills
they will use in the “real world” [16]. The activity is usually
in the form of a project. This approach acknowledges that
the skills needed to be effective software engineers are not
limited to declarative knowledge or to programming skills
per se. Usually there is little effort in identifying what those
other skills may be. Rather the approach assumes that
embedding students in an authentic context provides
sufficient opportunity to develop these unexplored skills.
This approach is based on the situated cognition principle (or
learning within an authentic context), which claims that
expertise is domain-specific and can only be acquired in the
context in which it will be practiced. Typically, however,
instructors focus on the experiences with little regard to what
is actually learned from those experiences (a criticism
leveled at engineering design education in general [17]).
Yet, it is predicated on the assumption that experience alone
is sufficient to develop expertise.

However, experience alone is a weak predictor of future
performance [18]. Practice alone is sufficient to develop a
certain level of competence, but, for most people, will not
result in expert levels of performance. To develop to higher
levels of competence, deliberate practice techniques are
necessary [19]. Deliberate practice involves work on
particular skills in an effort to improve. Having students
engage in a few large-scale projects during their
undergraduate experience gives them a limited amount of
practice. It does not, however, help them develop the skills
necessary for deliberate practice. Furthermore, the expertise
literature 20] indicates that novices’ understanding is tightly
coupled to the context in which the material is learned.
Thus, novices are able to apply what they have learned only
to very similar situations. In contrast, experts are able to
apply what they know to a broader range of problems.
Experts evidently develop abstracted (context- independent)
representations as a result of repeated experiences in
different contexts. Hence, a single project is an insufficient
basis on which to develop an adequate representation of the
necessary knowledge, and we should not expect much

transfer from the project activity to other design activities
unless they are very similar.

Process Knowledge

A fourth educational approach to software engineering
education emerged by explicitly identifying the processes
needed to do design and teaching those skills directly [21-
23]. To implement this, educators must first understand the
processes underlying the development of effective software,
identify the subskills and roles involved, and then construct
situations that require students to practice those skills. A
process focus in SEE has several important attributes. First,
the concern for process forces an early delineation of
subprocesses, which in turn helps to isolate the necessary
subskills. By decomposing the students’ project
development into more discrete steps, with higher
granularity, the deliberate practice needed to develop the
competence needed in our graduates can be achieved.
Second, the identification of subskills provides an
opportunity for modeling and coaching, which have been
shown to be a powerful instructional strategy for cognitively
demanding tasks including software design [24-26]. The
process focus in SEE seems to combine the necessary
ingredients for developing some of the heuristic strategies
needed in design practice.

Instructional Model Analysis

Our analysis indicates several things: 1) if we wish to
produce skilled designers then our educational programs
must attend explicitly to that 2) producing competent
designers requires teaching both the knowing-what and
knowing-how, and 3) knowing-how knowledge can only be
taught in an environment in which the student actively
engages in appropriate activities. We believe the process
focus has the right characteristics needed for the next
generation SEE. It remains to be determined what processes
produce good educational outcomes [27]. Yet, clearly the
above discussion focuses our attention of identifying how a
given practice, or set of practices, provide the learner with
those opportunities to develop the requisite skills for
ongoing learning and development.

INTELLECTUAL SKILLS DEVELOPMENT

Knowledge can be decomposed into three distinctive
categories: (a) declarative knowledge (“knowledge that”),
(b) procedural knowledge (“how to knowledge”), and (c)
metacognitive knowledge (self-monitoring, agency,
reflection). Declarative knowledge refers to the kind of
knowledge typically learned from textbooks--facts and
concepts. Procedural knowledge refers to being able to do
something, such as write. Metacognitive knowledge refers
to a person’s skill at planning strategy, monitoring process
and progress, changing what one is doing when appropriate,
and reflecting on the process. Yet, the learning activities in
our courses typically consist of reading textbooks, listening

Session

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

4

to lectures, and taking exams on the material; this kind of
learning is declarative. Programming assignments usually
augment in-class material; this requires procedural learning.
When programming assignments are merely added as
homework assignments, the implicit assumption is that
declarative knowledge is a sufficient basis for procedural
learning to occur.

Research within the software domain, and in other
fields, makes it clear that each knowledge category must be
addressed explicitly in instruction. For example, studying
instructional text is not a sufficient basis for students to
solve LISP programs, whereas doing one programming
problem improves the probability of successfully completing
a second one by 50% [28]; adding an instructional example
of how to construct the program produce improvements of
over 60% [29]. It is equally true that one cannot teach
procedural skill by teaching procedural principles. For
example, [30] found that teaching students the principles of
top-down design was not sufficient to enable them to
practice top-down design.

Although less studied, a similar claim can be made for
metacognitive knowledge. When solving problems, most
university students do not spontaneously consider strategies,
plan their approach, evaluate their progress, and think
through how to change what they are doing. When asked to
think metacognitively at every step of a problem-solving
episode, such students can do so, and, through doing so,
develop deeper understanding and better performance on
subsequent problems [31]. Studies in programming domain
have demonstrated that (a) students who reflect on what they
are learning learn better both on declarative and procedural
tasks [32], and (b) inducing students to reflect upon the
material is effective, suggesting that it is the metacognitive
activity that produces the improved performance [33].

The principled focus on the metacognitive skills appears
to be one of the keys to facilitating the evolution of higher
levels of competence [34]. Students learn to think about
how and why they work in particular ways, and how to
develop strategies for altering ineffective habits. This
promotes the development of representations of
declarative/procedural schemas that appear to be essential in
expertise. Hence, our approach to assessing XP practices
must focus on how each practice may facilitate the
acquisition of those skills that appear to be critical in the
development of enhanced competence.

XP AND DEVELOPING EXPERTISE

From our analysis, as given in the discussion above, there
are a number of distinct items which should be present in an
educational setting for the acquisition of skills which may
lead to exceptional levels of performance. Clearly it is not
sufficient to simply adopt industrial strength practices. The
practices incorporated into our pedagogy must accentuate
those skills and abilities viewed as critical. Our approach to
assessing XP practices must focus on how the practices

associated with this development method may facilitate the
acquisition of the intellectual skills.

As a cautionary note, it has been said “XP is aimed
primarily at object-oriented projects using teams of a dozen
or fewer programmers in one location [5].” Since these
parameters comprise a relatively small percentage of
industry projects, we focus on teaching our students the right
skills to handle projects with varying project parameters.
We believe that several of the XP practices are very valuable
in the context of a general SEE. However, some universities
require students to take only one software engineering
course. If this singular course only used XP, students would
lack the skills for documenting and designing larger projects.
XP practitioners and researchers are working towards
adapting XP towards larger, perhaps geographically
distributed project teams. However, the XP presented in this
paper is intended to handle the smaller teams as described in
the quote above.

The fact that XP uses a defined process that structures
the development activities is a step in the right direction.
Students need to be provided with a defined process and
helped to understand their role in the process. An effective
software developer a) understands the development process
or processes; b) conceptualizes a desired process; c)
establishes process improvement actions; d) plans the
improvement activities; e) finds the resources needed by the
plan; f) executes the plan; and g) repeats the improvement
process [35]. Embedding student development in a defined
process provides opportunities for a process focus
considered critical for modeling and coaching the subskills
needed for software development. Furthermore, the process
focus provides access to those skills needed to empower
students to become increasingly independent as they move
toward higher levels of competence where they manage and
evaluate their personal development strategies. Lastly,
when students are required to use ‘heavyweight’ processes
that require much documentation, they often develop
distaste for software development processes. Most quickly
revert to ad hoc procedures when not explicitly required to
follow a process. XP may provide a process that students
will not reject.

The practices of XP will now be re-examined to
provide guidance on the use of the practice in an
educational context, considering the use of XP for a student
project team.

Metaphor. The idea of a system metaphor is very
abstract and often mysterious to experienced practitioners.
It is probably best not to stress this aspect of XP,
particularly in the undergraduate classroom.

Collective Code Ownership. An XP practice that
allows collective code ownership is the extensive automated
unit tests and the criteria that 100% of these test cases must
pass prior to code being integrated into the code base.
Then, when a programmer changes someone else’s code,
they can be assured they did not break previously
implemented functionality. Unless the students are

Session

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

5

relatively experienced testers, collective code ownership
will likely present problems within the group.

Simple Design. XP’s emphasis on simple design is
powerful. Students sometimes deve lop a ‘macho’ attitude
toward program, whereby the ‘smart’ programmers take
pride in developing code only they understand. Designing
and implementing simply, such that their pair-programming
partner can continually understand will likely breed better
practices with out students. However, XP also does not
require any form of written design documents. We believe
it is essential that students learn design practices such as use
cases [36], UML [37], and CRC cards [38]. Most XP
practitioners know these design practices and can decide to
use them as the need arises. We need to insure our students
do too. Therefore, we advise that students are exposed to
these practices in the curriculum.

Refactoring. Refactoring is a wonderful practice to
teach students in a Software Engineering course. Students,
particularly those who are relatively new to a programming
language, can write “smelly code” (a term used by Martin
Fowler [4]). It is great practice for the students to re-
implement smelly code given by the instructor with better
structure, without changing the functionality.

Small Releases. What excites many about XP, and
which may have a similar impact on SEE, is small releases
[25]. Product development based on small releases implies
developers reap the benefits of frequent feedback. In the
educational setting this feedback is precisely what is
required for helping students make their development
process visible through measurement activities. Like the
Team Software ProcessSM (TSPSM) [39], which cycles
through development over a short period of time, small
releases allow exposure to the full cycle of development
repeatedly. This repeated exposure provides the opportunity
to again focus students on learning those subskills of
planning and evaluating.

Continuous Integration. Students often underestimate
the difficulties of integrating code. Having very frequent
integrations, along with a defined configuration
management strategy, is an excellent lesson for the students.

On-Site Customer. Choosing projects with “real”
customers has important benefits in SEE. There are
numerous issues dealing with communication skills that
arise with this practice. The instructor can serve the role of
the customer and responsively clarify project requirements.

Unit Testing. Students can certainly benefit from XP’s
unit testing procedures. A popular shareware unit testing
tool for Java is Junit (available at http://junit.org) while
similar tools are available for other programming languages
(see http://www.xprogramming.com/testing.html).

Functional Testing. As unit testing provides students
with excellent white box testing experience, XP’s functional
test procedures are beneficial for learning black box testing.

Pair Programming. There is a growing body of
empirical evidence related to the efficacy of pair-
programming as an educational practice [40]. We have

outlined elsewhere [41] how the practice of pair-
programming influences the outcomes in the software
engineering classroom in terms of satisfaction, problem
solving, learning and team building and communication.

Coding Standards. Many software engineering
classes already require the use of coding standards. The use
of pair programming, as well as other XP practices,
provides more incentive for the students to follow the
standard.

Open Workplace. Student labs have long provided
open, collaborative environments. Trends towards students
owning their own computers and working in their own room
have created a less collaborative environment for them.
Working in an XP team would require the students to find a
common workplace, which is beneficial when compared
with a student team project where each team member works
on their own part in their own room and integrates the
pieces late into the process.

40-Hour Workweek. Though it may seem ridiculous
to consider the 40-hour week as an educational practice.
Yet, our current approaches merely fuel the current
practices where heroics, based on overtime and late nights,
are often valued over reasoned and deliberate practices. In
some regard the academic world has promoted a view of the
software developer as the nocturnal loner who thrives on
generating code to meet the critical deadlines. This
perspective needs a serious revision. Students need to gain
more control over their development activities through time
management, hence encouraging planning and coupling that
planning with a defined process should help lead them to a
more disciplined approach to the activity.

Planning Game. Planning and estimating is an
important component of XP development. Developers make
explicit choices on which parts of the system they will
work. As part of this, developers estimate the time required
to complete it. Coupled with small releases, the planning
and estimating activities provide significant feedback to the
novice developer. In the educational context, with the
iterative development inherent in small releases we can
implement reflective experiences where the student is
directed to evaluate the result of the activity in terms of their
accuracy in estimating and those characteristics of their
process that contributed to their ability to meet their
estimate.

CONCLUSIONS

Let us first assert that SEE requires the same solid
theoretical and empirical foundations as software
engineering. What we have provided are conjectures related
to how the practices of XP may influence learning in the
software engineering program.

Part of the missing ingredients in SEE is a lack of
visibility of what is actually learned. We evaluate student
products and claim success based on the quality of those
products, yet we cannot state with any certainty how those

Session

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

6

products came into existence. Nor can we claim any true
understanding of the state of our students’ knowledge of the
field. Achieving expertise, or higher level of competence,
requires deliberate acts that help students attend to their
evolving skills acquisition. As such, methods to evaluate
their progress towards this goal need to be developed. In
other design disciplines, there are efforts underway to assess
the nature of learning and then evaluate the manner in which
this learning changes over time. One such approach,
structural assessment [42], attempts to evaluate a student’s
knowledge of the relationships among concepts in a domain.

We briefly discussed TSP and XP. We would like to
conduct a serious empirical comparison of these two
approaches. This should be conducted using methods such as
structural assessment to uncover any critical differences that
may result from these approaches.

XP offers potential benefits for SEE; the practices offer
much pedagogical appeal. We encourage others to carefully
implement these practices and lend their results to the
experience base.

REFERENCES

1. Beck, K., Extreme Programming Explained: Embrace Change. Reading,
Massachusetts: Addison-Wesley, 2000.
2. Beck, K., & Fowler, M., Planning Extreme Programming. Reading,
Massachusetts: Addison-Wesley, 2001.
3. Jeffries, R., Anderson, A., & Hendrickson, C., Extreme Programming
Installed, Reading, Massachusetts, Addison-Wesley, 2001.
4. Fowler, M., Refactoring: Improving the Design of Existing Code,
Reading, Massachusetts: Addison-Wesley, 1999.
5. IEEE Computer Society, XP Practices, DynaBook: eXtreme
Programming, http://computer.org/seweb/Dynabook/XPPracSdb.htm.
6. Jacobson,I., Object-Oriented Software Engineering: A Use Case
Driven Approach, ACM Press, 1992.
7. Brooks , F. P., “No Silver Bullet,” IEEE Computer, 1987, pp. 10-19.
8. Card, D. N., McGarry, F. E. & Page, G. T., “Evaluating Software
Engineering Technologies,” IEEE Trans. on Software Engineering, SE-13,
1987, pp. 845-851.
9. Yourdon, E., Rise & Resurrection of the American Programmer,
Englewood Cliffs: Prentice-Hall, 1996.
10. Curtis, B. "What if programmers were treated like jocks?"
American Programmer, 10(5), May 1997, pp. 9-12.
11. Freeman, P., “Essential Elements of Software Engineering
Education,” IEEE Trans. on Software Engineering, SE-13, 1987, pp. 1143-
1148.
12. Schmidt, F. L., & Hunter, J. E., “Development of a causal model of
processes determining job performance,” Current Directions in
Psychological Science, 1 , 1992, pp. 89-92.
13. Erhmann, S., “ASKING THE RIGHT QUESTION: What Does
Research Tell Us About Technology and Higher Learning?” The
Annenberg/CPB
Projects, 1995. Available
http://www.learner.org/edtech/rscheval/rightquestion.html.
14. Buschmann, F., Meunier, R., Rohnert, H, Sommerlad, P. & Stal, M.,
Pattern-Oriented Software Architecture: A System of Patterns,
15. Davies, S. P. “The Nature and Development of Programming Plans,”
International Journal of Man-Machine Studies, 32, 1990, pp. 461-481.
16. Denning, P. J. “Educating the New Engineer,” CACM, 35, 1992, pp.
83-97.
17. Dixon, J. R. “The State of Education,” Mechanical Engineering,
February 1991, pp. 64-67.
18. Ericsson, K. A., Krampe, R., & Tesch-Röhmer, C. “The Role of
Deliberate Practice in the Acquisition of Expert Performance,”
Psychological Review, 3 , 1993, pp. 363-406.

19. Ericsson, K. A. (ed.) The Road to Excellence. Mahwah, NJ: Lawrence
Erlbaum, 1996.
20. Ericsson, K. A. "The Acquisition of Expert Performance: An
Introduction to Some of the Issues," K. A. Ericsson (ed.) The Road to
Excellence. Mahwah, NJ: Lawrence Erlbaum, 1996.
21. Humphrey, W. S. Introduction to the Personal Software Process.
Reading, MA: Addison Wesley, 1997.
22. Upchurch, R., & Sims -Knight, J. E. “Designing Process-Based
Software Curriculum,” Proceedings of the Tenth Conference on Software
Education and Training, Virginia Beach, VA, April 13-16, 1997.
23. Humphrey, W. S., A Discipline of Software Engineering. Reading,
MA: Addison-Wesley, 1995.
24. Sims-Knight, J. E., & Upchurch, R. L., “Teaching object-oriented
design to nonprogrammers: A progress report,” Proceedings of OOPSLA-
92 Educators' Symposium. Vancouver, British Columbia, Canada, 1992.
25. Sims-Knight, J. E. and R. L. Upchurch, “Teaching Object-Oriented
Design Without Programming: A Progress Report,” Computer Science
Education, 4 , 1992, pp. 135-156.
26. Collins, A., Brown, J. S., and Holum, A., “Cognitive apprenticeship:
Making thinking visible,” American Educator, Winter 1991, pp. 6-11, 38-
46.
27. Upchurch, R., & Sims -Knight, J. E. “In Support of Student Process
Improvement,” Proceedings of CSEE&T'98, Atlanta, GA, February 22-25,
1998.
28. Anderson, J. R., Cornrad, F., & Corbett, A., “Skill acquisition and the
Lisp Tutor,” Cognitive Science, 13, 1989, pp. 467-505.
29. Pirolli, P., “Effects of examples and their explanation in a lesson on
recursion: A production system analysis ,” Cognition and Instruction, 8,
1991, pp. 207-259.
30. Ratcliff, B. & Siddiqi, J., “An empirical investigation into problem
decomposition strategies used in program design,” International Journal of
Man-Machine Studies, 22, 1984, pp. 77-90.
31. Berardi-Colletta, B., Buyer, L. S., Dominowski, R. L., & Rellinger, E.,
R. “Metacognition and problem solving: A process-oriented approach,”
Jounral of Experimental Psychology: Learning, Memory, and Cognition,
21, 1995, pp. 205-221.
32. Pirolli, P. & Recker, M., “Learning Strategies and Transfer in the
Domain of Programming,” Cognition and Instruction, 12, 1994.
33. Chi, M., de Leeuw, N., Chiu, M., & LaVancher, C., “Eliciting self-
explanations improves understanding,” Cognitive Science, 18, 1994, pp.
439-477.
34. Davidson, J. E., Deuser, R. & Sternberg, R. J., “The Role of
Metacognition in Problem Solving,” J. Metcalfe & A. P. Shimamura (eds.),
Metacognition: knowing about knowing. Cambridge, MA: MIT Press,
1994, pp. 207-226.
35. Hsia, P. ,”Learning to Put Lessons Into Practice,” IEEE Software,
September 1993, pp. 14-17.
36. Cockburn, A., Writing Effective Use Cases. Reading, Massachusetts,
Addison Wesley, 2001.
37. Fowler, M., UML Distilled. Reading, Massachusetts, Addison Wesley,
1997.
38. Bellin, D. & Simone, S., The CRC Card Book. Reading,
Massachusetts, 1997.
39. Humphrey, W., Introduction to the Team Software Process. Reading,
Massachusetts, Addison Wesley, 2000.
40. Williams, L. & Kessler, R., “Experimenting with Industry's "Pair-
Programming" Model in the Computer Science Classroom,” Journal of
Computer Science Education, March 2001.
41. Williams, L. & Upchurch, R., “In Support of Student Pair-
Programming,” Technical Symposium on Computer Science Education,
Charlotte, NC, February 21-25, 2001.
42. Turns, J. & Kurlik, A., “Structural Assessment to Support Engineering
Education,” ASEE, 1998.

